xref: /openbmc/linux/drivers/dma/sprd-dma.c (revision a2818ee4)
1 /*
2  * Copyright (C) 2017 Spreadtrum Communications Inc.
3  *
4  * SPDX-License-Identifier: GPL-2.0
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/dma/sprd-dma.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_dma.h>
18 #include <linux/of_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 
22 #include "virt-dma.h"
23 
24 #define SPRD_DMA_CHN_REG_OFFSET		0x1000
25 #define SPRD_DMA_CHN_REG_LENGTH		0x40
26 #define SPRD_DMA_MEMCPY_MIN_SIZE	64
27 
28 /* DMA global registers definition */
29 #define SPRD_DMA_GLB_PAUSE		0x0
30 #define SPRD_DMA_GLB_FRAG_WAIT		0x4
31 #define SPRD_DMA_GLB_REQ_PEND0_EN	0x8
32 #define SPRD_DMA_GLB_REQ_PEND1_EN	0xc
33 #define SPRD_DMA_GLB_INT_RAW_STS	0x10
34 #define SPRD_DMA_GLB_INT_MSK_STS	0x14
35 #define SPRD_DMA_GLB_REQ_STS		0x18
36 #define SPRD_DMA_GLB_CHN_EN_STS		0x1c
37 #define SPRD_DMA_GLB_DEBUG_STS		0x20
38 #define SPRD_DMA_GLB_ARB_SEL_STS	0x24
39 #define SPRD_DMA_GLB_2STAGE_GRP1	0x28
40 #define SPRD_DMA_GLB_2STAGE_GRP2	0x2c
41 #define SPRD_DMA_GLB_REQ_UID(uid)	(0x4 * ((uid) - 1))
42 #define SPRD_DMA_GLB_REQ_UID_OFFSET	0x2000
43 
44 /* DMA channel registers definition */
45 #define SPRD_DMA_CHN_PAUSE		0x0
46 #define SPRD_DMA_CHN_REQ		0x4
47 #define SPRD_DMA_CHN_CFG		0x8
48 #define SPRD_DMA_CHN_INTC		0xc
49 #define SPRD_DMA_CHN_SRC_ADDR		0x10
50 #define SPRD_DMA_CHN_DES_ADDR		0x14
51 #define SPRD_DMA_CHN_FRG_LEN		0x18
52 #define SPRD_DMA_CHN_BLK_LEN		0x1c
53 #define SPRD_DMA_CHN_TRSC_LEN		0x20
54 #define SPRD_DMA_CHN_TRSF_STEP		0x24
55 #define SPRD_DMA_CHN_WARP_PTR		0x28
56 #define SPRD_DMA_CHN_WARP_TO		0x2c
57 #define SPRD_DMA_CHN_LLIST_PTR		0x30
58 #define SPRD_DMA_CHN_FRAG_STEP		0x34
59 #define SPRD_DMA_CHN_SRC_BLK_STEP	0x38
60 #define SPRD_DMA_CHN_DES_BLK_STEP	0x3c
61 
62 /* SPRD_DMA_GLB_2STAGE_GRP register definition */
63 #define SPRD_DMA_GLB_2STAGE_EN		BIT(24)
64 #define SPRD_DMA_GLB_CHN_INT_MASK	GENMASK(23, 20)
65 #define SPRD_DMA_GLB_LIST_DONE_TRG	BIT(19)
66 #define SPRD_DMA_GLB_TRANS_DONE_TRG	BIT(18)
67 #define SPRD_DMA_GLB_BLOCK_DONE_TRG	BIT(17)
68 #define SPRD_DMA_GLB_FRAG_DONE_TRG	BIT(16)
69 #define SPRD_DMA_GLB_TRG_OFFSET		16
70 #define SPRD_DMA_GLB_DEST_CHN_MASK	GENMASK(13, 8)
71 #define SPRD_DMA_GLB_DEST_CHN_OFFSET	8
72 #define SPRD_DMA_GLB_SRC_CHN_MASK	GENMASK(5, 0)
73 
74 /* SPRD_DMA_CHN_INTC register definition */
75 #define SPRD_DMA_INT_MASK		GENMASK(4, 0)
76 #define SPRD_DMA_INT_CLR_OFFSET		24
77 #define SPRD_DMA_FRAG_INT_EN		BIT(0)
78 #define SPRD_DMA_BLK_INT_EN		BIT(1)
79 #define SPRD_DMA_TRANS_INT_EN		BIT(2)
80 #define SPRD_DMA_LIST_INT_EN		BIT(3)
81 #define SPRD_DMA_CFG_ERR_INT_EN		BIT(4)
82 
83 /* SPRD_DMA_CHN_CFG register definition */
84 #define SPRD_DMA_CHN_EN			BIT(0)
85 #define SPRD_DMA_LINKLIST_EN		BIT(4)
86 #define SPRD_DMA_WAIT_BDONE_OFFSET	24
87 #define SPRD_DMA_DONOT_WAIT_BDONE	1
88 
89 /* SPRD_DMA_CHN_REQ register definition */
90 #define SPRD_DMA_REQ_EN			BIT(0)
91 
92 /* SPRD_DMA_CHN_PAUSE register definition */
93 #define SPRD_DMA_PAUSE_EN		BIT(0)
94 #define SPRD_DMA_PAUSE_STS		BIT(2)
95 #define SPRD_DMA_PAUSE_CNT		0x2000
96 
97 /* DMA_CHN_WARP_* register definition */
98 #define SPRD_DMA_HIGH_ADDR_MASK		GENMASK(31, 28)
99 #define SPRD_DMA_LOW_ADDR_MASK		GENMASK(31, 0)
100 #define SPRD_DMA_HIGH_ADDR_OFFSET	4
101 
102 /* SPRD_DMA_CHN_INTC register definition */
103 #define SPRD_DMA_FRAG_INT_STS		BIT(16)
104 #define SPRD_DMA_BLK_INT_STS		BIT(17)
105 #define SPRD_DMA_TRSC_INT_STS		BIT(18)
106 #define SPRD_DMA_LIST_INT_STS		BIT(19)
107 #define SPRD_DMA_CFGERR_INT_STS		BIT(20)
108 #define SPRD_DMA_CHN_INT_STS					\
109 	(SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS |		\
110 	 SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS |	\
111 	 SPRD_DMA_CFGERR_INT_STS)
112 
113 /* SPRD_DMA_CHN_FRG_LEN register definition */
114 #define SPRD_DMA_SRC_DATAWIDTH_OFFSET	30
115 #define SPRD_DMA_DES_DATAWIDTH_OFFSET	28
116 #define SPRD_DMA_SWT_MODE_OFFSET	26
