1 /* 2 * Copyright (C) Ericsson AB 2007-2008 3 * Copyright (C) ST-Ericsson SA 2008-2010 4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson 5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson 6 * License terms: GNU General Public License (GPL) version 2 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/export.h> 13 #include <linux/dmaengine.h> 14 #include <linux/platform_device.h> 15 #include <linux/clk.h> 16 #include <linux/delay.h> 17 #include <linux/log2.h> 18 #include <linux/pm.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/err.h> 21 #include <linux/of.h> 22 #include <linux/of_dma.h> 23 #include <linux/amba/bus.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/platform_data/dma-ste-dma40.h> 26 27 #include "dmaengine.h" 28 #include "ste_dma40_ll.h" 29 30 #define D40_NAME "dma40" 31 32 #define D40_PHY_CHAN -1 33 34 /* For masking out/in 2 bit channel positions */ 35 #define D40_CHAN_POS(chan) (2 * (chan / 2)) 36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) 37 38 /* Maximum iterations taken before giving up suspending a channel */ 39 #define D40_SUSPEND_MAX_IT 500 40 41 /* Milliseconds */ 42 #define DMA40_AUTOSUSPEND_DELAY 100 43 44 /* Hardware requirement on LCLA alignment */ 45 #define LCLA_ALIGNMENT 0x40000 46 47 /* Max number of links per event group */ 48 #define D40_LCLA_LINK_PER_EVENT_GRP 128 49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP 50 51 /* Max number of logical channels per physical channel */ 52 #define D40_MAX_LOG_CHAN_PER_PHY 32 53 54 /* Attempts before giving up to trying to get pages that are aligned */ 55 #define MAX_LCLA_ALLOC_ATTEMPTS 256 56 57 /* Bit markings for allocation map */ 58 #define D40_ALLOC_FREE BIT(31) 59 #define D40_ALLOC_PHY BIT(30) 60 #define D40_ALLOC_LOG_FREE 0 61 62 #define D40_MEMCPY_MAX_CHANS 8 63 64 /* Reserved event lines for memcpy only. */ 65 #define DB8500_DMA_MEMCPY_EV_0 51 66 #define DB8500_DMA_MEMCPY_EV_1 56 67 #define DB8500_DMA_MEMCPY_EV_2 57 68 #define DB8500_DMA_MEMCPY_EV_3 58 69 #define DB8500_DMA_MEMCPY_EV_4 59 70 #define DB8500_DMA_MEMCPY_EV_5 60 71 72 static int dma40_memcpy_channels[] = { 73 DB8500_DMA_MEMCPY_EV_0, 74 DB8500_DMA_MEMCPY_EV_1, 75 DB8500_DMA_MEMCPY_EV_2, 76 DB8500_DMA_MEMCPY_EV_3, 77 DB8500_DMA_MEMCPY_EV_4, 78 DB8500_DMA_MEMCPY_EV_5, 79 }; 80 81 /* Default configuration for physcial memcpy */ 82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = { 83 .mode = STEDMA40_MODE_PHYSICAL, 84 .dir = DMA_MEM_TO_MEM, 85 86 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 87 .src_info.psize = STEDMA40_PSIZE_PHY_1, 88 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, 89 90 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 91 .dst_info.psize = STEDMA40_PSIZE_PHY_1, 92 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, 93 }; 94 95 /* Default configuration for logical memcpy */ 96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = { 97 .mode = STEDMA40_MODE_LOGICAL, 98 .dir = DMA_MEM_TO_MEM, 99 100 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 101 .src_info.psize = STEDMA40_PSIZE_LOG_1, 102 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, 103 104 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 105 .dst_info.psize = STEDMA40_PSIZE_LOG_1, 106 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, 107 }; 108 109 /** 110 * enum 40_command - The different commands and/or statuses. 111 * 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. 116 */ 117 enum d40_command { 118 D40_DMA_STOP = 0, 119 D40_DMA_RUN = 1, 120 D40_DMA_SUSPEND_REQ = 2, 121 D40_DMA_SUSPENDED = 3 122 }; 123 124 /* 125 * enum d40_events - The different Event Enables for the event lines. 126 * 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan. 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan. 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line. 130 * @D40_ROUND_EVENTLINE: Status check for event line. 131 */ 132 133 enum d40_events { 134 D40_DEACTIVATE_EVENTLINE = 0, 135 D40_ACTIVATE_EVENTLINE = 1, 136 D40_SUSPEND_REQ_EVENTLINE = 2, 137 D40_ROUND_EVENTLINE = 3 138 }; 139 140 /* 141 * These are the registers that has to be saved and later restored 142 * when the DMA hw is powered off. 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works. 144 */ 145 static u32 d40_backup_regs[] = { 146 D40_DREG_LCPA, 147 D40_DREG_LCLA, 148 D40_DREG_PRMSE, 149 D40_DREG_PRMSO, 150 D40_DREG_PRMOE, 151 D40_DREG_PRMOO, 152 }; 153 154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs) 155 156 /* 157 * since 9540 and 8540 has the same HW revision 158 * use v4a for 9540 or ealier 159 * use v4b for 8540 or later 160 * HW revision: 161 * DB8500ed has revision 0 162 * DB8500v1 has revision 2 163 * DB8500v2 has revision 3 164 * AP9540v1 has revision 4 165 * DB8540v1 has revision 4 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a 167 */ 168 static u32 d40_backup_regs_v4a[] = { 169 D40_DREG_PSEG1, 170 D40_DREG_PSEG2, 171 D40_DREG_PSEG3, 172 D40_DREG_PSEG4, 173 D40_DREG_PCEG1, 174 D40_DREG_PCEG2, 175 D40_DREG_PCEG3, 176 D40_DREG_PCEG4, 177 D40_DREG_RSEG1, 178 D40_DREG_RSEG2, 179 D40_DREG_RSEG3, 180 D40_DREG_RSEG4, 181 D40_DREG_RCEG1, 182 D40_DREG_RCEG2, 183 D40_DREG_RCEG3, 184 D40_DREG_RCEG4, 185 }; 186 187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a) 188 189 static u32 d40_backup_regs_v4b[] = { 190 D40_DREG_CPSEG1, 191 D40_DREG_CPSEG2, 192 D40_DREG_CPSEG3, 193 D40_DREG_CPSEG4, 194 D40_DREG_CPSEG5, 195 D40_DREG_CPCEG1, 196 D40_DREG_CPCEG2, 197 D40_DREG_CPCEG3, 198 D40_DREG_CPCEG4, 199 D40_DREG_CPCEG5, 200 D40_DREG_CRSEG1, 201 D40_DREG_CRSEG2, 202 D40_DREG_CRSEG3, 203 D40_DREG_CRSEG4, 204 D40_DREG_CRSEG5, 205 D40_DREG_CRCEG1, 206 D40_DREG_CRCEG2, 207 D40_DREG_CRCEG3, 208 D40_DREG_CRCEG4, 209 D40_DREG_CRCEG5, 210 }; 211 212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b) 213 214 static u32 d40_backup_regs_chan[] = { 215 D40_CHAN_REG_SSCFG, 216 D40_CHAN_REG_SSELT, 217 D40_CHAN_REG_SSPTR, 218 D40_CHAN_REG_SSLNK, 219 D40_CHAN_REG_SDCFG, 220 D40_CHAN_REG_SDELT, 221 D40_CHAN_REG_SDPTR, 222 D40_CHAN_REG_SDLNK, 223 }; 224 225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \ 226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B) 227 228 /** 229 * struct d40_interrupt_lookup - lookup table for interrupt handler 230 * 231 * @src: Interrupt mask register. 232 * @clr: Interrupt clear register. 233 * @is_error: true if this is an error interrupt. 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. 236 */ 237 struct d40_interrupt_lookup { 238 u32 src; 239 u32 clr; 240 bool is_error; 241 int offset; 242 }; 243 244 245 static struct d40_interrupt_lookup il_v4a[] = { 246 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, 247 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, 248 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, 249 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, 250 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, 251 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, 252 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, 253 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, 254 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, 255 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, 256 }; 257 258 static struct d40_interrupt_lookup il_v4b[] = { 259 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0}, 260 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32}, 261 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64}, 262 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96}, 263 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128}, 264 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0}, 265 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32}, 266 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64}, 267 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96}, 268 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128}, 269 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN}, 270 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN}, 271 }; 272 273 /** 274 * struct d40_reg_val - simple lookup struct 275 * 276 * @reg: The register. 277 * @val: The value that belongs to the register in reg. 278 */ 279 struct d40_reg_val { 280 unsigned int reg; 281 unsigned int val; 282 }; 283 284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = { 285 /* Clock every part of the DMA block from start */ 286 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, 287 288 /* Interrupts on all logical channels */ 289 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, 290 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, 291 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, 292 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, 293 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, 294 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, 295 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, 296 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, 297 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, 298 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, 299 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, 300 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} 301 }; 302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = { 303 /* Clock every part of the DMA block from start */ 304 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, 305 306 /* Interrupts on all logical channels */ 307 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF}, 308 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF}, 309 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF}, 310 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF}, 311 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF}, 312 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF}, 313 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF}, 314 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF}, 315 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF}, 316 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF}, 317 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF}, 318 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF}, 319 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF}, 320 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF}, 321 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF} 322 }; 323 324 /** 325 * struct d40_lli_pool - Structure for keeping LLIs in memory 326 * 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if 329 * pre_alloc_lli is used. 330 * @dma_addr: DMA address, if mapped 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers, 333 * one buffer to one buffer. 334 */ 335 struct d40_lli_pool { 336 void *base; 337 int size; 338 dma_addr_t dma_addr; 339 /* Space for dst and src, plus an extra for padding */ 340 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; 341 }; 342 343 /** 344 * struct d40_desc - A descriptor is one DMA job. 345 * 346 * @lli_phy: LLI settings for physical channel. Both src and dst= 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if 348 * lli_len equals one. 349 * @lli_log: Same as above but for logical channels. 350 * @lli_pool: The pool with two entries pre-allocated. 351 * @lli_len: Number of llis of current descriptor. 352 * @lli_current: Number of transferred llis. 353 * @lcla_alloc: Number of LCLA entries allocated. 354 * @txd: DMA engine struct. Used for among other things for communication 355 * during a transfer. 356 * @node: List entry. 357 * @is_in_client_list: true if the client owns this descriptor. 358 * @cyclic: true if this is a cyclic job 359 * 360 * This descriptor is used for both logical and physical transfers. 361 */ 362 struct d40_desc { 363 /* LLI physical */ 364 struct d40_phy_lli_bidir lli_phy; 365 /* LLI logical */ 366 struct d40_log_lli_bidir lli_log; 367 368 struct d40_lli_pool lli_pool; 369 int lli_len; 370 int lli_current; 371 int lcla_alloc; 372 373 struct dma_async_tx_descriptor txd; 374 struct list_head node; 375 376 bool is_in_client_list; 377 bool cyclic; 378 }; 379 380 /** 381 * struct d40_lcla_pool - LCLA pool settings and data. 382 * 383 * @base: The virtual address of LCLA. 18 bit aligned. 384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. 385 * This pointer is only there for clean-up on error. 386 * @pages: The number of pages needed for all physical channels. 387 * Only used later for clean-up on error 388 * @lock: Lock to protect the content in this struct. 389 * @alloc_map: big map over which LCLA entry is own by which job. 390 */ 391 struct d40_lcla_pool { 392 void *base; 393 dma_addr_t dma_addr; 394 void *base_unaligned; 395 int pages; 396 spinlock_t lock; 397 struct d40_desc **alloc_map; 398 }; 399 400 /** 401 * struct d40_phy_res - struct for handling eventlines mapped to physical 402 * channels. 403 * 404 * @lock: A lock protection this entity. 405 * @reserved: True if used by secure world or otherwise. 406 * @num: The physical channel number of this entity. 407 * @allocated_src: Bit mapped to show which src event line's are mapped to 408 * this physical channel. Can also be free or physically allocated. 409 * @allocated_dst: Same as for src but is dst. 410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as 411 * event line number. 412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW. 413 */ 414 struct d40_phy_res { 415 spinlock_t lock; 416 bool reserved; 417 int num; 418 u32 allocated_src; 419 u32 allocated_dst; 420 bool use_soft_lli; 421 }; 422 423 struct d40_base; 424 425 /** 426 * struct d40_chan - Struct that describes a channel. 