xref: /openbmc/linux/drivers/dma/sprd-dma.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 /*
2  * Copyright (C) 2017 Spreadtrum Communications Inc.
3  *
4  * SPDX-License-Identifier: GPL-2.0
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/dma/sprd-dma.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_dma.h>
18 #include <linux/of_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 
22 #include "virt-dma.h"
23 
24 #define SPRD_DMA_CHN_REG_OFFSET		0x1000
25 #define SPRD_DMA_CHN_REG_LENGTH		0x40
26 #define SPRD_DMA_MEMCPY_MIN_SIZE	64
27 
28 /* DMA global registers definition */
29 #define SPRD_DMA_GLB_PAUSE		0x0
30 #define SPRD_DMA_GLB_FRAG_WAIT		0x4
31 #define SPRD_DMA_GLB_REQ_PEND0_EN	0x8
32 #define SPRD_DMA_GLB_REQ_PEND1_EN	0xc
33 #define SPRD_DMA_GLB_INT_RAW_STS	0x10
34 #define SPRD_DMA_GLB_INT_MSK_STS	0x14
35 #define SPRD_DMA_GLB_REQ_STS		0x18
36 #define SPRD_DMA_GLB_CHN_EN_STS		0x1c
37 #define SPRD_DMA_GLB_DEBUG_STS		0x20
38 #define SPRD_DMA_GLB_ARB_SEL_STS	0x24
39 #define SPRD_DMA_GLB_2STAGE_GRP1	0x28
40 #define SPRD_DMA_GLB_2STAGE_GRP2	0x2c
41 #define SPRD_DMA_GLB_REQ_UID(uid)	(0x4 * ((uid) - 1))
42 #define SPRD_DMA_GLB_REQ_UID_OFFSET	0x2000
43 
44 /* DMA channel registers definition */
45 #define SPRD_DMA_CHN_PAUSE		0x0
46 #define SPRD_DMA_CHN_REQ		0x4
47 #define SPRD_DMA_CHN_CFG		0x8
48 #define SPRD_DMA_CHN_INTC		0xc
49 #define SPRD_DMA_CHN_SRC_ADDR		0x10
50 #define SPRD_DMA_CHN_DES_ADDR		0x14
51 #define SPRD_DMA_CHN_FRG_LEN		0x18
52 #define SPRD_DMA_CHN_BLK_LEN		0x1c
53 #define SPRD_DMA_CHN_TRSC_LEN		0x20
54 #define SPRD_DMA_CHN_TRSF_STEP		0x24
55 #define SPRD_DMA_CHN_WARP_PTR		0x28
56 #define SPRD_DMA_CHN_WARP_TO		0x2c
57 #define SPRD_DMA_CHN_LLIST_PTR		0x30
58 #define SPRD_DMA_CHN_FRAG_STEP		0x34
59 #define SPRD_DMA_CHN_SRC_BLK_STEP	0x38
60 #define SPRD_DMA_CHN_DES_BLK_STEP	0x3c
61 
62 /* SPRD_DMA_GLB_2STAGE_GRP register definition */
63 #define SPRD_DMA_GLB_2STAGE_EN		BIT(24)
64 #define SPRD_DMA_GLB_CHN_INT_MASK	GENMASK(23, 20)
65 #define SPRD_DMA_GLB_DEST_INT		BIT(22)
66 #define SPRD_DMA_GLB_SRC_INT		BIT(20)
67 #define SPRD_DMA_GLB_LIST_DONE_TRG	BIT(19)
68 #define SPRD_DMA_GLB_TRANS_DONE_TRG	BIT(18)
69 #define SPRD_DMA_GLB_BLOCK_DONE_TRG	BIT(17)
70 #define SPRD_DMA_GLB_FRAG_DONE_TRG	BIT(16)
71 #define SPRD_DMA_GLB_TRG_OFFSET		16
72 #define SPRD_DMA_GLB_DEST_CHN_MASK	GENMASK(13, 8)
73 #define SPRD_DMA_GLB_DEST_CHN_OFFSET	8
74 #define SPRD_DMA_GLB_SRC_CHN_MASK	GENMASK(5, 0)
75 
76 /* SPRD_DMA_CHN_INTC register definition */
77 #define SPRD_DMA_INT_MASK		GENMASK(4, 0)
78 #define SPRD_DMA_INT_CLR_OFFSET		24
79 #define SPRD_DMA_FRAG_INT_EN		BIT(0)
80 #define SPRD_DMA_BLK_INT_EN		BIT(1)
81 #define SPRD_DMA_TRANS_INT_EN		BIT(2)
82 #define SPRD_DMA_LIST_INT_EN		BIT(3)
83 #define SPRD_DMA_CFG_ERR_INT_EN		BIT(4)
84 
85 /* SPRD_DMA_CHN_CFG register definition */
86 #define SPRD_DMA_CHN_EN			BIT(0)
87 #define SPRD_DMA_LINKLIST_EN		BIT(4)
88 #define SPRD_DMA_WAIT_BDONE_OFFSET	24
89 #define SPRD_DMA_DONOT_WAIT_BDONE	1
90 
91 /* SPRD_DMA_CHN_REQ register definition */
92 #define SPRD_DMA_REQ_EN			BIT(0)
93 
94 /* SPRD_DMA_CHN_PAUSE register definition */
95 #define SPRD_DMA_PAUSE_EN		BIT(0)
96 #define SPRD_DMA_PAUSE_STS		BIT(2)
97 #define SPRD_DMA_PAUSE_CNT		0x2000
98 
99 /* DMA_CHN_WARP_* register definition */
100 #define SPRD_DMA_HIGH_ADDR_MASK		GENMASK(31, 28)
101 #define SPRD_DMA_LOW_ADDR_MASK		GENMASK(31, 0)
102 #define SPRD_DMA_HIGH_ADDR_OFFSET	4
103 
104 /* SPRD_DMA_CHN_INTC register definition */
105 #define SPRD_DMA_FRAG_INT_STS		BIT(16)
106 #define SPRD_DMA_BLK_INT_STS		BIT(17)
107 #define SPRD_DMA_TRSC_INT_STS		BIT(18)
108 #define SPRD_DMA_LIST_INT_STS		BIT(19)
109 #define SPRD_DMA_CFGERR_INT_STS		BIT(20)
110 #define SPRD_DMA_CHN_INT_STS					\
111 	(SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS |		\
112 	 SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS |	\
113 	 SPRD_DMA_CFGERR_INT_STS)
114 
115 /* SPRD_DMA_CHN_FRG_LEN register definition */
116 #define SPRD_DMA_SRC_DATAWIDTH_OFFSET	30
117 #define SPRD_DMA_DES_DATAWIDTH_OFFSET	28
118 #define SPRD_DMA_SWT_MODE_OFFSET	26
119 #define SPRD_DMA_REQ_MODE_OFFSET	24
120 #define SPRD_DMA_REQ_MODE_MASK		GENMASK(1, 0)
