1 /* 2 * Copyright (C) Ericsson AB 2007-2008 3 * Copyright (C) ST-Ericsson SA 2008-2010 4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson 5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson 6 * License terms: GNU General Public License (GPL) version 2 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/export.h> 13 #include <linux/dmaengine.h> 14 #include <linux/platform_device.h> 15 #include <linux/clk.h> 16 #include <linux/delay.h> 17 #include <linux/pm.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/err.h> 20 #include <linux/amba/bus.h> 21 #include <linux/regulator/consumer.h> 22 23 #include <plat/ste_dma40.h> 24 25 #include "dmaengine.h" 26 #include "ste_dma40_ll.h" 27 28 #define D40_NAME "dma40" 29 30 #define D40_PHY_CHAN -1 31 32 /* For masking out/in 2 bit channel positions */ 33 #define D40_CHAN_POS(chan) (2 * (chan / 2)) 34 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) 35 36 /* Maximum iterations taken before giving up suspending a channel */ 37 #define D40_SUSPEND_MAX_IT 500 38 39 /* Milliseconds */ 40 #define DMA40_AUTOSUSPEND_DELAY 100 41 42 /* Hardware requirement on LCLA alignment */ 43 #define LCLA_ALIGNMENT 0x40000 44 45 /* Max number of links per event group */ 46 #define D40_LCLA_LINK_PER_EVENT_GRP 128 47 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP 48 49 /* Attempts before giving up to trying to get pages that are aligned */ 50 #define MAX_LCLA_ALLOC_ATTEMPTS 256 51 52 /* Bit markings for allocation map */ 53 #define D40_ALLOC_FREE (1 << 31) 54 #define D40_ALLOC_PHY (1 << 30) 55 #define D40_ALLOC_LOG_FREE 0 56 57 /** 58 * enum 40_command - The different commands and/or statuses. 59 * 60 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, 61 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. 62 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. 63 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. 64 */ 65 enum d40_command { 66 D40_DMA_STOP = 0, 67 D40_DMA_RUN = 1, 68 D40_DMA_SUSPEND_REQ = 2, 69 D40_DMA_SUSPENDED = 3 70 }; 71 72 /* 73 * enum d40_events - The different Event Enables for the event lines. 74 * 75 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan. 76 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan. 77 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line. 78 * @D40_ROUND_EVENTLINE: Status check for event line. 79 */ 80 81 enum d40_events { 82 D40_DEACTIVATE_EVENTLINE = 0, 83 D40_ACTIVATE_EVENTLINE = 1, 84 D40_SUSPEND_REQ_EVENTLINE = 2, 85 D40_ROUND_EVENTLINE = 3 86 }; 87 88 /* 89 * These are the registers that has to be saved and later restored 90 * when the DMA hw is powered off. 91 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works. 92 */ 93 static u32 d40_backup_regs[] = { 94 D40_DREG_LCPA, 95 D40_DREG_LCLA, 96 D40_DREG_PRMSE, 97 D40_DREG_PRMSO, 98 D40_DREG_PRMOE, 99 D40_DREG_PRMOO, 100 }; 101 102 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs) 103 104 /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */ 105 static u32 d40_backup_regs_v3[] = { 106 D40_DREG_PSEG1, 107 D40_DREG_PSEG2, 108 D40_DREG_PSEG3, 109 D40_DREG_PSEG4, 110 D40_DREG_PCEG1, 111 D40_DREG_PCEG2, 112 D40_DREG_PCEG3, 113 D40_DREG_PCEG4, 114 D40_DREG_RSEG1, 115 D40_DREG_RSEG2, 116 D40_DREG_RSEG3, 117 D40_DREG_RSEG4, 118 D40_DREG_RCEG1, 119 D40_DREG_RCEG2, 120 D40_DREG_RCEG3, 121 D40_DREG_RCEG4, 122 }; 123 124 #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3) 125 126 static u32 d40_backup_regs_chan[] = { 127 D40_CHAN_REG_SSCFG, 128 D40_CHAN_REG_SSELT, 129 D40_CHAN_REG_SSPTR, 130 D40_CHAN_REG_SSLNK, 131 D40_CHAN_REG_SDCFG, 132 D40_CHAN_REG_SDELT, 133 D40_CHAN_REG_SDPTR, 134 D40_CHAN_REG_SDLNK, 135 }; 136 137 /** 138 * struct d40_lli_pool - Structure for keeping LLIs in memory 139 * 140 * @base: Pointer to memory area when the pre_alloc_lli's are not large 141 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if 142 * pre_alloc_lli is used. 143 * @dma_addr: DMA address, if mapped 144 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. 145 * @pre_alloc_lli: Pre allocated area for the most common case of transfers, 146 * one buffer to one buffer. 147 */ 148 struct d40_lli_pool { 149 void *base; 150 int size; 151 dma_addr_t dma_addr; 152 /* Space for dst and src, plus an extra for padding */ 153 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; 154 }; 155 156 /** 157 * struct d40_desc - A descriptor is one DMA job. 158 * 159 * @lli_phy: LLI settings for physical channel. Both src and dst= 160 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if 161 * lli_len equals one. 162 * @lli_log: Same as above but for logical channels. 163 * @lli_pool: The pool with two entries pre-allocated. 164 * @lli_len: Number of llis of current descriptor. 165 * @lli_current: Number of transferred llis. 166 * @lcla_alloc: Number of LCLA entries allocated. 167 * @txd: DMA engine struct. Used for among other things for communication 168 * during a transfer. 169 * @node: List entry. 170 * @is_in_client_list: true if the client owns this descriptor. 171 * @cyclic: true if this is a cyclic job 172 * 173 * This descriptor is used for both logical and physical transfers. 174 */ 175 struct d40_desc { 176 /* LLI physical */ 177 struct d40_phy_lli_bidir lli_phy; 178 /* LLI logical */ 179 struct d40_log_lli_bidir lli_log; 180 181 struct d40_lli_pool lli_pool; 182 int lli_len; 183 int lli_current; 184 int lcla_alloc; 185 186 struct dma_async_tx_descriptor txd; 187 struct list_head node; 188 189 bool is_in_client_list; 190 bool cyclic; 191 }; 192 193 /** 194 * struct d40_lcla_pool - LCLA pool settings and data. 195 * 196 * @base: The virtual address of LCLA. 18 bit aligned. 197 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. 198 * This pointer is only there for clean-up on error. 199 * @pages: The number of pages needed for all physical channels. 200 * Only used later for clean-up on error 201 * @lock: Lock to protect the content in this struct. 202 * @alloc_map: big map over which LCLA entry is own by which job. 203 */ 204 struct d40_lcla_pool { 205 void *base; 206 dma_addr_t dma_addr; 207 void *base_unaligned; 208 int pages; 209 spinlock_t lock; 210 struct d40_desc **alloc_map; 211 }; 212 213 /** 214 * struct d40_phy_res - struct for handling eventlines mapped to physical 215 * channels. 216 * 217 * @lock: A lock protection this entity. 218 * @reserved: True if used by secure world or otherwise. 219 * @num: The physical channel number of this entity. 220 * @allocated_src: Bit mapped to show which src event line's are mapped to 221 * this physical channel. Can also be free or physically allocated. 222 * @allocated_dst: Same as for src but is dst. 223 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as 224 * event line number. 225 */ 226 struct d40_phy_res { 227 spinlock_t lock; 228 bool reserved; 229 int num; 230 u32 allocated_src; 231 u32 allocated_dst; 232 }; 233 234 struct d40_base; 235 236 /** 237 * struct d40_chan - Struct that describes a channel. 238 * 239 * @lock: A spinlock to protect this struct. 240 * @log_num: The logical number, if any of this channel. 241 * @pending_tx: The number of pending transfers. Used between interrupt handler 242 * and tasklet. 243 * @busy: Set to true when transfer is ongoing on this channel. 244 * @phy_chan: Pointer to physical channel which this instance runs on. If this 245 * point is NULL, then the channel is not allocated. 246 * @chan: DMA engine handle. 247 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a 248 * transfer and call client callback. 249 * @client: Cliented owned descriptor list. 250 * @pending_queue: Submitted jobs, to be issued by issue_pending() 251 * @active: Active descriptor. 252 * @queue: Queued jobs. 253 * @prepare_queue: Prepared jobs. 254 * @dma_cfg: The client configuration of this dma channel. 255 * @configured: whether the dma_cfg configuration is valid 256 * @base: Pointer to the device instance struct. 257 * @src_def_cfg: Default cfg register setting for src. 258 * @dst_def_cfg: Default cfg register setting for dst. 259 * @log_def: Default logical channel settings. 260 * @lcpa: Pointer to dst and src lcpa settings. 261 * @runtime_addr: runtime configured address. 262 * @runtime_direction: runtime configured direction. 263 * 264 * This struct can either "be" a logical or a physical channel. 265 */ 266 struct d40_chan { 267 spinlock_t lock; 268 int log_num; 269 int pending_tx; 270 bool busy; 271 struct d40_phy_res *phy_chan; 272 struct dma_chan chan; 273 struct tasklet_struct tasklet; 274 struct list_head client; 275 struct list_head pending_queue; 276 struct list_head active; 277 struct list_head queue; 278 struct list_head prepare_queue; 279 struct stedma40_chan_cfg dma_cfg; 280 bool configured; 281 struct d40_base *base; 282 /* Default register configurations */ 283 u32 src_def_cfg; 284 u32 dst_def_cfg; 285 struct d40_def_lcsp log_def; 286 struct d40_log_lli_full *lcpa; 287 /* Runtime reconfiguration */ 288 dma_addr_t runtime_addr; 289 enum dma_transfer_direction runtime_direction; 290 }; 291 292 /** 293 * struct d40_base - The big global struct, one for each probe'd instance. 294 * 295 * @interrupt_lock: Lock used to make sure one interrupt is handle a time. 296 * @execmd_lock: Lock for execute command usage since several channels share 297 * the same physical register. 298 * @dev: The device structure. 299 * @virtbase: The virtual base address of the DMA's register. 300 * @rev: silicon revision detected. 301 * @clk: Pointer to the DMA clock structure. 302 * @phy_start: Physical memory start of the DMA registers. 303 * @phy_size: Size of the DMA register map. 304 * @irq: The IRQ number. 305 * @num_phy_chans: The number of physical channels. Read from HW. This 306 * is the number of available channels for this driver, not counting "Secure 307 * mode" allocated physical channels. 308 * @num_log_chans: The number of logical channels. Calculated from 309 * num_phy_chans. 310 * @dma_both: dma_device channels that can do both memcpy and slave transfers. 311 * @dma_slave: dma_device channels that can do only do slave transfers. 312 * @dma_memcpy: dma_device channels that can do only do memcpy transfers. 313 * @phy_chans: Room for all possible physical channels in system. 314 * @log_chans: Room for all possible logical channels in system. 315 * @lookup_log_chans: Used to map interrupt number to logical channel. Points 316 * to log_chans entries. 317 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points 318 * to phy_chans entries. 319 * @plat_data: Pointer to provided platform_data which is the driver 320 * configuration. 321 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla. 322 * @phy_res: Vector containing all physical channels. 323 * @lcla_pool: lcla pool settings and data. 324 * @lcpa_base: The virtual mapped address of LCPA. 325 * @phy_lcpa: The physical address of the LCPA. 326 * @lcpa_size: The size of the LCPA area. 327 * @desc_slab: cache for descriptors. 328 * @reg_val_backup: Here the values of some hardware registers are stored 329 * before the DMA is powered off. They are restored when the power is back on. 330 * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and 331 * later. 332 * @reg_val_backup_chan: Backup data for standard channel parameter registers. 333 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off. 334 * @initialized: true if the dma has been initialized 335 */ 336 struct d40_base { 337 spinlock_t interrupt_lock; 338 spinlock_t execmd_lock; 339 struct device *dev; 340 void __iomem *virtbase; 341 u8 rev:4; 342 struct clk *clk; 343 phys_addr_t phy_start; 344 resource_size_t phy_size; 345 int irq; 346 int num_phy_chans; 347 int num_log_chans; 348 struct dma_device dma_both; 349 struct dma_device dma_slave; 350 struct dma_device dma_memcpy; 351 struct d40_chan *phy_chans; 352 struct d40_chan *log_chans; 353 struct d40_chan **lookup_log_chans; 354 struct d40_chan **lookup_phy_chans; 355 struct stedma40_platform_data *plat_data; 356 struct regulator *lcpa_regulator; 357 /* Physical half channels */ 358 struct d40_phy_res *phy_res; 359 struct d40_lcla_pool lcla_pool; 360 void *lcpa_base; 361 dma_addr_t phy_lcpa; 362 resource_size_t lcpa_size; 363 struct kmem_cache *desc_slab; 364 u32 reg_val_backup[BACKUP_REGS_SZ]; 365 u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3]; 366 u32 *reg_val_backup_chan; 367 u16 gcc_pwr_off_mask; 368 bool initialized; 369 }; 370 371 /** 372 * struct d40_interrupt_lookup - lookup table for interrupt handler 373 * 374 * @src: Interrupt mask register. 