xref: /openbmc/linux/drivers/dma/ste_dma40.c (revision b9ccfda2)
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/err.h>
20 #include <linux/amba/bus.h>
21 #include <linux/regulator/consumer.h>
22 
23 #include <plat/ste_dma40.h>
24 
25 #include "dmaengine.h"
26 #include "ste_dma40_ll.h"
27 
28 #define D40_NAME "dma40"
29 
30 #define D40_PHY_CHAN -1
31 
32 /* For masking out/in 2 bit channel positions */
33 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
34 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
35 
36 /* Maximum iterations taken before giving up suspending a channel */
37 #define D40_SUSPEND_MAX_IT 500
38 
39 /* Milliseconds */
40 #define DMA40_AUTOSUSPEND_DELAY	100
41 
42 /* Hardware requirement on LCLA alignment */
43 #define LCLA_ALIGNMENT 0x40000
44 
45 /* Max number of links per event group */
46 #define D40_LCLA_LINK_PER_EVENT_GRP 128
47 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
48 
49 /* Attempts before giving up to trying to get pages that are aligned */
50 #define MAX_LCLA_ALLOC_ATTEMPTS 256
51 
52 /* Bit markings for allocation map */
53 #define D40_ALLOC_FREE		(1 << 31)
54 #define D40_ALLOC_PHY		(1 << 30)
55 #define D40_ALLOC_LOG_FREE	0
56 
57 /**
58  * enum 40_command - The different commands and/or statuses.
59  *
60  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
61  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
62  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
63  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
64  */
65 enum d40_command {
66 	D40_DMA_STOP		= 0,
67 	D40_DMA_RUN		= 1,
68 	D40_DMA_SUSPEND_REQ	= 2,
69 	D40_DMA_SUSPENDED	= 3
70 };
71 
72 /*
73  * enum d40_events - The different Event Enables for the event lines.
74  *
75  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
76  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
77  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
78  * @D40_ROUND_EVENTLINE: Status check for event line.
79  */
80 
81 enum d40_events {
82 	D40_DEACTIVATE_EVENTLINE	= 0,
83 	D40_ACTIVATE_EVENTLINE		= 1,
84 	D40_SUSPEND_REQ_EVENTLINE	= 2,
85 	D40_ROUND_EVENTLINE		= 3
86 };
87 
88 /*
89  * These are the registers that has to be saved and later restored
90  * when the DMA hw is powered off.
91  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
92  */
93 static u32 d40_backup_regs[] = {
94 	D40_DREG_LCPA,
95 	D40_DREG_LCLA,
96 	D40_DREG_PRMSE,
97 	D40_DREG_PRMSO,
98 	D40_DREG_PRMOE,
99 	D40_DREG_PRMOO,
100 };
101 
102 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
103 
104 /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
105 static u32 d40_backup_regs_v3[] = {
106 	D40_DREG_PSEG1,
107 	D40_DREG_PSEG2,
108 	D40_DREG_PSEG3,
109 	D40_DREG_PSEG4,
110 	D40_DREG_PCEG1,
111 	D40_DREG_PCEG2,
112 	D40_DREG_PCEG3,
113 	D40_DREG_PCEG4,
114 	D40_DREG_RSEG1,
115 	D40_DREG_RSEG2,
116 	D40_DREG_RSEG3,
117 	D40_DREG_RSEG4,
118 	D40_DREG_RCEG1,
119 	D40_DREG_RCEG2,
120 	D40_DREG_RCEG3,
121 	D40_DREG_RCEG4,
122 };
123 
124 #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
125 
126 static u32 d40_backup_regs_chan[] = {
127 	D40_CHAN_REG_SSCFG,
128 	D40_CHAN_REG_SSELT,
129 	D40_CHAN_REG_SSPTR,
130 	D40_CHAN_REG_SSLNK,
131 	D40_CHAN_REG_SDCFG,
132 	D40_CHAN_REG_SDELT,
133 	D40_CHAN_REG_SDPTR,
134 	D40_CHAN_REG_SDLNK,
135 };
136 
137 /**
138  * struct d40_lli_pool - Structure for keeping LLIs in memory
139  *
140  * @base: Pointer to memory area when the pre_alloc_lli's are not large
141  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
142  * pre_alloc_lli is used.
143  * @dma_addr: DMA address, if mapped
144  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
145  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
146  * one buffer to one buffer.
147  */
148 struct d40_lli_pool {
149 	void	*base;
150 	int	 size;
151 	dma_addr_t	dma_addr;
152 	/* Space for dst and src, plus an extra for padding */
153 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
154 };
155 
156 /**
157  * struct d40_desc - A descriptor is one DMA job.
158  *
159  * @lli_phy: LLI settings for physical channel. Both src and dst=
160  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
161  * lli_len equals one.
162  * @lli_log: Same as above but for logical channels.
163  * @lli_pool: The pool with two entries pre-allocated.
164  * @lli_len: Number of llis of current descriptor.
165  * @lli_current: Number of transferred llis.
166  * @lcla_alloc: Number of LCLA entries allocated.
167  * @txd: DMA engine struct. Used for among other things for communication
168  * during a transfer.
169  * @node: List entry.
170  * @is_in_client_list: true if the client owns this descriptor.
171  * @cyclic: true if this is a cyclic job
172  *
173  * This descriptor is used for both logical and physical transfers.
174  */
175 struct d40_desc {
176 	/* LLI physical */
177 	struct d40_phy_lli_bidir	 lli_phy;
178 	/* LLI logical */
179 	struct d40_log_lli_bidir	 lli_log;
180 
181 	struct d40_lli_pool		 lli_pool;
182 	int				 lli_len;
183 	int				 lli_current;
184 	int				 lcla_alloc;
185 
186 	struct dma_async_tx_descriptor	 txd;
187 	struct list_head		 node;
188 
189 	bool				 is_in_client_list;
190 	bool				 cyclic;
191 };
192 
193 /**
194  * struct d40_lcla_pool - LCLA pool settings and data.
195  *
196  * @base: The virtual address of LCLA. 18 bit aligned.
197  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
198  * This pointer is only there for clean-up on error.
199  * @pages: The number of pages needed for all physical channels.
200  * Only used later for clean-up on error
201  * @lock: Lock to protect the content in this struct.
202  * @alloc_map: big map over which LCLA entry is own by which job.
203  */
204 struct d40_lcla_pool {
205 	void		*base;
206 	dma_addr_t	dma_addr;
207 	void		*base_unaligned;
208 	int		 pages;
209 	spinlock_t	 lock;
210 	struct d40_desc	**alloc_map;
211 };
212 
213 /**
214  * struct d40_phy_res - struct for handling eventlines mapped to physical
215  * channels.
216  *
217  * @lock: A lock protection this entity.
218  * @reserved: True if used by secure world or otherwise.
219  * @num: The physical channel number of this entity.
220  * @allocated_src: Bit mapped to show which src event line's are mapped to
221  * this physical channel. Can also be free or physically allocated.
222  * @allocated_dst: Same as for src but is dst.
223  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
224  * event line number.
225  */
226 struct d40_phy_res {
227 	spinlock_t lock;
228 	bool	   reserved;
229 	int	   num;
230 	u32	   allocated_src;
231 	u32	   allocated_dst;
232 };
233 
234 struct d40_base;
235 
236 /**
237  * struct d40_chan - Struct that describes a channel.
238  *
239  * @lock: A spinlock to protect this struct.
240  * @log_num: The logical number, if any of this channel.
241  * @pending_tx: The number of pending transfers. Used between interrupt handler
242  * and tasklet.
243  * @busy: Set to true when transfer is ongoing on this channel.
244  * @phy_chan: Pointer to physical channel which this instance runs on. If this
245  * point is NULL, then the channel is not allocated.
246  * @chan: DMA engine handle.
247  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
248  * transfer and call client callback.
249  * @client: Cliented owned descriptor list.
250  * @pending_queue: Submitted jobs, to be issued by issue_pending()
251  * @active: Active descriptor.
252  * @queue: Queued jobs.
253  * @prepare_queue: Prepared jobs.
254  * @dma_cfg: The client configuration of this dma channel.
255  * @configured: whether the dma_cfg configuration is valid
256  * @base: Pointer to the device instance struct.
257  * @src_def_cfg: Default cfg register setting for src.
258  * @dst_def_cfg: Default cfg register setting for dst.
259  * @log_def: Default logical channel settings.
260  * @lcpa: Pointer to dst and src lcpa settings.
261  * @runtime_addr: runtime configured address.
262  * @runtime_direction: runtime configured direction.
263  *
264  * This struct can either "be" a logical or a physical channel.
265  */
266 struct d40_chan {
267 	spinlock_t			 lock;
268 	int				 log_num;
269 	int				 pending_tx;
270 	bool				 busy;
271 	struct d40_phy_res		*phy_chan;
272 	struct dma_chan			 chan;
273 	struct tasklet_struct		 tasklet;
274 	struct list_head		 client;
275 	struct list_head		 pending_queue;
276 	struct list_head		 active;
277 	struct list_head		 queue;
278 	struct list_head		 prepare_queue;
279 	struct stedma40_chan_cfg	 dma_cfg;
280 	bool				 configured;
281 	struct d40_base			*base;
282 	/* Default register configurations */
283 	u32				 src_def_cfg;
284 	u32				 dst_def_cfg;
285 	struct d40_def_lcsp		 log_def;
286 	struct d40_log_lli_full		*lcpa;
287 	/* Runtime reconfiguration */
288 	dma_addr_t			runtime_addr;
289 	enum dma_transfer_direction	runtime_direction;
290 };
291 
292 /**
293  * struct d40_base - The big global struct, one for each probe'd instance.
294  *
295  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
296  * @execmd_lock: Lock for execute command usage since several channels share
297  * the same physical register.
298  * @dev: The device structure.
299  * @virtbase: The virtual base address of the DMA's register.
300  * @rev: silicon revision detected.
301  * @clk: Pointer to the DMA clock structure.
302  * @phy_start: Physical memory start of the DMA registers.
303  * @phy_size: Size of the DMA register map.
304  * @irq: The IRQ number.
305  * @num_phy_chans: The number of physical channels. Read from HW. This
306  * is the number of available channels for this driver, not counting "Secure
307  * mode" allocated physical channels.
308  * @num_log_chans: The number of logical channels. Calculated from
309  * num_phy_chans.
310  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
311  * @dma_slave: dma_device channels that can do only do slave transfers.
312  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
313  * @phy_chans: Room for all possible physical channels in system.
314  * @log_chans: Room for all possible logical channels in system.
315  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
316  * to log_chans entries.
317  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
318  * to phy_chans entries.
319  * @plat_data: Pointer to provided platform_data which is the driver
320  * configuration.
321  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
322  * @phy_res: Vector containing all physical channels.
323  * @lcla_pool: lcla pool settings and data.
324  * @lcpa_base: The virtual mapped address of LCPA.
325  * @phy_lcpa: The physical address of the LCPA.
326  * @lcpa_size: The size of the LCPA area.
327  * @desc_slab: cache for descriptors.
328  * @reg_val_backup: Here the values of some hardware registers are stored
329  * before the DMA is powered off. They are restored when the power is back on.
330  * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
331  * later.
332  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
333  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
334  * @initialized: true if the dma has been initialized
335  */
336 struct d40_base {
337 	spinlock_t			 interrupt_lock;
338 	spinlock_t			 execmd_lock;
339 	struct device			 *dev;
340 	void __iomem			 *virtbase;
341 	u8				  rev:4;
342 	struct clk			 *clk;
343 	phys_addr_t			  phy_start;
344 	resource_size_t			  phy_size;
345 	int				  irq;
346 	int				  num_phy_chans;
347 	int				  num_log_chans;
348 	struct dma_device		  dma_both;
349 	struct dma_device		  dma_slave;
350 	struct dma_device		  dma_memcpy;
351 	struct d40_chan			 *phy_chans;
352 	struct d40_chan			 *log_chans;
353 	struct d40_chan			**lookup_log_chans;
354 	struct d40_chan			**lookup_phy_chans;
355 	struct stedma40_platform_data	 *plat_data;
356 	struct regulator		 *lcpa_regulator;
357 	/* Physical half channels */
358 	struct d40_phy_res		 *phy_res;
359 	struct d40_lcla_pool		  lcla_pool;
360 	void				 *lcpa_base;
361 	dma_addr_t			  phy_lcpa;
362 	resource_size_t			  lcpa_size;
363 	struct kmem_cache		 *desc_slab;
364 	u32				  reg_val_backup[BACKUP_REGS_SZ];
365 	u32				  reg_val_backup_v3[BACKUP_REGS_SZ_V3];
366 	u32				 *reg_val_backup_chan;
367 	u16				  gcc_pwr_off_mask;
368 	bool				  initialized;
369 };
370 
371 /**
372  * struct d40_interrupt_lookup - lookup table for interrupt handler
373  *
374  * @src: Interrupt mask register.
375  * @clr: Interrupt clear register.
376  * @is_error: true if this is an error interrupt.
377  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
378  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
379  */
380 struct d40_interrupt_lookup {
381 	u32 src;
382 	u32 clr;
383 	bool is_error;
384 	int offset;
385 };
386 
387 /**
388  * struct d40_reg_val - simple lookup struct
389  *
390  * @reg: The register.
