xref: /openbmc/linux/drivers/dma/stm32-dma.c (revision 9127515b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_dma.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 
32 #include "virt-dma.h"
33 
34 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
35 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
36 #define STM32_DMA_ISR(n)		(((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
37 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
38 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
39 #define STM32_DMA_IFCR(n)		(((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
40 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
41 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
42 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
43 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
44 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
45 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
46 					 | STM32_DMA_TEI \
47 					 | STM32_DMA_DMEI \
48 					 | STM32_DMA_FEI)
49 /*
50  * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
51  * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
52  */
53 #define STM32_DMA_FLAGS_SHIFT(n)	({ typeof(n) (_n) = (n); \
54 					   (((_n) & 2) << 3) | (((_n) & 1) * 6); })
55 
56 /* DMA Stream x Configuration Register */
57 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
58 #define STM32_DMA_SCR_REQ_MASK		GENMASK(27, 25)
59 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
60 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
61 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
62 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
63 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
64 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
65 #define STM32_DMA_SCR_TRBUFF		BIT(20) /* Bufferable transfer for USART/UART */
66 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
67 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
68 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
69 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
70 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
71 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
72 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
73 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
74 						*/
75 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
76 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
77 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
78 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
79 					| STM32_DMA_SCR_MINC \
80 					| STM32_DMA_SCR_PINCOS \
81 					| STM32_DMA_SCR_PL_MASK)
82 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
83 					| STM32_DMA_SCR_TEIE \
84 					| STM32_DMA_SCR_DMEIE)
85 
86 /* DMA Stream x number of data register */
87 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
88 
89 /* DMA stream peripheral address register */
90 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
91 
92 /* DMA stream x memory 0 address register */
93 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
94 
95 /* DMA stream x memory 1 address register */
96 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
97 
98 /* DMA stream x FIFO control register */
99 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
100 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
101 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
102 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
103 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
104 					| STM32_DMA_SFCR_DMDIS)
105 
106 /* DMA direction */
107 #define STM32_DMA_DEV_TO_MEM		0x00
108 #define	STM32_DMA_MEM_TO_DEV		0x01
109 #define	STM32_DMA_MEM_TO_MEM		0x02
110 
111 /* DMA priority level */
112 #define STM32_DMA_PRIORITY_LOW		0x00
113 #define STM32_DMA_PRIORITY_MEDIUM	0x01
114 #define STM32_DMA_PRIORITY_HIGH		0x02
115 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
116 
117 /* DMA FIFO threshold selection */
118 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
119 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
120 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
121 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
122 #define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
123 
124 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
125 /*
126  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
127  * gather at boundary. Thus it's safer to round down this value on FIFO
128  * size (16 Bytes)
129  */
130 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
131 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
132 #define STM32_DMA_MAX_CHANNELS		0x08
133 #define STM32_DMA_MAX_REQUEST_ID	0x08
134 #define STM32_DMA_MAX_DATA_PARAM	0x03
135 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
136 #define STM32_DMA_MIN_BURST		4
137 #define STM32_DMA_MAX_BURST		16
138 
139 /* DMA Features */
140 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
141 #define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
142 #define STM32_DMA_ALT_ACK_MODE_MASK	BIT(4)
143 #define STM32_DMA_MDMA_STREAM_ID_MASK	GENMASK(19, 16)
144 
145 enum stm32_dma_width {
146 	STM32_DMA_BYTE,
147 	STM32_DMA_HALF_WORD,
148 	STM32_DMA_WORD,
149 };
150 
151 enum stm32_dma_burst_size {
152 	STM32_DMA_BURST_SINGLE,
153 	STM32_DMA_BURST_INCR4,
154 	STM32_DMA_BURST_INCR8,
155 	STM32_DMA_BURST_INCR16,
156 };
157 
158 /**
159  * struct stm32_dma_cfg - STM32 DMA custom configuration
160  * @channel_id: channel ID
161  * @request_line: DMA request
162  * @stream_config: 32bit mask specifying the DMA channel configuration
163  * @features: 32bit mask specifying the DMA Feature list
164  */
165 struct stm32_dma_cfg {
166 	u32 channel_id;
167 	u32 request_line;
168 	u32 stream_config;
169 	u32 features;
170 };
171 
172 struct stm32_dma_chan_reg {
173 	u32 dma_lisr;
174 	u32 dma_hisr;
175 	u32 dma_lifcr;
176 	u32 dma_hifcr;
177 	u32 dma_scr;
178 	u32 dma_sndtr;
179 	u32 dma_spar;
180 	u32 dma_sm0ar;
181 	u32 dma_sm1ar;
182 	u32 dma_sfcr;
183 };
184 
185 struct stm32_dma_sg_req {
186 	u32 len;
187 	struct stm32_dma_chan_reg chan_reg;
188 };
189 
190 struct stm32_dma_desc {
191 	struct virt_dma_desc vdesc;
192 	bool cyclic;
193 	u32 num_sgs;
194 	struct stm32_dma_sg_req sg_req[];
195 };
196 
197 /**
198  * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
199  * @stream_id: DMA request to trigger STM32 MDMA transfer
200  * @ifcr: DMA interrupt flag clear register address,
201  *        used by STM32 MDMA to clear DMA Transfer Complete flag
202  * @tcf: DMA Transfer Complete flag
203  */
204 struct stm32_dma_mdma_config {
205 	u32 stream_id;
206 	u32 ifcr;
207 	u32 tcf;
208 };
209 
210 struct stm32_dma_chan {
211 	struct virt_dma_chan vchan;
212 	bool config_init;
213 	bool busy;
214 	u32 id;
215 	u32 irq;
216 	struct stm32_dma_desc *desc;
217 	u32 next_sg;
218 	struct dma_slave_config	dma_sconfig;
219 	struct stm32_dma_chan_reg chan_reg;
220 	u32 threshold;
221 	u32 mem_burst;
222 	u32 mem_width;
223 	enum dma_status status;
