xref: /openbmc/linux/drivers/dma/stm32-dma.c (revision 0ed2dd03)
1 /*
2  * Driver for STM32 DMA controller
3  *
4  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
5  *
6  * Copyright (C) M'boumba Cedric Madianga 2015
7  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
8  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
9  *
10  * License terms:  GNU General Public License (GPL), version 2
11  */
12 
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 
30 #include "virt-dma.h"
31 
32 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
33 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
34 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
35 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
36 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
37 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
38 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
39 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
40 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
41 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
42 					 | STM32_DMA_TEI \
43 					 | STM32_DMA_DMEI \
44 					 | STM32_DMA_FEI)
45 
46 /* DMA Stream x Configuration Register */
47 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
48 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
49 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
50 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
51 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
52 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
53 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
54 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
55 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
56 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
57 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
58 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
59 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
60 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
61 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
62 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
63 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
64 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
65 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
66 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
67 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
68 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
69 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
70 						*/
71 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
72 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
73 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
74 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
75 					| STM32_DMA_SCR_MINC \
76 					| STM32_DMA_SCR_PINCOS \
77 					| STM32_DMA_SCR_PL_MASK)
78 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
79 					| STM32_DMA_SCR_TEIE \
80 					| STM32_DMA_SCR_DMEIE)
81 
82 /* DMA Stream x number of data register */
83 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
84 
85 /* DMA stream peripheral address register */
86 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
87 
88 /* DMA stream x memory 0 address register */
89 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
90 
91 /* DMA stream x memory 1 address register */
92 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
93 
94 /* DMA stream x FIFO control register */
95 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
96 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
97 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
98 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
99 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
100 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
101 					| STM32_DMA_SFCR_DMDIS)
102 
103 /* DMA direction */
104 #define STM32_DMA_DEV_TO_MEM		0x00
105 #define	STM32_DMA_MEM_TO_DEV		0x01
106 #define	STM32_DMA_MEM_TO_MEM		0x02
107 
108 /* DMA priority level */
109 #define STM32_DMA_PRIORITY_LOW		0x00
110 #define STM32_DMA_PRIORITY_MEDIUM	0x01
111 #define STM32_DMA_PRIORITY_HIGH		0x02
112 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
113 
114 /* DMA FIFO threshold selection */
115 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
116 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
117 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
118 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
119 
120 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
121 /*
122  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
123  * gather at boundary. Thus it's safer to round down this value on FIFO
124  * size (16 Bytes)
125  */
126 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
127 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
128 #define STM32_DMA_MAX_CHANNELS		0x08
129 #define STM32_DMA_MAX_REQUEST_ID	0x08
130 #define STM32_DMA_MAX_DATA_PARAM	0x03
131 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
132 #define STM32_DMA_MIN_BURST		4
133 #define STM32_DMA_MAX_BURST		16
134 
135 /* DMA Features */
136 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
137 #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
138 
139 enum stm32_dma_width {
140 	STM32_DMA_BYTE,
141 	STM32_DMA_HALF_WORD,
142 	STM32_DMA_WORD,
143 };
144 
145 enum stm32_dma_burst_size {
146 	STM32_DMA_BURST_SINGLE,
147 	STM32_DMA_BURST_INCR4,
148 	STM32_DMA_BURST_INCR8,
149 	STM32_DMA_BURST_INCR16,
150 };
151 
152 /**
153  * struct stm32_dma_cfg - STM32 DMA custom configuration
154  * @channel_id: channel ID
155  * @request_line: DMA request
156  * @stream_config: 32bit mask specifying the DMA channel configuration
157  * @features: 32bit mask specifying the DMA Feature list
158  */
159 struct stm32_dma_cfg {
160 	u32 channel_id;
161 	u32 request_line;
162 	u32 stream_config;
163 	u32 features;
164 };
165 
166 struct stm32_dma_chan_reg {
167 	u32 dma_lisr;
168 	u32 dma_hisr;
169 	u32 dma_lifcr;