117 #define SPRD_DMA_REQ_MODE_OFFSET	24
118 #define SPRD_DMA_REQ_MODE_MASK		GENMASK(1, 0)
119 #define SPRD_DMA_FIX_SEL_OFFSET		21
120 #define SPRD_DMA_FIX_EN_OFFSET		20
121 #define SPRD_DMA_LLIST_END		BIT(19)
122 #define SPRD_DMA_FRG_LEN_MASK		GENMASK(16, 0)
123 
124 /* SPRD_DMA_CHN_BLK_LEN register definition */
125 #define SPRD_DMA_BLK_LEN_MASK		GENMASK(16, 0)
126 
127 /* SPRD_DMA_CHN_TRSC_LEN register definition */
128 #define SPRD_DMA_TRSC_LEN_MASK		GENMASK(27, 0)
129 
130 /* SPRD_DMA_CHN_TRSF_STEP register definition */
131 #define SPRD_DMA_DEST_TRSF_STEP_OFFSET	16
132 #define SPRD_DMA_SRC_TRSF_STEP_OFFSET	0
133 #define SPRD_DMA_TRSF_STEP_MASK		GENMASK(15, 0)
134 
135 /* define DMA channel mode & trigger mode mask */
136 #define SPRD_DMA_CHN_MODE_MASK		GENMASK(7, 0)
137 #define SPRD_DMA_TRG_MODE_MASK		GENMASK(7, 0)
138 
139 /* define the DMA transfer step type */
140 #define SPRD_DMA_NONE_STEP		0
141 #define SPRD_DMA_BYTE_STEP		1
142 #define SPRD_DMA_SHORT_STEP		2
143 #define SPRD_DMA_WORD_STEP		4
144 #define SPRD_DMA_DWORD_STEP		8
145 
146 #define SPRD_DMA_SOFTWARE_UID		0
147 
148 /* dma data width values */
149 enum sprd_dma_datawidth {
150 	SPRD_DMA_DATAWIDTH_1_BYTE,
151 	SPRD_DMA_DATAWIDTH_2_BYTES,
152 	SPRD_DMA_DATAWIDTH_4_BYTES,
153 	SPRD_DMA_DATAWIDTH_8_BYTES,
154 };
155 
156 /* dma channel hardware configuration */
157 struct sprd_dma_chn_hw {
158 	u32 pause;
159 	u32 req;
160 	u32 cfg;
161 	u32 intc;
162 	u32 src_addr;
163 	u32 des_addr;
164 	u32 frg_len;
165 	u32 blk_len;
166 	u32 trsc_len;
167 	u32 trsf_step;
168 	u32 wrap_ptr;
169 	u32 wrap_to;
170 	u32 llist_ptr;
171 	u32 frg_step;
172 	u32 src_blk_step;
173 	u32 des_blk_step;
174 };
175 
176 /* dma request description */
177 struct sprd_dma_desc {
178 	struct virt_dma_desc	vd;
179 	struct sprd_dma_chn_hw	chn_hw;
180 	enum dma_transfer_direction dir;
181 };
182 
183 /* dma channel description */
184 struct sprd_dma_chn {
185 	struct virt_dma_chan	vc;
186 	void __iomem		*chn_base;
187 	struct sprd_dma_linklist	linklist;
188 	struct dma_slave_config	slave_cfg;
189 	u32			chn_num;
190 	u32			dev_id;
191 	enum sprd_dma_chn_mode	chn_mode;
192 	enum sprd_dma_trg_mode	trg_mode;
193 	struct sprd_dma_desc	*cur_desc;
194 };
195 
196 /* SPRD dma device */
197 struct sprd_dma_dev {
198 	struct dma_device	dma_dev;
199 	void __iomem		*glb_base;
200 	struct clk		*clk;
201 	struct clk		*ashb_clk;
202 	int			irq;
203 	u32			total_chns;
204 	struct sprd_dma_chn	channels[0];
205 };
206 
207 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
208 static struct of_dma_filter_info sprd_dma_info = {
209 	.filter_fn = sprd_dma_filter_fn,
210 };
211 
212 static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
213 {
214 	return container_of(c, struct sprd_dma_chn, vc.chan);
215 }
216 
217 static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
218 {
219 	struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
220 
221 	return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
222 }
223 
224 static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
225 {
226 	return container_of(vd, struct sprd_dma_desc, vd);
227 }
228 
229 static void sprd_dma_glb_update(struct sprd_dma_dev *sdev, u32 reg,
230 				u32 mask, u32 val)
231 {
232 	u32 orig = readl(sdev->glb_base + reg);
233 	u32 tmp;
234 
235 	tmp = (orig & ~mask) | val;
236 	writel(tmp, sdev->glb_base + reg);
237 }
238 
239 static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
240 				u32 mask, u32 val)
241 {
242 	u32 orig = readl(schan->chn_base + reg);
243 	u32 tmp;
244 
245 	tmp = (orig & ~mask) | val;
246 	writel(tmp, schan->chn_base + reg);
247 }
248 
249 static int sprd_dma_enable(struct sprd_dma_dev *sdev)
250 {
251 	int ret;
252 
253 	ret = clk_prepare_enable(sdev->clk);
254 	if (ret)
255 		return ret;
256 
257 	/*
258 	 * The ashb_clk is optional and only for AGCP DMA controller, so we
259 	 * need add one condition to check if the ashb_clk need enable.