391  * @val: The value that belongs to the register in reg.
392  */
393 struct d40_reg_val {
394 	unsigned int reg;
395 	unsigned int val;
396 };
397 
398 static struct device *chan2dev(struct d40_chan *d40c)
399 {
400 	return &d40c->chan.dev->device;
401 }
402 
403 static bool chan_is_physical(struct d40_chan *chan)
404 {
405 	return chan->log_num == D40_PHY_CHAN;
406 }
407 
408 static bool chan_is_logical(struct d40_chan *chan)
409 {
410 	return !chan_is_physical(chan);
411 }
412 
413 static void __iomem *chan_base(struct d40_chan *chan)
414 {
415 	return chan->base->virtbase + D40_DREG_PCBASE +
416 	       chan->phy_chan->num * D40_DREG_PCDELTA;
417 }
418 
419 #define d40_err(dev, format, arg...)		\
420 	dev_err(dev, "[%s] " format, __func__, ## arg)
421 
422 #define chan_err(d40c, format, arg...)		\
423 	d40_err(chan2dev(d40c), format, ## arg)
424 
425 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
426 			      int lli_len)
427 {
428 	bool is_log = chan_is_logical(d40c);
429 	u32 align;
430 	void *base;
431 
432 	if (is_log)
433 		align = sizeof(struct d40_log_lli);
434 	else
435 		align = sizeof(struct d40_phy_lli);
436 
437 	if (lli_len == 1) {
438 		base = d40d->lli_pool.pre_alloc_lli;
439 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
440 		d40d->lli_pool.base = NULL;
441 	} else {
442 		d40d->lli_pool.size = lli_len * 2 * align;
443 
444 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
445 		d40d->lli_pool.base = base;
446 
447 		if (d40d->lli_pool.base == NULL)
448 			return -ENOMEM;
449 	}
450 
451 	if (is_log) {
452 		d40d->lli_log.src = PTR_ALIGN(base, align);
453 		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
454 
455 		d40d->lli_pool.dma_addr = 0;
456 	} else {
457 		d40d->lli_phy.src = PTR_ALIGN(base, align);
458 		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
459 
460 		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
461 							 d40d->lli_phy.src,
462 							 d40d->lli_pool.size,
463 							 DMA_TO_DEVICE);
464 
465 		if (dma_mapping_error(d40c->base->dev,
466 				      d40d->lli_pool.dma_addr)) {
467 			kfree(d40d->lli_pool.base);
468 			d40d->lli_pool.base = NULL;
469 			d40d->lli_pool.dma_addr = 0;
470 			return -ENOMEM;
471 		}
472 	}
473 
474 	return 0;
475 }
476 
477 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
478 {
479 	if (d40d->lli_pool.dma_addr)
480 		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
481 				 d40d->lli_pool.size, DMA_TO_DEVICE);
482 
483 	kfree(d40d->lli_pool.base);
484 	d40d->lli_pool.base = NULL;
485 	d40d->lli_pool.size = 0;
486 	d40d->lli_log.src = NULL;
487 	d40d->lli_log.dst = NULL;
488 	d40d->lli_phy.src = NULL;
489 	d40d->lli_phy.dst = NULL;
490 }
491 
492 static int d40_lcla_alloc_one(struct d40_chan *d40c,
493 			      struct d40_desc *d40d)
494 {
495 	unsigned long flags;
496 	int i;
497 	int ret = -EINVAL;
498 	int p;
499 
500 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
501 
502 	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
503 
504 	/*
505 	 * Allocate both src and dst at the same time, therefore the half
506 	 * start on 1 since 0 can't be used since zero is used as end marker.
507 	 */
508 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
509 		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
510 			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
511 			d40d->lcla_alloc++;
512 			ret = i;
513 			break;
514 		}
515 	}
516 
517 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
518 
519 	return ret;
520 }
521 
522 static int d40_lcla_free_all(struct d40_chan *d40c,
523 			     struct d40_desc *d40d)
524 {
525 	unsigned long flags;
526 	int i;
527 	int ret = -EINVAL;
528 
529 	if (chan_is_physical(d40c))
530 		return 0;
531 
532 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
533 
534 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
535 		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
536 						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
537 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
538 							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
539 			d40d->lcla_alloc--;
540 			if (d40d->lcla_alloc == 0) {
541 				ret = 0;
542 				break;
543 			}
544 		}
545 	}
546 
547 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
548 
549 	return ret;
550 
551 }
552 
553 static void d40_desc_remove(struct d40_desc *d40d)
554 {
555 	list_del(&d40d->node);
556 }
557 
558 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
559 {
560 	struct d40_desc *desc = NULL;
561 
562 	if (!list_empty(&d40c->client)) {
563 		struct d40_desc *d;
564 		struct d40_desc *_d;
565 
566 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
567 			if (async_tx_test_ack(&d->txd)) {
568 				d40_desc_remove(d);
569 				desc = d;
570 				memset(desc, 0, sizeof(*desc));
571 				break;
572 			}
573 		}
574 	}
575 
576 	if (!desc)
577 		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
578 
579 	if (desc)
580 		INIT_LIST_HEAD(&desc->node);
581 
582 	return desc;
583 }
584 
585 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
586 {
587 
588 	d40_pool_lli_free(d40c, d40d);
589 	d40_lcla_free_all(d40c, d40d);
590 	kmem_cache_free(d40c->base->desc_slab, d40d);
591 }
592 
593 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
594 {
595 	list_add_tail(&desc->node, &d40c->active);
596 }
597 
598 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
599 {
600 	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
601 	struct d40_phy_lli *lli_src = desc->lli_phy.src;
602 	void __iomem *base = chan_base(chan);
603 
604 	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
605 	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
606 	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
607 	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
608 
609 	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
610 	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
611 	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
612 	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
613 }
614 
615 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
616 {
617 	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
618 	struct d40_log_lli_bidir *lli = &desc->lli_log;
619 	int lli_current = desc->lli_current;
620 	int lli_len = desc->lli_len;
621 	bool cyclic = desc->cyclic;
622 	int curr_lcla = -EINVAL;
623 	int first_lcla = 0;
624 	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
625 	bool linkback;
626 
627 	/*
628 	 * We may have partially running cyclic transfers, in case we did't get
629 	 * enough LCLA entries.
630 	 */
631 	linkback = cyclic && lli_current == 0;
632 
633 	/*
634 	 * For linkback, we need one LCLA even with only one link, because we
635 	 * can't link back to the one in LCPA space
636 	 */
637 	if (linkback || (lli_len - lli_current > 1)) {
638 		curr_lcla = d40_lcla_alloc_one(chan, desc);
639 		first_lcla = curr_lcla;
640 	}
641 
642 	/*
643 	 * For linkback, we normally load the LCPA in the loop since we need to
644 	 * link it to the second LCLA and not the first.  However, if we
645 	 * couldn't even get a first LCLA, then we have to run in LCPA and
646 	 * reload manually.
647 	 */
648 	if (!linkback || curr_lcla == -EINVAL) {
649 		unsigned int flags = 0;
650 
651 		if (curr_lcla == -EINVAL)
652 			flags |= LLI_TERM_INT;
653 
654 		d40_log_lli_lcpa_write(chan->lcpa,
655 				       &lli->dst[lli_current],
656 				       &lli->src[lli_current],
657 				       curr_lcla,
658 				       flags);
659 		lli_current++;
660 	}
661 
662 	if (curr_lcla < 0)
663 		goto out;
664 
665 	for (; lli_current < lli_len; lli_current++) {
666 		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
667 					   8 * curr_lcla * 2;
668 		struct d40_log_lli *lcla = pool->base + lcla_offset;
669 		unsigned int flags = 0;
670 		int next_lcla;
671 
672 		if (lli_current + 1 < lli_len)
673 			next_lcla = d40_lcla_alloc_one(chan, desc);
674 		else
675 			next_lcla = linkback ? first_lcla : -EINVAL;
676 
677 		if (cyclic || next_lcla == -EINVAL)
678 			flags |= LLI_TERM_INT;
679 
680 		if (linkback && curr_lcla == first_lcla) {
681 			/* First link goes in both LCPA and LCLA */
682 			d40_log_lli_lcpa_write(chan->lcpa,
683 					       &lli->dst[lli_current],
684 					       &lli->src[lli_current],
685 					       next_lcla, flags);
686 		}
687 
688 		/*
689 		 * One unused LCLA in the cyclic case if the very first
690 		 * next_lcla fails...
691 		 */
692 		d40_log_lli_lcla_write(lcla,
693 				       &lli->dst[lli_current],
694 				       &lli->src[lli_current],
695 				       next_lcla, flags);
696 
697 		/*
698 		 * Cache maintenance is not needed if lcla is
699 		 * mapped in esram
700 		 */
701 		if (!use_esram_lcla) {
702 			dma_sync_single_range_for_device(chan->base->dev,
703 						pool->dma_addr, lcla_offset,
704 						2 * sizeof(struct d40_log_lli),
705 						DMA_TO_DEVICE);
706 		}
707 		curr_lcla = next_lcla;
708 
709 		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
710 			lli_current++;
711 			break;
712 		}
713 	}
714 
715 out:
716 	desc->lli_current = lli_current;
717 }
718 
719 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
720 {
721 	if (chan_is_physical(d40c)) {
722 		d40_phy_lli_load(d40c, d40d);
723 		d40d->lli_current = d40d->lli_len;
724 	} else
725 		d40_log_lli_to_lcxa(d40c, d40d);
726 }
727 
728 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
729 {
730 	struct d40_desc *d;
731 
732 	if (list_empty(&d40c->active))
733 		return NULL;
734 
735 	d = list_first_entry(&d40c->active,
736 			     struct d40_desc,
737 			     node);
738 	return d;
739 }
740 
741 /* remove desc from current queue and add it to the pending_queue */
742 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
743 {
744 	d40_desc_remove(desc);
745 	desc->is_in_client_list = false;
746 	list_add_tail(&desc->node, &d40c->pending_queue);
747 }
748 
749 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
750 {
751 	struct d40_desc *d;
752 
753 	if (list_empty(&d40c->pending_queue))
754 		return NULL;
755 
756 	d = list_first_entry(&d40c->pending_queue,
757 			     struct d40_desc,
758 			     node);
759 	return d;
760 }
761 
762 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
763 {
764 	struct d40_desc *d;
765 
766 	if (list_empty(&d40c->queue))
767 		return NULL;
768 
769 	d = list_first_entry(&d40c->queue,
770 			     struct d40_desc,
771 			     node);
772 	return d;
773 }
774 
775 static int d40_psize_2_burst_size(bool is_log, int psize)
776 {
777 	if (is_log) {
778 		if (psize == STEDMA40_PSIZE_LOG_1)
779 			return 1;
780 	} else {
781 		if (psize == STEDMA40_PSIZE_PHY_1)
782 			return 1;
783 	}
784 
785 	return 2 << psize;
786 }
787 
788 /*
789  * The dma only supports transmitting packages up to
790  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
791  * dma elements required to send the entire sg list
792  */
793 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
794 {
795 	int dmalen;
796 	u32 max_w = max(data_width1, data_width2);
797 	u32 min_w = min(data_width1, data_width2);
798 	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
799 
800 	if (seg_max > STEDMA40_MAX_SEG_SIZE)
801 		seg_max -= (1 << max_w);
802 
803 	if (!IS_ALIGNED(size, 1 << max_w))
804 		return -EINVAL;
805 
806 	if (size <= seg_max)
807 		dmalen = 1;
808 	else {
809 		dmalen = size / seg_max;
810 		if (dmalen * seg_max < size)
811 			dmalen++;
812 	}
813 	return dmalen;
814 }
815 
816 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
817 			   u32 data_width1, u32 data_width2)
818 {
819 	struct scatterlist *sg;
820 	int i;
821 	int len = 0;
822 	int ret;
823 
824 	for_each_sg(sgl, sg, sg_len, i) {
825 		ret = d40_size_2_dmalen(sg_dma_len(sg),
826 					data_width1, data_width2);
827 		if (ret < 0)
828 			return ret;
829 		len += ret;
830 	}
831 	return len;
832 }
833 
834 
835 #ifdef CONFIG_PM
836 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
837 			 u32 *regaddr, int num, bool save)
838 {
839 	int i;
840 
841 	for (i = 0; i < num; i++) {
842 		void __iomem *addr = baseaddr + regaddr[i];
843 
844 		if (save)
845 			backup[i] = readl_relaxed(addr);
846 		else
847 			writel_relaxed(backup[i], addr);
848 	}
849 }
850 
851 static void d40_save_restore_registers(struct d40_base *base, bool save)
852 {
853 	int i;
854 
855 	/* Save/Restore channel specific registers */
856 	for (i = 0; i < base->num_phy_chans; i++) {
857 		void __iomem *addr;
858 		int idx;
859 
860 		if (base->phy_res[i].reserved)
861 			continue;
862 
863 		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
864 		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
865 
866 		dma40_backup(addr, &base->reg_val_backup_chan[idx],
867 			     d40_backup_regs_chan,
868 			     ARRAY_SIZE(d40_backup_regs_chan),
869 			     save);
870 	}
871 
872 	/* Save/Restore global registers */
873 	dma40_backup(base->virtbase, base->reg_val_backup,
874 		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
875 		     save);
876 
877 	/* Save/Restore registers only existing on dma40 v3 and later */
878 	if (base->rev >= 3)
879 		dma40_backup(base->virtbase, base->reg_val_backup_v3,
880 			     d40_backup_regs_v3,
881 			     ARRAY_SIZE(d40_backup_regs_v3),
882 			     save);
883 }
884 #else
885 static void d40_save_restore_registers(struct d40_base *base, bool save)
886 {
887 }
888 #endif
889 
890 static int __d40_execute_command_phy(struct d40_chan *d40c,
891 				     enum d40_command command)
892 {
893 	u32 status;
894 	int i;
895 	void __iomem *active_reg;
896 	int ret = 0;
897 	unsigned long flags;
898 	u32 wmask;
899 
900 	if (command == D40_DMA_STOP) {
901 		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
902 		if (ret)
903 			return ret;
904 	}
905 
906 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
907 
908 	if (d40c->phy_chan->num % 2 == 0)
909 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
910 	else
911 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
912 
913 	if (command == D40_DMA_SUSPEND_REQ) {
914 		status = (readl(active_reg) &
915 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
916 			D40_CHAN_POS(d40c->phy_chan->num);
917 
918 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
919 			goto done;
920 	}
921 
922 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
923 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
924 	       active_reg);
925 
926 	if (command == D40_DMA_SUSPEND_REQ) {
927 
928 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
929 			status = (readl(active_reg) &
930 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
931 				D40_CHAN_POS(d40c->phy_chan->num);
932 
933 			cpu_relax();
934 			/*
935 			 * Reduce the number of bus accesses while
936 			 * waiting for the DMA to suspend.
