1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Ericsson AB 2007-2008
4 * Copyright (C) ST-Ericsson SA 2008-2010
5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/of_dma.h>
24 #include <linux/amba/bus.h>
25 #include <linux/regulator/consumer.h>
26
27 #include "dmaengine.h"
28 #include "ste_dma40.h"
29 #include "ste_dma40_ll.h"
30
31 /**
32 * struct stedma40_platform_data - Configuration struct for the dma device.
33 *
34 * @dev_tx: mapping between destination event line and io address
35 * @dev_rx: mapping between source event line and io address
36 * @disabled_channels: A vector, ending with -1, that marks physical channels
37 * that are for different reasons not available for the driver.
38 * @soft_lli_chans: A vector, that marks physical channels will use LLI by SW
39 * which avoids HW bug that exists in some versions of the controller.
40 * SoftLLI introduces relink overhead that could impact performace for
41 * certain use cases.
42 * @num_of_soft_lli_chans: The number of channels that needs to be configured
43 * to use SoftLLI.
44 * @use_esram_lcla: flag for mapping the lcla into esram region
45 * @num_of_memcpy_chans: The number of channels reserved for memcpy.
46 * @num_of_phy_chans: The number of physical channels implemented in HW.
47 * 0 means reading the number of channels from DMA HW but this is only valid
48 * for 'multiple of 4' channels, like 8.
49 */
50 struct stedma40_platform_data {
51 int disabled_channels[STEDMA40_MAX_PHYS];
52 int *soft_lli_chans;
53 int num_of_soft_lli_chans;
54 bool use_esram_lcla;
55 int num_of_memcpy_chans;
56 int num_of_phy_chans;
57 };
58
59 #define D40_NAME "dma40"
60
61 #define D40_PHY_CHAN -1
62
63 /* For masking out/in 2 bit channel positions */
64 #define D40_CHAN_POS(chan) (2 * (chan / 2))
65 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
66
67 /* Maximum iterations taken before giving up suspending a channel */
68 #define D40_SUSPEND_MAX_IT 500
69
70 /* Milliseconds */
71 #define DMA40_AUTOSUSPEND_DELAY 100
72
73 /* Hardware requirement on LCLA alignment */
74 #define LCLA_ALIGNMENT 0x40000
75
76 /* Max number of links per event group */
77 #define D40_LCLA_LINK_PER_EVENT_GRP 128
78 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
79
80 /* Max number of logical channels per physical channel */
81 #define D40_MAX_LOG_CHAN_PER_PHY 32
82
83 /* Attempts before giving up to trying to get pages that are aligned */
84 #define MAX_LCLA_ALLOC_ATTEMPTS 256
85
86 /* Bit markings for allocation map */
87 #define D40_ALLOC_FREE BIT(31)
88 #define D40_ALLOC_PHY BIT(30)
89 #define D40_ALLOC_LOG_FREE 0
90
91 #define D40_MEMCPY_MAX_CHANS 8
92
93 /* Reserved event lines for memcpy only. */
94 #define DB8500_DMA_MEMCPY_EV_0 51
95 #define DB8500_DMA_MEMCPY_EV_1 56
96 #define DB8500_DMA_MEMCPY_EV_2 57
97 #define DB8500_DMA_MEMCPY_EV_3 58
98 #define DB8500_DMA_MEMCPY_EV_4 59
99 #define DB8500_DMA_MEMCPY_EV_5 60
100
101 static int dma40_memcpy_channels[] = {
102 DB8500_DMA_MEMCPY_EV_0,
103 DB8500_DMA_MEMCPY_EV_1,
104 DB8500_DMA_MEMCPY_EV_2,
105 DB8500_DMA_MEMCPY_EV_3,
106 DB8500_DMA_MEMCPY_EV_4,
107 DB8500_DMA_MEMCPY_EV_5,
108 };
109
110 /* Default configuration for physical memcpy */
111 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
112 .mode = STEDMA40_MODE_PHYSICAL,
113 .dir = DMA_MEM_TO_MEM,
114
115 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
116 .src_info.psize = STEDMA40_PSIZE_PHY_1,
117 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
118
119 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
120 .dst_info.psize = STEDMA40_PSIZE_PHY_1,
121 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
122 };
123
124 /* Default configuration for logical memcpy */
125 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
126 .mode = STEDMA40_MODE_LOGICAL,
127 .dir = DMA_MEM_TO_MEM,
128
129 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
130 .src_info.psize = STEDMA40_PSIZE_LOG_1,
131 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
132
133 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
134 .dst_info.psize = STEDMA40_PSIZE_LOG_1,
135 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
136 };
137
138 /**
139 * enum d40_command - The different commands and/or statuses.
140 *
141 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
142 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
143 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
144 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
145 */
146 enum d40_command {
147 D40_DMA_STOP = 0,
148 D40_DMA_RUN = 1,
149 D40_DMA_SUSPEND_REQ = 2,
150 D40_DMA_SUSPENDED = 3
151 };
152
153 /*
154 * enum d40_events - The different Event Enables for the event lines.
155 *
156 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
157 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
158 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
159 * @D40_ROUND_EVENTLINE: Status check for event line.
160 */
161
162 enum d40_events {
163 D40_DEACTIVATE_EVENTLINE = 0,
164 D40_ACTIVATE_EVENTLINE = 1,
165 D40_SUSPEND_REQ_EVENTLINE = 2,
166 D40_ROUND_EVENTLINE = 3
167 };
168
169 /*
170 * These are the registers that has to be saved and later restored
171 * when the DMA hw is powered off.
172 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
173 */
174 static __maybe_unused u32 d40_backup_regs[] = {
175 D40_DREG_LCPA,
176 D40_DREG_LCLA,
177 D40_DREG_PRMSE,
178 D40_DREG_PRMSO,
179 D40_DREG_PRMOE,
180 D40_DREG_PRMOO,
181 };
182
183 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
184
185 /*
186 * since 9540 and 8540 has the same HW revision
187 * use v4a for 9540 or ealier
188 * use v4b for 8540 or later
189 * HW revision:
190 * DB8500ed has revision 0
191 * DB8500v1 has revision 2
192 * DB8500v2 has revision 3
193 * AP9540v1 has revision 4
194 * DB8540v1 has revision 4
195 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
196 */
197 static u32 d40_backup_regs_v4a[] = {
198 D40_DREG_PSEG1,
199 D40_DREG_PSEG2,
200 D40_DREG_PSEG3,
201 D40_DREG_PSEG4,
202 D40_DREG_PCEG1,
203 D40_DREG_PCEG2,
204 D40_DREG_PCEG3,
205 D40_DREG_PCEG4,
206 D40_DREG_RSEG1,
207 D40_DREG_RSEG2,
208 D40_DREG_RSEG3,
209 D40_DREG_RSEG4,
210 D40_DREG_RCEG1,
211 D40_DREG_RCEG2,
212 D40_DREG_RCEG3,
213 D40_DREG_RCEG4,
214 };
215
216 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
217
218 static u32 d40_backup_regs_v4b[] = {
219 D40_DREG_CPSEG1,
220 D40_DREG_CPSEG2,
221 D40_DREG_CPSEG3,
222 D40_DREG_CPSEG4,
223 D40_DREG_CPSEG5,
224 D40_DREG_CPCEG1,
225 D40_DREG_CPCEG2,
226 D40_DREG_CPCEG3,
227 D40_DREG_CPCEG4,
228 D40_DREG_CPCEG5,
229 D40_DREG_CRSEG1,
230 D40_DREG_CRSEG2,
231 D40_DREG_CRSEG3,
232 D40_DREG_CRSEG4,
233 D40_DREG_CRSEG5,
234 D40_DREG_CRCEG1,
235 D40_DREG_CRCEG2,
236 D40_DREG_CRCEG3,
237 D40_DREG_CRCEG4,
238 D40_DREG_CRCEG5,
239 };
240
241 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
242
243 static __maybe_unused u32 d40_backup_regs_chan[] = {
244 D40_CHAN_REG_SSCFG,
245 D40_CHAN_REG_SSELT,
246 D40_CHAN_REG_SSPTR,
247 D40_CHAN_REG_SSLNK,
248 D40_CHAN_REG_SDCFG,
249 D40_CHAN_REG_SDELT,
250 D40_CHAN_REG_SDPTR,
251 D40_CHAN_REG_SDLNK,
252 };
253
254 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
255 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
256
257 /**
258 * struct d40_interrupt_lookup - lookup table for interrupt handler
259 *
260 * @src: Interrupt mask register.
261 * @clr: Interrupt clear register.
262 * @is_error: true if this is an error interrupt.
263 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
264 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
265 */
266 struct d40_interrupt_lookup {
267 u32 src;
268 u32 clr;
269 bool is_error;
270 int offset;
271 };
272
273
274 static struct d40_interrupt_lookup il_v4a[] = {
275 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
276 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
277 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
278 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
279 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
280 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
281 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
282 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
283 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
284 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
285 };
286
287 static struct d40_interrupt_lookup il_v4b[] = {
288 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
289 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
290 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
291 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
292 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
293 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
294 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
295 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
296 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
297 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
298 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
299 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
300 };
301
302 /**
303 * struct d40_reg_val - simple lookup struct
304 *
305 * @reg: The register.
306 * @val: The value that belongs to the register in reg.
307 */
308 struct d40_reg_val {
309 unsigned int reg;
310 unsigned int val;
311 };
312
313 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
314 /* Clock every part of the DMA block from start */
315 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
316
317 /* Interrupts on all logical channels */
318 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
319 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
320 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
321 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
322 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
323 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
324 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
325 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
326 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
327 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
328 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
329 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
330 };
331 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
332 /* Clock every part of the DMA block from start */
333 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
334
335 /* Interrupts on all logical channels */
336 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
337 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
338 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
339 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
340 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
341 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
342 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
343 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
344 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
345 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
346 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
347 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
348 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
349 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
350 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
351 };
352
353 /**
354 * struct d40_lli_pool - Structure for keeping LLIs in memory
355 *
356 * @base: Pointer to memory area when the pre_alloc_lli's are not large
357 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
358 * pre_alloc_lli is used.
359 * @dma_addr: DMA address, if mapped
360 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
361 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
362 * one buffer to one buffer.
363 */
364 struct d40_lli_pool {
365 void *base;
366 int size;
367 dma_addr_t dma_addr;
368 /* Space for dst and src, plus an extra for padding */
369 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
370 };
371
372 /**
373 * struct d40_desc - A descriptor is one DMA job.
374 *
375 * @lli_phy: LLI settings for physical channel. Both src and dst=
376 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
377 * lli_len equals one.
378 * @lli_log: Same as above but for logical channels.
379 * @lli_pool: The pool with two entries pre-allocated.
380 * @lli_len: Number of llis of current descriptor.
381 * @lli_current: Number of transferred llis.
382 * @lcla_alloc: Number of LCLA entries allocated.
383 * @txd: DMA engine struct. Used for among other things for communication
384 * during a transfer.
385 * @node: List entry.
386 * @is_in_client_list: true if the client owns this descriptor.
387 * @cyclic: true if this is a cyclic job
388 *
389 * This descriptor is used for both logical and physical transfers.
390 */
391 struct d40_desc {
392 /* LLI physical */
393 struct d40_phy_lli_bidir lli_phy;
394 /* LLI logical */
395 struct d40_log_lli_bidir lli_log;
396
397 struct d40_lli_pool lli_pool;
398 int lli_len;
399 int lli_current;
400 int lcla_alloc;
401
402 struct dma_async_tx_descriptor txd;
403 struct list_head node;
404
405 bool is_in_client_list;
406 bool cyclic;
407 };
408
409 /**
410 * struct d40_lcla_pool - LCLA pool settings and data.
411 *
412 * @base: The virtual address of LCLA. 18 bit aligned.
413 * @dma_addr: DMA address, if mapped
414 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
415 * This pointer is only there for clean-up on error.
416 * @pages: The number of pages needed for all physical channels.
417 * Only used later for clean-up on error
418 * @lock: Lock to protect the content in this struct.
419 * @alloc_map: big map over which LCLA entry is own by which job.
420 */
421 struct d40_lcla_pool {
422 void *base;
423 dma_addr_t dma_addr;
424 void *base_unaligned;
425 int pages;
426 spinlock_t lock;
427 struct d40_desc **alloc_map;
428 };
429
430 /**
431 * struct d40_phy_res - struct for handling eventlines mapped to physical
432 * channels.
433 *
434 * @lock: A lock protection this entity.
435 * @reserved: True if used by secure world or otherwise.
436 * @num: The physical channel number of this entity.
437 * @allocated_src: Bit mapped to show which src event line's are mapped to
438 * this physical channel. Can also be free or physically allocated.
439 * @allocated_dst: Same as for src but is dst.
440 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
441 * event line number.
442 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
443 */
444 struct d40_phy_res {
445 spinlock_t lock;
446 bool reserved;
447 int num;
448 u32 allocated_src;
449 u32 allocated_dst;
450 bool use_soft_lli;
451 };
452
453 struct d40_base;
454
455 /**
456 * struct d40_chan - Struct that describes a channel.
457 *
458 * @lock: A spinlock to protect this struct.
459 * @log_num: The logical number, if any of this channel.
460 * @pending_tx: The number of pending transfers. Used between interrupt handler
461 * and tasklet.
462 * @busy: Set to true when transfer is ongoing on this channel.
463 * @phy_chan: Pointer to physical channel which this instance runs on. If this
464 * point is NULL, then the channel is not allocated.
465 * @chan: DMA engine handle.
466 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
467 * transfer and call client callback.
468 * @client: Cliented owned descriptor list.
469 * @pending_queue: Submitted jobs, to be issued by issue_pending()
470 * @active: Active descriptor.
471 * @done: Completed jobs
472 * @queue: Queued jobs.
473 * @prepare_queue: Prepared jobs.
474 * @dma_cfg: The client configuration of this dma channel.
475 * @slave_config: DMA slave configuration.
476 * @configured: whether the dma_cfg configuration is valid
477 * @base: Pointer to the device instance struct.
478 * @src_def_cfg: Default cfg register setting for src.
479 * @dst_def_cfg: Default cfg register setting for dst.
480 * @log_def: Default logical channel settings.
481 * @lcpa: Pointer to dst and src lcpa settings.
482 * @runtime_addr: runtime configured address.
483 * @runtime_direction: runtime configured direction.
484 *
485 * This struct can either "be" a logical or a physical channel.
