xref: /openbmc/linux/drivers/dma/ste_dma40.c (revision 81d67439)
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 
18 #include <plat/ste_dma40.h>
19 
20 #include "ste_dma40_ll.h"
21 
22 #define D40_NAME "dma40"
23 
24 #define D40_PHY_CHAN -1
25 
26 /* For masking out/in 2 bit channel positions */
27 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
28 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
29 
30 /* Maximum iterations taken before giving up suspending a channel */
31 #define D40_SUSPEND_MAX_IT 500
32 
33 /* Hardware requirement on LCLA alignment */
34 #define LCLA_ALIGNMENT 0x40000
35 
36 /* Max number of links per event group */
37 #define D40_LCLA_LINK_PER_EVENT_GRP 128
38 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
39 
40 /* Attempts before giving up to trying to get pages that are aligned */
41 #define MAX_LCLA_ALLOC_ATTEMPTS 256
42 
43 /* Bit markings for allocation map */
44 #define D40_ALLOC_FREE		(1 << 31)
45 #define D40_ALLOC_PHY		(1 << 30)
46 #define D40_ALLOC_LOG_FREE	0
47 
48 /* Hardware designer of the block */
49 #define D40_HW_DESIGNER 0x8
50 
51 /**
52  * enum 40_command - The different commands and/or statuses.
53  *
54  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
55  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
56  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
57  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
58  */
59 enum d40_command {
60 	D40_DMA_STOP		= 0,
61 	D40_DMA_RUN		= 1,
62 	D40_DMA_SUSPEND_REQ	= 2,
63 	D40_DMA_SUSPENDED	= 3
64 };
65 
66 /**
67  * struct d40_lli_pool - Structure for keeping LLIs in memory
68  *
69  * @base: Pointer to memory area when the pre_alloc_lli's are not large
70  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
71  * pre_alloc_lli is used.
72  * @dma_addr: DMA address, if mapped
73  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
74  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
75  * one buffer to one buffer.
76  */
77 struct d40_lli_pool {
78 	void	*base;
79 	int	 size;
80 	dma_addr_t	dma_addr;
81 	/* Space for dst and src, plus an extra for padding */
82 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
83 };
84 
85 /**
86  * struct d40_desc - A descriptor is one DMA job.
87  *
88  * @lli_phy: LLI settings for physical channel. Both src and dst=
89  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
90  * lli_len equals one.
91  * @lli_log: Same as above but for logical channels.
92  * @lli_pool: The pool with two entries pre-allocated.
93  * @lli_len: Number of llis of current descriptor.
94  * @lli_current: Number of transferred llis.
95  * @lcla_alloc: Number of LCLA entries allocated.
96  * @txd: DMA engine struct. Used for among other things for communication
97  * during a transfer.
98  * @node: List entry.
99  * @is_in_client_list: true if the client owns this descriptor.
100  * the previous one.
101  *
102  * This descriptor is used for both logical and physical transfers.
103  */
104 struct d40_desc {
105 	/* LLI physical */
106 	struct d40_phy_lli_bidir	 lli_phy;
107 	/* LLI logical */
108 	struct d40_log_lli_bidir	 lli_log;
109 
110 	struct d40_lli_pool		 lli_pool;
111 	int				 lli_len;
112 	int				 lli_current;
113 	int				 lcla_alloc;
114 
115 	struct dma_async_tx_descriptor	 txd;
116 	struct list_head		 node;
117 
118 	bool				 is_in_client_list;
119 	bool				 cyclic;
120 };
121 
122 /**
123  * struct d40_lcla_pool - LCLA pool settings and data.
124  *
125  * @base: The virtual address of LCLA. 18 bit aligned.
126  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
127  * This pointer is only there for clean-up on error.
128  * @pages: The number of pages needed for all physical channels.
129  * Only used later for clean-up on error
130  * @lock: Lock to protect the content in this struct.
131  * @alloc_map: big map over which LCLA entry is own by which job.
132  */
133 struct d40_lcla_pool {
134 	void		*base;
135 	dma_addr_t	dma_addr;
136 	void		*base_unaligned;
137 	int		 pages;
138 	spinlock_t	 lock;
139 	struct d40_desc	**alloc_map;
140 };
141 
142 /**
143  * struct d40_phy_res - struct for handling eventlines mapped to physical
144  * channels.
145  *
146  * @lock: A lock protection this entity.
147  * @num: The physical channel number of this entity.
148  * @allocated_src: Bit mapped to show which src event line's are mapped to
149  * this physical channel. Can also be free or physically allocated.
150  * @allocated_dst: Same as for src but is dst.
151  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
152  * event line number.
153  */
154 struct d40_phy_res {
155 	spinlock_t lock;
156 	int	   num;
157 	u32	   allocated_src;
158 	u32	   allocated_dst;
159 };
160 
161 struct d40_base;
162 
163 /**
164  * struct d40_chan - Struct that describes a channel.
165  *
166  * @lock: A spinlock to protect this struct.
167  * @log_num: The logical number, if any of this channel.
168  * @completed: Starts with 1, after first interrupt it is set to dma engine's
169  * current cookie.
170  * @pending_tx: The number of pending transfers. Used between interrupt handler
171  * and tasklet.
172  * @busy: Set to true when transfer is ongoing on this channel.
173  * @phy_chan: Pointer to physical channel which this instance runs on. If this
174  * point is NULL, then the channel is not allocated.
175  * @chan: DMA engine handle.
176  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
177  * transfer and call client callback.
178  * @client: Cliented owned descriptor list.
179  * @active: Active descriptor.
180  * @queue: Queued jobs.
181  * @dma_cfg: The client configuration of this dma channel.
182  * @configured: whether the dma_cfg configuration is valid
183  * @base: Pointer to the device instance struct.
184  * @src_def_cfg: Default cfg register setting for src.
185  * @dst_def_cfg: Default cfg register setting for dst.
186  * @log_def: Default logical channel settings.
187  * @lcla: Space for one dst src pair for logical channel transfers.
188  * @lcpa: Pointer to dst and src lcpa settings.
189  *
190  * This struct can either "be" a logical or a physical channel.
191  */
192 struct d40_chan {
193 	spinlock_t			 lock;
194 	int				 log_num;
195 	/* ID of the most recent completed transfer */
196 	int				 completed;
197 	int				 pending_tx;
198 	bool				 busy;
199 	struct d40_phy_res		*phy_chan;
200 	struct dma_chan			 chan;
201 	struct tasklet_struct		 tasklet;
202 	struct list_head		 client;
203 	struct list_head		 active;
204 	struct list_head		 queue;
205 	struct stedma40_chan_cfg	 dma_cfg;
206 	bool				 configured;
207 	struct d40_base			*base;
208 	/* Default register configurations */
209 	u32				 src_def_cfg;
210 	u32				 dst_def_cfg;
211 	struct d40_def_lcsp		 log_def;
212 	struct d40_log_lli_full		*lcpa;
213 	/* Runtime reconfiguration */
214 	dma_addr_t			runtime_addr;
215 	enum dma_data_direction		runtime_direction;
216 };
217 
218 /**
219  * struct d40_base - The big global struct, one for each probe'd instance.
220  *
221  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
222  * @execmd_lock: Lock for execute command usage since several channels share
223  * the same physical register.
224  * @dev: The device structure.
225  * @virtbase: The virtual base address of the DMA's register.
226  * @rev: silicon revision detected.
227  * @clk: Pointer to the DMA clock structure.
228  * @phy_start: Physical memory start of the DMA registers.
229  * @phy_size: Size of the DMA register map.
230  * @irq: The IRQ number.
231  * @num_phy_chans: The number of physical channels. Read from HW. This
232  * is the number of available channels for this driver, not counting "Secure
233  * mode" allocated physical channels.
234  * @num_log_chans: The number of logical channels. Calculated from
235  * num_phy_chans.
236  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
237  * @dma_slave: dma_device channels that can do only do slave transfers.
238  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
239  * @log_chans: Room for all possible logical channels in system.
240  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
241  * to log_chans entries.
242  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
243  * to phy_chans entries.
244  * @plat_data: Pointer to provided platform_data which is the driver
245  * configuration.
246  * @phy_res: Vector containing all physical channels.
247  * @lcla_pool: lcla pool settings and data.
248  * @lcpa_base: The virtual mapped address of LCPA.
249  * @phy_lcpa: The physical address of the LCPA.
250  * @lcpa_size: The size of the LCPA area.
251  * @desc_slab: cache for descriptors.
252  */
253 struct d40_base {
254 	spinlock_t			 interrupt_lock;
255 	spinlock_t			 execmd_lock;
256 	struct device			 *dev;
257 	void __iomem			 *virtbase;
258 	u8				  rev:4;
259 	struct clk			 *clk;
260 	phys_addr_t			  phy_start;
261 	resource_size_t			  phy_size;
262 	int				  irq;
263 	int				  num_phy_chans;
264 	int				  num_log_chans;
265 	struct dma_device		  dma_both;
266 	struct dma_device		  dma_slave;
267 	struct dma_device		  dma_memcpy;
268 	struct d40_chan			 *phy_chans;
269 	struct d40_chan			 *log_chans;
270 	struct d40_chan			**lookup_log_chans;
271 	struct d40_chan			**lookup_phy_chans;
272 	struct stedma40_platform_data	 *plat_data;
273 	/* Physical half channels */
274 	struct d40_phy_res		 *phy_res;
275 	struct d40_lcla_pool		  lcla_pool;
276 	void				 *lcpa_base;
277 	dma_addr_t			  phy_lcpa;
278 	resource_size_t			  lcpa_size;
279 	struct kmem_cache		 *desc_slab;
280 };
281 
282 /**
283  * struct d40_interrupt_lookup - lookup table for interrupt handler
284  *
285  * @src: Interrupt mask register.
286  * @clr: Interrupt clear register.
287  * @is_error: true if this is an error interrupt.
288  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
289  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
290  */
291 struct d40_interrupt_lookup {
292 	u32 src;
293 	u32 clr;
294 	bool is_error;
295 	int offset;
296 };
297 
298 /**
299  * struct d40_reg_val - simple lookup struct
300  *
301  * @reg: The register.
302  * @val: The value that belongs to the register in reg.