121 #define SPRD_DMA_FIX_SEL_OFFSET		21
122 #define SPRD_DMA_FIX_EN_OFFSET		20
123 #define SPRD_DMA_LLIST_END		BIT(19)
124 #define SPRD_DMA_FRG_LEN_MASK		GENMASK(16, 0)
125 
126 /* SPRD_DMA_CHN_BLK_LEN register definition */
127 #define SPRD_DMA_BLK_LEN_MASK		GENMASK(16, 0)
128 
129 /* SPRD_DMA_CHN_TRSC_LEN register definition */
130 #define SPRD_DMA_TRSC_LEN_MASK		GENMASK(27, 0)
131 
132 /* SPRD_DMA_CHN_TRSF_STEP register definition */
133 #define SPRD_DMA_DEST_TRSF_STEP_OFFSET	16
134 #define SPRD_DMA_SRC_TRSF_STEP_OFFSET	0
135 #define SPRD_DMA_TRSF_STEP_MASK		GENMASK(15, 0)
136 
137 /* SPRD DMA_SRC_BLK_STEP register definition */
138 #define SPRD_DMA_LLIST_HIGH_MASK	GENMASK(31, 28)
139 #define SPRD_DMA_LLIST_HIGH_SHIFT	28
140 
141 /* define DMA channel mode & trigger mode mask */
142 #define SPRD_DMA_CHN_MODE_MASK		GENMASK(7, 0)
143 #define SPRD_DMA_TRG_MODE_MASK		GENMASK(7, 0)
144 #define SPRD_DMA_INT_TYPE_MASK		GENMASK(7, 0)
145 
146 /* define the DMA transfer step type */
147 #define SPRD_DMA_NONE_STEP		0
148 #define SPRD_DMA_BYTE_STEP		1
149 #define SPRD_DMA_SHORT_STEP		2
150 #define SPRD_DMA_WORD_STEP		4
151 #define SPRD_DMA_DWORD_STEP		8
152 
153 #define SPRD_DMA_SOFTWARE_UID		0
154 
155 /* dma data width values */
156 enum sprd_dma_datawidth {
157 	SPRD_DMA_DATAWIDTH_1_BYTE,
158 	SPRD_DMA_DATAWIDTH_2_BYTES,
159 	SPRD_DMA_DATAWIDTH_4_BYTES,
160 	SPRD_DMA_DATAWIDTH_8_BYTES,
161 };
162 
163 /* dma channel hardware configuration */
164 struct sprd_dma_chn_hw {
165 	u32 pause;
166 	u32 req;
167 	u32 cfg;
168 	u32 intc;
169 	u32 src_addr;
170 	u32 des_addr;
171 	u32 frg_len;
172 	u32 blk_len;
173 	u32 trsc_len;
174 	u32 trsf_step;
175 	u32 wrap_ptr;
176 	u32 wrap_to;
177 	u32 llist_ptr;
178 	u32 frg_step;
179 	u32 src_blk_step;
180 	u32 des_blk_step;
181 };
182 
183 /* dma request description */
184 struct sprd_dma_desc {
185 	struct virt_dma_desc	vd;
186 	struct sprd_dma_chn_hw	chn_hw;
187 	enum dma_transfer_direction dir;
188 };
189 
190 /* dma channel description */
191 struct sprd_dma_chn {
192 	struct virt_dma_chan	vc;
193 	void __iomem		*chn_base;
194 	struct sprd_dma_linklist	linklist;
195 	struct dma_slave_config	slave_cfg;
196 	u32			chn_num;
197 	u32			dev_id;
198 	enum sprd_dma_chn_mode	chn_mode;
199 	enum sprd_dma_trg_mode	trg_mode;
200 	enum sprd_dma_int_type	int_type;
201 	struct sprd_dma_desc	*cur_desc;
202 };
203 
204 /* SPRD dma device */
205 struct sprd_dma_dev {
206 	struct dma_device	dma_dev;
207 	void __iomem		*glb_base;
208 	struct clk		*clk;
209 	struct clk		*ashb_clk;
210 	int			irq;
211 	u32			total_chns;
212 	struct sprd_dma_chn	channels[0];
213 };
214 
215 static void sprd_dma_free_desc(struct virt_dma_desc *vd);
216 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
217 static struct of_dma_filter_info sprd_dma_info = {
218 	.filter_fn = sprd_dma_filter_fn,
219 };
220 
221 static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
222 {
223 	return container_of(c, struct sprd_dma_chn, vc.chan);
224 }
225 
226 static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
227 {
228 	struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
229 
230 	return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
231 }
232 
233 static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
234 {
235 	return container_of(vd, struct sprd_dma_desc, vd);
236 }
237 
238 static void sprd_dma_glb_update(struct sprd_dma_dev *sdev, u32 reg,
239 				u32 mask, u32 val)
240 {
241 	u32 orig = readl(sdev->glb_base + reg);
242 	u32 tmp;
243 
244 	tmp = (orig & ~mask) | val;
245 	writel(tmp, sdev->glb_base + reg);
246 }
247 
248 static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
249 				u32 mask, u32 val)
250 {
251 	u32 orig = readl(schan->chn_base + reg);
252 	u32 tmp;
253 
254 	tmp = (orig & ~mask) | val;
255 	writel(tmp, schan->chn_base + reg);
256 }
257 
258 static int sprd_dma_enable(struct sprd_dma_dev *sdev)
259 {
260 	int ret;
261 
262 	ret = clk_prepare_enable(sdev->clk);
263 	if (ret)
264 		return ret;
265 
266 	/*
267 	 * The ashb_clk is optional and only for AGCP DMA controller, so we
268 	 * need add one condition to check if the ashb_clk need enable.