170 	u32 dma_hifcr;
171 	u32 dma_scr;
172 	u32 dma_sndtr;
173 	u32 dma_spar;
174 	u32 dma_sm0ar;
175 	u32 dma_sm1ar;
176 	u32 dma_sfcr;
177 };
178 
179 struct stm32_dma_sg_req {
180 	u32 len;
181 	struct stm32_dma_chan_reg chan_reg;
182 };
183 
184 struct stm32_dma_desc {
185 	struct virt_dma_desc vdesc;
186 	bool cyclic;
187 	u32 num_sgs;
188 	struct stm32_dma_sg_req sg_req[];
189 };
190 
191 struct stm32_dma_chan {
192 	struct virt_dma_chan vchan;
193 	bool config_init;
194 	bool busy;
195 	u32 id;
196 	u32 irq;
197 	struct stm32_dma_desc *desc;
198 	u32 next_sg;
199 	struct dma_slave_config	dma_sconfig;
200 	struct stm32_dma_chan_reg chan_reg;
201 	u32 threshold;
202 	u32 mem_burst;
203 	u32 mem_width;
204 };
205 
206 struct stm32_dma_device {
207 	struct dma_device ddev;
208 	void __iomem *base;
209 	struct clk *clk;
210 	struct reset_control *rst;
211 	bool mem2mem;
212 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
213 };
214 
215 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
216 {
217 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
218 			    ddev);
219 }
220 
221 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
222 {
223 	return container_of(c, struct stm32_dma_chan, vchan.chan);
224 }
225 
226 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
227 {
228 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
229 }
230 
231 static struct device *chan2dev(struct stm32_dma_chan *chan)
232 {
233 	return &chan->vchan.chan.dev->device;
234 }
235 
236 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
237 {
238 	return readl_relaxed(dmadev->base + reg);
239 }
240 
241 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
242 {
243 	writel_relaxed(val, dmadev->base + reg);
244 }
245 
246 static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs)
247 {
248 	return kzalloc(sizeof(struct stm32_dma_desc) +
249 		       sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT);
250 }
251 
252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253 			       enum dma_slave_buswidth width)
254 {
255 	switch (width) {
256 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
257 		return STM32_DMA_BYTE;
258 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
259 		return STM32_DMA_HALF_WORD;
260 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
261 		return STM32_DMA_WORD;
262 	default:
263 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
264 		return -EINVAL;
265 	}
266 }
267 
268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
269 						       u32 threshold)
270 {
271 	enum dma_slave_buswidth max_width;
272 
273 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
274 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
275 	else
276 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
277 
278 	while ((buf_len < max_width  || buf_len % max_width) &&
279 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
280 		max_width = max_width >> 1;
281 
282 	return max_width;
283 }
284 
285 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
286 						enum dma_slave_buswidth width)
287 {
288 	u32 remaining;
289 
290 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
291 		if (burst != 0) {
292 			/*
293 			 * If number of beats fit in several whole bursts
294 			 * this configuration is allowed.
295 			 */
296 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
297 				     (threshold + 1) / 4) % burst;
298 
299 			if (remaining == 0)
300 				return true;
301 		} else {
302 			return true;
303 		}
304 	}
305 
306 	return false;
307 }
308 
309 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
310 {
311 	switch (threshold) {
312 	case STM32_DMA_FIFO_THRESHOLD_FULL:
313 		if (buf_len >= STM32_DMA_MAX_BURST)
314 			return true;
315 		else
316 			return false;
317 	case STM32_DMA_FIFO_THRESHOLD_HALFFULL:
318 		if (buf_len >= STM32_DMA_MAX_BURST / 2)
319 			return true;
320 		else
321 			return false;
322 	default:
323 		return false;
324 	}
325 }
326 
327 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
328 				    enum dma_slave_buswidth width)
329 {
330 	u32 best_burst = max_burst;
331 
332 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
333 		return 0;
334 
335 	while ((buf_len < best_burst * width && best_burst > 1) ||
336 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
337 						    width)) {
338 		if (best_burst > STM32_DMA_MIN_BURST)
339 			best_burst = best_burst >> 1;
340 		else
341 			best_burst = 0;
342 	}
343 
344 	return best_burst;
345 }
346 
347 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
348 {
349 	switch (maxburst) {
350 	case 0:
351 	case 1:
352 		return STM32_DMA_BURST_SINGLE;
353 	case 4:
354 		return STM32_DMA_BURST_INCR4;
355 	case 8:
356 		return STM32_DMA_BURST_INCR8;
357 	case 16:
358 		return STM32_DMA_BURST_INCR16;
359 	default:
360 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
361 		return -EINVAL;
362 	}
363 }
364 
365 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
366 				      u32 src_burst, u32 dst_burst)
367 {
368 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
369 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
370 
371 	if (!src_burst && !dst_burst) {
372 		/* Using direct mode */
373 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
374 	} else {
375 		/* Using FIFO mode */
376 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
377 	}
378 }
379 
380 static int stm32_dma_slave_config(struct dma_chan *c,
381 				  struct dma_slave_config *config)
382 {
383 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
384 
385 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
386 
387 	chan->config_init = true;
388 
389 	return 0;
390 }
391 
392 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
393 {
394 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
395 	u32 flags, dma_isr;
396 
397 	/*
398 	 * Read "flags" from DMA_xISR register corresponding to the selected
399 	 * DMA channel at the correct bit offset inside that register.