260 	 */
261 	if (!IS_ERR(sdev->ashb_clk))
262 		ret = clk_prepare_enable(sdev->ashb_clk);
263 
264 	return ret;
265 }
266 
267 static void sprd_dma_disable(struct sprd_dma_dev *sdev)
268 {
269 	clk_disable_unprepare(sdev->clk);
270 
271 	/*
272 	 * Need to check if we need disable the optional ashb_clk for AGCP DMA.
273 	 */
274 	if (!IS_ERR(sdev->ashb_clk))
275 		clk_disable_unprepare(sdev->ashb_clk);
276 }
277 
278 static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
279 {
280 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
281 	u32 dev_id = schan->dev_id;
282 
283 	if (dev_id != SPRD_DMA_SOFTWARE_UID) {
284 		u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
285 				 SPRD_DMA_GLB_REQ_UID(dev_id);
286 
287 		writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
288 	}
289 }
290 
291 static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
292 {
293 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
294 	u32 dev_id = schan->dev_id;
295 
296 	if (dev_id != SPRD_DMA_SOFTWARE_UID) {
297 		u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
298 				 SPRD_DMA_GLB_REQ_UID(dev_id);
299 
300 		writel(0, sdev->glb_base + uid_offset);
301 	}
302 }
303 
304 static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
305 {
306 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
307 			    SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
308 			    SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
309 }
310 
311 static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
312 {
313 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
314 			    SPRD_DMA_CHN_EN);
315 }
316 
317 static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
318 {
319 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
320 }
321 
322 static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
323 {
324 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
325 			    SPRD_DMA_REQ_EN);
326 }
327 
328 static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
329 {
330 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
331 	u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
332 
333 	if (enable) {
334 		sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
335 				    SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
336 
337 		do {
338 			pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
339 			if (pause & SPRD_DMA_PAUSE_STS)
340 				break;
341 
342 			cpu_relax();
343 		} while (--timeout > 0);
344 
345 		if (!timeout)
346 			dev_warn(sdev->dma_dev.dev,
347 				 "pause dma controller timeout\n");
348 	} else {
349 		sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
350 				    SPRD_DMA_PAUSE_EN, 0);
351 	}
352 }
353 
354 static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
355 {
356 	u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
357 
358 	if (!(cfg & SPRD_DMA_CHN_EN))
359 		return;
360 
361 	sprd_dma_pause_resume(schan, true);
362 	sprd_dma_disable_chn(schan);
363 }
364 
365 static unsigned long sprd_dma_get_src_addr(struct sprd_dma_chn *schan)
366 {
367 	unsigned long addr, addr_high;
368 
369 	addr = readl(schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
370 	addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_PTR) &
371 		    SPRD_DMA_HIGH_ADDR_MASK;
372 
373 	return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
374 }
375 
376 static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
377 {
378 	unsigned long addr, addr_high;
379 
380 	addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
381 	addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
382 		    SPRD_DMA_HIGH_ADDR_MASK;
383 
384 	return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
385 }
386 
387 static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
388 {
389 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
390 	u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
391 		       SPRD_DMA_CHN_INT_STS;
392 
393 	switch (intc_sts) {
394 	case SPRD_DMA_CFGERR_INT_STS:
395 		return SPRD_DMA_CFGERR_INT;
396 
397 	case SPRD_DMA_LIST_INT_STS:
398 		return SPRD_DMA_LIST_INT;
399 
400 	case SPRD_DMA_TRSC_INT_STS:
401 		return SPRD_DMA_TRANS_INT;
402 
403 	case SPRD_DMA_BLK_INT_STS:
404 		return SPRD_DMA_BLK_INT;
405 
406 	case SPRD_DMA_FRAG_INT_STS:
407 		return SPRD_DMA_FRAG_INT;
408 
409 	default:
410 		dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
411 		return SPRD_DMA_NO_INT;
412 	}
413 }
414 
415 static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
416 {
417 	u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
418 
419 	return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
420 }
421 
422 static int sprd_dma_set_2stage_config(struct sprd_dma_chn *schan)
423 {
424 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
425 	u32 val, chn = schan->chn_num + 1;
426 
427 	switch (schan->chn_mode) {
428 	case SPRD_DMA_SRC_CHN0:
429 		val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
430 		val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
431 		val |= SPRD_DMA_GLB_2STAGE_EN;
432 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
433 		break;
434 
435 	case SPRD_DMA_SRC_CHN1:
436 		val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
437 		val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
438 		val |= SPRD_DMA_GLB_2STAGE_EN;
439 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
440 		break;
441 
442 	case SPRD_DMA_DST_CHN0:
443 		val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
444 			SPRD_DMA_GLB_DEST_CHN_MASK;
445 		val |= SPRD_DMA_GLB_2STAGE_EN;
446 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
447 		break;
448 
449 	case SPRD_DMA_DST_CHN1:
450 		val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
451 			SPRD_DMA_GLB_DEST_CHN_MASK;
452 		val |= SPRD_DMA_GLB_2STAGE_EN;
453 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
454 		break;
455 
456 	default:
457 		dev_err(sdev->dma_dev.dev, "invalid channel mode setting %d\n",
458 			schan->chn_mode);
459 		return -EINVAL;
460 	}
461 
462 	return 0;
463 }
464 
465 static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
466 				    struct sprd_dma_desc *sdesc)
467 {
468 	struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
469 
470 	writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
471 	writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
472 	writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
473 	writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
474 	writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
475 	writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
476 	writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
477 	writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
478 	writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
479 	writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
480 	writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
481 	writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
482 	writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
483 	writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
484 	writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
485 	writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
486 }
487 
488 static void sprd_dma_start(struct sprd_dma_chn *schan)
489 {
490 	struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
491 
492 	if (!vd)
493 		return;
494 
495 	list_del(&vd->node);
496 	schan->cur_desc = to_sprd_dma_desc(vd);
497 
498 	/*
499 	 * Set 2-stage configuration if the channel starts one 2-stage
500 	 * transfer.