427 * 428 * @lock: A spinlock to protect this struct. 429 * @log_num: The logical number, if any of this channel. 430 * @pending_tx: The number of pending transfers. Used between interrupt handler 431 * and tasklet. 432 * @busy: Set to true when transfer is ongoing on this channel. 433 * @phy_chan: Pointer to physical channel which this instance runs on. If this 434 * point is NULL, then the channel is not allocated. 435 * @chan: DMA engine handle. 436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a 437 * transfer and call client callback. 438 * @client: Cliented owned descriptor list. 439 * @pending_queue: Submitted jobs, to be issued by issue_pending() 440 * @active: Active descriptor. 441 * @done: Completed jobs 442 * @queue: Queued jobs. 443 * @prepare_queue: Prepared jobs. 444 * @dma_cfg: The client configuration of this dma channel. 445 * @configured: whether the dma_cfg configuration is valid 446 * @base: Pointer to the device instance struct. 447 * @src_def_cfg: Default cfg register setting for src. 448 * @dst_def_cfg: Default cfg register setting for dst. 449 * @log_def: Default logical channel settings. 450 * @lcpa: Pointer to dst and src lcpa settings. 451 * @runtime_addr: runtime configured address. 452 * @runtime_direction: runtime configured direction. 453 * 454 * This struct can either "be" a logical or a physical channel. 455 */ 456 struct d40_chan { 457 spinlock_t lock; 458 int log_num; 459 int pending_tx; 460 bool busy; 461 struct d40_phy_res *phy_chan; 462 struct dma_chan chan; 463 struct tasklet_struct tasklet; 464 struct list_head client; 465 struct list_head pending_queue; 466 struct list_head active; 467 struct list_head done; 468 struct list_head queue; 469 struct list_head prepare_queue; 470 struct stedma40_chan_cfg dma_cfg; 471 bool configured; 472 struct d40_base *base; 473 /* Default register configurations */ 474 u32 src_def_cfg; 475 u32 dst_def_cfg; 476 struct d40_def_lcsp log_def; 477 struct d40_log_lli_full *lcpa; 478 /* Runtime reconfiguration */ 479 dma_addr_t runtime_addr; 480 enum dma_transfer_direction runtime_direction; 481 }; 482 483 /** 484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA 485 * controller 486 * 487 * @backup: the pointer to the registers address array for backup 488 * @backup_size: the size of the registers address array for backup 489 * @realtime_en: the realtime enable register 490 * @realtime_clear: the realtime clear register 491 * @high_prio_en: the high priority enable register 492 * @high_prio_clear: the high priority clear register 493 * @interrupt_en: the interrupt enable register 494 * @interrupt_clear: the interrupt clear register 495 * @il: the pointer to struct d40_interrupt_lookup 496 * @il_size: the size of d40_interrupt_lookup array 497 * @init_reg: the pointer to the struct d40_reg_val 498 * @init_reg_size: the size of d40_reg_val array 499 */ 500 struct d40_gen_dmac { 501 u32 *backup; 502 u32 backup_size; 503 u32 realtime_en; 504 u32 realtime_clear; 505 u32 high_prio_en; 506 u32 high_prio_clear; 507 u32 interrupt_en; 508 u32 interrupt_clear; 509 struct d40_interrupt_lookup *il; 510 u32 il_size; 511 struct d40_reg_val *init_reg; 512 u32 init_reg_size; 513 }; 514 515 /** 516 * struct d40_base - The big global struct, one for each probe'd instance. 517 * 518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time. 519 * @execmd_lock: Lock for execute command usage since several channels share 520 * the same physical register. 521 * @dev: The device structure. 522 * @virtbase: The virtual base address of the DMA's register. 523 * @rev: silicon revision detected. 524 * @clk: Pointer to the DMA clock structure. 525 * @phy_start: Physical memory start of the DMA registers. 526 * @phy_size: Size of the DMA register map. 527 * @irq: The IRQ number. 528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem 529 * transfers). 530 * @num_phy_chans: The number of physical channels. Read from HW. This 531 * is the number of available channels for this driver, not counting "Secure 532 * mode" allocated physical channels. 533 * @num_log_chans: The number of logical channels. Calculated from 534 * num_phy_chans. 535 * @dma_both: dma_device channels that can do both memcpy and slave transfers. 536 * @dma_slave: dma_device channels that can do only do slave transfers. 537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers. 538 * @phy_chans: Room for all possible physical channels in system. 539 * @log_chans: Room for all possible logical channels in system. 540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points 541 * to log_chans entries. 542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points 543 * to phy_chans entries. 544 * @plat_data: Pointer to provided platform_data which is the driver 545 * configuration. 546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla. 547 * @phy_res: Vector containing all physical channels. 548 * @lcla_pool: lcla pool settings and data. 549 * @lcpa_base: The virtual mapped address of LCPA. 550 * @phy_lcpa: The physical address of the LCPA. 551 * @lcpa_size: The size of the LCPA area. 552 * @desc_slab: cache for descriptors. 553 * @reg_val_backup: Here the values of some hardware registers are stored 554 * before the DMA is powered off. They are restored when the power is back on. 555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and 556 * later 557 * @reg_val_backup_chan: Backup data for standard channel parameter registers. 558 * @regs_interrupt: Scratch space for registers during interrupt. 559 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off. 560 * @gen_dmac: the struct for generic registers values to represent u8500/8540 561 * DMA controller 562 */ 563 struct d40_base { 564 spinlock_t interrupt_lock; 565 spinlock_t execmd_lock; 566 struct device *dev; 567 void __iomem *virtbase; 568 u8 rev:4; 569 struct clk *clk; 570 phys_addr_t phy_start; 571 resource_size_t phy_size; 572 int irq; 573 int num_memcpy_chans; 574 int num_phy_chans; 575 int num_log_chans; 576 struct device_dma_parameters dma_parms; 577 struct dma_device dma_both; 578 struct dma_device dma_slave; 579 struct dma_device dma_memcpy; 580 struct d40_chan *phy_chans; 581 struct d40_chan *log_chans; 582 struct d40_chan **lookup_log_chans; 583 struct d40_chan **lookup_phy_chans; 584 struct stedma40_platform_data *plat_data; 585 struct regulator *lcpa_regulator; 586 /* Physical half channels */ 587 struct d40_phy_res *phy_res; 588 struct d40_lcla_pool lcla_pool; 589 void *lcpa_base; 590 dma_addr_t phy_lcpa; 591 resource_size_t lcpa_size; 592 struct kmem_cache *desc_slab; 593 u32 reg_val_backup[BACKUP_REGS_SZ]; 594 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX]; 595 u32 *reg_val_backup_chan; 596 u32 *regs_interrupt; 597 u16 gcc_pwr_off_mask; 598 struct d40_gen_dmac gen_dmac; 599 }; 600 601 static struct device *chan2dev(struct d40_chan *d40c) 602 { 603 return &d40c->chan.dev->device; 604 } 605 606 static bool chan_is_physical(struct d40_chan *chan) 607 { 608 return chan->log_num == D40_PHY_CHAN; 609 } 610 611 static bool chan_is_logical(struct d40_chan *chan) 612 { 613 return !chan_is_physical(chan); 614 } 615 616 static void __iomem *chan_base(struct d40_chan *chan) 617 { 618 return chan->base->virtbase + D40_DREG_PCBASE + 619 chan->phy_chan->num * D40_DREG_PCDELTA; 620 } 621 622 #define d40_err(dev, format, arg...) \ 623 dev_err(dev, "[%s] " format, __func__, ## arg) 624 625 #define chan_err(d40c, format, arg...) \ 626 d40_err(chan2dev(d40c), format, ## arg) 627 628 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d, 629 int lli_len) 630 { 631 bool is_log = chan_is_logical(d40c); 632 u32 align; 633 void *base; 634 635 if (is_log) 636 align = sizeof(struct d40_log_lli); 637 else 638 align = sizeof(struct d40_phy_lli); 639 640 if (lli_len == 1) { 641 base = d40d->lli_pool.pre_alloc_lli; 642 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); 643 d40d->lli_pool.base = NULL; 644 } else { 645 d40d->lli_pool.size = lli_len * 2 * align; 646 647 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); 648 d40d->lli_pool.base = base; 649 650 if (d40d->lli_pool.base == NULL) 651 return -ENOMEM; 652 } 653 654 if (is_log) { 655 d40d->lli_log.src = PTR_ALIGN(base, align); 656 d40d->lli_log.dst = d40d->lli_log.src + lli_len; 657 658 d40d->lli_pool.dma_addr = 0; 659 } else { 660 d40d->lli_phy.src = PTR_ALIGN(base, align); 661 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len; 662 663 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev, 664 d40d->lli_phy.src, 665 d40d->lli_pool.size, 666 DMA_TO_DEVICE); 667 668 if (dma_mapping_error(d40c->base->dev, 669 d40d->lli_pool.dma_addr)) { 670 kfree(d40d->lli_pool.base); 671 d40d->lli_pool.base = NULL; 672 d40d->lli_pool.dma_addr = 0; 673 return -ENOMEM; 674 } 675 } 676 677 return 0; 678 } 679 680 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d) 681 { 682 if (d40d->lli_pool.dma_addr) 683 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr, 684 d40d->lli_pool.size, DMA_TO_DEVICE); 685 686 kfree(d40d->lli_pool.base); 687 d40d->lli_pool.base = NULL; 688 d40d->lli_pool.size = 0; 689 d40d->lli_log.src = NULL; 690 d40d->lli_log.dst = NULL; 691 d40d->lli_phy.src = NULL; 692 d40d->lli_phy.dst = NULL; 693 } 694 695 static int d40_lcla_alloc_one(struct d40_chan *d40c, 696 struct d40_desc *d40d) 697 { 698 unsigned long flags; 699 int i; 700 int ret = -EINVAL; 701 702 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); 703 704 /* 705 * Allocate both src and dst at the same time, therefore the half 706 * start on 1 since 0 can't be used since zero is used as end marker. 707 */ 708 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { 709 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; 710 711 if (!d40c->base->lcla_pool.alloc_map[idx]) { 712 d40c->base->lcla_pool.alloc_map[idx] = d40d; 713 d40d->lcla_alloc++; 714 ret = i; 715 break; 716 } 717 } 718 719 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); 720 721 return ret; 722 } 723 724 static int d40_lcla_free_all(struct d40_chan *d40c, 725 struct d40_desc *d40d) 726 { 727 unsigned long flags; 728 int i; 729 int ret = -EINVAL; 730 731 if (chan_is_physical(d40c)) 732 return 0; 733 734 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); 735 736 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { 737 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; 738 739 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) { 740 d40c->base->lcla_pool.alloc_map[idx] = NULL; 741 d40d->lcla_alloc--; 742 if (d40d->lcla_alloc == 0) { 743 ret = 0; 744 break; 745 } 746 } 747 } 748 749 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); 750 751 return ret; 752 753 } 754 755 static void d40_desc_remove(struct d40_desc *d40d) 756 { 757 list_del(&d40d->node); 758 } 759 760 static struct d40_desc *d40_desc_get(struct d40_chan *d40c) 761 { 762 struct d40_desc *desc = NULL; 763 764 if (!list_empty(&d40c->client)) { 765 struct d40_desc *d; 766 struct d40_desc *_d; 767 768 list_for_each_entry_safe(d, _d, &d40c->client, node) { 769 if (async_tx_test_ack(&d->txd)) { 770 d40_desc_remove(d); 771 desc = d; 772 memset(desc, 0, sizeof(*desc)); 773 break; 774 } 775 } 776 } 777 778 if (!desc) 779 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT); 780 781 if (desc) 782 INIT_LIST_HEAD(&desc->node); 783 784 return desc; 785 } 786 787 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) 788 { 789 790 d40_pool_lli_free(d40c, d40d); 791 d40_lcla_free_all(d40c, d40d); 792 kmem_cache_free(d40c->base->desc_slab, d40d); 793 } 794 795 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) 796 { 797 list_add_tail(&desc->node, &d40c->active); 798 } 799 800 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc) 801 { 802 struct d40_phy_lli *lli_dst = desc->lli_phy.dst; 803 struct d40_phy_lli *lli_src = desc->lli_phy.src; 804 void __iomem *base = chan_base(chan); 805 806 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG); 807 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT); 808 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR); 809 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK); 810 811 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG); 812 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT); 813 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR); 814 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK); 815 } 816 817 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc) 818 { 819 list_add_tail(&desc->node, &d40c->done); 820 } 821 822 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc) 823 { 824 struct d40_lcla_pool *pool = &chan->base->lcla_pool; 825 struct d40_log_lli_bidir *lli = &desc->lli_log; 826 int lli_current = desc->lli_current; 827 int lli_len = desc->lli_len; 828 bool cyclic = desc->cyclic; 829 int curr_lcla = -EINVAL; 830 int first_lcla = 0; 831 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla; 832 bool linkback; 833 834 /* 835 * We may have partially running cyclic transfers, in case we did't get 836 * enough LCLA entries. 837 */ 838 linkback = cyclic && lli_current == 0; 839 840 /* 841 * For linkback, we need one LCLA even with only one link, because we 842 * can't link back to the one in LCPA space 843 */ 844 if (linkback || (lli_len - lli_current > 1)) { 845 /* 846 * If the channel is expected to use only soft_lli don't 847 * allocate a lcla. This is to avoid a HW issue that exists 848 * in some controller during a peripheral to memory transfer 849 * that uses linked lists. 850 */ 851 if (!