303  */
304 struct d40_reg_val {
305 	unsigned int reg;
306 	unsigned int val;
307 };
308 
309 static struct device *chan2dev(struct d40_chan *d40c)
310 {
311 	return &d40c->chan.dev->device;
312 }
313 
314 static bool chan_is_physical(struct d40_chan *chan)
315 {
316 	return chan->log_num == D40_PHY_CHAN;
317 }
318 
319 static bool chan_is_logical(struct d40_chan *chan)
320 {
321 	return !chan_is_physical(chan);
322 }
323 
324 static void __iomem *chan_base(struct d40_chan *chan)
325 {
326 	return chan->base->virtbase + D40_DREG_PCBASE +
327 	       chan->phy_chan->num * D40_DREG_PCDELTA;
328 }
329 
330 #define d40_err(dev, format, arg...)		\
331 	dev_err(dev, "[%s] " format, __func__, ## arg)
332 
333 #define chan_err(d40c, format, arg...)		\
334 	d40_err(chan2dev(d40c), format, ## arg)
335 
336 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
337 			      int lli_len)
338 {
339 	bool is_log = chan_is_logical(d40c);
340 	u32 align;
341 	void *base;
342 
343 	if (is_log)
344 		align = sizeof(struct d40_log_lli);
345 	else
346 		align = sizeof(struct d40_phy_lli);
347 
348 	if (lli_len == 1) {
349 		base = d40d->lli_pool.pre_alloc_lli;
350 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
351 		d40d->lli_pool.base = NULL;
352 	} else {
353 		d40d->lli_pool.size = lli_len * 2 * align;
354 
355 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
356 		d40d->lli_pool.base = base;
357 
358 		if (d40d->lli_pool.base == NULL)
359 			return -ENOMEM;
360 	}
361 
362 	if (is_log) {
363 		d40d->lli_log.src = PTR_ALIGN(base, align);
364 		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
365 
366 		d40d->lli_pool.dma_addr = 0;
367 	} else {
368 		d40d->lli_phy.src = PTR_ALIGN(base, align);
369 		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
370 
371 		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
372 							 d40d->lli_phy.src,
373 							 d40d->lli_pool.size,
374 							 DMA_TO_DEVICE);
375 
376 		if (dma_mapping_error(d40c->base->dev,
377 				      d40d->lli_pool.dma_addr)) {
378 			kfree(d40d->lli_pool.base);
379 			d40d->lli_pool.base = NULL;
380 			d40d->lli_pool.dma_addr = 0;
381 			return -ENOMEM;
382 		}
383 	}
384 
385 	return 0;
386 }
387 
388 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
389 {
390 	if (d40d->lli_pool.dma_addr)
391 		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
392 				 d40d->lli_pool.size, DMA_TO_DEVICE);
393 
394 	kfree(d40d->lli_pool.base);
395 	d40d->lli_pool.base = NULL;
396 	d40d->lli_pool.size = 0;
397 	d40d->lli_log.src = NULL;
398 	d40d->lli_log.dst = NULL;
399 	d40d->lli_phy.src = NULL;
400 	d40d->lli_phy.dst = NULL;
401 }
402 
403 static int d40_lcla_alloc_one(struct d40_chan *d40c,
404 			      struct d40_desc *d40d)
405 {
406 	unsigned long flags;
407 	int i;
408 	int ret = -EINVAL;
409 	int p;
410 
411 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
412 
413 	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
414 
415 	/*
416 	 * Allocate both src and dst at the same time, therefore the half
417 	 * start on 1 since 0 can't be used since zero is used as end marker.
418 	 */
419 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
420 		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
421 			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
422 			d40d->lcla_alloc++;
423 			ret = i;
424 			break;
425 		}
426 	}
427 
428 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
429 
430 	return ret;
431 }
432 
433 static int d40_lcla_free_all(struct d40_chan *d40c,
434 			     struct d40_desc *d40d)
435 {
436 	unsigned long flags;
437 	int i;
438 	int ret = -EINVAL;
439 
440 	if (chan_is_physical(d40c))
441 		return 0;
442 
443 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
444 
445 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
446 		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
447 						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
448 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
449 							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
450 			d40d->lcla_alloc--;
451 			if (d40d->lcla_alloc == 0) {
452 				ret = 0;
453 				break;
454 			}
455 		}
456 	}
457 
458 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
459 
460 	return ret;
461 
462 }
463 
464 static void d40_desc_remove(struct d40_desc *d40d)
465 {
466 	list_del(&d40d->node);
467 }
468 
469 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
470 {
471 	struct d40_desc *desc = NULL;
472 
473 	if (!list_empty(&d40c->client)) {
474 		struct d40_desc *d;
475 		struct d40_desc *_d;
476 
477 		list_for_each_entry_safe(d, _d, &d40c->client, node)
478 			if (async_tx_test_ack(&d->txd)) {
479 				d40_pool_lli_free(d40c, d);
480 				d40_desc_remove(d);
481 				desc = d;
482 				memset(desc, 0, sizeof(*desc));
483 				break;
484 			}
485 	}
486 
487 	if (!desc)
488 		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
489 
490 	if (desc)
491 		INIT_LIST_HEAD(&desc->node);
492 
493 	return desc;
494 }
495 
496 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
497 {
498 
499 	d40_pool_lli_free(d40c, d40d);
500 	d40_lcla_free_all(d40c, d40d);
501 	kmem_cache_free(d40c->base->desc_slab, d40d);
502 }
503 
504 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
505 {
506 	list_add_tail(&desc->node, &d40c->active);
507 }
508 
509 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
510 {
511 	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
512 	struct d40_phy_lli *lli_src = desc->lli_phy.src;
513 	void __iomem *base = chan_base(chan);
514 
515 	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
516 	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
517 	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
518 	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
519 
520 	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
521 	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
522 	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
523 	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
524 }
525 
526 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
527 {
528 	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
529 	struct d40_log_lli_bidir *lli = &desc->lli_log;
530 	int lli_current = desc->lli_current;
531 	int lli_len = desc->lli_len;
532 	bool cyclic = desc->cyclic;
533 	int curr_lcla = -EINVAL;
534 	int first_lcla = 0;
535 	bool linkback;
536 
537 	/*
538 	 * We may have partially running cyclic transfers, in case we did't get
539 	 * enough LCLA entries.
540 	 */
541 	linkback = cyclic && lli_current == 0;
542 
543 	/*
544 	 * For linkback, we need one LCLA even with only one link, because we
545 	 * can't link back to the one in LCPA space
546 	 */
547 	if (linkback || (lli_len - lli_current > 1)) {
548 		curr_lcla = d40_lcla_alloc_one(chan, desc);
549 		first_lcla = curr_lcla;
550 	}
551 
552 	/*
553 	 * For linkback, we normally load the LCPA in the loop since we need to
554 	 * link it to the second LCLA and not the first.  However, if we
555 	 * couldn't even get a first LCLA, then we have to run in LCPA and
556 	 * reload manually.
557 	 */
558 	if (!linkback || curr_lcla == -EINVAL) {
559 		unsigned int flags = 0;
560 
561 		if (curr_lcla == -EINVAL)
562 			flags |= LLI_TERM_INT;
563 
564 		d40_log_lli_lcpa_write(chan->lcpa,
565 				       &lli->dst[lli_current],
566 				       &lli->src[lli_current],
567 				       curr_lcla,
568 				       flags);
569 		lli_current++;
570 	}
571 
572 	if (curr_lcla < 0)
573 		goto out;
574 
575 	for (; lli_current < lli_len; lli_current++) {
576 		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
577 					   8 * curr_lcla * 2;
578 		struct d40_log_lli *lcla = pool->base + lcla_offset;
579 		unsigned int flags = 0;
580 		int next_lcla;
581 
582 		if (lli_current + 1 < lli_len)
583 			next_lcla = d40_lcla_alloc_one(chan, desc);
584 		else
585 			next_lcla = linkback ? first_lcla : -EINVAL;
586 
587 		if (cyclic || next_lcla == -EINVAL)
588 			flags |= LLI_TERM_INT;
589 
590 		if (linkback && curr_lcla == first_lcla) {
591 			/* First link goes in both LCPA and LCLA */
592 			d40_log_lli_lcpa_write(chan->lcpa,
593 					       &lli->dst[lli_current],
594 					       &lli->src[lli_current],
595 					       next_lcla, flags);
596 		}
597 
598 		/*
599 		 * One unused LCLA in the cyclic case if the very first
600 		 * next_lcla fails...
601 		 */
602 		d40_log_lli_lcla_write(lcla,
603 				       &lli->dst[lli_current],
604 				       &lli->src[lli_current],
605 				       next_lcla, flags);
606 
607 		dma_sync_single_range_for_device(chan->base->dev,
608 					pool->dma_addr, lcla_offset,
609 					2 * sizeof(struct d40_log_lli),
610 					DMA_TO_DEVICE);
611 
612 		curr_lcla = next_lcla;
613 
614 		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
615 			lli_current++;
616 			break;
617 		}
618 	}
619 
620 out:
621 	desc->lli_current = lli_current;
622 }
623 
624 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
625 {
626 	if (chan_is_physical(d40c)) {
627 		d40_phy_lli_load(d40c, d40d);
628 		d40d->lli_current = d40d->lli_len;
629 	} else
630 		d40_log_lli_to_lcxa(d40c, d40d);
631 }
632 
633 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
634 {
635 	struct d40_desc *d;
636 
637 	if (list_empty(&d40c->active))
638 		return NULL;
639 
640 	d = list_first_entry(&d40c->active,
641 			     struct d40_desc,
642 			     node);
643 	return d;
644 }
645 
646 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
647 {
648 	list_add_tail(&desc->node, &d40c->queue);
649 }
650 
651 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
652 {
653 	struct d40_desc *d;
654 
655 	if (list_empty(&d40c->queue))
656 		return NULL;
657 
658 	d = list_first_entry(&d40c->queue,
659 			     struct d40_desc,
660 			     node);
661 	return d;
662 }
663 
664 static int d40_psize_2_burst_size(bool is_log, int psize)
665 {
666 	if (is_log) {
667 		if (psize == STEDMA40_PSIZE_LOG_1)
668 			return 1;
669 	} else {
670 		if (psize == STEDMA40_PSIZE_PHY_1)
671 			return 1;
672 	}
673 
674 	return 2 << psize;
675 }
676 
677 /*
678  * The dma only supports transmitting packages up to
679  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
680  * dma elements required to send the entire sg list
681  */
682 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
683 {
684 	int dmalen;
685 	u32 max_w = max(data_width1, data_width2);
686 	u32 min_w = min(data_width1, data_width2);
687 	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
688 
689 	if (seg_max > STEDMA40_MAX_SEG_SIZE)
690 		seg_max -= (1 << max_w);
691 
692 	if (!IS_ALIGNED(size, 1 << max_w))
693 		return -EINVAL;
694 
695 	if (size <= seg_max)
696 		dmalen = 1;
697 	else {
698 		dmalen = size / seg_max;
699 		if (dmalen * seg_max < size)
700 			dmalen++;
701 	}
702 	return dmalen;
703 }
704 
705 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
706 			   u32 data_width1, u32 data_width2)
707 {
708 	struct scatterlist *sg;
709 	int i;
710 	int len = 0;
711 	int ret;
712 
713 	for_each_sg(sgl, sg, sg_len, i) {
714 		ret = d40_size_2_dmalen(sg_dma_len(sg),
715 					data_width1, data_width2);
716 		if (ret < 0)
717 			return ret;
718 		len += ret;
719 	}
720 	return len;
721 }
722 
723 /* Support functions for logical channels */
724 
725 static int d40_channel_execute_command(struct d40_chan *d40c,
726 				       enum d40_command command)
727 {
728 	u32 status;
729 	int i;
730 	void __iomem *active_reg;
731 	int ret = 0;
732 	unsigned long flags;
733 	u32 wmask;
734 
735 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
736 
737 	if (d40c->phy_chan->num % 2 == 0)
738 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
739 	else
740 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
741 
742 	if (command == D40_DMA_SUSPEND_REQ) {
743 		status = (readl(active_reg) &
744 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
745 			D40_CHAN_POS(d40c->phy_chan->num);
746 
747 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
748 			goto done;
749 	}
750 
751 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
752 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
753 	       active_reg);
754 
755 	if (command == D40_DMA_SUSPEND_REQ) {
756 
757 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
758 			status = (readl(active_reg) &
759 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
760 				D40_CHAN_POS(d40c->phy_chan->num);
761 
762 			cpu_relax();
763 			/*
764 			 * Reduce the number of bus accesses while
765 			 * waiting for the DMA to suspend.