486 */
487 struct d40_chan {
488 spinlock_t lock;
489 int log_num;
490 int pending_tx;
491 bool busy;
492 struct d40_phy_res *phy_chan;
493 struct dma_chan chan;
494 struct tasklet_struct tasklet;
495 struct list_head client;
496 struct list_head pending_queue;
497 struct list_head active;
498 struct list_head done;
499 struct list_head queue;
500 struct list_head prepare_queue;
501 struct stedma40_chan_cfg dma_cfg;
502 struct dma_slave_config slave_config;
503 bool configured;
504 struct d40_base *base;
505 /* Default register configurations */
506 u32 src_def_cfg;
507 u32 dst_def_cfg;
508 struct d40_def_lcsp log_def;
509 struct d40_log_lli_full *lcpa;
510 /* Runtime reconfiguration */
511 dma_addr_t runtime_addr;
512 enum dma_transfer_direction runtime_direction;
513 };
514
515 /**
516 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
517 * controller
518 *
519 * @backup: the pointer to the registers address array for backup
520 * @backup_size: the size of the registers address array for backup
521 * @realtime_en: the realtime enable register
522 * @realtime_clear: the realtime clear register
523 * @high_prio_en: the high priority enable register
524 * @high_prio_clear: the high priority clear register
525 * @interrupt_en: the interrupt enable register
526 * @interrupt_clear: the interrupt clear register
527 * @il: the pointer to struct d40_interrupt_lookup
528 * @il_size: the size of d40_interrupt_lookup array
529 * @init_reg: the pointer to the struct d40_reg_val
530 * @init_reg_size: the size of d40_reg_val array
531 */
532 struct d40_gen_dmac {
533 u32 *backup;
534 u32 backup_size;
535 u32 realtime_en;
536 u32 realtime_clear;
537 u32 high_prio_en;
538 u32 high_prio_clear;
539 u32 interrupt_en;
540 u32 interrupt_clear;
541 struct d40_interrupt_lookup *il;
542 u32 il_size;
543 struct d40_reg_val *init_reg;
544 u32 init_reg_size;
545 };
546
547 /**
548 * struct d40_base - The big global struct, one for each probe'd instance.
549 *
550 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
551 * @execmd_lock: Lock for execute command usage since several channels share
552 * the same physical register.
553 * @dev: The device structure.
554 * @virtbase: The virtual base address of the DMA's register.
555 * @rev: silicon revision detected.
556 * @clk: Pointer to the DMA clock structure.
557 * @irq: The IRQ number.
558 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
559 * transfers).
560 * @num_phy_chans: The number of physical channels. Read from HW. This
561 * is the number of available channels for this driver, not counting "Secure
562 * mode" allocated physical channels.
563 * @num_log_chans: The number of logical channels. Calculated from
564 * num_phy_chans.
565 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
566 * @dma_slave: dma_device channels that can do only do slave transfers.
567 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
568 * @phy_chans: Room for all possible physical channels in system.
569 * @log_chans: Room for all possible logical channels in system.
570 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
571 * to log_chans entries.
572 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
573 * to phy_chans entries.
574 * @plat_data: Pointer to provided platform_data which is the driver
575 * configuration.
576 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
577 * @phy_res: Vector containing all physical channels.
578 * @lcla_pool: lcla pool settings and data.
579 * @lcpa_base: The virtual mapped address of LCPA.
580 * @phy_lcpa: The physical address of the LCPA.
581 * @lcpa_size: The size of the LCPA area.
582 * @desc_slab: cache for descriptors.
583 * @reg_val_backup: Here the values of some hardware registers are stored
584 * before the DMA is powered off. They are restored when the power is back on.
585 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
586 * later
587 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
588 * @regs_interrupt: Scratch space for registers during interrupt.
589 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
590 * @gen_dmac: the struct for generic registers values to represent u8500/8540
591 * DMA controller
592 */
593 struct d40_base {
594 spinlock_t interrupt_lock;
595 spinlock_t execmd_lock;
596 struct device *dev;
597 void __iomem *virtbase;
598 u8 rev:4;
599 struct clk *clk;
600 int irq;
601 int num_memcpy_chans;
602 int num_phy_chans;
603 int num_log_chans;
604 struct dma_device dma_both;
605 struct dma_device dma_slave;
606 struct dma_device dma_memcpy;
607 struct d40_chan *phy_chans;
608 struct d40_chan *log_chans;
609 struct d40_chan **lookup_log_chans;
610 struct d40_chan **lookup_phy_chans;
611 struct stedma40_platform_data *plat_data;
612 struct regulator *lcpa_regulator;
613 /* Physical half channels */
614 struct d40_phy_res *phy_res;
615 struct d40_lcla_pool lcla_pool;
616 void *lcpa_base;
617 dma_addr_t phy_lcpa;
618 resource_size_t lcpa_size;
619 struct kmem_cache *desc_slab;
620 u32 reg_val_backup[BACKUP_REGS_SZ];
621 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
622 u32 *reg_val_backup_chan;
623 u32 *regs_interrupt;
624 u16 gcc_pwr_off_mask;
625 struct d40_gen_dmac gen_dmac;
626 };
627
chan2dev(struct d40_chan * d40c)628 static struct device *chan2dev(struct d40_chan *d40c)
629 {
630 return &d40c->chan.dev->device;
631 }
632
chan_is_physical(struct d40_chan * chan)633 static bool chan_is_physical(struct d40_chan *chan)
634 {
635 return chan->log_num == D40_PHY_CHAN;
636 }
637
chan_is_logical(struct d40_chan * chan)638 static bool chan_is_logical(struct d40_chan *chan)
639 {
640 return !chan_is_physical(chan);
641 }
642
chan_base(struct d40_chan * chan)643 static void __iomem *chan_base(struct d40_chan *chan)
644 {
645 return chan->base->virtbase + D40_DREG_PCBASE +
646 chan->phy_chan->num * D40_DREG_PCDELTA;
647 }
648
649 #define d40_err(dev, format, arg...) \
650 dev_err(dev, "[%s] " format, __func__, ## arg)
651
652 #define chan_err(d40c, format, arg...) \
653 d40_err(chan2dev(d40c), format, ## arg)
654
655 static int d40_set_runtime_config_write(struct dma_chan *chan,
656 struct dma_slave_config *config,
657 enum dma_transfer_direction direction);
658
d40_pool_lli_alloc(struct d40_chan * d40c,struct d40_desc * d40d,int lli_len)659 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
660 int lli_len)
661 {
662 bool is_log = chan_is_logical(d40c);
663 u32 align;
664 void *base;
665
666 if (is_log)
667 align = sizeof(struct d40_log_lli);
668 else
669 align = sizeof(struct d40_phy_lli);
670
671 if (lli_len == 1) {
672 base = d40d->lli_pool.pre_alloc_lli;
673 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
674 d40d->lli_pool.base = NULL;
675 } else {
676 d40d->lli_pool.size = lli_len * 2 * align;
677
678 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
679 d40d->lli_pool.base = base;
680
681 if (d40d->lli_pool.base == NULL)
682 return -ENOMEM;
683 }
684
685 if (is_log) {
686 d40d->lli_log.src = PTR_ALIGN(base, align);
687 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
688
689 d40d->lli_pool.dma_addr = 0;
690 } else {
691 d40d->lli_phy.src = PTR_ALIGN(base, align);
692 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
693
694 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
695 d40d->lli_phy.src,
696 d40d->lli_pool.size,
697 DMA_TO_DEVICE);
698
699 if (dma_mapping_error(d40c->base->dev,
700 d40d->lli_pool.dma_addr)) {
701 kfree(d40d->lli_pool.base);
702 d40d->lli_pool.base = NULL;
703 d40d->lli_pool.dma_addr = 0;
704 return -ENOMEM;
705 }
706 }
707
708 return 0;
709 }
710
d40_pool_lli_free(struct d40_chan * d40c,struct d40_desc * d40d)711 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
712 {
713 if (d40d->lli_pool.dma_addr)
714 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
715 d40d->lli_pool.size, DMA_TO_DEVICE);
716
717 kfree(d40d->lli_pool.base);
718 d40d->lli_pool.base = NULL;
719 d40d->lli_pool.size = 0;
720 d40d->lli_log.src = NULL;
721 d40d->lli_log.dst = NULL;
722 d40d->lli_phy.src = NULL;
723 d40d->lli_phy.dst = NULL;
724 }
725
d40_lcla_alloc_one(struct d40_chan * d40c,struct d40_desc * d40d)726 static int d40_lcla_alloc_one(struct d40_chan *d40c,
727 struct d40_desc *d40d)
728 {
729 unsigned long flags;
730 int i;
731 int ret = -EINVAL;
732
733 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
734
735 /*
736 * Allocate both src and dst at the same time, therefore the half
737 * start on 1 since 0 can't be used since zero is used as end marker.
738 */
739 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
740 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
741
742 if (!d40c->base->lcla_pool.alloc_map[idx]) {
743 d40c->base->lcla_pool.alloc_map[idx] = d40d;
744 d40d->lcla_alloc++;
745 ret = i;
746 break;
747 }
748 }
749
750 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
751
752 return ret;
753 }
754
d40_lcla_free_all(struct d40_chan * d40c,struct d40_desc * d40d)755 static int d40_lcla_free_all(struct d40_chan *d40c,
756 struct d40_desc *d40d)
757 {
758 unsigned long flags;
759 int i;
760 int ret = -EINVAL;
761
762 if (chan_is_physical(d40c))
763 return 0;
764
765 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
766
767 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
768 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
769
770 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
771 d40c->base->lcla_pool.alloc_map[idx] = NULL;
772 d40d->lcla_alloc--;
773 if (d40d->lcla_alloc == 0) {
774 ret = 0;
775 break;
776 }
777 }
778 }
779
780 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
781
782 return ret;
783
784 }
785
d40_desc_remove(struct d40_desc * d40d)786 static void d40_desc_remove(struct d40_desc *d40d)
787 {
788 list_del(&d40d->node);
789 }
790
d40_desc_get(struct d40_chan * d40c)791 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
792 {
793 struct d40_desc *desc = NULL;
794
795 if (!list_empty(&d40c->client)) {
796 struct d40_desc *d;
797 struct d40_desc *_d;
798
799 list_for_each_entry_safe(d, _d, &d40c->client, node) {
800 if (async_tx_test_ack(&d->txd)) {
801 d40_desc_remove(d);
802 desc = d;
803 memset(desc, 0, sizeof(*desc));
804 break;
805 }
806 }
807 }
808
809 if (!desc)
810 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
811
812 if (desc)
813 INIT_LIST_HEAD(&desc->node);
814
815 return desc;
816 }
817
d40_desc_free(struct d40_chan * d40c,struct d40_desc * d40d)818 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
819 {
820
821 d40_pool_lli_free(d40c, d40d);
822 d40_lcla_free_all(d40c, d40d);
823 kmem_cache_free(d40c->base->desc_slab, d40d);
824 }
825
d40_desc_submit(struct d40_chan * d40c,struct d40_desc * desc)826 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
827 {
828 list_add_tail(&desc->node, &d40c->active);
829 }
830
d40_phy_lli_load(struct d40_chan * chan,struct d40_desc * desc)831 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
832 {
833 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
834 struct d40_phy_lli *lli_src = desc->lli_phy.src;
835 void __iomem *base = chan_base(chan);
836
837 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
838 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
839 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
840 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
841
842 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
843 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
844 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
845 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
846 }
847
d40_desc_done(struct d40_chan * d40c,struct d40_desc * desc)848 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
849 {
850 list_add_tail(&desc->node, &d40c->done);
851 }
852
d40_log_lli_to_lcxa(struct d40_chan * chan,struct d40_desc * desc)853 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
854 {
855 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
856 struct d40_log_lli_bidir *lli = &desc->lli_log;
857 int lli_current = desc->lli_current;
858 int lli_len = desc->lli_len;
859 bool cyclic = desc->cyclic;
860 int curr_lcla = -EINVAL;
861 int first_lcla = 0;
862 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
863 bool linkback;
864
865 /*
866 * We may have partially running cyclic transfers, in case we did't get
867 * enough LCLA entries.
868 */
869 linkback = cyclic && lli_current == 0;
870
871 /*
872 * For linkback, we need one LCLA even with only one link, because we
873 * can't link back to the one in LCPA space
874 */
875 if (linkback || (lli_len - lli_current > 1)) {
876 /*
877 * If the channel is expected to use only soft_lli don't
878 * allocate a lcla. This is to avoid a HW issue that exists
879 * in some controller during a peripheral to memory transfer
880 * that uses linked lists.
881 */
882 if (!(chan->phy_chan->use_soft_lli &&
883 chan->dma_cfg.dir == DMA_DEV_TO_MEM))
884 curr_lcla = d40_lcla_alloc_one(chan, desc);
885
886 first_lcla = curr_lcla;
887 }
888
889 /*
890 * For linkback, we normally load the LCPA in the loop since we need to
891 * link it to the second LCLA and not the first. However, if we
892 * couldn't even get a first LCLA, then we have to run in LCPA and
893 * reload manually.
894 */
895 if (!linkback || curr_lcla == -EINVAL) {
896 unsigned int flags = 0;
897
898 if (curr_lcla == -EINVAL)
899 flags |= LLI_TERM_INT;
900
901 d40_log_lli_lcpa_write(chan->lcpa,
902 &lli->dst[lli_current],
903 &lli->src[lli_current],
904 curr_lcla,
905 flags);
906 lli_current++;
907 }
908
909 if (curr_lcla < 0)
910 goto set_current;
911
912 for (; lli_current < lli_len; lli_current++) {
913 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
914 8 * curr_lcla * 2;
915 struct d40_log_lli *lcla = pool->base + lcla_offset;
916 unsigned int flags = 0;
917 int next_lcla;
918
919 if (lli_current + 1 < lli_len)
920 next_lcla = d40_lcla_alloc_one(chan, desc);
921 else
922 next_lcla = linkback ? first_lcla : -EINVAL;
923
924 if (cyclic || next_lcla == -EINVAL)
925 flags |= LLI_TERM_INT;
926
927 if (linkback && curr_lcla == first_lcla) {
928 /* First link goes in both LCPA and LCLA */
929 d40_log_lli_lcpa_write(chan->lcpa,
930 &lli->dst[lli_current],
931 &lli->src[lli_current],
932 next_lcla, flags);
933 }
934
935 /*
936 * One unused LCLA in the cyclic case if the very first
937 * next_lcla fails...