375 * @clr: Interrupt clear register. 376 * @is_error: true if this is an error interrupt. 377 * @offset: start delta in the lookup_log_chans in d40_base. If equals to 378 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. 379 */ 380 struct d40_interrupt_lookup { 381 u32 src; 382 u32 clr; 383 bool is_error; 384 int offset; 385 }; 386 387 /** 388 * struct d40_reg_val - simple lookup struct 389 * 390 * @reg: The register. 391 * @val: The value that belongs to the register in reg. 392 */ 393 struct d40_reg_val { 394 unsigned int reg; 395 unsigned int val; 396 }; 397 398 static struct device *chan2dev(struct d40_chan *d40c) 399 { 400 return &d40c->chan.dev->device; 401 } 402 403 static bool chan_is_physical(struct d40_chan *chan) 404 { 405 return chan->log_num == D40_PHY_CHAN; 406 } 407 408 static bool chan_is_logical(struct d40_chan *chan) 409 { 410 return !chan_is_physical(chan); 411 } 412 413 static void __iomem *chan_base(struct d40_chan *chan) 414 { 415 return chan->base->virtbase + D40_DREG_PCBASE + 416 chan->phy_chan->num * D40_DREG_PCDELTA; 417 } 418 419 #define d40_err(dev, format, arg...) \ 420 dev_err(dev, "[%s] " format, __func__, ## arg) 421 422 #define chan_err(d40c, format, arg...) \ 423 d40_err(chan2dev(d40c), format, ## arg) 424 425 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d, 426 int lli_len) 427 { 428 bool is_log = chan_is_logical(d40c); 429 u32 align; 430 void *base; 431 432 if (is_log) 433 align = sizeof(struct d40_log_lli); 434 else 435 align = sizeof(struct d40_phy_lli); 436 437 if (lli_len == 1) { 438 base = d40d->lli_pool.pre_alloc_lli; 439 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); 440 d40d->lli_pool.base = NULL; 441 } else { 442 d40d->lli_pool.size = lli_len * 2 * align; 443 444 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); 445 d40d->lli_pool.base = base; 446 447 if (d40d->lli_pool.base == NULL) 448 return -ENOMEM; 449 } 450 451 if (is_log) { 452 d40d->lli_log.src = PTR_ALIGN(base, align); 453 d40d->lli_log.dst = d40d->lli_log.src + lli_len; 454 455 d40d->lli_pool.dma_addr = 0; 456 } else { 457 d40d->lli_phy.src = PTR_ALIGN(base, align); 458 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len; 459 460 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev, 461 d40d->lli_phy.src, 462 d40d->lli_pool.size, 463 DMA_TO_DEVICE); 464 465 if (dma_mapping_error(d40c->base->dev, 466 d40d->lli_pool.dma_addr)) { 467 kfree(d40d->lli_pool.base); 468 d40d->lli_pool.base = NULL; 469 d40d->lli_pool.dma_addr = 0; 470 return -ENOMEM; 471 } 472 } 473 474 return 0; 475 } 476 477 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d) 478 { 479 if (d40d->lli_pool.dma_addr) 480 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr, 481 d40d->lli_pool.size, DMA_TO_DEVICE); 482 483 kfree(d40d->lli_pool.base); 484 d40d->lli_pool.base = NULL; 485 d40d->lli_pool.size = 0; 486 d40d->lli_log.src = NULL; 487 d40d->lli_log.dst = NULL; 488 d40d->lli_phy.src = NULL; 489 d40d->lli_phy.dst = NULL; 490 } 491 492 static int d40_lcla_alloc_one(struct d40_chan *d40c, 493 struct d40_desc *d40d) 494 { 495 unsigned long flags; 496 int i; 497 int ret = -EINVAL; 498 int p; 499 500 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); 501 502 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP; 503 504 /* 505 * Allocate both src and dst at the same time, therefore the half 506 * start on 1 since 0 can't be used since zero is used as end marker. 507 */ 508 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { 509 if (!d40c->base->lcla_pool.alloc_map[p + i]) { 510 d40c->base->lcla_pool.alloc_map[p + i] = d40d; 511 d40d->lcla_alloc++; 512 ret = i; 513 break; 514 } 515 } 516 517 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); 518 519 return ret; 520 } 521 522 static int d40_lcla_free_all(struct d40_chan *d40c, 523 struct d40_desc *d40d) 524 { 525 unsigned long flags; 526 int i; 527 int ret = -EINVAL; 528 529 if (chan_is_physical(d40c)) 530 return 0; 531 532 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); 533 534 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { 535 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num * 536 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) { 537 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num * 538 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL; 539 d40d->lcla_alloc--; 540 if (d40d->lcla_alloc == 0) { 541 ret = 0; 542 break; 543 } 544 } 545 } 546 547 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); 548 549 return ret; 550 551 } 552 553 static void d40_desc_remove(struct d40_desc *d40d) 554 { 555 list_del(&d40d->node); 556 } 557 558 static struct d40_desc *d40_desc_get(struct d40_chan *d40c) 559 { 560 struct d40_desc *desc = NULL; 561 562 if (!list_empty(&d40c->client)) { 563 struct d40_desc *d; 564 struct d40_desc *_d; 565 566 list_for_each_entry_safe(d, _d, &d40c->client, node) { 567 if (async_tx_test_ack(&d->txd)) { 568 d40_desc_remove(d); 569 desc = d; 570 memset(desc, 0, sizeof(*desc)); 571 break; 572 } 573 } 574 } 575 576 if (!desc) 577 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT); 578 579 if (desc) 580 INIT_LIST_HEAD(&desc->node); 581 582 return desc; 583 } 584 585 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) 586 { 587 588 d40_pool_lli_free(d40c, d40d); 589 d40_lcla_free_all(d40c, d40d); 590 kmem_cache_free(d40c->base->desc_slab, d40d); 591 } 592 593 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) 594 { 595 list_add_tail(&desc->node, &d40c->active); 596 } 597 598 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc) 599 { 600 struct d40_phy_lli *lli_dst = desc->lli_phy.dst; 601 struct d40_phy_lli *lli_src = desc->lli_phy.src; 602 void __iomem *base = chan_base(chan); 603 604 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG); 605 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT); 606 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR); 607 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK); 608 609 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG); 610 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT); 611 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR); 612 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK); 613 } 614 615 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc) 616 { 617 struct d40_lcla_pool *pool = &chan->base->lcla_pool; 618 struct d40_log_lli_bidir *lli = &desc->lli_log; 619 int lli_current = desc->lli_current; 620 int lli_len = desc->lli_len; 621 bool cyclic = desc->cyclic; 622 int curr_lcla = -EINVAL; 623 int first_lcla = 0; 624 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla; 625 bool linkback; 626 627 /* 628 * We may have partially running cyclic transfers, in case we did't get 629 * enough LCLA entries. 630 */ 631 linkback = cyclic && lli_current == 0; 632 633 /* 634 * For linkback, we need one LCLA even with only one link, because we 635 * can't link back to the one in LCPA space 636 */ 637 if (linkback || (lli_len - lli_current > 1)) { 638 curr_lcla = d40_lcla_alloc_one(chan, desc); 639 first_lcla = curr_lcla; 640 } 641 642 /* 643 * For linkback, we normally load the LCPA in the loop since we need to 644 * link it to the second LCLA and not the first. However, if we 645 * couldn't even get a first LCLA, then we have to run in LCPA and 646 * reload manually. 647 */ 648 if (!linkback || curr_lcla == -EINVAL) { 649 unsigned int flags = 0; 650 651 if (curr_lcla == -EINVAL) 652 flags |= LLI_TERM_INT; 653 654 d40_log_lli_lcpa_write(chan->lcpa, 655 &lli->dst[lli_current], 656 &lli->src[lli_current], 657 curr_lcla, 658 flags); 659 lli_current++; 660 } 661 662 if (curr_lcla < 0) 663 goto out; 664 665 for (; lli_current < lli_len; lli_current++) { 666 unsigned int lcla_offset = chan->phy_chan->num * 1024 + 667 8 * curr_lcla * 2; 668 struct d40_log_lli *lcla = pool->base + lcla_offset; 669 unsigned int flags = 0; 670 int next_lcla; 671 672 if (lli_current + 1 < lli_len) 673 next_lcla = d40_lcla_alloc_one(chan, desc); 674 else 675 next_lcla = linkback ? first_lcla : -EINVAL; 676 677 if (cyclic || next_lcla == -EINVAL) 678 flags |= LLI_TERM_INT; 679 680 if (linkback && curr_lcla == first_lcla) { 681 /* First link goes in both LCPA and LCLA */ 682 d40_log_lli_lcpa_write(chan->lcpa, 683 &lli->dst[lli_current], 684 &lli->src[lli_current], 685 next_lcla, flags); 686 } 687 688 /* 689 * One unused LCLA in the cyclic case if the very first 690 * next_lcla fails... 691 */ 692 d40_log_lli_lcla_write(lcla, 693 &lli->dst[lli_current], 694 &lli->src[lli_current], 695 next_lcla, flags); 696 697 /* 698 * Cache maintenance is not needed if lcla is 699 * mapped in esram 700 */ 701 if (!use_esram_lcla) { 702 dma_sync_single_range_for_device(chan->base->dev, 703 pool->dma_addr, lcla_offset, 704 2 * sizeof(struct d40_log_lli), 705 DMA_TO_DEVICE); 706 } 707 curr_lcla = next_lcla; 708 709 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) { 710 lli_current++; 711 break; 712 } 713 } 714 715 out: 716 desc->lli_current = lli_current; 717 } 718 719 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) 720 { 721 if (chan_is_physical(d40c)) { 722 d40_phy_lli_load(d40c, d40d); 723 d40d->lli_current = d40d->lli_len; 724 } else 725 d40_log_lli_to_lcxa(d40c, d40d); 726 } 727 728 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) 729 { 730 struct d40_desc *d; 731 732 if (list_empty(&d40c->active)) 733 return NULL; 734 735 d = list_first_entry(&d40c->active, 736 struct d40_desc, 737 node); 738 return d; 739 } 740 741 /* remove desc from current queue and add it to the pending_queue */ 742 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) 743 { 744 d40_desc_remove(desc); 745 desc->is_in_client_list = false; 746 list_add_tail(&desc->node, &d40c->pending_queue); 747 } 748 749 static struct d40_desc *d40_first_pending(struct d40_chan *d40c) 750 { 751 struct d40_desc *d; 752 753 if (list_empty(&d40c->pending_queue)) 754 return NULL; 755 756 d = list_first_entry(&d40c->pending_queue, 757 struct d40_desc, 758 node); 759 return d; 760 } 761 762 static struct d40_desc *d40_first_queued(struct d40_chan *d40c) 763 { 764 struct d40_desc *d; 765 766 if (list_empty(&d40c->queue)) 767 return NULL; 768 769 d = list_first_entry(&d40c->queue, 770 struct d40_desc, 771 node); 772 return d; 773 } 774 775 static int d40_psize_2_burst_size(bool is_log, int psize) 776 { 777 if (is_log) { 778 if (psize == STEDMA40_PSIZE_LOG_1) 779 return 1; 780 } else { 781 if (psize == STEDMA40_PSIZE_PHY_1) 782 return 1; 783 } 784 785 return 2 << psize; 786 } 787 788 /* 789 * The dma only supports transmitting packages up to 790 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of 791 * dma elements required to send the entire sg list 792 */ 793 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2) 794 { 795 int dmalen; 796 u32 max_w = max(data_width1, data_width2); 797 u32 min_w = min(data_width1, data_width2); 798 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w); 799 800 if (seg_max > STEDMA40_MAX_SEG_SIZE) 801 seg_max -= (1 << max_w); 802 803 if (!IS_ALIGNED(size, 1 << max_w)) 804 return -EINVAL; 805 806 if (size <= seg_max) 807 dmalen = 1; 808 else { 809 dmalen = size / seg_max; 810 if (dmalen * seg_max < size) 811 dmalen++; 812 } 813 return dmalen; 814 } 815 816 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len, 817 u32 data_width1, u32 data_width2) 818 { 819 struct scatterlist *sg; 820 int i; 821 int len = 0; 822 int ret; 823 824 for_each_sg(sgl, sg, sg_len, i) { 825 ret = d40_size_2_dmalen(sg_dma_len(sg), 826 data_width1, data_width2); 827 if (ret < 0) 828 return ret; 829 len += ret; 830 } 831 return len; 832 } 833 834 835 #ifdef CONFIG_PM 836 static void dma40_backup(void __iomem *baseaddr, u32 *backup, 837 u32 *regaddr, int num, bool save) 838 { 839 int i; 840 841 for (i = 0; i < num; i++) { 842 void __iomem *addr = baseaddr + regaddr[i]; 843 844 