224 	bool trig_mdma;
225 	struct stm32_dma_mdma_config mdma_config;
226 };
227 
228 struct stm32_dma_device {
229 	struct dma_device ddev;
230 	void __iomem *base;
231 	struct clk *clk;
232 	bool mem2mem;
233 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
234 };
235 
stm32_dma_get_dev(struct stm32_dma_chan * chan)236 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
237 {
238 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
239 			    ddev);
240 }
241 
to_stm32_dma_chan(struct dma_chan * c)242 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
243 {
244 	return container_of(c, struct stm32_dma_chan, vchan.chan);
245 }
246 
to_stm32_dma_desc(struct virt_dma_desc * vdesc)247 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
248 {
249 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
250 }
251 
chan2dev(struct stm32_dma_chan * chan)252 static struct device *chan2dev(struct stm32_dma_chan *chan)
253 {
254 	return &chan->vchan.chan.dev->device;
255 }
256 
stm32_dma_read(struct stm32_dma_device * dmadev,u32 reg)257 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
258 {
259 	return readl_relaxed(dmadev->base + reg);
260 }
261 
stm32_dma_write(struct stm32_dma_device * dmadev,u32 reg,u32 val)262 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
263 {
264 	writel_relaxed(val, dmadev->base + reg);
265 }
266 
stm32_dma_get_width(struct stm32_dma_chan * chan,enum dma_slave_buswidth width)267 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
268 			       enum dma_slave_buswidth width)
269 {
270 	switch (width) {
271 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
272 		return STM32_DMA_BYTE;
273 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
274 		return STM32_DMA_HALF_WORD;
275 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
276 		return STM32_DMA_WORD;
277 	default:
278 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
279 		return -EINVAL;
280 	}
281 }
282 
stm32_dma_get_max_width(u32 buf_len,dma_addr_t buf_addr,u32 threshold)283 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
284 						       dma_addr_t buf_addr,
285 						       u32 threshold)
286 {
287 	enum dma_slave_buswidth max_width;
288 
289 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
290 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
291 	else
292 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
293 
294 	while ((buf_len < max_width  || buf_len % max_width) &&
295 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
296 		max_width = max_width >> 1;
297 
298 	if (buf_addr & (max_width - 1))
299 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
300 
301 	return max_width;
302 }
303 
stm32_dma_fifo_threshold_is_allowed(u32 burst,u32 threshold,enum dma_slave_buswidth width)304 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
305 						enum dma_slave_buswidth width)
306 {
307 	u32 remaining;
308 
309 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
310 		return false;
311 
312 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
313 		if (burst != 0) {
314 			/*
315 			 * If number of beats fit in several whole bursts
316 			 * this configuration is allowed.
317 			 */
318 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
319 				     (threshold + 1) / 4) % burst;
320 
321 			if (remaining == 0)
322 				return true;
323 		} else {
324 			return true;
325 		}
326 	}
327 
328 	return false;
329 }
330 
stm32_dma_is_burst_possible(u32 buf_len,u32 threshold)331 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
332 {
333 	/* If FIFO direct mode, burst is not possible */
334 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
335 		return false;
336 
337 	/*
338 	 * Buffer or period length has to be aligned on FIFO depth.
339 	 * Otherwise bytes may be stuck within FIFO at buffer or period
340 	 * length.
341 	 */
342 	return ((buf_len % ((threshold + 1) * 4)) == 0);
343 }
344 
stm32_dma_get_best_burst(u32 buf_len,u32 max_burst,u32 threshold,enum dma_slave_buswidth width)345 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
346 				    enum dma_slave_buswidth width)
347 {
348 	u32 best_burst = max_burst;
349 
350 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
351 		return 0;
352 
353 	while ((buf_len < best_burst * width && best_burst > 1) ||
354 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
355 						    width)) {
356 		if (best_burst > STM32_DMA_MIN_BURST)
357 			best_burst = best_burst >> 1;
358 		else
359 			best_burst = 0;
360 	}
361 
362 	return best_burst;
363 }
364 
stm32_dma_get_burst(struct stm32_dma_chan * chan,u32 maxburst)365 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
366 {
367 	switch (maxburst) {
368 	case 0:
369 	case 1:
370 		return STM32_DMA_BURST_SINGLE;
371 	case 4:
372 		return STM32_DMA_BURST_INCR4;
373 	case 8:
374 		return STM32_DMA_BURST_INCR8;
375 	case 16:
376 		return STM32_DMA_BURST_INCR16;
377 	default:
378 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
379 		return -EINVAL;
380 	}
381 }
382 
stm32_dma_set_fifo_config(struct stm32_dma_chan * chan,u32 src_burst,u32 dst_burst)383 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
384 				      u32 src_burst, u32 dst_burst)
385 {
386 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
387 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
388 
389 	if (!src_burst && !dst_burst) {
390 		/* Using direct mode */
391 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
392 	} else {
393 		/* Using FIFO mode */
394 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
395 	}
396 }
397 
stm32_dma_slave_config(struct dma_chan * c,struct dma_slave_config * config)398 static int stm32_dma_slave_config(struct dma_chan *c,
399 				  struct dma_slave_config *config)
400 {
401 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
402 
403 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
404 
405 	/* Check if user is requesting DMA to trigger STM32 MDMA */
406 	if (config->peripheral_size) {
407 		config->peripheral_config = &chan->mdma_config;
408 		config->peripheral_size = sizeof(chan->mdma_config);
409 		chan->trig_mdma = true;
410 	}
411 
412 	chan->config_init = true;
413 
414 	return 0;
415 }
416 
stm32_dma_irq_status(struct stm32_dma_chan * chan)417 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
418 {
419 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
420 	u32 flags, dma_isr;
421 
422 	/*
423 	 * Read "flags" from DMA_xISR register corresponding to the selected
424 	 * DMA channel at the correct bit offset inside that register.
425 	 */
426 
427 	dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
428 	flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
429 
430 	return flags & STM32_DMA_MASKI;
431 }
432 
stm32_dma_irq_clear(struct stm32_dma_chan * chan,u32 flags)433 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
434 {
435 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
436 	u32 dma_ifcr;
437 
438 	/*
439 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
440 	 * DMA channel at the correct bit offset inside that register.