938 */
939 d40_log_lli_lcla_write(lcla,
940 &lli->dst[lli_current],
941 &lli->src[lli_current],
942 next_lcla, flags);
943
944 /*
945 * Cache maintenance is not needed if lcla is
946 * mapped in esram
947 */
948 if (!use_esram_lcla) {
949 dma_sync_single_range_for_device(chan->base->dev,
950 pool->dma_addr, lcla_offset,
951 2 * sizeof(struct d40_log_lli),
952 DMA_TO_DEVICE);
953 }
954 curr_lcla = next_lcla;
955
956 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
957 lli_current++;
958 break;
959 }
960 }
961 set_current:
962 desc->lli_current = lli_current;
963 }
964
d40_desc_load(struct d40_chan * d40c,struct d40_desc * d40d)965 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
966 {
967 if (chan_is_physical(d40c)) {
968 d40_phy_lli_load(d40c, d40d);
969 d40d->lli_current = d40d->lli_len;
970 } else
971 d40_log_lli_to_lcxa(d40c, d40d);
972 }
973
d40_first_active_get(struct d40_chan * d40c)974 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
975 {
976 return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
977 }
978
979 /* remove desc from current queue and add it to the pending_queue */
d40_desc_queue(struct d40_chan * d40c,struct d40_desc * desc)980 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
981 {
982 d40_desc_remove(desc);
983 desc->is_in_client_list = false;
984 list_add_tail(&desc->node, &d40c->pending_queue);
985 }
986
d40_first_pending(struct d40_chan * d40c)987 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
988 {
989 return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
990 node);
991 }
992
d40_first_queued(struct d40_chan * d40c)993 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
994 {
995 return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
996 }
997
d40_first_done(struct d40_chan * d40c)998 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
999 {
1000 return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
1001 }
1002
d40_psize_2_burst_size(bool is_log,int psize)1003 static int d40_psize_2_burst_size(bool is_log, int psize)
1004 {
1005 if (is_log) {
1006 if (psize == STEDMA40_PSIZE_LOG_1)
1007 return 1;
1008 } else {
1009 if (psize == STEDMA40_PSIZE_PHY_1)
1010 return 1;
1011 }
1012
1013 return 2 << psize;
1014 }
1015
1016 /*
1017 * The dma only supports transmitting packages up to
1018 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1019 *
1020 * Calculate the total number of dma elements required to send the entire sg list.
1021 */
d40_size_2_dmalen(int size,u32 data_width1,u32 data_width2)1022 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1023 {
1024 int dmalen;
1025 u32 max_w = max(data_width1, data_width2);
1026 u32 min_w = min(data_width1, data_width2);
1027 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1028
1029 if (seg_max > STEDMA40_MAX_SEG_SIZE)
1030 seg_max -= max_w;
1031
1032 if (!IS_ALIGNED(size, max_w))
1033 return -EINVAL;
1034
1035 if (size <= seg_max)
1036 dmalen = 1;
1037 else {
1038 dmalen = size / seg_max;
1039 if (dmalen * seg_max < size)
1040 dmalen++;
1041 }
1042 return dmalen;
1043 }
1044
d40_sg_2_dmalen(struct scatterlist * sgl,int sg_len,u32 data_width1,u32 data_width2)1045 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1046 u32 data_width1, u32 data_width2)
1047 {
1048 struct scatterlist *sg;
1049 int i;
1050 int len = 0;
1051 int ret;
1052
1053 for_each_sg(sgl, sg, sg_len, i) {
1054 ret = d40_size_2_dmalen(sg_dma_len(sg),
1055 data_width1, data_width2);
1056 if (ret < 0)
1057 return ret;
1058 len += ret;
1059 }
1060 return len;
1061 }
1062
__d40_execute_command_phy(struct d40_chan * d40c,enum d40_command command)1063 static int __d40_execute_command_phy(struct d40_chan *d40c,
1064 enum d40_command command)
1065 {
1066 u32 status;
1067 int i;
1068 void __iomem *active_reg;
1069 int ret = 0;
1070 unsigned long flags;
1071 u32 wmask;
1072
1073 if (command == D40_DMA_STOP) {
1074 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1075 if (ret)
1076 return ret;
1077 }
1078
1079 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1080
1081 if (d40c->phy_chan->num % 2 == 0)
1082 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1083 else
1084 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1085
1086 if (command == D40_DMA_SUSPEND_REQ) {
1087 status = (readl(active_reg) &
1088 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1089 D40_CHAN_POS(d40c->phy_chan->num);
1090
1091 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1092 goto unlock;
1093 }
1094
1095 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1096 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1097 active_reg);
1098
1099 if (command == D40_DMA_SUSPEND_REQ) {
1100
1101 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1102 status = (readl(active_reg) &
1103 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1104 D40_CHAN_POS(d40c->phy_chan->num);
1105
1106 cpu_relax();
1107 /*
1108 * Reduce the number of bus accesses while
1109 * waiting for the DMA to suspend.
1110 */
1111 udelay(3);
1112
1113 if (status == D40_DMA_STOP ||
1114 status == D40_DMA_SUSPENDED)
1115 break;
1116 }
1117
1118 if (i == D40_SUSPEND_MAX_IT) {
1119 chan_err(d40c,
1120 "unable to suspend the chl %d (log: %d) status %x\n",
1121 d40c->phy_chan->num, d40c->log_num,
1122 status);
1123 dump_stack();
1124 ret = -EBUSY;
1125 }
1126
1127 }
1128 unlock:
1129 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1130 return ret;
1131 }
1132
d40_term_all(struct d40_chan * d40c)1133 static void d40_term_all(struct d40_chan *d40c)
1134 {
1135 struct d40_desc *d40d;
1136 struct d40_desc *_d;
1137
1138 /* Release completed descriptors */
1139 while ((d40d = d40_first_done(d40c))) {
1140 d40_desc_remove(d40d);
1141 d40_desc_free(d40c, d40d);
1142 }
1143
1144 /* Release active descriptors */
1145 while ((d40d = d40_first_active_get(d40c))) {
1146 d40_desc_remove(d40d);
1147 d40_desc_free(d40c, d40d);
1148 }
1149
1150 /* Release queued descriptors waiting for transfer */
1151 while ((d40d = d40_first_queued(d40c))) {
1152 d40_desc_remove(d40d);
1153 d40_desc_free(d40c, d40d);
1154 }
1155
1156 /* Release pending descriptors */
1157 while ((d40d = d40_first_pending(d40c))) {
1158 d40_desc_remove(d40d);
1159 d40_desc_free(d40c, d40d);
1160 }
1161
1162 /* Release client owned descriptors */
1163 if (!list_empty(&d40c->client))
1164 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1165 d40_desc_remove(d40d);
1166 d40_desc_free(d40c, d40d);
1167 }
1168
1169 /* Release descriptors in prepare queue */
1170 if (!list_empty(&d40c->prepare_queue))
1171 list_for_each_entry_safe(d40d, _d,
1172 &d40c->prepare_queue, node) {
1173 d40_desc_remove(d40d);
1174 d40_desc_free(d40c, d40d);
1175 }
1176
1177 d40c->pending_tx = 0;
1178 }
1179
__d40_config_set_event(struct d40_chan * d40c,enum d40_events event_type,u32 event,int reg)1180 static void __d40_config_set_event(struct d40_chan *d40c,
1181 enum d40_events event_type, u32 event,
1182 int reg)
1183 {
1184 void __iomem *addr = chan_base(d40c) + reg;
1185 int tries;
1186 u32 status;
1187
1188 switch (event_type) {
1189
1190 case D40_DEACTIVATE_EVENTLINE:
1191
1192 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1193 | ~D40_EVENTLINE_MASK(event), addr);
1194 break;
1195
1196 case D40_SUSPEND_REQ_EVENTLINE:
1197 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1198 D40_EVENTLINE_POS(event);
1199
1200 if (status == D40_DEACTIVATE_EVENTLINE ||
1201 status == D40_SUSPEND_REQ_EVENTLINE)
1202 break;
1203
1204 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1205 | ~D40_EVENTLINE_MASK(event), addr);
1206
1207 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1208
1209 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1210 D40_EVENTLINE_POS(event);
1211
1212 cpu_relax();
1213 /*
1214 * Reduce the number of bus accesses while
1215 * waiting for the DMA to suspend.
1216 */
1217 udelay(3);
1218
1219 if (status == D40_DEACTIVATE_EVENTLINE)
1220 break;
1221 }
1222
1223 if (tries == D40_SUSPEND_MAX_IT) {
1224 chan_err(d40c,
1225 "unable to stop the event_line chl %d (log: %d)"
1226 "status %x\n", d40c->phy_chan->num,
1227 d40c->log_num, status);
1228 }
1229 break;
1230
1231 case D40_ACTIVATE_EVENTLINE:
1232 /*
1233 * The hardware sometimes doesn't register the enable when src and dst
1234 * event lines are active on the same logical channel. Retry to ensure
1235 * it does. Usually only one retry is sufficient.
1236 */
1237 tries = 100;
1238 while (--tries) {
1239 writel((D40_ACTIVATE_EVENTLINE <<
1240 D40_EVENTLINE_POS(event)) |
1241 ~D40_EVENTLINE_MASK(event), addr);
1242
1243 if (readl(addr) & D40_EVENTLINE_MASK(event))
1244 break;
1245 }
1246
1247 if (tries != 99)
1248 dev_dbg(chan2dev(d40c),
1249 "[%s] workaround enable S%cLNK (%d tries)\n",
1250 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1251 100 - tries);
1252
1253 WARN_ON(!tries);
1254 break;
1255
1256 case D40_ROUND_EVENTLINE:
1257 BUG();
1258 break;
1259
1260 }
1261 }
1262
d40_config_set_event(struct d40_chan * d40c,enum d40_events event_type)1263 static void d40_config_set_event(struct d40_chan *d40c,
1264 enum d40_events event_type)
1265 {
1266 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1267
1268 /* Enable event line connected to device (or memcpy) */
1269 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1270 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1271 __d40_config_set_event(d40c, event_type, event,
1272 D40_CHAN_REG_SSLNK);
1273
1274 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
1275 __d40_config_set_event(d40c, event_type, event,
1276 D40_CHAN_REG_SDLNK);
1277 }
1278
d40_chan_has_events(struct d40_chan * d40c)1279 static u32 d40_chan_has_events(struct d40_chan *d40c)
1280 {
1281 void __iomem *chanbase = chan_base(d40c);
1282 u32 val;
1283
1284 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1285 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1286
1287 return val;
1288 }
1289
1290 static int
__d40_execute_command_log(struct d40_chan * d40c,enum d40_command command)1291 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1292 {
1293 unsigned long flags;
1294 int ret = 0;
1295 u32 active_status;
1296 void __iomem *active_reg;
1297
1298 if (d40c->phy_chan->num % 2 == 0)
1299 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1300 else
1301 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1302
1303
1304 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1305
1306 switch (command) {
1307 case D40_DMA_STOP:
1308 case D40_DMA_SUSPEND_REQ:
1309
1310 active_status = (readl(active_reg) &
1311 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1312 D40_CHAN_POS(d40c->phy_chan->num);
1313
1314 if (active_status == D40_DMA_RUN)
1315 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1316 else
1317 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1318
1319 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1320 ret = __d40_execute_command_phy(d40c, command);
1321
1322 break;
1323
1324 case D40_DMA_RUN:
1325
1326 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1327 ret = __d40_execute_command_phy(d40c, command);
1328 break;
1329
1330 case D40_DMA_SUSPENDED:
1331 BUG();
1332 break;
1333 }
1334
1335 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1336 return ret;
1337 }
1338
d40_channel_execute_command(struct d40_chan * d40c,enum d40_command command)1339 static int d40_channel_execute_command(struct d40_chan *d40c,
1340 enum d40_command command)
1341 {
1342 if (chan_is_logical(d40c))
1343 return __d40_execute_command_log(d40c, command);
1344 else
1345 return __d40_execute_command_phy(d40c, command);
1346 }
1347
d40_get_prmo(struct d40_chan * d40c)1348 static u32 d40_get_prmo(struct d40_chan *d40c)
1349 {
1350 static const unsigned int phy_map[] = {
1351 [STEDMA40_PCHAN_BASIC_MODE]
1352 = D40_DREG_PRMO_PCHAN_BASIC,
1353 [STEDMA40_PCHAN_MODULO_MODE]
1354 = D40_DREG_PRMO_PCHAN_MODULO,
1355 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1356 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1357 };
1358 static const unsigned int log_map[] = {
1359 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1360 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1361 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1362 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1363 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1364 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1365 };
1366
1367 if (chan_is_physical(d40c))
1368 return phy_map[d40c->dma_cfg.mode_opt];
1369 else
1370 return log_map[d40c->dma_cfg.mode_opt];
1371 }
1372
d40_config_write(struct d40_chan * d40c)1373 static void d40_config_write(struct d40_chan *d40c)
1374 {
1375 u32 addr_base;
1376 u32 var;
1377
1378 /* Odd addresses are even addresses + 4 */
1379 addr_base = (d40c->phy_chan->num % 2) * 4;
1380 /* Setup channel mode to logical or physical */
1381 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1382 D40_CHAN_POS(d40c->phy_chan->num);
1383 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1384
1385 /* Setup operational mode option register */
1386 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1387
1388 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1389
1390 if (chan_is_logical(d40c)) {
1391 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1392 & D40_SREG_ELEM_LOG_LIDX_MASK;
1393 void __iomem *chanbase = chan_base(d40c);
1394
1395 /* Set default config for CFG reg */
1396 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1397 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1398
1399 /* Set LIDX for lcla */
1400 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1401 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1402
1403 /* Clear LNK which will be used by d40_chan_has_events() */
1404 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1405 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1406 }
1407 }
1408
d40_residue(struct d40_chan * d40c)1409 static u32 d40_residue(struct d40_chan *d40c)
1410 {
1411 u32 num_elt;
1412
1413 if (chan_is_logical(d40c))
1414 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1415 >> D40_MEM_LCSP2_ECNT_POS;
1416 else {
1417 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1418 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1419 >> D40_SREG_ELEM_PHY_ECNT_POS;
1420 }
1421
1422 return num_elt * d40c->dma_cfg.dst_info.data_width;
1423 }
1424
d40_tx_is_linked(struct d40_chan * d40c)1425 static bool d40_tx_is_linked(struct d40_chan *d40c)
1426 {
1427 bool is_link;
1428
1429 if (chan_is_logical(d40c))
1430 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1431 else
1432 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1433 & D40_SREG_LNK_PHYS_LNK_MASK;
1434
1435 return is_link;
1436 }
1437
d40_pause(struct dma_chan * chan)1438 static int d40_pause(struct dma_chan *chan)
1439 {
1440 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1441 int res = 0;
1442 unsigned long flags;
1443
1444 if (d40c->phy_chan == NULL) {
1445 chan_err(d40c, "Channel is not allocated!\n");
1446 return -EINVAL;
1447 }
1448
1449 if (!d40c->busy)
1450 return 0;
1451
1452 spin_lock_irqsave(&d40c->lock, flags);
1453 pm_runtime_get_sync(d40c->base->dev);
1454
1455 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1456
1457 pm_runtime_mark_last_busy(d40c->base->dev);
1458 pm_runtime_put_autosuspend(d40c->base->dev);
1459 spin_unlock_irqrestore(&d40c->lock, flags);
1460 return res;
1461 }
1462
d40_resume(struct dma_chan * chan)1463 static int d40_resume(struct dma_chan *chan)
1464 {
1465 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1466 int res = 0;
1467 unsigned long flags;
1468
1469 if (d40c->phy_chan == NULL) {
1470 chan_err(d40c, "Channel is not allocated!\n");
1471 return -EINVAL;
1472 }
1473
1474 if (!d40c->busy)
1475 return 0;
1476
1477 spin_lock_irqsave(&d40c->lock, flags);
1478 pm_runtime_get_sync(d40c->base->dev);
1479
1480 /* If bytes left to transfer or linked tx resume job */
1481 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1482 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1483
1484 pm_runtime_mark_last_busy(d40c->base->dev);
1485 pm_runtime_put_autosuspend(d40c->base->dev);
1486 spin_unlock_irqrestore(&d40c->lock, flags);
1487 return res;
1488 }
1489
d40_tx_submit(struct dma_async_tx_descriptor * tx)1490 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1491 {
1492 struct d40_chan *d40c = container_of(tx->chan,
1493 struct d40_chan,
1494 chan);
1495 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1496 unsigned long flags;
1497 dma_cookie_t cookie;
1498
1499 spin_lock_irqsave(&d40c->lock, flags);
1500 cookie = dma_cookie_assign(tx);
1501 d40_desc_queue(d40c, d40d);
1502 spin_unlock_irqrestore(&d40c->lock, flags);
1503
1504 return cookie;
1505 }
1506
d40_start(struct d40_chan * d40c)1507 static int d40_start(struct d40_chan *d40c)
1508 {
1509 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1510 }
1511
d40_queue_start(struct d40_chan * d40c)1512 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1513 {
1514 struct d40_desc *d40d;
1515 int err;
1516
1517 /* Start queued jobs, if any */
1518 d40d = d40_first_queued(d40c);
1519
1520 if (d40d != NULL) {
1521 if (!d40c->busy) {
1522 d40c->busy = true;
1523 pm_runtime_get_sync(d40c->base->dev);
1524 }
1525
1526 /* Remove from queue */
1527 d40_desc_remove(d40d);
1528
1529 /* Add to active queue */
1530 d40_desc_submit(d40c, d40d);
1531
1532 /* Initiate DMA job */
1533 d40_desc_load(d40c, d40d);
1534
1535 /* Start dma job */
1536 err = d40_start(d40c);
1537
1538 if (err)
1539 return NULL;
1540 }
1541
1542 return d40d;
1543 }
1544
1545 /* called from interrupt context */
dma_tc_handle(struct d40_chan * d40c)1546 static void dma_tc_handle(struct d40_chan *d40c)
1547 {
1548 struct d40_desc *d40d;
1549
1550 /* Get first active entry from list */
1551 d40d = d40_first_active_get(d40c);
1552
1553 if (d40d == NULL)
1554 return;
1555
1556 if (d40d->cyclic) {
1557 /*
1558 * If this was a paritially loaded list, we need to reloaded
1559 * it, and only when the list is completed. We need to check
1560 * for done because the interrupt will hit for every link, and
1561 * not just the last one.