400 	 *
401 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
402 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
403 	 */
404 
405 	if (chan->id & 4)
406 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
407 	else
408 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
409 
410 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
411 
412 	return flags & STM32_DMA_MASKI;
413 }
414 
415 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
416 {
417 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
418 	u32 dma_ifcr;
419 
420 	/*
421 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
422 	 * DMA channel at the correct bit offset inside that register.
423 	 *
424 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
425 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
426 	 */
427 	flags &= STM32_DMA_MASKI;
428 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
429 
430 	if (chan->id & 4)
431 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
432 	else
433 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
434 }
435 
436 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
437 {
438 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
439 	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
440 	u32 dma_scr, id;
441 
442 	id = chan->id;
443 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
444 
445 	if (dma_scr & STM32_DMA_SCR_EN) {
446 		dma_scr &= ~STM32_DMA_SCR_EN;
447 		stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
448 
449 		do {
450 			dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
451 			dma_scr &= STM32_DMA_SCR_EN;
452 			if (!dma_scr)
453 				break;
454 
455 			if (time_after_eq(jiffies, timeout)) {
456 				dev_err(chan2dev(chan), "%s: timeout!\n",
457 					__func__);
458 				return -EBUSY;
459 			}
460 			cond_resched();
461 		} while (1);
462 	}
463 
464 	return 0;
465 }
466 
467 static void stm32_dma_stop(struct stm32_dma_chan *chan)
468 {
469 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
470 	u32 dma_scr, dma_sfcr, status;
471 	int ret;
472 
473 	/* Disable interrupts */
474 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
475 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
476 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
477 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
478 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
479 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
480 
481 	/* Disable DMA */
482 	ret = stm32_dma_disable_chan(chan);
483 	if (ret < 0)
484 		return;
485 
486 	/* Clear interrupt status if it is there */
487 	status = stm32_dma_irq_status(chan);
488 	if (status) {
489 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
490 			__func__, status);
491 		stm32_dma_irq_clear(chan, status);
492 	}
493 
494 	chan->busy = false;
495 }
496 
497 static int stm32_dma_terminate_all(struct dma_chan *c)
498 {
499 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
500 	unsigned long flags;
501 	LIST_HEAD(head);
502 
503 	spin_lock_irqsave(&chan->vchan.lock, flags);
504 
505 	if (chan->busy) {
506 		stm32_dma_stop(chan);
507 		chan->desc = NULL;
508 	}
509 
510 	vchan_get_all_descriptors(&chan->vchan, &head);
511 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
512 	vchan_dma_desc_free_list(&chan->vchan, &head);
513 
514 	return 0;
515 }
516 
517 static void stm32_dma_synchronize(struct dma_chan *c)
518 {
519 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
520 
521 	vchan_synchronize(&chan->vchan);
522 }
523 
524 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
525 {
526 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
527 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
528 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
529 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
530 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
531 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
532 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
533 
534 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
535 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
536 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
537 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
538 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
539 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
540 }
541 
542 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
543 
544 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
545 {
546 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
547 	struct virt_dma_desc *vdesc;
548 	struct stm32_dma_sg_req *sg_req;
549 	struct stm32_dma_chan_reg *reg;
550 	u32 status;
551 	int ret;
552 
553 	ret = stm32_dma_disable_chan(chan);
554 	if (ret < 0)
555 		return;
556 
557 	if (!chan->desc) {
558 		vdesc = vchan_next_desc(&chan->vchan);
559 		if (!vdesc)
560 			return;
561 
562 		chan->desc = to_stm32_dma_desc(vdesc);
563 		chan->next_sg = 0;
564 	}
565 
566 	if (chan->next_sg == chan->desc->num_sgs)
567 		chan->next_sg = 0;
568 
569 	sg_req = &chan->desc->sg_req[chan->next_sg];
570 	reg = &sg_req->chan_reg;
571 
572 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
573 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
574 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
575 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
576 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
577 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
578 
579 	chan->next_sg++;
580 
581 	/* Clear interrupt status if it is there */
582 	status = stm32_dma_irq_status(chan);
583 	if (status)