(chan->phy_chan->use_soft_lli && 852 chan->dma_cfg.dir == DMA_DEV_TO_MEM)) 853 curr_lcla = d40_lcla_alloc_one(chan, desc); 854 855 first_lcla = curr_lcla; 856 } 857 858 /* 859 * For linkback, we normally load the LCPA in the loop since we need to 860 * link it to the second LCLA and not the first. However, if we 861 * couldn't even get a first LCLA, then we have to run in LCPA and 862 * reload manually. 863 */ 864 if (!linkback || curr_lcla == -EINVAL) { 865 unsigned int flags = 0; 866 867 if (curr_lcla == -EINVAL) 868 flags |= LLI_TERM_INT; 869 870 d40_log_lli_lcpa_write(chan->lcpa, 871 &lli->dst[lli_current], 872 &lli->src[lli_current], 873 curr_lcla, 874 flags); 875 lli_current++; 876 } 877 878 if (curr_lcla < 0) 879 goto set_current; 880 881 for (; lli_current < lli_len; lli_current++) { 882 unsigned int lcla_offset = chan->phy_chan->num * 1024 + 883 8 * curr_lcla * 2; 884 struct d40_log_lli *lcla = pool->base + lcla_offset; 885 unsigned int flags = 0; 886 int next_lcla; 887 888 if (lli_current + 1 < lli_len) 889 next_lcla = d40_lcla_alloc_one(chan, desc); 890 else 891 next_lcla = linkback ? first_lcla : -EINVAL; 892 893 if (cyclic || next_lcla == -EINVAL) 894 flags |= LLI_TERM_INT; 895 896 if (linkback && curr_lcla == first_lcla) { 897 /* First link goes in both LCPA and LCLA */ 898 d40_log_lli_lcpa_write(chan->lcpa, 899 &lli->dst[lli_current], 900 &lli->src[lli_current], 901 next_lcla, flags); 902 } 903 904 /* 905 * One unused LCLA in the cyclic case if the very first 906 * next_lcla fails... 907 */ 908 d40_log_lli_lcla_write(lcla, 909 &lli->dst[lli_current], 910 &lli->src[lli_current], 911 next_lcla, flags); 912 913 /* 914 * Cache maintenance is not needed if lcla is 915 * mapped in esram 916 */ 917 if (!use_esram_lcla) { 918 dma_sync_single_range_for_device(chan->base->dev, 919 pool->dma_addr, lcla_offset, 920 2 * sizeof(struct d40_log_lli), 921 DMA_TO_DEVICE); 922 } 923 curr_lcla = next_lcla; 924 925 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) { 926 lli_current++; 927 break; 928 } 929 } 930 set_current: 931 desc->lli_current = lli_current; 932 } 933 934 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) 935 { 936 if (chan_is_physical(d40c)) { 937 d40_phy_lli_load(d40c, d40d); 938 d40d->lli_current = d40d->lli_len; 939 } else 940 d40_log_lli_to_lcxa(d40c, d40d); 941 } 942 943 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) 944 { 945 return list_first_entry_or_null(&d40c->active, struct d40_desc, node); 946 } 947 948 /* remove desc from current queue and add it to the pending_queue */ 949 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) 950 { 951 d40_desc_remove(desc); 952 desc->is_in_client_list = false; 953 list_add_tail(&desc->node, &d40c->pending_queue); 954 } 955 956 static struct d40_desc *d40_first_pending(struct d40_chan *d40c) 957 { 958 return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc, 959 node); 960 } 961 962 static struct d40_desc *d40_first_queued(struct d40_chan *d40c) 963 { 964 return list_first_entry_or_null(&d40c->queue, struct d40_desc, node); 965 } 966 967 static struct d40_desc *d40_first_done(struct d40_chan *d40c) 968 { 969 return list_first_entry_or_null(&d40c->done, struct d40_desc, node); 970 } 971 972 static int d40_psize_2_burst_size(bool is_log, int psize) 973 { 974 if (is_log) { 975 if (psize == STEDMA40_PSIZE_LOG_1) 976 return 1; 977 } else { 978 if (psize == STEDMA40_PSIZE_PHY_1) 979 return 1; 980 } 981 982 return 2 << psize; 983 } 984 985 /* 986 * The dma only supports transmitting packages up to 987 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes. 988 * 989 * Calculate the total number of dma elements required to send the entire sg list. 990 */ 991 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2) 992 { 993 int dmalen; 994 u32 max_w = max(data_width1, data_width2); 995 u32 min_w = min(data_width1, data_width2); 996 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w); 997 998 if (seg_max > STEDMA40_MAX_SEG_SIZE) 999 seg_max -= max_w; 1000 1001 if (!IS_ALIGNED(size, max_w)) 1002 return -EINVAL; 1003 1004 if (size <= seg_max) 1005 dmalen = 1; 1006 else { 1007 dmalen = size / seg_max; 1008 if (dmalen * seg_max < size) 1009 dmalen++; 1010 } 1011 return dmalen; 1012 } 1013 1014 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len, 1015 u32 data_width1, u32 data_width2) 1016 { 1017 struct scatterlist *sg; 1018 int i; 1019 int len = 0; 1020 int ret; 1021 1022 for_each_sg(sgl, sg, sg_len, i) { 1023 ret = d40_size_2_dmalen(sg_dma_len(sg), 1024 data_width1, data_width2); 1025 if (ret < 0) 1026 return ret; 1027 len += ret; 1028 } 1029 return len; 1030 } 1031 1032 static int __d40_execute_command_phy(struct d40_chan *d40c, 1033 enum d40_command command) 1034 { 1035 u32 status; 1036 int i; 1037 void __iomem *active_reg; 1038 int ret = 0; 1039 unsigned long flags; 1040 u32 wmask; 1041 1042 if (command == D40_DMA_STOP) { 1043 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 spin_lock_irqsave(&d40c->base->execmd_lock, flags); 1049 1050 if (d40c->phy_chan->num % 2 == 0) 1051 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; 1052 else 1053 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; 1054 1055 if (command == D40_DMA_SUSPEND_REQ) { 1056 status = (readl(active_reg) & 1057 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 1058 D40_CHAN_POS(d40c->phy_chan->num); 1059 1060 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) 1061 goto unlock; 1062 } 1063 1064 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); 1065 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), 1066 active_reg); 1067 1068 if (command == D40_DMA_SUSPEND_REQ) { 1069 1070 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { 1071 status = (readl(active_reg) & 1072 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 1073 D40_CHAN_POS(d40c->phy_chan->num); 1074 1075 cpu_relax(); 1076 /* 1077 * Reduce the number of bus accesses while 1078 * waiting for the DMA to suspend. 1079 */ 1080 udelay(3); 1081 1082 if (status == D40_DMA_STOP || 1083 status == D40_DMA_SUSPENDED) 1084 break; 1085 } 1086 1087 if (i == D40_SUSPEND_MAX_IT) { 1088 chan_err(d40c, 1089 "unable to suspend the chl %d (log: %d) status %x\n", 1090 d40c->phy_chan->num, d40c->log_num, 1091 status); 1092 dump_stack(); 1093 ret = -EBUSY; 1094 } 1095 1096 } 1097 unlock: 1098 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); 1099 return ret; 1100 } 1101 1102 static void d40_term_all(struct d40_chan *d40c) 1103 { 1104 struct d40_desc *d40d; 1105 struct d40_desc *_d; 1106 1107 /* Release completed descriptors */ 1108 while ((d40d = d40_first_done(d40c))) { 1109 d40_desc_remove(d40d); 1110 d40_desc_free(d40c, d40d); 1111 } 1112 1113 /* Release active descriptors */ 1114 while ((d40d = d40_first_active_get(d40c))) { 1115 d40_desc_remove(d40d); 1116 d40_desc_free(d40c, d40d); 1117 } 1118 1119 /* Release queued descriptors waiting for transfer */ 1120 while ((d40d = d40_first_queued(d40c))) { 1121 d40_desc_remove(d40d); 1122 d40_desc_free(d40c, d40d); 1123 } 1124 1125 /* Release pending descriptors */ 1126 while ((d40d = d40_first_pending(d40c))) { 1127 d40_desc_remove(d40d); 1128 d40_desc_free(d40c, d40d); 1129 } 1130 1131 /* Release client owned descriptors */ 1132 if (!list_empty(&d40c->client)) 1133 list_for_each_entry_safe(d40d, _d, &d40c->client, node) { 1134 d40_desc_remove(d40d); 1135 d40_desc_free(d40c, d40d); 1136 } 1137 1138 /* Release descriptors in prepare queue */ 1139 if (!list_empty(&d40c->prepare_queue)) 1140 list_for_each_entry_safe(d40d, _d, 1141 &d40c->prepare_queue, node) { 1142 d40_desc_remove(d40d); 1143 d40_desc_free(d40c, d40d); 1144 } 1145 1146 d40c->pending_tx = 0; 1147 } 1148 1149 static void __d40_config_set_event(struct d40_chan *d40c, 1150 enum d40_events event_type, u32 event, 1151 int reg) 1152 { 1153 void __iomem *addr = chan_base(d40c) + reg; 1154 int tries; 1155 u32 status; 1156 1157 switch (event_type) { 1158 1159 case D40_DEACTIVATE_EVENTLINE: 1160 1161 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) 1162 | ~D40_EVENTLINE_MASK(event), addr); 1163 break; 1164 1165 case D40_SUSPEND_REQ_EVENTLINE: 1166 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> 1167 D40_EVENTLINE_POS(event); 1168 1169 if (status == D40_DEACTIVATE_EVENTLINE || 1170 status == D40_SUSPEND_REQ_EVENTLINE) 1171 break; 1172 1173 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event)) 1174 | ~D40_EVENTLINE_MASK(event), addr); 1175 1176 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) { 1177 1178 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> 1179 D40_EVENTLINE_POS(event); 1180 1181 cpu_relax(); 1182 /* 1183 * Reduce the number of bus accesses while 1184 * waiting for the DMA to suspend. 1185 */ 1186 udelay(3); 1187 1188 if (status == D40_DEACTIVATE_EVENTLINE) 1189 break; 1190 } 1191 1192 if (tries == D40_SUSPEND_MAX_IT) { 1193 chan_err(d40c, 1194 "unable to stop the event_line chl %d (log: %d)" 1195 "status %x\n", d40c->phy_chan->num, 1196 d40c->log_num, status); 1197 } 1198 break; 1199 1200 case D40_ACTIVATE_EVENTLINE: 1201 /* 1202 * The hardware sometimes doesn't register the enable when src and dst 1203 * event lines are active on the same logical channel. Retry to ensure 1204 * it does. Usually only one retry is sufficient. 1205 */ 1206 tries = 100; 1207 while (--tries) { 1208 writel((D40_ACTIVATE_EVENTLINE << 1209 D40_EVENTLINE_POS(event)) | 1210 ~D40_EVENTLINE_MASK(event), addr); 1211 1212 if (readl(addr) & D40_EVENTLINE_MASK(event)) 1213 break; 1214 } 1215 1216 if (tries != 99) 1217 dev_dbg(chan2dev(d40c), 1218 "[%s] workaround enable S%cLNK (%d tries)\n", 1219 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D', 1220 100 - tries); 1221 1222 WARN_ON(!tries); 1223 break; 1224 1225 case D40_ROUND_EVENTLINE: 1226 BUG(); 1227 break; 1228 1229 } 1230 } 1231 1232 static void d40_config_set_event(struct d40_chan *d40c, 1233 enum d40_events event_type) 1234 { 1235 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); 1236 1237 /* Enable event line connected to device (or memcpy) */ 1238 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) || 1239 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) 1240 __d40_config_set_event(d40c, event_type, event, 1241 D40_CHAN_REG_SSLNK); 1242 1243 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM) 1244 __d40_config_set_event(d40c, event_type, event, 1245 D40_CHAN_REG_SDLNK); 1246 } 1247 1248 static u32 d40_chan_has_events(struct d40_chan *d40c) 1249 { 1250 void __iomem *chanbase = chan_base(d40c); 1251 u32 val; 1252 1253 val = readl(chanbase + D40_CHAN_REG_SSLNK); 1254 val |= readl(chanbase + D40_CHAN_REG_SDLNK); 1255 1256 return val; 1257 } 1258 1259 static int 1260 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command) 1261 { 1262 unsigned long flags; 1263 int ret = 0; 1264 u32 active_status; 1265 void __iomem *active_reg; 1266 1267 if (d40c->phy_chan->num % 2 == 0) 1268 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; 1269 else 1270 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; 1271 1272 1273 spin_lock_irqsave(&d40c->phy_chan->lock, flags); 1274 1275 switch (command) { 1276 case D40_DMA_STOP: 1277 case D40_DMA_SUSPEND_REQ: 1278 1279 active_status = (readl(active_reg) & 1280 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 1281 D40_CHAN_POS(d40c->phy_chan->num); 1282 1283 if (active_status == D40_DMA_RUN) 1284 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE); 1285 else 1286 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE); 1287 1288 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP)) 1289 ret = __d40_execute_command_phy(d40c, command); 1290 1291 break; 1292 1293 case D40_DMA_RUN: 1294 1295 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE); 1296 ret = __d40_execute_command_phy(d40c, command); 1297 break; 1298 1299 case D40_DMA_SUSPENDED: 1300 BUG(); 1301 break; 1302 } 1303 1304 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); 1305 return ret; 1306 } 1307 1308 static int d40_channel_execute_command(struct d40_chan *d40c, 1309 enum d40_command command) 1310 { 1311 if (chan_is_logical(d40c)) 1312 return __d40_execute_command_log(d40c, command); 1313 else 1314 return __d40_execute_command_phy(d40c, command); 1315 } 1316 1317 static u32 d40_get_prmo(struct d40_chan *d40c) 1318 { 1319 static const unsigned int phy_map[] = { 1320 [STEDMA40_PCHAN_BASIC_MODE] 1321 = D40_DREG_PRMO_PCHAN_BASIC, 1322 [STEDMA40_PCHAN_MODULO_MODE] 1323 = D40_DREG_PRMO_PCHAN_MODULO, 1324 [STEDMA40_PCHAN_DOUBLE_DST_MODE] 1325 = D40_DREG_PRMO_PCHAN_DOUBLE_DST, 1326 }; 1327 static const unsigned int log_map[] = { 1328 [STEDMA40_LCHAN_SRC_PHY_DST_LOG] 1329 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG, 1330 [STEDMA40_LCHAN_SRC_LOG_DST_PHY] 1331 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY, 1332 [STEDMA40_LCHAN_SRC_LOG_DST_LOG] 1333 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG, 1334 }; 1335 1336 if (chan_is_physical(d40c)) 1337 return phy_map[d40c->dma_cfg.mode_opt]; 1338 else 1339 return log_map[d40c->dma_cfg.mode_opt]; 1340 } 1341 1342 static void d40_config_write(struct d40_chan *d40c) 1343 { 1344 u32 addr_base; 1345 u32 var; 1346 1347 /* Odd addresses are even addresses + 4 */ 1348 addr_base = (d40c->phy_chan->num % 2) * 4; 1349 /* Setup channel mode to logical or physical */ 1350 var = ((u32)(chan_is_logical(d40c)) + 1) << 1351 D40_CHAN_POS(d40c->phy_chan->num); 1352 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); 1353 1354 /* Setup operational mode option register */ 1355 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num); 1356 1357 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); 1358 1359 if (chan_is_logical(d40c)) { 1360 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) 1361 & D40_SREG_ELEM_LOG_LIDX_MASK; 1362 void __iomem *chanbase = chan_base(d40c); 1363 1364 /* Set default config for CFG reg */ 1365 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG); 1366 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG); 1367 1368 /* Set LIDX for lcla */ 1369 writel(lidx, chanbase + D40_CHAN_REG_SSELT); 1370 writel(lidx, chanbase + D40_CHAN_REG_SDELT); 1371 1372 /* Clear LNK which will be used by d40_chan_has_events() */ 1373 writel(0, chanbase + D40_CHAN_REG_SSLNK); 1374 writel(0, chanbase + D40_CHAN_REG_SDLNK); 1375 } 1376 } 1377 1378 static u32 d40_residue(struct d40_chan *d40c) 1379 { 1380 u32 num_elt; 1381 1382 if (chan_is_logical(d40c)) 1383 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) 1384 >> D40_MEM_LCSP2_ECNT_POS; 1385 else { 1386 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT); 1387 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK) 1388 >> D40_SREG_ELEM_PHY_ECNT_POS; 1389 } 1390 1391 return num_elt * d40c->dma_cfg.dst_info.data_width; 1392 } 1393 1394 static bool d40_tx_is_linked(struct d40_chan *d40c) 1395 { 1396 bool is_link; 1397 1398 if (chan_is_logical(d40c)) 1399 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; 1400 else 1401 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK) 1402 & D40_SREG_LNK_PHYS_LNK_MASK; 1403 1404 return is_link; 1405 } 1406 1407 static int d40_pause(struct dma_chan *chan) 1408 { 1409 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 1410 int res = 0; 1411 unsigned long flags; 1412 1413 if (d40c->phy_chan == NULL) { 1414 chan_err(d40c, "Channel is not allocated!