1562 */
1563 if (d40d->lli_current < d40d->lli_len
1564 && !d40_tx_is_linked(d40c)
1565 && !d40_residue(d40c)) {
1566 d40_lcla_free_all(d40c, d40d);
1567 d40_desc_load(d40c, d40d);
1568 (void) d40_start(d40c);
1569
1570 if (d40d->lli_current == d40d->lli_len)
1571 d40d->lli_current = 0;
1572 }
1573 } else {
1574 d40_lcla_free_all(d40c, d40d);
1575
1576 if (d40d->lli_current < d40d->lli_len) {
1577 d40_desc_load(d40c, d40d);
1578 /* Start dma job */
1579 (void) d40_start(d40c);
1580 return;
1581 }
1582
1583 if (d40_queue_start(d40c) == NULL) {
1584 d40c->busy = false;
1585
1586 pm_runtime_mark_last_busy(d40c->base->dev);
1587 pm_runtime_put_autosuspend(d40c->base->dev);
1588 }
1589
1590 d40_desc_remove(d40d);
1591 d40_desc_done(d40c, d40d);
1592 }
1593
1594 d40c->pending_tx++;
1595 tasklet_schedule(&d40c->tasklet);
1596
1597 }
1598
dma_tasklet(struct tasklet_struct * t)1599 static void dma_tasklet(struct tasklet_struct *t)
1600 {
1601 struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
1602 struct d40_desc *d40d;
1603 unsigned long flags;
1604 bool callback_active;
1605 struct dmaengine_desc_callback cb;
1606
1607 spin_lock_irqsave(&d40c->lock, flags);
1608
1609 /* Get first entry from the done list */
1610 d40d = d40_first_done(d40c);
1611 if (d40d == NULL) {
1612 /* Check if we have reached here for cyclic job */
1613 d40d = d40_first_active_get(d40c);
1614 if (d40d == NULL || !d40d->cyclic)
1615 goto check_pending_tx;
1616 }
1617
1618 if (!d40d->cyclic)
1619 dma_cookie_complete(&d40d->txd);
1620
1621 /*
1622 * If terminating a channel pending_tx is set to zero.
1623 * This prevents any finished active jobs to return to the client.
1624 */
1625 if (d40c->pending_tx == 0) {
1626 spin_unlock_irqrestore(&d40c->lock, flags);
1627 return;
1628 }
1629
1630 /* Callback to client */
1631 callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1632 dmaengine_desc_get_callback(&d40d->txd, &cb);
1633
1634 if (!d40d->cyclic) {
1635 if (async_tx_test_ack(&d40d->txd)) {
1636 d40_desc_remove(d40d);
1637 d40_desc_free(d40c, d40d);
1638 } else if (!d40d->is_in_client_list) {
1639 d40_desc_remove(d40d);
1640 d40_lcla_free_all(d40c, d40d);
1641 list_add_tail(&d40d->node, &d40c->client);
1642 d40d->is_in_client_list = true;
1643 }
1644 }
1645
1646 d40c->pending_tx--;
1647
1648 if (d40c->pending_tx)
1649 tasklet_schedule(&d40c->tasklet);
1650
1651 spin_unlock_irqrestore(&d40c->lock, flags);
1652
1653 if (callback_active)
1654 dmaengine_desc_callback_invoke(&cb, NULL);
1655
1656 return;
1657 check_pending_tx:
1658 /* Rescue manouver if receiving double interrupts */
1659 if (d40c->pending_tx > 0)
1660 d40c->pending_tx--;
1661 spin_unlock_irqrestore(&d40c->lock, flags);
1662 }
1663
d40_handle_interrupt(int irq,void * data)1664 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1665 {
1666 int i;
1667 u32 idx;
1668 u32 row;
1669 long chan = -1;
1670 struct d40_chan *d40c;
1671 struct d40_base *base = data;
1672 u32 *regs = base->regs_interrupt;
1673 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1674 u32 il_size = base->gen_dmac.il_size;
1675
1676 spin_lock(&base->interrupt_lock);
1677
1678 /* Read interrupt status of both logical and physical channels */
1679 for (i = 0; i < il_size; i++)
1680 regs[i] = readl(base->virtbase + il[i].src);
1681
1682 for (;;) {
1683
1684 chan = find_next_bit((unsigned long *)regs,
1685 BITS_PER_LONG * il_size, chan + 1);
1686
1687 /* No more set bits found? */
1688 if (chan == BITS_PER_LONG * il_size)
1689 break;
1690
1691 row = chan / BITS_PER_LONG;
1692 idx = chan & (BITS_PER_LONG - 1);
1693
1694 if (il[row].offset == D40_PHY_CHAN)
1695 d40c = base->lookup_phy_chans[idx];
1696 else
1697 d40c = base->lookup_log_chans[il[row].offset + idx];
1698
1699 if (!d40c) {
1700 /*
1701 * No error because this can happen if something else
1702 * in the system is using the channel.
1703 */
1704 continue;
1705 }
1706
1707 /* ACK interrupt */
1708 writel(BIT(idx), base->virtbase + il[row].clr);
1709
1710 spin_lock(&d40c->lock);
1711
1712 if (!il[row].is_error)
1713 dma_tc_handle(d40c);
1714 else
1715 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1716 chan, il[row].offset, idx);
1717
1718 spin_unlock(&d40c->lock);
1719 }
1720
1721 spin_unlock(&base->interrupt_lock);
1722
1723 return IRQ_HANDLED;
1724 }
1725
d40_validate_conf(struct d40_chan * d40c,struct stedma40_chan_cfg * conf)1726 static int d40_validate_conf(struct d40_chan *d40c,
1727 struct stedma40_chan_cfg *conf)
1728 {
1729 int res = 0;
1730 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1731
1732 if (!conf->dir) {
1733 chan_err(d40c, "Invalid direction.\n");
1734 res = -EINVAL;
1735 }
1736
1737 if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
1738 (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1739 (conf->dev_type < 0)) {
1740 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1741 res = -EINVAL;
1742 }
1743
1744 if (conf->dir == DMA_DEV_TO_DEV) {
1745 /*
1746 * DMAC HW supports it. Will be added to this driver,
1747 * in case any dma client requires it.
1748 */
1749 chan_err(d40c, "periph to periph not supported\n");
1750 res = -EINVAL;
1751 }
1752
1753 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1754 conf->src_info.data_width !=
1755 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1756 conf->dst_info.data_width) {
1757 /*
1758 * The DMAC hardware only supports
1759 * src (burst x width) == dst (burst x width)
1760 */
1761
1762 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1763 res = -EINVAL;
1764 }
1765
1766 return res;
1767 }
1768
d40_alloc_mask_set(struct d40_phy_res * phy,bool is_src,int log_event_line,bool is_log,bool * first_user)1769 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1770 bool is_src, int log_event_line, bool is_log,
1771 bool *first_user)
1772 {
1773 unsigned long flags;
1774 spin_lock_irqsave(&phy->lock, flags);
1775
1776 *first_user = ((phy->allocated_src | phy->allocated_dst)
1777 == D40_ALLOC_FREE);
1778
1779 if (!is_log) {
1780 /* Physical interrupts are masked per physical full channel */
1781 if (phy->allocated_src == D40_ALLOC_FREE &&
1782 phy->allocated_dst == D40_ALLOC_FREE) {
1783 phy->allocated_dst = D40_ALLOC_PHY;
1784 phy->allocated_src = D40_ALLOC_PHY;
1785 goto found_unlock;
1786 } else
1787 goto not_found_unlock;
1788 }
1789
1790 /* Logical channel */
1791 if (is_src) {
1792 if (phy->allocated_src == D40_ALLOC_PHY)
1793 goto not_found_unlock;
1794
1795 if (phy->allocated_src == D40_ALLOC_FREE)
1796 phy->allocated_src = D40_ALLOC_LOG_FREE;
1797
1798 if (!(phy->allocated_src & BIT(log_event_line))) {
1799 phy->allocated_src |= BIT(log_event_line);
1800 goto found_unlock;
1801 } else
1802 goto not_found_unlock;
1803 } else {
1804 if (phy->allocated_dst == D40_ALLOC_PHY)
1805 goto not_found_unlock;
1806
1807 if (phy->allocated_dst == D40_ALLOC_FREE)
1808 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1809
1810 if (!(phy->allocated_dst & BIT(log_event_line))) {
1811 phy->allocated_dst |= BIT(log_event_line);
1812 goto found_unlock;
1813 }
1814 }
1815 not_found_unlock:
1816 spin_unlock_irqrestore(&phy->lock, flags);
1817 return false;
1818 found_unlock:
1819 spin_unlock_irqrestore(&phy->lock, flags);
1820 return true;
1821 }
1822
d40_alloc_mask_free(struct d40_phy_res * phy,bool is_src,int log_event_line)1823 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1824 int log_event_line)
1825 {
1826 unsigned long flags;
1827 bool is_free = false;
1828
1829 spin_lock_irqsave(&phy->lock, flags);
1830 if (!log_event_line) {
1831 phy->allocated_dst = D40_ALLOC_FREE;
1832 phy->allocated_src = D40_ALLOC_FREE;
1833 is_free = true;
1834 goto unlock;
1835 }
1836
1837 /* Logical channel */
1838 if (is_src) {
1839 phy->allocated_src &= ~BIT(log_event_line);
1840 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1841 phy->allocated_src = D40_ALLOC_FREE;
1842 } else {
1843 phy->allocated_dst &= ~BIT(log_event_line);
1844 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1845 phy->allocated_dst = D40_ALLOC_FREE;
1846 }
1847
1848 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1849 D40_ALLOC_FREE);
1850 unlock:
1851 spin_unlock_irqrestore(&phy->lock, flags);
1852
1853 return is_free;
1854 }
1855
d40_allocate_channel(struct d40_chan * d40c,bool * first_phy_user)1856 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1857 {
1858 int dev_type = d40c->dma_cfg.dev_type;
1859 int event_group;
1860 int event_line;
1861 struct d40_phy_res *phys;
1862 int i;
1863 int j;
1864 int log_num;
1865 int num_phy_chans;
1866 bool is_src;
1867 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1868
1869 phys = d40c->base->phy_res;
1870 num_phy_chans = d40c->base->num_phy_chans;
1871
1872 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1873 log_num = 2 * dev_type;
1874 is_src = true;
1875 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1876 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1877 /* dst event lines are used for logical memcpy */
1878 log_num = 2 * dev_type + 1;
1879 is_src = false;
1880 } else
1881 return -EINVAL;
1882
1883 event_group = D40_TYPE_TO_GROUP(dev_type);
1884 event_line = D40_TYPE_TO_EVENT(dev_type);
1885
1886 if (!is_log) {
1887 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1888 /* Find physical half channel */
1889 if (d40c->dma_cfg.use_fixed_channel) {
1890 i = d40c->dma_cfg.phy_channel;
1891 if (d40_alloc_mask_set(&phys[i], is_src,
1892 0, is_log,
1893 first_phy_user))
1894 goto found_phy;
1895 } else {
1896 for (i = 0; i < num_phy_chans; i++) {
1897 if (d40_alloc_mask_set(&phys[i], is_src,
1898 0, is_log,
1899 first_phy_user))
1900 goto found_phy;
1901 }
1902 }
1903 } else
1904 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1905 int phy_num = j + event_group * 2;
1906 for (i = phy_num; i < phy_num + 2; i++) {
1907 if (d40_alloc_mask_set(&phys[i],
1908 is_src,
1909 0,
1910 is_log,
1911 first_phy_user))
1912 goto found_phy;
1913 }
1914 }
1915 return -EINVAL;
1916 found_phy:
1917 d40c->phy_chan = &phys[i];
1918 d40c->log_num = D40_PHY_CHAN;
1919 goto out;
1920 }
1921 if (dev_type == -1)
1922 return -EINVAL;
1923
1924 /* Find logical channel */
1925 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1926 int phy_num = j + event_group * 2;
1927
1928 if (d40c->dma_cfg.use_fixed_channel) {
1929 i = d40c->dma_cfg.phy_channel;
1930
1931 if ((i != phy_num) && (i != phy_num + 1)) {
1932 dev_err(chan2dev(d40c),
1933 "invalid fixed phy channel %d\n", i);
1934 return -EINVAL;
1935 }
1936
1937 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1938 is_log, first_phy_user))
1939 goto found_log;
1940
1941 dev_err(chan2dev(d40c),
1942 "could not allocate fixed phy channel %d\n", i);
1943 return -EINVAL;
1944 }
1945
1946 /*
1947 * Spread logical channels across all available physical rather
1948 * than pack every logical channel at the first available phy
1949 * channels.