269 	 */
270 	if (!IS_ERR(sdev->ashb_clk))
271 		ret = clk_prepare_enable(sdev->ashb_clk);
272 
273 	return ret;
274 }
275 
276 static void sprd_dma_disable(struct sprd_dma_dev *sdev)
277 {
278 	clk_disable_unprepare(sdev->clk);
279 
280 	/*
281 	 * Need to check if we need disable the optional ashb_clk for AGCP DMA.
282 	 */
283 	if (!IS_ERR(sdev->ashb_clk))
284 		clk_disable_unprepare(sdev->ashb_clk);
285 }
286 
287 static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
288 {
289 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
290 	u32 dev_id = schan->dev_id;
291 
292 	if (dev_id != SPRD_DMA_SOFTWARE_UID) {
293 		u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
294 				 SPRD_DMA_GLB_REQ_UID(dev_id);
295 
296 		writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
297 	}
298 }
299 
300 static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
301 {
302 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
303 	u32 dev_id = schan->dev_id;
304 
305 	if (dev_id != SPRD_DMA_SOFTWARE_UID) {
306 		u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
307 				 SPRD_DMA_GLB_REQ_UID(dev_id);
308 
309 		writel(0, sdev->glb_base + uid_offset);
310 	}
311 }
312 
313 static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
314 {
315 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
316 			    SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
317 			    SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
318 }
319 
320 static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
321 {
322 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
323 			    SPRD_DMA_CHN_EN);
324 }
325 
326 static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
327 {
328 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
329 }
330 
331 static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
332 {
333 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
334 			    SPRD_DMA_REQ_EN);
335 }
336 
337 static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
338 {
339 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
340 	u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
341 
342 	if (enable) {
343 		sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
344 				    SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
345 
346 		do {
347 			pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
348 			if (pause & SPRD_DMA_PAUSE_STS)
349 				break;
350 
351 			cpu_relax();
352 		} while (--timeout > 0);
353 
354 		if (!timeout)
355 			dev_warn(sdev->dma_dev.dev,
356 				 "pause dma controller timeout\n");
357 	} else {
358 		sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
359 				    SPRD_DMA_PAUSE_EN, 0);
360 	}
361 }
362 
363 static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
364 {
365 	u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
366 
367 	if (!(cfg & SPRD_DMA_CHN_EN))
368 		return;
369 
370 	sprd_dma_pause_resume(schan, true);
371 	sprd_dma_disable_chn(schan);
372 }
373 
374 static unsigned long sprd_dma_get_src_addr(struct sprd_dma_chn *schan)
375 {
376 	unsigned long addr, addr_high;
377 
378 	addr = readl(schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
379 	addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_PTR) &
380 		    SPRD_DMA_HIGH_ADDR_MASK;
381 
382 	return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
383 }
384 
385 static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
386 {
387 	unsigned long addr, addr_high;
388 
389 	addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
390 	addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
391 		    SPRD_DMA_HIGH_ADDR_MASK;
392 
393 	return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
394 }
395 
396 static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
397 {
398 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
399 	u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
400 		       SPRD_DMA_CHN_INT_STS;
401 
402 	switch (intc_sts) {
403 	case SPRD_DMA_CFGERR_INT_STS:
404 		return SPRD_DMA_CFGERR_INT;
405 
406 	case SPRD_DMA_LIST_INT_STS:
407 		return SPRD_DMA_LIST_INT;
408 
409 	case SPRD_DMA_TRSC_INT_STS:
410 		return SPRD_DMA_TRANS_INT;
411 
412 	case SPRD_DMA_BLK_INT_STS:
413 		return SPRD_DMA_BLK_INT;
414 
415 	case SPRD_DMA_FRAG_INT_STS:
416 		return SPRD_DMA_FRAG_INT;
417 
418 	default:
419 		dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
420 		return SPRD_DMA_NO_INT;
421 	}
422 }
423 
424 static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
425 {
426 	u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
427 
428 	return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
429 }
430 
431 static int sprd_dma_set_2stage_config(struct sprd_dma_chn *schan)
432 {
433 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
434 	u32 val, chn = schan->chn_num + 1;
435 
436 	switch (schan->chn_mode) {
437 	case SPRD_DMA_SRC_CHN0:
438 		val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
439 		val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
440 		val |= SPRD_DMA_GLB_2STAGE_EN;
441 		if (schan->int_type != SPRD_DMA_NO_INT)
442 			val |= SPRD_DMA_GLB_SRC_INT;
443 
444 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
445 		break;
446 
447 	case SPRD_DMA_SRC_CHN1:
448 		val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
449 		val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
450 		val |= SPRD_DMA_GLB_2STAGE_EN;
451 		if (schan->int_type != SPRD_DMA_NO_INT)
452 			val |= SPRD_DMA_GLB_SRC_INT;
453 
454 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
455 		break;
456 
457 	case SPRD_DMA_DST_CHN0:
458 		val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
459 			SPRD_DMA_GLB_DEST_CHN_MASK;
460 		val |= SPRD_DMA_GLB_2STAGE_EN;
461 		if (schan->int_type != SPRD_DMA_NO_INT)
462 			val |= SPRD_DMA_GLB_DEST_INT;
463 
464 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
465 		break;
466 
467 	case SPRD_DMA_DST_CHN1:
468 		val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
469 			SPRD_DMA_GLB_DEST_CHN_MASK;
470 		val |= SPRD_DMA_GLB_2STAGE_EN;
471 		if (schan->int_type != SPRD_DMA_NO_INT)
472 			val |= SPRD_DMA_GLB_DEST_INT;
473 
474 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
475 		break;
476 
477 	default:
478 		dev_err(sdev->dma_dev.dev, "invalid channel mode setting %d\n",
479 			schan->chn_mode);
480 		return -EINVAL;
481 	}
482 
483 	return 0;
484 }
485 
486 static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
487 				    struct sprd_dma_desc *sdesc)
488 {
489 	struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
490 
491 	writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
492 	writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
493 	writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
494 	writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
495 	writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
496 	writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
497 	writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
498 	writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
499 	writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
500 	writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
501 	writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
502 	writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
503 	writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
504 	writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
505 	writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
506 	writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
507 }
508 
509 static void sprd_dma_start(struct sprd_dma_chn *schan)
510 {
511 	struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
512 
513 	if (!vd)
514 		return;
515 
516 	list_del(&vd->node);
517 	schan->cur_desc = to_sprd_dma_desc(vd);
518 
519 	/*
520 	 * Set 2-stage configuration if the channel starts one 2-stage
521 	 * transfer.