937 			 */
938 			udelay(3);
939 
940 			if (status == D40_DMA_STOP ||
941 			    status == D40_DMA_SUSPENDED)
942 				break;
943 		}
944 
945 		if (i == D40_SUSPEND_MAX_IT) {
946 			chan_err(d40c,
947 				"unable to suspend the chl %d (log: %d) status %x\n",
948 				d40c->phy_chan->num, d40c->log_num,
949 				status);
950 			dump_stack();
951 			ret = -EBUSY;
952 		}
953 
954 	}
955 done:
956 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
957 	return ret;
958 }
959 
960 static void d40_term_all(struct d40_chan *d40c)
961 {
962 	struct d40_desc *d40d;
963 	struct d40_desc *_d;
964 
965 	/* Release active descriptors */
966 	while ((d40d = d40_first_active_get(d40c))) {
967 		d40_desc_remove(d40d);
968 		d40_desc_free(d40c, d40d);
969 	}
970 
971 	/* Release queued descriptors waiting for transfer */
972 	while ((d40d = d40_first_queued(d40c))) {
973 		d40_desc_remove(d40d);
974 		d40_desc_free(d40c, d40d);
975 	}
976 
977 	/* Release pending descriptors */
978 	while ((d40d = d40_first_pending(d40c))) {
979 		d40_desc_remove(d40d);
980 		d40_desc_free(d40c, d40d);
981 	}
982 
983 	/* Release client owned descriptors */
984 	if (!list_empty(&d40c->client))
985 		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
986 			d40_desc_remove(d40d);
987 			d40_desc_free(d40c, d40d);
988 		}
989 
990 	/* Release descriptors in prepare queue */
991 	if (!list_empty(&d40c->prepare_queue))
992 		list_for_each_entry_safe(d40d, _d,
993 					 &d40c->prepare_queue, node) {
994 			d40_desc_remove(d40d);
995 			d40_desc_free(d40c, d40d);
996 		}
997 
998 	d40c->pending_tx = 0;
999 }
1000 
1001 static void __d40_config_set_event(struct d40_chan *d40c,
1002 				   enum d40_events event_type, u32 event,
1003 				   int reg)
1004 {
1005 	void __iomem *addr = chan_base(d40c) + reg;
1006 	int tries;
1007 	u32 status;
1008 
1009 	switch (event_type) {
1010 
1011 	case D40_DEACTIVATE_EVENTLINE:
1012 
1013 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1014 		       | ~D40_EVENTLINE_MASK(event), addr);
1015 		break;
1016 
1017 	case D40_SUSPEND_REQ_EVENTLINE:
1018 		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1019 			  D40_EVENTLINE_POS(event);
1020 
1021 		if (status == D40_DEACTIVATE_EVENTLINE ||
1022 		    status == D40_SUSPEND_REQ_EVENTLINE)
1023 			break;
1024 
1025 		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1026 		       | ~D40_EVENTLINE_MASK(event), addr);
1027 
1028 		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1029 
1030 			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1031 				  D40_EVENTLINE_POS(event);
1032 
1033 			cpu_relax();
1034 			/*
1035 			 * Reduce the number of bus accesses while
1036 			 * waiting for the DMA to suspend.
1037 			 */
1038 			udelay(3);
1039 
1040 			if (status == D40_DEACTIVATE_EVENTLINE)
1041 				break;
1042 		}
1043 
1044 		if (tries == D40_SUSPEND_MAX_IT) {
1045 			chan_err(d40c,
1046 				"unable to stop the event_line chl %d (log: %d)"
1047 				"status %x\n", d40c->phy_chan->num,
1048 				 d40c->log_num, status);
1049 		}
1050 		break;
1051 
1052 	case D40_ACTIVATE_EVENTLINE:
1053 	/*
1054 	 * The hardware sometimes doesn't register the enable when src and dst
1055 	 * event lines are active on the same logical channel.  Retry to ensure
1056 	 * it does.  Usually only one retry is sufficient.
1057 	 */
1058 		tries = 100;
1059 		while (--tries) {
1060 			writel((D40_ACTIVATE_EVENTLINE <<
1061 				D40_EVENTLINE_POS(event)) |
1062 				~D40_EVENTLINE_MASK(event), addr);
1063 
1064 			if (readl(addr) & D40_EVENTLINE_MASK(event))
1065 				break;
1066 		}
1067 
1068 		if (tries != 99)
1069 			dev_dbg(chan2dev(d40c),
1070 				"[%s] workaround enable S%cLNK (%d tries)\n",
1071 				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1072 				100 - tries);
1073 
1074 		WARN_ON(!tries);
1075 		break;
1076 
1077 	case D40_ROUND_EVENTLINE:
1078 		BUG();
1079 		break;
1080 
1081 	}
1082 }
1083 
1084 static void d40_config_set_event(struct d40_chan *d40c,
1085 				 enum d40_events event_type)
1086 {
1087 	/* Enable event line connected to device (or memcpy) */
1088 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1089 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1090 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1091 
1092 		__d40_config_set_event(d40c, event_type, event,
1093 				       D40_CHAN_REG_SSLNK);
1094 	}
1095 
1096 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
1097 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1098 
1099 		__d40_config_set_event(d40c, event_type, event,
1100 				       D40_CHAN_REG_SDLNK);
1101 	}
1102 }
1103 
1104 static u32 d40_chan_has_events(struct d40_chan *d40c)
1105 {
1106 	void __iomem *chanbase = chan_base(d40c);
1107 	u32 val;
1108 
1109 	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1110 	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1111 
1112 	return val;
1113 }
1114 
1115 static int
1116 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1117 {
1118 	unsigned long flags;
1119 	int ret = 0;
1120 	u32 active_status;
1121 	void __iomem *active_reg;
1122 
1123 	if (d40c->phy_chan->num % 2 == 0)
1124 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1125 	else
1126 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1127 
1128 
1129 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1130 
1131 	switch (command) {
1132 	case D40_DMA_STOP:
1133 	case D40_DMA_SUSPEND_REQ:
1134 
1135 		active_status = (readl(active_reg) &
1136 				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1137 				 D40_CHAN_POS(d40c->phy_chan->num);
1138 
1139 		if (active_status == D40_DMA_RUN)
1140 			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1141 		else
1142 			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1143 
1144 		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1145 			ret = __d40_execute_command_phy(d40c, command);
1146 
1147 		break;
1148 
1149 	case D40_DMA_RUN:
1150 
1151 		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1152 		ret = __d40_execute_command_phy(d40c, command);
1153 		break;
1154 
1155 	case D40_DMA_SUSPENDED:
1156 		BUG();
1157 		break;
1158 	}
1159 
1160 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1161 	return ret;
1162 }
1163 
1164 static int d40_channel_execute_command(struct d40_chan *d40c,
1165 				       enum d40_command command)
1166 {
1167 	if (chan_is_logical(d40c))
1168 		return __d40_execute_command_log(d40c, command);
1169 	else
1170 		return __d40_execute_command_phy(d40c, command);
1171 }
1172 
1173 static u32 d40_get_prmo(struct d40_chan *d40c)
1174 {
1175 	static const unsigned int phy_map[] = {
1176 		[STEDMA40_PCHAN_BASIC_MODE]
1177 			= D40_DREG_PRMO_PCHAN_BASIC,
1178 		[STEDMA40_PCHAN_MODULO_MODE]
1179 			= D40_DREG_PRMO_PCHAN_MODULO,
1180 		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1181 			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1182 	};
1183 	static const unsigned int log_map[] = {
1184 		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1185 			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1186 		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1187 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1188 		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1189 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1190 	};
1191 
1192 	if (chan_is_physical(d40c))
1193 		return phy_map[d40c->dma_cfg.mode_opt];
1194 	else
1195 		return log_map[d40c->dma_cfg.mode_opt];
1196 }
1197 
1198 static void d40_config_write(struct d40_chan *d40c)
1199 {
1200 	u32 addr_base;
1201 	u32 var;
1202 
1203 	/* Odd addresses are even addresses + 4 */
1204 	addr_base = (d40c->phy_chan->num % 2) * 4;
1205 	/* Setup channel mode to logical or physical */
1206 	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1207 		D40_CHAN_POS(d40c->phy_chan->num);
1208 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1209 
1210 	/* Setup operational mode option register */
1211 	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1212 
1213 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1214 
1215 	if (chan_is_logical(d40c)) {
1216 		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1217 			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1218 		void __iomem *chanbase = chan_base(d40c);
1219 
1220 		/* Set default config for CFG reg */
1221 		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1222 		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1223 
1224 		/* Set LIDX for lcla */
1225 		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1226 		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1227 
1228 		/* Clear LNK which will be used by d40_chan_has_events() */
1229 		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1230 		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1231 	}
1232 }
1233 
1234 static u32 d40_residue(struct d40_chan *d40c)
1235 {
1236 	u32 num_elt;
1237 
1238 	if (chan_is_logical(d40c))
1239 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1240 			>> D40_MEM_LCSP2_ECNT_POS;
1241 	else {
1242 		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1243 		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1244 			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1245 	}
1246 
1247 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1248 }
1249 
1250 static bool d40_tx_is_linked(struct d40_chan *d40c)
1251 {
1252 	bool is_link;
1253 
1254 	if (chan_is_logical(d40c))
1255 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1256 	else
1257 		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1258 			  & D40_SREG_LNK_PHYS_LNK_MASK;
1259 
1260 	return is_link;
1261 }
1262 
1263 static int d40_pause(struct d40_chan *d40c)
1264 {
1265 	int res = 0;
1266 	unsigned long flags;
1267 
1268 	if (!d40c->busy)
1269 		return 0;
1270 
1271 	pm_runtime_get_sync(d40c->base->dev);
1272 	spin_lock_irqsave(&d40c->lock, flags);
1273 
1274 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1275 
1276 	pm_runtime_mark_last_busy(d40c->base->dev);
1277 	pm_runtime_put_autosuspend(d40c->base->dev);
1278 	spin_unlock_irqrestore(&d40c->lock, flags);
1279 	return res;
1280 }
1281 
1282 static int d40_resume(struct d40_chan *d40c)
1283 {
1284 	int res = 0;
1285 	unsigned long flags;
1286 
1287 	if (!d40c->busy)
1288 		return 0;
1289 
1290 	spin_lock_irqsave(&d40c->lock, flags);
1291 	pm_runtime_get_sync(d40c->base->dev);
1292 
1293 	/* If bytes left to transfer or linked tx resume job */
1294 	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1295 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1296 
1297 	pm_runtime_mark_last_busy(d40c->base->dev);
1298 	pm_runtime_put_autosuspend(d40c->base->dev);
1299 	spin_unlock_irqrestore(&d40c->lock, flags);
1300 	return res;
1301 }
1302 
1303 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1304 {
1305 	struct d40_chan *d40c = container_of(tx->chan,
1306 					     struct d40_chan,
1307 					     chan);
1308 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1309 	unsigned long flags;
1310 	dma_cookie_t cookie;
1311 
1312 	spin_lock_irqsave(&d40c->lock, flags);
1313 	cookie = dma_cookie_assign(tx);
1314 	d40_desc_queue(d40c, d40d);
1315 	spin_unlock_irqrestore(&d40c->lock, flags);
1316 
1317 	return cookie;
1318 }
1319 
1320 static int d40_start(struct d40_chan *d40c)
1321 {
1322 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1323 }
1324 
1325 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1326 {
1327 	struct d40_desc *d40d;
1328 	int err;
1329 
1330 	/* Start queued jobs, if any */
1331 	d40d = d40_first_queued(d40c);
1332 
1333 	if (d40d != NULL) {
1334 		if (!d40c->busy) {
1335 			d40c->busy = true;
1336 			pm_runtime_get_sync(d40c->base->dev);
1337 		}
1338 
1339 		/* Remove from queue */
1340 		d40_desc_remove(d40d);
1341 
1342 		/* Add to active queue */
1343 		d40_desc_submit(d40c, d40d);
1344 
1345 		/* Initiate DMA job */
1346 		d40_desc_load(d40c, d40d);
1347 
1348 		/* Start dma job */
1349 		err = d40_start(d40c);
1350 
1351 		if (err)
1352 			return NULL;
1353 	}
1354 
1355 	return d40d;
1356 }
1357 
1358 /* called from interrupt context */
1359 static void dma_tc_handle(struct d40_chan *d40c)
1360 {
1361 	struct d40_desc *d40d;
1362 
1363 	/* Get first active entry from list */
1364 	d40d = d40_first_active_get(d40c);
1365 
1366 	if (d40d == NULL)
1367 		return;
1368 
1369 	if (d40d->cyclic) {
1370 		/*
1371 		 * If this was a paritially loaded list, we need to reloaded
1372 		 * it, and only when the list is completed.  We need to check
1373 		 * for done because the interrupt will hit for every link, and
1374 		 * not just the last one.