1950 */
1951 if (is_src) {
1952 for (i = phy_num; i < phy_num + 2; i++) {
1953 if (d40_alloc_mask_set(&phys[i], is_src,
1954 event_line, is_log,
1955 first_phy_user))
1956 goto found_log;
1957 }
1958 } else {
1959 for (i = phy_num + 1; i >= phy_num; i--) {
1960 if (d40_alloc_mask_set(&phys[i], is_src,
1961 event_line, is_log,
1962 first_phy_user))
1963 goto found_log;
1964 }
1965 }
1966 }
1967 return -EINVAL;
1968
1969 found_log:
1970 d40c->phy_chan = &phys[i];
1971 d40c->log_num = log_num;
1972 out:
1973
1974 if (is_log)
1975 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1976 else
1977 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1978
1979 return 0;
1980
1981 }
1982
d40_config_memcpy(struct d40_chan * d40c)1983 static int d40_config_memcpy(struct d40_chan *d40c)
1984 {
1985 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1986
1987 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1988 d40c->dma_cfg = dma40_memcpy_conf_log;
1989 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1990
1991 d40_log_cfg(&d40c->dma_cfg,
1992 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1993
1994 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1995 dma_has_cap(DMA_SLAVE, cap)) {
1996 d40c->dma_cfg = dma40_memcpy_conf_phy;
1997
1998 /* Generate interrupt at end of transfer or relink. */
1999 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2000
2001 /* Generate interrupt on error. */
2002 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2003 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2004
2005 } else {
2006 chan_err(d40c, "No memcpy\n");
2007 return -EINVAL;
2008 }
2009
2010 return 0;
2011 }
2012
d40_free_dma(struct d40_chan * d40c)2013 static int d40_free_dma(struct d40_chan *d40c)
2014 {
2015
2016 int res = 0;
2017 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2018 struct d40_phy_res *phy = d40c->phy_chan;
2019 bool is_src;
2020
2021 /* Terminate all queued and active transfers */
2022 d40_term_all(d40c);
2023
2024 if (phy == NULL) {
2025 chan_err(d40c, "phy == null\n");
2026 return -EINVAL;
2027 }
2028
2029 if (phy->allocated_src == D40_ALLOC_FREE &&
2030 phy->allocated_dst == D40_ALLOC_FREE) {
2031 chan_err(d40c, "channel already free\n");
2032 return -EINVAL;
2033 }
2034
2035 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2036 d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2037 is_src = false;
2038 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2039 is_src = true;
2040 else {
2041 chan_err(d40c, "Unknown direction\n");
2042 return -EINVAL;
2043 }
2044
2045 pm_runtime_get_sync(d40c->base->dev);
2046 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2047 if (res) {
2048 chan_err(d40c, "stop failed\n");
2049 goto mark_last_busy;
2050 }
2051
2052 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2053
2054 if (chan_is_logical(d40c))
2055 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2056 else
2057 d40c->base->lookup_phy_chans[phy->num] = NULL;
2058
2059 if (d40c->busy) {
2060 pm_runtime_mark_last_busy(d40c->base->dev);
2061 pm_runtime_put_autosuspend(d40c->base->dev);
2062 }
2063
2064 d40c->busy = false;
2065 d40c->phy_chan = NULL;
2066 d40c->configured = false;
2067 mark_last_busy:
2068 pm_runtime_mark_last_busy(d40c->base->dev);
2069 pm_runtime_put_autosuspend(d40c->base->dev);
2070 return res;
2071 }
2072
d40_is_paused(struct d40_chan * d40c)2073 static bool d40_is_paused(struct d40_chan *d40c)
2074 {
2075 void __iomem *chanbase = chan_base(d40c);
2076 bool is_paused = false;
2077 unsigned long flags;
2078 void __iomem *active_reg;
2079 u32 status;
2080 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2081
2082 spin_lock_irqsave(&d40c->lock, flags);
2083
2084 if (chan_is_physical(d40c)) {
2085 if (d40c->phy_chan->num % 2 == 0)
2086 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2087 else
2088 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2089
2090 status = (readl(active_reg) &
2091 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2092 D40_CHAN_POS(d40c->phy_chan->num);
2093 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2094 is_paused = true;
2095 goto unlock;
2096 }
2097
2098 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2099 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2100 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2101 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2102 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2103 } else {
2104 chan_err(d40c, "Unknown direction\n");
2105 goto unlock;
2106 }
2107
2108 status = (status & D40_EVENTLINE_MASK(event)) >>
2109 D40_EVENTLINE_POS(event);
2110
2111 if (status != D40_DMA_RUN)
2112 is_paused = true;
2113 unlock:
2114 spin_unlock_irqrestore(&d40c->lock, flags);
2115 return is_paused;
2116
2117 }
2118
stedma40_residue(struct dma_chan * chan)2119 static u32 stedma40_residue(struct dma_chan *chan)
2120 {
2121 struct d40_chan *d40c =
2122 container_of(chan, struct d40_chan, chan);
2123 u32 bytes_left;
2124 unsigned long flags;
2125
2126 spin_lock_irqsave(&d40c->lock, flags);
2127 bytes_left = d40_residue(d40c);
2128 spin_unlock_irqrestore(&d40c->lock, flags);
2129
2130 return bytes_left;
2131 }
2132
2133 static int
d40_prep_sg_log(struct d40_chan * chan,struct d40_desc * desc,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,dma_addr_t src_dev_addr,dma_addr_t dst_dev_addr)2134 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2135 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2136 unsigned int sg_len, dma_addr_t src_dev_addr,
2137 dma_addr_t dst_dev_addr)
2138 {
2139 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2140 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2141 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2142 int ret;
2143
2144 ret = d40_log_sg_to_lli(sg_src, sg_len,
2145 src_dev_addr,
2146 desc->lli_log.src,
2147 chan->log_def.lcsp1,
2148 src_info->data_width,
2149 dst_info->data_width);
2150
2151 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2152 dst_dev_addr,
2153 desc->lli_log.dst,
2154 chan->log_def.lcsp3,
2155 dst_info->data_width,
2156 src_info->data_width);
2157
2158 return ret < 0 ? ret : 0;
2159 }
2160
2161 static int
d40_prep_sg_phy(struct d40_chan * chan,struct d40_desc * desc,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,dma_addr_t src_dev_addr,dma_addr_t dst_dev_addr)2162 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2163 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2164 unsigned int sg_len, dma_addr_t src_dev_addr,
2165 dma_addr_t dst_dev_addr)
2166 {
2167 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2168 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2169 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2170 unsigned long flags = 0;
2171 int ret;
2172
2173 if (desc->cyclic)
2174 flags |= LLI_CYCLIC | LLI_TERM_INT;
2175
2176 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2177 desc->lli_phy.src,
2178 virt_to_phys(desc->lli_phy.src),
2179 chan->src_def_cfg,
2180 src_info, dst_info, flags);
2181
2182 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2183 desc->lli_phy.dst,
2184 virt_to_phys(desc->lli_phy.dst),
2185 chan->dst_def_cfg,
2186 dst_info, src_info, flags);
2187
2188 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2189 desc->lli_pool.size, DMA_TO_DEVICE);
2190
2191 return ret < 0 ? ret : 0;
2192 }
2193
2194 static struct d40_desc *
d40_prep_desc(struct d40_chan * chan,struct scatterlist * sg,unsigned int sg_len,unsigned long dma_flags)2195 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2196 unsigned int sg_len, unsigned long dma_flags)
2197 {
2198 struct stedma40_chan_cfg *cfg;
2199 struct d40_desc *desc;
2200 int ret;
2201
2202 desc = d40_desc_get(chan);
2203 if (!desc)
2204 return NULL;
2205
2206 cfg = &chan->dma_cfg;
2207 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2208 cfg->dst_info.data_width);
2209 if (desc->lli_len < 0) {
2210 chan_err(chan, "Unaligned size\n");
2211 goto free_desc;
2212 }
2213
2214 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2215 if (ret < 0) {
2216 chan_err(chan, "Could not allocate lli\n");
2217 goto free_desc;
2218 }
2219
2220 desc->lli_current = 0;
2221 desc->txd.flags = dma_flags;
2222 desc->txd.tx_submit = d40_tx_submit;
2223
2224 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2225
2226 return desc;
2227 free_desc:
2228 d40_desc_free(chan, desc);
2229 return NULL;
2230 }
2231
2232 static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan * dchan,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long dma_flags)2233 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2234 struct scatterlist *sg_dst, unsigned int sg_len,
2235 enum dma_transfer_direction direction, unsigned long dma_flags)
2236 {
2237 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2238 dma_addr_t src_dev_addr;
2239 dma_addr_t dst_dev_addr;
2240 struct d40_desc *desc;
2241 unsigned long flags;
2242 int ret;
2243
2244 if (!chan->phy_chan) {
2245 chan_err(chan, "Cannot prepare unallocated channel\n");
2246 return NULL;
2247 }
2248
2249 d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2250
2251 spin_lock_irqsave(&chan->lock, flags);
2252
2253 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2254 if (desc == NULL)
2255 goto unlock;
2256
2257 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2258 desc->cyclic = true;
2259
2260 src_dev_addr = 0;
2261 dst_dev_addr = 0;
2262 if (direction == DMA_DEV_TO_MEM)
2263 src_dev_addr = chan->runtime_addr;
2264 else if (direction == DMA_MEM_TO_DEV)
2265 dst_dev_addr = chan->runtime_addr;
2266
2267 if (chan_is_logical(chan))
2268 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2269 sg_len, src_dev_addr, dst_dev_addr);
2270 else
2271 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2272 sg_len, src_dev_addr, dst_dev_addr);
2273
2274 if (ret) {
2275 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2276 chan_is_logical(chan) ? "log" : "phy", ret);
2277 goto free_desc;
2278 }
2279
2280 /*
2281 * add descriptor to the prepare queue in order to be able
2282 * to free them later in terminate_all
2283 */
2284 list_add_tail(&desc->node, &chan->prepare_queue);
2285
2286 spin_unlock_irqrestore(&chan->lock, flags);
2287
2288 return &desc->txd;
2289 free_desc:
2290 d40_desc_free(chan, desc);
2291 unlock:
2292 spin_unlock_irqrestore(&chan->lock, flags);
2293 return NULL;
2294 }
2295
stedma40_filter(struct dma_chan * chan,void * data)2296 static bool stedma40_filter(struct dma_chan *chan, void *data)
2297 {
2298 struct stedma40_chan_cfg *info = data;
2299 struct d40_chan *d40c =
2300 container_of(chan, struct d40_chan, chan);
2301 int err;
2302
2303 if (data) {
2304 err = d40_validate_conf(d40c, info);
2305 if (!err)
2306 d40c->dma_cfg = *info;
2307 } else
2308 err = d40_config_memcpy(d40c);
2309
2310 if (!err)
2311 d40c->configured = true;
2312
2313 return err == 0;
2314 }
2315
__d40_set_prio_rt(struct d40_chan * d40c,int dev_type,bool src)2316 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2317 {
2318 bool realtime = d40c->dma_cfg.realtime;
2319 bool highprio = d40c->dma_cfg.high_priority;
2320 u32 rtreg;
2321 u32 event = D40_TYPE_TO_EVENT(dev_type);
2322 u32 group = D40_TYPE_TO_GROUP(dev_type);
2323 u32 bit = BIT(event);
2324 u32 prioreg;
2325 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2326
2327 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2328 /*
2329 * Due to a hardware bug, in some cases a logical channel triggered by
2330 * a high priority destination event line can generate extra packet
2331 * transactions.
2332 *
2333 * The workaround is to not set the high priority level for the
2334 * destination event lines that trigger logical channels.