522 	 */
523 	if (schan->chn_mode && sprd_dma_set_2stage_config(schan))
524 		return;
525 
526 	/*
527 	 * Copy the DMA configuration from DMA descriptor to this hardware
528 	 * channel.
529 	 */
530 	sprd_dma_set_chn_config(schan, schan->cur_desc);
531 	sprd_dma_set_uid(schan);
532 	sprd_dma_enable_chn(schan);
533 
534 	if (schan->dev_id == SPRD_DMA_SOFTWARE_UID &&
535 	    schan->chn_mode != SPRD_DMA_DST_CHN0 &&
536 	    schan->chn_mode != SPRD_DMA_DST_CHN1)
537 		sprd_dma_soft_request(schan);
538 }
539 
540 static void sprd_dma_stop(struct sprd_dma_chn *schan)
541 {
542 	sprd_dma_stop_and_disable(schan);
543 	sprd_dma_unset_uid(schan);
544 	sprd_dma_clear_int(schan);
545 	schan->cur_desc = NULL;
546 }
547 
548 static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
549 				      enum sprd_dma_int_type int_type,
550 				      enum sprd_dma_req_mode req_mode)
551 {
552 	if (int_type == SPRD_DMA_NO_INT)
553 		return false;
554 
555 	if (int_type >= req_mode + 1)
556 		return true;
557 	else
558 		return false;
559 }
560 
561 static irqreturn_t dma_irq_handle(int irq, void *dev_id)
562 {
563 	struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
564 	u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
565 	struct sprd_dma_chn *schan;
566 	struct sprd_dma_desc *sdesc;
567 	enum sprd_dma_req_mode req_type;
568 	enum sprd_dma_int_type int_type;
569 	bool trans_done = false, cyclic = false;
570 	u32 i;
571 
572 	while (irq_status) {
573 		i = __ffs(irq_status);
574 		irq_status &= (irq_status - 1);
575 		schan = &sdev->channels[i];
576 
577 		spin_lock(&schan->vc.lock);
578 
579 		sdesc = schan->cur_desc;
580 		if (!sdesc) {
581 			spin_unlock(&schan->vc.lock);
582 			return IRQ_HANDLED;
583 		}
584 
585 		int_type = sprd_dma_get_int_type(schan);
586 		req_type = sprd_dma_get_req_type(schan);
587 		sprd_dma_clear_int(schan);
588 
589 		/* cyclic mode schedule callback */
590 		cyclic = schan->linklist.phy_addr ? true : false;
591 		if (cyclic == true) {
592 			vchan_cyclic_callback(&sdesc->vd);
593 		} else {
594 			/* Check if the dma request descriptor is done. */
595 			trans_done = sprd_dma_check_trans_done(sdesc, int_type,
596 							       req_type);
597 			if (trans_done == true) {
598 				vchan_cookie_complete(&sdesc->vd);
599 				schan->cur_desc = NULL;
600 				sprd_dma_start(schan);
601 			}
602 		}
603 		spin_unlock(&schan->vc.lock);
604 	}
605 
606 	return IRQ_HANDLED;
607 }
608 
609 static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
610 {
611 	return pm_runtime_get_sync(chan->device->dev);
612 }
613 
614 static void sprd_dma_free_chan_resources(struct dma_chan *chan)
615 {
616 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
617 	struct virt_dma_desc *cur_vd = NULL;
618 	unsigned long flags;
619 
620 	spin_lock_irqsave(&schan->vc.lock, flags);
621 	if (schan->cur_desc)
622 		cur_vd = &schan->cur_desc->vd;
623 
624 	sprd_dma_stop(schan);
625 	spin_unlock_irqrestore(&schan->vc.lock, flags);
626 
627 	if (cur_vd)
628 		sprd_dma_free_desc(cur_vd);
629 
630 	vchan_free_chan_resources(&schan->vc);
631 	pm_runtime_put(chan->device->dev);
632 }
633 
634 static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
635 					  dma_cookie_t cookie,
636 					  struct dma_tx_state *txstate)
637 {
638 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
639 	struct virt_dma_desc *vd;
640 	unsigned long flags;
641 	enum dma_status ret;
642 	u32 pos;
643 
644 	ret = dma_cookie_status(chan, cookie, txstate);
645 	if (ret == DMA_COMPLETE || !txstate)
646 		return ret;
647 
648 	spin_lock_irqsave(&schan->vc.lock, flags);
649 	vd = vchan_find_desc(&schan->vc, cookie);
650 	if (vd) {
651 		struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
652 		struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
653 
654 		if (hw->trsc_len > 0)
655 			pos = hw->trsc_len;
656 		else if (hw->blk_len > 0)
657 			pos = hw->blk_len;
658 		else if (hw->frg_len > 0)
659 			pos = hw->frg_len;
660 		else
661 			pos = 0;
662 	} else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
663 		struct sprd_dma_desc *sdesc = schan->cur_desc;
664 