766 			 */
767 			udelay(3);
768 
769 			if (status == D40_DMA_STOP ||
770 			    status == D40_DMA_SUSPENDED)
771 				break;
772 		}
773 
774 		if (i == D40_SUSPEND_MAX_IT) {
775 			chan_err(d40c,
776 				"unable to suspend the chl %d (log: %d) status %x\n",
777 				d40c->phy_chan->num, d40c->log_num,
778 				status);
779 			dump_stack();
780 			ret = -EBUSY;
781 		}
782 
783 	}
784 done:
785 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
786 	return ret;
787 }
788 
789 static void d40_term_all(struct d40_chan *d40c)
790 {
791 	struct d40_desc *d40d;
792 
793 	/* Release active descriptors */
794 	while ((d40d = d40_first_active_get(d40c))) {
795 		d40_desc_remove(d40d);
796 		d40_desc_free(d40c, d40d);
797 	}
798 
799 	/* Release queued descriptors waiting for transfer */
800 	while ((d40d = d40_first_queued(d40c))) {
801 		d40_desc_remove(d40d);
802 		d40_desc_free(d40c, d40d);
803 	}
804 
805 
806 	d40c->pending_tx = 0;
807 	d40c->busy = false;
808 }
809 
810 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
811 				   u32 event, int reg)
812 {
813 	void __iomem *addr = chan_base(d40c) + reg;
814 	int tries;
815 
816 	if (!enable) {
817 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
818 		       | ~D40_EVENTLINE_MASK(event), addr);
819 		return;
820 	}
821 
822 	/*
823 	 * The hardware sometimes doesn't register the enable when src and dst
824 	 * event lines are active on the same logical channel.  Retry to ensure
825 	 * it does.  Usually only one retry is sufficient.
826 	 */
827 	tries = 100;
828 	while (--tries) {
829 		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
830 		       | ~D40_EVENTLINE_MASK(event), addr);
831 
832 		if (readl(addr) & D40_EVENTLINE_MASK(event))
833 			break;
834 	}
835 
836 	if (tries != 99)
837 		dev_dbg(chan2dev(d40c),
838 			"[%s] workaround enable S%cLNK (%d tries)\n",
839 			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
840 			100 - tries);
841 
842 	WARN_ON(!tries);
843 }
844 
845 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
846 {
847 	unsigned long flags;
848 
849 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
850 
851 	/* Enable event line connected to device (or memcpy) */
852 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
853 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
854 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
855 
856 		__d40_config_set_event(d40c, do_enable, event,
857 				       D40_CHAN_REG_SSLNK);
858 	}
859 
860 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
861 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
862 
863 		__d40_config_set_event(d40c, do_enable, event,
864 				       D40_CHAN_REG_SDLNK);
865 	}
866 
867 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
868 }
869 
870 static u32 d40_chan_has_events(struct d40_chan *d40c)
871 {
872 	void __iomem *chanbase = chan_base(d40c);
873 	u32 val;
874 
875 	val = readl(chanbase + D40_CHAN_REG_SSLNK);
876 	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
877 
878 	return val;
879 }
880 
881 static u32 d40_get_prmo(struct d40_chan *d40c)
882 {
883 	static const unsigned int phy_map[] = {
884 		[STEDMA40_PCHAN_BASIC_MODE]
885 			= D40_DREG_PRMO_PCHAN_BASIC,
886 		[STEDMA40_PCHAN_MODULO_MODE]
887 			= D40_DREG_PRMO_PCHAN_MODULO,
888 		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
889 			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
890 	};
891 	static const unsigned int log_map[] = {
892 		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
893 			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
894 		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
895 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
896 		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
897 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
898 	};
899 
900 	if (chan_is_physical(d40c))
901 		return phy_map[d40c->dma_cfg.mode_opt];
902 	else
903 		return log_map[d40c->dma_cfg.mode_opt];
904 }
905 
906 static void d40_config_write(struct d40_chan *d40c)
907 {
908 	u32 addr_base;
909 	u32 var;
910 
911 	/* Odd addresses are even addresses + 4 */
912 	addr_base = (d40c->phy_chan->num % 2) * 4;
913 	/* Setup channel mode to logical or physical */
914 	var = ((u32)(chan_is_logical(d40c)) + 1) <<
915 		D40_CHAN_POS(d40c->phy_chan->num);
916 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
917 
918 	/* Setup operational mode option register */
919 	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
920 
921 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
922 
923 	if (chan_is_logical(d40c)) {
924 		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
925 			   & D40_SREG_ELEM_LOG_LIDX_MASK;
926 		void __iomem *chanbase = chan_base(d40c);
927 
928 		/* Set default config for CFG reg */
929 		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
930 		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
931 
932 		/* Set LIDX for lcla */
933 		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
934 		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
935 	}
936 }
937 
938 static u32 d40_residue(struct d40_chan *d40c)
939 {
940 	u32 num_elt;
941 
942 	if (chan_is_logical(d40c))
943 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
944 			>> D40_MEM_LCSP2_ECNT_POS;
945 	else {
946 		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
947 		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
948 			  >> D40_SREG_ELEM_PHY_ECNT_POS;
949 	}
950 
951 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
952 }
953 
954 static bool d40_tx_is_linked(struct d40_chan *d40c)
955 {
956 	bool is_link;
957 
958 	if (chan_is_logical(d40c))
959 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
960 	else
961 		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
962 			  & D40_SREG_LNK_PHYS_LNK_MASK;
963 
964 	return is_link;
965 }
966 
967 static int d40_pause(struct d40_chan *d40c)
968 {
969 	int res = 0;
970 	unsigned long flags;
971 
972 	if (!d40c->busy)
973 		return 0;
974 
975 	spin_lock_irqsave(&d40c->lock, flags);
976 
977 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
978 	if (res == 0) {
979 		if (chan_is_logical(d40c)) {
980 			d40_config_set_event(d40c, false);
981 			/* Resume the other logical channels if any */
982 			if (d40_chan_has_events(d40c))
983 				res = d40_channel_execute_command(d40c,
984 								  D40_DMA_RUN);
985 		}
986 	}
987 
988 	spin_unlock_irqrestore(&d40c->lock, flags);
989 	return res;
990 }
991 
992 static int d40_resume(struct d40_chan *d40c)
993 {
994 	int res = 0;
995 	unsigned long flags;
996 
997 	if (!d40c->busy)
998 		return 0;
999 
1000 	spin_lock_irqsave(&d40c->lock, flags);
1001 
1002 	if (d40c->base->rev == 0)
1003 		if (chan_is_logical(d40c)) {
1004 			res = d40_channel_execute_command(d40c,
1005 							  D40_DMA_SUSPEND_REQ);
1006 			goto no_suspend;
1007 		}
1008 
1009 	/* If bytes left to transfer or linked tx resume job */
1010 	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1011 
1012 		if (chan_is_logical(d40c))
1013 			d40_config_set_event(d40c, true);
1014 
1015 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1016 	}
1017 
1018 no_suspend:
1019 	spin_unlock_irqrestore(&d40c->lock, flags);
1020 	return res;
1021 }
1022 
1023 static int d40_terminate_all(struct d40_chan *chan)
1024 {
1025 	unsigned long flags;
1026 	int ret = 0;
1027 
1028 	ret = d40_pause(chan);
1029 	if (!ret && chan_is_physical(chan))
1030 		ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1031 
1032 	spin_lock_irqsave(&chan->lock, flags);
1033 	d40_term_all(chan);
1034 	spin_unlock_irqrestore(&chan->lock, flags);
1035 
1036 	return ret;
1037 }
1038 
1039 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1040 {
1041 	struct d40_chan *d40c = container_of(tx->chan,
1042 					     struct d40_chan,
1043 					     chan);
1044 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1045 	unsigned long flags;
1046 
1047 	spin_lock_irqsave(&d40c->lock, flags);
1048 
1049 	d40c->chan.cookie++;
1050 
1051 	if (d40c->chan.cookie < 0)
1052 		d40c->chan.cookie = 1;
1053 
1054 	d40d->txd.cookie = d40c->chan.cookie;
1055 
1056 	d40_desc_queue(d40c, d40d);
1057 
1058 	spin_unlock_irqrestore(&d40c->lock, flags);
1059 
1060 	return tx->cookie;
1061 }
1062 
1063 static int d40_start(struct d40_chan *d40c)
1064 {
1065 	if (d40c->base->rev == 0) {
1066 		int err;
1067 
1068 		if (chan_is_logical(d40c)) {
1069 			err = d40_channel_execute_command(d40c,
1070 							  D40_DMA_SUSPEND_REQ);
1071 			if (err)
1072 				return err;
1073 		}
1074 	}
1075 
1076 	if (chan_is_logical(d40c))
1077 		d40_config_set_event(d40c, true);
1078 
1079 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1080 }
1081 
1082 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1083 {
1084 	struct d40_desc *d40d;
1085 	int err;
1086 
1087 	/* Start queued jobs, if any */
1088 	d40d = d40_first_queued(d40c);
1089 
1090 	if (d40d != NULL) {
1091 		d40c->busy = true;
1092 
1093 		/* Remove from queue */
1094 		d40_desc_remove(d40d);
1095 
1096 		/* Add to active queue */
1097 		d40_desc_submit(d40c, d40d);
1098 
1099 		/* Initiate DMA job */
1100 		d40_desc_load(d40c, d40d);
1101 
1102 		/* Start dma job */
1103 		err = d40_start(d40c);
1104 
1105 		if (err)
1106 			return NULL;
1107 	}
1108 
1109 	return d40d;
1110 }
1111 
1112 /* called from interrupt context */
1113 static void dma_tc_handle(struct d40_chan *d40c)
1114 {
1115 	struct d40_desc *d40d;
1116 
1117 	/* Get first active entry from list */
1118 	d40d = d40_first_active_get(d40c);
1119 
1120 	if (d40d == NULL)
1121 		return;
1122 
1123 	if (d40d->cyclic) {
1124 		/*
1125 		 * If this was a paritially loaded list, we need to reloaded
1126 		 * it, and only when the list is completed.  We need to check
1127 		 * for done because the interrupt will hit for every link, and
1128 		 * not just the last one.