2335 */
2336 if (!src && chan_is_logical(d40c))
2337 highprio = false;
2338
2339 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2340
2341 /* Destination event lines are stored in the upper halfword */
2342 if (!src)
2343 bit <<= 16;
2344
2345 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2346 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2347 }
2348
d40_set_prio_realtime(struct d40_chan * d40c)2349 static void d40_set_prio_realtime(struct d40_chan *d40c)
2350 {
2351 if (d40c->base->rev < 3)
2352 return;
2353
2354 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
2355 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2356 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2357
2358 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
2359 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2360 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2361 }
2362
2363 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2364 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2365 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2366 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2367 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2368
d40_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2369 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2370 struct of_dma *ofdma)
2371 {
2372 struct stedma40_chan_cfg cfg;
2373 dma_cap_mask_t cap;
2374 u32 flags;
2375
2376 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2377
2378 dma_cap_zero(cap);
2379 dma_cap_set(DMA_SLAVE, cap);
2380
2381 cfg.dev_type = dma_spec->args[0];
2382 flags = dma_spec->args[2];
2383
2384 switch (D40_DT_FLAGS_MODE(flags)) {
2385 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2386 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2387 }
2388
2389 switch (D40_DT_FLAGS_DIR(flags)) {
2390 case 0:
2391 cfg.dir = DMA_MEM_TO_DEV;
2392 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2393 break;
2394 case 1:
2395 cfg.dir = DMA_DEV_TO_MEM;
2396 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2397 break;
2398 }
2399
2400 if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2401 cfg.phy_channel = dma_spec->args[1];
2402 cfg.use_fixed_channel = true;
2403 }
2404
2405 if (D40_DT_FLAGS_HIGH_PRIO(flags))
2406 cfg.high_priority = true;
2407
2408 return dma_request_channel(cap, stedma40_filter, &cfg);
2409 }
2410
2411 /* DMA ENGINE functions */
d40_alloc_chan_resources(struct dma_chan * chan)2412 static int d40_alloc_chan_resources(struct dma_chan *chan)
2413 {
2414 int err;
2415 unsigned long flags;
2416 struct d40_chan *d40c =
2417 container_of(chan, struct d40_chan, chan);
2418 bool is_free_phy;
2419 spin_lock_irqsave(&d40c->lock, flags);
2420
2421 dma_cookie_init(chan);
2422
2423 /* If no dma configuration is set use default configuration (memcpy) */
2424 if (!d40c->configured) {
2425 err = d40_config_memcpy(d40c);
2426 if (err) {
2427 chan_err(d40c, "Failed to configure memcpy channel\n");
2428 goto mark_last_busy;
2429 }
2430 }
2431
2432 err = d40_allocate_channel(d40c, &is_free_phy);
2433 if (err) {
2434 chan_err(d40c, "Failed to allocate channel\n");
2435 d40c->configured = false;
2436 goto mark_last_busy;
2437 }
2438
2439 pm_runtime_get_sync(d40c->base->dev);
2440
2441 d40_set_prio_realtime(d40c);
2442
2443 if (chan_is_logical(d40c)) {
2444 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2445 d40c->lcpa = d40c->base->lcpa_base +
2446 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2447 else
2448 d40c->lcpa = d40c->base->lcpa_base +
2449 d40c->dma_cfg.dev_type *
2450 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2451
2452 /* Unmask the Global Interrupt Mask. */
2453 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2454 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2455 }
2456
2457 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2458 chan_is_logical(d40c) ? "logical" : "physical",
2459 d40c->phy_chan->num,
2460 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2461
2462
2463 /*
2464 * Only write channel configuration to the DMA if the physical
2465 * resource is free. In case of multiple logical channels
2466 * on the same physical resource, only the first write is necessary.
2467 */
2468 if (is_free_phy)
2469 d40_config_write(d40c);
2470 mark_last_busy:
2471 pm_runtime_mark_last_busy(d40c->base->dev);
2472 pm_runtime_put_autosuspend(d40c->base->dev);
2473 spin_unlock_irqrestore(&d40c->lock, flags);
2474 return err;
2475 }
2476
d40_free_chan_resources(struct dma_chan * chan)2477 static void d40_free_chan_resources(struct dma_chan *chan)
2478 {
2479 struct d40_chan *d40c =
2480 container_of(chan, struct d40_chan, chan);
2481 int err;
2482 unsigned long flags;
2483
2484 if (d40c->phy_chan == NULL) {
2485 chan_err(d40c, "Cannot free unallocated channel\n");
2486 return;
2487 }
2488
2489 spin_lock_irqsave(&d40c->lock, flags);
2490
2491 err = d40_free_dma(d40c);
2492
2493 if (err)
2494 chan_err(d40c, "Failed to free channel\n");
2495 spin_unlock_irqrestore(&d40c->lock, flags);
2496 }
2497
d40_prep_memcpy(struct dma_chan * chan,dma_addr_t dst,dma_addr_t src,size_t size,unsigned long dma_flags)2498 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2499 dma_addr_t dst,
2500 dma_addr_t src,
2501 size_t size,
2502 unsigned long dma_flags)
2503 {
2504 struct scatterlist dst_sg;
2505 struct scatterlist src_sg;
2506
2507 sg_init_table(&dst_sg, 1);
2508 sg_init_table(&src_sg, 1);
2509
2510 sg_dma_address(&dst_sg) = dst;
2511 sg_dma_address(&src_sg) = src;
2512
2513 sg_dma_len(&dst_sg) = size;
2514 sg_dma_len(&src_sg) = size;
2515
2516 return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2517 DMA_MEM_TO_MEM, dma_flags);
2518 }
2519
2520 static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long dma_flags,void * context)2521 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2522 unsigned int sg_len, enum dma_transfer_direction direction,
2523 unsigned long dma_flags, void *context)
2524 {
2525 if (!is_slave_direction(direction))
2526 return NULL;
2527
2528 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2529 }
2530
2531 static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)2532 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2533 size_t buf_len, size_t period_len,
2534 enum dma_transfer_direction direction, unsigned long flags)
2535 {
2536 unsigned int periods = buf_len / period_len;
2537 struct dma_async_tx_descriptor *txd;
2538 struct scatterlist *sg;
2539 int i;
2540
2541 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2542 if (!sg)
2543 return NULL;
2544
2545 for (i = 0; i < periods; i++) {
2546 sg_dma_address(&sg[i]) = dma_addr;
2547 sg_dma_len(&sg[i]) = period_len;
2548 dma_addr += period_len;
2549 }
2550
2551 sg_chain(sg, periods + 1, sg);
2552
2553 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2554 DMA_PREP_INTERRUPT);
2555
2556 kfree(sg);
2557
2558 return txd;
2559 }
2560
d40_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)2561 static enum dma_status d40_tx_status(struct dma_chan *chan,
2562 dma_cookie_t cookie,
2563 struct dma_tx_state *txstate)
2564 {
2565 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2566 enum dma_status ret;
2567
2568 if (d40c->phy_chan == NULL) {
2569 chan_err(d40c, "Cannot read status of unallocated channel\n");
2570 return -EINVAL;
2571 }
2572
2573 ret = dma_cookie_status(chan, cookie, txstate);
2574 if (ret != DMA_COMPLETE && txstate)
2575 dma_set_residue(txstate, stedma40_residue(chan));
2576
2577 if (d40_is_paused(d40c))
2578 ret = DMA_PAUSED;
2579
2580 return ret;
2581 }
2582
d40_issue_pending(struct dma_chan * chan)2583 static void d40_issue_pending(struct dma_chan *chan)
2584 {
2585 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2586 unsigned long flags;
2587
2588 if (d40c->phy_chan == NULL) {
2589 chan_err(d40c, "Channel is not allocated!\n");
2590 return;
2591 }
2592
2593 spin_lock_irqsave(&d40c->lock, flags);
2594
2595 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2596
2597 /* Busy means that queued jobs are already being processed */
2598 if (!d40c->busy)
2599 (void) d40_queue_start(d40c);
2600
2601 spin_unlock_irqrestore(&d40c->lock, flags);
2602 }
2603
d40_terminate_all(struct dma_chan * chan)2604 static int d40_terminate_all(struct dma_chan *chan)
2605 {
2606 unsigned long flags;
2607 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2608 int ret;
2609
2610 if (d40c->phy_chan == NULL) {
2611 chan_err(d40c, "Channel is not allocated!\n");
2612 return -EINVAL;
2613 }
2614
2615 spin_lock_irqsave(&d40c->lock, flags);
2616
2617 pm_runtime_get_sync(d40c->base->dev);
2618 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2619 if (ret)
2620 chan_err(d40c, "Failed to stop channel\n");
2621
2622 d40_term_all(d40c);
2623 pm_runtime_mark_last_busy(d40c->base->dev);
2624 pm_runtime_put_autosuspend(d40c->base->dev);
2625 if (d40c->busy) {
2626 pm_runtime_mark_last_busy(d40c->base->dev);
2627 pm_runtime_put_autosuspend(d40c->base->dev);
2628 }
2629 d40c->busy = false;
2630
2631 spin_unlock_irqrestore(&d40c->lock, flags);
2632 return 0;
2633 }
2634
2635 static int
dma40_config_to_halfchannel(struct d40_chan * d40c,struct stedma40_half_channel_info * info,u32 maxburst)2636 dma40_config_to_halfchannel(struct d40_chan *d40c,
2637 struct stedma40_half_channel_info *info,
2638 u32 maxburst)
2639 {
2640 int psize;
2641
2642 if (chan_is_logical(d40c)) {
2643 if (maxburst >= 16)
2644 psize = STEDMA40_PSIZE_LOG_16;
2645 else if (maxburst >= 8)
2646 psize = STEDMA40_PSIZE_LOG_8;
2647 else if (maxburst >= 4)
2648 psize = STEDMA40_PSIZE_LOG_4;
2649 else
2650 psize = STEDMA40_PSIZE_LOG_1;
2651 } else {
2652 if (maxburst >= 16)
2653 psize = STEDMA40_PSIZE_PHY_16;
2654 else if (maxburst >= 8)
2655 psize = STEDMA40_PSIZE_PHY_8;
2656 else if (maxburst >= 4)
2657 psize = STEDMA40_PSIZE_PHY_4;
2658 else
2659 psize = STEDMA40_PSIZE_PHY_1;
2660 }
2661
2662 info->psize = psize;
2663 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2664
2665 return 0;
2666 }
2667
d40_set_runtime_config(struct dma_chan * chan,struct dma_slave_config * config)2668 static int d40_set_runtime_config(struct dma_chan *chan,
2669 struct dma_slave_config *config)
2670 {
2671 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2672
2673 memcpy(&d40c->slave_config, config, sizeof(*config));
2674
2675 return 0;
2676 }
2677
2678 /* Runtime reconfiguration extension */
d40_set_runtime_config_write(struct dma_chan * chan,struct dma_slave_config * config,enum dma_transfer_direction direction)2679 static int d40_set_runtime_config_write(struct dma_chan *chan,
2680 struct dma_slave_config *config,
2681 enum dma_transfer_direction direction)
2682 {
2683 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2684 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2685 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2686 dma_addr_t config_addr;
2687 u32 src_maxburst, dst_maxburst;
2688 int ret;
2689
2690 if (d40c->phy_chan == NULL) {
2691 chan_err(d40c, "Channel is not allocated!\n");
2692 return -EINVAL;
2693 }
2694
2695 src_addr_width = config->src_addr_width;
2696 src_maxburst = config->src_maxburst;
2697 dst_addr_width = config->dst_addr_width;
2698 dst_maxburst = config->dst_maxburst;
2699
2700 if (direction == DMA_DEV_TO_MEM) {
2701 config_addr = config->src_addr;
2702
2703 if (cfg->dir != DMA_DEV_TO_MEM)
2704 dev_dbg(d40c->base->dev,
2705 "channel was not configured for peripheral "
2706 "to memory transfer (%d) overriding\n",
2707 cfg->dir);
2708 cfg->dir = DMA_DEV_TO_MEM;
2709
2710 /* Configure the memory side */
2711 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2712 dst_addr_width = src_addr_width;
2713 if (dst_maxburst == 0)
2714 dst_maxburst = src_maxburst;
2715
2716 } else if (direction == DMA_MEM_TO_DEV) {
2717 config_addr = config->dst_addr;
2718
2719 if (cfg->dir != DMA_MEM_TO_DEV)
2720 dev_dbg(d40c->base->dev,
2721 "channel was not configured for memory "
2722 "to peripheral transfer (%d) overriding\n",
2723 cfg->dir);
2724 cfg->dir = DMA_MEM_TO_DEV;
2725
2726 /* Configure the memory side */
2727 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2728 src_addr_width = dst_addr_width;
2729 if (src_maxburst == 0)
2730 src_maxburst = dst_maxburst;
2731 } else {
2732 dev_err(d40c->base->dev,
2733 "unrecognized channel direction %d\n",
2734 direction);
2735 return -EINVAL;
2736 }
2737
2738 if (config_addr <= 0) {
2739 dev_err(d40c->base->dev, "no address supplied\n");
2740 return -EINVAL;
2741 }
2742
2743 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2744 dev_err(d40c->base->dev,
2745 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2746 src_maxburst,
2747 src_addr_width,
2748 dst_maxburst,
2749 dst_addr_width);
2750 return -EINVAL;
2751 }
2752
2753 if (src_maxburst > 16) {
2754 src_maxburst = 16;
2755 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2756 } else if (dst_maxburst > 16) {
2757 dst_maxburst = 16;
2758 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2759 }
2760
2761 /* Only valid widths are; 1, 2, 4 and 8. */
2762 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2763 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2764 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2765 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2766 !is_power_of_2(src_addr_width) ||
2767 !is_power_of_2(dst_addr_width))
2768 return -EINVAL;
2769
2770 cfg->src_info.data_width = src_addr_width;
2771 cfg->dst_info.data_width = dst_addr_width;
2772
2773 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2774 src_maxburst);
2775 if (ret)
2776 return ret;
2777
2778 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2779 dst_maxburst);
2780 if (ret)
2781 return ret;
2782
2783 /* Fill in register values */
2784 if (chan_is_logical(d40c))
2785 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2786 else
2787 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2788
2789 /* These settings will take precedence later */
2790 d40c->runtime_addr = config_addr;
2791 d40c->runtime_direction = direction;
2792 dev_dbg(d40c->base->dev,
2793 "configured channel %s for %s, data width %d/%d, "
2794 "maxburst %d/%d elements, LE, no flow control\n",
2795 dma_chan_name(chan),
2796 (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2797 src_addr_width, dst_addr_width,
2798 src_maxburst, dst_maxburst);
2799
2800 return 0;
2801 }
2802
2803 /* Initialization functions */
2804
d40_chan_init(struct d40_base * base,struct dma_device * dma,struct d40_chan * chans,int offset,int num_chans)2805 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2806 struct d40_chan *chans, int offset,
2807 int num_chans)
2808 {
2809 int i = 0;
2810 struct d40_chan *d40c;
2811
2812 INIT_LIST_HEAD(&dma->channels);
2813
2814 for (i = offset; i < offset + num_chans; i++) {
2815 d40c = &chans[i];
2816 d40c->base = base;
2817 d40c->chan.device = dma;
2818
2819 spin_lock_init(&d40c->lock);
2820
2821 d40c->log_num = D40_PHY_CHAN;
2822
2823 INIT_LIST_HEAD(&d40c->done);
2824 INIT_LIST_HEAD(&d40c->active);
2825 INIT_LIST_HEAD(&d40c->queue);
2826 INIT_LIST_HEAD(&d40c->pending_queue);
2827 INIT_LIST_HEAD(&d40c->client);
2828 INIT_LIST_HEAD(&d40c->prepare_queue);
2829
2830 tasklet_setup(&d40c->tasklet, dma_tasklet);
2831
2832 list_add_tail(&d40c->chan.device_node,
2833 &dma->channels);
2834 }
2835 }
2836
d40_ops_init(struct d40_base * base,struct dma_device * dev)2837 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2838 {
2839 if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2840 dev->device_prep_slave_sg = d40_prep_slave_sg;
2841 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2842 }
2843
2844 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2845 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2846 dev->directions = BIT(DMA_MEM_TO_MEM);
2847 /*
2848 * This controller can only access address at even
2849 * 32bit boundaries, i.e. 2^2
2850 */
2851 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2852 }
2853
2854 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2855 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2856
2857 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2858 dev->device_free_chan_resources = d40_free_chan_resources;
2859 dev->device_issue_pending = d40_issue_pending;
2860 dev->device_tx_status = d40_tx_status;