441 	 */
442 	flags &= STM32_DMA_MASKI;
443 	dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
444 
445 	stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
446 }
447 
stm32_dma_disable_chan(struct stm32_dma_chan * chan)448 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
449 {
450 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
451 	u32 dma_scr, id, reg;
452 
453 	id = chan->id;
454 	reg = STM32_DMA_SCR(id);
455 	dma_scr = stm32_dma_read(dmadev, reg);
456 
457 	if (dma_scr & STM32_DMA_SCR_EN) {
458 		dma_scr &= ~STM32_DMA_SCR_EN;
459 		stm32_dma_write(dmadev, reg, dma_scr);
460 
461 		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
462 					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
463 					10, 1000000);
464 	}
465 
466 	return 0;
467 }
468 
stm32_dma_stop(struct stm32_dma_chan * chan)469 static void stm32_dma_stop(struct stm32_dma_chan *chan)
470 {
471 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
472 	u32 dma_scr, dma_sfcr, status;
473 	int ret;
474 
475 	/* Disable interrupts */
476 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
477 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
478 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
479 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
480 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
481 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
482 
483 	/* Disable DMA */
484 	ret = stm32_dma_disable_chan(chan);
485 	if (ret < 0)
486 		return;
487 
488 	/* Clear interrupt status if it is there */
489 	status = stm32_dma_irq_status(chan);
490 	if (status) {
491 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
492 			__func__, status);
493 		stm32_dma_irq_clear(chan, status);
494 	}
495 
496 	chan->busy = false;
497 	chan->status = DMA_COMPLETE;
498 }
499 
stm32_dma_terminate_all(struct dma_chan * c)500 static int stm32_dma_terminate_all(struct dma_chan *c)
501 {
502 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
503 	unsigned long flags;
504 	LIST_HEAD(head);
505 
506 	spin_lock_irqsave(&chan->vchan.lock, flags);
507 
508 	if (chan->desc) {
509 		dma_cookie_complete(&chan->desc->vdesc.tx);
510 		vchan_terminate_vdesc(&chan->desc->vdesc);
511 		if (chan->busy)
512 			stm32_dma_stop(chan);
513 		chan->desc = NULL;
514 	}
515 
516 	vchan_get_all_descriptors(&chan->vchan, &head);
517 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
518 	vchan_dma_desc_free_list(&chan->vchan, &head);
519 
520 	return 0;
521 }
522 
stm32_dma_synchronize(struct dma_chan * c)523 static void stm32_dma_synchronize(struct dma_chan *c)
524 {
525 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
526 
527 	vchan_synchronize(&chan->vchan);
528 }
529 
stm32_dma_dump_reg(struct stm32_dma_chan * chan)530 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
531 {
532 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
533 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
534 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
535 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
536 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
537 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
538 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
539 
540 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
541 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
542 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
543 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
544 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
545 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
546 }
547 
stm32_dma_sg_inc(struct stm32_dma_chan * chan)548 static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
549 {
550 	chan->next_sg++;
551 	if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
552 		chan->next_sg = 0;
553 }
554 
555 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
556 
stm32_dma_start_transfer(struct stm32_dma_chan * chan)557 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
558 {
559 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
560 	struct virt_dma_desc *vdesc;
561 	struct stm32_dma_sg_req *sg_req;
562 	struct stm32_dma_chan_reg *reg;
563 	u32 status;
564 	int ret;
565 
566 	ret = stm32_dma_disable_chan(chan);
567 	if (ret < 0)
568 		return;
569 
570 	if (!chan->desc) {
571 		vdesc = vchan_next_desc(&chan->vchan);
572 		if (!vdesc)
573 			return;
574 
575 		list_del(&vdesc->node);
576 
577 		chan->desc = to_stm32_dma_desc(vdesc);
578 		chan->next_sg = 0;
579 	}
580 
581 	if (chan->next_sg == chan->desc->num_sgs)
582 		chan->next_sg = 0;
583 
584 	sg_req = &chan->desc->sg_req[chan->next_sg];
585 	reg = &sg_req->chan_reg;
586 
587 	/* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
588 	if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
589 		reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
590 
591 	reg->dma_scr &= ~STM32_DMA_SCR_EN;
592 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
593 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
594 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
595 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
596 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
597 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
598 
599 	stm32_dma_sg_inc(chan);
600 
601 	/* Clear interrupt status if it is there */
602 	status = stm32_dma_irq_status(chan);
603 	if (status)
604 		stm32_dma_irq_clear(chan, status);
605 
606 	if (chan->desc->cyclic)
607 		stm32_dma_configure_next_sg(chan);
608 
609 	stm32_dma_dump_reg(chan);
610 
611 	/* Start DMA */
612 	chan->busy = true;
613 	chan->status = DMA_IN_PROGRESS;
614 	reg->dma_scr |= STM32_DMA_SCR_EN;
615 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
616 
617 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
618 }
619 
stm32_dma_configure_next_sg(struct stm32_dma_chan * chan)620 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
621 {
622 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
623 	struct stm32_dma_sg_req *sg_req;
624 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
625 
626 	id = chan->id;
627 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
628 
629 	sg_req = &chan->desc->sg_req[chan->next_sg];
630 
631 	if (dma_scr & STM32_DMA_SCR_CT) {
632 		dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
633 		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
634 		dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
635 			stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
636 	} else {
637 		dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
638 		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
639 		dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
640 			stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
641 	}
642 }
643 
stm32_dma_handle_chan_paused(struct stm32_dma_chan * chan)644 static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
645 {
646 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
647 	u32 dma_scr;
648 
649 	/*
650 	 * Read and store current remaining data items and peripheral/memory addresses to be
651 	 * updated on resume
652 	 */
653 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
654 	/*
655 	 * Transfer can be paused while between a previous resume and reconfiguration on transfer
656 	 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
657 	 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
658 	 */
659 	if (chan->desc && chan->desc->cyclic) {
660 		if (chan->desc->num_sgs == 1)
661 			dma_scr |= STM32_DMA_SCR_CIRC;
662 		else
663 			dma_scr |= STM32_DMA_SCR_DBM;