501 	 */
502 	if (schan->chn_mode && sprd_dma_set_2stage_config(schan))
503 		return;
504 
505 	/*
506 	 * Copy the DMA configuration from DMA descriptor to this hardware
507 	 * channel.
508 	 */
509 	sprd_dma_set_chn_config(schan, schan->cur_desc);
510 	sprd_dma_set_uid(schan);
511 	sprd_dma_enable_chn(schan);
512 
513 	if (schan->dev_id == SPRD_DMA_SOFTWARE_UID)
514 		sprd_dma_soft_request(schan);
515 }
516 
517 static void sprd_dma_stop(struct sprd_dma_chn *schan)
518 {
519 	sprd_dma_stop_and_disable(schan);
520 	sprd_dma_unset_uid(schan);
521 	sprd_dma_clear_int(schan);
522 	schan->cur_desc = NULL;
523 }
524 
525 static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
526 				      enum sprd_dma_int_type int_type,
527 				      enum sprd_dma_req_mode req_mode)
528 {
529 	if (int_type == SPRD_DMA_NO_INT)
530 		return false;
531 
532 	if (int_type >= req_mode + 1)
533 		return true;
534 	else
535 		return false;
536 }
537 
538 static irqreturn_t dma_irq_handle(int irq, void *dev_id)
539 {
540 	struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
541 	u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
542 	struct sprd_dma_chn *schan;
543 	struct sprd_dma_desc *sdesc;
544 	enum sprd_dma_req_mode req_type;
545 	enum sprd_dma_int_type int_type;
546 	bool trans_done = false, cyclic = false;
547 	u32 i;
548 
549 	while (irq_status) {
550 		i = __ffs(irq_status);
551 		irq_status &= (irq_status - 1);
552 		schan = &sdev->channels[i];
553 
554 		spin_lock(&schan->vc.lock);
555 		int_type = sprd_dma_get_int_type(schan);
556 		req_type = sprd_dma_get_req_type(schan);
557 		sprd_dma_clear_int(schan);
558 
559 		sdesc = schan->cur_desc;
560 
561 		/* cyclic mode schedule callback */
562 		cyclic = schan->linklist.phy_addr ? true : false;
563 		if (cyclic == true) {
564 			vchan_cyclic_callback(&sdesc->vd);
565 		} else {
566 			/* Check if the dma request descriptor is done. */
567 			trans_done = sprd_dma_check_trans_done(sdesc, int_type,
568 							       req_type);
569 			if (trans_done == true) {
570 				vchan_cookie_complete(&sdesc->vd);
571 				schan->cur_desc = NULL;
572 				sprd_dma_start(schan);
573 			}
574 		}
575 		spin_unlock(&schan->vc.lock);
576 	}
577 
578 	return IRQ_HANDLED;
579 }
580 
581 static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
582 {
583 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
584 	int ret;
585 
586 	ret = pm_runtime_get_sync(chan->device->dev);
587 	if (ret < 0)
588 		return ret;
589 
590 	schan->dev_id = SPRD_DMA_SOFTWARE_UID;
591 	return 0;
592 }
593 
594 static void sprd_dma_free_chan_resources(struct dma_chan *chan)
595 {
596 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&schan->vc.lock, flags);
600 	sprd_dma_stop(schan);
601 	spin_unlock_irqrestore(&schan->vc.lock, flags);
602 
603 	vchan_free_chan_resources(&schan->vc);
604 	pm_runtime_put(chan->device->dev);
605 }
606 
607 static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
608 					  dma_cookie_t cookie,
609 					  struct dma_tx_state *txstate)
610 {
611 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
612 	struct virt_dma_desc *vd;
613 	unsigned long flags;
614 	enum dma_status ret;
615 	u32 pos;
616 
617 	ret = dma_cookie_status(chan, cookie, txstate);
618 	if (ret == DMA_COMPLETE || !txstate)
619 		return ret;
620 
621 	spin_lock_irqsave(&schan->vc.lock, flags);
622 	vd = vchan_find_desc(&schan->vc, cookie);
623 	if (vd) {
624 		struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
625 		struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
626 
627 		if (hw->trsc_len > 0)
628 			pos = hw->trsc_len;
629 		else if (hw->blk_len > 0)
630 			pos = hw->blk_len;
631 		else if (hw->frg_len > 0)
632 			pos = hw->frg_len;
633 		else
634 			pos = 0;
635 	} else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
636 		struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
637 
638 		if (sdesc->dir == DMA_DEV_TO_MEM)
639 			pos = sprd_dma_get_dst_addr(schan);
640 		else
641 			pos = sprd_dma_get_src_addr(schan);