1375 		 */
1376 		if (d40d->lli_current < d40d->lli_len
1377 		    && !d40_tx_is_linked(d40c)
1378 		    && !d40_residue(d40c)) {
1379 			d40_lcla_free_all(d40c, d40d);
1380 			d40_desc_load(d40c, d40d);
1381 			(void) d40_start(d40c);
1382 
1383 			if (d40d->lli_current == d40d->lli_len)
1384 				d40d->lli_current = 0;
1385 		}
1386 	} else {
1387 		d40_lcla_free_all(d40c, d40d);
1388 
1389 		if (d40d->lli_current < d40d->lli_len) {
1390 			d40_desc_load(d40c, d40d);
1391 			/* Start dma job */
1392 			(void) d40_start(d40c);
1393 			return;
1394 		}
1395 
1396 		if (d40_queue_start(d40c) == NULL)
1397 			d40c->busy = false;
1398 		pm_runtime_mark_last_busy(d40c->base->dev);
1399 		pm_runtime_put_autosuspend(d40c->base->dev);
1400 	}
1401 
1402 	d40c->pending_tx++;
1403 	tasklet_schedule(&d40c->tasklet);
1404 
1405 }
1406 
1407 static void dma_tasklet(unsigned long data)
1408 {
1409 	struct d40_chan *d40c = (struct d40_chan *) data;
1410 	struct d40_desc *d40d;
1411 	unsigned long flags;
1412 	dma_async_tx_callback callback;
1413 	void *callback_param;
1414 
1415 	spin_lock_irqsave(&d40c->lock, flags);
1416 
1417 	/* Get first active entry from list */
1418 	d40d = d40_first_active_get(d40c);
1419 	if (d40d == NULL)
1420 		goto err;
1421 
1422 	if (!d40d->cyclic)
1423 		dma_cookie_complete(&d40d->txd);
1424 
1425 	/*
1426 	 * If terminating a channel pending_tx is set to zero.
1427 	 * This prevents any finished active jobs to return to the client.
1428 	 */
1429 	if (d40c->pending_tx == 0) {
1430 		spin_unlock_irqrestore(&d40c->lock, flags);
1431 		return;
1432 	}
1433 
1434 	/* Callback to client */
1435 	callback = d40d->txd.callback;
1436 	callback_param = d40d->txd.callback_param;
1437 
1438 	if (!d40d->cyclic) {
1439 		if (async_tx_test_ack(&d40d->txd)) {
1440 			d40_desc_remove(d40d);
1441 			d40_desc_free(d40c, d40d);
1442 		} else {
1443 			if (!d40d->is_in_client_list) {
1444 				d40_desc_remove(d40d);
1445 				d40_lcla_free_all(d40c, d40d);
1446 				list_add_tail(&d40d->node, &d40c->client);
1447 				d40d->is_in_client_list = true;
1448 			}
1449 		}
1450 	}
1451 
1452 	d40c->pending_tx--;
1453 
1454 	if (d40c->pending_tx)
1455 		tasklet_schedule(&d40c->tasklet);
1456 
1457 	spin_unlock_irqrestore(&d40c->lock, flags);
1458 
1459 	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1460 		callback(callback_param);
1461 
1462 	return;
1463 
1464 err:
1465 	/* Rescue manouver if receiving double interrupts */
1466 	if (d40c->pending_tx > 0)
1467 		d40c->pending_tx--;
1468 	spin_unlock_irqrestore(&d40c->lock, flags);
1469 }
1470 
1471 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1472 {
1473 	static const struct d40_interrupt_lookup il[] = {
1474 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1475 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1476 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1477 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1478 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1479 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1480 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1481 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1482 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1483 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1484 	};
1485 
1486 	int i;
1487 	u32 regs[ARRAY_SIZE(il)];
1488 	u32 idx;
1489 	u32 row;
1490 	long chan = -1;
1491 	struct d40_chan *d40c;
1492 	unsigned long flags;
1493 	struct d40_base *base = data;
1494 
1495 	spin_lock_irqsave(&base->interrupt_lock, flags);
1496 
1497 	/* Read interrupt status of both logical and physical channels */
1498 	for (i = 0; i < ARRAY_SIZE(il); i++)
1499 		regs[i] = readl(base->virtbase + il[i].src);
1500 
1501 	for (;;) {
1502 
1503 		chan = find_next_bit((unsigned long *)regs,
1504 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1505 
1506 		/* No more set bits found? */
1507 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1508 			break;
1509 
1510 		row = chan / BITS_PER_LONG;
1511 		idx = chan & (BITS_PER_LONG - 1);
1512 
1513 		/* ACK interrupt */
1514 		writel(1 << idx, base->virtbase + il[row].clr);
1515 
1516 		if (il[row].offset == D40_PHY_CHAN)
1517 			d40c = base->lookup_phy_chans[idx];
1518 		else
1519 			d40c = base->lookup_log_chans[il[row].offset + idx];
1520 		spin_lock(&d40c->lock);
1521 
1522 		if (!il[row].is_error)
1523 			dma_tc_handle(d40c);
1524 		else
1525 			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1526 				chan, il[row].offset, idx);
1527 
1528 		spin_unlock(&d40c->lock);
1529 	}
1530 
1531 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1532 
1533 	return IRQ_HANDLED;
1534 }
1535 
1536 static int d40_validate_conf(struct d40_chan *d40c,
1537 			     struct stedma40_chan_cfg *conf)
1538 {
1539 	int res = 0;
1540 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1541 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1542 	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1543 
1544 	if (!conf->dir) {
1545 		chan_err(d40c, "Invalid direction.\n");
1546 		res = -EINVAL;
1547 	}
1548 
1549 	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1550 	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1551 	    d40c->runtime_addr == 0) {
1552 
1553 		chan_err(d40c, "Invalid TX channel address (%d)\n",
1554 			 conf->dst_dev_type);
1555 		res = -EINVAL;
1556 	}
1557 
1558 	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1559 	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1560 	    d40c->runtime_addr == 0) {
1561 		chan_err(d40c, "Invalid RX channel address (%d)\n",
1562 			conf->src_dev_type);
1563 		res = -EINVAL;
1564 	}
1565 
1566 	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1567 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1568 		chan_err(d40c, "Invalid dst\n");
1569 		res = -EINVAL;
1570 	}
1571 
1572 	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1573 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1574 		chan_err(d40c, "Invalid src\n");
1575 		res = -EINVAL;
1576 	}
1577 
1578 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1579 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1580 		chan_err(d40c, "No event line\n");
1581 		res = -EINVAL;
1582 	}
1583 
1584 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1585 	    (src_event_group != dst_event_group)) {
1586 		chan_err(d40c, "Invalid event group\n");
1587 		res = -EINVAL;
1588 	}
1589 
1590 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1591 		/*
1592 		 * DMAC HW supports it. Will be added to this driver,
1593 		 * in case any dma client requires it.
1594 		 */
1595 		chan_err(d40c, "periph to periph not supported\n");
1596 		res = -EINVAL;
1597 	}
1598 
1599 	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1600 	    (1 << conf->src_info.data_width) !=
1601 	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1602 	    (1 << conf->dst_info.data_width)) {
1603 		/*
1604 		 * The DMAC hardware only supports
1605 		 * src (burst x width) == dst (burst x width)
1606 		 */
1607 
1608 		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1609 		res = -EINVAL;
1610 	}
1611 
1612 	return res;
1613 }
1614 
1615 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1616 			       bool is_src, int log_event_line, bool is_log,
1617 			       bool *first_user)
1618 {
1619 	unsigned long flags;
1620 	spin_lock_irqsave(&phy->lock, flags);
1621 
1622 	*first_user = ((phy->allocated_src | phy->allocated_dst)
1623 			== D40_ALLOC_FREE);
1624 
1625 	if (!is_log) {
1626 		/* Physical interrupts are masked per physical full channel */
1627 		if (phy->allocated_src == D40_ALLOC_FREE &&
1628 		    phy->allocated_dst == D40_ALLOC_FREE) {
1629 			phy->allocated_dst = D40_ALLOC_PHY;
1630 			phy->allocated_src = D40_ALLOC_PHY;
1631 			goto found;
1632 		} else
1633 			goto not_found;
1634 	}
1635 
1636 	/* Logical channel */
1637 	if (is_src) {
1638 		if (phy->allocated_src == D40_ALLOC_PHY)
1639 			goto not_found;
1640 
1641 		if (phy->allocated_src == D40_ALLOC_FREE)
1642 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1643 
1644 		if (!(phy->allocated_src & (1 << log_event_line))) {
1645 			phy->allocated_src |= 1 << log_event_line;
1646 			goto found;
1647 		} else
1648 			goto not_found;
1649 	} else {
1650 		if (phy->allocated_dst == D40_ALLOC_PHY)
1651 			goto not_found;
1652 
1653 		if (phy->allocated_dst == D40_ALLOC_FREE)
1654 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1655 
1656 		if (!(phy->allocated_dst & (1 << log_event_line))) {
1657 			phy->allocated_dst |= 1 << log_event_line;
1658 			goto found;
1659 		} else
1660 			goto not_found;
1661 	}
1662 
1663 not_found:
1664 	spin_unlock_irqrestore(&phy->lock, flags);
1665 	return false;
1666 found:
1667 	spin_unlock_irqrestore(&phy->lock, flags);
1668 	return true;
1669 }
1670 
1671 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1672 			       int log_event_line)
1673 {
1674 	unsigned long flags;
1675 	bool is_free = false;
1676 
1677 	spin_lock_irqsave(&phy->lock, flags);
1678 	if (!log_event_line) {
1679 		phy->allocated_dst = D40_ALLOC_FREE;
1680 		phy->allocated_src = D40_ALLOC_FREE;
1681 		is_free = true;
1682 		goto out;
1683 	}
1684 
1685 	/* Logical channel */
1686 	if (is_src) {
1687 		phy->allocated_src &= ~(1 << log_event_line);
1688 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1689 			phy->allocated_src = D40_ALLOC_FREE;
1690 	} else {
1691 		phy->allocated_dst &= ~(1 << log_event_line);
1692 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1693 			phy->allocated_dst = D40_ALLOC_FREE;
1694 	}
1695 
1696 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1697 		   D40_ALLOC_FREE);
1698 
1699 out:
1700 	spin_unlock_irqrestore(&phy->lock, flags);
1701 
1702 	return is_free;
1703 }
1704 
1705 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1706 {
1707 	int dev_type;
1708 	int event_group;
1709 	int event_line;
1710 	struct d40_phy_res *phys;
1711 	int i;
1712 	int j;
1713 	int log_num;
1714 	bool is_src;
1715 	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1716 
1717 	phys = d40c->base->phy_res;
1718 
1719 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1720 		dev_type = d40c->dma_cfg.src_dev_type;
1721 		log_num = 2 * dev_type;
1722 		is_src = true;
1723 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1724 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1725 		/* dst event lines are used for logical memcpy */
1726 		dev_type = d40c->dma_cfg.dst_dev_type;
1727 		log_num = 2 * dev_type + 1;
1728 		is_src = false;
1729 	} else
1730 		return -EINVAL;
1731 
1732 	event_group = D40_TYPE_TO_GROUP(dev_type);
1733 	event_line = D40_TYPE_TO_EVENT(dev_type);
1734 
1735 	if (!is_log) {
1736 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1737 			/* Find physical half channel */
1738 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1739 
1740 				if (d40_alloc_mask_set(&phys[i], is_src,
1741 						       0, is_log,
1742 						       first_phy_user))
1743 					goto found_phy;
1744 			}
1745 		} else
1746 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1747 				int phy_num = j  + event_group * 2;
1748 				for (i = phy_num; i < phy_num + 2; i++) {
1749 					if (d40_alloc_mask_set(&phys[i],
1750 							       is_src,
1751 							       0,
1752 							       is_log,
1753 							       first_phy_user))
1754 						goto found_phy;
1755 				}
1756 			}
1757 		return -EINVAL;
1758 found_phy:
1759 		d40c->phy_chan = &phys[i];
1760 		d40c->log_num = D40_PHY_CHAN;
1761 		goto out;
1762 	}
1763 	if (dev_type == -1)
1764 		return -EINVAL;
1765 
1766 	/* Find logical channel */
1767 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1768 		int phy_num = j + event_group * 2;
1769 
1770 		if (d40c->dma_cfg.use_fixed_channel) {
1771 			i = d40c->dma_cfg.phy_channel;
1772 
1773 			if ((i != phy_num) && (i != phy_num + 1)) {
1774 				dev_err(chan2dev(d40c),
1775 					"invalid fixed phy channel %d\n", i);
1776 				return -EINVAL;
1777 			}
1778 
1779 			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1780 					       is_log, first_phy_user))
1781 				goto found_log;
1782 
1783 			dev_err(chan2dev(d40c),
1784 				"could not allocate fixed phy channel %d\n", i);
1785 			return -EINVAL;
1786 		}
1787 
1788 		/*
1789 		 * Spread logical channels across all available physical rather
1790 		 * than pack every logical channel at the first available phy
1791 		 * channels.