665 		if (sdesc->dir == DMA_DEV_TO_MEM)
666 			pos = sprd_dma_get_dst_addr(schan);
667 		else
668 			pos = sprd_dma_get_src_addr(schan);
669 	} else {
670 		pos = 0;
671 	}
672 	spin_unlock_irqrestore(&schan->vc.lock, flags);
673 
674 	dma_set_residue(txstate, pos);
675 	return ret;
676 }
677 
678 static void sprd_dma_issue_pending(struct dma_chan *chan)
679 {
680 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
681 	unsigned long flags;
682 
683 	spin_lock_irqsave(&schan->vc.lock, flags);
684 	if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
685 		sprd_dma_start(schan);
686 	spin_unlock_irqrestore(&schan->vc.lock, flags);
687 }
688 
689 static int sprd_dma_get_datawidth(enum dma_slave_buswidth buswidth)
690 {
691 	switch (buswidth) {
692 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
693 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
694 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
695 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
696 		return ffs(buswidth) - 1;
697 
698 	default:
699 		return -EINVAL;
700 	}
701 }
702 
703 static int sprd_dma_get_step(enum dma_slave_buswidth buswidth)
704 {
705 	switch (buswidth) {
706 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
707 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
708 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
709 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
710 		return buswidth;
711 
712 	default:
713 		return -EINVAL;
714 	}
715 }
716 
717 static int sprd_dma_fill_desc(struct dma_chan *chan,
718 			      struct sprd_dma_chn_hw *hw,
719 			      unsigned int sglen, int sg_index,
720 			      dma_addr_t src, dma_addr_t dst, u32 len,
721 			      enum dma_transfer_direction dir,
722 			      unsigned long flags,
723 			      struct dma_slave_config *slave_cfg)
724 {
725 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
726 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
727 	enum sprd_dma_chn_mode chn_mode = schan->chn_mode;
728 	u32 req_mode = (flags >> SPRD_DMA_REQ_SHIFT) & SPRD_DMA_REQ_MODE_MASK;
729 	u32 int_mode = flags & SPRD_DMA_INT_MASK;
730 	int src_datawidth, dst_datawidth, src_step, dst_step;
731 	u32 temp, fix_mode = 0, fix_en = 0;
732 	phys_addr_t llist_ptr;
733 
734 	if (dir == DMA_MEM_TO_DEV) {
735 		src_step = sprd_dma_get_step(slave_cfg->src_addr_width);
736 		if (src_step < 0) {
737 			dev_err(sdev->dma_dev.dev, "invalid source step\n");
738 			return src_step;
739 		}
740 
741 		/*
742 		 * For 2-stage transfer, destination channel step can not be 0,
743 		 * since destination device is AON IRAM.
744 		 */
745 		if (chn_mode == SPRD_DMA_DST_CHN0 ||
746 		    chn_mode == SPRD_DMA_DST_CHN1)
747 			dst_step = src_step;
748 		else
749 			dst_step = SPRD_DMA_NONE_STEP;
750 	} else {
751 		dst_step = sprd_dma_get_step(slave_cfg->dst_addr_width);
752 		if (dst_step < 0) {
753 			dev_err(sdev->dma_dev.dev, "invalid destination step\n");
754 			return dst_step;
755 		}
756 		src_step = SPRD_DMA_NONE_STEP;
757 	}
758 
759 	src_datawidth = sprd_dma_get_datawidth(slave_cfg->src_addr_width);
760 	if (src_datawidth < 0) {
761 		dev_err(sdev->dma_dev.dev, "invalid source datawidth\n");
762 		return src_datawidth;
763 	}
764 
765 	dst_datawidth = sprd_dma_get_datawidth(slave_cfg->dst_addr_width);
766 	if (dst_datawidth < 0) {
767 		dev_err(sdev->dma_dev.dev, "invalid destination datawidth\n");
768 		return dst_datawidth;
769 	}
770 
771 	if (slave_cfg->slave_id)
772 		schan->dev_id = slave_cfg->slave_id;
773 
774 	hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
775 
776 	/*
777 	 * wrap_ptr and wrap_to will save the high 4 bits source address and
778 	 * destination address.
779 	 */
780 	hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
781 	hw->wrap_to = (dst >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
782 	hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
783 	hw->des_addr = dst & SPRD_DMA_LOW_ADDR_MASK;
784 
785 	/*
786 	 * If the src step and dst step both are 0 or both are not 0, that means
787 	 * we can not enable the fix mode. If one is 0 and another one is not,
788 	 * we can enable the fix mode.