\n"); 1415 return -EINVAL; 1416 } 1417 1418 if (!d40c->busy) 1419 return 0; 1420 1421 spin_lock_irqsave(&d40c->lock, flags); 1422 pm_runtime_get_sync(d40c->base->dev); 1423 1424 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); 1425 1426 pm_runtime_mark_last_busy(d40c->base->dev); 1427 pm_runtime_put_autosuspend(d40c->base->dev); 1428 spin_unlock_irqrestore(&d40c->lock, flags); 1429 return res; 1430 } 1431 1432 static int d40_resume(struct dma_chan *chan) 1433 { 1434 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 1435 int res = 0; 1436 unsigned long flags; 1437 1438 if (d40c->phy_chan == NULL) { 1439 chan_err(d40c, "Channel is not allocated!\n"); 1440 return -EINVAL; 1441 } 1442 1443 if (!d40c->busy) 1444 return 0; 1445 1446 spin_lock_irqsave(&d40c->lock, flags); 1447 pm_runtime_get_sync(d40c->base->dev); 1448 1449 /* If bytes left to transfer or linked tx resume job */ 1450 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) 1451 res = d40_channel_execute_command(d40c, D40_DMA_RUN); 1452 1453 pm_runtime_mark_last_busy(d40c->base->dev); 1454 pm_runtime_put_autosuspend(d40c->base->dev); 1455 spin_unlock_irqrestore(&d40c->lock, flags); 1456 return res; 1457 } 1458 1459 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) 1460 { 1461 struct d40_chan *d40c = container_of(tx->chan, 1462 struct d40_chan, 1463 chan); 1464 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); 1465 unsigned long flags; 1466 dma_cookie_t cookie; 1467 1468 spin_lock_irqsave(&d40c->lock, flags); 1469 cookie = dma_cookie_assign(tx); 1470 d40_desc_queue(d40c, d40d); 1471 spin_unlock_irqrestore(&d40c->lock, flags); 1472 1473 return cookie; 1474 } 1475 1476 static int d40_start(struct d40_chan *d40c) 1477 { 1478 return d40_channel_execute_command(d40c, D40_DMA_RUN); 1479 } 1480 1481 static struct d40_desc *d40_queue_start(struct d40_chan *d40c) 1482 { 1483 struct d40_desc *d40d; 1484 int err; 1485 1486 /* Start queued jobs, if any */ 1487 d40d = d40_first_queued(d40c); 1488 1489 if (d40d != NULL) { 1490 if (!d40c->busy) { 1491 d40c->busy = true; 1492 pm_runtime_get_sync(d40c->base->dev); 1493 } 1494 1495 /* Remove from queue */ 1496 d40_desc_remove(d40d); 1497 1498 /* Add to active queue */ 1499 d40_desc_submit(d40c, d40d); 1500 1501 /* Initiate DMA job */ 1502 d40_desc_load(d40c, d40d); 1503 1504 /* Start dma job */ 1505 err = d40_start(d40c); 1506 1507 if (err) 1508 return NULL; 1509 } 1510 1511 return d40d; 1512 } 1513 1514 /* called from interrupt context */ 1515 static void dma_tc_handle(struct d40_chan *d40c) 1516 { 1517 struct d40_desc *d40d; 1518 1519 /* Get first active entry from list */ 1520 d40d = d40_first_active_get(d40c); 1521 1522 if (d40d == NULL) 1523 return; 1524 1525 if (d40d->cyclic) { 1526 /* 1527 * If this was a paritially loaded list, we need to reloaded 1528 * it, and only when the list is completed. We need to check 1529 * for done because the interrupt will hit for every link, and 1530 * not just the last one. 1531 */ 1532 if (d40d->lli_current < d40d->lli_len 1533 && !d40_tx_is_linked(d40c) 1534 && !d40_residue(d40c)) { 1535 d40_lcla_free_all(d40c, d40d); 1536 d40_desc_load(d40c, d40d); 1537 (void) d40_start(d40c); 1538 1539 if (d40d->lli_current == d40d->lli_len) 1540 d40d->lli_current = 0; 1541 } 1542 } else { 1543 d40_lcla_free_all(d40c, d40d); 1544 1545 if (d40d->lli_current < d40d->lli_len) { 1546 d40_desc_load(d40c, d40d); 1547 /* Start dma job */ 1548 (void) d40_start(d40c); 1549 return; 1550 } 1551 1552 if (d40_queue_start(d40c) == NULL) { 1553 d40c->busy = false; 1554 1555 pm_runtime_mark_last_busy(d40c->base->dev); 1556 pm_runtime_put_autosuspend(d40c->base->dev); 1557 } 1558 1559 d40_desc_remove(d40d); 1560 d40_desc_done(d40c, d40d); 1561 } 1562 1563 d40c->pending_tx++; 1564 tasklet_schedule(&d40c->tasklet); 1565 1566 } 1567 1568 static void dma_tasklet(unsigned long data) 1569 { 1570 struct d40_chan *d40c = (struct d40_chan *) data; 1571 struct d40_desc *d40d; 1572 unsigned long flags; 1573 bool callback_active; 1574 struct dmaengine_desc_callback cb; 1575 1576 spin_lock_irqsave(&d40c->lock, flags); 1577 1578 /* Get first entry from the done list */ 1579 d40d = d40_first_done(d40c); 1580 if (d40d == NULL) { 1581 /* Check if we have reached here for cyclic job */ 1582 d40d = d40_first_active_get(d40c); 1583 if (d40d == NULL || !d40d->cyclic) 1584 goto check_pending_tx; 1585 } 1586 1587 if (!d40d->cyclic) 1588 dma_cookie_complete(&d40d->txd); 1589 1590 /* 1591 * If terminating a channel pending_tx is set to zero. 1592 * This prevents any finished active jobs to return to the client. 1593 */ 1594 if (d40c->pending_tx == 0) { 1595 spin_unlock_irqrestore(&d40c->lock, flags); 1596 return; 1597 } 1598 1599 /* Callback to client */ 1600 callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT); 1601 dmaengine_desc_get_callback(&d40d->txd, &cb); 1602 1603 if (!d40d->cyclic) { 1604 if (async_tx_test_ack(&d40d->txd)) { 1605 d40_desc_remove(d40d); 1606 d40_desc_free(d40c, d40d); 1607 } else if (!d40d->is_in_client_list) { 1608 d40_desc_remove(d40d); 1609 d40_lcla_free_all(d40c, d40d); 1610 list_add_tail(&d40d->node, &d40c->client); 1611 d40d->is_in_client_list = true; 1612 } 1613 } 1614 1615 d40c->pending_tx--; 1616 1617 if (d40c->pending_tx) 1618 tasklet_schedule(&d40c->tasklet); 1619 1620 spin_unlock_irqrestore(&d40c->lock, flags); 1621 1622 if (callback_active) 1623 dmaengine_desc_callback_invoke(&cb, NULL); 1624 1625 return; 1626 check_pending_tx: 1627 /* Rescue manouver if receiving double interrupts */ 1628 if (d40c->pending_tx > 0) 1629 d40c->pending_tx--; 1630 spin_unlock_irqrestore(&d40c->lock, flags); 1631 } 1632 1633 static irqreturn_t d40_handle_interrupt(int irq, void *data) 1634 { 1635 int i; 1636 u32 idx; 1637 u32 row; 1638 long chan = -1; 1639 struct d40_chan *d40c; 1640 unsigned long flags; 1641 struct d40_base *base = data; 1642 u32 *regs = base->regs_interrupt; 1643 struct d40_interrupt_lookup *il = base->gen_dmac.il; 1644 u32 il_size = base->gen_dmac.il_size; 1645 1646 spin_lock_irqsave(&base->interrupt_lock, flags); 1647 1648 /* Read interrupt status of both logical and physical channels */ 1649 for (i = 0; i < il_size; i++) 1650 regs[i] = readl(base->virtbase + il[i].src); 1651 1652 for (;;) { 1653 1654 chan = find_next_bit((unsigned long *)regs, 1655 BITS_PER_LONG * il_size, chan + 1); 1656 1657 /* No more set bits found? */ 1658 if (chan == BITS_PER_LONG * il_size) 1659 break; 1660 1661 row = chan / BITS_PER_LONG; 1662 idx = chan & (BITS_PER_LONG - 1); 1663 1664 if (il[row].offset == D40_PHY_CHAN) 1665 d40c = base->lookup_phy_chans[idx]; 1666 else 1667 d40c = base->lookup_log_chans[il[row].offset + idx]; 1668 1669 if (!d40c) { 1670 /* 1671 * No error because this can happen if something else 1672 * in the system is using the channel. 1673 */ 1674 continue; 1675 } 1676 1677 /* ACK interrupt */ 1678 writel(BIT(idx), base->virtbase + il[row].clr); 1679 1680 spin_lock(&d40c->lock); 1681 1682 if (!il[row].is_error) 1683 dma_tc_handle(d40c); 1684 else 1685 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n", 1686 chan, il[row].offset, idx); 1687 1688 spin_unlock(&d40c->lock); 1689 } 1690 1691 spin_unlock_irqrestore(&base->interrupt_lock, flags); 1692 1693 return IRQ_HANDLED; 1694 } 1695 1696 static int d40_validate_conf(struct d40_chan *d40c, 1697 struct stedma40_chan_cfg *conf) 1698 { 1699 int res = 0; 1700 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL; 1701 1702 if (!conf->dir) { 1703 chan_err(d40c, "Invalid direction.\n"); 1704 res = -EINVAL; 1705 } 1706 1707 if ((is_log && conf->dev_type > d40c->base->num_log_chans) || 1708 (!is_log && conf->dev_type > d40c->base->num_phy_chans) || 1709 (conf->dev_type < 0)) { 1710 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type); 1711 res = -EINVAL; 1712 } 1713 1714 if (conf->dir == DMA_DEV_TO_DEV) { 1715 /* 1716 * DMAC HW supports it. Will be added to this driver, 1717 * in case any dma client requires it. 1718 */ 1719 chan_err(d40c, "periph to periph not supported\n"); 1720 res = -EINVAL; 1721 } 1722 1723 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) * 1724 conf->src_info.data_width != 1725 d40_psize_2_burst_size(is_log, conf->dst_info.psize) * 1726 conf->dst_info.data_width) { 1727 /* 1728 * The DMAC hardware only supports 1729 * src (burst x width) == dst (burst x width) 1730 */ 1731 1732 chan_err(d40c, "src (burst x width) != dst (burst x width)\n"); 1733 res = -EINVAL; 1734 } 1735 1736 return res; 1737 } 1738 1739 static bool d40_alloc_mask_set(struct d40_phy_res *phy, 1740 bool is_src, int log_event_line, bool is_log, 1741 bool *first_user) 1742 { 1743 unsigned long flags; 1744 spin_lock_irqsave(&phy->lock, flags); 1745 1746 *first_user = ((phy->allocated_src | phy->allocated_dst) 1747 == D40_ALLOC_FREE); 1748 1749 if (!is_log) { 1750 /* Physical interrupts are masked per physical full channel */ 1751 if (phy->allocated_src == D40_ALLOC_FREE && 1752 phy->allocated_dst == D40_ALLOC_FREE) { 1753 phy->allocated_dst = D40_ALLOC_PHY; 1754 phy->allocated_src = D40_ALLOC_PHY; 1755 goto found_unlock; 1756 } else 1757 goto not_found_unlock; 1758 } 1759 1760 /* Logical channel */ 1761 if (is_src) { 1762 if (phy->allocated_src == D40_ALLOC_PHY) 1763 goto not_found_unlock; 1764 1765 if (phy->allocated_src == D40_ALLOC_FREE) 1766 phy->allocated_src = D40_ALLOC_LOG_FREE; 1767 1768 if (!(phy->allocated_src & BIT(log_event_line))) { 1769 phy->allocated_src |= BIT(log_event_line); 1770 goto found_unlock; 1771 } else 1772 goto not_found_unlock; 1773 } else { 1774 if (phy->allocated_dst == D40_ALLOC_PHY) 1775 goto not_found_unlock; 1776 1777 if (phy->allocated_dst == D40_ALLOC_FREE) 1778 phy->allocated_dst = D40_ALLOC_LOG_FREE; 1779 1780 if (!(phy->allocated_dst & BIT(log_event_line))) { 1781 phy->allocated_dst |= BIT(log_event_line); 1782 goto found_unlock; 1783 } 1784 } 1785 not_found_unlock: 1786 spin_unlock_irqrestore(&phy->lock, flags); 1787 return false; 1788 found_unlock: 1789 spin_unlock_irqrestore(&phy->lock, flags); 1790 return true; 1791 } 1792 1793 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, 1794 int log_event_line) 1795 { 1796 unsigned long flags; 1797 bool is_free = false; 1798 1799 spin_lock_irqsave(&phy->lock, flags); 1800 if (!log_event_line) { 1801 phy->allocated_dst = D40_ALLOC_FREE; 1802 phy->allocated_src = D40_ALLOC_FREE; 1803 is_free = true; 1804 goto unlock; 1805 } 1806 1807 /* Logical channel */ 1808 if (is_src) { 1809 phy->allocated_src &= ~BIT(log_event_line); 1810 if (phy->allocated_src == D40_ALLOC_LOG_FREE) 1811 phy->allocated_src = D40_ALLOC_FREE; 1812 } else { 1813 phy->allocated_dst &= ~BIT(log_event_line); 1814 if (phy->allocated_dst == D40_ALLOC_LOG_FREE) 1815 phy->allocated_dst = D40_ALLOC_FREE; 1816 } 1817 1818 is_free = ((phy->allocated_src | phy->allocated_dst) == 1819 D40_ALLOC_FREE); 1820 unlock: 1821 spin_unlock_irqrestore(&phy->lock, flags); 1822 1823 return is_free; 1824 } 1825 1826 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user) 1827 { 1828 int dev_type = d40c->dma_cfg.dev_type; 1829 int event_group; 1830 int event_line; 1831 struct d40_phy_res *phys; 1832 int i; 1833 int j; 1834 int log_num; 1835 int num_phy_chans; 1836 bool is_src; 1837 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL; 1838 1839 phys = d40c->base->phy_res; 1840 num_phy_chans = d40c->base->num_phy_chans; 1841 1842 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) { 1843 log_num = 2 * dev_type; 1844 is_src = true; 1845 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || 1846 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { 1847 /* dst event lines are used for logical memcpy */ 1848 log_num = 2 * dev_type + 1; 1849 is_src = false; 1850 } else 1851 return -EINVAL; 1852 1853 event_group = D40_TYPE_TO_GROUP(dev_type); 1854 event_line = D40_TYPE_TO_EVENT(dev_type); 1855 1856 if (!is_log) { 1857 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { 1858 /* Find physical half channel */ 1859 if (d40c->dma_cfg.use_fixed_channel) { 1860 i = d40c->dma_cfg.phy_channel; 1861 if (d40_alloc_mask_set(&phys[i], is_src, 1862 0, is_log, 1863 first_phy_user)) 1864 goto found_phy; 1865 } else { 1866 for (i = 0; i < num_phy_chans; i++) { 1867 if (d40_alloc_mask_set(&phys[i], is_src, 1868 0, is_log, 1869 first_phy_user)) 1870 goto found_phy; 1871 } 1872 } 1873 } else 1874 for (j = 0; j < d40c->base->num_phy_chans; j += 8) { 1875 int phy_num = j + event_group * 2; 1876 for (i = phy_num; i < phy_num + 2; i++) { 1877 if (d40_alloc_mask_set(&phys[i], 1878 is_src, 1879 0, 1880 is_log, 1881 first_phy_user)) 1882 goto found_phy; 1883 } 1884 } 1885 return -EINVAL; 1886 found_phy: 1887 d40c->phy_chan = &phys[i]; 1888 d40c->log_num = D40_PHY_CHAN; 1889 goto out; 1890 } 1891 if (dev_type == -1) 1892 return -EINVAL; 1893 1894 /* Find logical channel */ 1895 for (j = 0; j < d40c->base->num_phy_chans; j += 8) { 1896 int phy_num = j + event_group * 2; 1897 1898 if (d40c->dma_cfg.use_fixed_channel) { 1899 i = d40c->dma_cfg.phy_channel; 1900 1901 if ((i != phy_num) && (i != phy_num + 1)) { 1902 dev_err(chan2dev(d40c), 1903 "invalid fixed phy channel %d\n", i); 1904 return -EINVAL; 1905 } 1906 1907 if (d40_alloc_mask_set(&phys[i], is_src, event_line, 1908 is_log, first_phy_user)) 1909 goto found_log; 1910 1911 dev_err(chan2dev(d40c), 1912 "could not allocate fixed phy channel %d\n", i); 1913 return -EINVAL; 1914 } 1915 1916 /* 1917 * Spread logical channels across all available physical rather 1918 * than pack every logical channel at the first available phy 1919 * channels. 