584 		stm32_dma_irq_clear(chan, status);
585 
586 	if (chan->desc->cyclic)
587 		stm32_dma_configure_next_sg(chan);
588 
589 	stm32_dma_dump_reg(chan);
590 
591 	/* Start DMA */
592 	reg->dma_scr |= STM32_DMA_SCR_EN;
593 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
594 
595 	chan->busy = true;
596 
597 	dev_dbg(chan2dev(chan), "vchan %p: started\n", &chan->vchan);
598 }
599 
600 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
601 {
602 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
603 	struct stm32_dma_sg_req *sg_req;
604 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
605 
606 	id = chan->id;
607 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
608 
609 	if (dma_scr & STM32_DMA_SCR_DBM) {
610 		if (chan->next_sg == chan->desc->num_sgs)
611 			chan->next_sg = 0;
612 
613 		sg_req = &chan->desc->sg_req[chan->next_sg];
614 
615 		if (dma_scr & STM32_DMA_SCR_CT) {
616 			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
617 			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
618 			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
619 				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
620 		} else {
621 			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
622 			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
623 			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
624 				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
625 		}
626 	}
627 }
628 
629 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
630 {
631 	if (chan->desc) {
632 		if (chan->desc->cyclic) {
633 			vchan_cyclic_callback(&chan->desc->vdesc);
634 			chan->next_sg++;
635 			stm32_dma_configure_next_sg(chan);
636 		} else {
637 			chan->busy = false;
638 			if (chan->next_sg == chan->desc->num_sgs) {
639 				list_del(&chan->desc->vdesc.node);
640 				vchan_cookie_complete(&chan->desc->vdesc);
641 				chan->desc = NULL;
642 			}
643 			stm32_dma_start_transfer(chan);
644 		}
645 	}
646 }
647 
648 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
649 {
650 	struct stm32_dma_chan *chan = devid;
651 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
652 	u32 status, scr;
653 
654 	spin_lock(&chan->vchan.lock);
655 
656 	status = stm32_dma_irq_status(chan);
657 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
658 
659 	if (status & STM32_DMA_TCI) {
660 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
661 		if (scr & STM32_DMA_SCR_TCIE)
662 			stm32_dma_handle_chan_done(chan);
663 		status &= ~STM32_DMA_TCI;
664 	}
665 	if (status & STM32_DMA_HTI) {
666 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
667 		status &= ~STM32_DMA_HTI;
668 	}
669 	if (status & STM32_DMA_FEI) {
670 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
671 		status &= ~STM32_DMA_FEI;
672 		if (!(scr & STM32_DMA_SCR_EN))
673 			dev_err(chan2dev(chan), "FIFO Error\n");
674 		else
675 			dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
676 	}
677 	if (status) {
678 		stm32_dma_irq_clear(chan, status);
679 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
680 		if (!(scr & STM32_DMA_SCR_EN))
681 			dev_err(chan2dev(chan), "chan disabled by HW\n");
682 	}
683 
684 	spin_unlock(&chan->vchan.lock);
685 
686 	return IRQ_HANDLED;
687 }
688 
689 static void stm32_dma_issue_pending(struct dma_chan *c)
690 {
691 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
692 	unsigned long flags;
693 
694 	spin_lock_irqsave(&chan->vchan.lock, flags);
695 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
696 		dev_dbg(chan2dev(chan), "vchan %p: issued\n", &chan->vchan);
697 		stm32_dma_start_transfer(chan);
698 
699 	}
700 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
701 }
702 
703 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
704 				    enum dma_transfer_direction direction,
705 				    enum dma_slave_buswidth *buswidth,
706 				    u32 buf_len)
707 {
708 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
709 	int src_bus_width, dst_bus_width;
710 	int src_burst_size, dst_burst_size;
711 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
712 	u32 dma_scr, threshold;
713 
714 	src_addr_width = chan->dma_sconfig.src_addr_width;
715 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
716 	src_maxburst = chan->dma_sconfig.src_maxburst;
717 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
718 	threshold = chan->threshold;
719 
720 	switch (direction) {
721 	case DMA_MEM_TO_DEV:
722 		/* Set device data size */
723 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
724 		if (dst_bus_width < 0)
725 			return dst_bus_width;
726 
727 		/* Set device burst size */
728 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
729 							  dst_maxburst,
730 							  threshold,
731 							  dst_addr_width);
732 
733 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
734 		if (dst_burst_size < 0)
735 			return dst_burst_size;
736 
737 		/* Set memory data size */
738 		src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
739 		chan->mem_width = src_addr_width;
740 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
741 		if (src_bus_width < 0)
742 			return src_bus_width;
743 
744 		/* Set memory burst size */
745 		src_maxburst = STM32_DMA_MAX_BURST;
746 		src_best_burst = stm32_dma_get_best_burst(buf_len,
747 							  src_maxburst,
748 							  threshold,
749 							  src_addr_width);
750 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
751 		if (src_burst_size < 0)
752 			return src_burst_size;
753 
754 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
755 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