789 	 */
790 	if ((src_step != 0 && dst_step != 0) || (src_step | dst_step) == 0) {
791 		fix_en = 0;
792 	} else {
793 		fix_en = 1;
794 		if (src_step)
795 			fix_mode = 1;
796 		else
797 			fix_mode = 0;
798 	}
799 
800 	hw->intc = int_mode | SPRD_DMA_CFG_ERR_INT_EN;
801 
802 	temp = src_datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
803 	temp |= dst_datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
804 	temp |= req_mode << SPRD_DMA_REQ_MODE_OFFSET;
805 	temp |= fix_mode << SPRD_DMA_FIX_SEL_OFFSET;
806 	temp |= fix_en << SPRD_DMA_FIX_EN_OFFSET;
807 	temp |= slave_cfg->src_maxburst & SPRD_DMA_FRG_LEN_MASK;
808 	hw->frg_len = temp;
809 
810 	hw->blk_len = slave_cfg->src_maxburst & SPRD_DMA_BLK_LEN_MASK;
811 	hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
812 
813 	temp = (dst_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
814 	temp |= (src_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
815 	hw->trsf_step = temp;
816 
817 	/* link-list configuration */
818 	if (schan->linklist.phy_addr) {
819 		hw->cfg |= SPRD_DMA_LINKLIST_EN;
820 
821 		/* link-list index */
822 		temp = sglen ? (sg_index + 1) % sglen : 0;
823 
824 		/* Next link-list configuration's physical address offset */
825 		temp = temp * sizeof(*hw) + SPRD_DMA_CHN_SRC_ADDR;
826 		/*
827 		 * Set the link-list pointer point to next link-list
828 		 * configuration's physical address.
829 		 */
830 		llist_ptr = schan->linklist.phy_addr + temp;
831 		hw->llist_ptr = lower_32_bits(llist_ptr);
832 		hw->src_blk_step = (upper_32_bits(llist_ptr) << SPRD_DMA_LLIST_HIGH_SHIFT) &
833 			SPRD_DMA_LLIST_HIGH_MASK;
834 	} else {
835 		hw->llist_ptr = 0;
836 		hw->src_blk_step = 0;
837 	}
838 
839 	hw->frg_step = 0;
840 	hw->des_blk_step = 0;
841 	return 0;
842 }
843 
844 static int sprd_dma_fill_linklist_desc(struct dma_chan *chan,
845 				       unsigned int sglen, int sg_index,
846 				       dma_addr_t src, dma_addr_t dst, u32 len,
847 				       enum dma_transfer_direction dir,
848 				       unsigned long flags,
849 				       struct dma_slave_config *slave_cfg)
850 {
851 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
852 	struct sprd_dma_chn_hw *hw;
853 
854 	if (!schan->linklist.virt_addr)
855 		return -EINVAL;
856 
857 	hw = (struct sprd_dma_chn_hw *)(schan->linklist.virt_addr +
858 					sg_index * sizeof(*hw));
859 
860 	return sprd_dma_fill_desc(chan, hw, sglen, sg_index, src, dst, len,
861 				  dir, flags, slave_cfg);
862 }
863 
864 static struct dma_async_tx_descriptor *
865 sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
866 			 size_t len, unsigned long flags)
867 {
868 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
869 	struct sprd_dma_desc *sdesc;
870 	struct sprd_dma_chn_hw *hw;
871 	enum sprd_dma_datawidth datawidth;
872 	u32 step, temp;
873 
874 	sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
875 	if (!sdesc)
876 		return NULL;
877 
878 	hw = &sdesc->chn_hw;
879 
880 	hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
881 	hw->intc = SPRD_DMA_TRANS_INT | SPRD_DMA_CFG_ERR_INT_EN;
882 	hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
883 	hw->des_addr = dest & SPRD_DMA_LOW_ADDR_MASK;
884 	hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
885 		SPRD_DMA_HIGH_ADDR_MASK;
886 	hw->wrap_to = (dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
887 		SPRD_DMA_HIGH_ADDR_MASK;
888 
889 	if (IS_ALIGNED(len, 8)) {
890 		datawidth = SPRD_DMA_DATAWIDTH_8_BYTES;
891 		step = SPRD_DMA_DWORD_STEP;
892 	} else if (IS_ALIGNED(len, 4)) {
893 		datawidth = SPRD_DMA_DATAWIDTH_4_BYTES;
894 		step = SPRD_DMA_WORD_STEP;
895 	} else if (IS_ALIGNED(len, 2)) {
896 		datawidth = SPRD_DMA_DATAWIDTH_2_BYTES;
897 		step = SPRD_DMA_SHORT_STEP;
898 	} else {
899 		datawidth = SPRD_DMA_DATAWIDTH_1_BYTE;
900 		step = SPRD_DMA_BYTE_STEP;
901 	}
902 
903 	temp = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
904 	temp |= datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
905 	temp |= SPRD_DMA_TRANS_REQ << SPRD_DMA_REQ_MODE_OFFSET;
906 	temp |= len & SPRD_DMA_FRG_LEN_MASK;
907 	hw->frg_len = temp;
908 
909 	hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
910 	hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
911 
912 	temp = (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
913 	temp |= (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
914 	hw->trsf_step = temp;
915 
916 	return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
917 }
918 
919 static struct dma_async_tx_descriptor *
920 sprd_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
921 		       unsigned int sglen, enum dma_transfer_direction dir,
922 		       unsigned long flags, void *context)
923 {
924 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
925 	struct dma_slave_config *slave_cfg = &schan->slave_cfg;
926 	dma_addr_t src = 0, dst = 0;
927 	dma_addr_t start_src = 0, start_dst = 0;
928 	struct sprd_dma_desc *sdesc;
929 	struct scatterlist *sg;
930 	u32 len = 0;
931 	int ret, i;
932 
933 	if (!is_slave_direction(dir))
934 		return NULL;
935 
936 	if (context) {
937 		struct sprd_dma_linklist *ll_cfg =
938 			(struct sprd_dma_linklist *)context;
939 
940 		schan->linklist.phy_addr = ll_cfg->phy_addr;
941 		schan->linklist.virt_addr = ll_cfg->virt_addr;
942 	} else {
943 		schan->linklist.phy_addr = 0;
944 		schan->linklist.virt_addr = 0;
945 	}
946 
947 	/*
948 	 * Set channel mode, interrupt mode and trigger mode for 2-stage
949 	 * transfer.