1129 		 */
1130 		if (d40d->lli_current < d40d->lli_len
1131 		    && !d40_tx_is_linked(d40c)
1132 		    && !d40_residue(d40c)) {
1133 			d40_lcla_free_all(d40c, d40d);
1134 			d40_desc_load(d40c, d40d);
1135 			(void) d40_start(d40c);
1136 
1137 			if (d40d->lli_current == d40d->lli_len)
1138 				d40d->lli_current = 0;
1139 		}
1140 	} else {
1141 		d40_lcla_free_all(d40c, d40d);
1142 
1143 		if (d40d->lli_current < d40d->lli_len) {
1144 			d40_desc_load(d40c, d40d);
1145 			/* Start dma job */
1146 			(void) d40_start(d40c);
1147 			return;
1148 		}
1149 
1150 		if (d40_queue_start(d40c) == NULL)
1151 			d40c->busy = false;
1152 	}
1153 
1154 	d40c->pending_tx++;
1155 	tasklet_schedule(&d40c->tasklet);
1156 
1157 }
1158 
1159 static void dma_tasklet(unsigned long data)
1160 {
1161 	struct d40_chan *d40c = (struct d40_chan *) data;
1162 	struct d40_desc *d40d;
1163 	unsigned long flags;
1164 	dma_async_tx_callback callback;
1165 	void *callback_param;
1166 
1167 	spin_lock_irqsave(&d40c->lock, flags);
1168 
1169 	/* Get first active entry from list */
1170 	d40d = d40_first_active_get(d40c);
1171 	if (d40d == NULL)
1172 		goto err;
1173 
1174 	if (!d40d->cyclic)
1175 		d40c->completed = d40d->txd.cookie;
1176 
1177 	/*
1178 	 * If terminating a channel pending_tx is set to zero.
1179 	 * This prevents any finished active jobs to return to the client.
1180 	 */
1181 	if (d40c->pending_tx == 0) {
1182 		spin_unlock_irqrestore(&d40c->lock, flags);
1183 		return;
1184 	}
1185 
1186 	/* Callback to client */
1187 	callback = d40d->txd.callback;
1188 	callback_param = d40d->txd.callback_param;
1189 
1190 	if (!d40d->cyclic) {
1191 		if (async_tx_test_ack(&d40d->txd)) {
1192 			d40_pool_lli_free(d40c, d40d);
1193 			d40_desc_remove(d40d);
1194 			d40_desc_free(d40c, d40d);
1195 		} else {
1196 			if (!d40d->is_in_client_list) {
1197 				d40_desc_remove(d40d);
1198 				d40_lcla_free_all(d40c, d40d);
1199 				list_add_tail(&d40d->node, &d40c->client);
1200 				d40d->is_in_client_list = true;
1201 			}
1202 		}
1203 	}
1204 
1205 	d40c->pending_tx--;
1206 
1207 	if (d40c->pending_tx)
1208 		tasklet_schedule(&d40c->tasklet);
1209 
1210 	spin_unlock_irqrestore(&d40c->lock, flags);
1211 
1212 	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1213 		callback(callback_param);
1214 
1215 	return;
1216 
1217  err:
1218 	/* Rescue manoeuvre if receiving double interrupts */
1219 	if (d40c->pending_tx > 0)
1220 		d40c->pending_tx--;
1221 	spin_unlock_irqrestore(&d40c->lock, flags);
1222 }
1223 
1224 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1225 {
1226 	static const struct d40_interrupt_lookup il[] = {
1227 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1228 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1229 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1230 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1231 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1232 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1233 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1234 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1235 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1236 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1237 	};
1238 
1239 	int i;
1240 	u32 regs[ARRAY_SIZE(il)];
1241 	u32 idx;
1242 	u32 row;
1243 	long chan = -1;
1244 	struct d40_chan *d40c;
1245 	unsigned long flags;
1246 	struct d40_base *base = data;
1247 
1248 	spin_lock_irqsave(&base->interrupt_lock, flags);
1249 
1250 	/* Read interrupt status of both logical and physical channels */
1251 	for (i = 0; i < ARRAY_SIZE(il); i++)
1252 		regs[i] = readl(base->virtbase + il[i].src);
1253 
1254 	for (;;) {
1255 
1256 		chan = find_next_bit((unsigned long *)regs,
1257 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1258 
1259 		/* No more set bits found? */
1260 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1261 			break;
1262 
1263 		row = chan / BITS_PER_LONG;
1264 		idx = chan & (BITS_PER_LONG - 1);
1265 
1266 		/* ACK interrupt */
1267 		writel(1 << idx, base->virtbase + il[row].clr);
1268 
1269 		if (il[row].offset == D40_PHY_CHAN)
1270 			d40c = base->lookup_phy_chans[idx];
1271 		else
1272 			d40c = base->lookup_log_chans[il[row].offset + idx];
1273 		spin_lock(&d40c->lock);
1274 
1275 		if (!il[row].is_error)
1276 			dma_tc_handle(d40c);
1277 		else
1278 			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1279 				chan, il[row].offset, idx);
1280 
1281 		spin_unlock(&d40c->lock);
1282 	}
1283 
1284 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1285 
1286 	return IRQ_HANDLED;
1287 }
1288 
1289 static int d40_validate_conf(struct d40_chan *d40c,
1290 			     struct stedma40_chan_cfg *conf)
1291 {
1292 	int res = 0;
1293 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1294 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1295 	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1296 
1297 	if (!conf->dir) {
1298 		chan_err(d40c, "Invalid direction.\n");
1299 		res = -EINVAL;
1300 	}
1301 
1302 	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1303 	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1304 	    d40c->runtime_addr == 0) {
1305 
1306 		chan_err(d40c, "Invalid TX channel address (%d)\n",
1307 			 conf->dst_dev_type);
1308 		res = -EINVAL;
1309 	}
1310 
1311 	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1312 	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1313 	    d40c->runtime_addr == 0) {
1314 		chan_err(d40c, "Invalid RX channel address (%d)\n",
1315 			conf->src_dev_type);
1316 		res = -EINVAL;
1317 	}
1318 
1319 	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1320 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1321 		chan_err(d40c, "Invalid dst\n");
1322 		res = -EINVAL;
1323 	}
1324 
1325 	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1326 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1327 		chan_err(d40c, "Invalid src\n");
1328 		res = -EINVAL;
1329 	}
1330 
1331 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1332 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1333 		chan_err(d40c, "No event line\n");
1334 		res = -EINVAL;
1335 	}
1336 
1337 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1338 	    (src_event_group != dst_event_group)) {
1339 		chan_err(d40c, "Invalid event group\n");
1340 		res = -EINVAL;
1341 	}
1342 
1343 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1344 		/*
1345 		 * DMAC HW supports it. Will be added to this driver,
1346 		 * in case any dma client requires it.
1347 		 */
1348 		chan_err(d40c, "periph to periph not supported\n");
1349 		res = -EINVAL;
1350 	}
1351 
1352 	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1353 	    (1 << conf->src_info.data_width) !=
1354 	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1355 	    (1 << conf->dst_info.data_width)) {
1356 		/*
1357 		 * The DMAC hardware only supports
1358 		 * src (burst x width) == dst (burst x width)
1359 		 */
1360 
1361 		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1362 		res = -EINVAL;
1363 	}
1364 
1365 	return res;
1366 }
1367 
1368 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1369 			       int log_event_line, bool is_log)
1370 {
1371 	unsigned long flags;
1372 	spin_lock_irqsave(&phy->lock, flags);
1373 	if (!is_log) {
1374 		/* Physical interrupts are masked per physical full channel */
1375 		if (phy->allocated_src == D40_ALLOC_FREE &&
1376 		    phy->allocated_dst == D40_ALLOC_FREE) {
1377 			phy->allocated_dst = D40_ALLOC_PHY;
1378 			phy->allocated_src = D40_ALLOC_PHY;
1379 			goto found;
1380 		} else
1381 			goto not_found;
1382 	}
1383 
1384 	/* Logical channel */
1385 	if (is_src) {
1386 		if (phy->allocated_src == D40_ALLOC_PHY)
1387 			goto not_found;
1388 
1389 		if (phy->allocated_src == D40_ALLOC_FREE)
1390 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1391 
1392 		if (!(phy->allocated_src & (1 << log_event_line))) {
1393 			phy->allocated_src |= 1 << log_event_line;
1394 			goto found;
1395 		} else
1396 			goto not_found;
1397 	} else {
1398 		if (phy->allocated_dst == D40_ALLOC_PHY)
1399 			goto not_found;
1400 
1401 		if (phy->allocated_dst == D40_ALLOC_FREE)
1402 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1403 
1404 		if (!(phy->allocated_dst & (1 << log_event_line))) {
1405 			phy->allocated_dst |= 1 << log_event_line;
1406 			goto found;
1407 		} else
1408 			goto not_found;
1409 	}
1410 
1411 not_found:
1412 	spin_unlock_irqrestore(&phy->lock, flags);
1413 	return false;
1414 found:
1415 	spin_unlock_irqrestore(&phy->lock, flags);
1416 	return true;
1417 }
1418 
1419 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1420 			       int log_event_line)
1421 {
1422 	unsigned long flags;
1423 	bool is_free = false;
1424 
1425 	spin_lock_irqsave(&phy->lock, flags);
1426 	if (!log_event_line) {
1427 		phy->allocated_dst = D40_ALLOC_FREE;
1428 		phy->allocated_src = D40_ALLOC_FREE;
1429 		is_free = true;
1430 		goto out;
1431 	}
1432 
1433 	/* Logical channel */
1434 	if (is_src) {
1435 		phy->allocated_src &= ~(1 << log_event_line);
1436 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1437 			phy->allocated_src = D40_ALLOC_FREE;
1438 	} else {
1439 		phy->allocated_dst &= ~(1 << log_event_line);
1440 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1441 			phy->allocated_dst = D40_ALLOC_FREE;
1442 	}
1443 
1444 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1445 		   D40_ALLOC_FREE);
1446 
1447 out:
1448 	spin_unlock_irqrestore(&phy->lock, flags);
1449 
1450 	return is_free;
1451 }
1452 
1453 static int d40_allocate_channel(struct d40_chan *d40c)
1454 {
1455 	int dev_type;
1456 	int event_group;
1457 	int event_line;
1458 	struct d40_phy_res *phys;
1459 	int i;
1460 	int j;
1461 	int log_num;
1462 	bool is_src;
1463 	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1464 
1465 	phys = d40c->base->phy_res;
1466 
1467 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1468 		dev_type = d40c->dma_cfg.src_dev_type;
1469 		log_num = 2 * dev_type;
1470 		is_src = true;
1471 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1472 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1473 		/* dst event lines are used for logical memcpy */
1474 		dev_type = d40c->dma_cfg.dst_dev_type;
1475 		log_num = 2 * dev_type + 1;
1476 		is_src = false;
1477 	} else
1478 		return -EINVAL;
1479 
1480 	event_group = D40_TYPE_TO_GROUP(dev_type);
1481 	event_line = D40_TYPE_TO_EVENT(dev_type);
1482 
1483 	if (!is_log) {
1484 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1485 			/* Find physical half channel */
1486 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1487 
1488 				if (d40_alloc_mask_set(&phys[i], is_src,
1489 						       0, is_log))
1490 					goto found_phy;
1491 			}
1492 		} else
1493 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1494 				int phy_num = j  + event_group * 2;
1495 				for (i = phy_num; i < phy_num + 2; i++) {
1496 					if (d40_alloc_mask_set(&phys[i],
1497 							       is_src,
1498 							       0,
1499 							       is_log))
1500 						goto found_phy;
1501 				}
1502 			}
1503 		return -EINVAL;
1504 found_phy:
1505 		d40c->phy_chan = &phys[i];
1506 		d40c->log_num = D40_PHY_CHAN;
1507 		goto out;
1508 	}
1509 	if (dev_type == -1)
1510 		return -EINVAL;
1511 
1512 	/* Find logical channel */
1513 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1514 		int phy_num = j + event_group * 2;
1515 		/*
1516 		 * Spread logical channels across all available physical rather
1517 		 * than pack every logical channel at the first available phy
1518 		 * channels.