if (save) 845 backup[i] = readl_relaxed(addr); 846 else 847 writel_relaxed(backup[i], addr); 848 } 849 } 850 851 static void d40_save_restore_registers(struct d40_base *base, bool save) 852 { 853 int i; 854 855 /* Save/Restore channel specific registers */ 856 for (i = 0; i < base->num_phy_chans; i++) { 857 void __iomem *addr; 858 int idx; 859 860 if (base->phy_res[i].reserved) 861 continue; 862 863 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA; 864 idx = i * ARRAY_SIZE(d40_backup_regs_chan); 865 866 dma40_backup(addr, &base->reg_val_backup_chan[idx], 867 d40_backup_regs_chan, 868 ARRAY_SIZE(d40_backup_regs_chan), 869 save); 870 } 871 872 /* Save/Restore global registers */ 873 dma40_backup(base->virtbase, base->reg_val_backup, 874 d40_backup_regs, ARRAY_SIZE(d40_backup_regs), 875 save); 876 877 /* Save/Restore registers only existing on dma40 v3 and later */ 878 if (base->rev >= 3) 879 dma40_backup(base->virtbase, base->reg_val_backup_v3, 880 d40_backup_regs_v3, 881 ARRAY_SIZE(d40_backup_regs_v3), 882 save); 883 } 884 #else 885 static void d40_save_restore_registers(struct d40_base *base, bool save) 886 { 887 } 888 #endif 889 890 static int __d40_execute_command_phy(struct d40_chan *d40c, 891 enum d40_command command) 892 { 893 u32 status; 894 int i; 895 void __iomem *active_reg; 896 int ret = 0; 897 unsigned long flags; 898 u32 wmask; 899 900 if (command == D40_DMA_STOP) { 901 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ); 902 if (ret) 903 return ret; 904 } 905 906 spin_lock_irqsave(&d40c->base->execmd_lock, flags); 907 908 if (d40c->phy_chan->num % 2 == 0) 909 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; 910 else 911 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; 912 913 if (command == D40_DMA_SUSPEND_REQ) { 914 status = (readl(active_reg) & 915 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 916 D40_CHAN_POS(d40c->phy_chan->num); 917 918 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) 919 goto done; 920 } 921 922 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); 923 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), 924 active_reg); 925 926 if (command == D40_DMA_SUSPEND_REQ) { 927 928 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { 929 status = (readl(active_reg) & 930 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 931 D40_CHAN_POS(d40c->phy_chan->num); 932 933 cpu_relax(); 934 /* 935 * Reduce the number of bus accesses while 936 * waiting for the DMA to suspend. 937 */ 938 udelay(3); 939 940 if (status == D40_DMA_STOP || 941 status == D40_DMA_SUSPENDED) 942 break; 943 } 944 945 if (i == D40_SUSPEND_MAX_IT) { 946 chan_err(d40c, 947 "unable to suspend the chl %d (log: %d) status %x\n", 948 d40c->phy_chan->num, d40c->log_num, 949 status); 950 dump_stack(); 951 ret = -EBUSY; 952 } 953 954 } 955 done: 956 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); 957 return ret; 958 } 959 960 static void d40_term_all(struct d40_chan *d40c) 961 { 962 struct d40_desc *d40d; 963 struct d40_desc *_d; 964 965 /* Release active descriptors */ 966 while ((d40d = d40_first_active_get(d40c))) { 967 d40_desc_remove(d40d); 968 d40_desc_free(d40c, d40d); 969 } 970 971 /* Release queued descriptors waiting for transfer */ 972 while ((d40d = d40_first_queued(d40c))) { 973 d40_desc_remove(d40d); 974 d40_desc_free(d40c, d40d); 975 } 976 977 /* Release pending descriptors */ 978 while ((d40d = d40_first_pending(d40c))) { 979 d40_desc_remove(d40d); 980 d40_desc_free(d40c, d40d); 981 } 982 983 /* Release client owned descriptors */ 984 if (!list_empty(&d40c->client)) 985 list_for_each_entry_safe(d40d, _d, &d40c->client, node) { 986 d40_desc_remove(d40d); 987 d40_desc_free(d40c, d40d); 988 } 989 990 /* Release descriptors in prepare queue */ 991 if (!list_empty(&d40c->prepare_queue)) 992 list_for_each_entry_safe(d40d, _d, 993 &d40c->prepare_queue, node) { 994 d40_desc_remove(d40d); 995 d40_desc_free(d40c, d40d); 996 } 997 998 d40c->pending_tx = 0; 999 } 1000 1001 static void __d40_config_set_event(struct d40_chan *d40c, 1002 enum d40_events event_type, u32 event, 1003 int reg) 1004 { 1005 void __iomem *addr = chan_base(d40c) + reg; 1006 int tries; 1007 u32 status; 1008 1009 switch (event_type) { 1010 1011 case D40_DEACTIVATE_EVENTLINE: 1012 1013 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) 1014 | ~D40_EVENTLINE_MASK(event), addr); 1015 break; 1016 1017 case D40_SUSPEND_REQ_EVENTLINE: 1018 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> 1019 D40_EVENTLINE_POS(event); 1020 1021 if (status == D40_DEACTIVATE_EVENTLINE || 1022 status == D40_SUSPEND_REQ_EVENTLINE) 1023 break; 1024 1025 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event)) 1026 | ~D40_EVENTLINE_MASK(event), addr); 1027 1028 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) { 1029 1030 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> 1031 D40_EVENTLINE_POS(event); 1032 1033 cpu_relax(); 1034 /* 1035 * Reduce the number of bus accesses while 1036 * waiting for the DMA to suspend. 1037 */ 1038 udelay(3); 1039 1040 if (status == D40_DEACTIVATE_EVENTLINE) 1041 break; 1042 } 1043 1044 if (tries == D40_SUSPEND_MAX_IT) { 1045 chan_err(d40c, 1046 "unable to stop the event_line chl %d (log: %d)" 1047 "status %x\n", d40c->phy_chan->num, 1048 d40c->log_num, status); 1049 } 1050 break; 1051 1052 case D40_ACTIVATE_EVENTLINE: 1053 /* 1054 * The hardware sometimes doesn't register the enable when src and dst 1055 * event lines are active on the same logical channel. Retry to ensure 1056 * it does. Usually only one retry is sufficient. 1057 */ 1058 tries = 100; 1059 while (--tries) { 1060 writel((D40_ACTIVATE_EVENTLINE << 1061 D40_EVENTLINE_POS(event)) | 1062 ~D40_EVENTLINE_MASK(event), addr); 1063 1064 if (readl(addr) & D40_EVENTLINE_MASK(event)) 1065 break; 1066 } 1067 1068 if (tries != 99) 1069 dev_dbg(chan2dev(d40c), 1070 "[%s] workaround enable S%cLNK (%d tries)\n", 1071 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D', 1072 100 - tries); 1073 1074 WARN_ON(!tries); 1075 break; 1076 1077 case D40_ROUND_EVENTLINE: 1078 BUG(); 1079 break; 1080 1081 } 1082 } 1083 1084 static void d40_config_set_event(struct d40_chan *d40c, 1085 enum d40_events event_type) 1086 { 1087 /* Enable event line connected to device (or memcpy) */ 1088 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || 1089 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) { 1090 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); 1091 1092 __d40_config_set_event(d40c, event_type, event, 1093 D40_CHAN_REG_SSLNK); 1094 } 1095 1096 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) { 1097 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); 1098 1099 __d40_config_set_event(d40c, event_type, event, 1100 D40_CHAN_REG_SDLNK); 1101 } 1102 } 1103 1104 static u32 d40_chan_has_events(struct d40_chan *d40c) 1105 { 1106 void __iomem *chanbase = chan_base(d40c); 1107 u32 val; 1108 1109 val = readl(chanbase + D40_CHAN_REG_SSLNK); 1110 val |= readl(chanbase + D40_CHAN_REG_SDLNK); 1111 1112 return val; 1113 } 1114 1115 static int 1116 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command) 1117 { 1118 unsigned long flags; 1119 int ret = 0; 1120 u32 active_status; 1121 void __iomem *active_reg; 1122 1123 if (d40c->phy_chan->num % 2 == 0) 1124 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; 1125 else 1126 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; 1127 1128 1129 spin_lock_irqsave(&d40c->phy_chan->lock, flags); 1130 1131 switch (command) { 1132 case D40_DMA_STOP: 1133 case D40_DMA_SUSPEND_REQ: 1134 1135 active_status = (readl(active_reg) & 1136 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 1137 D40_CHAN_POS(d40c->phy_chan->num); 1138 1139 if (active_status == D40_DMA_RUN) 1140 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE); 1141 else 1142 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE); 1143 1144 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP)) 1145 ret = __d40_execute_command_phy(d40c, command); 1146 1147 break; 1148 1149 case D40_DMA_RUN: 1150 1151 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE); 1152 ret = __d40_execute_command_phy(d40c, command); 1153 break; 1154 1155 case D40_DMA_SUSPENDED: 1156 BUG(); 1157 break; 1158 } 1159 1160 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); 1161 return ret; 1162 } 1163 1164 static int d40_channel_execute_command(struct d40_chan *d40c, 1165 enum d40_command command) 1166 { 1167 if (chan_is_logical(d40c)) 1168 return __d40_execute_command_log(d40c, command); 1169 else 1170 return __d40_execute_command_phy(d40c, command); 1171 } 1172 1173 static u32 d40_get_prmo(struct d40_chan *d40c) 1174 { 1175 static const unsigned int phy_map[] = { 1176 [STEDMA40_PCHAN_BASIC_MODE] 1177 = D40_DREG_PRMO_PCHAN_BASIC, 1178 [STEDMA40_PCHAN_MODULO_MODE] 1179 = D40_DREG_PRMO_PCHAN_MODULO, 1180 [STEDMA40_PCHAN_DOUBLE_DST_MODE] 1181 = D40_DREG_PRMO_PCHAN_DOUBLE_DST, 1182 }; 1183 static const unsigned int log_map[] = { 1184 [STEDMA40_LCHAN_SRC_PHY_DST_LOG] 1185 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG, 1186 [STEDMA40_LCHAN_SRC_LOG_DST_PHY] 1187 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY, 1188 [STEDMA40_LCHAN_SRC_LOG_DST_LOG] 1189 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG, 1190 }; 1191 1192 if (chan_is_physical(d40c)) 1193 return phy_map[d40c->dma_cfg.mode_opt]; 1194 else 1195 return log_map[d40c->dma_cfg.mode_opt]; 1196 } 1197 1198 static void d40_config_write(struct d40_chan *d40c) 1199 { 1200 u32 addr_base; 1201 u32 var; 1202 1203 /* Odd addresses are even addresses + 4 */ 1204 addr_base = (d40c->phy_chan->num % 2) * 4; 1205 /* Setup channel mode to logical or physical */ 1206 var = ((u32)(chan_is_logical(d40c)) + 1) << 1207 D40_CHAN_POS(d40c->phy_chan->num); 1208 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); 1209 1210 /* Setup operational mode option register */ 1211 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num); 1212 1213 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); 1214 1215 if (chan_is_logical(d40c)) { 1216 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) 1217 & D40_SREG_ELEM_LOG_LIDX_MASK; 1218 void __iomem *chanbase = chan_base(d40c); 1219 1220 /* Set default config for CFG reg */ 1221 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG); 1222 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG); 1223 1224 /* Set LIDX for lcla */ 1225 writel(lidx, chanbase + D40_CHAN_REG_SSELT); 1226 writel(lidx, chanbase + D40_CHAN_REG_SDELT); 1227 1228 /* Clear LNK which will be used by d40_chan_has_events() */ 1229 writel(0, chanbase + D40_CHAN_REG_SSLNK); 1230 writel(0, chanbase + D40_CHAN_REG_SDLNK); 1231 } 1232 } 1233 1234 static u32 d40_residue(struct d40_chan *d40c) 1235 { 1236 u32 num_elt; 1237 1238 if (chan_is_logical(d40c)) 1239 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) 1240 >> D40_MEM_LCSP2_ECNT_POS; 1241 else { 1242 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT); 1243 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK) 1244 >> D40_SREG_ELEM_PHY_ECNT_POS; 1245 } 1246 1247 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width); 1248 } 1249 1250 static bool d40_tx_is_linked(struct d40_chan *d40c) 1251 { 1252 bool is_link; 1253 1254 if (chan_is_logical(d40c)) 1255 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; 1256 else 1257 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK) 1258 & D40_SREG_LNK_PHYS_LNK_MASK; 1259 1260 return is_link; 1261 } 1262 1263 static int d40_pause(struct d40_chan *d40c) 1264 { 1265 int res = 0; 1266 unsigned long flags; 1267 1268 if (!d40c->busy) 1269 return 0; 1270 1271 pm_runtime_get_sync(d40c->base->dev); 1272 spin_lock_irqsave(&d40c->lock, flags); 1273 1274 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); 1275 1276 pm_runtime_mark_last_busy(d40c->base->dev); 1277 pm_runtime_put_autosuspend(d40c->base->dev); 1278 spin_unlock_irqrestore(&d40c->lock, flags); 1279 return res; 1280 } 1281 1282 static int d40_resume(struct d40_chan *d40c) 1283 { 1284 int res = 0; 1285 unsigned long flags; 1286 1287 if (!d40c->busy) 1288 return 0; 1289 1290 spin_lock_irqsave(&d40c->lock, flags); 1291 pm_runtime_get_sync(d40c->base->dev); 