1792 		 */
1793 		if (is_src) {
1794 			for (i = phy_num; i < phy_num + 2; i++) {
1795 				if (d40_alloc_mask_set(&phys[i], is_src,
1796 						       event_line, is_log,
1797 						       first_phy_user))
1798 					goto found_log;
1799 			}
1800 		} else {
1801 			for (i = phy_num + 1; i >= phy_num; i--) {
1802 				if (d40_alloc_mask_set(&phys[i], is_src,
1803 						       event_line, is_log,
1804 						       first_phy_user))
1805 					goto found_log;
1806 			}
1807 		}
1808 	}
1809 	return -EINVAL;
1810 
1811 found_log:
1812 	d40c->phy_chan = &phys[i];
1813 	d40c->log_num = log_num;
1814 out:
1815 
1816 	if (is_log)
1817 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1818 	else
1819 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1820 
1821 	return 0;
1822 
1823 }
1824 
1825 static int d40_config_memcpy(struct d40_chan *d40c)
1826 {
1827 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1828 
1829 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1830 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1831 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1832 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1833 			memcpy[d40c->chan.chan_id];
1834 
1835 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1836 		   dma_has_cap(DMA_SLAVE, cap)) {
1837 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1838 	} else {
1839 		chan_err(d40c, "No memcpy\n");
1840 		return -EINVAL;
1841 	}
1842 
1843 	return 0;
1844 }
1845 
1846 static int d40_free_dma(struct d40_chan *d40c)
1847 {
1848 
1849 	int res = 0;
1850 	u32 event;
1851 	struct d40_phy_res *phy = d40c->phy_chan;
1852 	bool is_src;
1853 
1854 	/* Terminate all queued and active transfers */
1855 	d40_term_all(d40c);
1856 
1857 	if (phy == NULL) {
1858 		chan_err(d40c, "phy == null\n");
1859 		return -EINVAL;
1860 	}
1861 
1862 	if (phy->allocated_src == D40_ALLOC_FREE &&
1863 	    phy->allocated_dst == D40_ALLOC_FREE) {
1864 		chan_err(d40c, "channel already free\n");
1865 		return -EINVAL;
1866 	}
1867 
1868 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1869 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1870 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1871 		is_src = false;
1872 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1873 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1874 		is_src = true;
1875 	} else {
1876 		chan_err(d40c, "Unknown direction\n");
1877 		return -EINVAL;
1878 	}
1879 
1880 	pm_runtime_get_sync(d40c->base->dev);
1881 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1882 	if (res) {
1883 		chan_err(d40c, "stop failed\n");
1884 		goto out;
1885 	}
1886 
1887 	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
1888 
1889 	if (chan_is_logical(d40c))
1890 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1891 	else
1892 		d40c->base->lookup_phy_chans[phy->num] = NULL;
1893 
1894 	if (d40c->busy) {
1895 		pm_runtime_mark_last_busy(d40c->base->dev);
1896 		pm_runtime_put_autosuspend(d40c->base->dev);
1897 	}
1898 
1899 	d40c->busy = false;
1900 	d40c->phy_chan = NULL;
1901 	d40c->configured = false;
1902 out:
1903 
1904 	pm_runtime_mark_last_busy(d40c->base->dev);
1905 	pm_runtime_put_autosuspend(d40c->base->dev);
1906 	return res;
1907 }
1908 
1909 static bool d40_is_paused(struct d40_chan *d40c)
1910 {
1911 	void __iomem *chanbase = chan_base(d40c);
1912 	bool is_paused = false;
1913 	unsigned long flags;
1914 	void __iomem *active_reg;
1915 	u32 status;
1916 	u32 event;
1917 
1918 	spin_lock_irqsave(&d40c->lock, flags);
1919 
1920 	if (chan_is_physical(d40c)) {
1921 		if (d40c->phy_chan->num % 2 == 0)
1922 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1923 		else
1924 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1925 
1926 		status = (readl(active_reg) &
1927 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1928 			D40_CHAN_POS(d40c->phy_chan->num);
1929 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1930 			is_paused = true;
1931 
1932 		goto _exit;
1933 	}
1934 
1935 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1936 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1937 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1938 		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1939 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1940 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1941 		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1942 	} else {
1943 		chan_err(d40c, "Unknown direction\n");
1944 		goto _exit;
1945 	}
1946 
1947 	status = (status & D40_EVENTLINE_MASK(event)) >>
1948 		D40_EVENTLINE_POS(event);
1949 
1950 	if (status != D40_DMA_RUN)
1951 		is_paused = true;
1952 _exit:
1953 	spin_unlock_irqrestore(&d40c->lock, flags);
1954 	return is_paused;
1955 
1956 }
1957 
1958 
1959 static u32 stedma40_residue(struct dma_chan *chan)
1960 {
1961 	struct d40_chan *d40c =
1962 		container_of(chan, struct d40_chan, chan);
1963 	u32 bytes_left;
1964 	unsigned long flags;
1965 
1966 	spin_lock_irqsave(&d40c->lock, flags);
1967 	bytes_left = d40_residue(d40c);
1968 	spin_unlock_irqrestore(&d40c->lock, flags);
1969 
1970 	return bytes_left;
1971 }
1972 
1973 static int
1974 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1975 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1976 		unsigned int sg_len, dma_addr_t src_dev_addr,
1977 		dma_addr_t dst_dev_addr)
1978 {
1979 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1980 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1981 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1982 	int ret;
1983 
1984 	ret = d40_log_sg_to_lli(sg_src, sg_len,
1985 				src_dev_addr,
1986 				desc->lli_log.src,
1987 				chan->log_def.lcsp1,
1988 				src_info->data_width,
1989 				dst_info->data_width);
1990 
1991 	ret = d40_log_sg_to_lli(sg_dst, sg_len,
1992 				dst_dev_addr,
1993 				desc->lli_log.dst,
1994 				chan->log_def.lcsp3,
1995 				dst_info->data_width,
1996 				src_info->data_width);
1997 
1998 	return ret < 0 ? ret : 0;
1999 }
2000 
2001 static int
2002 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2003 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2004 		unsigned int sg_len, dma_addr_t src_dev_addr,
2005 		dma_addr_t dst_dev_addr)
2006 {
2007 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2008 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2009 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2010 	unsigned long flags = 0;
2011 	int ret;
2012 
2013 	if (desc->cyclic)
2014 		flags |= LLI_CYCLIC | LLI_TERM_INT;
2015 
2016 	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2017 				desc->lli_phy.src,
2018 				virt_to_phys(desc->lli_phy.src),
2019 				chan->src_def_cfg,
2020 				src_info, dst_info, flags);
2021 
2022 	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2023 				desc->lli_phy.dst,
2024 				virt_to_phys(desc->lli_phy.dst),
2025 				chan->dst_def_cfg,
2026 				dst_info, src_info, flags);
2027 
2028 	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2029 				   desc->lli_pool.size, DMA_TO_DEVICE);
2030 
2031 	return ret < 0 ? ret : 0;
2032 }
2033 
2034 
2035 static struct d40_desc *
2036 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2037 	      unsigned int sg_len, unsigned long dma_flags)
2038 {
2039 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2040 	struct d40_desc *desc;
2041 	int ret;
2042 
2043 	desc = d40_desc_get(chan);
2044 	if (!desc)
2045 		return NULL;
2046 
2047 	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2048 					cfg->dst_info.data_width);
2049 	if (desc->lli_len < 0) {
2050 		chan_err(chan, "Unaligned size\n");
2051 		goto err;
2052 	}
2053 
2054 	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2055 	if (ret < 0) {
2056 		chan_err(chan, "Could not allocate lli\n");
2057 		goto err;
2058 	}
2059 
2060 
2061 	desc->lli_current = 0;
2062 	desc->txd.flags = dma_flags;
2063 	desc->txd.tx_submit = d40_tx_submit;
2064 
2065 	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2066 
2067 	return desc;
2068 
2069 err:
2070 	d40_desc_free(chan, desc);
2071 	return NULL;
2072 }
2073 
2074 static dma_addr_t
2075 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2076 {
2077 	struct stedma40_platform_data *plat = chan->base->plat_data;
2078 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2079 	dma_addr_t addr = 0;
2080 
2081 	if (chan->runtime_addr)
2082 		return chan->runtime_addr;
2083 
2084 	if (direction == DMA_DEV_TO_MEM)
2085 		addr = plat->dev_rx[cfg->src_dev_type];
2086 	else if (direction == DMA_MEM_TO_DEV)
2087 		addr = plat->dev_tx[cfg->dst_dev_type];
2088 
2089 	return addr;
2090 }
2091 
2092 static struct dma_async_tx_descriptor *
2093 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2094 	    struct scatterlist *sg_dst, unsigned int sg_len,
2095 	    enum dma_transfer_direction direction, unsigned long dma_flags)
2096 {
2097 	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2098 	dma_addr_t src_dev_addr = 0;
2099 	dma_addr_t dst_dev_addr = 0;
2100 	struct d40_desc *desc;
2101 	unsigned long flags;
2102 	int ret;
2103 
2104 	if (!chan->phy_chan) {
2105 		chan_err(chan, "Cannot prepare unallocated channel\n");
2106 		return NULL;
2107 	}
2108 
2109 
2110 	spin_lock_irqsave(&chan->lock, flags);
2111 
2112 	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2113 	if (desc == NULL)
2114 		goto err;
2115 
2116 	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2117 		desc->cyclic = true;
2118 
2119 	if (direction != DMA_TRANS_NONE) {
2120 		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2121 
2122 		if (direction == DMA_DEV_TO_MEM)
2123 			src_dev_addr = dev_addr;
2124 		else if (direction == DMA_MEM_TO_DEV)
2125 			dst_dev_addr = dev_addr;
2126 	}
2127 
2128 	if (chan_is_logical(chan))
2129 		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2130 				      sg_len, src_dev_addr, dst_dev_addr);
2131 	else
2132 		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2133 				      sg_len, src_dev_addr, dst_dev_addr);
2134 
2135 	if (ret) {
2136 		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2137 			 chan_is_logical(chan) ? "log" : "phy", ret);
2138 		goto err;
2139 	}
2140 
2141 	/*
2142 	 * add descriptor to the prepare queue in order to be able
2143 	 * to free them later in terminate_all
2144 	 */
2145 	list_add_tail(&desc->node, &chan->prepare_queue);
2146 
2147 	spin_unlock_irqrestore(&chan->lock, flags);
2148 
2149 	return &desc->txd;
2150 
2151 err:
2152 	if (desc)
2153 		d40_desc_free(chan, desc);
2154 	spin_unlock_irqrestore(&chan->lock, flags);
2155 	return NULL;
2156 }
2157 
2158 bool stedma40_filter(struct dma_chan *chan, void *data)
2159 {
2160 	struct stedma40_chan_cfg *info = data;
2161 	struct d40_chan *d40c =
2162 		container_of(chan, struct d40_chan, chan);
2163 	int err;
2164 
2165 	if (data) {
2166 		err = d40_validate_conf(d40c, info);
2167 		if (!err)
2168 			d40c->dma_cfg = *info;
2169 	} else
2170 		err = d40_config_memcpy(d40c);
2171 
2172 	if (!err)
2173 		d40c->configured = true;
2174 
2175 	return err == 0;
2176 }
2177 EXPORT_SYMBOL(stedma40_filter);
2178 
2179 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2180 {
2181 	bool realtime = d40c->dma_cfg.realtime;
2182 	bool highprio = d40c->dma_cfg.high_priority;
2183 	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
2184 	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
2185 	u32 event = D40_TYPE_TO_EVENT(dev_type);
2186 	u32 group = D40_TYPE_TO_GROUP(dev_type);
2187 	u32 bit = 1 << event;
2188 
2189 	/* Destination event lines are stored in the upper halfword */
2190 	if (!src)
2191 		bit <<= 16;
2192 
2193 	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2194 	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2195 }
2196 
2197 static void d40_set_prio_realtime(struct d40_chan *d40c)
2198 {
2199 	if (d40c->base->rev < 3)
2200 		return;
2201 
2202 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
2203 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2204 		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2205 
2206 	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
2207 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2208 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
2209 }
2210 
2211 /* DMA ENGINE functions */
2212 static int d40_alloc_chan_resources(struct dma_chan *chan)
2213 {
2214 	int err;
2215 	unsigned long flags;
2216 	struct d40_chan *d40c =
2217 		container_of(chan, struct d40_chan, chan);
2218 	bool is_free_phy;
2219 	spin_lock_irqsave(&d40c->lock, flags);
2220 
2221 	dma_cookie_init(chan);
2222 
2223 	/* If no dma configuration is set use default configuration (memcpy) */
2224 	if (!d40c->configured) {
2225 		err = d40_config_memcpy(d40c);
2226 		if (err) {
2227 			chan_err(d40c, "Failed to configure memcpy channel\n");
2228 			goto fail;
2229 		}
2230 	}
2231 
2232 	err = d40_allocate_channel(d40c, &is_free_phy);
2233 	if (err) {
2234 		chan_err(d40c, "Failed to allocate channel\n");
2235 		d40c->configured = false;
2236 		goto fail;
2237 	}
2238 
2239 	pm_runtime_get_sync(d40c->base->dev);
2240 	/* Fill in basic CFG register values */
2241 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2242 		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2243 
2244 	d40_set_prio_realtime(d40c);
2245 
2246 	if (chan_is_logical(d40c)) {
2247 		d40_log_cfg(&d40c->dma_cfg,
2248 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2249 
2250 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2251 			d40c->lcpa = d40c->base->lcpa_base +
2252 			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2253 		else
2254 			d40c->lcpa = d40c->base->lcpa_base +
2255 			  d40c->dma_cfg.dst_dev_type *
2256 			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2257 	}
2258 
2259 	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2260 		 chan_is_logical(d40c) ? "logical" : "physical",
2261 		 d40c->phy_chan->num,
2262 		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2263 
2264 
2265 	/*
2266 	 * Only write channel configuration to the DMA if the physical
2267 	 * resource is free. In case of multiple logical channels
2268 	 * on the same physical resource, only the first write is necessary.