642 	} else {
643 		pos = 0;
644 	}
645 	spin_unlock_irqrestore(&schan->vc.lock, flags);
646 
647 	dma_set_residue(txstate, pos);
648 	return ret;
649 }
650 
651 static void sprd_dma_issue_pending(struct dma_chan *chan)
652 {
653 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
654 	unsigned long flags;
655 
656 	spin_lock_irqsave(&schan->vc.lock, flags);
657 	if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
658 		sprd_dma_start(schan);
659 	spin_unlock_irqrestore(&schan->vc.lock, flags);
660 }
661 
662 static int sprd_dma_get_datawidth(enum dma_slave_buswidth buswidth)
663 {
664 	switch (buswidth) {
665 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
666 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
667 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
668 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
669 		return ffs(buswidth) - 1;
670 
671 	default:
672 		return -EINVAL;
673 	}
674 }
675 
676 static int sprd_dma_get_step(enum dma_slave_buswidth buswidth)
677 {
678 	switch (buswidth) {
679 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
680 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
681 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
682 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
683 		return buswidth;
684 
685 	default:
686 		return -EINVAL;
687 	}
688 }
689 
690 static int sprd_dma_fill_desc(struct dma_chan *chan,
691 			      struct sprd_dma_chn_hw *hw,
692 			      unsigned int sglen, int sg_index,
693 			      dma_addr_t src, dma_addr_t dst, u32 len,
694 			      enum dma_transfer_direction dir,
695 			      unsigned long flags,
696 			      struct dma_slave_config *slave_cfg)
697 {
698 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
699 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
700 	enum sprd_dma_chn_mode chn_mode = schan->chn_mode;
701 	u32 req_mode = (flags >> SPRD_DMA_REQ_SHIFT) & SPRD_DMA_REQ_MODE_MASK;
702 	u32 int_mode = flags & SPRD_DMA_INT_MASK;
703 	int src_datawidth, dst_datawidth, src_step, dst_step;
704 	u32 temp, fix_mode = 0, fix_en = 0;
705 
706 	if (dir == DMA_MEM_TO_DEV) {
707 		src_step = sprd_dma_get_step(slave_cfg->src_addr_width);
708 		if (src_step < 0) {
709 			dev_err(sdev->dma_dev.dev, "invalid source step\n");
710 			return src_step;
711 		}
712 
713 		/*
714 		 * For 2-stage transfer, destination channel step can not be 0,
715 		 * since destination device is AON IRAM.
716 		 */
717 		if (chn_mode == SPRD_DMA_DST_CHN0 ||
718 		    chn_mode == SPRD_DMA_DST_CHN1)
719 			dst_step = src_step;
720 		else
721 			dst_step = SPRD_DMA_NONE_STEP;
722 	} else {
723 		dst_step = sprd_dma_get_step(slave_cfg->dst_addr_width);
724 		if (dst_step < 0) {
725 			dev_err(sdev->dma_dev.dev, "invalid destination step\n");
726 			return dst_step;
727 		}
728 		src_step = SPRD_DMA_NONE_STEP;
729 	}
730 
731 	src_datawidth = sprd_dma_get_datawidth(slave_cfg->src_addr_width);
732 	if (src_datawidth < 0) {
733 		dev_err(sdev->dma_dev.dev, "invalid source datawidth\n");
734 		return src_datawidth;
735 	}
736 
737 	dst_datawidth = sprd_dma_get_datawidth(slave_cfg->dst_addr_width);
738 	if (dst_datawidth < 0) {
739 		dev_err(sdev->dma_dev.dev, "invalid destination datawidth\n");
740 		return dst_datawidth;
741 	}
742 
743 	if (slave_cfg->slave_id)
744 		schan->dev_id = slave_cfg->slave_id;
745 
746 	hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
747 
748 	/*
749 	 * wrap_ptr and wrap_to will save the high 4 bits source address and
750 	 * destination address.
751 	 */
752 	hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
753 	hw->wrap_to = (dst >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
754 	hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
755 	hw->des_addr = dst & SPRD_DMA_LOW_ADDR_MASK;
756 
757 	/*
758 	 * If the src step and dst step both are 0 or both are not 0, that means
759 	 * we can not enable the fix mode. If one is 0 and another one is not,
760 	 * we can enable the fix mode.