1292 1293 /* If bytes left to transfer or linked tx resume job */ 1294 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) 1295 res = d40_channel_execute_command(d40c, D40_DMA_RUN); 1296 1297 pm_runtime_mark_last_busy(d40c->base->dev); 1298 pm_runtime_put_autosuspend(d40c->base->dev); 1299 spin_unlock_irqrestore(&d40c->lock, flags); 1300 return res; 1301 } 1302 1303 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) 1304 { 1305 struct d40_chan *d40c = container_of(tx->chan, 1306 struct d40_chan, 1307 chan); 1308 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); 1309 unsigned long flags; 1310 dma_cookie_t cookie; 1311 1312 spin_lock_irqsave(&d40c->lock, flags); 1313 cookie = dma_cookie_assign(tx); 1314 d40_desc_queue(d40c, d40d); 1315 spin_unlock_irqrestore(&d40c->lock, flags); 1316 1317 return cookie; 1318 } 1319 1320 static int d40_start(struct d40_chan *d40c) 1321 { 1322 return d40_channel_execute_command(d40c, D40_DMA_RUN); 1323 } 1324 1325 static struct d40_desc *d40_queue_start(struct d40_chan *d40c) 1326 { 1327 struct d40_desc *d40d; 1328 int err; 1329 1330 /* Start queued jobs, if any */ 1331 d40d = d40_first_queued(d40c); 1332 1333 if (d40d != NULL) { 1334 if (!d40c->busy) { 1335 d40c->busy = true; 1336 pm_runtime_get_sync(d40c->base->dev); 1337 } 1338 1339 /* Remove from queue */ 1340 d40_desc_remove(d40d); 1341 1342 /* Add to active queue */ 1343 d40_desc_submit(d40c, d40d); 1344 1345 /* Initiate DMA job */ 1346 d40_desc_load(d40c, d40d); 1347 1348 /* Start dma job */ 1349 err = d40_start(d40c); 1350 1351 if (err) 1352 return NULL; 1353 } 1354 1355 return d40d; 1356 } 1357 1358 /* called from interrupt context */ 1359 static void dma_tc_handle(struct d40_chan *d40c) 1360 { 1361 struct d40_desc *d40d; 1362 1363 /* Get first active entry from list */ 1364 d40d = d40_first_active_get(d40c); 1365 1366 if (d40d == NULL) 1367 return; 1368 1369 if (d40d->cyclic) { 1370 /* 1371 * If this was a paritially loaded list, we need to reloaded 1372 * it, and only when the list is completed. We need to check 1373 * for done because the interrupt will hit for every link, and 1374 * not just the last one. 1375 */ 1376 if (d40d->lli_current < d40d->lli_len 1377 && !d40_tx_is_linked(d40c) 1378 && !d40_residue(d40c)) { 1379 d40_lcla_free_all(d40c, d40d); 1380 d40_desc_load(d40c, d40d); 1381 (void) d40_start(d40c); 1382 1383 if (d40d->lli_current == d40d->lli_len) 1384 d40d->lli_current = 0; 1385 } 1386 } else { 1387 d40_lcla_free_all(d40c, d40d); 1388 1389 if (d40d->lli_current < d40d->lli_len) { 1390 d40_desc_load(d40c, d40d); 1391 /* Start dma job */ 1392 (void) d40_start(d40c); 1393 return; 1394 } 1395 1396 if (d40_queue_start(d40c) == NULL) 1397 d40c->busy = false; 1398 pm_runtime_mark_last_busy(d40c->base->dev); 1399 pm_runtime_put_autosuspend(d40c->base->dev); 1400 } 1401 1402 d40c->pending_tx++; 1403 tasklet_schedule(&d40c->tasklet); 1404 1405 } 1406 1407 static void dma_tasklet(unsigned long data) 1408 { 1409 struct d40_chan *d40c = (struct d40_chan *) data; 1410 struct d40_desc *d40d; 1411 unsigned long flags; 1412 dma_async_tx_callback callback; 1413 void *callback_param; 1414 1415 spin_lock_irqsave(&d40c->lock, flags); 1416 1417 /* Get first active entry from list */ 1418 d40d = d40_first_active_get(d40c); 1419 if (d40d == NULL) 1420 goto err; 1421 1422 if (!d40d->cyclic) 1423 dma_cookie_complete(&d40d->txd); 1424 1425 /* 1426 * If terminating a channel pending_tx is set to zero. 1427 * This prevents any finished active jobs to return to the client. 1428 */ 1429 if (d40c->pending_tx == 0) { 1430 spin_unlock_irqrestore(&d40c->lock, flags); 1431 return; 1432 } 1433 1434 /* Callback to client */ 1435 callback = d40d->txd.callback; 1436 callback_param = d40d->txd.callback_param; 1437 1438 if (!d40d->cyclic) { 1439 if (async_tx_test_ack(&d40d->txd)) { 1440 d40_desc_remove(d40d); 1441 d40_desc_free(d40c, d40d); 1442 } else { 1443 if (!d40d->is_in_client_list) { 1444 d40_desc_remove(d40d); 1445 d40_lcla_free_all(d40c, d40d); 1446 list_add_tail(&d40d->node, &d40c->client); 1447 d40d->is_in_client_list = true; 1448 } 1449 } 1450 } 1451 1452 d40c->pending_tx--; 1453 1454 if (d40c->pending_tx) 1455 tasklet_schedule(&d40c->tasklet); 1456 1457 spin_unlock_irqrestore(&d40c->lock, flags); 1458 1459 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT)) 1460 callback(callback_param); 1461 1462 return; 1463 1464 err: 1465 /* Rescue manouver if receiving double interrupts */ 1466 if (d40c->pending_tx > 0) 1467 d40c->pending_tx--; 1468 spin_unlock_irqrestore(&d40c->lock, flags); 1469 } 1470 1471 static irqreturn_t d40_handle_interrupt(int irq, void *data) 1472 { 1473 static const struct d40_interrupt_lookup il[] = { 1474 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, 1475 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, 1476 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, 1477 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, 1478 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, 1479 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, 1480 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, 1481 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, 1482 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, 1483 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, 1484 }; 1485 1486 int i; 1487 u32 regs[ARRAY_SIZE(il)]; 1488 u32 idx; 1489 u32 row; 1490 long chan = -1; 1491 struct d40_chan *d40c; 1492 unsigned long flags; 1493 struct d40_base *base = data; 1494 1495 spin_lock_irqsave(&base->interrupt_lock, flags); 1496 1497 /* Read interrupt status of both logical and physical channels */ 1498 for (i = 0; i < ARRAY_SIZE(il); i++) 1499 regs[i] = readl(base->virtbase + il[i].src); 1500 1501 for (;;) { 1502 1503 chan = find_next_bit((unsigned long *)regs, 1504 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1); 1505 1506 /* No more set bits found? */ 1507 if (chan == BITS_PER_LONG * ARRAY_SIZE(il)) 1508 break; 1509 1510 row = chan / BITS_PER_LONG; 1511 idx = chan & (BITS_PER_LONG - 1); 1512 1513 /* ACK interrupt */ 1514 writel(1 << idx, base->virtbase + il[row].clr); 1515 1516 if (il[row].offset == D40_PHY_CHAN) 1517 d40c = base->lookup_phy_chans[idx]; 1518 else 1519 d40c = base->lookup_log_chans[il[row].offset + idx]; 1520 spin_lock(&d40c->lock); 1521 1522 if (!il[row].is_error) 1523 dma_tc_handle(d40c); 1524 else 1525 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n", 1526 chan, il[row].offset, idx); 1527 1528 spin_unlock(&d40c->lock); 1529 } 1530 1531 spin_unlock_irqrestore(&base->interrupt_lock, flags); 1532 1533 return IRQ_HANDLED; 1534 } 1535 1536 static int d40_validate_conf(struct d40_chan *d40c, 1537 struct stedma40_chan_cfg *conf) 1538 { 1539 int res = 0; 1540 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type); 1541 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type); 1542 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL; 1543 1544 if (!conf->dir) { 1545 chan_err(d40c, "Invalid direction.\n"); 1546 res = -EINVAL; 1547 } 1548 1549 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY && 1550 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 && 1551 d40c->runtime_addr == 0) { 1552 1553 chan_err(d40c, "Invalid TX channel address (%d)\n", 1554 conf->dst_dev_type); 1555 res = -EINVAL; 1556 } 1557 1558 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY && 1559 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 && 1560 d40c->runtime_addr == 0) { 1561 chan_err(d40c, "Invalid RX channel address (%d)\n", 1562 conf->src_dev_type); 1563 res = -EINVAL; 1564 } 1565 1566 if (conf->dir == STEDMA40_MEM_TO_PERIPH && 1567 dst_event_group == STEDMA40_DEV_DST_MEMORY) { 1568 chan_err(d40c, "Invalid dst\n"); 1569 res = -EINVAL; 1570 } 1571 1572 if (conf->dir == STEDMA40_PERIPH_TO_MEM && 1573 src_event_group == STEDMA40_DEV_SRC_MEMORY) { 1574 chan_err(d40c, "Invalid src\n"); 1575 res = -EINVAL; 1576 } 1577 1578 if (src_event_group == STEDMA40_DEV_SRC_MEMORY && 1579 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) { 1580 chan_err(d40c, "No event line\n"); 1581 res = -EINVAL; 1582 } 1583 1584 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH && 1585 (src_event_group != dst_event_group)) { 1586 chan_err(d40c, "Invalid event group\n"); 1587 res = -EINVAL; 1588 } 1589 1590 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) { 1591 /* 1592 * DMAC HW supports it. Will be added to this driver, 1593 * in case any dma client requires it. 1594 */ 1595 chan_err(d40c, "periph to periph not supported\n"); 1596 res = -EINVAL; 1597 } 1598 1599 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) * 1600 (1 << conf->src_info.data_width) != 1601 d40_psize_2_burst_size(is_log, conf->dst_info.psize) * 1602 (1 << conf->dst_info.data_width)) { 1603 /* 1604 * The DMAC hardware only supports 1605 * src (burst x width) == dst (burst x width) 1606 */ 1607 1608 chan_err(d40c, "src (burst x width) != dst (burst x width)\n"); 1609 res = -EINVAL; 1610 } 1611 1612 return res; 1613 } 1614 1615 static bool d40_alloc_mask_set(struct d40_phy_res *phy, 1616 bool is_src, int log_event_line, bool is_log, 1617 bool *first_user) 1618 { 1619 unsigned long flags; 1620 spin_lock_irqsave(&phy->lock, flags); 1621 1622 *first_user = ((phy->allocated_src | phy->allocated_dst) 1623 == D40_ALLOC_FREE); 1624 1625 if (!is_log) { 1626 /* Physical interrupts are masked per physical full channel */ 1627 if (phy->allocated_src == D40_ALLOC_FREE && 1628 phy->allocated_dst == D40_ALLOC_FREE) { 1629 phy->allocated_dst = D40_ALLOC_PHY; 1630 phy->allocated_src = D40_ALLOC_PHY; 1631 goto found; 1632 } else 1633 goto not_found; 1634 } 1635 1636 /* Logical channel */ 1637 if (is_src) { 1638 if (phy->allocated_src == D40_ALLOC_PHY) 1639 goto not_found; 1640 1641 if (phy->allocated_src == D40_ALLOC_FREE) 1642 phy->allocated_src = D40_ALLOC_LOG_FREE; 1643 1644 if (!(phy->allocated_src & (1 << log_event_line))) { 1645 phy->allocated_src |= 1 << log_event_line; 1646 goto found; 1647 } else 1648 goto not_found; 1649 } else { 1650 if (phy->allocated_dst == D40_ALLOC_PHY) 1651 goto not_found; 1652 1653 if (phy->allocated_dst == D40_ALLOC_FREE) 1654 phy->allocated_dst = D40_ALLOC_LOG_FREE; 1655 1656 if (!(phy->allocated_dst & (1 << log_event_line))) { 1657 phy->allocated_dst |= 1 << log_event_line; 1658 goto found; 1659 } else 1660 goto not_found; 1661 } 1662 1663 not_found: 1664 spin_unlock_irqrestore(&phy->lock, flags); 1665 return false; 1666 found: 1667 spin_unlock_irqrestore(&phy->lock, flags); 1668 return true; 1669 } 1670 1671 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, 1672 int log_event_line) 1673 { 1674 unsigned long flags; 1675 bool is_free = false; 1676 1677 spin_lock_irqsave(&phy->lock, flags); 1678 if (!log_event_line) { 1679 phy->allocated_dst = D40_ALLOC_FREE; 1680 phy->allocated_src = D40_ALLOC_FREE; 1681 is_free = true; 1682 goto out; 1683 } 1684 1685 /* Logical channel */ 1686 if (is_src) { 1687 phy->allocated_src &= ~(1 << log_event_line); 1688 if (phy->allocated_src == D40_ALLOC_LOG_FREE) 1689 phy->allocated_src = D40_ALLOC_FREE; 1690 } else { 1691 phy->allocated_dst &= ~(1 << log_event_line); 1692 if (phy->allocated_dst == D40_ALLOC_LOG_FREE) 1693 phy->allocated_dst = D40_ALLOC_FREE; 1694 } 1695 1696 is_free = ((phy->allocated_src | phy->allocated_dst) == 1697 D40_ALLOC_FREE); 1698 1699 out: 1700 spin_unlock_irqrestore(&phy->lock, flags); 1701 1702 return is_free; 1703 } 1704 1705 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user) 1706 { 1707 int dev_type; 1708 int event_group; 1709 int event_line; 1710 struct d40_phy_res *phys; 1711 int i; 1712 int j; 1713 int log_num; 1714 bool is_src; 1715 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL; 1716 1717 phys = d40c->base->phy_res; 1718 1719 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { 1720 dev_type = d40c->dma_cfg.src_dev_type; 1721 log_num = 2 * dev_type; 1722 is_src = true; 1723 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || 1724 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { 1725 /* dst event lines are used for logical memcpy */ 1726 dev_type = d40c->dma_cfg.dst_dev_type; 1727 log_num = 2 * dev_type + 1; 1728 is_src = false; 1729 } else 1730 return -EINVAL; 1731 1732 event_group = D40_TYPE_TO_GROUP(dev_type); 1733 event_line = D40_TYPE_TO_EVENT(dev_type); 1734 1735 if (!is_log) { 1736 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { 1737 /* Find physical half channel */ 1738 for (i = 0; i < d40c->base->num_phy_chans; i++) { 1739 1740 if (d40_alloc_mask_set(&phys[i], is_src, 1741 0, is_log, 1742 first_phy_user)) 1743 goto found_phy; 1744 } 1745 } else 1746 for (j = 0; j < d40c->base->num_phy_chans; j += 8) { 1747 int phy_num = j + event_group * 2; 1748 for (i = phy_num; i < phy_num + 2; i++) { 1749 if (d40_alloc_mask_set(&phys[i], 1750 is_src, 1751 0, 1752 is_log, 1753 first_phy_user)) 1754 goto found_phy; 1755 } 1756 } 1757 return -EINVAL; 1758 found_phy: 1759 d40c->phy_chan = &phys[i]; 1760 d40c->log_num = D40_PHY_CHAN; 1761 goto out; 1762 } 1763 if (dev_type == -1) 1764 return -EINVAL; 1765 1766 /* Find logical channel */ 1767 for (j = 0; j < d40c->base->num_phy_chans; j += 8) { 1768 int phy_num = j + event_group * 2; 1769 1770 if (d40c->dma_cfg.use_fixed_channel) { 1771 i = d40c->dma_cfg.phy_channel; 1772 1773 if ((i != phy_num) && (i != phy_num + 1)) { 1774 dev_err(chan2dev(d40c), 1775 "invalid fixed phy channel %d\n", i); 1776 return -EINVAL; 1777 } 1778 1779 if (d40_alloc_mask_set(&phys[i], is_src, event_line, 1780 is_log, first_phy_user)) 1781 goto found_log; 1782 1783 dev_err(chan2dev(d40c), 1784 "could not allocate fixed phy channel %d\n", i); 1785 return -EINVAL; 1786 } 1787 1788 /* 1789 * Spread logical channels across all available physical rather 1790 * than pack every logical channel at the first available phy 1791 * channels. 