756 			STM32_DMA_SCR_MSIZE(src_bus_width) |
757 			STM32_DMA_SCR_PBURST(dst_burst_size) |
758 			STM32_DMA_SCR_MBURST(src_burst_size);
759 
760 		/* Set FIFO threshold */
761 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
762 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
763 
764 		/* Set peripheral address */
765 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
766 		*buswidth = dst_addr_width;
767 		break;
768 
769 	case DMA_DEV_TO_MEM:
770 		/* Set device data size */
771 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
772 		if (src_bus_width < 0)
773 			return src_bus_width;
774 
775 		/* Set device burst size */
776 		src_best_burst = stm32_dma_get_best_burst(buf_len,
777 							  src_maxburst,
778 							  threshold,
779 							  src_addr_width);
780 		chan->mem_burst = src_best_burst;
781 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
782 		if (src_burst_size < 0)
783 			return src_burst_size;
784 
785 		/* Set memory data size */
786 		dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
787 		chan->mem_width = dst_addr_width;
788 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
789 		if (dst_bus_width < 0)
790 			return dst_bus_width;
791 
792 		/* Set memory burst size */
793 		dst_maxburst = STM32_DMA_MAX_BURST;
794 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
795 							  dst_maxburst,
796 							  threshold,
797 							  dst_addr_width);
798 		chan->mem_burst = dst_best_burst;
799 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
800 		if (dst_burst_size < 0)
801 			return dst_burst_size;
802 
803 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
804 			STM32_DMA_SCR_PSIZE(src_bus_width) |
805 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
806 			STM32_DMA_SCR_PBURST(src_burst_size) |
807 			STM32_DMA_SCR_MBURST(dst_burst_size);
808 
809 		/* Set FIFO threshold */
810 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
811 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
812 
813 		/* Set peripheral address */
814 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
815 		*buswidth = chan->dma_sconfig.src_addr_width;
816 		break;
817 
818 	default:
819 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
820 		return -EINVAL;
821 	}
822 
823 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
824 
825 	/* Set DMA control register */
826 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
827 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
828 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
829 	chan->chan_reg.dma_scr |= dma_scr;
830 
831 	return 0;
832 }
833 
834 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
835 {
836 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
837 }
838 
839 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
840 	struct dma_chan *c, struct scatterlist *sgl,
841 	u32 sg_len, enum dma_transfer_direction direction,
842 	unsigned long flags, void *context)
843 {
844 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
845 	struct stm32_dma_desc *desc;
846 	struct scatterlist *sg;
847 	enum dma_slave_buswidth buswidth;
848 	u32 nb_data_items;
849 	int i, ret;
850 
851 	if (!chan->config_init) {
852 		dev_err(chan2dev(chan), "dma channel is not configured\n");
853 		return NULL;
854 	}
855 
856 	if (sg_len < 1) {
857 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
858 		return NULL;
859 	}
860 
861 	desc = stm32_dma_alloc_desc(sg_len);
862 	if (!desc)
863 		return NULL;
864 
865 	/* Set peripheral flow controller */
866 	if (chan->dma_sconfig.device_fc)
867 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
868 	else
869 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
870 
871 	for_each_sg(sgl, sg, sg_len, i) {
872 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
873 					       sg_dma_len(sg));
874 		if (ret < 0)
875 			goto err;
876 
877 		desc->sg_req[i].len = sg_dma_len(sg);
878 
879 		nb_data_items = desc->sg_req[i].len / buswidth;
880 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
881 			dev_err(chan2dev(chan), "nb items not supported\n");
882 			goto err;
883 		}
884 
885 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
886 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
887 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
888 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
889 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
890 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
891 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
892 	}
893 
894 	desc->num_sgs = sg_len;
895 	desc->cyclic = false;
896 
897 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
898 
899 err:
900 	kfree(desc);
901 	return NULL;
902 }
903 
904 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
905 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
906 	size_t period_len, enum dma_transfer_direction direction,
907 	unsigned long flags)
908 {
909 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
910 	struct stm32_dma_desc *desc;
911 	enum dma_slave_buswidth buswidth;
912 	u32 num_periods, nb_data_items;
913 	int i, ret;
914 
915 	if (!buf_len || !period_len) {
916 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
917 		return NULL;
918 	}
919 
920 	if (!chan->config_init) {
921 		dev_err(chan2dev(chan), "dma channel is not configured\n");
922 		return NULL;
923 	}
924 
925 	if (buf_len % period_len) {
926 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
927 		return NULL;
928 	}
929 
930 	/*
931 	 * We allow to take more number of requests till DMA is
932 	 * not started. The driver will loop over all requests.