761 	 */
762 	if ((src_step != 0 && dst_step != 0) || (src_step | dst_step) == 0) {
763 		fix_en = 0;
764 	} else {
765 		fix_en = 1;
766 		if (src_step)
767 			fix_mode = 1;
768 		else
769 			fix_mode = 0;
770 	}
771 
772 	hw->intc = int_mode | SPRD_DMA_CFG_ERR_INT_EN;
773 
774 	temp = src_datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
775 	temp |= dst_datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
776 	temp |= req_mode << SPRD_DMA_REQ_MODE_OFFSET;
777 	temp |= fix_mode << SPRD_DMA_FIX_SEL_OFFSET;
778 	temp |= fix_en << SPRD_DMA_FIX_EN_OFFSET;
779 	temp |= slave_cfg->src_maxburst & SPRD_DMA_FRG_LEN_MASK;
780 	hw->frg_len = temp;
781 
782 	hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
783 	hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
784 
785 	temp = (dst_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
786 	temp |= (src_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
787 	hw->trsf_step = temp;
788 
789 	/* link-list configuration */
790 	if (schan->linklist.phy_addr) {
791 		hw->cfg |= SPRD_DMA_LINKLIST_EN;
792 
793 		/* link-list index */
794 		temp = sglen ? (sg_index + 1) % sglen : 0;
795 
796 		/* Next link-list configuration's physical address offset */
797 		temp = temp * sizeof(*hw) + SPRD_DMA_CHN_SRC_ADDR;
798 		/*
799 		 * Set the link-list pointer point to next link-list
800 		 * configuration's physical address.
801 		 */
802 		hw->llist_ptr = schan->linklist.phy_addr + temp;
803 	} else {
804 		hw->llist_ptr = 0;
805 	}
806 
807 	hw->frg_step = 0;
808 	hw->src_blk_step = 0;
809 	hw->des_blk_step = 0;
810 	return 0;
811 }
812 
813 static int sprd_dma_fill_linklist_desc(struct dma_chan *chan,
814 				       unsigned int sglen, int sg_index,
815 				       dma_addr_t src, dma_addr_t dst, u32 len,
816 				       enum dma_transfer_direction dir,
817 				       unsigned long flags,
818 				       struct dma_slave_config *slave_cfg)
819 {
820 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
821 	struct sprd_dma_chn_hw *hw;
822 
823 	if (!schan->linklist.virt_addr)
824 		return -EINVAL;
825 
826 	hw = (struct sprd_dma_chn_hw *)(schan->linklist.virt_addr +
827 					sg_index * sizeof(*hw));
828 
829 	return sprd_dma_fill_desc(chan, hw, sglen, sg_index, src, dst, len,
830 				  dir, flags, slave_cfg);
831 }
832 
833 static struct dma_async_tx_descriptor *
834 sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
835 			 size_t len, unsigned long flags)
836 {
837 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
838 	struct sprd_dma_desc *sdesc;
839 	struct sprd_dma_chn_hw *hw;
840 	enum sprd_dma_datawidth datawidth;
841 	u32 step, temp;
842 
843 	sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
844 	if (!sdesc)
845 		return NULL;
846 
847 	hw = &sdesc->chn_hw;
848 
849 	hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
850 	hw->intc = SPRD_DMA_TRANS_INT | SPRD_DMA_CFG_ERR_INT_EN;
851 	hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
852 	hw->des_addr = dest & SPRD_DMA_LOW_ADDR_MASK;
853 	hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
854 		SPRD_DMA_HIGH_ADDR_MASK;
855 	hw->wrap_to = (dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
856 		SPRD_DMA_HIGH_ADDR_MASK;
857 
858 	if (IS_ALIGNED(len, 8)) {
859 		datawidth = SPRD_DMA_DATAWIDTH_8_BYTES;
860 		step = SPRD_DMA_DWORD_STEP;
861 	} else if (IS_ALIGNED(len, 4)) {
862 		datawidth = SPRD_DMA_DATAWIDTH_4_BYTES;
863 		step = SPRD_DMA_WORD_STEP;
864 	} else if (IS_ALIGNED(len, 2)) {
865 		datawidth = SPRD_DMA_DATAWIDTH_2_BYTES;
866 		step = SPRD_DMA_SHORT_STEP;
867 	} else {
868 		datawidth = SPRD_DMA_DATAWIDTH_1_BYTE;
869 		step = SPRD_DMA_BYTE_STEP;
870 	}
871 
872 	temp = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
873 	temp |= datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
874 	temp |= SPRD_DMA_TRANS_REQ << SPRD_DMA_REQ_MODE_OFFSET;
875 	temp |= len & SPRD_DMA_FRG_LEN_MASK;
876 	hw->frg_len = temp;
877 
878 	hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
879 	hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
880 
881 	temp = (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
882 	temp |= (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
883 	hw->trsf_step = temp;
884 
885 	return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
886 }
887 
888 static struct dma_async_tx_descriptor *
889 sprd_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
890 		       unsigned int sglen, enum dma_transfer_direction dir,
891 		       unsigned long flags, void *context)
892 {
893 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
894 	struct dma_slave_config *slave_cfg = &schan->slave_cfg;
895 	dma_addr_t src = 0, dst = 0;
896 	struct sprd_dma_desc *sdesc;
897 	struct scatterlist *sg;
898 	u32 len = 0;
899 	int ret, i;
900 
901 	if (!is_slave_direction(dir))
902 		return NULL;
903 
904 	if (context) {
905 		struct sprd_dma_linklist *ll_cfg =
906 			(struct sprd_dma_linklist *)context;
907 
908 		schan->linklist.phy_addr = ll_cfg->phy_addr;
909 		schan->linklist.virt_addr = ll_cfg->virt_addr;
910 	} else {
911 		schan->linklist.phy_addr = 0;
912 		schan->linklist.virt_addr = 0;
913 	}
914 
915 	sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
916 	if (!sdesc)
917 		return NULL;
918 
919 	sdesc->dir = dir;
920 
921 	for_each_sg(sgl, sg, sglen, i) {
922 		len = sg_dma_len(sg);
923 
924 		if (dir == DMA_MEM_TO_DEV) {
925 			src = sg_dma_address(sg);
926 			dst = slave_cfg->dst_addr;
927 		} else {
928 			src = slave_cfg->src_addr;
929 			dst = sg_dma_address(sg);
930 		}
931 
932 		/*
933 		 * The link-list mode needs at least 2 link-list
934 		 * configurations. If there is only one sg, it doesn't
935 		 * need to fill the link-list configuration.