2269 	 */
2270 	if (is_free_phy)
2271 		d40_config_write(d40c);
2272 fail:
2273 	pm_runtime_mark_last_busy(d40c->base->dev);
2274 	pm_runtime_put_autosuspend(d40c->base->dev);
2275 	spin_unlock_irqrestore(&d40c->lock, flags);
2276 	return err;
2277 }
2278 
2279 static void d40_free_chan_resources(struct dma_chan *chan)
2280 {
2281 	struct d40_chan *d40c =
2282 		container_of(chan, struct d40_chan, chan);
2283 	int err;
2284 	unsigned long flags;
2285 
2286 	if (d40c->phy_chan == NULL) {
2287 		chan_err(d40c, "Cannot free unallocated channel\n");
2288 		return;
2289 	}
2290 
2291 
2292 	spin_lock_irqsave(&d40c->lock, flags);
2293 
2294 	err = d40_free_dma(d40c);
2295 
2296 	if (err)
2297 		chan_err(d40c, "Failed to free channel\n");
2298 	spin_unlock_irqrestore(&d40c->lock, flags);
2299 }
2300 
2301 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2302 						       dma_addr_t dst,
2303 						       dma_addr_t src,
2304 						       size_t size,
2305 						       unsigned long dma_flags)
2306 {
2307 	struct scatterlist dst_sg;
2308 	struct scatterlist src_sg;
2309 
2310 	sg_init_table(&dst_sg, 1);
2311 	sg_init_table(&src_sg, 1);
2312 
2313 	sg_dma_address(&dst_sg) = dst;
2314 	sg_dma_address(&src_sg) = src;
2315 
2316 	sg_dma_len(&dst_sg) = size;
2317 	sg_dma_len(&src_sg) = size;
2318 
2319 	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2320 }
2321 
2322 static struct dma_async_tx_descriptor *
2323 d40_prep_memcpy_sg(struct dma_chan *chan,
2324 		   struct scatterlist *dst_sg, unsigned int dst_nents,
2325 		   struct scatterlist *src_sg, unsigned int src_nents,
2326 		   unsigned long dma_flags)
2327 {
2328 	if (dst_nents != src_nents)
2329 		return NULL;
2330 
2331 	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2332 }
2333 
2334 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2335 							 struct scatterlist *sgl,
2336 							 unsigned int sg_len,
2337 							 enum dma_transfer_direction direction,
2338 							 unsigned long dma_flags,
2339 							 void *context)
2340 {
2341 	if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2342 		return NULL;
2343 
2344 	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2345 }
2346 
2347 static struct dma_async_tx_descriptor *
2348 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2349 		     size_t buf_len, size_t period_len,
2350 		     enum dma_transfer_direction direction, void *context)
2351 {
2352 	unsigned int periods = buf_len / period_len;
2353 	struct dma_async_tx_descriptor *txd;
2354 	struct scatterlist *sg;
2355 	int i;
2356 
2357 	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2358 	for (i = 0; i < periods; i++) {
2359 		sg_dma_address(&sg[i]) = dma_addr;
2360 		sg_dma_len(&sg[i]) = period_len;
2361 		dma_addr += period_len;
2362 	}
2363 
2364 	sg[periods].offset = 0;
2365 	sg_dma_len(&sg[periods]) = 0;
2366 	sg[periods].page_link =
2367 		((unsigned long)sg | 0x01) & ~0x02;
2368 
2369 	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2370 			  DMA_PREP_INTERRUPT);
2371 
2372 	kfree(sg);
2373 
2374 	return txd;
2375 }
2376 
2377 static enum dma_status d40_tx_status(struct dma_chan *chan,
2378 				     dma_cookie_t cookie,
2379 				     struct dma_tx_state *txstate)
2380 {
2381 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2382 	enum dma_status ret;
2383 
2384 	if (d40c->phy_chan == NULL) {
2385 		chan_err(d40c, "Cannot read status of unallocated channel\n");
2386 		return -EINVAL;
2387 	}
2388 
2389 	ret = dma_cookie_status(chan, cookie, txstate);
2390 	if (ret != DMA_SUCCESS)
2391 		dma_set_residue(txstate, stedma40_residue(chan));
2392 
2393 	if (d40_is_paused(d40c))
2394 		ret = DMA_PAUSED;
2395 
2396 	return ret;
2397 }
2398 
2399 static void d40_issue_pending(struct dma_chan *chan)
2400 {
2401 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2402 	unsigned long flags;
2403 
2404 	if (d40c->phy_chan == NULL) {
2405 		chan_err(d40c, "Channel is not allocated!\n");
2406 		return;
2407 	}
2408 
2409 	spin_lock_irqsave(&d40c->lock, flags);
2410 
2411 	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2412 
2413 	/* Busy means that queued jobs are already being processed */
2414 	if (!d40c->busy)
2415 		(void) d40_queue_start(d40c);
2416 
2417 	spin_unlock_irqrestore(&d40c->lock, flags);
2418 }
2419 
2420 static void d40_terminate_all(struct dma_chan *chan)
2421 {
2422 	unsigned long flags;
2423 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2424 	int ret;
2425 
2426 	spin_lock_irqsave(&d40c->lock, flags);
2427 
2428 	pm_runtime_get_sync(d40c->base->dev);
2429 	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2430 	if (ret)
2431 		chan_err(d40c, "Failed to stop channel\n");
2432 
2433 	d40_term_all(d40c);
2434 	pm_runtime_mark_last_busy(d40c->base->dev);
2435 	pm_runtime_put_autosuspend(d40c->base->dev);
2436 	if (d40c->busy) {
2437 		pm_runtime_mark_last_busy(d40c->base->dev);
2438 		pm_runtime_put_autosuspend(d40c->base->dev);
2439 	}
2440 	d40c->busy = false;
2441 
2442 	spin_unlock_irqrestore(&d40c->lock, flags);
2443 }
2444 
2445 static int
2446 dma40_config_to_halfchannel(struct d40_chan *d40c,
2447 			    struct stedma40_half_channel_info *info,
2448 			    enum dma_slave_buswidth width,
2449 			    u32 maxburst)
2450 {
2451 	enum stedma40_periph_data_width addr_width;
2452 	int psize;
2453 
2454 	switch (width) {
2455 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2456 		addr_width = STEDMA40_BYTE_WIDTH;
2457 		break;
2458 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2459 		addr_width = STEDMA40_HALFWORD_WIDTH;
2460 		break;
2461 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2462 		addr_width = STEDMA40_WORD_WIDTH;
2463 		break;
2464 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2465 		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2466 		break;
2467 	default:
2468 		dev_err(d40c->base->dev,
2469 			"illegal peripheral address width "
2470 			"requested (%d)\n",
2471 			width);
2472 		return -EINVAL;
2473 	}
2474 
2475 	if (chan_is_logical(d40c)) {
2476 		if (maxburst >= 16)
2477 			psize = STEDMA40_PSIZE_LOG_16;
2478 		else if (maxburst >= 8)
2479 			psize = STEDMA40_PSIZE_LOG_8;
2480 		else if (maxburst >= 4)
2481 			psize = STEDMA40_PSIZE_LOG_4;
2482 		else
2483 			psize = STEDMA40_PSIZE_LOG_1;
2484 	} else {
2485 		if (maxburst >= 16)
2486 			psize = STEDMA40_PSIZE_PHY_16;
2487 		else if (maxburst >= 8)
2488 			psize = STEDMA40_PSIZE_PHY_8;
2489 		else if (maxburst >= 4)
2490 			psize = STEDMA40_PSIZE_PHY_4;
2491 		else
2492 			psize = STEDMA40_PSIZE_PHY_1;
2493 	}
2494 
2495 	info->data_width = addr_width;
2496 	info->psize = psize;
2497 	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2498 
2499 	return 0;
2500 }
2501 
2502 /* Runtime reconfiguration extension */
2503 static int d40_set_runtime_config(struct dma_chan *chan,
2504 				  struct dma_slave_config *config)
2505 {
2506 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2507 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2508 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2509 	dma_addr_t config_addr;
2510 	u32 src_maxburst, dst_maxburst;
2511 	int ret;
2512 
2513 	src_addr_width = config->src_addr_width;
2514 	src_maxburst = config->src_maxburst;
2515 	dst_addr_width = config->dst_addr_width;
2516 	dst_maxburst = config->dst_maxburst;
2517 
2518 	if (config->direction == DMA_DEV_TO_MEM) {
2519 		dma_addr_t dev_addr_rx =
2520 			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2521 
2522 		config_addr = config->src_addr;
2523 		if (dev_addr_rx)
2524 			dev_dbg(d40c->base->dev,
2525 				"channel has a pre-wired RX address %08x "
2526 				"overriding with %08x\n",
2527 				dev_addr_rx, config_addr);
2528 		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2529 			dev_dbg(d40c->base->dev,
2530 				"channel was not configured for peripheral "
2531 				"to memory transfer (%d) overriding\n",
2532 				cfg->dir);
2533 		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2534 
2535 		/* Configure the memory side */
2536 		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2537 			dst_addr_width = src_addr_width;
2538 		if (dst_maxburst == 0)
2539 			dst_maxburst = src_maxburst;
2540 
2541 	} else if (config->direction == DMA_MEM_TO_DEV) {
2542 		dma_addr_t dev_addr_tx =
2543 			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2544 
2545 		config_addr = config->dst_addr;
2546 		if (dev_addr_tx)
2547 			dev_dbg(d40c->base->dev,
2548 				"channel has a pre-wired TX address %08x "
2549 				"overriding with %08x\n",
2550 				dev_addr_tx, config_addr);
2551 		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2552 			dev_dbg(d40c->base->dev,
2553 				"channel was not configured for memory "
2554 				"to peripheral transfer (%d) overriding\n",
2555 				cfg->dir);
2556 		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2557 
2558 		/* Configure the memory side */
2559 		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2560 			src_addr_width = dst_addr_width;
2561 		if (src_maxburst == 0)
2562 			src_maxburst = dst_maxburst;
2563 	} else {
2564 		dev_err(d40c->base->dev,
2565 			"unrecognized channel direction %d\n",
2566 			config->direction);
2567 		return -EINVAL;
2568 	}
2569 
2570 	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2571 		dev_err(d40c->base->dev,
2572 			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2573 			src_maxburst,
2574 			src_addr_width,
2575 			dst_maxburst,
2576 			dst_addr_width);
2577 		return -EINVAL;
2578 	}
2579 
2580 	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2581 					  src_addr_width,
2582 					  src_maxburst);
2583 	if (ret)
2584 		return ret;
2585 
2586 	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2587 					  dst_addr_width,
2588 					  dst_maxburst);
2589 	if (ret)
2590 		return ret;
2591 
2592 	/* Fill in register values */
2593 	if (chan_is_logical(d40c))