933 	 * Once DMA is started then new requests can be queued only after
934 	 * terminating the DMA.
935 	 */
936 	if (chan->busy) {
937 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
938 		return NULL;
939 	}
940 
941 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
942 	if (ret < 0)
943 		return NULL;
944 
945 	nb_data_items = period_len / buswidth;
946 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
947 		dev_err(chan2dev(chan), "number of items not supported\n");
948 		return NULL;
949 	}
950 
951 	/*  Enable Circular mode or double buffer mode */
952 	if (buf_len == period_len)
953 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
954 	else
955 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
956 
957 	/* Clear periph ctrl if client set it */
958 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
959 
960 	num_periods = buf_len / period_len;
961 
962 	desc = stm32_dma_alloc_desc(num_periods);
963 	if (!desc)
964 		return NULL;
965 
966 	for (i = 0; i < num_periods; i++) {
967 		desc->sg_req[i].len = period_len;
968 
969 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
970 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
971 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
972 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
973 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
974 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
975 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
976 		buf_addr += period_len;
977 	}
978 
979 	desc->num_sgs = num_periods;
980 	desc->cyclic = true;
981 
982 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
983 }
984 
985 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
986 	struct dma_chan *c, dma_addr_t dest,
987 	dma_addr_t src, size_t len, unsigned long flags)
988 {
989 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
990 	enum dma_slave_buswidth max_width;
991 	struct stm32_dma_desc *desc;
992 	size_t xfer_count, offset;
993 	u32 num_sgs, best_burst, dma_burst, threshold;
994 	int i;
995 
996 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
997 	desc = stm32_dma_alloc_desc(num_sgs);
998 	if (!desc)
999 		return NULL;
1000 
1001 	threshold = chan->threshold;
1002 
1003 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1004 		xfer_count = min_t(size_t, len - offset,
1005 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1006 
1007 		/* Compute best burst size */
1008 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1009 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1010 						      threshold, max_width);
1011 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1012 
1013 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1014 		desc->sg_req[i].chan_reg.dma_scr =
1015 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1016 			STM32_DMA_SCR_PBURST(dma_burst) |
1017 			STM32_DMA_SCR_MBURST(dma_burst) |
1018 			STM32_DMA_SCR_MINC |
1019 			STM32_DMA_SCR_PINC |
1020 			STM32_DMA_SCR_TCIE |
1021 			STM32_DMA_SCR_TEIE;
1022 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1023 		desc->sg_req[i].chan_reg.dma_sfcr |=
1024 			STM32_DMA_SFCR_FTH(threshold);
1025 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1026 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1027 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1028 		desc->sg_req[i].len = xfer_count;
1029 	}
1030 
1031 	desc->num_sgs = num_sgs;
1032 	desc->cyclic = false;
1033 
1034 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1035 }
1036 
1037 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1038 {
1039 	u32 dma_scr, width, ndtr;
1040 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1041 
1042 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1043 	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1044 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1045 
1046 	return ndtr << width;
1047 }
1048 
1049 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1050 				     struct stm32_dma_desc *desc,
1051 				     u32 next_sg)
1052 {
1053 	u32 modulo, burst_size;
1054 	u32 residue = 0;
1055 	int i;
1056 
1057 	/*
1058 	 * In cyclic mode, for the last period, residue = remaining bytes from
1059 	 * NDTR
1060 	 */
1061 	if (chan->desc->cyclic && next_sg == 0) {
1062 		residue = stm32_dma_get_remaining_bytes(chan);
1063 		goto end;
1064 	}
1065 
1066 	/*
1067 	 * For all other periods in cyclic mode, and in sg mode,