1920 */ 1921 if (is_src) { 1922 for (i = phy_num; i < phy_num + 2; i++) { 1923 if (d40_alloc_mask_set(&phys[i], is_src, 1924 event_line, is_log, 1925 first_phy_user)) 1926 goto found_log; 1927 } 1928 } else { 1929 for (i = phy_num + 1; i >= phy_num; i--) { 1930 if (d40_alloc_mask_set(&phys[i], is_src, 1931 event_line, is_log, 1932 first_phy_user)) 1933 goto found_log; 1934 } 1935 } 1936 } 1937 return -EINVAL; 1938 1939 found_log: 1940 d40c->phy_chan = &phys[i]; 1941 d40c->log_num = log_num; 1942 out: 1943 1944 if (is_log) 1945 d40c->base->lookup_log_chans[d40c->log_num] = d40c; 1946 else 1947 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; 1948 1949 return 0; 1950 1951 } 1952 1953 static int d40_config_memcpy(struct d40_chan *d40c) 1954 { 1955 dma_cap_mask_t cap = d40c->chan.device->cap_mask; 1956 1957 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { 1958 d40c->dma_cfg = dma40_memcpy_conf_log; 1959 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id]; 1960 1961 d40_log_cfg(&d40c->dma_cfg, 1962 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); 1963 1964 } else if (dma_has_cap(DMA_MEMCPY, cap) && 1965 dma_has_cap(DMA_SLAVE, cap)) { 1966 d40c->dma_cfg = dma40_memcpy_conf_phy; 1967 1968 /* Generate interrrupt at end of transfer or relink. */ 1969 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS); 1970 1971 /* Generate interrupt on error. */ 1972 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS); 1973 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS); 1974 1975 } else { 1976 chan_err(d40c, "No memcpy\n"); 1977 return -EINVAL; 1978 } 1979 1980 return 0; 1981 } 1982 1983 static int d40_free_dma(struct d40_chan *d40c) 1984 { 1985 1986 int res = 0; 1987 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); 1988 struct d40_phy_res *phy = d40c->phy_chan; 1989 bool is_src; 1990 1991 /* Terminate all queued and active transfers */ 1992 d40_term_all(d40c); 1993 1994 if (phy == NULL) { 1995 chan_err(d40c, "phy == null\n"); 1996 return -EINVAL; 1997 } 1998 1999 if (phy->allocated_src == D40_ALLOC_FREE && 2000 phy->allocated_dst == D40_ALLOC_FREE) { 2001 chan_err(d40c, "channel already free\n"); 2002 return -EINVAL; 2003 } 2004 2005 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || 2006 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) 2007 is_src = false; 2008 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) 2009 is_src = true; 2010 else { 2011 chan_err(d40c, "Unknown direction\n"); 2012 return -EINVAL; 2013 } 2014 2015 pm_runtime_get_sync(d40c->base->dev); 2016 res = d40_channel_execute_command(d40c, D40_DMA_STOP); 2017 if (res) { 2018 chan_err(d40c, "stop failed\n"); 2019 goto mark_last_busy; 2020 } 2021 2022 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0); 2023 2024 if (chan_is_logical(d40c)) 2025 d40c->base->lookup_log_chans[d40c->log_num] = NULL; 2026 else 2027 d40c->base->lookup_phy_chans[phy->num] = NULL; 2028 2029 if (d40c->busy) { 2030 pm_runtime_mark_last_busy(d40c->base->dev); 2031 pm_runtime_put_autosuspend(d40c->base->dev); 2032 } 2033 2034 d40c->busy = false; 2035 d40c->phy_chan = NULL; 2036 d40c->configured = false; 2037 mark_last_busy: 2038 pm_runtime_mark_last_busy(d40c->base->dev); 2039 pm_runtime_put_autosuspend(d40c->base->dev); 2040 return res; 2041 } 2042 2043 static bool d40_is_paused(struct d40_chan *d40c) 2044 { 2045 void __iomem *chanbase = chan_base(d40c); 2046 bool is_paused = false; 2047 unsigned long flags; 2048 void __iomem *active_reg; 2049 u32 status; 2050 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); 2051 2052 spin_lock_irqsave(&d40c->lock, flags); 2053 2054 if (chan_is_physical(d40c)) { 2055 if (d40c->phy_chan->num % 2 == 0) 2056 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; 2057 else 2058 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; 2059 2060 status = (readl(active_reg) & 2061 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 2062 D40_CHAN_POS(d40c->phy_chan->num); 2063 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) 2064 is_paused = true; 2065 goto unlock; 2066 } 2067 2068 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || 2069 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { 2070 status = readl(chanbase + D40_CHAN_REG_SDLNK); 2071 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) { 2072 status = readl(chanbase + D40_CHAN_REG_SSLNK); 2073 } else { 2074 chan_err(d40c, "Unknown direction\n"); 2075 goto unlock; 2076 } 2077 2078 status = (status & D40_EVENTLINE_MASK(event)) >> 2079 D40_EVENTLINE_POS(event); 2080 2081 if (status != D40_DMA_RUN) 2082 is_paused = true; 2083 unlock: 2084 spin_unlock_irqrestore(&d40c->lock, flags); 2085 return is_paused; 2086 2087 } 2088 2089 static u32 stedma40_residue(struct dma_chan *chan) 2090 { 2091 struct d40_chan *d40c = 2092 container_of(chan, struct d40_chan, chan); 2093 u32 bytes_left; 2094 unsigned long flags; 2095 2096 spin_lock_irqsave(&d40c->lock, flags); 2097 bytes_left = d40_residue(d40c); 2098 spin_unlock_irqrestore(&d40c->lock, flags); 2099 2100 return bytes_left; 2101 } 2102 2103 static int 2104 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc, 2105 struct scatterlist *sg_src, struct scatterlist *sg_dst, 2106 unsigned int sg_len, dma_addr_t src_dev_addr, 2107 dma_addr_t dst_dev_addr) 2108 { 2109 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 2110 struct stedma40_half_channel_info *src_info = &cfg->src_info; 2111 struct stedma40_half_channel_info *dst_info = &cfg->dst_info; 2112 int ret; 2113 2114 ret = d40_log_sg_to_lli(sg_src, sg_len, 2115 src_dev_addr, 2116 desc->lli_log.src, 2117 chan->log_def.lcsp1, 2118 src_info->data_width, 2119 dst_info->data_width); 2120 2121 ret = d40_log_sg_to_lli(sg_dst, sg_len, 2122 dst_dev_addr, 2123 desc->lli_log.dst, 2124 chan->log_def.lcsp3, 2125 dst_info->data_width, 2126 src_info->data_width); 2127 2128 return ret < 0 ? ret : 0; 2129 } 2130 2131 static int 2132 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc, 2133 struct scatterlist *sg_src, struct scatterlist *sg_dst, 2134 unsigned int sg_len, dma_addr_t src_dev_addr, 2135 dma_addr_t dst_dev_addr) 2136 { 2137 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 2138 struct stedma40_half_channel_info *src_info = &cfg->src_info; 2139 struct stedma40_half_channel_info *dst_info = &cfg->dst_info; 2140 unsigned long flags = 0; 2141 int ret; 2142 2143 if (desc->cyclic) 2144 flags |= LLI_CYCLIC | LLI_TERM_INT; 2145 2146 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr, 2147 desc->lli_phy.src, 2148 virt_to_phys(desc->lli_phy.src), 2149 chan->src_def_cfg, 2150 src_info, dst_info, flags); 2151 2152 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr, 2153 desc->lli_phy.dst, 2154 virt_to_phys(desc->lli_phy.dst), 2155 chan->dst_def_cfg, 2156 dst_info, src_info, flags); 2157 2158 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr, 2159 desc->lli_pool.size, DMA_TO_DEVICE); 2160 2161 return ret < 0 ? ret : 0; 2162 } 2163 2164 static struct d40_desc * 2165 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg, 2166 unsigned int sg_len, unsigned long dma_flags) 2167 { 2168 struct stedma40_chan_cfg *cfg; 2169 struct d40_desc *desc; 2170 int ret; 2171 2172 desc = d40_desc_get(chan); 2173 if (!desc) 2174 return NULL; 2175 2176 cfg = &chan->dma_cfg; 2177 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width, 2178 cfg->dst_info.data_width); 2179 if (desc->lli_len < 0) { 2180 chan_err(chan, "Unaligned size\n"); 2181 goto free_desc; 2182 } 2183 2184 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len); 2185 if (ret < 0) { 2186 chan_err(chan, "Could not allocate lli\n"); 2187 goto free_desc; 2188 } 2189 2190 desc->lli_current = 0; 2191 desc->txd.flags = dma_flags; 2192 desc->txd.tx_submit = d40_tx_submit; 2193 2194 dma_async_tx_descriptor_init(&desc->txd, &chan->chan); 2195 2196 return desc; 2197 free_desc: 2198 d40_desc_free(chan, desc); 2199 return NULL; 2200 } 2201 2202 static struct dma_async_tx_descriptor * 2203 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src, 2204 struct scatterlist *sg_dst, unsigned int sg_len, 2205 enum dma_transfer_direction direction, unsigned long dma_flags) 2206 { 2207 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan); 2208 dma_addr_t src_dev_addr; 2209 dma_addr_t dst_dev_addr; 2210 struct d40_desc *desc; 2211 unsigned long flags; 2212 int ret; 2213 2214 if (!chan->phy_chan) { 2215 chan_err(chan, "Cannot prepare unallocated channel\n"); 2216 return NULL; 2217 } 2218 2219 spin_lock_irqsave(&chan->lock, flags); 2220 2221 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags); 2222 if (desc == NULL) 2223 goto unlock; 2224 2225 if (sg_next(&sg_src[sg_len - 1]) == sg_src) 2226 desc->cyclic = true; 2227 2228 src_dev_addr = 0; 2229 dst_dev_addr = 0; 2230 if (direction == DMA_DEV_TO_MEM) 2231 src_dev_addr = chan->runtime_addr; 2232 else if (direction == DMA_MEM_TO_DEV) 2233 dst_dev_addr = chan->runtime_addr; 2234 2235 if (chan_is_logical(chan)) 2236 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst, 2237 sg_len, src_dev_addr, dst_dev_addr); 2238 else 2239 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst, 2240 sg_len, src_dev_addr, dst_dev_addr); 2241 2242 if (ret) { 2243 chan_err(chan, "Failed to prepare %s sg job: %d\n", 2244 chan_is_logical(chan) ? "log" : "phy", ret); 2245 goto free_desc; 2246 } 2247 2248 /* 2249 * add descriptor to the prepare queue in order to be able 2250 * to free them later in terminate_all 2251 */ 2252 list_add_tail(&desc->node, &chan->prepare_queue); 2253 2254 spin_unlock_irqrestore(&chan->lock, flags); 2255 2256 return &desc->txd; 2257 free_desc: 2258 d40_desc_free(chan, desc); 2259 unlock: 2260 spin_unlock_irqrestore(&chan->lock, flags); 2261 return NULL; 2262 } 2263 2264 bool stedma40_filter(struct dma_chan *chan, void *data) 2265 { 2266 struct stedma40_chan_cfg *info = data; 2267 struct d40_chan *d40c = 2268 container_of(chan, struct d40_chan, chan); 2269 int err; 2270 2271 if (data) { 2272 err = d40_validate_conf(d40c, info); 2273 if (!err) 2274 d40c->dma_cfg = *info; 2275 } else 2276 err = d40_config_memcpy(d40c); 2277 2278 if (!err) 2279 d40c->configured = true; 2280 2281 return err == 0; 2282 } 2283 EXPORT_SYMBOL(stedma40_filter); 2284 2285 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src) 2286 { 2287 bool realtime = d40c->dma_cfg.realtime; 2288 bool highprio = d40c->dma_cfg.high_priority; 2289 u32 rtreg; 2290 u32 event = D40_TYPE_TO_EVENT(dev_type); 2291 u32 group = D40_TYPE_TO_GROUP(dev_type); 2292 u32 bit = BIT(event); 2293 u32 prioreg; 2294 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac; 2295 2296 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear; 2297 /* 2298 * Due to a hardware bug, in some cases a logical channel triggered by 2299 * a high priority destination event line can generate extra packet 2300 * transactions. 2301 * 2302 * The workaround is to not set the high priority level for the 2303 * destination event lines that trigger logical channels. 