1792 */ 1793 if (is_src) { 1794 for (i = phy_num; i < phy_num + 2; i++) { 1795 if (d40_alloc_mask_set(&phys[i], is_src, 1796 event_line, is_log, 1797 first_phy_user)) 1798 goto found_log; 1799 } 1800 } else { 1801 for (i = phy_num + 1; i >= phy_num; i--) { 1802 if (d40_alloc_mask_set(&phys[i], is_src, 1803 event_line, is_log, 1804 first_phy_user)) 1805 goto found_log; 1806 } 1807 } 1808 } 1809 return -EINVAL; 1810 1811 found_log: 1812 d40c->phy_chan = &phys[i]; 1813 d40c->log_num = log_num; 1814 out: 1815 1816 if (is_log) 1817 d40c->base->lookup_log_chans[d40c->log_num] = d40c; 1818 else 1819 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; 1820 1821 return 0; 1822 1823 } 1824 1825 static int d40_config_memcpy(struct d40_chan *d40c) 1826 { 1827 dma_cap_mask_t cap = d40c->chan.device->cap_mask; 1828 1829 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { 1830 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log; 1831 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY; 1832 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data-> 1833 memcpy[d40c->chan.chan_id]; 1834 1835 } else if (dma_has_cap(DMA_MEMCPY, cap) && 1836 dma_has_cap(DMA_SLAVE, cap)) { 1837 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy; 1838 } else { 1839 chan_err(d40c, "No memcpy\n"); 1840 return -EINVAL; 1841 } 1842 1843 return 0; 1844 } 1845 1846 static int d40_free_dma(struct d40_chan *d40c) 1847 { 1848 1849 int res = 0; 1850 u32 event; 1851 struct d40_phy_res *phy = d40c->phy_chan; 1852 bool is_src; 1853 1854 /* Terminate all queued and active transfers */ 1855 d40_term_all(d40c); 1856 1857 if (phy == NULL) { 1858 chan_err(d40c, "phy == null\n"); 1859 return -EINVAL; 1860 } 1861 1862 if (phy->allocated_src == D40_ALLOC_FREE && 1863 phy->allocated_dst == D40_ALLOC_FREE) { 1864 chan_err(d40c, "channel already free\n"); 1865 return -EINVAL; 1866 } 1867 1868 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || 1869 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { 1870 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); 1871 is_src = false; 1872 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { 1873 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); 1874 is_src = true; 1875 } else { 1876 chan_err(d40c, "Unknown direction\n"); 1877 return -EINVAL; 1878 } 1879 1880 pm_runtime_get_sync(d40c->base->dev); 1881 res = d40_channel_execute_command(d40c, D40_DMA_STOP); 1882 if (res) { 1883 chan_err(d40c, "stop failed\n"); 1884 goto out; 1885 } 1886 1887 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0); 1888 1889 if (chan_is_logical(d40c)) 1890 d40c->base->lookup_log_chans[d40c->log_num] = NULL; 1891 else 1892 d40c->base->lookup_phy_chans[phy->num] = NULL; 1893 1894 if (d40c->busy) { 1895 pm_runtime_mark_last_busy(d40c->base->dev); 1896 pm_runtime_put_autosuspend(d40c->base->dev); 1897 } 1898 1899 d40c->busy = false; 1900 d40c->phy_chan = NULL; 1901 d40c->configured = false; 1902 out: 1903 1904 pm_runtime_mark_last_busy(d40c->base->dev); 1905 pm_runtime_put_autosuspend(d40c->base->dev); 1906 return res; 1907 } 1908 1909 static bool d40_is_paused(struct d40_chan *d40c) 1910 { 1911 void __iomem *chanbase = chan_base(d40c); 1912 bool is_paused = false; 1913 unsigned long flags; 1914 void __iomem *active_reg; 1915 u32 status; 1916 u32 event; 1917 1918 spin_lock_irqsave(&d40c->lock, flags); 1919 1920 if (chan_is_physical(d40c)) { 1921 if (d40c->phy_chan->num % 2 == 0) 1922 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; 1923 else 1924 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; 1925 1926 status = (readl(active_reg) & 1927 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 1928 D40_CHAN_POS(d40c->phy_chan->num); 1929 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) 1930 is_paused = true; 1931 1932 goto _exit; 1933 } 1934 1935 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || 1936 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { 1937 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); 1938 status = readl(chanbase + D40_CHAN_REG_SDLNK); 1939 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { 1940 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); 1941 status = readl(chanbase + D40_CHAN_REG_SSLNK); 1942 } else { 1943 chan_err(d40c, "Unknown direction\n"); 1944 goto _exit; 1945 } 1946 1947 status = (status & D40_EVENTLINE_MASK(event)) >> 1948 D40_EVENTLINE_POS(event); 1949 1950 if (status != D40_DMA_RUN) 1951 is_paused = true; 1952 _exit: 1953 spin_unlock_irqrestore(&d40c->lock, flags); 1954 return is_paused; 1955 1956 } 1957 1958 1959 static u32 stedma40_residue(struct dma_chan *chan) 1960 { 1961 struct d40_chan *d40c = 1962 container_of(chan, struct d40_chan, chan); 1963 u32 bytes_left; 1964 unsigned long flags; 1965 1966 spin_lock_irqsave(&d40c->lock, flags); 1967 bytes_left = d40_residue(d40c); 1968 spin_unlock_irqrestore(&d40c->lock, flags); 1969 1970 return bytes_left; 1971 } 1972 1973 static int 1974 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc, 1975 struct scatterlist *sg_src, struct scatterlist *sg_dst, 1976 unsigned int sg_len, dma_addr_t src_dev_addr, 1977 dma_addr_t dst_dev_addr) 1978 { 1979 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 1980 struct stedma40_half_channel_info *src_info = &cfg->src_info; 1981 struct stedma40_half_channel_info *dst_info = &cfg->dst_info; 1982 int ret; 1983 1984 ret = d40_log_sg_to_lli(sg_src, sg_len, 1985 src_dev_addr, 1986 desc->lli_log.src, 1987 chan->log_def.lcsp1, 1988 src_info->data_width, 1989 dst_info->data_width); 1990 1991 ret = d40_log_sg_to_lli(sg_dst, sg_len, 1992 dst_dev_addr, 1993 desc->lli_log.dst, 1994 chan->log_def.lcsp3, 1995 dst_info->data_width, 1996 src_info->data_width); 1997 1998 return ret < 0 ? ret : 0; 1999 } 2000 2001 static int 2002 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc, 2003 struct scatterlist *sg_src, struct scatterlist *sg_dst, 2004 unsigned int sg_len, dma_addr_t src_dev_addr, 2005 dma_addr_t dst_dev_addr) 2006 { 2007 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 2008 struct stedma40_half_channel_info *src_info = &cfg->src_info; 2009 struct stedma40_half_channel_info *dst_info = &cfg->dst_info; 2010 unsigned long flags = 0; 2011 int ret; 2012 2013 if (desc->cyclic) 2014 flags |= LLI_CYCLIC | LLI_TERM_INT; 2015 2016 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr, 2017 desc->lli_phy.src, 2018 virt_to_phys(desc->lli_phy.src), 2019 chan->src_def_cfg, 2020 src_info, dst_info, flags); 2021 2022 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr, 2023 desc->lli_phy.dst, 2024 virt_to_phys(desc->lli_phy.dst), 2025 chan->dst_def_cfg, 2026 dst_info, src_info, flags); 2027 2028 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr, 2029 desc->lli_pool.size, DMA_TO_DEVICE); 2030 2031 return ret < 0 ? ret : 0; 2032 } 2033 2034 2035 static struct d40_desc * 2036 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg, 2037 unsigned int sg_len, unsigned long dma_flags) 2038 { 2039 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 2040 struct d40_desc *desc; 2041 int ret; 2042 2043 desc = d40_desc_get(chan); 2044 if (!desc) 2045 return NULL; 2046 2047 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width, 2048 cfg->dst_info.data_width); 2049 if (desc->lli_len < 0) { 2050 chan_err(chan, "Unaligned size\n"); 2051 goto err; 2052 } 2053 2054 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len); 2055 if (ret < 0) { 2056 chan_err(chan, "Could not allocate lli\n"); 2057 goto err; 2058 } 2059 2060 2061 desc->lli_current = 0; 2062 desc->txd.flags = dma_flags; 2063 desc->txd.tx_submit = d40_tx_submit; 2064 2065 dma_async_tx_descriptor_init(&desc->txd, &chan->chan); 2066 2067 return desc; 2068 2069 err: 2070 d40_desc_free(chan, desc); 2071 return NULL; 2072 } 2073 2074 static dma_addr_t 2075 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction) 2076 { 2077 struct stedma40_platform_data *plat = chan->base->plat_data; 2078 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 2079 dma_addr_t addr = 0; 2080 2081 if (chan->runtime_addr) 2082 return chan->runtime_addr; 2083 2084 if (direction == DMA_DEV_TO_MEM) 2085 addr = plat->dev_rx[cfg->src_dev_type]; 2086 else if (direction == DMA_MEM_TO_DEV) 2087 addr = plat->dev_tx[cfg->dst_dev_type]; 2088 2089 return addr; 2090 } 2091 2092 static struct dma_async_tx_descriptor * 2093 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src, 2094 struct scatterlist *sg_dst, unsigned int sg_len, 2095 enum dma_transfer_direction direction, unsigned long dma_flags) 2096 { 2097 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan); 2098 dma_addr_t src_dev_addr = 0; 2099 dma_addr_t dst_dev_addr = 0; 2100 struct d40_desc *desc; 2101 unsigned long flags; 2102 int ret; 2103 2104 if (!chan->phy_chan) { 2105 chan_err(chan, "Cannot prepare unallocated channel\n"); 2106 return NULL; 2107 } 2108 2109 2110 spin_lock_irqsave(&chan->lock, flags); 2111 2112 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags); 2113 if (desc == NULL) 2114 goto err; 2115 2116 if (sg_next(&sg_src[sg_len - 1]) == sg_src) 2117 desc->cyclic = true; 2118 2119 if (direction != DMA_TRANS_NONE) { 2120 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction); 2121 2122 if (direction == DMA_DEV_TO_MEM) 2123 src_dev_addr = dev_addr; 2124 else if (direction == DMA_MEM_TO_DEV) 2125 dst_dev_addr = dev_addr; 2126 } 2127 2128 if (chan_is_logical(chan)) 2129 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst, 2130 sg_len, src_dev_addr, dst_dev_addr); 2131 else 2132 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst, 2133 sg_len, src_dev_addr, dst_dev_addr); 2134 2135 if (ret) { 2136 chan_err(chan, "Failed to prepare %s sg job: %d\n", 2137 chan_is_logical(chan) ? "log" : "phy", ret); 2138 goto err; 2139 } 2140 2141 /* 2142 * add descriptor to the prepare queue in order to be able 2143 * to free them later in terminate_all 2144 */ 2145 list_add_tail(&desc->node, &chan->prepare_queue); 2146 2147 spin_unlock_irqrestore(&chan->lock, flags); 2148 2149 return &desc->txd; 2150 2151 err: 2152 if (desc) 2153 d40_desc_free(chan, desc); 2154 spin_unlock_irqrestore(&chan->lock, flags); 2155 return NULL; 2156 } 2157 2158 bool stedma40_filter(struct dma_chan *chan, void *data) 2159 { 2160 struct stedma40_chan_cfg *info = data; 2161 struct d40_chan *d40c = 2162 container_of(chan, struct d40_chan, chan); 2163 int err; 2164 2165 if (data) { 2166 err = d40_validate_conf(d40c, info); 2167 if (!err) 2168 d40c->dma_cfg = *info; 2169 } else 2170 err = d40_config_memcpy(d40c); 2171 2172 if (!err) 2173 d40c->configured = true; 2174 2175 return err == 0; 2176 } 2177 EXPORT_SYMBOL(stedma40_filter); 2178 2179 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src) 2180 { 2181 bool realtime = d40c->dma_cfg.realtime; 2182 bool highprio = d40c->dma_cfg.high_priority; 2183 u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1; 2184 u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1; 2185 u32 event = D40_TYPE_TO_EVENT(dev_type); 2186 u32 group = D40_TYPE_TO_GROUP(dev_type); 2187 u32 bit = 1 << event; 2188 2189 /* Destination event lines are stored in the upper halfword */ 2190 if (!src) 2191 bit <<= 16; 2192 2193 writel(bit, d40c->base->virtbase + prioreg + group * 4); 2194 writel(bit, d40c->base->virtbase + rtreg + group * 4); 2195 } 2196 2197 static void d40_set_prio_realtime(struct d40_chan *d40c) 2198 { 2199 if (d40c->base->rev < 3) 2200 return; 2201 2202 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || 2203 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) 2204 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true); 2205 2206 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) || 2207 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) 2208 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false); 2209 } 2210 2211 /* DMA ENGINE functions */ 2212 static int d40_alloc_chan_resources(struct dma_chan *chan) 2213 { 2214 int err; 2215 unsigned long flags; 2216 struct d40_chan *d40c = 2217 container_of(chan, struct d40_chan, chan); 2218 bool is_free_phy; 2219 spin_lock_irqsave(&d40c->lock, flags); 2220 2221 dma_cookie_init(chan); 2222 2223 /* If no dma configuration is set use default configuration (memcpy) */ 2224 if (!d40c->configured) { 2225 err = d40_config_memcpy(d40c); 2226 if (err) { 2227 chan_err(d40c, "Failed to configure memcpy channel\n"); 2228 goto fail; 2229 } 2230 } 2231 2232 err = d40_allocate_channel(d40c, &is_free_phy); 2233 if (err) { 2234 chan_err(d40c, "Failed to allocate channel\n"); 2235 d40c->configured = false; 2236 goto fail; 2237 } 2238 2239 pm_runtime_get_sync(d40c->base->dev); 2240 /* Fill in basic CFG register values */ 2241 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg, 2242 &d40c->dst_def_cfg, chan_is_logical(d40c)); 2243 2244 d40_set_prio_realtime(d40c); 2245 2246 if (chan_is_logical(d40c)) { 2247 d40_log_cfg(&d40c->dma_cfg, 2248 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); 2249 2250 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) 2251 d40c->lcpa = d40c->base->lcpa_base + 2252 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE; 2253 else 2254 d40c->lcpa = d40c->base->lcpa_base + 2255 d40c->dma_cfg.dst_dev_type * 2256 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; 2257 } 2258 2259 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n", 2260 chan_is_logical(d40c) ? "logical" : "physical", 2261 d40c->phy_chan->num, 2262 d40c->dma_cfg.use_fixed_channel ? ", fixed" : ""); 2263 2264 2265 /* 2266 * Only write channel configuration to the DMA if the physical 2267 * resource is free. In case of multiple logical channels 2268 * on the same physical resource, only the first write is necessary. 2269 */ 2270 if (is_free_phy) 2271 d40_config_write(d40c); 2272 fail: 2273 pm_runtime_mark_last_busy(d40c->base->dev); 2274 pm_runtime_put_autosuspend(d40c->base->dev); 2275 spin_unlock_irqrestore(&d40c->lock, flags); 2276 return err; 2277 } 2278 2279 static void d40_free_chan_resources(struct dma_chan *chan) 2280 { 2281 struct d40_chan *d40c = 2282 container_of(chan, struct d40_chan, chan); 2283 int err; 2284 unsigned long flags; 2285 2286 if (d40c->phy_chan == NULL) { 2287 chan_err(d40c, "Cannot free unallocated channel\n"); 2288 return; 2289 } 2290 2291 2292 spin_lock_irqsave(&d40c->lock, flags); 2293 2294 err = d40_free_dma(d40c); 2295 2296 if (err) 2297 chan_err(d40c, "Failed to free channel\n"); 2298 spin_unlock_irqrestore(&d40c->lock, flags); 2299 } 2300 2301 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, 2302 dma_addr_t dst, 2303 dma_addr_t src, 2304 size_t size, 2305 unsigned long dma_flags) 2306 { 2307 struct scatterlist dst_sg; 2308 struct scatterlist src_sg; 2309 2310 sg_init_table(&dst_sg, 1); 2311 sg_init_table(&src_sg, 1); 2312 2313 sg_dma_address(&dst_sg) = dst; 2314 sg_dma_address(&src_sg) = src; 2315 2316 sg_dma_len(&dst_sg) = size; 2317 sg_dma_len(&src_sg) = size; 2318 2319 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags); 2320 } 2321 2322 static struct dma_async_tx_descriptor * 2323 d40_prep_memcpy_sg(struct dma_chan *chan, 2324 struct scatterlist *dst_sg, unsigned int dst_nents, 2325 struct scatterlist *src_sg, unsigned int src_nents, 2326 unsigned long dma_flags) 2327 { 2328 if (dst_nents != src_nents) 2329 return NULL; 2330 2331 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags); 2332 } 2333 2334 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan, 2335 struct scatterlist *sgl, 2336 unsigned int sg_len, 2337 enum dma_transfer_direction direction, 2338 unsigned long dma_flags, 2339 void *context) 2340 { 2341 if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV) 2342 return NULL; 2343 2344 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags); 2345 } 2346 2347 static struct dma_async_tx_descriptor * 2348 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, 2349 size_t buf_len, size_t period_len, 2350 enum dma_transfer_direction direction, void *context) 2351 { 2352 unsigned int periods = buf_len / period_len; 2353 struct dma_async_tx_descriptor *txd; 2354 struct scatterlist *sg; 2355 int i; 2356 2357 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT); 2358 for (i = 0; i < periods; i++) { 2359 sg_dma_address(&sg[i]) = dma_addr; 2360 sg_dma_len(&sg[i]) = period_len; 2361 dma_addr += period_len; 2362 } 2363 2364 sg[periods].offset = 0; 2365 sg_dma_len(&sg[periods]) = 0; 2366 sg[periods].page_link = 2367 ((unsigned long)sg | 0x01) & ~0x02; 2368 2369 txd = d40_prep_sg(chan, sg, sg, periods, direction, 2370 DMA_PREP_INTERRUPT); 2371 2372 kfree(sg); 2373 2374 return txd; 2375 } 2376 2377 static enum dma_status d40_tx_status(struct dma_chan *chan, 2378 dma_cookie_t cookie, 2379 struct dma_tx_state *txstate) 2380 { 2381 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2382 enum dma_status ret; 2383 2384 if (d40c->phy_chan == NULL) { 2385 chan_err(d40c, "Cannot read status of unallocated channel\n"); 2386 return -EINVAL; 2387 } 2388 2389 ret = dma_cookie_status(chan, cookie, txstate); 2390 if (ret != DMA_SUCCESS) 2391 dma_set_residue(txstate, stedma40_residue(chan)); 2392 2393 if (d40_is_paused(d40c)) 2394 ret = DMA_PAUSED; 2395 2396 return ret; 2397 } 2398 2399 static void d40_issue_pending(struct dma_chan *chan) 2400 { 2401 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2402 unsigned long flags; 2403 2404 if (d40c->phy_chan == NULL) { 2405 chan_err(d40c, "Channel is not allocated!\n"); 2406 return; 2407 } 2408 2409 spin_lock_irqsave(&d40c->lock, flags); 2410 2411 list_splice_tail_init(&d40c->pending_queue, &d40c->queue); 2412 2413 /* Busy means that queued jobs are already being processed */ 2414 if (!d40c->busy) 2415 (void) d40_queue_start(d40c); 2416 2417 spin_unlock_irqrestore(&d40c->lock, flags); 2418 } 2419 2420 static void d40_terminate_all(struct dma_chan *chan) 2421 { 2422 unsigned long flags; 2423 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2424 int ret; 2425 2426 spin_lock_irqsave(&d40c->lock, flags); 2427 2428 pm_runtime_get_sync(d40c->base->dev); 2429 ret = d40_channel_execute_command(d40c, D40_DMA_STOP); 2430 if (ret) 2431 chan_err(d40c, "Failed to stop channel\n"); 2432 2433 d40_term_all(d40c); 2434 pm_runtime_mark_last_busy(d40c->base->dev); 2435 pm_runtime_put_autosuspend(d40c->base->dev); 2436 if (d40c->busy) { 2437 pm_runtime_mark_last_busy(d40c->base->dev); 2438 pm_runtime_put_autosuspend(d40c->base->dev); 2439 } 2440 d40c->busy = false; 2441 2442 spin_unlock_irqrestore(&d40c->lock, flags); 2443 } 2444 2445 static int 2446 dma40_config_to_halfchannel(struct d40_chan *d40c, 2447 struct stedma40_half_channel_info *info, 2448 enum dma_slave_buswidth width, 2449 u32 maxburst) 2450 { 2451 enum stedma40_periph_data_width addr_width; 2452 int psize; 2453 2454 switch (width) { 2455 case DMA_SLAVE_BUSWIDTH_1_BYTE: 2456 addr_width = STEDMA40_BYTE_WIDTH; 2457 break; 2458 case DMA_SLAVE_BUSWIDTH_2_BYTES: 2459 addr_width = STEDMA40_HALFWORD_WIDTH; 2460 break; 2461 case DMA_SLAVE_BUSWIDTH_4_BYTES: 2462 addr_width = STEDMA40_WORD_WIDTH; 2463 break; 2464 case DMA_SLAVE_BUSWIDTH_8_BYTES: 2465 addr_width = STEDMA40_DOUBLEWORD_WIDTH; 2466 break; 2467 default: 2468 dev_err(d40c->base->dev, 2469 "illegal peripheral address width " 2470 "requested (%d)\n", 2471 width); 2472 return -EINVAL; 2473 } 2474 2475 if (chan_is_logical(d40c)) { 2476 if (maxburst >= 16) 2477 psize = STEDMA40_PSIZE_LOG_16; 2478 else if (maxburst >= 8) 2479 psize = STEDMA40_PSIZE_LOG_8; 2480 else if (maxburst >= 4) 2481 psize = STEDMA40_PSIZE_LOG_4; 2482 else 2483 psize = STEDMA40_PSIZE_LOG_1; 2484 } else { 2485 if (maxburst >= 16) 2486 psize = STEDMA40_PSIZE_PHY_16; 2487 else if (maxburst >= 8) 2488 psize = STEDMA40_PSIZE_PHY_8; 2489 else if (maxburst >= 4) 2490 psize = STEDMA40_PSIZE_PHY_4; 2491 else 2492 psize = STEDMA40_PSIZE_PHY_1; 2493 } 2494 2495 info->data_width = addr_width; 2496 info->psize = psize; 2497 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL; 2498 2499 return 0; 2500 } 2501 2502 /* Runtime reconfiguration extension */ 2503 static int d40_set_runtime_config(struct dma_chan *chan, 2504 struct dma_slave_config *config) 2505 { 2506 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2507 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; 2508 enum dma_slave_buswidth src_addr_width, dst_addr_width; 2509 dma_addr_t config_addr; 2510 u32 src_maxburst, dst_maxburst; 2511 int ret; 2512 2513 src_addr_width = config->src_addr_width; 2514 src_maxburst = config->src_maxburst; 2515 dst_addr_width = config->dst_addr_width; 2516 dst_maxburst = config->dst_maxburst; 2517 2518 if (config->direction == DMA_DEV_TO_MEM) { 2519 dma_addr_t dev_addr_rx = 2520 d40c->base->plat_data->dev_rx[cfg->src_dev_type]; 2521 2522 config_addr = config->src_addr; 2523 if (dev_addr_rx) 2524 dev_dbg(d40c->base->dev, 2525 "channel has a pre-wired RX address %08x " 2526 "overriding with %08x\n", 2527 dev_addr_rx, config_addr); 2528 if (cfg->dir != STEDMA40_PERIPH_TO_MEM) 2529 dev_dbg(d40c->base->dev, 2530 "channel was not configured for peripheral " 2531 "to memory transfer (%d) overriding\n", 2532 cfg->dir); 2533 cfg->dir = STEDMA40_PERIPH_TO_MEM; 2534 2535 /* Configure the memory side */ 2536 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 2537 dst_addr_width = src_addr_width; 2538 if (dst_maxburst == 0) 2539 dst_maxburst = src_maxburst; 2540 2541 } else if (config->direction == DMA_MEM_TO_DEV) { 2542 dma_addr_t dev_addr_tx = 2543 d40c->base->plat_data->dev_tx[cfg->dst_dev_type]; 2544 2545 config_addr = config->dst_addr; 2546 if (dev_addr_tx) 2547 dev_dbg(d40c->base->dev, 2548 "channel has a pre-wired TX address %08x " 2549 "overriding with %08x\n", 2550 dev_addr_tx, config_addr); 2551 if (cfg->dir != STEDMA40_MEM_TO_PERIPH) 2552 dev_dbg(d40c->base->dev, 2553 "channel was not configured for memory " 2554 "to peripheral transfer (%d) overriding\n", 2555 cfg->dir); 2556 cfg->dir = STEDMA40_MEM_TO_PERIPH; 2557 2558 /* Configure the memory side */ 2559 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 2560 src_addr_width = dst_addr_width; 2561 if (src_maxburst == 0) 2562 src_maxburst = dst_maxburst; 2563 } else { 2564 dev_err(d40c->base->dev, 2565 "unrecognized channel direction %d\n", 2566 config->direction); 2567 return -EINVAL; 2568 } 2569 2570 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) { 2571 dev_err(d40c->base->dev, 2572 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n", 2573 src_maxburst, 2574 src_addr_width, 2575 dst_maxburst, 2576 dst_addr_width); 2577 return -EINVAL; 2578 } 2579 2580 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info, 2581 src_addr_width, 2582 src_maxburst); 2583 if (ret) 2584 return ret; 2585 2586 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info, 2587 dst_addr_width, 2588 dst_maxburst); 2589 if (ret) 2590 return ret; 2591 2592 /* Fill in register values */ 2593 if (chan_is_logical(d40c)) 2594 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); 2595 else 2596 d40_phy_cfg(cfg, &d40c->src_def_cfg, 2597 &d40c->dst_def_cfg, false); 2598 2599 /* These settings will take precedence later */ 2600 d40c->runtime_addr = config_addr; 2601 d40c->runtime_direction = config->direction; 2602 dev_dbg(d40c->base->dev, 2603 "configured channel %s for %s, data width %d/%d, " 2604 "maxburst %d/%d elements, LE, no flow control\n", 2605 dma_chan_name(chan), 2606 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX", 2607 src_addr_width, dst_addr_width, 2608 src_maxburst, dst_maxburst); 2609 2610 return 0; 2611 } 2612 2613 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 2614 unsigned long arg) 2615 { 2616 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2617 2618 if (d40c->phy_chan == NULL) { 2619 chan_err(d40c, "Channel is not allocated!