1068 	 * residue = remaining bytes from NDTR + remaining periods/sg to be
1069 	 * transferred
1070 	 */
1071 	for (i = next_sg; i < desc->num_sgs; i++)
1072 		residue += desc->sg_req[i].len;
1073 	residue += stm32_dma_get_remaining_bytes(chan);
1074 
1075 end:
1076 	if (!chan->mem_burst)
1077 		return residue;
1078 
1079 	burst_size = chan->mem_burst * chan->mem_width;
1080 	modulo = residue % burst_size;
1081 	if (modulo)
1082 		residue = residue - modulo + burst_size;
1083 
1084 	return residue;
1085 }
1086 
1087 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1088 					   dma_cookie_t cookie,
1089 					   struct dma_tx_state *state)
1090 {
1091 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1092 	struct virt_dma_desc *vdesc;
1093 	enum dma_status status;
1094 	unsigned long flags;
1095 	u32 residue = 0;
1096 
1097 	status = dma_cookie_status(c, cookie, state);
1098 	if (status == DMA_COMPLETE || !state)
1099 		return status;
1100 
1101 	spin_lock_irqsave(&chan->vchan.lock, flags);
1102 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1103 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1104 		residue = stm32_dma_desc_residue(chan, chan->desc,
1105 						 chan->next_sg);
1106 	else if (vdesc)
1107 		residue = stm32_dma_desc_residue(chan,
1108 						 to_stm32_dma_desc(vdesc), 0);
1109 	dma_set_residue(state, residue);
1110 
1111 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1112 
1113 	return status;
1114 }
1115 
1116 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1117 {
1118 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1119 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1120 	int ret;
1121 
1122 	chan->config_init = false;
1123 	ret = clk_prepare_enable(dmadev->clk);
1124 	if (ret < 0) {
1125 		dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret);
1126 		return ret;
1127 	}
1128 
1129 	ret = stm32_dma_disable_chan(chan);
1130 	if (ret < 0)
1131 		clk_disable_unprepare(dmadev->clk);
1132 
1133 	return ret;
1134 }
1135 
1136 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1137 {
1138 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1139 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1140 	unsigned long flags;
1141 
1142 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1143 
1144 	if (chan->busy) {
1145 		spin_lock_irqsave(&chan->vchan.lock, flags);
1146 		stm32_dma_stop(chan);
1147 		chan->desc = NULL;
1148 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1149 	}
1150 
1151 	clk_disable_unprepare(dmadev->clk);
1152 
1153 	vchan_free_chan_resources(to_virt_chan(c));
1154 }
1155 
1156 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1157 {
1158 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1159 }
1160 
1161 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1162 				 struct stm32_dma_cfg *cfg)
1163 {
1164 	stm32_dma_clear_reg(&chan->chan_reg);
1165 
1166 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1167 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1168 
1169 	/* Enable Interrupts  */
1170 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1171 
1172 	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1173 }
1174 
1175 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1176 					   struct of_dma *ofdma)
1177 {
1178 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1179 	struct device *dev = dmadev->ddev.dev;
1180 	struct stm32_dma_cfg cfg;
1181 	struct stm32_dma_chan *chan;
1182 	struct dma_chan *c;
1183 
1184 	if (dma_spec->args_count < 4) {
1185 		dev_err(dev, "Bad number of cells\n");
1186 		return NULL;
1187 	}
1188 
1189 	cfg.channel_id = dma_spec->args[0];
1190 	cfg.request_line = dma_spec->args[1];
1191 	cfg.stream_config = dma_spec->args[2];
1192 	cfg.features = dma_spec->args[3];
1193 
1194 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1195 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1196 		dev_err(dev, "Bad channel and/or request id\n");
1197 		return NULL;
1198 	}
1199 
1200 	chan = &dmadev->chan[cfg.channel_id];
1201 
1202 	c = dma_get_slave_channel(&chan->vchan.chan);
1203 	if (!c) {
1204 		dev_err(dev, "No more channels available\n");
1205 		return NULL;
1206 	}
1207 
1208 	stm32_dma_set_config(chan, &cfg);
1209 
1210 	return c;
1211 }
1212 
1213 static const struct of_device_id stm32_dma_of_match[] = {
1214 	{ .compatible = "st,stm32-dma", },
1215 	{ /* sentinel */ },
1216 };
1217 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1218 