2594 		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2595 	else
2596 		d40_phy_cfg(cfg, &d40c->src_def_cfg,
2597 			    &d40c->dst_def_cfg, false);
2598 
2599 	/* These settings will take precedence later */
2600 	d40c->runtime_addr = config_addr;
2601 	d40c->runtime_direction = config->direction;
2602 	dev_dbg(d40c->base->dev,
2603 		"configured channel %s for %s, data width %d/%d, "
2604 		"maxburst %d/%d elements, LE, no flow control\n",
2605 		dma_chan_name(chan),
2606 		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2607 		src_addr_width, dst_addr_width,
2608 		src_maxburst, dst_maxburst);
2609 
2610 	return 0;
2611 }
2612 
2613 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2614 		       unsigned long arg)
2615 {
2616 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2617 
2618 	if (d40c->phy_chan == NULL) {
2619 		chan_err(d40c, "Channel is not allocated!\n");
2620 		return -EINVAL;
2621 	}
2622 
2623 	switch (cmd) {
2624 	case DMA_TERMINATE_ALL:
2625 		d40_terminate_all(chan);
2626 		return 0;
2627 	case DMA_PAUSE:
2628 		return d40_pause(d40c);
2629 	case DMA_RESUME:
2630 		return d40_resume(d40c);
2631 	case DMA_SLAVE_CONFIG:
2632 		return d40_set_runtime_config(chan,
2633 			(struct dma_slave_config *) arg);
2634 	default:
2635 		break;
2636 	}
2637 
2638 	/* Other commands are unimplemented */
2639 	return -ENXIO;
2640 }
2641 
2642 /* Initialization functions */
2643 
2644 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2645 				 struct d40_chan *chans, int offset,
2646 				 int num_chans)
2647 {
2648 	int i = 0;
2649 	struct d40_chan *d40c;
2650 
2651 	INIT_LIST_HEAD(&dma->channels);
2652 
2653 	for (i = offset; i < offset + num_chans; i++) {
2654 		d40c = &chans[i];
2655 		d40c->base = base;
2656 		d40c->chan.device = dma;
2657 
2658 		spin_lock_init(&d40c->lock);
2659 
2660 		d40c->log_num = D40_PHY_CHAN;
2661 
2662 		INIT_LIST_HEAD(&d40c->active);
2663 		INIT_LIST_HEAD(&d40c->queue);
2664 		INIT_LIST_HEAD(&d40c->pending_queue);
2665 		INIT_LIST_HEAD(&d40c->client);
2666 		INIT_LIST_HEAD(&d40c->prepare_queue);
2667 
2668 		tasklet_init(&d40c->tasklet, dma_tasklet,
2669 			     (unsigned long) d40c);
2670 
2671 		list_add_tail(&d40c->chan.device_node,
2672 			      &dma->channels);
2673 	}
2674 }
2675 
2676 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2677 {
2678 	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2679 		dev->device_prep_slave_sg = d40_prep_slave_sg;
2680 
2681 	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2682 		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2683 
2684 		/*
2685 		 * This controller can only access address at even
2686 		 * 32bit boundaries, i.e. 2^2
2687 		 */
2688 		dev->copy_align = 2;
2689 	}
2690 
2691 	if (dma_has_cap(DMA_SG, dev->cap_mask))
2692 		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2693 
2694 	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2695 		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2696 
2697 	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2698 	dev->device_free_chan_resources = d40_free_chan_resources;
2699 	dev->device_issue_pending = d40_issue_pending;
2700 	dev->device_tx_status = d40_tx_status;
2701 	dev->device_control = d40_control;
2702 	dev->dev = base->dev;
2703 }
2704 
2705 static int __init d40_dmaengine_init(struct d40_base *base,
2706 				     int num_reserved_chans)
2707 {
2708 	int err ;
2709 
2710 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2711 		      0, base->num_log_chans);
2712 
2713 	dma_cap_zero(base->dma_slave.cap_mask);
2714 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2715 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2716 
2717 	d40_ops_init(base, &base->dma_slave);
2718 
2719 	err = dma_async_device_register(&base->dma_slave);
2720 
2721 	if (err) {
2722 		d40_err(base->dev, "Failed to register slave channels\n");
2723 		goto failure1;
2724 	}
2725 
2726 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2727 		      base->num_log_chans, base->plat_data->memcpy_len);
2728 
2729 	dma_cap_zero(base->dma_memcpy.cap_mask);
2730 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2731 	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2732 
2733 	d40_ops_init(base, &base->dma_memcpy);
2734 
2735 	err = dma_async_device_register(&base->dma_memcpy);
2736 
2737 	if (err) {
2738 		d40_err(base->dev,
2739 			"Failed to regsiter memcpy only channels\n");
2740 		goto failure2;
2741 	}
2742 
2743 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2744 		      0, num_reserved_chans);
2745 
2746 	dma_cap_zero(base->dma_both.cap_mask);
2747 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2748 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2749 	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2750 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2751 
2752 	d40_ops_init(base, &base->dma_both);
2753 	err = dma_async_device_register(&base->dma_both);
2754 
2755 	if (err) {
2756 		d40_err(base->dev,
2757 			"Failed to register logical and physical capable channels\n");
2758 		goto failure3;
2759 	}
2760 	return 0;
2761 failure3:
2762 	dma_async_device_unregister(&base->dma_memcpy);
2763 failure2:
2764 	dma_async_device_unregister(&base->dma_slave);
2765 failure1:
2766 	return err;
2767 }
2768 
2769 /* Suspend resume functionality */
2770 #ifdef CONFIG_PM
2771 static int dma40_pm_suspend(struct device *dev)
2772 {
2773 	struct platform_device *pdev = to_platform_device(dev);
2774 	struct d40_base *base = platform_get_drvdata(pdev);
2775 	int ret = 0;
2776 	if (!pm_runtime_suspended(dev))
2777 		return -EBUSY;
2778 
2779 	if (base->lcpa_regulator)
2780 		ret = regulator_disable(base->lcpa_regulator);
2781 	return ret;
2782 }
2783 
2784 static int dma40_runtime_suspend(struct device *dev)
2785 {
2786 	struct platform_device *pdev = to_platform_device(dev);
2787 	struct d40_base *base = platform_get_drvdata(pdev);
2788 
2789 	d40_save_restore_registers(base, true);
2790 
2791 	/* Don't disable/enable clocks for v1 due to HW bugs */
2792 	if (base->rev != 1)
2793 		writel_relaxed(base->gcc_pwr_off_mask,
2794 			       base->virtbase + D40_DREG_GCC);
2795 
2796 	return 0;
2797 }
2798 
2799 static int dma40_runtime_resume(struct device *dev)
2800 {
2801 	struct platform_device *pdev = to_platform_device(dev);
2802 	struct d40_base *base = platform_get_drvdata(pdev);
2803 
2804 	if (base->initialized)
2805 		d40_save_restore_registers(base, false);
2806 
2807 	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2808 		       base->virtbase + D40_DREG_GCC);
2809 	return 0;
2810 }
2811 
2812 static int dma40_resume(struct device *dev)
2813 {
2814 	struct platform_device *pdev = to_platform_device(dev);
2815 	struct d40_base *base = platform_get_drvdata(pdev);
2816 	int ret = 0;
2817 
2818 	if (base->lcpa_regulator)
2819 		ret = regulator_enable(base->lcpa_regulator);
2820 
2821 	return ret;
2822 }
2823 
2824 static const struct dev_pm_ops dma40_pm_ops = {
2825 	.suspend		= dma40_pm_suspend,
2826 	.runtime_suspend	= dma40_runtime_suspend,
2827 	.runtime_resume		= dma40_runtime_resume,
2828 	.resume			= dma40_resume,
2829 };
2830 #define DMA40_PM_OPS	(&dma40_pm_ops)
2831 #else
2832 #define DMA40_PM_OPS	NULL
2833 #endif
2834 
2835 /* Initialization functions. */
2836 
2837 static int __init d40_phy_res_init(struct d40_base *base)
2838 {
2839 	int i;
2840 	int num_phy_chans_avail = 0;
2841 	u32 val[2];
2842 	int odd_even_bit = -2;
2843 	int gcc = D40_DREG_GCC_ENA;
2844 
2845 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2846 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2847 
2848 	for (i = 0; i < base->num_phy_chans; i++) {
2849 		base->phy_res[i].num = i;
2850 		odd_even_bit += 2 * ((i % 2) == 0);
2851 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2852 			/* Mark security only channels as occupied */
2853 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2854 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2855 			base->phy_res[i].reserved = true;
2856 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2857 						       D40_DREG_GCC_SRC);
2858 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2859 						       D40_DREG_GCC_DST);
2860 
2861 
2862 		} else {
2863 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2864 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2865 			base->phy_res[i].reserved = false;
2866 			num_phy_chans_avail++;
2867 		}
2868 		spin_lock_init(&base->phy_res[i].lock);
2869 	}
2870 
2871 	/* Mark disabled channels as occupied */
2872 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2873 		int chan = base->plat_data->disabled_channels[i];
2874 
2875 		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2876 		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2877 		base->phy_res[chan].reserved = true;
2878 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2879 					       D40_DREG_GCC_SRC);
2880 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2881 					       D40_DREG_GCC_DST);
2882 		num_phy_chans_avail--;
2883 	}
2884 
2885 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2886 		 num_phy_chans_avail, base->num_phy_chans);
2887 
2888 	/* Verify settings extended vs standard */
2889 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2890 
2891 	for (i = 0; i < base->num_phy_chans; i++) {
2892 
2893 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2894 		    (val[0] & 0x3) != 1)
2895 			dev_info(base->dev,
2896 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2897 				 __func__, i, val[0] & 0x3);
2898 
2899 		val[0] = val[0] >> 2;
2900 	}
2901 
2902 	/*
2903 	 * To keep things simple, Enable all clocks initially.
2904 	 * The clocks will get managed later post channel allocation.
2905 	 * The clocks for the event lines on which reserved channels exists
2906 	 * are not managed here.