1519 		 */
1520 		if (is_src) {
1521 			for (i = phy_num; i < phy_num + 2; i++) {
1522 				if (d40_alloc_mask_set(&phys[i], is_src,
1523 						       event_line, is_log))
1524 					goto found_log;
1525 			}
1526 		} else {
1527 			for (i = phy_num + 1; i >= phy_num; i--) {
1528 				if (d40_alloc_mask_set(&phys[i], is_src,
1529 						       event_line, is_log))
1530 					goto found_log;
1531 			}
1532 		}
1533 	}
1534 	return -EINVAL;
1535 
1536 found_log:
1537 	d40c->phy_chan = &phys[i];
1538 	d40c->log_num = log_num;
1539 out:
1540 
1541 	if (is_log)
1542 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1543 	else
1544 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1545 
1546 	return 0;
1547 
1548 }
1549 
1550 static int d40_config_memcpy(struct d40_chan *d40c)
1551 {
1552 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1553 
1554 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1555 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1556 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1557 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1558 			memcpy[d40c->chan.chan_id];
1559 
1560 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1561 		   dma_has_cap(DMA_SLAVE, cap)) {
1562 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1563 	} else {
1564 		chan_err(d40c, "No memcpy\n");
1565 		return -EINVAL;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 
1572 static int d40_free_dma(struct d40_chan *d40c)
1573 {
1574 
1575 	int res = 0;
1576 	u32 event;
1577 	struct d40_phy_res *phy = d40c->phy_chan;
1578 	bool is_src;
1579 	struct d40_desc *d;
1580 	struct d40_desc *_d;
1581 
1582 
1583 	/* Terminate all queued and active transfers */
1584 	d40_term_all(d40c);
1585 
1586 	/* Release client owned descriptors */
1587 	if (!list_empty(&d40c->client))
1588 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
1589 			d40_pool_lli_free(d40c, d);
1590 			d40_desc_remove(d);
1591 			d40_desc_free(d40c, d);
1592 		}
1593 
1594 	if (phy == NULL) {
1595 		chan_err(d40c, "phy == null\n");
1596 		return -EINVAL;
1597 	}
1598 
1599 	if (phy->allocated_src == D40_ALLOC_FREE &&
1600 	    phy->allocated_dst == D40_ALLOC_FREE) {
1601 		chan_err(d40c, "channel already free\n");
1602 		return -EINVAL;
1603 	}
1604 
1605 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1606 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1607 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1608 		is_src = false;
1609 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1610 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1611 		is_src = true;
1612 	} else {
1613 		chan_err(d40c, "Unknown direction\n");
1614 		return -EINVAL;
1615 	}
1616 
1617 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1618 	if (res) {
1619 		chan_err(d40c, "suspend failed\n");
1620 		return res;
1621 	}
1622 
1623 	if (chan_is_logical(d40c)) {
1624 		/* Release logical channel, deactivate the event line */
1625 
1626 		d40_config_set_event(d40c, false);
1627 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1628 
1629 		/*
1630 		 * Check if there are more logical allocation
1631 		 * on this phy channel.
1632 		 */
1633 		if (!d40_alloc_mask_free(phy, is_src, event)) {
1634 			/* Resume the other logical channels if any */
1635 			if (d40_chan_has_events(d40c)) {
1636 				res = d40_channel_execute_command(d40c,
1637 								  D40_DMA_RUN);
1638 				if (res) {
1639 					chan_err(d40c,
1640 						"Executing RUN command\n");
1641 					return res;
1642 				}
1643 			}
1644 			return 0;
1645 		}
1646 	} else {
1647 		(void) d40_alloc_mask_free(phy, is_src, 0);
1648 	}
1649 
1650 	/* Release physical channel */
1651 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1652 	if (res) {
1653 		chan_err(d40c, "Failed to stop channel\n");
1654 		return res;
1655 	}
1656 	d40c->phy_chan = NULL;
1657 	d40c->configured = false;
1658 	d40c->base->lookup_phy_chans[phy->num] = NULL;
1659 
1660 	return 0;
1661 }
1662 
1663 static bool d40_is_paused(struct d40_chan *d40c)
1664 {
1665 	void __iomem *chanbase = chan_base(d40c);
1666 	bool is_paused = false;
1667 	unsigned long flags;
1668 	void __iomem *active_reg;
1669 	u32 status;
1670 	u32 event;
1671 
1672 	spin_lock_irqsave(&d40c->lock, flags);
1673 
1674 	if (chan_is_physical(d40c)) {
1675 		if (d40c->phy_chan->num % 2 == 0)
1676 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1677 		else
1678 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1679 
1680 		status = (readl(active_reg) &
1681 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1682 			D40_CHAN_POS(d40c->phy_chan->num);
1683 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1684 			is_paused = true;
1685 
1686 		goto _exit;
1687 	}
1688 
1689 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1690 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1691 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1692 		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1693 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1694 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1695 		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1696 	} else {
1697 		chan_err(d40c, "Unknown direction\n");
1698 		goto _exit;
1699 	}
1700 
1701 	status = (status & D40_EVENTLINE_MASK(event)) >>
1702 		D40_EVENTLINE_POS(event);
1703 
1704 	if (status != D40_DMA_RUN)
1705 		is_paused = true;
1706 _exit:
1707 	spin_unlock_irqrestore(&d40c->lock, flags);
1708 	return is_paused;
1709 
1710 }
1711 
1712 
1713 static u32 stedma40_residue(struct dma_chan *chan)
1714 {
1715 	struct d40_chan *d40c =
1716 		container_of(chan, struct d40_chan, chan);
1717 	u32 bytes_left;
1718 	unsigned long flags;
1719 
1720 	spin_lock_irqsave(&d40c->lock, flags);
1721 	bytes_left = d40_residue(d40c);
1722 	spin_unlock_irqrestore(&d40c->lock, flags);
1723 
1724 	return bytes_left;
1725 }
1726 
1727 static int
1728 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1729 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1730 		unsigned int sg_len, dma_addr_t src_dev_addr,
1731 		dma_addr_t dst_dev_addr)
1732 {
1733 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1734 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1735 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1736 	int ret;
1737 
1738 	ret = d40_log_sg_to_lli(sg_src, sg_len,
1739 				src_dev_addr,
1740 				desc->lli_log.src,
1741 				chan->log_def.lcsp1,
1742 				src_info->data_width,
1743 				dst_info->data_width);
1744 
1745 	ret = d40_log_sg_to_lli(sg_dst, sg_len,
1746 				dst_dev_addr,
1747 				desc->lli_log.dst,
1748 				chan->log_def.lcsp3,
1749 				dst_info->data_width,
1750 				src_info->data_width);
1751 
1752 	return ret < 0 ? ret : 0;
1753 }
1754 
1755 static int
1756 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1757 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1758 		unsigned int sg_len, dma_addr_t src_dev_addr,
1759 		dma_addr_t dst_dev_addr)
1760 {
1761 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1762 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1763 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1764 	unsigned long flags = 0;
1765 	int ret;
1766 
1767 	if (desc->cyclic)
1768 		flags |= LLI_CYCLIC | LLI_TERM_INT;
1769 
1770 	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1771 				desc->lli_phy.src,
1772 				virt_to_phys(desc->lli_phy.src),
1773 				chan->src_def_cfg,
1774 				src_info, dst_info, flags);
1775 
1776 	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1777 				desc->lli_phy.dst,
1778 				virt_to_phys(desc->lli_phy.dst),
1779 				chan->dst_def_cfg,
1780 				dst_info, src_info, flags);
1781 
1782 	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1783 				   desc->lli_pool.size, DMA_TO_DEVICE);
1784 
1785 	return ret < 0 ? ret : 0;
1786 }
1787 
1788 
1789 static struct d40_desc *
1790 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1791 	      unsigned int sg_len, unsigned long dma_flags)
1792 {
1793 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1794 	struct d40_desc *desc;
1795 	int ret;
1796 
1797 	desc = d40_desc_get(chan);
1798 	if (!desc)
1799 		return NULL;
1800 
1801 	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1802 					cfg->dst_info.data_width);
1803 	if (desc->lli_len < 0) {
1804 		chan_err(chan, "Unaligned size\n");
1805 		goto err;
1806 	}
1807 
1808 	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1809 	if (ret < 0) {
1810 		chan_err(chan, "Could not allocate lli\n");
1811 		goto err;
1812 	}
1813 
1814 
1815 	desc->lli_current = 0;
1816 	desc->txd.flags = dma_flags;
1817 	desc->txd.tx_submit = d40_tx_submit;
1818 
1819 	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1820 
1821 	return desc;
1822 
1823 err:
1824 	d40_desc_free(chan, desc);
1825 	return NULL;
1826 }
1827 
1828 static dma_addr_t
1829 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1830 {
1831 	struct stedma40_platform_data *plat = chan->base->plat_data;
1832 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1833 	dma_addr_t addr = 0;
1834 
1835 	if (chan->runtime_addr)
1836 		return chan->runtime_addr;
1837 
1838 	if (direction == DMA_FROM_DEVICE)
1839 		addr = plat->dev_rx[cfg->src_dev_type];
1840 	else if (direction == DMA_TO_DEVICE)
1841 		addr = plat->dev_tx[cfg->dst_dev_type];
1842 
1843 	return addr;
1844 }
1845 
1846 static struct dma_async_tx_descriptor *
1847 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1848 	    struct scatterlist *sg_dst, unsigned int sg_len,
1849 	    enum dma_data_direction direction, unsigned long dma_flags)
1850 {
1851 	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1852 	dma_addr_t src_dev_addr = 0;
1853 	dma_addr_t dst_dev_addr = 0;
1854 	struct d40_desc *desc;
1855 	unsigned long flags;
1856 	int ret;
1857 
1858 	if (!chan->phy_chan) {
1859 		chan_err(chan, "Cannot prepare unallocated channel\n");
1860 		return NULL;
1861 	}
1862 
1863 
1864 	spin_lock_irqsave(&chan->lock, flags);
1865 
1866 	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1867 	if (desc == NULL)
1868 		goto err;
1869 
1870 	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1871 		desc->cyclic = true;
1872 
1873 	if (direction != DMA_NONE) {
1874 		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1875 
1876 		if (direction == DMA_FROM_DEVICE)
1877 			src_dev_addr = dev_addr;
1878 		else if (direction == DMA_TO_DEVICE)
1879 			dst_dev_addr = dev_addr;
1880 	}
1881 
1882 	if (chan_is_logical(chan))
1883 		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1884 				      sg_len, src_dev_addr, dst_dev_addr);
1885 	else
1886 		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1887 				      sg_len, src_dev_addr, dst_dev_addr);
1888 
1889 	if (ret) {
1890 		chan_err(chan, "Failed to prepare %s sg job: %d\n",
1891 			 chan_is_logical(chan) ? "log" : "phy", ret);
1892 		goto err;
1893 	}
1894 
1895 	spin_unlock_irqrestore(&chan->lock, flags);