664 	}
665 	chan->chan_reg.dma_scr = dma_scr;
666 
667 	/*
668 	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
669 	 * on resume NDTR autoreload value will be wrong (lower than the initial period length)
670 	 */
671 	if (chan->desc && chan->desc->cyclic) {
672 		dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
673 		stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
674 	}
675 
676 	chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
677 
678 	chan->status = DMA_PAUSED;
679 
680 	dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
681 }
682 
stm32_dma_post_resume_reconfigure(struct stm32_dma_chan * chan)683 static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
684 {
685 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
686 	struct stm32_dma_sg_req *sg_req;
687 	u32 dma_scr, status, id;
688 
689 	id = chan->id;
690 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
691 
692 	/* Clear interrupt status if it is there */
693 	status = stm32_dma_irq_status(chan);
694 	if (status)
695 		stm32_dma_irq_clear(chan, status);
696 
697 	if (!chan->next_sg)
698 		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
699 	else
700 		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
701 
702 	/* Reconfigure NDTR with the initial value */
703 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
704 
705 	/* Restore SPAR */
706 	stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
707 
708 	/* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
709 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
710 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
711 
712 	/* Reactivate CIRC/DBM if needed */
713 	if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
714 		dma_scr |= STM32_DMA_SCR_DBM;
715 		/* Restore CT */
716 		if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
717 			dma_scr &= ~STM32_DMA_SCR_CT;
718 		else
719 			dma_scr |= STM32_DMA_SCR_CT;
720 	} else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
721 		dma_scr |= STM32_DMA_SCR_CIRC;
722 	}
723 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
724 
725 	stm32_dma_configure_next_sg(chan);
726 
727 	stm32_dma_dump_reg(chan);
728 
729 	dma_scr |= STM32_DMA_SCR_EN;
730 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
731 
732 	dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
733 }
734 
stm32_dma_handle_chan_done(struct stm32_dma_chan * chan,u32 scr)735 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
736 {
737 	if (!chan->desc)
738 		return;
739 
740 	if (chan->desc->cyclic) {
741 		vchan_cyclic_callback(&chan->desc->vdesc);
742 		if (chan->trig_mdma)
743 			return;
744 		stm32_dma_sg_inc(chan);
745 		/* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
746 		if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
747 			stm32_dma_post_resume_reconfigure(chan);
748 		else if (scr & STM32_DMA_SCR_DBM)
749 			stm32_dma_configure_next_sg(chan);
750 	} else {
751 		chan->busy = false;
752 		chan->status = DMA_COMPLETE;
753 		if (chan->next_sg == chan->desc->num_sgs) {
754 			vchan_cookie_complete(&chan->desc->vdesc);
755 			chan->desc = NULL;
756 		}
757 		stm32_dma_start_transfer(chan);
758 	}
759 }
760 
stm32_dma_chan_irq(int irq,void * devid)761 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
762 {
763 	struct stm32_dma_chan *chan = devid;
764 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
765 	u32 status, scr, sfcr;
766 
767 	spin_lock(&chan->vchan.lock);
768 
769 	status = stm32_dma_irq_status(chan);
770 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
771 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
772 
773 	if (status & STM32_DMA_FEI) {
774 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
775 		status &= ~STM32_DMA_FEI;
776 		if (sfcr & STM32_DMA_SFCR_FEIE) {
777 			if (!(scr & STM32_DMA_SCR_EN) &&
778 			    !(status & STM32_DMA_TCI))
779 				dev_err(chan2dev(chan), "FIFO Error\n");
780 			else
781 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
782 		}
783 	}
784 	if (status & STM32_DMA_DMEI) {
785 		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
786 		status &= ~STM32_DMA_DMEI;
787 		if (sfcr & STM32_DMA_SCR_DMEIE)
788 			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
789 	}
790 
791 	if (status & STM32_DMA_TCI) {
792 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
793 		if (scr & STM32_DMA_SCR_TCIE) {
794 			if (chan->status != DMA_PAUSED)
795 				stm32_dma_handle_chan_done(chan, scr);
796 		}
797 		status &= ~STM32_DMA_TCI;
798 	}
799 
800 	if (status & STM32_DMA_HTI) {
801 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
802 		status &= ~STM32_DMA_HTI;
803 	}
804 
805 	if (status) {
806 		stm32_dma_irq_clear(chan, status);
807 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
808 		if (!(scr & STM32_DMA_SCR_EN))
809 			dev_err(chan2dev(chan), "chan disabled by HW\n");
810 	}
811 
812 	spin_unlock(&chan->vchan.lock);
813 
814 	return IRQ_HANDLED;
815 }
816 
stm32_dma_issue_pending(struct dma_chan * c)817 static void stm32_dma_issue_pending(struct dma_chan *c)
818 {
819 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
820 	unsigned long flags;
821 
822 	spin_lock_irqsave(&chan->vchan.lock, flags);
823 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
824 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
825 		stm32_dma_start_transfer(chan);
826 
827 	}
828 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
829 }
830 
stm32_dma_pause(struct dma_chan * c)831 static int stm32_dma_pause(struct dma_chan *c)
832 {
833 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
834 	unsigned long flags;
835 	int ret;
836 
837 	if (chan->status != DMA_IN_PROGRESS)
838 		return -EPERM;
839 
840 	spin_lock_irqsave(&chan->vchan.lock, flags);
841 
842 	ret = stm32_dma_disable_chan(chan);
843 	if (!ret)
844 		stm32_dma_handle_chan_paused(chan);
845 
846 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
847 
848 	return ret;
849 }
850 
stm32_dma_resume(struct dma_chan * c)851 static int stm32_dma_resume(struct dma_chan *c)
852 {
853 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
854 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
855 	struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
856 	u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
857 	struct stm32_dma_sg_req *sg_req;
858 	unsigned long flags;
859 
860 	if (chan->status != DMA_PAUSED)
861 		return -EPERM;
862 
863 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
864 	if (WARN_ON(scr & STM32_DMA_SCR_EN))
865 		return -EPERM;
866 
867 	spin_lock_irqsave(&chan->vchan.lock, flags);
868 
869 	/* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
870 	if (!chan->next_sg)
871 		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
872 	else
873 		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
874 
875 	ndtr = sg_req->chan_reg.dma_sndtr;
876 	offset = (ndtr - chan_reg.dma_sndtr);
877 	offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
878 	spar = sg_req->chan_reg.dma_spar;
879 	sm0ar = sg_req->chan_reg.dma_sm0ar;
880 	sm1ar = sg_req->chan_reg.dma_sm1ar;
881 
882 	/*
883 	 * The peripheral and/or memory addresses have to be updated in order to adjust the
884 	 * address pointers. Need to check increment.
885 	 */
886 	if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
887 		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
888 	else
889 		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
890 
891 	if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
892 		offset = 0;
893 
894 	/*
895 	 * In case of DBM, the current target could be SM1AR.