2907 	 */
2908 	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
2909 	base->gcc_pwr_off_mask = gcc;
2910 
2911 	return num_phy_chans_avail;
2912 }
2913 
2914 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2915 {
2916 	struct stedma40_platform_data *plat_data;
2917 	struct clk *clk = NULL;
2918 	void __iomem *virtbase = NULL;
2919 	struct resource *res = NULL;
2920 	struct d40_base *base = NULL;
2921 	int num_log_chans = 0;
2922 	int num_phy_chans;
2923 	int i;
2924 	u32 pid;
2925 	u32 cid;
2926 	u8 rev;
2927 
2928 	clk = clk_get(&pdev->dev, NULL);
2929 
2930 	if (IS_ERR(clk)) {
2931 		d40_err(&pdev->dev, "No matching clock found\n");
2932 		goto failure;
2933 	}
2934 
2935 	clk_enable(clk);
2936 
2937 	/* Get IO for DMAC base address */
2938 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2939 	if (!res)
2940 		goto failure;
2941 
2942 	if (request_mem_region(res->start, resource_size(res),
2943 			       D40_NAME " I/O base") == NULL)
2944 		goto failure;
2945 
2946 	virtbase = ioremap(res->start, resource_size(res));
2947 	if (!virtbase)
2948 		goto failure;
2949 
2950 	/* This is just a regular AMBA PrimeCell ID actually */
2951 	for (pid = 0, i = 0; i < 4; i++)
2952 		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2953 			& 255) << (i * 8);
2954 	for (cid = 0, i = 0; i < 4; i++)
2955 		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2956 			& 255) << (i * 8);
2957 
2958 	if (cid != AMBA_CID) {
2959 		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2960 		goto failure;
2961 	}
2962 	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2963 		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2964 			AMBA_MANF_BITS(pid),
2965 			AMBA_VENDOR_ST);
2966 		goto failure;
2967 	}
2968 	/*
2969 	 * HW revision:
2970 	 * DB8500ed has revision 0
2971 	 * ? has revision 1
2972 	 * DB8500v1 has revision 2
2973 	 * DB8500v2 has revision 3
2974 	 */
2975 	rev = AMBA_REV_BITS(pid);
2976 
2977 	/* The number of physical channels on this HW */
2978 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2979 
2980 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2981 		 rev, res->start);
2982 
2983 	if (rev < 2) {
2984 		d40_err(&pdev->dev, "hardware revision: %d is not supported",
2985 			rev);
2986 		goto failure;
2987 	}
2988 
2989 	plat_data = pdev->dev.platform_data;
2990 
2991 	/* Count the number of logical channels in use */
2992 	for (i = 0; i < plat_data->dev_len; i++)
2993 		if (plat_data->dev_rx[i] != 0)
2994 			num_log_chans++;
2995 
2996 	for (i = 0; i < plat_data->dev_len; i++)
2997 		if (plat_data->dev_tx[i] != 0)
2998 			num_log_chans++;
2999 
3000 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3001 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
3002 		       sizeof(struct d40_chan), GFP_KERNEL);
3003 
3004 	if (base == NULL) {
3005 		d40_err(&pdev->dev, "Out of memory\n");
3006 		goto failure;
3007 	}
3008 
3009 	base->rev = rev;
3010 	base->clk = clk;
3011 	base->num_phy_chans = num_phy_chans;
3012 	base->num_log_chans = num_log_chans;
3013 	base->phy_start = res->start;
3014 	base->phy_size = resource_size(res);
3015 	base->virtbase = virtbase;
3016 	base->plat_data = plat_data;
3017 	base->dev = &pdev->dev;
3018 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3019 	base->log_chans = &base->phy_chans[num_phy_chans];
3020 
3021 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3022 				GFP_KERNEL);
3023 	if (!base->phy_res)
3024 		goto failure;
3025 
3026 	base->lookup_phy_chans = kzalloc(num_phy_chans *
3027 					 sizeof(struct d40_chan *),
3028 					 GFP_KERNEL);
3029 	if (!base->lookup_phy_chans)
3030 		goto failure;
3031 
3032 	if (num_log_chans + plat_data->memcpy_len) {
3033 		/*
3034 		 * The max number of logical channels are event lines for all
3035 		 * src devices and dst devices
3036 		 */
3037 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
3038 						 sizeof(struct d40_chan *),
3039 						 GFP_KERNEL);
3040 		if (!base->lookup_log_chans)
3041 			goto failure;
3042 	}
3043 
3044 	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3045 					    sizeof(d40_backup_regs_chan),
3046 					    GFP_KERNEL);
3047 	if (!base->reg_val_backup_chan)
3048 		goto failure;
3049 
3050 	base->lcla_pool.alloc_map =
3051 		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3052 			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3053 	if (!base->lcla_pool.alloc_map)
3054 		goto failure;
3055 
3056 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3057 					    0, SLAB_HWCACHE_ALIGN,
3058 					    NULL);
3059 	if (base->desc_slab == NULL)
3060 		goto failure;
3061 
3062 	return base;
3063 
3064 failure:
3065 	if (!IS_ERR(clk)) {
3066 		clk_disable(clk);
3067 		clk_put(clk);
3068 	}
3069 	if (virtbase)
3070 		iounmap(virtbase);
3071 	if (res)
3072 		release_mem_region(res->start,
3073 				   resource_size(res));
3074 	if (virtbase)
3075 		iounmap(virtbase);
3076 
3077 	if (base) {
3078 		kfree(base->lcla_pool.alloc_map);
3079 		kfree(base->reg_val_backup_chan);
3080 		kfree(base->lookup_log_chans);
3081 		kfree(base->lookup_phy_chans);
3082 		kfree(base->phy_res);
3083 		kfree(base);
3084 	}
3085 
3086 	return NULL;
3087 }
3088 
3089 static void __init d40_hw_init(struct d40_base *base)
3090 {
3091 
3092 	static struct d40_reg_val dma_init_reg[] = {
3093 		/* Clock every part of the DMA block from start */
3094 		{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
3095 
3096 		/* Interrupts on all logical channels */
3097 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
3098 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
3099 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
3100 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
3101 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
3102 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
3103 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
3104 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
3105 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
3106 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
3107 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
3108 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
3109 	};
3110 	int i;
3111 	u32 prmseo[2] = {0, 0};
3112 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3113 	u32 pcmis = 0;
3114 	u32 pcicr = 0;
3115 
3116 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
3117 		writel(dma_init_reg[i].val,
3118 		       base->virtbase + dma_init_reg[i].reg);
3119 
3120 	/* Configure all our dma channels to default settings */
3121 	for (i = 0; i < base->num_phy_chans; i++) {
3122 
3123 		activeo[i % 2] = activeo[i % 2] << 2;
3124 
3125 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3126 		    == D40_ALLOC_PHY) {
3127 			activeo[i % 2] |= 3;
3128 			continue;
3129 		}
3130 
3131 		/* Enable interrupt # */
3132 		pcmis = (pcmis << 1) | 1;
3133 
3134 		/* Clear interrupt # */
3135 		pcicr = (pcicr << 1) | 1;
3136 
3137 		/* Set channel to physical mode */
3138 		prmseo[i % 2] = prmseo[i % 2] << 2;
3139 		prmseo[i % 2] |= 1;
3140 
3141 	}
3142 
3143 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3144 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3145 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3146 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3147 
3148 	/* Write which interrupt to enable */
3149 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
3150 
3151 	/* Write which interrupt to clear */
3152 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
3153 
3154 }
3155 
3156 static int __init d40_lcla_allocate(struct d40_base *base)
3157 {
3158 	struct d40_lcla_pool *pool = &base->lcla_pool;
3159 	unsigned long *page_list;
3160 	int i, j;
3161 	int ret = 0;
3162 
3163 	/*
3164 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3165 	 * To full fill this hardware requirement without wasting 256 kb
3166 	 * we allocate pages until we get an aligned one.
3167 	 */
3168 	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3169 			    GFP_KERNEL);
3170 
3171 	if (!page_list) {
3172 		ret = -ENOMEM;
3173 		goto failure;
3174 	}
3175 
3176 	/* Calculating how many pages that are required */
3177 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3178 
3179 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3180 		page_list[i] = __get_free_pages(GFP_KERNEL,
3181 						base->lcla_pool.pages);
3182 		if (!page_list[i]) {
3183 
3184 			d40_err(base->dev, "Failed to allocate %d pages.\n",
3185 				base->lcla_pool.pages);
3186 
3187 			for (j = 0; j < i; j++)
3188 				free_pages(page_list[j], base->lcla_pool.pages);
3189 			goto failure;
3190 		}
3191 
3192 		if ((virt_to_phys((void *)page_list[i]) &
3193 		     (LCLA_ALIGNMENT - 1)) == 0)
3194 			break;
3195 	}
3196 
3197 	for (j = 0; j < i; j++)
3198 		free_pages(page_list[j], base->lcla_pool.pages);
3199 
3200 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3201 		base->lcla_pool.base = (void *)page_list[i];
3202 	} else {
3203 		/*
3204 		 * After many attempts and no succees with finding the correct
3205 		 * alignment, try with allocating a big buffer.
3206 		 */
3207 		dev_warn(base->dev,
3208 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3209 			 __func__, base->lcla_pool.pages);
3210 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3211 							 base->num_phy_chans +
3212 							 LCLA_ALIGNMENT,
3213 							 GFP_KERNEL);
3214 		if (!base->lcla_pool.base_unaligned) {
3215 			ret = -ENOMEM;
3216 			goto failure;
3217 		}
3218 
3219 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3220 						 LCLA_ALIGNMENT);
3221 	}
3222 
3223 	pool->dma_addr = dma_map_single(base->dev, pool->base,
3224 					SZ_1K * base->num_phy_chans,
3225 					DMA_TO_DEVICE);
3226 	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3227 		pool->dma_addr = 0;
3228 		ret = -ENOMEM;
3229 		goto failure;
3230 	}
3231 
3232 	writel(virt_to_phys(base->lcla_pool.base),
3233 	       base->virtbase + D40_DREG_LCLA);
3234 failure:
3235 	kfree(page_list);
3236 	return ret;
3237 }
3238 
3239 static int __init d40_probe(struct platform_device *pdev)
3240 {
3241 	int err;
3242 	int ret = -ENOENT;
3243 	struct d40_base *base;
3244 	struct resource *res = NULL;
3245 	int num_reserved_chans;
3246 	u32 val;
3247 
3248 	base = d40_hw_detect_init(pdev);
3249 
3250 	if (!base)
3251 		goto failure;
3252 
3253 	num_reserved_chans = d40_phy_res_init(base);
3254 
3255 	platform_set_drvdata(pdev, base);
3256 
3257 	spin_lock_init(&base->interrupt_lock);
3258 	spin_lock_init(&base->execmd_lock);
3259 
3260 	/* Get IO for logical channel parameter address */
3261 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3262 	if (!res) {
3263 		ret = -ENOENT;
3264 		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3265 		goto failure;
3266 	}
3267 	base->lcpa_size = resource_size(res);
3268 	base->phy_lcpa = res->start;
3269 
3270 	if (request_mem_region(res->start, resource_size(res),
3271 			       D40_NAME " I/O lcpa") == NULL) {
3272 		ret = -EBUSY;
3273 		d40_err(&pdev->dev,
3274 			"Failed to request LCPA region 0x%x-0x%x\n",
3275 			res->start, res->end);
3276 		goto failure;
3277 	}
3278 
3279 	/* We make use of ESRAM memory for this. */
3280 	val = readl(base->virtbase + D40_DREG_LCPA);
3281 	if (res->start != val && val != 0) {
3282 		dev_warn(&pdev->dev,
3283 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3284 			 __func__, val, res->start);
3285 	} else
3286 		writel(res->start, base->virtbase + D40_DREG_LCPA);
3287 
3288 	base->lcpa_base = ioremap(res->start, resource_size(res));
3289 	if (!base->lcpa_base) {
3290 		ret = -ENOMEM;
3291 		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3292 		goto failure;
3293 	}
3294 	/* If lcla has to be located in ESRAM we don't need to allocate */
3295 	if (base->plat_data->use_esram_lcla) {
3296 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3297 							"lcla_esram");
3298 		if (!res) {
3299 			ret = -ENOENT;
3300 			d40_err(&pdev->dev,
3301 				"No \"lcla_esram\" memory resource\n");
3302 			goto failure;
3303 		}
3304 		base->lcla_pool.base = ioremap(res->start,
3305 						resource_size(res));
3306 		if (!base->lcla_pool.base) {
3307 			ret = -ENOMEM;
3308 			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3309 			goto failure;
3310 		}
3311 		writel(res->start, base->virtbase + D40_DREG_LCLA);
3312 
3313 	} else {
3314 		ret = d40_lcla_allocate(base);
3315 		if (ret) {
3316 			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3317 			goto failure;
3318 		}
3319 	}
3320 
3321 	spin_lock_init(&base->lcla_pool.lock);
3322 
3323 	base->irq = platform_get_irq(pdev, 0);
3324 
3325 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3326 	if (ret) {
3327 		d40_err(&pdev->dev, "No IRQ defined\n");
3328 		goto failure;
3329 	}
3330 
3331 	pm_runtime_irq_safe(base->dev);
3332 	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3333 	pm_runtime_use_autosuspend(base->dev);
3334 	pm_runtime_enable(base->dev);
3335 	pm_runtime_resume(base->dev);
3336 
3337 	if (base->plat_data->use_esram_lcla) {
3338 
3339 		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3340 		if (IS_ERR(base->lcpa_regulator)) {
3341 			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3342 			base->lcpa_regulator = NULL;
3343 			goto failure;
3344 		}
3345 
3346 		ret = regulator_enable(base->lcpa_regulator);
3347 		if (ret) {
3348 			d40_err(&pdev->dev,
3349 				"Failed to enable lcpa_regulator\n");
3350 			regulator_put(base->lcpa_regulator);
3351 			base->lcpa_regulator = NULL;
3352 			goto failure;
3353 		}
3354 	}
3355 
3356 	base->initialized = true;
3357 	err = d40_dmaengine_init(base, num_reserved_chans);
3358 	if (err)
3359 		goto failure;
3360 
3361 	d40_hw_init(base);
3362 
3363 	dev_info(base->dev, "initialized\n");
3364 	return 0;
3365 
3366 failure:
3367 	if (base) {
3368 		if (base->desc_slab)
3369 			kmem_cache_destroy(base->desc_slab);
3370 		if (base->virtbase)
3371 			iounmap(base->virtbase);
3372 
3373 		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3374 			iounmap(base->lcla_pool.base);
3375 			base->lcla_pool.base = NULL;
3376 		}
3377 
3378 		if (base->lcla_pool.dma_addr)
3379 			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3380 					 SZ_1K * base->num_phy_chans,
3381 					 DMA_TO_DEVICE);
3382 
3383 		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3384 			free_pages((unsigned long)base->lcla_pool.base,
3385 				   base->lcla_pool.pages);
3386 
3387 		kfree(base->lcla_pool.base_unaligned);
3388 
3389 		if (base->phy_lcpa)
3390 			release_mem_region(base->phy_lcpa,
3391 					   base->lcpa_size);
3392 		if (base->phy_start)
3393 			release_mem_region(base->phy_start,
3394 					   base->phy_size);
3395 		if (base->clk) {
3396 			clk_disable(base->clk);
3397 			clk_put(base->clk);
3398 		}
3399 
3400 		if (base->lcpa_regulator) {
3401 			regulator_disable(base->lcpa_regulator);
3402 			regulator_put(base->lcpa_regulator);
3403 		}
3404 
3405 		kfree(base->lcla_pool.alloc_map);
3406 		kfree(base->lookup_log_chans);
3407 		kfree(base->lookup_phy_chans);
3408 		kfree(base->phy_res);
3409 		kfree(base);
3410 	}
3411 
3412 	d40_err(&pdev->dev, "probe failed\n");
3413 	return ret;
3414 }
3415 
3416 static struct platform_driver d40_driver = {
3417 	.driver = {
3418 		.owner = THIS_MODULE,
3419 		.name  = D40_NAME,
3420 		.pm = DMA40_PM_OPS,
3421 	},
3422 };
3423 
3424 static int __init stedma40_init(void)
3425 {
3426 	return platform_driver_probe(&d40_driver, d40_probe);
3427 }
3428 subsys_initcall(stedma40_init);
3429