2861 dev->device_config = d40_set_runtime_config;
2862 dev->device_pause = d40_pause;
2863 dev->device_resume = d40_resume;
2864 dev->device_terminate_all = d40_terminate_all;
2865 dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2866 dev->dev = base->dev;
2867 }
2868
d40_dmaengine_init(struct d40_base * base,int num_reserved_chans)2869 static int __init d40_dmaengine_init(struct d40_base *base,
2870 int num_reserved_chans)
2871 {
2872 int err ;
2873
2874 d40_chan_init(base, &base->dma_slave, base->log_chans,
2875 0, base->num_log_chans);
2876
2877 dma_cap_zero(base->dma_slave.cap_mask);
2878 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2879 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2880
2881 d40_ops_init(base, &base->dma_slave);
2882
2883 err = dmaenginem_async_device_register(&base->dma_slave);
2884
2885 if (err) {
2886 d40_err(base->dev, "Failed to register slave channels\n");
2887 goto exit;
2888 }
2889
2890 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2891 base->num_log_chans, base->num_memcpy_chans);
2892
2893 dma_cap_zero(base->dma_memcpy.cap_mask);
2894 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2895
2896 d40_ops_init(base, &base->dma_memcpy);
2897
2898 err = dmaenginem_async_device_register(&base->dma_memcpy);
2899
2900 if (err) {
2901 d40_err(base->dev,
2902 "Failed to register memcpy only channels\n");
2903 goto exit;
2904 }
2905
2906 d40_chan_init(base, &base->dma_both, base->phy_chans,
2907 0, num_reserved_chans);
2908
2909 dma_cap_zero(base->dma_both.cap_mask);
2910 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2911 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2912 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2913
2914 d40_ops_init(base, &base->dma_both);
2915 err = dmaenginem_async_device_register(&base->dma_both);
2916
2917 if (err) {
2918 d40_err(base->dev,
2919 "Failed to register logical and physical capable channels\n");
2920 goto exit;
2921 }
2922 return 0;
2923 exit:
2924 return err;
2925 }
2926
2927 /* Suspend resume functionality */
2928 #ifdef CONFIG_PM_SLEEP
dma40_suspend(struct device * dev)2929 static int dma40_suspend(struct device *dev)
2930 {
2931 struct d40_base *base = dev_get_drvdata(dev);
2932 int ret;
2933
2934 ret = pm_runtime_force_suspend(dev);
2935 if (ret)
2936 return ret;
2937
2938 if (base->lcpa_regulator)
2939 ret = regulator_disable(base->lcpa_regulator);
2940 return ret;
2941 }
2942
dma40_resume(struct device * dev)2943 static int dma40_resume(struct device *dev)
2944 {
2945 struct d40_base *base = dev_get_drvdata(dev);
2946 int ret = 0;
2947
2948 if (base->lcpa_regulator) {
2949 ret = regulator_enable(base->lcpa_regulator);
2950 if (ret)
2951 return ret;
2952 }
2953
2954 return pm_runtime_force_resume(dev);
2955 }
2956 #endif
2957
2958 #ifdef CONFIG_PM
dma40_backup(void __iomem * baseaddr,u32 * backup,u32 * regaddr,int num,bool save)2959 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2960 u32 *regaddr, int num, bool save)
2961 {
2962 int i;
2963
2964 for (i = 0; i < num; i++) {
2965 void __iomem *addr = baseaddr + regaddr[i];
2966
2967 if (save)
2968 backup[i] = readl_relaxed(addr);
2969 else
2970 writel_relaxed(backup[i], addr);
2971 }
2972 }
2973
d40_save_restore_registers(struct d40_base * base,bool save)2974 static void d40_save_restore_registers(struct d40_base *base, bool save)
2975 {
2976 int i;
2977
2978 /* Save/Restore channel specific registers */
2979 for (i = 0; i < base->num_phy_chans; i++) {
2980 void __iomem *addr;
2981 int idx;
2982
2983 if (base->phy_res[i].reserved)
2984 continue;
2985
2986 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2987 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2988
2989 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2990 d40_backup_regs_chan,
2991 ARRAY_SIZE(d40_backup_regs_chan),
2992 save);
2993 }
2994
2995 /* Save/Restore global registers */
2996 dma40_backup(base->virtbase, base->reg_val_backup,
2997 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2998 save);
2999
3000 /* Save/Restore registers only existing on dma40 v3 and later */
3001 if (base->gen_dmac.backup)
3002 dma40_backup(base->virtbase, base->reg_val_backup_v4,
3003 base->gen_dmac.backup,
3004 base->gen_dmac.backup_size,
3005 save);
3006 }
3007
dma40_runtime_suspend(struct device * dev)3008 static int dma40_runtime_suspend(struct device *dev)
3009 {
3010 struct d40_base *base = dev_get_drvdata(dev);
3011
3012 d40_save_restore_registers(base, true);
3013
3014 /* Don't disable/enable clocks for v1 due to HW bugs */
3015 if (base->rev != 1)
3016 writel_relaxed(base->gcc_pwr_off_mask,
3017 base->virtbase + D40_DREG_GCC);
3018
3019 return 0;
3020 }
3021
dma40_runtime_resume(struct device * dev)3022 static int dma40_runtime_resume(struct device *dev)
3023 {
3024 struct d40_base *base = dev_get_drvdata(dev);
3025
3026 d40_save_restore_registers(base, false);
3027
3028 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3029 base->virtbase + D40_DREG_GCC);
3030 return 0;
3031 }
3032 #endif
3033
3034 static const struct dev_pm_ops dma40_pm_ops = {
3035 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3036 SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3037 dma40_runtime_resume,
3038 NULL)
3039 };
3040
3041 /* Initialization functions. */
3042
d40_phy_res_init(struct d40_base * base)3043 static int __init d40_phy_res_init(struct d40_base *base)
3044 {
3045 int i;
3046 int num_phy_chans_avail = 0;
3047 u32 val[2];
3048 int odd_even_bit = -2;
3049 int gcc = D40_DREG_GCC_ENA;
3050
3051 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3052 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3053
3054 for (i = 0; i < base->num_phy_chans; i++) {
3055 base->phy_res[i].num = i;
3056 odd_even_bit += 2 * ((i % 2) == 0);
3057 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3058 /* Mark security only channels as occupied */
3059 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3060 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3061 base->phy_res[i].reserved = true;
3062 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3063 D40_DREG_GCC_SRC);
3064 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3065 D40_DREG_GCC_DST);
3066
3067
3068 } else {
3069 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3070 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3071 base->phy_res[i].reserved = false;
3072 num_phy_chans_avail++;
3073 }
3074 spin_lock_init(&base->phy_res[i].lock);
3075 }
3076
3077 /* Mark disabled channels as occupied */
3078 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3079 int chan = base->plat_data->disabled_channels[i];
3080
3081 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3082 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3083 base->phy_res[chan].reserved = true;
3084 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3085 D40_DREG_GCC_SRC);
3086 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3087 D40_DREG_GCC_DST);
3088 num_phy_chans_avail--;
3089 }
3090
3091 /* Mark soft_lli channels */
3092 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3093 int chan = base->plat_data->soft_lli_chans[i];
3094
3095 base->phy_res[chan].use_soft_lli = true;
3096 }
3097
3098 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3099 num_phy_chans_avail, base->num_phy_chans);
3100
3101 /* Verify settings extended vs standard */
3102 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3103
3104 for (i = 0; i < base->num_phy_chans; i++) {
3105
3106 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3107 (val[0] & 0x3) != 1)
3108 dev_info(base->dev,
3109 "[%s] INFO: channel %d is misconfigured (%d)\n",
3110 __func__, i, val[0] & 0x3);
3111
3112 val[0] = val[0] >> 2;
3113 }
3114
3115 /*
3116 * To keep things simple, Enable all clocks initially.
3117 * The clocks will get managed later post channel allocation.
3118 * The clocks for the event lines on which reserved channels exists
3119 * are not managed here.
3120 */
3121 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3122 base->gcc_pwr_off_mask = gcc;
3123
3124 return num_phy_chans_avail;
3125 }
3126
3127 /* Called from the registered devm action */
d40_drop_kmem_cache_action(void * d)3128 static void d40_drop_kmem_cache_action(void *d)
3129 {
3130 struct kmem_cache *desc_slab = d;
3131
3132 kmem_cache_destroy(desc_slab);
3133 }
3134
d40_hw_detect_init(struct platform_device * pdev,struct d40_base ** retbase)3135 static int __init d40_hw_detect_init(struct platform_device *pdev,
3136 struct d40_base **retbase)
3137 {
3138 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3139 struct device *dev = &pdev->dev;
3140 struct clk *clk;
3141 void __iomem *virtbase;
3142 struct d40_base *base;
3143 int num_log_chans;
3144 int num_phy_chans;
3145 int num_memcpy_chans;
3146 int i;
3147 u32 pid;
3148 u32 cid;
3149 u8 rev;
3150 int ret;
3151
3152 clk = devm_clk_get_enabled(dev, NULL);
3153 if (IS_ERR(clk))
3154 return PTR_ERR(clk);
3155
3156 /* Get IO for DMAC base address */
3157 virtbase = devm_platform_ioremap_resource_byname(pdev, "base");
3158 if (IS_ERR(virtbase))
3159 return PTR_ERR(virtbase);
3160
3161 /* This is just a regular AMBA PrimeCell ID actually */
3162 for (pid = 0, i = 0; i < 4; i++)
3163 pid |= (readl(virtbase + SZ_4K - 0x20 + 4 * i)
3164 & 255) << (i * 8);
3165 for (cid = 0, i = 0; i < 4; i++)
3166 cid |= (readl(virtbase + SZ_4K - 0x10 + 4 * i)
3167 & 255) << (i * 8);
3168
3169 if (cid != AMBA_CID) {
3170 d40_err(dev, "Unknown hardware! No PrimeCell ID\n");
3171 return -EINVAL;
3172 }
3173 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3174 d40_err(dev, "Unknown designer! Got %x wanted %x\n",
3175 AMBA_MANF_BITS(pid),
3176 AMBA_VENDOR_ST);
3177 return -EINVAL;
3178 }
3179 /*
3180 * HW revision:
3181 * DB8500ed has revision 0
3182 * ? has revision 1
3183 * DB8500v1 has revision 2
3184 * DB8500v2 has revision 3
3185 * AP9540v1 has revision 4
3186 * DB8540v1 has revision 4
3187 */
3188 rev = AMBA_REV_BITS(pid);
3189 if (rev < 2) {
3190 d40_err(dev, "hardware revision: %d is not supported", rev);
3191 return -EINVAL;
3192 }
3193
3194 /* The number of physical channels on this HW */
3195 if (plat_data->num_of_phy_chans)
3196 num_phy_chans = plat_data->num_of_phy_chans;
3197 else
3198 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3199
3200 /* The number of channels used for memcpy */
3201 if (plat_data->num_of_memcpy_chans)
3202 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3203 else
3204 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3205
3206 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3207
3208 dev_info(dev,
3209 "hardware rev: %d with %d physical and %d logical channels\n",
3210 rev, num_phy_chans, num_log_chans);
3211
3212 base = devm_kzalloc(dev,
3213 ALIGN(sizeof(struct d40_base), 4) +
3214 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3215 sizeof(struct d40_chan), GFP_KERNEL);
3216
3217 if (!base)
3218 return -ENOMEM;
3219
3220 base->rev = rev;
3221 base->clk = clk;
3222 base->num_memcpy_chans = num_memcpy_chans;
3223 base->num_phy_chans = num_phy_chans;
3224 base->num_log_chans = num_log_chans;
3225 base->virtbase = virtbase;
3226 base->plat_data = plat_data;
3227 base->dev = dev;
3228 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3229 base->log_chans = &base->phy_chans[num_phy_chans];
3230
3231 if (base->plat_data->num_of_phy_chans == 14) {
3232 base->gen_dmac.backup = d40_backup_regs_v4b;
3233 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3234 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3235 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3236 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3237 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3238 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3239 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3240 base->gen_dmac.il = il_v4b;
3241 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3242 base->gen_dmac.init_reg = dma_init_reg_v4b;
3243 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3244 } else {
3245 if (base->rev >= 3) {
3246 base->gen_dmac.backup = d40_backup_regs_v4a;
3247 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3248 }
3249 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3250 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3251 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3252 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3253 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3254 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3255 base->gen_dmac.il = il_v4a;
3256 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3257 base->gen_dmac.init_reg = dma_init_reg_v4a;
3258 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3259 }
3260
3261 base->phy_res = devm_kcalloc(dev, num_phy_chans,
3262 sizeof(*base->phy_res),
3263 GFP_KERNEL);
3264 if (!base->phy_res)
3265 return -ENOMEM;
3266
3267 base->lookup_phy_chans = devm_kcalloc(dev, num_phy_chans,
3268 sizeof(*base->lookup_phy_chans),
3269 GFP_KERNEL);
3270 if (!base->lookup_phy_chans)
3271 return -ENOMEM;
3272
3273 base->lookup_log_chans = devm_kcalloc(dev, num_log_chans,
3274 sizeof(*base->lookup_log_chans),
3275 GFP_KERNEL);
3276 if (!base->lookup_log_chans)
3277 return -ENOMEM;
3278
3279 base->reg_val_backup_chan = devm_kmalloc_array(dev, base->num_phy_chans,
3280 sizeof(d40_backup_regs_chan),
3281 GFP_KERNEL);
3282 if (!base->reg_val_backup_chan)
3283 return -ENOMEM;
3284
3285 base->lcla_pool.alloc_map = devm_kcalloc(dev, num_phy_chans
3286 * D40_LCLA_LINK_PER_EVENT_GRP,
3287 sizeof(*base->lcla_pool.alloc_map),
3288 GFP_KERNEL);
3289 if (!base->lcla_pool.alloc_map)
3290 return -ENOMEM;
3291
3292 base->regs_interrupt = devm_kmalloc_array(dev, base->gen_dmac.il_size,
3293 sizeof(*base->regs_interrupt),
3294 GFP_KERNEL);
3295 if (!base->regs_interrupt)
3296 return -ENOMEM;
3297
3298 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3299 0, SLAB_HWCACHE_ALIGN,
3300 NULL);
3301 if (!base->desc_slab)
3302 return -ENOMEM;
3303
3304 ret = devm_add_action_or_reset(dev, d40_drop_kmem_cache_action,
3305 base->desc_slab);
3306 if (ret)
3307 return ret;
3308
3309 *retbase = base;
3310
3311 return 0;
3312 }
3313
d40_hw_init(struct d40_base * base)3314 static void __init d40_hw_init(struct d40_base *base)
3315 {
3316
3317 int i;
3318 u32 prmseo[2] = {0, 0};
3319 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3320 u32 pcmis = 0;
3321 u32 pcicr = 0;
3322 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3323 u32 reg_size = base->gen_dmac.init_reg_size;
3324
3325 for (i = 0; i < reg_size; i++)
3326 writel(dma_init_reg[i].val,
3327 base->virtbase + dma_init_reg[i].reg);
3328
3329 /* Configure all our dma channels to default settings */
3330 for (i = 0; i < base->num_phy_chans; i++) {
3331
3332 activeo[i % 2] = activeo[i % 2] << 2;
3333
3334 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3335 == D40_ALLOC_PHY) {
3336 activeo[i % 2] |= 3;
3337 continue;
3338 }
3339
3340 /* Enable interrupt # */
3341 pcmis = (pcmis << 1) | 1;
3342
3343 /* Clear interrupt # */
3344 pcicr = (pcicr << 1) | 1;
3345
3346 /* Set channel to physical mode */
3347 prmseo[i % 2] = prmseo[i % 2] << 2;
3348 prmseo[i % 2] |= 1;
3349
3350 }
3351
3352 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3353 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3354 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3355 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3356
3357 /* Write which interrupt to enable */
3358 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3359
3360 /* Write which interrupt to clear */
3361 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3362
3363 /* These are __initdata and cannot be accessed after init */
3364 base->gen_dmac.init_reg = NULL;
3365 base->gen_dmac.init_reg_size = 0;
3366 }
3367
d40_lcla_allocate(struct d40_base * base)3368 static int __init d40_lcla_allocate(struct d40_base *base)
3369 {
3370 struct d40_lcla_pool *pool = &base->lcla_pool;
3371 unsigned long *page_list;
3372 int i, j;
3373 int ret;
3374
3375 /*
3376 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3377 * To full fill this hardware requirement without wasting 256 kb
3378 * we allocate pages until we get an aligned one.