896 	 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
897 	 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
898 	 */
899 	if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
900 		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
901 	else
902 		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
903 
904 	/* NDTR must be restored otherwise internal HW counter won't be correctly reset */
905 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
906 
907 	/*
908 	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
909 	 * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
910 	 */
911 	if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
912 		chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
913 
914 	if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
915 		stm32_dma_configure_next_sg(chan);
916 
917 	stm32_dma_dump_reg(chan);
918 
919 	/* The stream may then be re-enabled to restart transfer from the point it was stopped */
920 	chan->status = DMA_IN_PROGRESS;
921 	chan_reg.dma_scr |= STM32_DMA_SCR_EN;
922 	stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
923 
924 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
925 
926 	dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
927 
928 	return 0;
929 }
930 
stm32_dma_set_xfer_param(struct stm32_dma_chan * chan,enum dma_transfer_direction direction,enum dma_slave_buswidth * buswidth,u32 buf_len,dma_addr_t buf_addr)931 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
932 				    enum dma_transfer_direction direction,
933 				    enum dma_slave_buswidth *buswidth,
934 				    u32 buf_len, dma_addr_t buf_addr)
935 {
936 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
937 	int src_bus_width, dst_bus_width;
938 	int src_burst_size, dst_burst_size;
939 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
940 	u32 dma_scr, fifoth;
941 
942 	src_addr_width = chan->dma_sconfig.src_addr_width;
943 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
944 	src_maxburst = chan->dma_sconfig.src_maxburst;
945 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
946 	fifoth = chan->threshold;
947 
948 	switch (direction) {
949 	case DMA_MEM_TO_DEV:
950 		/* Set device data size */
951 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
952 		if (dst_bus_width < 0)
953 			return dst_bus_width;
954 
955 		/* Set device burst size */
956 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
957 							  dst_maxburst,
958 							  fifoth,
959 							  dst_addr_width);
960 
961 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
962 		if (dst_burst_size < 0)
963 			return dst_burst_size;
964 
965 		/* Set memory data size */
966 		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
967 							 fifoth);
968 		chan->mem_width = src_addr_width;
969 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
970 		if (src_bus_width < 0)
971 			return src_bus_width;
972 
973 		/*
974 		 * Set memory burst size - burst not possible if address is not aligned on
975 		 * the address boundary equal to the size of the transfer
976 		 */
977 		if (buf_addr & (buf_len - 1))
978 			src_maxburst = 1;
979 		else
980 			src_maxburst = STM32_DMA_MAX_BURST;
981 		src_best_burst = stm32_dma_get_best_burst(buf_len,
982 							  src_maxburst,
983 							  fifoth,
984 							  src_addr_width);
985 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
986 		if (src_burst_size < 0)
987 			return src_burst_size;
988 
989 		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
990 			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
991 			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
992 			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
993 			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
994 
995 		/* Set FIFO threshold */
996 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
997 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
998 			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
999 
1000 		/* Set peripheral address */
1001 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
1002 		*buswidth = dst_addr_width;
1003 		break;
1004 
1005 	case DMA_DEV_TO_MEM:
1006 		/* Set device data size */
1007 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
1008 		if (src_bus_width < 0)
1009 			return src_bus_width;
1010 
1011 		/* Set device burst size */
1012 		src_best_burst = stm32_dma_get_best_burst(buf_len,
1013 							  src_maxburst,
1014 							  fifoth,
1015 							  src_addr_width);
1016 		chan->mem_burst = src_best_burst;
1017 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1018 		if (src_burst_size < 0)
1019 			return src_burst_size;
1020 
1021 		/* Set memory data size */
1022 		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1023 							 fifoth);
1024 		chan->mem_width = dst_addr_width;
1025 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1026 		if (dst_bus_width < 0)
1027 			return dst_bus_width;
1028 
1029 		/*
1030 		 * Set memory burst size - burst not possible if address is not aligned on
1031 		 * the address boundary equal to the size of the transfer
1032 		 */
1033 		if (buf_addr & (buf_len - 1))
1034 			dst_maxburst = 1;
1035 		else
1036 			dst_maxburst = STM32_DMA_MAX_BURST;
1037 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
1038 							  dst_maxburst,
1039 							  fifoth,
1040 							  dst_addr_width);
1041 		chan->mem_burst = dst_best_burst;
1042 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1043 		if (dst_burst_size < 0)
1044 			return dst_burst_size;
1045 
1046 		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
1047 			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
1048 			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
1049 			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
1050 			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
1051 
1052 		/* Set FIFO threshold */
1053 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1054 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1055 			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1056 
1057 		/* Set peripheral address */
1058 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1059 		*buswidth = chan->dma_sconfig.src_addr_width;
1060 		break;
1061 
1062 	default:
1063 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
1064 		return -EINVAL;
1065 	}
1066 
1067 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1068 
1069 	/* Set DMA control register */
1070 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1071 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1072 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1073 	chan->chan_reg.dma_scr |= dma_scr;
1074 
1075 	return 0;
1076 }
1077 
stm32_dma_clear_reg(struct stm32_dma_chan_reg * regs)1078 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1079 {
1080 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1081 }
1082 
stm32_dma_prep_slave_sg(struct dma_chan * c,struct scatterlist * sgl,u32 sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1083 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1084 	struct dma_chan *c, struct scatterlist *sgl,
1085 	u32 sg_len, enum dma_transfer_direction direction,
1086 	unsigned long flags, void *context)
1087 {
1088 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1089 	struct stm32_dma_desc *desc;
1090 	struct scatterlist *sg;
1091 	enum dma_slave_buswidth buswidth;
1092 	u32 nb_data_items;
1093 	int i, ret;
1094 
1095 	if (!chan->config_init) {
1096 		dev_err(chan2dev(chan), "dma channel is not configured\n");
1097 		return NULL;
1098 	}
1099 
1100 	if (sg_len < 1) {
1101 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1102 		return NULL;
1103 	}
1104 
1105 	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1106 	if (!desc)
1107 		return NULL;
1108 
1109 	/* Set peripheral flow controller */
1110 	if (chan->dma_sconfig.device_fc)
1111 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1112 	else
1113 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1114 
1115 	/* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
1116 	if (chan->trig_mdma && sg_len > 1) {
1117 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1118 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1119 	}
1120 
1121 	for_each_sg(sgl, sg, sg_len, i) {
1122 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1123 					       sg_dma_len(sg),
1124 					       sg_dma_address(sg));
1125 		if (ret < 0)
1126 			goto err;
1127 
1128 		desc->sg_req[i].len = sg_dma_len(sg);
1129 
1130 		nb_data_items = desc->sg_req[i].len / buswidth;
1131 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1132 			dev_err(chan2dev(chan), "nb items not supported\n");
1133 			goto err;
1134 		}
1135 
1136 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1137 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1138 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1139 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1140 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1141 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1142 		if (chan->trig_mdma)
1143 			desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
1144 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1145 	}
1146 
1147 	desc->num_sgs = sg_len;
1148 	desc->cyclic = false;
1149 
1150 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1151 
1152 err:
1153 	kfree(desc);
1154 	return NULL;
1155 }
1156 
stm32_dma_prep_dma_cyclic(struct dma_chan * c,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1157 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1158 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1159 	size_t period_len, enum dma_transfer_direction direction,
1160 	unsigned long flags)
1161 {
1162 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1163 	struct stm32_dma_desc *desc;
1164 	enum dma_slave_buswidth buswidth;
1165 	u32 num_periods, nb_data_items;
1166 	int i, ret;
1167 
1168 	if (!buf_len || !period_len) {
1169 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1170 		return NULL;
1171 	}
1172 
1173 	if (!chan->config_init) {
1174 		dev_err(chan2dev(chan), "dma channel is not configured\n");
1175 		return NULL;
1176 	}
1177 
1178 	if (buf_len % period_len) {
1179 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1180 		return NULL;
1181 	}
1182 
1183 	/*
1184 	 * We allow to take more number of requests till DMA is
1185 	 * not started. The driver will loop over all requests.