936 		 */
937 		if (sglen < 2)
938 			break;
939 
940 		ret = sprd_dma_fill_linklist_desc(chan, sglen, i, src, dst, len,
941 						  dir, flags, slave_cfg);
942 		if (ret) {
943 			kfree(sdesc);
944 			return NULL;
945 		}
946 	}
947 
948 	/* Set channel mode and trigger mode for 2-stage transfer */
949 	schan->chn_mode =
950 		(flags >> SPRD_DMA_CHN_MODE_SHIFT) & SPRD_DMA_CHN_MODE_MASK;
951 	schan->trg_mode =
952 		(flags >> SPRD_DMA_TRG_MODE_SHIFT) & SPRD_DMA_TRG_MODE_MASK;
953 
954 	ret = sprd_dma_fill_desc(chan, &sdesc->chn_hw, 0, 0, src, dst, len,
955 				 dir, flags, slave_cfg);
956 	if (ret) {
957 		kfree(sdesc);
958 		return NULL;
959 	}
960 
961 	return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
962 }
963 
964 static int sprd_dma_slave_config(struct dma_chan *chan,
965 				 struct dma_slave_config *config)
966 {
967 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
968 	struct dma_slave_config *slave_cfg = &schan->slave_cfg;
969 
970 	memcpy(slave_cfg, config, sizeof(*config));
971 	return 0;
972 }
973 
974 static int sprd_dma_pause(struct dma_chan *chan)
975 {
976 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
977 	unsigned long flags;
978 
979 	spin_lock_irqsave(&schan->vc.lock, flags);
980 	sprd_dma_pause_resume(schan, true);
981 	spin_unlock_irqrestore(&schan->vc.lock, flags);
982 
983 	return 0;
984 }
985 
986 static int sprd_dma_resume(struct dma_chan *chan)
987 {
988 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
989 	unsigned long flags;
990 
991 	spin_lock_irqsave(&schan->vc.lock, flags);
992 	sprd_dma_pause_resume(schan, false);
993 	spin_unlock_irqrestore(&schan->vc.lock, flags);
994 
995 	return 0;
996 }
997 
998 static int sprd_dma_terminate_all(struct dma_chan *chan)
999 {
1000 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1001 	unsigned long flags;
1002 	LIST_HEAD(head);
1003 
1004 	spin_lock_irqsave(&schan->vc.lock, flags);
1005 	sprd_dma_stop(schan);
1006 
1007 	vchan_get_all_descriptors(&schan->vc, &head);
1008 	spin_unlock_irqrestore(&schan->vc.lock, flags);
1009 
1010 	vchan_dma_desc_free_list(&schan->vc, &head);
1011 	return 0;
1012 }
1013 
1014 static void sprd_dma_free_desc(struct virt_dma_desc *vd)
1015 {
1016 	struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
1017 
1018 	kfree(sdesc);
1019 }
1020 
1021 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
1022 {
1023 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1024 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
1025 	u32 req = *(u32 *)param;
1026 
1027 	if (req < sdev->total_chns)
1028 		return req == schan->chn_num + 1;
1029 	else
1030 		return false;
1031 }
1032 
1033 static int sprd_dma_probe(struct platform_device *pdev)
1034 {
1035 	struct device_node *np = pdev->dev.of_node;
1036 	struct sprd_dma_dev *sdev;
1037 	struct sprd_dma_chn *dma_chn;
1038 	struct resource *res;
1039 	u32 chn_count;
1040 	int ret, i;
1041 
1042 	ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
1043 	if (ret) {
1044 		dev_err(&pdev->dev, "get dma channels count failed\n");
1045 		return ret;
1046 	}
1047 
1048 	sdev = devm_kzalloc(&pdev->dev,
1049 			    struct_size(sdev, channels, chn_count),
1050 			    GFP_KERNEL);
1051 	if (!sdev)
1052 		return -ENOMEM;
1053 
1054 	sdev->clk = devm_clk_get(&pdev->dev, "enable");
1055 	if (IS_ERR(sdev->clk)) {
1056 		dev_err(&pdev->dev, "get enable clock failed\n");
1057 		return PTR_ERR(sdev->clk);
1058 	}
1059 
1060 	/* ashb clock is optional for AGCP DMA */
1061 	sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
1062 	if (IS_ERR(sdev->ashb_clk))
1063 		dev_warn(&pdev->dev, "no optional ashb eb clock\n");
1064 
1065 	/*
1066 	 * We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
1067 	 * DMA controller, it can or do not request the irq, which will save
1068 	 * system power without resuming system by DMA interrupts if AGCP DMA
1069 	 * does not request the irq. Thus the DMA interrupts property should
1070 	 * be optional.