950 	 */
951 	schan->chn_mode =
952 		(flags >> SPRD_DMA_CHN_MODE_SHIFT) & SPRD_DMA_CHN_MODE_MASK;
953 	schan->trg_mode =
954 		(flags >> SPRD_DMA_TRG_MODE_SHIFT) & SPRD_DMA_TRG_MODE_MASK;
955 	schan->int_type = flags & SPRD_DMA_INT_TYPE_MASK;
956 
957 	sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
958 	if (!sdesc)
959 		return NULL;
960 
961 	sdesc->dir = dir;
962 
963 	for_each_sg(sgl, sg, sglen, i) {
964 		len = sg_dma_len(sg);
965 
966 		if (dir == DMA_MEM_TO_DEV) {
967 			src = sg_dma_address(sg);
968 			dst = slave_cfg->dst_addr;
969 		} else {
970 			src = slave_cfg->src_addr;
971 			dst = sg_dma_address(sg);
972 		}
973 
974 		if (!i) {
975 			start_src = src;
976 			start_dst = dst;
977 		}
978 
979 		/*
980 		 * The link-list mode needs at least 2 link-list
981 		 * configurations. If there is only one sg, it doesn't
982 		 * need to fill the link-list configuration.
983 		 */
984 		if (sglen < 2)
985 			break;
986 
987 		ret = sprd_dma_fill_linklist_desc(chan, sglen, i, src, dst, len,
988 						  dir, flags, slave_cfg);
989 		if (ret) {
990 			kfree(sdesc);
991 			return NULL;
992 		}
993 	}
994 
995 	ret = sprd_dma_fill_desc(chan, &sdesc->chn_hw, 0, 0, start_src,
996 				 start_dst, len, dir, flags, slave_cfg);
997 	if (ret) {
998 		kfree(sdesc);
999 		return NULL;
1000 	}
1001 
1002 	return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
1003 }
1004 
1005 static int sprd_dma_slave_config(struct dma_chan *chan,
1006 				 struct dma_slave_config *config)
1007 {
1008 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1009 	struct dma_slave_config *slave_cfg = &schan->slave_cfg;
1010 
1011 	memcpy(slave_cfg, config, sizeof(*config));
1012 	return 0;
1013 }
1014 
1015 static int sprd_dma_pause(struct dma_chan *chan)
1016 {
1017 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1018 	unsigned long flags;
1019 
1020 	spin_lock_irqsave(&schan->vc.lock, flags);
1021 	sprd_dma_pause_resume(schan, true);
1022 	spin_unlock_irqrestore(&schan->vc.lock, flags);
1023 
1024 	return 0;
1025 }
1026 
1027 static int sprd_dma_resume(struct dma_chan *chan)
1028 {
1029 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1030 	unsigned long flags;
1031 
1032 	spin_lock_irqsave(&schan->vc.lock, flags);
1033 	sprd_dma_pause_resume(schan, false);
1034 	spin_unlock_irqrestore(&schan->vc.lock, flags);
1035 
1036 	return 0;
1037 }
1038 
1039 static int sprd_dma_terminate_all(struct dma_chan *chan)
1040 {
1041 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1042 	struct virt_dma_desc *cur_vd = NULL;
1043 	unsigned long flags;
1044 	LIST_HEAD(head);
1045 
1046 	spin_lock_irqsave(&schan->vc.lock, flags);
1047 	if (schan->cur_desc)
1048 		cur_vd = &schan->cur_desc->vd;
1049 
1050 	sprd_dma_stop(schan);
1051 
1052 	vchan_get_all_descriptors(&schan->vc, &head);
1053 	spin_unlock_irqrestore(&schan->vc.lock, flags);
1054 
1055 	if (cur_vd)
1056 		sprd_dma_free_desc(cur_vd);
1057 
1058 	vchan_dma_desc_free_list(&schan->vc, &head);
1059 	return 0;
1060 }
1061 
1062 static void sprd_dma_free_desc(struct virt_dma_desc *vd)
1063 {
1064 	struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
1065 
1066 	kfree(sdesc);
1067 }
1068 
1069 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
1070 {
1071 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1072 	u32 slave_id = *(u32 *)param;
1073 
1074 	schan->dev_id = slave_id;
1075 	return true;
1076 }
1077 
1078 static int sprd_dma_probe(struct platform_device *pdev)
1079 {
1080 	struct device_node *np = pdev->dev.of_node;
1081 	struct sprd_dma_dev *sdev;
1082 	struct sprd_dma_chn *dma_chn;
1083 	struct resource *res;
1084 	u32 chn_count;
1085 	int ret, i;
1086 
1087 	ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
1088 	if (ret) {
1089 		dev_err(&pdev->dev, "get dma channels count failed\n");
1090 		return ret;
1091 	}
1092 
1093 	sdev = devm_kzalloc(&pdev->dev,
1094 			    struct_size(sdev, channels, chn_count),
1095 			    GFP_KERNEL);
1096 	if (!sdev)
1097 		return -ENOMEM;
1098 
1099 	sdev->clk = devm_clk_get(&pdev->dev, "enable");
1100 	if (IS_ERR(sdev->clk)) {
1101 		dev_err(&pdev->dev, "get enable clock failed\n");
1102 		return PTR_ERR(sdev->clk);
1103 	}
1104 
1105 	/* ashb clock is optional for AGCP DMA */
1106 	sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
1107 	if (IS_ERR(sdev->ashb_clk))
1108 		dev_warn(&pdev->dev, "no optional ashb eb clock\n");
1109 
1110 	/*
1111 	 * We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
1112 	 * DMA controller, it can or do not request the irq, which will save
1113 	 * system power without resuming system by DMA interrupts if AGCP DMA
1114 	 * does not request the irq. Thus the DMA interrupts property should
1115 	 * be optional.