1186 	 * Once DMA is started then new requests can be queued only after
1187 	 * terminating the DMA.
1188 	 */
1189 	if (chan->busy) {
1190 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1191 		return NULL;
1192 	}
1193 
1194 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1195 				       buf_addr);
1196 	if (ret < 0)
1197 		return NULL;
1198 
1199 	nb_data_items = period_len / buswidth;
1200 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1201 		dev_err(chan2dev(chan), "number of items not supported\n");
1202 		return NULL;
1203 	}
1204 
1205 	/*  Enable Circular mode or double buffer mode */
1206 	if (buf_len == period_len) {
1207 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1208 	} else {
1209 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1210 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1211 	}
1212 
1213 	/* Clear periph ctrl if client set it */
1214 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1215 
1216 	num_periods = buf_len / period_len;
1217 
1218 	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1219 	if (!desc)
1220 		return NULL;
1221 
1222 	for (i = 0; i < num_periods; i++) {
1223 		desc->sg_req[i].len = period_len;
1224 
1225 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1226 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1227 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1228 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1229 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1230 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1231 		if (chan->trig_mdma)
1232 			desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
1233 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1234 		if (!chan->trig_mdma)
1235 			buf_addr += period_len;
1236 	}
1237 
1238 	desc->num_sgs = num_periods;
1239 	desc->cyclic = true;
1240 
1241 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1242 }
1243 
stm32_dma_prep_dma_memcpy(struct dma_chan * c,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1244 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1245 	struct dma_chan *c, dma_addr_t dest,
1246 	dma_addr_t src, size_t len, unsigned long flags)
1247 {
1248 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1249 	enum dma_slave_buswidth max_width;
1250 	struct stm32_dma_desc *desc;
1251 	size_t xfer_count, offset;
1252 	u32 num_sgs, best_burst, threshold;
1253 	int dma_burst, i;
1254 
1255 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1256 	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1257 	if (!desc)
1258 		return NULL;
1259 
1260 	threshold = chan->threshold;
1261 
1262 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1263 		xfer_count = min_t(size_t, len - offset,
1264 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1265 
1266 		/* Compute best burst size */
1267 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1268 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1269 						      threshold, max_width);
1270 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1271 		if (dma_burst < 0) {
1272 			kfree(desc);
1273 			return NULL;
1274 		}
1275 
1276 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1277 		desc->sg_req[i].chan_reg.dma_scr =
1278 			FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
1279 			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
1280 			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
1281 			STM32_DMA_SCR_MINC |
1282 			STM32_DMA_SCR_PINC |
1283 			STM32_DMA_SCR_TCIE |
1284 			STM32_DMA_SCR_TEIE;
1285 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1286 		desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
1287 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1288 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1289 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1290 		desc->sg_req[i].len = xfer_count;
1291 	}
1292 
1293 	desc->num_sgs = num_sgs;
1294 	desc->cyclic = false;
1295 
1296 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1297 }
1298 
stm32_dma_get_remaining_bytes(struct stm32_dma_chan * chan)1299 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1300 {
1301 	u32 dma_scr, width, ndtr;
1302 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1303 
1304 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1305 	width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
1306 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1307 
1308 	return ndtr << width;
1309 }
1310 
1311 /**
1312  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1313  * @chan: dma channel
1314  *
1315  * This function called when IRQ are disable, checks that the hardware has not
1316  * switched on the next transfer in double buffer mode. The test is done by
1317  * comparing the next_sg memory address with the hardware related register
1318  * (based on CT bit value).
1319  *
1320  * Returns true if expected current transfer is still running or double
1321  * buffer mode is not activated.
1322  */
stm32_dma_is_current_sg(struct stm32_dma_chan * chan)1323 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1324 {
1325 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1326 	struct stm32_dma_sg_req *sg_req;
1327 	u32 dma_scr, dma_smar, id, period_len;
1328 
1329 	id = chan->id;
1330 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1331 
1332 	/* In cyclic CIRC but not DBM, CT is not used */
1333 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1334 		return true;
1335 
1336 	sg_req = &chan->desc->sg_req[chan->next_sg];
1337 	period_len = sg_req->len;
1338 
1339 	/* DBM - take care of a previous pause/resume not yet post reconfigured */
1340 	if (dma_scr & STM32_DMA_SCR_CT) {
1341 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1342 		/*
1343 		 * If transfer has been pause/resumed,
1344 		 * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1345 		 */
1346 		return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1347 			dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1348 	}
1349 
1350 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1351 	/*
1352 	 * If transfer has been pause/resumed,
1353 	 * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1354 	 */
1355 	return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1356 		dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1357 }
1358 
stm32_dma_desc_residue(struct stm32_dma_chan * chan,struct stm32_dma_desc * desc,u32 next_sg)1359 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1360 				     struct stm32_dma_desc *desc,
1361 				     u32 next_sg)
1362 {
1363 	u32 modulo, burst_size;
1364 	u32 residue;
1365 	u32 n_sg = next_sg;
1366 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1367 	int i;
1368 
1369 	/*
1370 	 * Calculate the residue means compute the descriptors
1371 	 * information:
1372 	 * - the sg_req currently transferred
1373 	 * - the Hardware remaining position in this sg (NDTR bits field).
1374 	 *
1375 	 * A race condition may occur if DMA is running in cyclic or double
1376 	 * buffer mode, since the DMA register are automatically reloaded at end
1377 	 * of period transfer. The hardware may have switched to the next
1378 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1379 	 * read.
1380 	 * In this case the SxNDTR reg could (or not) correspond to the new
1381 	 * transfer position, and not the expected one.
1382 	 * The strategy implemented in the stm32 driver is to:
1383 	 *  - read the SxNDTR register
1384 	 *  - crosscheck that hardware is still in current transfer.