1896 
1897 	return &desc->txd;
1898 
1899 err:
1900 	if (desc)
1901 		d40_desc_free(chan, desc);
1902 	spin_unlock_irqrestore(&chan->lock, flags);
1903 	return NULL;
1904 }
1905 
1906 bool stedma40_filter(struct dma_chan *chan, void *data)
1907 {
1908 	struct stedma40_chan_cfg *info = data;
1909 	struct d40_chan *d40c =
1910 		container_of(chan, struct d40_chan, chan);
1911 	int err;
1912 
1913 	if (data) {
1914 		err = d40_validate_conf(d40c, info);
1915 		if (!err)
1916 			d40c->dma_cfg = *info;
1917 	} else
1918 		err = d40_config_memcpy(d40c);
1919 
1920 	if (!err)
1921 		d40c->configured = true;
1922 
1923 	return err == 0;
1924 }
1925 EXPORT_SYMBOL(stedma40_filter);
1926 
1927 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1928 {
1929 	bool realtime = d40c->dma_cfg.realtime;
1930 	bool highprio = d40c->dma_cfg.high_priority;
1931 	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1932 	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1933 	u32 event = D40_TYPE_TO_EVENT(dev_type);
1934 	u32 group = D40_TYPE_TO_GROUP(dev_type);
1935 	u32 bit = 1 << event;
1936 
1937 	/* Destination event lines are stored in the upper halfword */
1938 	if (!src)
1939 		bit <<= 16;
1940 
1941 	writel(bit, d40c->base->virtbase + prioreg + group * 4);
1942 	writel(bit, d40c->base->virtbase + rtreg + group * 4);
1943 }
1944 
1945 static void d40_set_prio_realtime(struct d40_chan *d40c)
1946 {
1947 	if (d40c->base->rev < 3)
1948 		return;
1949 
1950 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1951 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1952 		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1953 
1954 	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1955 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1956 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1957 }
1958 
1959 /* DMA ENGINE functions */
1960 static int d40_alloc_chan_resources(struct dma_chan *chan)
1961 {
1962 	int err;
1963 	unsigned long flags;
1964 	struct d40_chan *d40c =
1965 		container_of(chan, struct d40_chan, chan);
1966 	bool is_free_phy;
1967 	spin_lock_irqsave(&d40c->lock, flags);
1968 
1969 	d40c->completed = chan->cookie = 1;
1970 
1971 	/* If no dma configuration is set use default configuration (memcpy) */
1972 	if (!d40c->configured) {
1973 		err = d40_config_memcpy(d40c);
1974 		if (err) {
1975 			chan_err(d40c, "Failed to configure memcpy channel\n");
1976 			goto fail;
1977 		}
1978 	}
1979 	is_free_phy = (d40c->phy_chan == NULL);
1980 
1981 	err = d40_allocate_channel(d40c);
1982 	if (err) {
1983 		chan_err(d40c, "Failed to allocate channel\n");
1984 		goto fail;
1985 	}
1986 
1987 	/* Fill in basic CFG register values */
1988 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1989 		    &d40c->dst_def_cfg, chan_is_logical(d40c));
1990 
1991 	d40_set_prio_realtime(d40c);
1992 
1993 	if (chan_is_logical(d40c)) {
1994 		d40_log_cfg(&d40c->dma_cfg,
1995 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1996 
1997 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1998 			d40c->lcpa = d40c->base->lcpa_base +
1999 			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2000 		else
2001 			d40c->lcpa = d40c->base->lcpa_base +
2002 			  d40c->dma_cfg.dst_dev_type *
2003 			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2004 	}
2005 
2006 	/*
2007 	 * Only write channel configuration to the DMA if the physical
2008 	 * resource is free. In case of multiple logical channels
2009 	 * on the same physical resource, only the first write is necessary.
2010 	 */
2011 	if (is_free_phy)
2012 		d40_config_write(d40c);
2013 fail:
2014 	spin_unlock_irqrestore(&d40c->lock, flags);
2015 	return err;
2016 }
2017 
2018 static void d40_free_chan_resources(struct dma_chan *chan)
2019 {
2020 	struct d40_chan *d40c =
2021 		container_of(chan, struct d40_chan, chan);
2022 	int err;
2023 	unsigned long flags;
2024 
2025 	if (d40c->phy_chan == NULL) {
2026 		chan_err(d40c, "Cannot free unallocated channel\n");
2027 		return;
2028 	}
2029 
2030 
2031 	spin_lock_irqsave(&d40c->lock, flags);
2032 
2033 	err = d40_free_dma(d40c);
2034 
2035 	if (err)
2036 		chan_err(d40c, "Failed to free channel\n");
2037 	spin_unlock_irqrestore(&d40c->lock, flags);
2038 }
2039 
2040 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2041 						       dma_addr_t dst,
2042 						       dma_addr_t src,
2043 						       size_t size,
2044 						       unsigned long dma_flags)
2045 {
2046 	struct scatterlist dst_sg;
2047 	struct scatterlist src_sg;
2048 
2049 	sg_init_table(&dst_sg, 1);
2050 	sg_init_table(&src_sg, 1);
2051 
2052 	sg_dma_address(&dst_sg) = dst;
2053 	sg_dma_address(&src_sg) = src;
2054 
2055 	sg_dma_len(&dst_sg) = size;
2056 	sg_dma_len(&src_sg) = size;
2057 
2058 	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2059 }
2060 
2061 static struct dma_async_tx_descriptor *
2062 d40_prep_memcpy_sg(struct dma_chan *chan,
2063 		   struct scatterlist *dst_sg, unsigned int dst_nents,
2064 		   struct scatterlist *src_sg, unsigned int src_nents,
2065 		   unsigned long dma_flags)
2066 {
2067 	if (dst_nents != src_nents)
2068 		return NULL;
2069 
2070 	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2071 }
2072 
2073 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2074 							 struct scatterlist *sgl,
2075 							 unsigned int sg_len,
2076 							 enum dma_data_direction direction,
2077 							 unsigned long dma_flags)
2078 {
2079 	if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2080 		return NULL;
2081 
2082 	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2083 }
2084 
2085 static struct dma_async_tx_descriptor *
2086 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2087 		     size_t buf_len, size_t period_len,
2088 		     enum dma_data_direction direction)
2089 {
2090 	unsigned int periods = buf_len / period_len;
2091 	struct dma_async_tx_descriptor *txd;
2092 	struct scatterlist *sg;
2093 	int i;
2094 
2095 	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_KERNEL);
2096 	for (i = 0; i < periods; i++) {
2097 		sg_dma_address(&sg[i]) = dma_addr;
2098 		sg_dma_len(&sg[i]) = period_len;
2099 		dma_addr += period_len;
2100 	}
2101 
2102 	sg[periods].offset = 0;
2103 	sg[periods].length = 0;
2104 	sg[periods].page_link =
2105 		((unsigned long)sg | 0x01) & ~0x02;
2106 
2107 	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2108 			  DMA_PREP_INTERRUPT);
2109 
2110 	kfree(sg);
2111 
2112 	return txd;
2113 }
2114 
2115 static enum dma_status d40_tx_status(struct dma_chan *chan,
2116 				     dma_cookie_t cookie,
2117 				     struct dma_tx_state *txstate)
2118 {
2119 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2120 	dma_cookie_t last_used;
2121 	dma_cookie_t last_complete;
2122 	int ret;
2123 
2124 	if (d40c->phy_chan == NULL) {
2125 		chan_err(d40c, "Cannot read status of unallocated channel\n");
2126 		return -EINVAL;
2127 	}
2128 
2129 	last_complete = d40c->completed;
2130 	last_used = chan->cookie;
2131 
2132 	if (d40_is_paused(d40c))
2133 		ret = DMA_PAUSED;
2134 	else
2135 		ret = dma_async_is_complete(cookie, last_complete, last_used);
2136 
2137 	dma_set_tx_state(txstate, last_complete, last_used,
2138 			 stedma40_residue(chan));
2139 
2140 	return ret;
2141 }
2142 
2143 static void d40_issue_pending(struct dma_chan *chan)
2144 {
2145 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2146 	unsigned long flags;
2147 
2148 	if (d40c->phy_chan == NULL) {
2149 		chan_err(d40c, "Channel is not allocated!\n");
2150 		return;
2151 	}
2152 
2153 	spin_lock_irqsave(&d40c->lock, flags);
2154 
2155 	/* Busy means that pending jobs are already being processed */
2156 	if (!d40c->busy)
2157 		(void) d40_queue_start(d40c);
2158 
2159 	spin_unlock_irqrestore(&d40c->lock, flags);
2160 }
2161 
2162 /* Runtime reconfiguration extension */
2163 static void d40_set_runtime_config(struct dma_chan *chan,
2164 			       struct dma_slave_config *config)
2165 {
2166 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2167 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2168 	enum dma_slave_buswidth config_addr_width;
2169 	dma_addr_t config_addr;
2170 	u32 config_maxburst;
2171 	enum stedma40_periph_data_width addr_width;
2172 	int psize;
2173 
2174 	if (config->direction == DMA_FROM_DEVICE) {
2175 		dma_addr_t dev_addr_rx =
2176 			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2177 
2178 		config_addr = config->src_addr;
2179 		if (dev_addr_rx)
2180 			dev_dbg(d40c->base->dev,
2181 				"channel has a pre-wired RX address %08x "
2182 				"overriding with %08x\n",
2183 				dev_addr_rx, config_addr);
2184 		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2185 			dev_dbg(d40c->base->dev,
2186 				"channel was not configured for peripheral "
2187 				"to memory transfer (%d) overriding\n",
2188 				cfg->dir);
2189 		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2190 
2191 		config_addr_width = config->src_addr_width;
2192 		config_maxburst = config->src_maxburst;
2193 
2194 	} else if (config->direction == DMA_TO_DEVICE) {
2195 		dma_addr_t dev_addr_tx =
2196 			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2197 
2198 		config_addr = config->dst_addr;
2199 		if (dev_addr_tx)
2200 			dev_dbg(d40c->base->dev,
2201 				"channel has a pre-wired TX address %08x "
2202 				"overriding with %08x\n",
2203 				dev_addr_tx, config_addr);
2204 		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2205 			dev_dbg(d40c->base->dev,
2206 				"channel was not configured for memory "
2207 				"to peripheral transfer (%d) overriding\n",
2208 				cfg->dir);
2209 		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2210 
2211 		config_addr_width = config->dst_addr_width;
2212 		config_maxburst = config->dst_maxburst;
2213 
2214 	} else {
2215 		dev_err(d40c->base->dev,
2216 			"unrecognized channel direction %d\n",
2217 			config->direction);
2218 		return;
2219 	}
2220 
2221 	switch (config_addr_width) {
2222 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2223 		addr_width = STEDMA40_BYTE_WIDTH;
2224 		break;
2225 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2226 		addr_width = STEDMA40_HALFWORD_WIDTH;
2227 		break;
2228 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2229 		addr_width = STEDMA40_WORD_WIDTH;
2230 		break;
2231 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2232 		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2233 		break;
2234 	default:
2235 		dev_err(d40c->base->dev,
2236 			"illegal peripheral address width "
2237 			"requested (%d)\n",
2238 			config->src_addr_width);
2239 		return;
2240 	}
2241 
2242 	if (chan_is_logical(d40c)) {
2243 		if (config_maxburst >= 16)
2244 			psize = STEDMA40_PSIZE_LOG_16;
2245 		else if (config_maxburst >= 8)
2246 			psize = STEDMA40_PSIZE_LOG_8;
2247 		else if (config_maxburst >= 4)
2248 			psize = STEDMA40_PSIZE_LOG_4;
2249 		else
2250 			psize = STEDMA40_PSIZE_LOG_1;
2251 	} else {