1116 	 */
1117 	sdev->irq = platform_get_irq(pdev, 0);
1118 	if (sdev->irq > 0) {
1119 		ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
1120 				       0, "sprd_dma", (void *)sdev);
1121 		if (ret < 0) {
1122 			dev_err(&pdev->dev, "request dma irq failed\n");
1123 			return ret;
1124 		}
1125 	} else {
1126 		dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
1127 	}
1128 
1129 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1130 	sdev->glb_base = devm_ioremap_resource(&pdev->dev, res);
1131 	if (IS_ERR(sdev->glb_base))
1132 		return PTR_ERR(sdev->glb_base);
1133 
1134 	dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
1135 	sdev->total_chns = chn_count;
1136 	sdev->dma_dev.chancnt = chn_count;
1137 	INIT_LIST_HEAD(&sdev->dma_dev.channels);
1138 	INIT_LIST_HEAD(&sdev->dma_dev.global_node);
1139 	sdev->dma_dev.dev = &pdev->dev;
1140 	sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
1141 	sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
1142 	sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
1143 	sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
1144 	sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
1145 	sdev->dma_dev.device_prep_slave_sg = sprd_dma_prep_slave_sg;
1146 	sdev->dma_dev.device_config = sprd_dma_slave_config;
1147 	sdev->dma_dev.device_pause = sprd_dma_pause;
1148 	sdev->dma_dev.device_resume = sprd_dma_resume;
1149 	sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
1150 
1151 	for (i = 0; i < chn_count; i++) {
1152 		dma_chn = &sdev->channels[i];
1153 		dma_chn->chn_num = i;
1154 		dma_chn->cur_desc = NULL;
1155 		/* get each channel's registers base address. */
1156 		dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
1157 				    SPRD_DMA_CHN_REG_LENGTH * i;
1158 
1159 		dma_chn->vc.desc_free = sprd_dma_free_desc;
1160 		vchan_init(&dma_chn->vc, &sdev->dma_dev);
1161 	}
1162 
1163 	platform_set_drvdata(pdev, sdev);
1164 	ret = sprd_dma_enable(sdev);
1165 	if (ret)
1166 		return ret;
1167 
1168 	pm_runtime_set_active(&pdev->dev);
1169 	pm_runtime_enable(&pdev->dev);
1170 
1171 	ret = pm_runtime_get_sync(&pdev->dev);
1172 	if (ret < 0)
1173 		goto err_rpm;
1174 
1175 	ret = dma_async_device_register(&sdev->dma_dev);
1176 	if (ret < 0) {
1177 		dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
1178 		goto err_register;
1179 	}
1180 
1181 	sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
1182 	ret = of_dma_controller_register(np, of_dma_simple_xlate,
1183 					 &sprd_dma_info);
1184 	if (ret)
1185 		goto err_of_register;
1186 
1187 	pm_runtime_put(&pdev->dev);
1188 	return 0;
1189 
1190 err_of_register:
1191 	dma_async_device_unregister(&sdev->dma_dev);
1192 err_register:
1193 	pm_runtime_put_noidle(&pdev->dev);
1194 	pm_runtime_disable(&pdev->dev);
1195 err_rpm:
1196 	sprd_dma_disable(sdev);
1197 	return ret;
1198 }
1199 
1200 static int sprd_dma_remove(struct platform_device *pdev)
1201 {
1202 	struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
1203 	struct sprd_dma_chn *c, *cn;
1204 	int ret;
1205 
1206 	ret = pm_runtime_get_sync(&pdev->dev);
1207 	if (ret < 0)
1208 		return ret;
1209 
1210 	/* explicitly free the irq */
1211 	if (sdev->irq > 0)
1212 		devm_free_irq(&pdev->dev, sdev->irq, sdev);
1213 
1214 	list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
1215 				 vc.chan.device_node) {
1216 		list_del(&c->vc.chan.device_node);
1217 		tasklet_kill(&c->vc.task);
1218 	}
1219 
1220 	of_dma_controller_free(pdev->dev.of_node);
1221 	dma_async_device_unregister(&sdev->dma_dev);
1222 	sprd_dma_disable(sdev);
1223 
1224 	pm_runtime_put_noidle(&pdev->dev);
1225 	pm_runtime_disable(&pdev->dev);
1226 	return 0;
1227 }
1228 
1229 static const struct of_device_id sprd_dma_match[] = {
1230 	{ .compatible = "sprd,sc9860-dma", },
1231 	{},
1232 };
1233 
1234 static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
1235 {
1236 	struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1237 
1238 	sprd_dma_disable(sdev);
1239 	return 0;
1240 }
1241 
1242 static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
1243 {
1244 	struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1245 	int ret;
1246 
1247 	ret = sprd_dma_enable(sdev);
1248 	if (ret)
1249 		dev_err(sdev->dma_dev.dev, "enable dma failed\n");
1250 
1251 	return ret;
1252 }
1253 
1254 static const struct dev_pm_ops sprd_dma_pm_ops = {
1255 	SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
1256 			   sprd_dma_runtime_resume,
1257 			   NULL)
1258 };
1259 
1260 static struct platform_driver sprd_dma_driver = {
1261 	.probe = sprd_dma_probe,
1262 	.remove = sprd_dma_remove,
1263 	.driver = {
1264 		.name = "sprd-dma",
1265 		.of_match_table = sprd_dma_match,
1266 		.pm = &sprd_dma_pm_ops,
1267 	},
1268 };
1269 module_platform_driver(sprd_dma_driver);
1270 
1271 MODULE_LICENSE("GPL v2");
1272 MODULE_DESCRIPTION("DMA driver for Spreadtrum");
1273 MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
1274 MODULE_AUTHOR("Eric Long <eric.long@spreadtrum.com>");
1275 MODULE_ALIAS("platform:sprd-dma");
1276