1385 	 * In case of switch, we can assume that the DMA is at the beginning of
1386 	 * the next transfer. So we approximate the residue in consequence, by
1387 	 * pointing on the beginning of next transfer.
1388 	 *
1389 	 * This race condition doesn't apply for none cyclic mode, as double
1390 	 * buffer is not used. In such situation registers are updated by the
1391 	 * software.
1392 	 */
1393 
1394 	residue = stm32_dma_get_remaining_bytes(chan);
1395 
1396 	if ((chan->desc->cyclic || chan->trig_mdma) && !stm32_dma_is_current_sg(chan)) {
1397 		n_sg++;
1398 		if (n_sg == chan->desc->num_sgs)
1399 			n_sg = 0;
1400 		if (!chan->trig_mdma)
1401 			residue = sg_req->len;
1402 	}
1403 
1404 	/*
1405 	 * In cyclic mode, for the last period, residue = remaining bytes
1406 	 * from NDTR,
1407 	 * else for all other periods in cyclic mode, and in sg mode,
1408 	 * residue = remaining bytes from NDTR + remaining
1409 	 * periods/sg to be transferred
1410 	 */
1411 	if ((!chan->desc->cyclic && !chan->trig_mdma) || n_sg != 0)
1412 		for (i = n_sg; i < desc->num_sgs; i++)
1413 			residue += desc->sg_req[i].len;
1414 
1415 	if (!chan->mem_burst)
1416 		return residue;
1417 
1418 	burst_size = chan->mem_burst * chan->mem_width;
1419 	modulo = residue % burst_size;
1420 	if (modulo)
1421 		residue = residue - modulo + burst_size;
1422 
1423 	return residue;
1424 }
1425 
stm32_dma_tx_status(struct dma_chan * c,dma_cookie_t cookie,struct dma_tx_state * state)1426 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1427 					   dma_cookie_t cookie,
1428 					   struct dma_tx_state *state)
1429 {
1430 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1431 	struct virt_dma_desc *vdesc;
1432 	enum dma_status status;
1433 	unsigned long flags;
1434 	u32 residue = 0;
1435 
1436 	status = dma_cookie_status(c, cookie, state);
1437 	if (status == DMA_COMPLETE)
1438 		return status;
1439 
1440 	status = chan->status;
1441 
1442 	if (!state)
1443 		return status;
1444 
1445 	spin_lock_irqsave(&chan->vchan.lock, flags);
1446 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1447 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1448 		residue = stm32_dma_desc_residue(chan, chan->desc,
1449 						 chan->next_sg);
1450 	else if (vdesc)
1451 		residue = stm32_dma_desc_residue(chan,
1452 						 to_stm32_dma_desc(vdesc), 0);
1453 	dma_set_residue(state, residue);
1454 
1455 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1456 
1457 	return status;
1458 }
1459 
stm32_dma_alloc_chan_resources(struct dma_chan * c)1460 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1461 {
1462 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1463 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1464 	int ret;
1465 
1466 	chan->config_init = false;
1467 
1468 	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1469 	if (ret < 0)
1470 		return ret;
1471 
1472 	ret = stm32_dma_disable_chan(chan);
1473 	if (ret < 0)
1474 		pm_runtime_put(dmadev->ddev.dev);
1475 
1476 	return ret;
1477 }
1478 
stm32_dma_free_chan_resources(struct dma_chan * c)1479 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1480 {
1481 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1482 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1483 	unsigned long flags;
1484 
1485 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1486 
1487 	if (chan->busy) {
1488 		spin_lock_irqsave(&chan->vchan.lock, flags);
1489 		stm32_dma_stop(chan);
1490 		chan->desc = NULL;
1491 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1492 	}
1493 
1494 	pm_runtime_put(dmadev->ddev.dev);
1495 
1496 	vchan_free_chan_resources(to_virt_chan(c));
1497 	stm32_dma_clear_reg(&chan->chan_reg);
1498 	chan->threshold = 0;
1499 }
1500 
stm32_dma_desc_free(struct virt_dma_desc * vdesc)1501 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1502 {
1503 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1504 }
1505 
stm32_dma_set_config(struct stm32_dma_chan * chan,struct stm32_dma_cfg * cfg)1506 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1507 				 struct stm32_dma_cfg *cfg)
1508 {
1509 	stm32_dma_clear_reg(&chan->chan_reg);
1510 
1511 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1512 	chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
1513 
1514 	/* Enable Interrupts  */
1515 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1516 
1517 	chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
1518 	if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
1519 		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1520 	if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
1521 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1522 	chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
1523 }
1524 
stm32_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1525 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1526 					   struct of_dma *ofdma)
1527 {
1528 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1529 	struct device *dev = dmadev->ddev.dev;
1530 	struct stm32_dma_cfg cfg;
1531 	struct stm32_dma_chan *chan;
1532 	struct dma_chan *c;
1533 
1534 	if (dma_spec->args_count < 4) {
1535 		dev_err(dev, "Bad number of cells\n");
1536 		return NULL;
1537 	}
1538 
1539 	cfg.channel_id = dma_spec->args[0];
1540 	cfg.request_line = dma_spec->args[1];
1541 	cfg.stream_config = dma_spec->args[2];
1542 	cfg.features = dma_spec->args[3];
1543 
1544 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1545 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1546 		dev_err(dev, "Bad channel and/or request id\n");
1547 		return NULL;
1548 	}
1549 
1550 	chan = &dmadev->chan[cfg.channel_id];
1551 
1552 	c = dma_get_slave_channel(&chan->vchan.chan);
1553 	if (!c) {
1554 		dev_err(dev, "No more channels available\n");
1555 		return NULL;
1556 	}
1557 
1558 	stm32_dma_set_config(chan, &cfg);
1559 
1560 	return c;
1561 }
1562 
1563 static const struct of_device_id stm32_dma_of_match[] = {
1564 	{ .compatible = "st,stm32-dma", },
1565 	{ /* sentinel */ },
1566 };
1567 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1568 
stm32_dma_probe(struct platform_device * pdev)1569 static int stm32_dma_probe(struct platform_device *pdev)
1570 {
1571 	struct stm32_dma_chan *chan;
1572 	struct stm32_dma_device *dmadev;
1573 	struct dma_device *dd;
1574 	const struct of_device_id *match;
1575 	struct resource *res;
1576 	struct reset_control *rst;
1577 	int i, ret;
1578 
1579 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1580 	if (!match) {
1581 		dev_err(&pdev->dev, "Error: No device match found\n");
1582 		return -ENODEV;
1583 	}
1584 