2252 		if (config_maxburst >= 16)
2253 			psize = STEDMA40_PSIZE_PHY_16;
2254 		else if (config_maxburst >= 8)
2255 			psize = STEDMA40_PSIZE_PHY_8;
2256 		else if (config_maxburst >= 4)
2257 			psize = STEDMA40_PSIZE_PHY_4;
2258 		else if (config_maxburst >= 2)
2259 			psize = STEDMA40_PSIZE_PHY_2;
2260 		else
2261 			psize = STEDMA40_PSIZE_PHY_1;
2262 	}
2263 
2264 	/* Set up all the endpoint configs */
2265 	cfg->src_info.data_width = addr_width;
2266 	cfg->src_info.psize = psize;
2267 	cfg->src_info.big_endian = false;
2268 	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2269 	cfg->dst_info.data_width = addr_width;
2270 	cfg->dst_info.psize = psize;
2271 	cfg->dst_info.big_endian = false;
2272 	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2273 
2274 	/* Fill in register values */
2275 	if (chan_is_logical(d40c))
2276 		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2277 	else
2278 		d40_phy_cfg(cfg, &d40c->src_def_cfg,
2279 			    &d40c->dst_def_cfg, false);
2280 
2281 	/* These settings will take precedence later */
2282 	d40c->runtime_addr = config_addr;
2283 	d40c->runtime_direction = config->direction;
2284 	dev_dbg(d40c->base->dev,
2285 		"configured channel %s for %s, data width %d, "
2286 		"maxburst %d bytes, LE, no flow control\n",
2287 		dma_chan_name(chan),
2288 		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2289 		config_addr_width,
2290 		config_maxburst);
2291 }
2292 
2293 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2294 		       unsigned long arg)
2295 {
2296 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2297 
2298 	if (d40c->phy_chan == NULL) {
2299 		chan_err(d40c, "Channel is not allocated!\n");
2300 		return -EINVAL;
2301 	}
2302 
2303 	switch (cmd) {
2304 	case DMA_TERMINATE_ALL:
2305 		return d40_terminate_all(d40c);
2306 	case DMA_PAUSE:
2307 		return d40_pause(d40c);
2308 	case DMA_RESUME:
2309 		return d40_resume(d40c);
2310 	case DMA_SLAVE_CONFIG:
2311 		d40_set_runtime_config(chan,
2312 			(struct dma_slave_config *) arg);
2313 		return 0;
2314 	default:
2315 		break;
2316 	}
2317 
2318 	/* Other commands are unimplemented */
2319 	return -ENXIO;
2320 }
2321 
2322 /* Initialization functions */
2323 
2324 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2325 				 struct d40_chan *chans, int offset,
2326 				 int num_chans)
2327 {
2328 	int i = 0;
2329 	struct d40_chan *d40c;
2330 
2331 	INIT_LIST_HEAD(&dma->channels);
2332 
2333 	for (i = offset; i < offset + num_chans; i++) {
2334 		d40c = &chans[i];
2335 		d40c->base = base;
2336 		d40c->chan.device = dma;
2337 
2338 		spin_lock_init(&d40c->lock);
2339 
2340 		d40c->log_num = D40_PHY_CHAN;
2341 
2342 		INIT_LIST_HEAD(&d40c->active);
2343 		INIT_LIST_HEAD(&d40c->queue);
2344 		INIT_LIST_HEAD(&d40c->client);
2345 
2346 		tasklet_init(&d40c->tasklet, dma_tasklet,
2347 			     (unsigned long) d40c);
2348 
2349 		list_add_tail(&d40c->chan.device_node,
2350 			      &dma->channels);
2351 	}
2352 }
2353 
2354 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2355 {
2356 	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2357 		dev->device_prep_slave_sg = d40_prep_slave_sg;
2358 
2359 	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2360 		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2361 
2362 		/*
2363 		 * This controller can only access address at even
2364 		 * 32bit boundaries, i.e. 2^2
2365 		 */
2366 		dev->copy_align = 2;
2367 	}
2368 
2369 	if (dma_has_cap(DMA_SG, dev->cap_mask))
2370 		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2371 
2372 	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2373 		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2374 
2375 	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2376 	dev->device_free_chan_resources = d40_free_chan_resources;
2377 	dev->device_issue_pending = d40_issue_pending;
2378 	dev->device_tx_status = d40_tx_status;
2379 	dev->device_control = d40_control;
2380 	dev->dev = base->dev;
2381 }
2382 
2383 static int __init d40_dmaengine_init(struct d40_base *base,
2384 				     int num_reserved_chans)
2385 {
2386 	int err ;
2387 
2388 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2389 		      0, base->num_log_chans);
2390 
2391 	dma_cap_zero(base->dma_slave.cap_mask);
2392 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2393 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2394 
2395 	d40_ops_init(base, &base->dma_slave);
2396 
2397 	err = dma_async_device_register(&base->dma_slave);
2398 
2399 	if (err) {
2400 		d40_err(base->dev, "Failed to register slave channels\n");
2401 		goto failure1;
2402 	}
2403 
2404 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2405 		      base->num_log_chans, base->plat_data->memcpy_len);
2406 
2407 	dma_cap_zero(base->dma_memcpy.cap_mask);
2408 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2409 	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2410 
2411 	d40_ops_init(base, &base->dma_memcpy);
2412 
2413 	err = dma_async_device_register(&base->dma_memcpy);
2414 
2415 	if (err) {
2416 		d40_err(base->dev,
2417 			"Failed to regsiter memcpy only channels\n");
2418 		goto failure2;
2419 	}
2420 
2421 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2422 		      0, num_reserved_chans);
2423 
2424 	dma_cap_zero(base->dma_both.cap_mask);
2425 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2426 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2427 	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2428 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2429 
2430 	d40_ops_init(base, &base->dma_both);
2431 	err = dma_async_device_register(&base->dma_both);
2432 
2433 	if (err) {
2434 		d40_err(base->dev,
2435 			"Failed to register logical and physical capable channels\n");
2436 		goto failure3;
2437 	}
2438 	return 0;
2439 failure3:
2440 	dma_async_device_unregister(&base->dma_memcpy);
2441 failure2:
2442 	dma_async_device_unregister(&base->dma_slave);
2443 failure1:
2444 	return err;
2445 }
2446 
2447 /* Initialization functions. */
2448 
2449 static int __init d40_phy_res_init(struct d40_base *base)
2450 {
2451 	int i;
2452 	int num_phy_chans_avail = 0;
2453 	u32 val[2];
2454 	int odd_even_bit = -2;
2455 
2456 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2457 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2458 
2459 	for (i = 0; i < base->num_phy_chans; i++) {
2460 		base->phy_res[i].num = i;
2461 		odd_even_bit += 2 * ((i % 2) == 0);
2462 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2463 			/* Mark security only channels as occupied */
2464 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2465 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2466 		} else {
2467 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2468 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2469 			num_phy_chans_avail++;
2470 		}
2471 		spin_lock_init(&base->phy_res[i].lock);
2472 	}
2473 
2474 	/* Mark disabled channels as occupied */
2475 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2476 		int chan = base->plat_data->disabled_channels[i];
2477 
2478 		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2479 		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2480 		num_phy_chans_avail--;
2481 	}
2482 
2483 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2484 		 num_phy_chans_avail, base->num_phy_chans);
2485 
2486 	/* Verify settings extended vs standard */
2487 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2488 
2489 	for (i = 0; i < base->num_phy_chans; i++) {
2490 
2491 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2492 		    (val[0] & 0x3) != 1)
2493 			dev_info(base->dev,
2494 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2495 				 __func__, i, val[0] & 0x3);
2496 
2497 		val[0] = val[0] >> 2;
2498 	}
2499 
2500 	return num_phy_chans_avail;
2501 }
2502 
2503 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2504 {
2505 	static const struct d40_reg_val dma_id_regs[] = {
2506 		/* Peripheral Id */
2507 		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2508 		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2509 		/*
2510 		 * D40_DREG_PERIPHID2 Depends on HW revision:
2511 		 *  DB8500ed has 0x0008,
2512 		 *  ? has 0x0018,
2513 		 *  DB8500v1 has 0x0028
2514 		 *  DB8500v2 has 0x0038
2515 		 */
2516 		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2517 
2518 		/* PCell Id */
2519 		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
2520 		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
2521 		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
2522 		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
2523 	};
2524 	struct stedma40_platform_data *plat_data;
2525 	struct clk *clk = NULL;
2526 	void __iomem *virtbase = NULL;
2527 	struct resource *res = NULL;
2528 	struct d40_base *base = NULL;
2529 	int num_log_chans = 0;
2530 	int num_phy_chans;
2531 	int i;
2532 	u32 val;
2533 	u32 rev;
2534 
2535 	clk = clk_get(&pdev->dev, NULL);
2536 
2537 	if (IS_ERR(clk)) {
2538 		d40_err(&pdev->dev, "No matching clock found\n");
2539 		goto failure;
2540 	}
2541 
2542 	clk_enable(clk);
2543 
2544 	/* Get IO for DMAC base address */
2545 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2546 	if (!res)
2547 		goto failure;
2548 
2549 	if (request_mem_region(res->start, resource_size(res),
2550 			       D40_NAME " I/O base") == NULL)
2551 		goto failure;
2552 
2553 	virtbase = ioremap(res->start, resource_size(res));
2554 	if (!virtbase)
2555 		goto failure;
2556 
2557 	/* HW version check */
2558 	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2559 		if (dma_id_regs[i].val !=
2560 		    readl(virtbase + dma_id_regs[i].reg)) {
2561 			d40_err(&pdev->dev,
2562 				"Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2563 				dma_id_regs[i].val,
2564 				dma_id_regs[i].reg,
2565 				readl(virtbase + dma_id_regs[i].reg));
2566 			goto failure;
2567 		}
2568 	}
2569 
2570 	/* Get silicon revision and designer */
2571 	val = readl(virtbase + D40_DREG_PERIPHID2);
2572 
2573 	if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2574 	    D40_HW_DESIGNER) {
2575 		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2576 			val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2577 			D40_HW_DESIGNER);
2578 		goto failure;
2579 	}
2580 
2581 	rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2582 		D40_DREG_PERIPHID2_REV_POS;
2583 
2584 	/* The number of physical channels on this HW */
2585 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2586 
2587 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2588 		 rev, res->start);
2589 
2590 	plat_data = pdev->dev.platform_data;
2591 
2592 	/* Count the number of logical channels in use */
2593 	for (i = 0; i < plat_data->dev_len; i++)
2594 		if (plat_data->dev_rx[i] != 0)
2595 			num_log_chans++;
2596 
2597 	for (i = 0; i < plat_data->dev_len; i++)
2598 		if (plat_data->dev_tx[i] != 0)