2304 */ 2305 if (!src && chan_is_logical(d40c)) 2306 highprio = false; 2307 2308 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear; 2309 2310 /* Destination event lines are stored in the upper halfword */ 2311 if (!src) 2312 bit <<= 16; 2313 2314 writel(bit, d40c->base->virtbase + prioreg + group * 4); 2315 writel(bit, d40c->base->virtbase + rtreg + group * 4); 2316 } 2317 2318 static void d40_set_prio_realtime(struct d40_chan *d40c) 2319 { 2320 if (d40c->base->rev < 3) 2321 return; 2322 2323 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) || 2324 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) 2325 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true); 2326 2327 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) || 2328 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) 2329 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false); 2330 } 2331 2332 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1) 2333 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1) 2334 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1) 2335 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1) 2336 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1) 2337 2338 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec, 2339 struct of_dma *ofdma) 2340 { 2341 struct stedma40_chan_cfg cfg; 2342 dma_cap_mask_t cap; 2343 u32 flags; 2344 2345 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg)); 2346 2347 dma_cap_zero(cap); 2348 dma_cap_set(DMA_SLAVE, cap); 2349 2350 cfg.dev_type = dma_spec->args[0]; 2351 flags = dma_spec->args[2]; 2352 2353 switch (D40_DT_FLAGS_MODE(flags)) { 2354 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break; 2355 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break; 2356 } 2357 2358 switch (D40_DT_FLAGS_DIR(flags)) { 2359 case 0: 2360 cfg.dir = DMA_MEM_TO_DEV; 2361 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags); 2362 break; 2363 case 1: 2364 cfg.dir = DMA_DEV_TO_MEM; 2365 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags); 2366 break; 2367 } 2368 2369 if (D40_DT_FLAGS_FIXED_CHAN(flags)) { 2370 cfg.phy_channel = dma_spec->args[1]; 2371 cfg.use_fixed_channel = true; 2372 } 2373 2374 if (D40_DT_FLAGS_HIGH_PRIO(flags)) 2375 cfg.high_priority = true; 2376 2377 return dma_request_channel(cap, stedma40_filter, &cfg); 2378 } 2379 2380 /* DMA ENGINE functions */ 2381 static int d40_alloc_chan_resources(struct dma_chan *chan) 2382 { 2383 int err; 2384 unsigned long flags; 2385 struct d40_chan *d40c = 2386 container_of(chan, struct d40_chan, chan); 2387 bool is_free_phy; 2388 spin_lock_irqsave(&d40c->lock, flags); 2389 2390 dma_cookie_init(chan); 2391 2392 /* If no dma configuration is set use default configuration (memcpy) */ 2393 if (!d40c->configured) { 2394 err = d40_config_memcpy(d40c); 2395 if (err) { 2396 chan_err(d40c, "Failed to configure memcpy channel\n"); 2397 goto mark_last_busy; 2398 } 2399 } 2400 2401 err = d40_allocate_channel(d40c, &is_free_phy); 2402 if (err) { 2403 chan_err(d40c, "Failed to allocate channel\n"); 2404 d40c->configured = false; 2405 goto mark_last_busy; 2406 } 2407 2408 pm_runtime_get_sync(d40c->base->dev); 2409 2410 d40_set_prio_realtime(d40c); 2411 2412 if (chan_is_logical(d40c)) { 2413 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) 2414 d40c->lcpa = d40c->base->lcpa_base + 2415 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE; 2416 else 2417 d40c->lcpa = d40c->base->lcpa_base + 2418 d40c->dma_cfg.dev_type * 2419 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; 2420 2421 /* Unmask the Global Interrupt Mask. */ 2422 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS); 2423 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS); 2424 } 2425 2426 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n", 2427 chan_is_logical(d40c) ? "logical" : "physical", 2428 d40c->phy_chan->num, 2429 d40c->dma_cfg.use_fixed_channel ? ", fixed" : ""); 2430 2431 2432 /* 2433 * Only write channel configuration to the DMA if the physical 2434 * resource is free. In case of multiple logical channels 2435 * on the same physical resource, only the first write is necessary. 2436 */ 2437 if (is_free_phy) 2438 d40_config_write(d40c); 2439 mark_last_busy: 2440 pm_runtime_mark_last_busy(d40c->base->dev); 2441 pm_runtime_put_autosuspend(d40c->base->dev); 2442 spin_unlock_irqrestore(&d40c->lock, flags); 2443 return err; 2444 } 2445 2446 static void d40_free_chan_resources(struct dma_chan *chan) 2447 { 2448 struct d40_chan *d40c = 2449 container_of(chan, struct d40_chan, chan); 2450 int err; 2451 unsigned long flags; 2452 2453 if (d40c->phy_chan == NULL) { 2454 chan_err(d40c, "Cannot free unallocated channel\n"); 2455 return; 2456 } 2457 2458 spin_lock_irqsave(&d40c->lock, flags); 2459 2460 err = d40_free_dma(d40c); 2461 2462 if (err) 2463 chan_err(d40c, "Failed to free channel\n"); 2464 spin_unlock_irqrestore(&d40c->lock, flags); 2465 } 2466 2467 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, 2468 dma_addr_t dst, 2469 dma_addr_t src, 2470 size_t size, 2471 unsigned long dma_flags) 2472 { 2473 struct scatterlist dst_sg; 2474 struct scatterlist src_sg; 2475 2476 sg_init_table(&dst_sg, 1); 2477 sg_init_table(&src_sg, 1); 2478 2479 sg_dma_address(&dst_sg) = dst; 2480 sg_dma_address(&src_sg) = src; 2481 2482 sg_dma_len(&dst_sg) = size; 2483 sg_dma_len(&src_sg) = size; 2484 2485 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, 2486 DMA_MEM_TO_MEM, dma_flags); 2487 } 2488 2489 static struct dma_async_tx_descriptor * 2490 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2491 unsigned int sg_len, enum dma_transfer_direction direction, 2492 unsigned long dma_flags, void *context) 2493 { 2494 if (!is_slave_direction(direction)) 2495 return NULL; 2496 2497 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags); 2498 } 2499 2500 static struct dma_async_tx_descriptor * 2501 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, 2502 size_t buf_len, size_t period_len, 2503 enum dma_transfer_direction direction, unsigned long flags) 2504 { 2505 unsigned int periods = buf_len / period_len; 2506 struct dma_async_tx_descriptor *txd; 2507 struct scatterlist *sg; 2508 int i; 2509 2510 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT); 2511 if (!sg) 2512 return NULL; 2513 2514 for (i = 0; i < periods; i++) { 2515 sg_dma_address(&sg[i]) = dma_addr; 2516 sg_dma_len(&sg[i]) = period_len; 2517 dma_addr += period_len; 2518 } 2519 2520 sg_chain(sg, periods + 1, sg); 2521 2522 txd = d40_prep_sg(chan, sg, sg, periods, direction, 2523 DMA_PREP_INTERRUPT); 2524 2525 kfree(sg); 2526 2527 return txd; 2528 } 2529 2530 static enum dma_status d40_tx_status(struct dma_chan *chan, 2531 dma_cookie_t cookie, 2532 struct dma_tx_state *txstate) 2533 { 2534 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2535 enum dma_status ret; 2536 2537 if (d40c->phy_chan == NULL) { 2538 chan_err(d40c, "Cannot read status of unallocated channel\n"); 2539 return -EINVAL; 2540 } 2541 2542 ret = dma_cookie_status(chan, cookie, txstate); 2543 if (ret != DMA_COMPLETE && txstate) 2544 dma_set_residue(txstate, stedma40_residue(chan)); 2545 2546 if (d40_is_paused(d40c)) 2547 ret = DMA_PAUSED; 2548 2549 return ret; 2550 } 2551 2552 static void d40_issue_pending(struct dma_chan *chan) 2553 { 2554 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2555 unsigned long flags; 2556 2557 if (d40c->phy_chan == NULL) { 2558 chan_err(d40c, "Channel is not allocated!\n"); 2559 return; 2560 } 2561 2562 spin_lock_irqsave(&d40c->lock, flags); 2563 2564 list_splice_tail_init(&d40c->pending_queue, &d40c->queue); 2565 2566 /* Busy means that queued jobs are already being processed */ 2567 if (!d40c->busy) 2568 (void) d40_queue_start(d40c); 2569 2570 spin_unlock_irqrestore(&d40c->lock, flags); 2571 } 2572 2573 static int d40_terminate_all(struct dma_chan *chan) 2574 { 2575 unsigned long flags; 2576 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2577 int ret; 2578 2579 if (d40c->phy_chan == NULL) { 2580 chan_err(d40c, "Channel is not allocated!\n"); 2581 return -EINVAL; 2582 } 2583 2584 spin_lock_irqsave(&d40c->lock, flags); 2585 2586 pm_runtime_get_sync(d40c->base->dev); 2587 ret = d40_channel_execute_command(d40c, D40_DMA_STOP); 2588 if (ret) 2589 chan_err(d40c, "Failed to stop channel\n"); 2590 2591 d40_term_all(d40c); 2592 pm_runtime_mark_last_busy(d40c->base->dev); 2593 pm_runtime_put_autosuspend(d40c->base->dev); 2594 if (d40c->busy) { 2595 pm_runtime_mark_last_busy(d40c->base->dev); 2596 pm_runtime_put_autosuspend(d40c->base->dev); 2597 } 2598 d40c->busy = false; 2599 2600 spin_unlock_irqrestore(&d40c->lock, flags); 2601 return 0; 2602 } 2603 2604 static int 2605 dma40_config_to_halfchannel(struct d40_chan *d40c, 2606 struct stedma40_half_channel_info *info, 2607 u32 maxburst) 2608 { 2609 int psize; 2610 2611 if (chan_is_logical(d40c)) { 2612 if (maxburst >= 16) 2613 psize = STEDMA40_PSIZE_LOG_16; 2614 else if (maxburst >= 8) 2615 psize = STEDMA40_PSIZE_LOG_8; 2616 else if (maxburst >= 4) 2617 psize = STEDMA40_PSIZE_LOG_4; 2618 else 2619 psize = STEDMA40_PSIZE_LOG_1; 2620 } else { 2621 if (maxburst >= 16) 2622 psize = STEDMA40_PSIZE_PHY_16; 2623 else if (maxburst >= 8) 2624 psize = STEDMA40_PSIZE_PHY_8; 2625 else if (maxburst >= 4) 2626 psize = STEDMA40_PSIZE_PHY_4; 2627 else 2628 psize = STEDMA40_PSIZE_PHY_1; 2629 } 2630 2631 info->psize = psize; 2632 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL; 2633 2634 return 0; 2635 } 2636 2637 /* Runtime reconfiguration extension */ 2638 static int d40_set_runtime_config(struct dma_chan *chan, 2639 struct dma_slave_config *config) 2640 { 2641 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2642 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; 2643 enum dma_slave_buswidth src_addr_width, dst_addr_width; 2644 dma_addr_t config_addr; 2645 u32 src_maxburst, dst_maxburst; 2646 int ret; 2647 2648 if (d40c->phy_chan == NULL) { 2649 chan_err(d40c, "Channel is not allocated!\n"); 2650 return -EINVAL; 2651 } 2652 2653 src_addr_width = config->src_addr_width; 2654 src_maxburst = config->src_maxburst; 2655 dst_addr_width = config->dst_addr_width; 2656 dst_maxburst = config->dst_maxburst; 2657 2658 if (config->direction == DMA_DEV_TO_MEM) { 2659 config_addr = config->src_addr; 2660 2661 if (cfg->dir != DMA_DEV_TO_MEM) 2662 dev_dbg(d40c->base->dev, 2663 "channel was not configured for peripheral " 2664 "to memory transfer (%d) overriding\n", 2665 cfg->dir); 2666 cfg->dir = DMA_DEV_TO_MEM; 2667 2668 /* Configure the memory side */ 2669 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 2670 dst_addr_width = src_addr_width; 2671 if (dst_maxburst == 0) 2672 dst_maxburst = src_maxburst; 2673 2674 } else if (config->direction == DMA_MEM_TO_DEV) { 2675 config_addr = config->dst_addr; 2676 2677 if (cfg->dir != DMA_MEM_TO_DEV) 2678 dev_dbg(d40c->base->dev, 2679 "channel was not configured for memory " 2680 "to peripheral transfer (%d) overriding\n", 2681 cfg->dir); 2682 cfg->dir = DMA_MEM_TO_DEV; 2683 2684 /* Configure the memory side */ 2685 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 2686 src_addr_width = dst_addr_width; 2687 if (src_maxburst == 0) 2688 src_maxburst = dst_maxburst; 2689 } else { 2690 dev_err(d40c->base->dev, 2691 "unrecognized channel direction %d\n", 2692 config->direction); 2693 return -EINVAL; 2694 } 2695 2696 if (config_addr <= 0) { 2697 dev_err(d40c->base->dev, "no address supplied\n"); 2698 return -EINVAL; 2699 } 2700 2701 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) { 2702 dev_err(d40c->base->dev, 2703 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n", 2704 src_maxburst, 2705 src_addr_width, 2706 dst_maxburst, 2707 dst_addr_width); 2708 return -EINVAL; 2709 } 2710 2711 if (src_maxburst > 16) { 2712 src_maxburst = 16; 2713 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width; 2714 } else if (dst_maxburst > 16) { 2715 dst_maxburst = 16; 2716 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width; 2717 } 2718 2719 /* Only valid widths are; 1, 2, 4 and 8. */ 2720 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED || 2721 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES || 2722 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED || 2723 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES || 2724 !is_power_of_2(src_addr_width) || 2725 !is_power_of_2(dst_addr_width)) 2726 return -EINVAL; 2727 2728 cfg->src_info.data_width = src_addr_width; 2729 cfg->dst_info.data_width = dst_addr_width; 2730 2731 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info, 2732 src_maxburst); 2733 if (ret) 2734 return ret; 2735 2736 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info, 2737 dst_maxburst); 2738 if (ret) 2739 return ret; 2740 2741 /* Fill in register values */ 2742 if (chan_is_logical(d40c)) 2743 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); 2744 else 2745 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg); 2746 2747 /* These settings will take precedence later */ 2748 d40c->runtime_addr = config_addr; 2749 d40c->runtime_direction = config->direction; 2750 dev_dbg(d40c->base->dev, 2751 "configured channel %s for %s, data width %d/%d, " 2752 "maxburst %d/%d elements, LE, no flow control\n", 2753 dma_chan_name(chan), 2754 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX", 2755 src_addr_width, dst_addr_width, 2756 src_maxburst, dst_maxburst); 2757 2758 return 0; 2759 } 2760 2761 /* Initialization functions */ 2762 2763 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, 2764 struct d40_chan *chans, int offset, 2765 int num_chans) 2766 { 2767 int i = 0; 2768 struct d40_chan *d40c; 2769 2770 INIT_LIST_HEAD(&dma->channels); 2771 2772 for (i = offset; i < offset + num_chans; i++) { 2773 d40c = &chans[i]; 2774 d40c->base = base; 2775 d40c->chan.device = dma; 2776 2777 spin_lock_init(&d40c->lock); 2778 2779 d40c->log_num = D40_PHY_CHAN; 2780 2781 INIT_LIST_HEAD(&d40c->done); 2782 INIT_LIST_HEAD(&d40c->active); 2783 INIT_LIST_HEAD(&d40c->queue); 2784 INIT_LIST_HEAD(&d40c->pending_queue); 2785 INIT_LIST_HEAD(&d40c->client); 2786 INIT_LIST_HEAD(&d40c->prepare_queue); 2787 2788 tasklet_init(&d40c->tasklet, dma_tasklet, 2789 (unsigned long) d40c); 2790 2791 list_add_tail(&d40c->chan.device_node, 2792 &dma->channels); 2793 } 2794 } 2795 2796 static void d40_ops_init(struct d40_base *base, struct dma_device *dev) 2797 { 2798 if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) { 2799 dev->device_prep_slave_sg = d40_prep_slave_sg; 2800 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2801 } 2802 2803 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) { 2804 dev->device_prep_dma_memcpy = d40_prep_memcpy; 2805 dev->directions = BIT(DMA_MEM_TO_MEM); 2806 /* 2807 * This controller can only access address at even 2808 * 32bit boundaries, i.e. 2^2 2809 */ 2810 dev->copy_align = DMAENGINE_ALIGN_4_BYTES; 2811 } 2812 2813 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask)) 2814 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic; 2815 2816 dev->device_alloc_chan_resources = d40_alloc_chan_resources; 2817 dev->device_free_chan_resources = d40_free_chan_resources; 2818 dev->device_issue_pending = d40_issue_pending; 2819 dev->device_tx_status = d40_tx_status; 2820 dev->device_config = d40_set_runtime_config; 2821 dev->device_pause = d40_pause; 2822 dev->device_resume = d40_resume; 2823 dev->device_terminate_all = d40_terminate_all; 2824 dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2825 dev->dev = base->dev; 2826 } 2827 2828 static int __init d40_dmaengine_init(struct d40_base *base, 2829 int num_reserved_chans) 2830 { 2831 int err ; 2832 2833 d40_chan_init(base, &base->dma_slave, base->log_chans, 2834 0, base->num_log_chans); 2835 2836 dma_cap_zero(base->dma_slave.cap_mask); 2837 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); 2838 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); 2839 2840 d40_ops_init(base, &base->dma_slave); 2841 2842 err = dma_async_device_register(&base->dma_slave); 2843 2844 if (err) { 2845 d40_err(base->dev, "Failed to register slave channels\n"); 2846 goto exit; 2847 } 2848 2849 d40_chan_init(base, &base->dma_memcpy, base->log_chans, 2850 base->num_log_chans, base->num_memcpy_chans); 2851 2852 dma_cap_zero(base->dma_memcpy.cap_mask); 2853 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); 2854 2855 d40_ops_init(base, &base->dma_memcpy); 2856 2857 err = dma_async_device_register(&base->dma_memcpy); 2858 2859 if (err) { 2860 d40_err(base->dev, 2861 "Failed to register memcpy only channels\n"); 2862 goto unregister_slave; 2863 } 2864 2865 d40_chan_init(base, &base->dma_both, base->phy_chans, 2866 0, num_reserved_chans); 2867 2868 dma_cap_zero(base->dma_both.cap_mask); 2869 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); 2870 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); 2871 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); 2872 2873 d40_ops_init(base, &base->dma_both); 2874 err = dma_async_device_register(&base->dma_both); 2875 2876 if (err) { 2877 d40_err(base->dev, 2878 "Failed to register logical and physical capable channels\n"); 2879 goto unregister_memcpy; 2880 } 2881 return 0; 2882 unregister_memcpy: 2883 dma_async_device_unregister(&base->dma_memcpy); 2884 unregister_slave: 2885 dma_async_device_unregister(&base->dma_slave); 2886 exit: 2887 return err; 2888 } 2889 2890 /* Suspend resume functionality */ 2891 #ifdef CONFIG_PM_SLEEP 2892 static int dma40_suspend(struct device *dev) 2893 { 2894 struct d40_base *base = dev_get_drvdata(dev); 2895 int ret; 2896 2897 ret = pm_runtime_force_suspend(dev); 2898 if (ret) 2899 return ret; 2900 2901 if (base->lcpa_regulator) 2902 ret = regulator_disable(base->lcpa_regulator); 2903 return ret; 2904 } 2905 2906 static int dma40_resume(struct device *dev) 2907 { 2908 struct d40_base *base = dev_get_drvdata(dev); 2909 int ret = 0; 2910 2911 if (base->lcpa_regulator) { 2912 ret = regulator_enable(base->lcpa_regulator); 2913 if (ret) 2914 return ret; 2915 } 2916 2917 return pm_runtime_force_resume(dev); 2918 } 2919 #endif 2920 2921 #ifdef CONFIG_PM 2922 static void dma40_backup(void __iomem *baseaddr, u32 *backup, 2923 u32 *regaddr, int num, bool save) 2924 { 2925 int i; 2926 2927 for (i = 0; i < num; i++) { 2928 void __iomem *addr = baseaddr + regaddr[i]; 2929 2930 if (save) 2931 backup[i] = readl_relaxed(addr); 2932 else 2933 writel_relaxed(backup[i], addr); 2934 } 2935 } 2936 2937 static void d40_save_restore_registers(struct d40_base *base, bool save) 2938 { 2939 int i; 2940 2941 /* Save/Restore channel specific registers */ 2942 for (i = 0; i < base->num_phy_chans; i++) { 2943 void __iomem *addr; 2944 int idx; 2945 2946 if (base->phy_res[i].reserved) 2947 continue; 2948 2949 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA; 2950 idx = i * ARRAY_SIZE(d40_backup_regs_chan); 2951 2952 dma40_backup(addr, &base->reg_val_backup_chan[idx], 2953 d40_backup_regs_chan, 2954 ARRAY_SIZE(d40_backup_regs_chan), 2955 save); 2956 } 2957 2958 /* Save/Restore global registers */ 2959 dma40_backup(base->virtbase, base->reg_val_backup, 2960 d40_backup_regs, ARRAY_SIZE(d40_backup_regs), 2961 save); 2962 2963 /* Save/Restore registers only existing on dma40 v3 and later */ 2964 if (base->gen_dmac.backup) 2965 dma40_backup(base->virtbase, base->reg_val_backup_v4, 2966 base->gen_dmac.backup, 2967 base->gen_dmac.backup_size, 2968 save); 2969 } 2970 2971 static int dma40_runtime_suspend(struct device *dev) 2972 { 2973 struct d40_base *base = dev_get_drvdata(dev); 2974 2975 d40_save_restore_registers(base, true); 2976 2977 /* Don't disable/enable clocks for v1 due to HW bugs */ 2978 if (base->rev != 1) 2979 writel_relaxed(base->gcc_pwr_off_mask, 2980 base->virtbase + D40_DREG_GCC); 2981 2982 return 0; 2983 } 2984 2985 static int dma40_runtime_resume(struct device *dev) 2986 { 2987 struct d40_base *base = dev_get_drvdata(dev); 2988 2989 d40_save_restore_registers(base, false); 2990 2991 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, 2992 base->virtbase + D40_DREG_GCC); 2993 return 0; 2994 } 2995 #endif 2996 2997 static const struct dev_pm_ops dma40_pm_ops = { 2998 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume) 2999 SET_RUNTIME_PM_OPS(dma40_runtime_suspend, 3000 dma40_runtime_resume, 3001 NULL) 3002 }; 3003 3004 /* Initialization functions. */ 3005 3006 static int __init d40_phy_res_init(struct d40_base *base) 3007 { 3008 int i; 3009 int num_phy_chans_avail = 0; 3010 u32 val[2]; 3011 int odd_even_bit = -2; 3012 int gcc = D40_DREG_GCC_ENA; 3013 3014 val[0] = readl(base->virtbase + D40_DREG_PRSME); 3015 val[1] = readl(base->virtbase + D40_DREG_PRSMO); 3016 3017 for (i = 0; i < base->num_phy_chans; i++) { 3018 base->phy_res[i].num = i; 3019 odd_even_bit += 2 * ((i % 2) == 0); 3020 if (((val[i % 2] >> odd_even_bit) & 3) == 1) { 3021 /* Mark security only channels as occupied */ 3022 base->phy_res[i].allocated_src = D40_ALLOC_PHY; 3023 base->phy_res[i].allocated_dst = D40_ALLOC_PHY; 3024 base->phy_res[i].reserved = true; 3025 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), 3026 D40_DREG_GCC_SRC); 3027 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), 3028 D40_DREG_GCC_DST); 3029 3030 3031 } else { 3032 base->phy_res[i].allocated_src = D40_ALLOC_FREE; 3033 base->phy_res[i].allocated_dst = D40_ALLOC_FREE; 3034 base->phy_res[i].reserved = false; 3035 num_phy_chans_avail++; 3036 } 3037 spin_lock_init(&base->phy_res[i].lock); 3038 } 3039 3040 /* Mark disabled channels as occupied */ 3041 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { 3042 int chan = base->plat_data->disabled_channels[i]; 3043 3044 base->phy_res[chan].allocated_src = D40_ALLOC_PHY; 3045 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY; 3046 base->phy_res[chan].reserved = true; 3047 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), 3048 D40_DREG_GCC_SRC); 3049 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), 3050 D40_DREG_GCC_DST); 3051 num_phy_chans_avail--; 3052 } 3053 3054 /* Mark soft_lli channels */ 3055 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) { 3056 int chan = base->plat_data->soft_lli_chans[i]; 3057 3058 base->phy_res[chan].use_soft_lli = true; 3059 } 3060 3061 dev_info(base->dev, "%d of %d physical DMA channels available\n", 3062 num_phy_chans_avail, base->num_phy_chans); 3063 3064 /* Verify settings extended vs standard */ 3065 val[0] = readl(base->virtbase + D40_DREG_PRTYP); 3066 3067 for (i = 0; i < base->num_phy_chans; i++) { 3068 3069 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && 3070 (val[0] & 0x3) != 1) 3071 dev_info(base->dev, 3072 "[%s] INFO: channel %d is misconfigured (%d)\n", 3073 __func__, i, val[0] & 0x3); 3074 3075 val[0] = val[0] >> 2; 3076 } 3077 3078 /* 3079 * To keep things simple, Enable all clocks initially. 3080 * The clocks will get managed later post channel allocation. 3081 * The clocks for the event lines on which reserved channels exists 3082 * are not managed here. 3083 */ 3084 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); 3085 base->gcc_pwr_off_mask = gcc; 3086 3087 return num_phy_chans_avail; 3088 } 3089 3090 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) 3091 { 3092 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev); 3093 struct clk *clk; 3094 void __iomem *virtbase; 3095 struct resource *res; 3096 struct d40_base *base; 3097 int num_log_chans; 3098 int num_phy_chans; 3099 int num_memcpy_chans; 3100 int clk_ret = -EINVAL; 3101 int i; 3102 u32 pid; 3103 u32 cid; 3104 u8 rev; 3105 3106 clk = clk_get(&pdev->dev, NULL); 3107 if (IS_ERR(clk)) { 3108 d40_err(&pdev->dev, "No matching clock found\n"); 3109 goto check_prepare_enabled; 3110 } 3111 3112 clk_ret = clk_prepare_enable(clk); 3113 if (clk_ret) { 3114 d40_err(&pdev->dev, "Failed to prepare/enable clock\n"); 3115 goto disable_unprepare; 3116 } 3117 3118 /* Get IO for DMAC base address */ 3119 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); 3120 if (!res) 3121 goto disable_unprepare; 3122 3123 if (request_mem_region(res->start, resource_size(res), 3124 D40_NAME " I/O base") == NULL) 3125 goto release_region; 3126 3127 virtbase = ioremap(res->start, resource_size(res)); 3128 if (!virtbase) 3129 goto release_region; 3130 3131 /* This is just a regular AMBA PrimeCell ID actually */ 3132 for (pid = 0, i = 0; i < 4; i++) 3133 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i) 3134 & 255) << (i * 8); 3135 for (cid = 0, i = 0; i < 4; i++) 3136 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i) 3137 & 255) << (i * 8); 3138 3139 if (cid != AMBA_CID) { 3140 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n"); 3141 goto unmap_io; 3142 } 3143 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) { 3144 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n", 3145 AMBA_MANF_BITS(pid), 3146 AMBA_VENDOR_ST); 3147 goto unmap_io; 3148 } 3149 /* 3150 * HW revision: 3151 * DB8500ed has revision 0 3152 * ? has revision 1 3153 * DB8500v1 has revision 2 3154 * DB8500v2 has revision 3 3155 * AP9540v1 has revision 4 3156 * DB8540v1 has revision 4 3157 */ 3158 rev = AMBA_REV_BITS(pid); 3159 if (rev < 2) { 3160 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev); 3161 goto unmap_io; 3162 } 3163 3164 /* The number of physical channels on this HW */ 3165 if (plat_data->num_of_phy_chans) 3166 num_phy_chans = plat_data->num_of_phy_chans; 3167 else 3168 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; 3169 3170 /* The number of channels used for memcpy */ 3171 if (plat_data->num_of_memcpy_chans) 3172 num_memcpy_chans = plat_data->num_of_memcpy_chans; 3173 else 3174 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels); 3175 3176 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY; 3177 3178 dev_info(&pdev->dev, 3179 "hardware rev: %d @ %pa with %d physical and %d logical channels\n", 3180 rev, &res->start, num_phy_chans, num_log_chans); 3181 3182 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + 3183 (num_phy_chans + num_log_chans + num_memcpy_chans) * 3184 sizeof(struct d40_chan), GFP_KERNEL); 3185 3186 if (base == NULL) 3187 goto unmap_io; 3188 3189 base->rev = rev; 3190 base->clk = clk; 3191 base->num_memcpy_chans = num_memcpy_chans; 3192 base->num_phy_chans = num_phy_chans; 3193 base->num_log_chans = num_log_chans; 3194 base->phy_start = res->start; 3195 base->phy_size = resource_size(res); 3196 base->virtbase = virtbase; 3197 base->plat_data = plat_data; 3198 base->dev = &pdev->dev; 3199 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); 3200 base->log_chans = &base->phy_chans[num_phy_chans]; 3201 3202 if (base->plat_data->num_of_phy_chans == 14) { 3203 base->gen_dmac.backup = d40_backup_regs_v4b; 3204 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B; 3205 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS; 3206 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR; 3207 base->gen_dmac.realtime_en = D40_DREG_CRSEG1; 3208 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1; 3209 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1; 3210 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1; 3211 base->gen_dmac.il = il_v4b; 3212 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b); 3213 base->gen_dmac.init_reg = dma_init_reg_v4b; 3214 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b); 3215 } else { 3216 if (base->rev >= 3) { 3217 base->gen_dmac.backup = d40_backup_regs_v4a; 3218 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A; 3219 } 3220 base->gen_dmac.interrupt_en = D40_DREG_PCMIS; 3221 base->gen_dmac.interrupt_clear = D40_DREG_PCICR; 3222 base->gen_dmac.realtime_en = D40_DREG_RSEG1; 3223 base->gen_dmac.realtime_clear = D40_DREG_RCEG1; 3224 base->gen_dmac.high_prio_en = D40_DREG_PSEG1; 3225 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1; 3226 base->gen_dmac.il = il_v4a; 3227 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a); 3228 base->gen_dmac.init_reg = dma_init_reg_v4a; 3229 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a); 3230 } 3231 3232 base->phy_res = kcalloc(num_phy_chans, 