1219 static int stm32_dma_probe(struct platform_device *pdev)
1220 {
1221 	struct stm32_dma_chan *chan;
1222 	struct stm32_dma_device *dmadev;
1223 	struct dma_device *dd;
1224 	const struct of_device_id *match;
1225 	struct resource *res;
1226 	int i, ret;
1227 
1228 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1229 	if (!match) {
1230 		dev_err(&pdev->dev, "Error: No device match found\n");
1231 		return -ENODEV;
1232 	}
1233 
1234 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1235 	if (!dmadev)
1236 		return -ENOMEM;
1237 
1238 	dd = &dmadev->ddev;
1239 
1240 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1241 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1242 	if (IS_ERR(dmadev->base))
1243 		return PTR_ERR(dmadev->base);
1244 
1245 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1246 	if (IS_ERR(dmadev->clk)) {
1247 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1248 		return PTR_ERR(dmadev->clk);
1249 	}
1250 
1251 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1252 						"st,mem2mem");
1253 
1254 	dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1255 	if (!IS_ERR(dmadev->rst)) {
1256 		reset_control_assert(dmadev->rst);
1257 		udelay(2);
1258 		reset_control_deassert(dmadev->rst);
1259 	}
1260 
1261 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1262 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1263 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1264 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1265 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1266 	dd->device_tx_status = stm32_dma_tx_status;
1267 	dd->device_issue_pending = stm32_dma_issue_pending;
1268 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1269 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1270 	dd->device_config = stm32_dma_slave_config;
1271 	dd->device_terminate_all = stm32_dma_terminate_all;
1272 	dd->device_synchronize = stm32_dma_synchronize;
1273 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1274 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1275 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1276 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1277 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1278 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1279 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1280 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1281 	dd->max_burst = STM32_DMA_MAX_BURST;
1282 	dd->dev = &pdev->dev;
1283 	INIT_LIST_HEAD(&dd->channels);
1284 
1285 	if (dmadev->mem2mem) {
1286 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1287 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1288 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1289 	}
1290 
1291 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1292 		chan = &dmadev->chan[i];
1293 		chan->id = i;
1294 		chan->vchan.desc_free = stm32_dma_desc_free;
1295 		vchan_init(&chan->vchan, dd);
1296 	}
1297 
1298 	ret = dma_async_device_register(dd);
1299 	if (ret)
1300 		return ret;
1301 
1302 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1303 		chan = &dmadev->chan[i];
1304 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1305 		if (!res) {
1306 			ret = -EINVAL;
1307 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1308 			goto err_unregister;
1309 		}
1310 		chan->irq = res->start;
1311 		ret = devm_request_irq(&pdev->dev, chan->irq,
1312 				       stm32_dma_chan_irq, 0,
1313 				       dev_name(chan2dev(chan)), chan);
1314 		if (ret) {
1315 			dev_err(&pdev->dev,
1316 				"request_irq failed with err %d channel %d\n",
1317 				ret, i);
1318 			goto err_unregister;
1319 		}
1320 	}
1321 
1322 	ret = of_dma_controller_register(pdev->dev.of_node,
1323 					 stm32_dma_of_xlate, dmadev);
1324 	if (ret < 0) {
1325 		dev_err(&pdev->dev,
1326 			"STM32 DMA DMA OF registration failed %d\n", ret);
1327 		goto err_unregister;
1328 	}
1329 
1330 	platform_set_drvdata(pdev, dmadev);
1331 
1332 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1333 
1334 	return 0;
1335 
1336 err_unregister:
1337 	dma_async_device_unregister(dd);
1338 
1339 	return ret;
1340 }
1341 
1342 static struct platform_driver stm32_dma_driver = {
1343 	.driver = {
1344 		.name = "stm32-dma",
1345 		.of_match_table = stm32_dma_of_match,
1346 	},
1347 };
1348 
1349 static int __init stm32_dma_init(void)
1350 {
1351 	return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1352 }
1353 subsys_initcall(stm32_dma_init);
1354