2599 			num_log_chans++;
2600 
2601 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2602 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2603 		       sizeof(struct d40_chan), GFP_KERNEL);
2604 
2605 	if (base == NULL) {
2606 		d40_err(&pdev->dev, "Out of memory\n");
2607 		goto failure;
2608 	}
2609 
2610 	base->rev = rev;
2611 	base->clk = clk;
2612 	base->num_phy_chans = num_phy_chans;
2613 	base->num_log_chans = num_log_chans;
2614 	base->phy_start = res->start;
2615 	base->phy_size = resource_size(res);
2616 	base->virtbase = virtbase;
2617 	base->plat_data = plat_data;
2618 	base->dev = &pdev->dev;
2619 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2620 	base->log_chans = &base->phy_chans[num_phy_chans];
2621 
2622 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2623 				GFP_KERNEL);
2624 	if (!base->phy_res)
2625 		goto failure;
2626 
2627 	base->lookup_phy_chans = kzalloc(num_phy_chans *
2628 					 sizeof(struct d40_chan *),
2629 					 GFP_KERNEL);
2630 	if (!base->lookup_phy_chans)
2631 		goto failure;
2632 
2633 	if (num_log_chans + plat_data->memcpy_len) {
2634 		/*
2635 		 * The max number of logical channels are event lines for all
2636 		 * src devices and dst devices
2637 		 */
2638 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2639 						 sizeof(struct d40_chan *),
2640 						 GFP_KERNEL);
2641 		if (!base->lookup_log_chans)
2642 			goto failure;
2643 	}
2644 
2645 	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2646 					    sizeof(struct d40_desc *) *
2647 					    D40_LCLA_LINK_PER_EVENT_GRP,
2648 					    GFP_KERNEL);
2649 	if (!base->lcla_pool.alloc_map)
2650 		goto failure;
2651 
2652 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2653 					    0, SLAB_HWCACHE_ALIGN,
2654 					    NULL);
2655 	if (base->desc_slab == NULL)
2656 		goto failure;
2657 
2658 	return base;
2659 
2660 failure:
2661 	if (!IS_ERR(clk)) {
2662 		clk_disable(clk);
2663 		clk_put(clk);
2664 	}
2665 	if (virtbase)
2666 		iounmap(virtbase);
2667 	if (res)
2668 		release_mem_region(res->start,
2669 				   resource_size(res));
2670 	if (virtbase)
2671 		iounmap(virtbase);
2672 
2673 	if (base) {
2674 		kfree(base->lcla_pool.alloc_map);
2675 		kfree(base->lookup_log_chans);
2676 		kfree(base->lookup_phy_chans);
2677 		kfree(base->phy_res);
2678 		kfree(base);
2679 	}
2680 
2681 	return NULL;
2682 }
2683 
2684 static void __init d40_hw_init(struct d40_base *base)
2685 {
2686 
2687 	static const struct d40_reg_val dma_init_reg[] = {
2688 		/* Clock every part of the DMA block from start */
2689 		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2690 
2691 		/* Interrupts on all logical channels */
2692 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2693 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2694 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2695 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2696 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2697 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2698 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2699 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2700 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2701 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2702 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2703 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2704 	};
2705 	int i;
2706 	u32 prmseo[2] = {0, 0};
2707 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2708 	u32 pcmis = 0;
2709 	u32 pcicr = 0;
2710 
2711 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2712 		writel(dma_init_reg[i].val,
2713 		       base->virtbase + dma_init_reg[i].reg);
2714 
2715 	/* Configure all our dma channels to default settings */
2716 	for (i = 0; i < base->num_phy_chans; i++) {
2717 
2718 		activeo[i % 2] = activeo[i % 2] << 2;
2719 
2720 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2721 		    == D40_ALLOC_PHY) {
2722 			activeo[i % 2] |= 3;
2723 			continue;
2724 		}
2725 
2726 		/* Enable interrupt # */
2727 		pcmis = (pcmis << 1) | 1;
2728 
2729 		/* Clear interrupt # */
2730 		pcicr = (pcicr << 1) | 1;
2731 
2732 		/* Set channel to physical mode */
2733 		prmseo[i % 2] = prmseo[i % 2] << 2;
2734 		prmseo[i % 2] |= 1;
2735 
2736 	}
2737 
2738 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2739 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2740 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2741 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2742 
2743 	/* Write which interrupt to enable */
2744 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2745 
2746 	/* Write which interrupt to clear */
2747 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
2748 
2749 }
2750 
2751 static int __init d40_lcla_allocate(struct d40_base *base)
2752 {
2753 	struct d40_lcla_pool *pool = &base->lcla_pool;
2754 	unsigned long *page_list;
2755 	int i, j;
2756 	int ret = 0;
2757 
2758 	/*
2759 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2760 	 * To full fill this hardware requirement without wasting 256 kb
2761 	 * we allocate pages until we get an aligned one.
2762 	 */
2763 	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2764 			    GFP_KERNEL);
2765 
2766 	if (!page_list) {
2767 		ret = -ENOMEM;
2768 		goto failure;
2769 	}
2770 
2771 	/* Calculating how many pages that are required */
2772 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2773 
2774 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2775 		page_list[i] = __get_free_pages(GFP_KERNEL,
2776 						base->lcla_pool.pages);
2777 		if (!page_list[i]) {
2778 
2779 			d40_err(base->dev, "Failed to allocate %d pages.\n",
2780 				base->lcla_pool.pages);
2781 
2782 			for (j = 0; j < i; j++)
2783 				free_pages(page_list[j], base->lcla_pool.pages);
2784 			goto failure;
2785 		}
2786 
2787 		if ((virt_to_phys((void *)page_list[i]) &
2788 		     (LCLA_ALIGNMENT - 1)) == 0)
2789 			break;
2790 	}
2791 
2792 	for (j = 0; j < i; j++)
2793 		free_pages(page_list[j], base->lcla_pool.pages);
2794 
2795 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2796 		base->lcla_pool.base = (void *)page_list[i];
2797 	} else {
2798 		/*
2799 		 * After many attempts and no succees with finding the correct
2800 		 * alignment, try with allocating a big buffer.
2801 		 */
2802 		dev_warn(base->dev,
2803 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
2804 			 __func__, base->lcla_pool.pages);
2805 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2806 							 base->num_phy_chans +
2807 							 LCLA_ALIGNMENT,
2808 							 GFP_KERNEL);
2809 		if (!base->lcla_pool.base_unaligned) {
2810 			ret = -ENOMEM;
2811 			goto failure;
2812 		}
2813 
2814 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2815 						 LCLA_ALIGNMENT);
2816 	}
2817 
2818 	pool->dma_addr = dma_map_single(base->dev, pool->base,
2819 					SZ_1K * base->num_phy_chans,
2820 					DMA_TO_DEVICE);
2821 	if (dma_mapping_error(base->dev, pool->dma_addr)) {
2822 		pool->dma_addr = 0;
2823 		ret = -ENOMEM;
2824 		goto failure;
2825 	}
2826 
2827 	writel(virt_to_phys(base->lcla_pool.base),
2828 	       base->virtbase + D40_DREG_LCLA);
2829 failure:
2830 	kfree(page_list);
2831 	return ret;
2832 }
2833 
2834 static int __init d40_probe(struct platform_device *pdev)
2835 {
2836 	int err;
2837 	int ret = -ENOENT;
2838 	struct d40_base *base;
2839 	struct resource *res = NULL;
2840 	int num_reserved_chans;
2841 	u32 val;
2842 
2843 	base = d40_hw_detect_init(pdev);
2844 
2845 	if (!base)
2846 		goto failure;
2847 
2848 	num_reserved_chans = d40_phy_res_init(base);
2849 
2850 	platform_set_drvdata(pdev, base);
2851 
2852 	spin_lock_init(&base->interrupt_lock);
2853 	spin_lock_init(&base->execmd_lock);
2854 
2855 	/* Get IO for logical channel parameter address */
2856 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2857 	if (!res) {
2858 		ret = -ENOENT;
2859 		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2860 		goto failure;
2861 	}
2862 	base->lcpa_size = resource_size(res);
2863 	base->phy_lcpa = res->start;
2864 
2865 	if (request_mem_region(res->start, resource_size(res),
2866 			       D40_NAME " I/O lcpa") == NULL) {
2867 		ret = -EBUSY;
2868 		d40_err(&pdev->dev,
2869 			"Failed to request LCPA region 0x%x-0x%x\n",
2870 			res->start, res->end);
2871 		goto failure;
2872 	}
2873 
2874 	/* We make use of ESRAM memory for this. */
2875 	val = readl(base->virtbase + D40_DREG_LCPA);
2876 	if (res->start != val && val != 0) {
2877 		dev_warn(&pdev->dev,
2878 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2879 			 __func__, val, res->start);
2880 	} else
2881 		writel(res->start, base->virtbase + D40_DREG_LCPA);
2882 
2883 	base->lcpa_base = ioremap(res->start, resource_size(res));
2884 	if (!base->lcpa_base) {
2885 		ret = -ENOMEM;
2886 		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2887 		goto failure;
2888 	}
2889 
2890 	ret = d40_lcla_allocate(base);
2891 	if (ret) {
2892 		d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2893 		goto failure;
2894 	}
2895 
2896 	spin_lock_init(&base->lcla_pool.lock);
2897 
2898 	base->irq = platform_get_irq(pdev, 0);
2899 
2900 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2901 	if (ret) {
2902 		d40_err(&pdev->dev, "No IRQ defined\n");
2903 		goto failure;
2904 	}
2905 
2906 	err = d40_dmaengine_init(base, num_reserved_chans);
2907 	if (err)
2908 		goto failure;
2909 
2910 	d40_hw_init(base);
2911 
2912 	dev_info(base->dev, "initialized\n");
2913 	return 0;
2914 
2915 failure:
2916 	if (base) {
2917 		if (base->desc_slab)
2918 			kmem_cache_destroy(base->desc_slab);
2919 		if (base->virtbase)
2920 			iounmap(base->virtbase);
2921 
2922 		if (base->lcla_pool.dma_addr)
2923 			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2924 					 SZ_1K * base->num_phy_chans,
2925 					 DMA_TO_DEVICE);
2926 
2927 		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2928 			free_pages((unsigned long)base->lcla_pool.base,
2929 				   base->lcla_pool.pages);
2930 
2931 		kfree(base->lcla_pool.base_unaligned);
2932 
2933 		if (base->phy_lcpa)
2934 			release_mem_region(base->phy_lcpa,
2935 					   base->lcpa_size);
2936 		if (base->phy_start)
2937 			release_mem_region(base->phy_start,
2938 					   base->phy_size);
2939 		if (base->clk) {
2940 			clk_disable(base->clk);
2941 			clk_put(base->clk);
2942 		}
2943 
2944 		kfree(base->lcla_pool.alloc_map);
2945 		kfree(base->lookup_log_chans);
2946 		kfree(base->lookup_phy_chans);
2947 		kfree(base->phy_res);
2948 		kfree(base);
2949 	}
2950 
2951 	d40_err(&pdev->dev, "probe failed\n");
2952 	return ret;
2953 }
2954 
2955 static struct platform_driver d40_driver = {
2956 	.driver = {
2957 		.owner = THIS_MODULE,
2958 		.name  = D40_NAME,
2959 	},
2960 };
2961 
2962 static int __init stedma40_init(void)
2963 {
2964 	return platform_driver_probe(&d40_driver, d40_probe);
2965 }
2966 subsys_initcall(stedma40_init);
2967