3233 sizeof(*base->phy_res), 3234 GFP_KERNEL); 3235 if (!base->phy_res) 3236 goto free_base; 3237 3238 base->lookup_phy_chans = kcalloc(num_phy_chans, 3239 sizeof(*base->lookup_phy_chans), 3240 GFP_KERNEL); 3241 if (!base->lookup_phy_chans) 3242 goto free_phy_res; 3243 3244 base->lookup_log_chans = kcalloc(num_log_chans, 3245 sizeof(*base->lookup_log_chans), 3246 GFP_KERNEL); 3247 if (!base->lookup_log_chans) 3248 goto free_phy_chans; 3249 3250 base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans, 3251 sizeof(d40_backup_regs_chan), 3252 GFP_KERNEL); 3253 if (!base->reg_val_backup_chan) 3254 goto free_log_chans; 3255 3256 base->lcla_pool.alloc_map = kcalloc(num_phy_chans 3257 * D40_LCLA_LINK_PER_EVENT_GRP, 3258 sizeof(*base->lcla_pool.alloc_map), 3259 GFP_KERNEL); 3260 if (!base->lcla_pool.alloc_map) 3261 goto free_backup_chan; 3262 3263 base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size, 3264 sizeof(*base->regs_interrupt), 3265 GFP_KERNEL); 3266 if (!base->regs_interrupt) 3267 goto free_map; 3268 3269 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), 3270 0, SLAB_HWCACHE_ALIGN, 3271 NULL); 3272 if (base->desc_slab == NULL) 3273 goto free_regs; 3274 3275 3276 return base; 3277 free_regs: 3278 kfree(base->regs_interrupt); 3279 free_map: 3280 kfree(base->lcla_pool.alloc_map); 3281 free_backup_chan: 3282 kfree(base->reg_val_backup_chan); 3283 free_log_chans: 3284 kfree(base->lookup_log_chans); 3285 free_phy_chans: 3286 kfree(base->lookup_phy_chans); 3287 free_phy_res: 3288 kfree(base->phy_res); 3289 free_base: 3290 kfree(base); 3291 unmap_io: 3292 iounmap(virtbase); 3293 release_region: 3294 release_mem_region(res->start, resource_size(res)); 3295 check_prepare_enabled: 3296 if (!clk_ret) 3297 disable_unprepare: 3298 clk_disable_unprepare(clk); 3299 if (!IS_ERR(clk)) 3300 clk_put(clk); 3301 return NULL; 3302 } 3303 3304 static void __init d40_hw_init(struct d40_base *base) 3305 { 3306 3307 int i; 3308 u32 prmseo[2] = {0, 0}; 3309 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; 3310 u32 pcmis = 0; 3311 u32 pcicr = 0; 3312 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg; 3313 u32 reg_size = base->gen_dmac.init_reg_size; 3314 3315 for (i = 0; i < reg_size; i++) 3316 writel(dma_init_reg[i].val, 3317 base->virtbase + dma_init_reg[i].reg); 3318 3319 /* Configure all our dma channels to default settings */ 3320 for (i = 0; i < base->num_phy_chans; i++) { 3321 3322 activeo[i % 2] = activeo[i % 2] << 2; 3323 3324 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src 3325 == D40_ALLOC_PHY) { 3326 activeo[i % 2] |= 3; 3327 continue; 3328 } 3329 3330 /* Enable interrupt # */ 3331 pcmis = (pcmis << 1) | 1; 3332 3333 /* Clear interrupt # */ 3334 pcicr = (pcicr << 1) | 1; 3335 3336 /* Set channel to physical mode */ 3337 prmseo[i % 2] = prmseo[i % 2] << 2; 3338 prmseo[i % 2] |= 1; 3339 3340 } 3341 3342 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); 3343 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); 3344 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); 3345 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); 3346 3347 /* Write which interrupt to enable */ 3348 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en); 3349 3350 /* Write which interrupt to clear */ 3351 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear); 3352 3353 /* These are __initdata and cannot be accessed after init */ 3354 base->gen_dmac.init_reg = NULL; 3355 base->gen_dmac.init_reg_size = 0; 3356 } 3357 3358 static int __init d40_lcla_allocate(struct d40_base *base) 3359 { 3360 struct d40_lcla_pool *pool = &base->lcla_pool; 3361 unsigned long *page_list; 3362 int i, j; 3363 int ret; 3364 3365 /* 3366 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, 3367 * To full fill this hardware requirement without wasting 256 kb 3368 * we allocate pages until we get an aligned one. 3369 */ 3370 page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS, 3371 sizeof(*page_list), 3372 GFP_KERNEL); 3373 if (!page_list) 3374 return -ENOMEM; 3375 3376 /* Calculating how many pages that are required */ 3377 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; 3378 3379 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { 3380 page_list[i] = __get_free_pages(GFP_KERNEL, 3381 base->lcla_pool.pages); 3382 if (!page_list[i]) { 3383 3384 d40_err(base->dev, "Failed to allocate %d pages.\n", 3385 base->lcla_pool.pages); 3386 ret = -ENOMEM; 3387 3388 for (j = 0; j < i; j++) 3389 free_pages(page_list[j], base->lcla_pool.pages); 3390 goto free_page_list; 3391 } 3392 3393 if ((virt_to_phys((void *)page_list[i]) & 3394 (LCLA_ALIGNMENT - 1)) == 0) 3395 break; 3396 } 3397 3398 for (j = 0; j < i; j++) 3399 free_pages(page_list[j], base->lcla_pool.pages); 3400 3401 if (i < MAX_LCLA_ALLOC_ATTEMPTS) { 3402 base->lcla_pool.base = (void *)page_list[i]; 3403 } else { 3404 /* 3405 * After many attempts and no succees with finding the correct 3406 * alignment, try with allocating a big buffer. 3407 */ 3408 dev_warn(base->dev, 3409 "[%s] Failed to get %d pages @ 18 bit align.\n", 3410 __func__, base->lcla_pool.pages); 3411 base->lcla_pool.base_unaligned = kmalloc(SZ_1K * 3412 base->num_phy_chans + 3413 LCLA_ALIGNMENT, 3414 GFP_KERNEL); 3415 if (!base->lcla_pool.base_unaligned) { 3416 ret = -ENOMEM; 3417 goto free_page_list; 3418 } 3419 3420 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, 3421 LCLA_ALIGNMENT); 3422 } 3423 3424 pool->dma_addr = dma_map_single(base->dev, pool->base, 3425 SZ_1K * base->num_phy_chans, 3426 DMA_TO_DEVICE); 3427 if (dma_mapping_error(base->dev, pool->dma_addr)) { 3428 pool->dma_addr = 0; 3429 ret = -ENOMEM; 3430 goto free_page_list; 3431 } 3432 3433 writel(virt_to_phys(base->lcla_pool.base), 3434 base->virtbase + D40_DREG_LCLA); 3435 ret = 0; 3436 free_page_list: 3437 kfree(page_list); 3438 return ret; 3439 } 3440 3441 static int __init d40_of_probe(struct platform_device *pdev, 3442 struct device_node *np) 3443 { 3444 struct stedma40_platform_data *pdata; 3445 int num_phy = 0, num_memcpy = 0, num_disabled = 0; 3446 const __be32 *list; 3447 3448 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 3449 if (!pdata) 3450 return -ENOMEM; 3451 3452 /* If absent this value will be obtained from h/w. */ 3453 of_property_read_u32(np, "dma-channels", &num_phy); 3454 if (num_phy > 0) 3455 pdata->num_of_phy_chans = num_phy; 3456 3457 list = of_get_property(np, "memcpy-channels", &num_memcpy); 3458 num_memcpy /= sizeof(*list); 3459 3460 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) { 3461 d40_err(&pdev->dev, 3462 "Invalid number of memcpy channels specified (%d)\n", 3463 num_memcpy); 3464 return -EINVAL; 3465 } 3466 pdata->num_of_memcpy_chans = num_memcpy; 3467 3468 of_property_read_u32_array(np, "memcpy-channels", 3469 dma40_memcpy_channels, 3470 num_memcpy); 3471 3472 list = of_get_property(np, "disabled-channels", &num_disabled); 3473 num_disabled /= sizeof(*list); 3474 3475 if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) { 3476 d40_err(&pdev->dev, 3477 "Invalid number of disabled channels specified (%d)\n", 3478 num_disabled); 3479 return -EINVAL; 3480 } 3481 3482 of_property_read_u32_array(np, "disabled-channels", 3483 pdata->disabled_channels, 3484 num_disabled); 3485 pdata->disabled_channels[num_disabled] = -1; 3486 3487 pdev->dev.platform_data = pdata; 3488 3489 return 0; 3490 } 3491 3492 static int __init d40_probe(struct platform_device *pdev) 3493 { 3494 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev); 3495 struct device_node *np = pdev->dev.of_node; 3496 int ret = -ENOENT; 3497 struct d40_base *base; 3498 struct resource *res; 3499 int num_reserved_chans; 3500 u32 val; 3501 3502 if (!plat_data) { 3503 if (np) { 3504 if (d40_of_probe(pdev, np)) { 3505 ret = -ENOMEM; 3506 goto report_failure; 3507 } 3508 } else { 3509 d40_err(&pdev->dev, "No pdata or Device Tree provided\n"); 3510 goto report_failure; 3511 } 3512 } 3513 3514 base = d40_hw_detect_init(pdev); 3515 if (!base) 3516 goto report_failure; 3517 3518 num_reserved_chans = d40_phy_res_init(base); 3519 3520 platform_set_drvdata(pdev, base); 3521 3522 spin_lock_init(&base->interrupt_lock); 3523 spin_lock_init(&base->execmd_lock); 3524 3525 /* Get IO for logical channel parameter address */ 3526 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); 3527 if (!res) { 3528 ret = -ENOENT; 3529 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n"); 3530 goto destroy_cache; 3531 } 3532 base->lcpa_size = resource_size(res); 3533 base->phy_lcpa = res->start; 3534 3535 if (request_mem_region(res->start, resource_size(res), 3536 D40_NAME " I/O lcpa") == NULL) { 3537 ret = -EBUSY; 3538 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res); 3539 goto destroy_cache; 3540 } 3541 3542 /* We make use of ESRAM memory for this. */ 3543 val = readl(base->virtbase + D40_DREG_LCPA); 3544 if (res->start != val && val != 0) { 3545 dev_warn(&pdev->dev, 3546 "[%s] Mismatch LCPA dma 0x%x, def %pa\n", 3547 __func__, val, &res->start); 3548 } else 3549 writel(res->start, base->virtbase + D40_DREG_LCPA); 3550 3551 base->lcpa_base = ioremap(res->start, resource_size(res)); 3552 if (!base->lcpa_base) { 3553 ret = -ENOMEM; 3554 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n"); 3555 goto destroy_cache; 3556 } 3557 /* If lcla has to be located in ESRAM we don't need to allocate */ 3558 if (base->plat_data->use_esram_lcla) { 3559 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 3560 "lcla_esram"); 3561 if (!res) { 3562 ret = -ENOENT; 3563 d40_err(&pdev->dev, 3564 "No \"lcla_esram\" memory resource\n"); 3565 goto destroy_cache; 3566 } 3567 base->lcla_pool.base = ioremap(res->start, 3568 resource_size(res)); 3569 if (!base->lcla_pool.base) { 3570 ret = -ENOMEM; 3571 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n"); 3572 goto destroy_cache; 3573 } 3574 writel(res->start, base->virtbase + D40_DREG_LCLA); 3575 3576 } else { 3577 ret = d40_lcla_allocate(base); 3578 if (ret) { 3579 d40_err(&pdev->dev, "Failed to allocate LCLA area\n"); 3580 goto destroy_cache; 3581 } 3582 } 3583 3584 spin_lock_init(&base->lcla_pool.lock); 3585 3586 base->irq = platform_get_irq(pdev, 0); 3587 3588 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); 3589 if (ret) { 3590 d40_err(&pdev->dev, "No IRQ defined\n"); 3591 goto destroy_cache; 3592 } 3593 3594 if (base->plat_data->use_esram_lcla) { 3595 3596 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram"); 3597 if (IS_ERR(base->lcpa_regulator)) { 3598 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n"); 3599 ret = PTR_ERR(base->lcpa_regulator); 3600 base->lcpa_regulator = NULL; 3601 goto destroy_cache; 3602 } 3603 3604 ret = regulator_enable(base->lcpa_regulator); 3605 if (ret) { 3606 d40_err(&pdev->dev, 3607 "Failed to enable lcpa_regulator\n"); 3608 regulator_put(base->lcpa_regulator); 3609 base->lcpa_regulator = NULL; 3610 goto destroy_cache; 3611 } 3612 } 3613 3614 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); 3615 3616 pm_runtime_irq_safe(base->dev); 3617 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY); 3618 pm_runtime_use_autosuspend(base->dev); 3619 pm_runtime_mark_last_busy(base->dev); 3620 pm_runtime_set_active(base->dev); 3621 pm_runtime_enable(base->dev); 3622 3623 ret = d40_dmaengine_init(base, num_reserved_chans); 3624 if (ret) 3625 goto destroy_cache; 3626 3627 base->dev->dma_parms = &base->dma_parms; 3628 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE); 3629 if (ret) { 3630 d40_err(&pdev->dev, "Failed to set dma max seg size\n"); 3631 goto destroy_cache; 3632 } 3633 3634 d40_hw_init(base); 3635 3636 if (np) { 3637 ret = of_dma_controller_register(np, d40_xlate, NULL); 3638 if (ret) 3639 dev_err(&pdev->dev, 3640 "could not register of_dma_controller\n"); 3641 } 3642 3643 dev_info(base->dev, "initialized\n"); 3644 return 0; 3645 destroy_cache: 3646 kmem_cache_destroy(base->desc_slab); 3647 if (base->virtbase) 3648 iounmap(base->virtbase); 3649 3650 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) { 3651 iounmap(base->lcla_pool.base); 3652 base->lcla_pool.base = NULL; 3653 } 3654 3655 if (base->lcla_pool.dma_addr) 3656 dma_unmap_single(base->dev, base->lcla_pool.dma_addr, 3657 SZ_1K * base->num_phy_chans, 3658 DMA_TO_DEVICE); 3659 3660 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) 3661 free_pages((unsigned long)base->lcla_pool.base, 3662 base->lcla_pool.pages); 3663 3664 kfree(base->lcla_pool.base_unaligned); 3665 3666 if (base->phy_lcpa) 3667 release_mem_region(base->phy_lcpa, 3668 base->lcpa_size); 3669 if (base->phy_start) 3670 release_mem_region(base->phy_start, 3671 base->phy_size); 3672 if (base->clk) { 3673 clk_disable_unprepare(base->clk); 3674 clk_put(base->clk); 3675 } 3676 3677 if (base->lcpa_regulator) { 3678 regulator_disable(base->lcpa_regulator); 3679 regulator_put(base->lcpa_regulator); 3680 } 3681 3682 kfree(base->lcla_pool.alloc_map); 3683 kfree(base->lookup_log_chans); 3684 kfree(base->lookup_phy_chans); 3685 kfree(base->phy_res); 3686 kfree(base); 3687 report_failure: 3688 d40_err(&pdev->dev, "probe failed\n"); 3689 return ret; 3690 } 3691 3692 static const struct of_device_id d40_match[] = { 3693 { .compatible = "stericsson,dma40", }, 3694 {} 3695 }; 3696 3697 static struct platform_driver d40_driver = { 3698 .driver = { 3699 .name = D40_NAME, 3700 .pm = &dma40_pm_ops, 3701 .of_match_table = d40_match, 3702 }, 3703 }; 3704 3705 static int __init stedma40_init(void) 3706 { 3707 return platform_driver_probe(&d40_driver, d40_probe); 3708 } 3709 subsys_initcall(stedma40_init); 3710