1585 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1586 	if (!dmadev)
1587 		return -ENOMEM;
1588 
1589 	dd = &dmadev->ddev;
1590 
1591 	dmadev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1592 	if (IS_ERR(dmadev->base))
1593 		return PTR_ERR(dmadev->base);
1594 
1595 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1596 	if (IS_ERR(dmadev->clk))
1597 		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1598 
1599 	ret = clk_prepare_enable(dmadev->clk);
1600 	if (ret < 0) {
1601 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1602 		return ret;
1603 	}
1604 
1605 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1606 						"st,mem2mem");
1607 
1608 	rst = devm_reset_control_get(&pdev->dev, NULL);
1609 	if (IS_ERR(rst)) {
1610 		ret = PTR_ERR(rst);
1611 		if (ret == -EPROBE_DEFER)
1612 			goto clk_free;
1613 	} else {
1614 		reset_control_assert(rst);
1615 		udelay(2);
1616 		reset_control_deassert(rst);
1617 	}
1618 
1619 	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1620 
1621 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1622 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1623 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1624 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1625 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1626 	dd->device_tx_status = stm32_dma_tx_status;
1627 	dd->device_issue_pending = stm32_dma_issue_pending;
1628 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1629 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1630 	dd->device_config = stm32_dma_slave_config;
1631 	dd->device_pause = stm32_dma_pause;
1632 	dd->device_resume = stm32_dma_resume;
1633 	dd->device_terminate_all = stm32_dma_terminate_all;
1634 	dd->device_synchronize = stm32_dma_synchronize;
1635 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1636 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1637 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1638 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1639 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1640 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1641 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1642 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1643 	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1644 	dd->max_burst = STM32_DMA_MAX_BURST;
1645 	dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1646 	dd->descriptor_reuse = true;
1647 	dd->dev = &pdev->dev;
1648 	INIT_LIST_HEAD(&dd->channels);
1649 
1650 	if (dmadev->mem2mem) {
1651 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1652 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1653 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1654 	}
1655 
1656 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1657 		chan = &dmadev->chan[i];
1658 		chan->id = i;
1659 		chan->vchan.desc_free = stm32_dma_desc_free;
1660 		vchan_init(&chan->vchan, dd);
1661 
1662 		chan->mdma_config.ifcr = res->start;
1663 		chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
1664 
1665 		chan->mdma_config.tcf = STM32_DMA_TCI;
1666 		chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
1667 	}
1668 
1669 	ret = dma_async_device_register(dd);
1670 	if (ret)
1671 		goto clk_free;
1672 
1673 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1674 		chan = &dmadev->chan[i];
1675 		ret = platform_get_irq(pdev, i);
1676 		if (ret < 0)
1677 			goto err_unregister;
1678 		chan->irq = ret;
1679 
1680 		ret = devm_request_irq(&pdev->dev, chan->irq,
1681 				       stm32_dma_chan_irq, 0,
1682 				       dev_name(chan2dev(chan)), chan);
1683 		if (ret) {
1684 			dev_err(&pdev->dev,
1685 				"request_irq failed with err %d channel %d\n",
1686 				ret, i);
1687 			goto err_unregister;
1688 		}
1689 	}
1690 
1691 	ret = of_dma_controller_register(pdev->dev.of_node,
1692 					 stm32_dma_of_xlate, dmadev);
1693 	if (ret < 0) {
1694 		dev_err(&pdev->dev,
1695 			"STM32 DMA DMA OF registration failed %d\n", ret);
1696 		goto err_unregister;
1697 	}
1698 
1699 	platform_set_drvdata(pdev, dmadev);
1700 
1701 	pm_runtime_set_active(&pdev->dev);
1702 	pm_runtime_enable(&pdev->dev);
1703 	pm_runtime_get_noresume(&pdev->dev);
1704 	pm_runtime_put(&pdev->dev);
1705 
1706 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1707 
1708 	return 0;
1709 
1710 err_unregister:
1711 	dma_async_device_unregister(dd);
1712 clk_free:
1713 	clk_disable_unprepare(dmadev->clk);
1714 
1715 	return ret;
1716 }
1717 
1718 #ifdef CONFIG_PM
stm32_dma_runtime_suspend(struct device * dev)1719 static int stm32_dma_runtime_suspend(struct device *dev)
1720 {
1721 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1722 
1723 	clk_disable_unprepare(dmadev->clk);
1724 
1725 	return 0;
1726 }
1727 
stm32_dma_runtime_resume(struct device * dev)1728 static int stm32_dma_runtime_resume(struct device *dev)
1729 {
1730 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1731 	int ret;
1732 
1733 	ret = clk_prepare_enable(dmadev->clk);
1734 	if (ret) {
1735 		dev_err(dev, "failed to prepare_enable clock\n");
1736 		return ret;
1737 	}
1738 
1739 	return 0;
1740 }
1741 #endif
1742 
1743 #ifdef CONFIG_PM_SLEEP
stm32_dma_pm_suspend(struct device * dev)1744 static int stm32_dma_pm_suspend(struct device *dev)
1745 {
1746 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1747 	int id, ret, scr;
1748 
1749 	ret = pm_runtime_resume_and_get(dev);
1750 	if (ret < 0)
1751 		return ret;
1752 
1753 	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1754 		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1755 		if (scr & STM32_DMA_SCR_EN) {
1756 			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1757 			return -EBUSY;
1758 		}
1759 	}
1760 
1761 	pm_runtime_put_sync(dev);
1762 
1763 	pm_runtime_force_suspend(dev);
1764 
1765 	return 0;
1766 }
1767 
stm32_dma_pm_resume(struct device * dev)1768 static int stm32_dma_pm_resume(struct device *dev)
1769 {
1770 	return pm_runtime_force_resume(dev);
1771 }
1772 #endif
1773 
1774 static const struct dev_pm_ops stm32_dma_pm_ops = {
1775 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1776 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1777 			   stm32_dma_runtime_resume, NULL)
1778 };
1779 
1780 static struct platform_driver stm32_dma_driver = {
1781 	.driver = {
1782 		.name = "stm32-dma",
1783 		.of_match_table = stm32_dma_of_match,
1784 		.pm = &stm32_dma_pm_ops,
1785 	},
1786 	.probe = stm32_dma_probe,
1787 };
1788 
stm32_dma_init(void)1789 static int __init stm32_dma_init(void)
1790 {
1791 	return platform_driver_register(&stm32_dma_driver);
1792 }
1793 subsys_initcall(stm32_dma_init);
1794