3379 */
3380 page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3381 sizeof(*page_list),
3382 GFP_KERNEL);
3383 if (!page_list)
3384 return -ENOMEM;
3385
3386 /* Calculating how many pages that are required */
3387 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3388
3389 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3390 page_list[i] = __get_free_pages(GFP_KERNEL,
3391 base->lcla_pool.pages);
3392 if (!page_list[i]) {
3393
3394 d40_err(base->dev, "Failed to allocate %d pages.\n",
3395 base->lcla_pool.pages);
3396 ret = -ENOMEM;
3397
3398 for (j = 0; j < i; j++)
3399 free_pages(page_list[j], base->lcla_pool.pages);
3400 goto free_page_list;
3401 }
3402
3403 if ((virt_to_phys((void *)page_list[i]) &
3404 (LCLA_ALIGNMENT - 1)) == 0)
3405 break;
3406 }
3407
3408 for (j = 0; j < i; j++)
3409 free_pages(page_list[j], base->lcla_pool.pages);
3410
3411 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3412 base->lcla_pool.base = (void *)page_list[i];
3413 } else {
3414 /*
3415 * After many attempts and no succees with finding the correct
3416 * alignment, try with allocating a big buffer.
3417 */
3418 dev_warn(base->dev,
3419 "[%s] Failed to get %d pages @ 18 bit align.\n",
3420 __func__, base->lcla_pool.pages);
3421 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3422 base->num_phy_chans +
3423 LCLA_ALIGNMENT,
3424 GFP_KERNEL);
3425 if (!base->lcla_pool.base_unaligned) {
3426 ret = -ENOMEM;
3427 goto free_page_list;
3428 }
3429
3430 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3431 LCLA_ALIGNMENT);
3432 }
3433
3434 pool->dma_addr = dma_map_single(base->dev, pool->base,
3435 SZ_1K * base->num_phy_chans,
3436 DMA_TO_DEVICE);
3437 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3438 pool->dma_addr = 0;
3439 ret = -ENOMEM;
3440 goto free_page_list;
3441 }
3442
3443 writel(virt_to_phys(base->lcla_pool.base),
3444 base->virtbase + D40_DREG_LCLA);
3445 ret = 0;
3446 free_page_list:
3447 kfree(page_list);
3448 return ret;
3449 }
3450
d40_of_probe(struct device * dev,struct device_node * np)3451 static int __init d40_of_probe(struct device *dev,
3452 struct device_node *np)
3453 {
3454 struct stedma40_platform_data *pdata;
3455 int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3456 const __be32 *list;
3457
3458 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3459 if (!pdata)
3460 return -ENOMEM;
3461
3462 /* If absent this value will be obtained from h/w. */
3463 of_property_read_u32(np, "dma-channels", &num_phy);
3464 if (num_phy > 0)
3465 pdata->num_of_phy_chans = num_phy;
3466
3467 list = of_get_property(np, "memcpy-channels", &num_memcpy);
3468 num_memcpy /= sizeof(*list);
3469
3470 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3471 d40_err(dev,
3472 "Invalid number of memcpy channels specified (%d)\n",
3473 num_memcpy);
3474 return -EINVAL;
3475 }
3476 pdata->num_of_memcpy_chans = num_memcpy;
3477
3478 of_property_read_u32_array(np, "memcpy-channels",
3479 dma40_memcpy_channels,
3480 num_memcpy);
3481
3482 list = of_get_property(np, "disabled-channels", &num_disabled);
3483 num_disabled /= sizeof(*list);
3484
3485 if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3486 d40_err(dev,
3487 "Invalid number of disabled channels specified (%d)\n",
3488 num_disabled);
3489 return -EINVAL;
3490 }
3491
3492 of_property_read_u32_array(np, "disabled-channels",
3493 pdata->disabled_channels,
3494 num_disabled);
3495 pdata->disabled_channels[num_disabled] = -1;
3496
3497 dev->platform_data = pdata;
3498
3499 return 0;
3500 }
3501
d40_probe(struct platform_device * pdev)3502 static int __init d40_probe(struct platform_device *pdev)
3503 {
3504 struct device *dev = &pdev->dev;
3505 struct device_node *np = pdev->dev.of_node;
3506 struct device_node *np_lcpa;
3507 struct d40_base *base;
3508 struct resource *res;
3509 struct resource res_lcpa;
3510 int num_reserved_chans;
3511 u32 val;
3512 int ret;
3513
3514 if (d40_of_probe(dev, np)) {
3515 ret = -ENOMEM;
3516 goto report_failure;
3517 }
3518
3519 ret = d40_hw_detect_init(pdev, &base);
3520 if (ret)
3521 goto report_failure;
3522
3523 num_reserved_chans = d40_phy_res_init(base);
3524
3525 platform_set_drvdata(pdev, base);
3526
3527 spin_lock_init(&base->interrupt_lock);
3528 spin_lock_init(&base->execmd_lock);
3529
3530 /* Get IO for logical channel parameter address (LCPA) */
3531 np_lcpa = of_parse_phandle(np, "sram", 0);
3532 if (!np_lcpa) {
3533 dev_err(dev, "no LCPA SRAM node\n");
3534 ret = -EINVAL;
3535 goto report_failure;
3536 }
3537 /* This is no device so read the address directly from the node */
3538 ret = of_address_to_resource(np_lcpa, 0, &res_lcpa);
3539 if (ret) {
3540 dev_err(dev, "no LCPA SRAM resource\n");
3541 goto report_failure;
3542 }
3543 base->lcpa_size = resource_size(&res_lcpa);
3544 base->phy_lcpa = res_lcpa.start;
3545 dev_info(dev, "found LCPA SRAM at %pad, size %pa\n",
3546 &base->phy_lcpa, &base->lcpa_size);
3547
3548 /* We make use of ESRAM memory for this. */
3549 val = readl(base->virtbase + D40_DREG_LCPA);
3550 if (base->phy_lcpa != val && val != 0) {
3551 dev_warn(dev,
3552 "[%s] Mismatch LCPA dma 0x%x, def %08x\n",
3553 __func__, val, (u32)base->phy_lcpa);
3554 } else
3555 writel(base->phy_lcpa, base->virtbase + D40_DREG_LCPA);
3556
3557 base->lcpa_base = devm_ioremap(dev, base->phy_lcpa, base->lcpa_size);
3558 if (!base->lcpa_base) {
3559 ret = -ENOMEM;
3560 d40_err(dev, "Failed to ioremap LCPA region\n");
3561 goto report_failure;
3562 }
3563 /* If lcla has to be located in ESRAM we don't need to allocate */
3564 if (base->plat_data->use_esram_lcla) {
3565 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3566 "lcla_esram");
3567 if (!res) {
3568 ret = -ENOENT;
3569 d40_err(dev,
3570 "No \"lcla_esram\" memory resource\n");
3571 goto report_failure;
3572 }
3573 base->lcla_pool.base = devm_ioremap(dev, res->start,
3574 resource_size(res));
3575 if (!base->lcla_pool.base) {
3576 ret = -ENOMEM;
3577 d40_err(dev, "Failed to ioremap LCLA region\n");
3578 goto report_failure;
3579 }
3580 writel(res->start, base->virtbase + D40_DREG_LCLA);
3581
3582 } else {
3583 ret = d40_lcla_allocate(base);
3584 if (ret) {
3585 d40_err(dev, "Failed to allocate LCLA area\n");
3586 goto destroy_cache;
3587 }
3588 }
3589
3590 spin_lock_init(&base->lcla_pool.lock);
3591
3592 base->irq = platform_get_irq(pdev, 0);
3593 if (base->irq < 0) {
3594 ret = base->irq;
3595 goto destroy_cache;
3596 }
3597
3598 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3599 if (ret) {
3600 d40_err(dev, "No IRQ defined\n");
3601 goto destroy_cache;
3602 }
3603
3604 if (base->plat_data->use_esram_lcla) {
3605
3606 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3607 if (IS_ERR(base->lcpa_regulator)) {
3608 d40_err(dev, "Failed to get lcpa_regulator\n");
3609 ret = PTR_ERR(base->lcpa_regulator);
3610 base->lcpa_regulator = NULL;
3611 goto destroy_cache;
3612 }
3613
3614 ret = regulator_enable(base->lcpa_regulator);
3615 if (ret) {
3616 d40_err(dev,
3617 "Failed to enable lcpa_regulator\n");
3618 regulator_put(base->lcpa_regulator);
3619 base->lcpa_regulator = NULL;
3620 goto destroy_cache;
3621 }
3622 }
3623
3624 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3625
3626 pm_runtime_irq_safe(base->dev);
3627 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3628 pm_runtime_use_autosuspend(base->dev);
3629 pm_runtime_mark_last_busy(base->dev);
3630 pm_runtime_set_active(base->dev);
3631 pm_runtime_enable(base->dev);
3632
3633 ret = d40_dmaengine_init(base, num_reserved_chans);
3634 if (ret)
3635 goto destroy_cache;
3636
3637 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3638 if (ret) {
3639 d40_err(dev, "Failed to set dma max seg size\n");
3640 goto destroy_cache;
3641 }
3642
3643 d40_hw_init(base);
3644
3645 ret = of_dma_controller_register(np, d40_xlate, NULL);
3646 if (ret) {
3647 dev_err(dev,
3648 "could not register of_dma_controller\n");
3649 goto destroy_cache;
3650 }
3651
3652 dev_info(base->dev, "initialized\n");
3653 return 0;
3654
3655 destroy_cache:
3656 if (base->lcla_pool.dma_addr)
3657 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3658 SZ_1K * base->num_phy_chans,
3659 DMA_TO_DEVICE);
3660
3661 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3662 free_pages((unsigned long)base->lcla_pool.base,
3663 base->lcla_pool.pages);
3664
3665 kfree(base->lcla_pool.base_unaligned);
3666
3667 if (base->lcpa_regulator) {
3668 regulator_disable(base->lcpa_regulator);
3669 regulator_put(base->lcpa_regulator);
3670 }
3671 pm_runtime_disable(base->dev);
3672
3673 report_failure:
3674 d40_err(dev, "probe failed\n");
3675 return ret;
3676 }
3677
3678 static const struct of_device_id d40_match[] = {
3679 { .compatible = "stericsson,dma40", },
3680 {}
3681 };
3682
3683 static struct platform_driver d40_driver = {
3684 .driver = {
3685 .name = D40_NAME,
3686 .pm = &dma40_pm_ops,
3687 .of_match_table = d40_match,
3688 },
3689 };
3690
stedma40_init(void)3691 static int __init stedma40_init(void)
3692 {
3693 return platform_driver_probe(&d40_driver, d40_probe);
3694 }
3695 subsys_initcall(stedma40_init);
3696