\n"); 2620 return -EINVAL; 2621 } 2622 2623 switch (cmd) { 2624 case DMA_TERMINATE_ALL: 2625 d40_terminate_all(chan); 2626 return 0; 2627 case DMA_PAUSE: 2628 return d40_pause(d40c); 2629 case DMA_RESUME: 2630 return d40_resume(d40c); 2631 case DMA_SLAVE_CONFIG: 2632 return d40_set_runtime_config(chan, 2633 (struct dma_slave_config *) arg); 2634 default: 2635 break; 2636 } 2637 2638 /* Other commands are unimplemented */ 2639 return -ENXIO; 2640 } 2641 2642 /* Initialization functions */ 2643 2644 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, 2645 struct d40_chan *chans, int offset, 2646 int num_chans) 2647 { 2648 int i = 0; 2649 struct d40_chan *d40c; 2650 2651 INIT_LIST_HEAD(&dma->channels); 2652 2653 for (i = offset; i < offset + num_chans; i++) { 2654 d40c = &chans[i]; 2655 d40c->base = base; 2656 d40c->chan.device = dma; 2657 2658 spin_lock_init(&d40c->lock); 2659 2660 d40c->log_num = D40_PHY_CHAN; 2661 2662 INIT_LIST_HEAD(&d40c->active); 2663 INIT_LIST_HEAD(&d40c->queue); 2664 INIT_LIST_HEAD(&d40c->pending_queue); 2665 INIT_LIST_HEAD(&d40c->client); 2666 INIT_LIST_HEAD(&d40c->prepare_queue); 2667 2668 tasklet_init(&d40c->tasklet, dma_tasklet, 2669 (unsigned long) d40c); 2670 2671 list_add_tail(&d40c->chan.device_node, 2672 &dma->channels); 2673 } 2674 } 2675 2676 static void d40_ops_init(struct d40_base *base, struct dma_device *dev) 2677 { 2678 if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) 2679 dev->device_prep_slave_sg = d40_prep_slave_sg; 2680 2681 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) { 2682 dev->device_prep_dma_memcpy = d40_prep_memcpy; 2683 2684 /* 2685 * This controller can only access address at even 2686 * 32bit boundaries, i.e. 2^2 2687 */ 2688 dev->copy_align = 2; 2689 } 2690 2691 if (dma_has_cap(DMA_SG, dev->cap_mask)) 2692 dev->device_prep_dma_sg = d40_prep_memcpy_sg; 2693 2694 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask)) 2695 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic; 2696 2697 dev->device_alloc_chan_resources = d40_alloc_chan_resources; 2698 dev->device_free_chan_resources = d40_free_chan_resources; 2699 dev->device_issue_pending = d40_issue_pending; 2700 dev->device_tx_status = d40_tx_status; 2701 dev->device_control = d40_control; 2702 dev->dev = base->dev; 2703 } 2704 2705 static int __init d40_dmaengine_init(struct d40_base *base, 2706 int num_reserved_chans) 2707 { 2708 int err ; 2709 2710 d40_chan_init(base, &base->dma_slave, base->log_chans, 2711 0, base->num_log_chans); 2712 2713 dma_cap_zero(base->dma_slave.cap_mask); 2714 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); 2715 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); 2716 2717 d40_ops_init(base, &base->dma_slave); 2718 2719 err = dma_async_device_register(&base->dma_slave); 2720 2721 if (err) { 2722 d40_err(base->dev, "Failed to register slave channels\n"); 2723 goto failure1; 2724 } 2725 2726 d40_chan_init(base, &base->dma_memcpy, base->log_chans, 2727 base->num_log_chans, base->plat_data->memcpy_len); 2728 2729 dma_cap_zero(base->dma_memcpy.cap_mask); 2730 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); 2731 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask); 2732 2733 d40_ops_init(base, &base->dma_memcpy); 2734 2735 err = dma_async_device_register(&base->dma_memcpy); 2736 2737 if (err) { 2738 d40_err(base->dev, 2739 "Failed to regsiter memcpy only channels\n"); 2740 goto failure2; 2741 } 2742 2743 d40_chan_init(base, &base->dma_both, base->phy_chans, 2744 0, num_reserved_chans); 2745 2746 dma_cap_zero(base->dma_both.cap_mask); 2747 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); 2748 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); 2749 dma_cap_set(DMA_SG, base->dma_both.cap_mask); 2750 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); 2751 2752 d40_ops_init(base, &base->dma_both); 2753 err = dma_async_device_register(&base->dma_both); 2754 2755 if (err) { 2756 d40_err(base->dev, 2757 "Failed to register logical and physical capable channels\n"); 2758 goto failure3; 2759 } 2760 return 0; 2761 failure3: 2762 dma_async_device_unregister(&base->dma_memcpy); 2763 failure2: 2764 dma_async_device_unregister(&base->dma_slave); 2765 failure1: 2766 return err; 2767 } 2768 2769 /* Suspend resume functionality */ 2770 #ifdef CONFIG_PM 2771 static int dma40_pm_suspend(struct device *dev) 2772 { 2773 struct platform_device *pdev = to_platform_device(dev); 2774 struct d40_base *base = platform_get_drvdata(pdev); 2775 int ret = 0; 2776 if (!pm_runtime_suspended(dev)) 2777 return -EBUSY; 2778 2779 if (base->lcpa_regulator) 2780 ret = regulator_disable(base->lcpa_regulator); 2781 return ret; 2782 } 2783 2784 static int dma40_runtime_suspend(struct device *dev) 2785 { 2786 struct platform_device *pdev = to_platform_device(dev); 2787 struct d40_base *base = platform_get_drvdata(pdev); 2788 2789 d40_save_restore_registers(base, true); 2790 2791 /* Don't disable/enable clocks for v1 due to HW bugs */ 2792 if (base->rev != 1) 2793 writel_relaxed(base->gcc_pwr_off_mask, 2794 base->virtbase + D40_DREG_GCC); 2795 2796 return 0; 2797 } 2798 2799 static int dma40_runtime_resume(struct device *dev) 2800 { 2801 struct platform_device *pdev = to_platform_device(dev); 2802 struct d40_base *base = platform_get_drvdata(pdev); 2803 2804 if (base->initialized) 2805 d40_save_restore_registers(base, false); 2806 2807 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, 2808 base->virtbase + D40_DREG_GCC); 2809 return 0; 2810 } 2811 2812 static int dma40_resume(struct device *dev) 2813 { 2814 struct platform_device *pdev = to_platform_device(dev); 2815 struct d40_base *base = platform_get_drvdata(pdev); 2816 int ret = 0; 2817 2818 if (base->lcpa_regulator) 2819 ret = regulator_enable(base->lcpa_regulator); 2820 2821 return ret; 2822 } 2823 2824 static const struct dev_pm_ops dma40_pm_ops = { 2825 .suspend = dma40_pm_suspend, 2826 .runtime_suspend = dma40_runtime_suspend, 2827 .runtime_resume = dma40_runtime_resume, 2828 .resume = dma40_resume, 2829 }; 2830 #define DMA40_PM_OPS (&dma40_pm_ops) 2831 #else 2832 #define DMA40_PM_OPS NULL 2833 #endif 2834 2835 /* Initialization functions. */ 2836 2837 static int __init d40_phy_res_init(struct d40_base *base) 2838 { 2839 int i; 2840 int num_phy_chans_avail = 0; 2841 u32 val[2]; 2842 int odd_even_bit = -2; 2843 int gcc = D40_DREG_GCC_ENA; 2844 2845 val[0] = readl(base->virtbase + D40_DREG_PRSME); 2846 val[1] = readl(base->virtbase + D40_DREG_PRSMO); 2847 2848 for (i = 0; i < base->num_phy_chans; i++) { 2849 base->phy_res[i].num = i; 2850 odd_even_bit += 2 * ((i % 2) == 0); 2851 if (((val[i % 2] >> odd_even_bit) & 3) == 1) { 2852 /* Mark security only channels as occupied */ 2853 base->phy_res[i].allocated_src = D40_ALLOC_PHY; 2854 base->phy_res[i].allocated_dst = D40_ALLOC_PHY; 2855 base->phy_res[i].reserved = true; 2856 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), 2857 D40_DREG_GCC_SRC); 2858 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), 2859 D40_DREG_GCC_DST); 2860 2861 2862 } else { 2863 base->phy_res[i].allocated_src = D40_ALLOC_FREE; 2864 base->phy_res[i].allocated_dst = D40_ALLOC_FREE; 2865 base->phy_res[i].reserved = false; 2866 num_phy_chans_avail++; 2867 } 2868 spin_lock_init(&base->phy_res[i].lock); 2869 } 2870 2871 /* Mark disabled channels as occupied */ 2872 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { 2873 int chan = base->plat_data->disabled_channels[i]; 2874 2875 base->phy_res[chan].allocated_src = D40_ALLOC_PHY; 2876 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY; 2877 base->phy_res[chan].reserved = true; 2878 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), 2879 D40_DREG_GCC_SRC); 2880 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), 2881 D40_DREG_GCC_DST); 2882 num_phy_chans_avail--; 2883 } 2884 2885 dev_info(base->dev, "%d of %d physical DMA channels available\n", 2886 num_phy_chans_avail, base->num_phy_chans); 2887 2888 /* Verify settings extended vs standard */ 2889 val[0] = readl(base->virtbase + D40_DREG_PRTYP); 2890 2891 for (i = 0; i < base->num_phy_chans; i++) { 2892 2893 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && 2894 (val[0] & 0x3) != 1) 2895 dev_info(base->dev, 2896 "[%s] INFO: channel %d is misconfigured (%d)\n", 2897 __func__, i, val[0] & 0x3); 2898 2899 val[0] = val[0] >> 2; 2900 } 2901 2902 /* 2903 * To keep things simple, Enable all clocks initially. 2904 * The clocks will get managed later post channel allocation. 2905 * The clocks for the event lines on which reserved channels exists 2906 * are not managed here. 2907 */ 2908 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); 2909 base->gcc_pwr_off_mask = gcc; 2910 2911 return num_phy_chans_avail; 2912 } 2913 2914 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) 2915 { 2916 struct stedma40_platform_data *plat_data; 2917 struct clk *clk = NULL; 2918 void __iomem *virtbase = NULL; 2919 struct resource *res = NULL; 2920 struct d40_base *base = NULL; 2921 int num_log_chans = 0; 2922 int num_phy_chans; 2923 int i; 2924 u32 pid; 2925 u32 cid; 2926 u8 rev; 2927 2928 clk = clk_get(&pdev->dev, NULL); 2929 2930 if (IS_ERR(clk)) { 2931 d40_err(&pdev->dev, "No matching clock found\n"); 2932 goto failure; 2933 } 2934 2935 clk_enable(clk); 2936 2937 /* Get IO for DMAC base address */ 2938 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); 2939 if (!res) 2940 goto failure; 2941 2942 if (request_mem_region(res->start, resource_size(res), 2943 D40_NAME " I/O base") == NULL) 2944 goto failure; 2945 2946 virtbase = ioremap(res->start, resource_size(res)); 2947 if (!virtbase) 2948 goto failure; 2949 2950 /* This is just a regular AMBA PrimeCell ID actually */ 2951 for (pid = 0, i = 0; i < 4; i++) 2952 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i) 2953 & 255) << (i * 8); 2954 for (cid = 0, i = 0; i < 4; i++) 2955 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i) 2956 & 255) << (i * 8); 2957 2958 if (cid != AMBA_CID) { 2959 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n"); 2960 goto failure; 2961 } 2962 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) { 2963 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n", 2964 AMBA_MANF_BITS(pid), 2965 AMBA_VENDOR_ST); 2966 goto failure; 2967 } 2968 /* 2969 * HW revision: 2970 * DB8500ed has revision 0 2971 * ? has revision 1 2972 * DB8500v1 has revision 2 2973 * DB8500v2 has revision 3 2974 */ 2975 rev = AMBA_REV_BITS(pid); 2976 2977 /* The number of physical channels on this HW */ 2978 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; 2979 2980 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n", 2981 rev, res->start); 2982 2983 if (rev < 2) { 2984 d40_err(&pdev->dev, "hardware revision: %d is not supported", 2985 rev); 2986 goto failure; 2987 } 2988 2989 plat_data = pdev->dev.platform_data; 2990 2991 /* Count the number of logical channels in use */ 2992 for (i = 0; i < plat_data->dev_len; i++) 2993 if (plat_data->dev_rx[i] != 0) 2994 num_log_chans++; 2995 2996 for (i = 0; i < plat_data->dev_len; i++) 2997 if (plat_data->dev_tx[i] != 0) 2998 num_log_chans++; 2999 3000 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + 3001 (num_phy_chans + num_log_chans + plat_data->memcpy_len) * 3002 sizeof(struct d40_chan), GFP_KERNEL); 3003 3004 if (base == NULL) { 3005 d40_err(&pdev->dev, "Out of memory\n"); 3006 goto failure; 3007 } 3008 3009 base->rev = rev; 3010 base->clk = clk; 3011 base->num_phy_chans = num_phy_chans; 3012 base->num_log_chans = num_log_chans; 3013 base->phy_start = res->start; 3014 base->phy_size = resource_size(res); 3015 base->virtbase = virtbase; 3016 base->plat_data = plat_data; 3017 base->dev = &pdev->dev; 3018 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); 3019 base->log_chans = &base->phy_chans[num_phy_chans]; 3020 3021 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), 3022 GFP_KERNEL); 3023 if (!base->phy_res) 3024 goto failure; 3025 3026 base->lookup_phy_chans = kzalloc(num_phy_chans * 3027 sizeof(struct d40_chan *), 3028 GFP_KERNEL); 3029 if (!base->lookup_phy_chans) 3030 goto failure; 3031 3032 if (num_log_chans + plat_data->memcpy_len) { 3033 /* 3034 * The max number of logical channels are event lines for all 3035 * src devices and dst devices 3036 */ 3037 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 * 3038 sizeof(struct d40_chan *), 3039 GFP_KERNEL); 3040 if (!base->lookup_log_chans) 3041 goto failure; 3042 } 3043 3044 base->reg_val_backup_chan = kmalloc(base->num_phy_chans * 3045 sizeof(d40_backup_regs_chan), 3046 GFP_KERNEL); 3047 if (!base->reg_val_backup_chan) 3048 goto failure; 3049 3050 base->lcla_pool.alloc_map = 3051 kzalloc(num_phy_chans * sizeof(struct d40_desc *) 3052 * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL); 3053 if (!base->lcla_pool.alloc_map) 3054 goto failure; 3055 3056 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), 3057 0, SLAB_HWCACHE_ALIGN, 3058 NULL); 3059 if (base->desc_slab == NULL) 3060 goto failure; 3061 3062 return base; 3063 3064 failure: 3065 if (!IS_ERR(clk)) { 3066 clk_disable(clk); 3067 clk_put(clk); 3068 } 3069 if (virtbase) 3070 iounmap(virtbase); 3071 if (res) 3072 release_mem_region(res->start, 3073 resource_size(res)); 3074 if (virtbase) 3075 iounmap(virtbase); 3076 3077 if (base) { 3078 kfree(base->lcla_pool.alloc_map); 3079 kfree(base->reg_val_backup_chan); 3080 kfree(base->lookup_log_chans); 3081 kfree(base->lookup_phy_chans); 3082 kfree(base->phy_res); 3083 kfree(base); 3084 } 3085 3086 return NULL; 3087 } 3088 3089 static void __init d40_hw_init(struct d40_base *base) 3090 { 3091 3092 static struct d40_reg_val dma_init_reg[] = { 3093 /* Clock every part of the DMA block from start */ 3094 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, 3095 3096 /* Interrupts on all logical channels */ 3097 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, 3098 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, 3099 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, 3100 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, 3101 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, 3102 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, 3103 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, 3104 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, 3105 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, 3106 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, 3107 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, 3108 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} 3109 }; 3110 int i; 3111 u32 prmseo[2] = {0, 0}; 3112 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; 3113 u32 pcmis = 0; 3114 u32 pcicr = 0; 3115 3116 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++) 3117 writel(dma_init_reg[i].val, 3118 base->virtbase + dma_init_reg[i].reg); 3119 3120 /* Configure all our dma channels to default settings */ 3121 for (i = 0; i < base->num_phy_chans; i++) { 3122 3123 activeo[i % 2] = activeo[i % 2] << 2; 3124 3125 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src 3126 == D40_ALLOC_PHY) { 3127 activeo[i % 2] |= 3; 3128 continue; 3129 } 3130 3131 /* Enable interrupt # */ 3132 pcmis = (pcmis << 1) | 1; 3133 3134 /* Clear interrupt # */ 3135 pcicr = (pcicr << 1) | 1; 3136 3137 /* Set channel to physical mode */ 3138 prmseo[i % 2] = prmseo[i % 2] << 2; 3139 prmseo[i % 2] |= 1; 3140 3141 } 3142 3143 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); 3144 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); 3145 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); 3146 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); 3147 3148 /* Write which interrupt to enable */ 3149 writel(pcmis, base->virtbase + D40_DREG_PCMIS); 3150 3151 /* Write which interrupt to clear */ 3152 writel(pcicr, base->virtbase + D40_DREG_PCICR); 3153 3154 } 3155 3156 static int __init d40_lcla_allocate(struct d40_base *base) 3157 { 3158 struct d40_lcla_pool *pool = &base->lcla_pool; 3159 unsigned long *page_list; 3160 int i, j; 3161 int ret = 0; 3162 3163 /* 3164 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, 3165 * To full fill this hardware requirement without wasting 256 kb 3166 * we allocate pages until we get an aligned one. 3167 */ 3168 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS, 3169 GFP_KERNEL); 3170 3171 if (!page_list) { 3172 ret = -ENOMEM; 3173 goto failure; 3174 } 3175 3176 /* Calculating how many pages that are required */ 3177 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; 3178 3179 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { 3180 page_list[i] = __get_free_pages(GFP_KERNEL, 3181 base->lcla_pool.pages); 3182 if (!page_list[i]) { 3183 3184 d40_err(base->dev, "Failed to allocate %d pages.\n", 3185 base->lcla_pool.pages); 3186 3187 for (j = 0; j < i; j++) 3188 free_pages(page_list[j], base->lcla_pool.pages); 3189 goto failure; 3190 } 3191 3192 if ((virt_to_phys((void *)page_list[i]) & 3193 (LCLA_ALIGNMENT - 1)) == 0) 3194 break; 3195 } 3196 3197 for (j = 0; j < i; j++) 3198 free_pages(page_list[j], base->lcla_pool.pages); 3199 3200 if (i < MAX_LCLA_ALLOC_ATTEMPTS) { 3201 base->lcla_pool.base = (void *)page_list[i]; 3202 } else { 3203 /* 3204 * After many attempts and no succees with finding the correct 3205 * alignment, try with allocating a big buffer. 3206 */ 3207 dev_warn(base->dev, 3208 "[%s] Failed to get %d pages @ 18 bit align.\n", 3209 __func__, base->lcla_pool.pages); 3210 base->lcla_pool.base_unaligned = kmalloc(SZ_1K * 3211 base->num_phy_chans + 3212 LCLA_ALIGNMENT, 3213 GFP_KERNEL); 3214 if (!base->lcla_pool.base_unaligned) { 3215 ret = -ENOMEM; 3216 goto failure; 3217 } 3218 3219 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, 3220 LCLA_ALIGNMENT); 3221 } 3222 3223 pool->dma_addr = dma_map_single(base->dev, pool->base, 3224 SZ_1K * base->num_phy_chans, 3225 DMA_TO_DEVICE); 3226 if (dma_mapping_error(base->dev, pool->dma_addr)) { 3227 pool->dma_addr = 0; 3228 ret = -ENOMEM; 3229 goto failure; 3230 } 3231 3232 writel(virt_to_phys(base->lcla_pool.base), 3233 base->virtbase + D40_DREG_LCLA); 3234 failure: 3235 kfree(page_list); 3236 return ret; 3237 } 3238 3239 static int __init d40_probe(struct platform_device *pdev) 3240 { 3241 int err; 3242 int ret = -ENOENT; 3243 struct d40_base *base; 3244 struct resource *res = NULL; 3245 int num_reserved_chans; 3246 u32 val; 3247 3248 base = d40_hw_detect_init(pdev); 3249 3250 if (!base) 3251 goto failure; 3252 3253 num_reserved_chans = d40_phy_res_init(base); 3254 3255 platform_set_drvdata(pdev, base); 3256 3257 spin_lock_init(&base->interrupt_lock); 3258 spin_lock_init(&base->execmd_lock); 3259 3260 /* Get IO for logical channel parameter address */ 3261 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); 3262 if (!res) { 3263 ret = -ENOENT; 3264 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n"); 3265 goto failure; 3266 } 3267 base->lcpa_size = resource_size(res); 3268 base->phy_lcpa = res->start; 3269 3270 if (request_mem_region(res->start, resource_size(res), 3271 D40_NAME " I/O lcpa") == NULL) { 3272 ret = -EBUSY; 3273 d40_err(&pdev->dev, 3274 "Failed to request LCPA region 0x%x-0x%x\n", 3275 res->start, res->end); 3276 goto failure; 3277 } 3278 3279 /* We make use of ESRAM memory for this. */ 3280 val = readl(base->virtbase + D40_DREG_LCPA); 3281 if (res->start != val && val != 0) { 3282 dev_warn(&pdev->dev, 3283 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n", 3284 __func__, val, res->start); 3285 } else 3286 writel(res->start, base->virtbase + D40_DREG_LCPA); 3287 3288 base->lcpa_base = ioremap(res->start, resource_size(res)); 3289 if (!base->lcpa_base) { 3290 ret = -ENOMEM; 3291 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n"); 3292 goto failure; 3293 } 3294 /* If lcla has to be located in ESRAM we don't need to allocate */ 3295 if (base->plat_data->use_esram_lcla) { 3296 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 3297 "lcla_esram"); 3298 if (!res) { 3299 ret = -ENOENT; 3300 d40_err(&pdev->dev, 3301 "No \"lcla_esram\" memory resource\n"); 3302 goto failure; 3303 } 3304 base->lcla_pool.base = ioremap(res->start, 3305 resource_size(res)); 3306 if (!base->lcla_pool.base) { 3307 ret = -ENOMEM; 3308 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n"); 3309 goto failure; 3310 } 3311 writel(res->start, base->virtbase + D40_DREG_LCLA); 3312 3313 } else { 3314 ret = d40_lcla_allocate(base); 3315 if (ret) { 3316 d40_err(&pdev->dev, "Failed to allocate LCLA area\n"); 3317 goto failure; 3318 } 3319 } 3320 3321 spin_lock_init(&base->lcla_pool.lock); 3322 3323 base->irq = platform_get_irq(pdev, 0); 3324 3325 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); 3326 if (ret) { 3327 d40_err(&pdev->dev, "No IRQ defined\n"); 3328 goto failure; 3329 } 3330 3331 pm_runtime_irq_safe(base->dev); 3332 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY); 3333 pm_runtime_use_autosuspend(base->dev); 3334 pm_runtime_enable(base->dev); 3335 pm_runtime_resume(base->dev); 3336 3337 if (base->plat_data->use_esram_lcla) { 3338 3339 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram"); 3340 if (IS_ERR(base->lcpa_regulator)) { 3341 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n"); 3342 base->lcpa_regulator = NULL; 3343 goto failure; 3344 } 3345 3346 ret = regulator_enable(base->lcpa_regulator); 3347 if (ret) { 3348 d40_err(&pdev->dev, 3349 "Failed to enable lcpa_regulator\n"); 3350 regulator_put(base->lcpa_regulator); 3351 base->lcpa_regulator = NULL; 3352 goto failure; 3353 } 3354 } 3355 3356 base->initialized = true; 3357 err = d40_dmaengine_init(base, num_reserved_chans); 3358 if (err) 3359 goto failure; 3360 3361 d40_hw_init(base); 3362 3363 dev_info(base->dev, "initialized\n"); 3364 return 0; 3365 3366 failure: 3367 if (base) { 3368 if (base->desc_slab) 3369 kmem_cache_destroy(base->desc_slab); 3370 if (base->virtbase) 3371 iounmap(base->virtbase); 3372 3373 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) { 3374 iounmap(base->lcla_pool.base); 3375 base->lcla_pool.base = NULL; 3376 } 3377 3378 if (base->lcla_pool.dma_addr) 3379 dma_unmap_single(base->dev, base->lcla_pool.dma_addr, 3380 SZ_1K * base->num_phy_chans, 3381 DMA_TO_DEVICE); 3382 3383 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) 3384 free_pages((unsigned long)base->lcla_pool.base, 3385 base->lcla_pool.pages); 3386 3387 kfree(base->lcla_pool.base_unaligned); 3388 3389 if (base->phy_lcpa) 3390 release_mem_region(base->phy_lcpa, 3391 base->lcpa_size); 3392 if (base->phy_start) 3393 release_mem_region(base->phy_start, 3394 base->phy_size); 3395 if (base->clk) { 3396 clk_disable(base->clk); 3397 clk_put(base->clk); 3398 } 3399 3400 if (base->lcpa_regulator) { 3401 regulator_disable(base->lcpa_regulator); 3402 regulator_put(base->lcpa_regulator); 3403 } 3404 3405 kfree(base->lcla_pool.alloc_map); 3406 kfree(base->lookup_log_chans); 3407 kfree(base->lookup_phy_chans); 3408 kfree(base->phy_res); 3409 kfree(base); 3410 } 3411 3412 d40_err(&pdev->dev, "probe failed\n"); 3413 return ret; 3414 } 3415 3416 static struct platform_driver d40_driver = { 3417 .driver = { 3418 .owner = THIS_MODULE, 3419 .name = D40_NAME, 3420 .pm = DMA40_PM_OPS, 3421 }, 3422 }; 3423 3424 static int __init stedma40_init(void) 3425 { 3426 return platform_driver_probe(&d40_driver, d40_probe); 3427 } 3428 subsys_initcall(stedma40_init); 3429