1071 	 */
1072 	sdev->irq = platform_get_irq(pdev, 0);
1073 	if (sdev->irq > 0) {
1074 		ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
1075 				       0, "sprd_dma", (void *)sdev);
1076 		if (ret < 0) {
1077 			dev_err(&pdev->dev, "request dma irq failed\n");
1078 			return ret;
1079 		}
1080 	} else {
1081 		dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
1082 	}
1083 
1084 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1085 	sdev->glb_base = devm_ioremap_resource(&pdev->dev, res);
1086 	if (IS_ERR(sdev->glb_base))
1087 		return PTR_ERR(sdev->glb_base);
1088 
1089 	dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
1090 	sdev->total_chns = chn_count;
1091 	sdev->dma_dev.chancnt = chn_count;
1092 	INIT_LIST_HEAD(&sdev->dma_dev.channels);
1093 	INIT_LIST_HEAD(&sdev->dma_dev.global_node);
1094 	sdev->dma_dev.dev = &pdev->dev;
1095 	sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
1096 	sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
1097 	sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
1098 	sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
1099 	sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
1100 	sdev->dma_dev.device_prep_slave_sg = sprd_dma_prep_slave_sg;
1101 	sdev->dma_dev.device_config = sprd_dma_slave_config;
1102 	sdev->dma_dev.device_pause = sprd_dma_pause;
1103 	sdev->dma_dev.device_resume = sprd_dma_resume;
1104 	sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
1105 
1106 	for (i = 0; i < chn_count; i++) {
1107 		dma_chn = &sdev->channels[i];
1108 		dma_chn->chn_num = i;
1109 		dma_chn->cur_desc = NULL;
1110 		/* get each channel's registers base address. */
1111 		dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
1112 				    SPRD_DMA_CHN_REG_LENGTH * i;
1113 
1114 		dma_chn->vc.desc_free = sprd_dma_free_desc;
1115 		vchan_init(&dma_chn->vc, &sdev->dma_dev);
1116 	}
1117 
1118 	platform_set_drvdata(pdev, sdev);
1119 	ret = sprd_dma_enable(sdev);
1120 	if (ret)
1121 		return ret;
1122 
1123 	pm_runtime_set_active(&pdev->dev);
1124 	pm_runtime_enable(&pdev->dev);
1125 
1126 	ret = pm_runtime_get_sync(&pdev->dev);
1127 	if (ret < 0)
1128 		goto err_rpm;
1129 
1130 	ret = dma_async_device_register(&sdev->dma_dev);
1131 	if (ret < 0) {
1132 		dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
1133 		goto err_register;
1134 	}
1135 
1136 	sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
1137 	ret = of_dma_controller_register(np, of_dma_simple_xlate,
1138 					 &sprd_dma_info);
1139 	if (ret)
1140 		goto err_of_register;
1141 
1142 	pm_runtime_put(&pdev->dev);
1143 	return 0;
1144 
1145 err_of_register:
1146 	dma_async_device_unregister(&sdev->dma_dev);
1147 err_register:
1148 	pm_runtime_put_noidle(&pdev->dev);
1149 	pm_runtime_disable(&pdev->dev);
1150 err_rpm:
1151 	sprd_dma_disable(sdev);
1152 	return ret;
1153 }
1154 
1155 static int sprd_dma_remove(struct platform_device *pdev)
1156 {
1157 	struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
1158 	struct sprd_dma_chn *c, *cn;
1159 	int ret;
1160 
1161 	ret = pm_runtime_get_sync(&pdev->dev);
1162 	if (ret < 0)
1163 		return ret;
1164 
1165 	/* explicitly free the irq */
1166 	if (sdev->irq > 0)
1167 		devm_free_irq(&pdev->dev, sdev->irq, sdev);
1168 
1169 	list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
1170 				 vc.chan.device_node) {
1171 		list_del(&c->vc.chan.device_node);
1172 		tasklet_kill(&c->vc.task);
1173 	}
1174 
1175 	of_dma_controller_free(pdev->dev.of_node);
1176 	dma_async_device_unregister(&sdev->dma_dev);
1177 	sprd_dma_disable(sdev);
1178 
1179 	pm_runtime_put_noidle(&pdev->dev);
1180 	pm_runtime_disable(&pdev->dev);
1181 	return 0;
1182 }
1183 
1184 static const struct of_device_id sprd_dma_match[] = {
1185 	{ .compatible = "sprd,sc9860-dma", },
1186 	{},
1187 };
1188 
1189 static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
1190 {
1191 	struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1192 
1193 	sprd_dma_disable(sdev);
1194 	return 0;
1195 }
1196 
1197 static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
1198 {
1199 	struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1200 	int ret;
1201 
1202 	ret = sprd_dma_enable(sdev);
1203 	if (ret)
1204 		dev_err(sdev->dma_dev.dev, "enable dma failed\n");
1205 
1206 	return ret;
1207 }
1208 
1209 static const struct dev_pm_ops sprd_dma_pm_ops = {
1210 	SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
1211 			   sprd_dma_runtime_resume,
1212 			   NULL)
1213 };
1214 
1215 static struct platform_driver sprd_dma_driver = {
1216 	.probe = sprd_dma_probe,
1217 	.remove = sprd_dma_remove,
1218 	.driver = {
1219 		.name = "sprd-dma",
1220 		.of_match_table = sprd_dma_match,
1221 		.pm = &sprd_dma_pm_ops,
1222 	},
1223 };
1224 module_platform_driver(sprd_dma_driver);
1225 
1226 MODULE_LICENSE("GPL v2");
1227 MODULE_DESCRIPTION("DMA driver for Spreadtrum");
1228 MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
1229 MODULE_AUTHOR("Eric Long <eric.long@spreadtrum.com>");
1230 MODULE_ALIAS("platform:sprd-dma");
1231