xref: /openbmc/linux/drivers/dma/sprd-dma.c (revision 83268fa6)
1 /*
2  * Copyright (C) 2017 Spreadtrum Communications Inc.
3  *
4  * SPDX-License-Identifier: GPL-2.0
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/dma/sprd-dma.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_dma.h>
18 #include <linux/of_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 
22 #include "virt-dma.h"
23 
24 #define SPRD_DMA_CHN_REG_OFFSET		0x1000
25 #define SPRD_DMA_CHN_REG_LENGTH		0x40
26 #define SPRD_DMA_MEMCPY_MIN_SIZE	64
27 
28 /* DMA global registers definition */
29 #define SPRD_DMA_GLB_PAUSE		0x0
30 #define SPRD_DMA_GLB_FRAG_WAIT		0x4
31 #define SPRD_DMA_GLB_REQ_PEND0_EN	0x8
32 #define SPRD_DMA_GLB_REQ_PEND1_EN	0xc
33 #define SPRD_DMA_GLB_INT_RAW_STS	0x10
34 #define SPRD_DMA_GLB_INT_MSK_STS	0x14
35 #define SPRD_DMA_GLB_REQ_STS		0x18
36 #define SPRD_DMA_GLB_CHN_EN_STS		0x1c
37 #define SPRD_DMA_GLB_DEBUG_STS		0x20
38 #define SPRD_DMA_GLB_ARB_SEL_STS	0x24
39 #define SPRD_DMA_GLB_REQ_UID(uid)	(0x4 * ((uid) - 1))
40 #define SPRD_DMA_GLB_REQ_UID_OFFSET	0x2000
41 
42 /* DMA channel registers definition */
43 #define SPRD_DMA_CHN_PAUSE		0x0
44 #define SPRD_DMA_CHN_REQ		0x4
45 #define SPRD_DMA_CHN_CFG		0x8
46 #define SPRD_DMA_CHN_INTC		0xc
47 #define SPRD_DMA_CHN_SRC_ADDR		0x10
48 #define SPRD_DMA_CHN_DES_ADDR		0x14
49 #define SPRD_DMA_CHN_FRG_LEN		0x18
50 #define SPRD_DMA_CHN_BLK_LEN		0x1c
51 #define SPRD_DMA_CHN_TRSC_LEN		0x20
52 #define SPRD_DMA_CHN_TRSF_STEP		0x24
53 #define SPRD_DMA_CHN_WARP_PTR		0x28
54 #define SPRD_DMA_CHN_WARP_TO		0x2c
55 #define SPRD_DMA_CHN_LLIST_PTR		0x30
56 #define SPRD_DMA_CHN_FRAG_STEP		0x34
57 #define SPRD_DMA_CHN_SRC_BLK_STEP	0x38
58 #define SPRD_DMA_CHN_DES_BLK_STEP	0x3c
59 
60 /* SPRD_DMA_CHN_INTC register definition */
61 #define SPRD_DMA_INT_MASK		GENMASK(4, 0)
62 #define SPRD_DMA_INT_CLR_OFFSET		24
63 #define SPRD_DMA_FRAG_INT_EN		BIT(0)
64 #define SPRD_DMA_BLK_INT_EN		BIT(1)
65 #define SPRD_DMA_TRANS_INT_EN		BIT(2)
66 #define SPRD_DMA_LIST_INT_EN		BIT(3)
67 #define SPRD_DMA_CFG_ERR_INT_EN		BIT(4)
68 
69 /* SPRD_DMA_CHN_CFG register definition */
70 #define SPRD_DMA_CHN_EN			BIT(0)
71 #define SPRD_DMA_LINKLIST_EN		BIT(4)
72 #define SPRD_DMA_WAIT_BDONE_OFFSET	24
73 #define SPRD_DMA_DONOT_WAIT_BDONE	1
74 
75 /* SPRD_DMA_CHN_REQ register definition */
76 #define SPRD_DMA_REQ_EN			BIT(0)
77 
78 /* SPRD_DMA_CHN_PAUSE register definition */
79 #define SPRD_DMA_PAUSE_EN		BIT(0)
80 #define SPRD_DMA_PAUSE_STS		BIT(2)
81 #define SPRD_DMA_PAUSE_CNT		0x2000
82 
83 /* DMA_CHN_WARP_* register definition */
84 #define SPRD_DMA_HIGH_ADDR_MASK		GENMASK(31, 28)
85 #define SPRD_DMA_LOW_ADDR_MASK		GENMASK(31, 0)
86 #define SPRD_DMA_HIGH_ADDR_OFFSET	4
87 
88 /* SPRD_DMA_CHN_INTC register definition */
89 #define SPRD_DMA_FRAG_INT_STS		BIT(16)
90 #define SPRD_DMA_BLK_INT_STS		BIT(17)
91 #define SPRD_DMA_TRSC_INT_STS		BIT(18)
92 #define SPRD_DMA_LIST_INT_STS		BIT(19)
93 #define SPRD_DMA_CFGERR_INT_STS		BIT(20)
94 #define SPRD_DMA_CHN_INT_STS					\
95 	(SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS |		\
96 	 SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS |	\
97 	 SPRD_DMA_CFGERR_INT_STS)
98 
99 /* SPRD_DMA_CHN_FRG_LEN register definition */
100 #define SPRD_DMA_SRC_DATAWIDTH_OFFSET	30
101 #define SPRD_DMA_DES_DATAWIDTH_OFFSET	28
102 #define SPRD_DMA_SWT_MODE_OFFSET	26
103 #define SPRD_DMA_REQ_MODE_OFFSET	24
104 #define SPRD_DMA_REQ_MODE_MASK		GENMASK(1, 0)
105 #define SPRD_DMA_FIX_SEL_OFFSET		21
106 #define SPRD_DMA_FIX_EN_OFFSET		20
107 #define SPRD_DMA_LLIST_END		BIT(19)
108 #define SPRD_DMA_FRG_LEN_MASK		GENMASK(16, 0)
109 
110 /* SPRD_DMA_CHN_BLK_LEN register definition */
111 #define SPRD_DMA_BLK_LEN_MASK		GENMASK(16, 0)
112 
113 /* SPRD_DMA_CHN_TRSC_LEN register definition */
114 #define SPRD_DMA_TRSC_LEN_MASK		GENMASK(27, 0)
115 
116 /* SPRD_DMA_CHN_TRSF_STEP register definition */
117 #define SPRD_DMA_DEST_TRSF_STEP_OFFSET	16
118 #define SPRD_DMA_SRC_TRSF_STEP_OFFSET	0
119 #define SPRD_DMA_TRSF_STEP_MASK		GENMASK(15, 0)
120 
121 /* define the DMA transfer step type */
122 #define SPRD_DMA_NONE_STEP		0
123 #define SPRD_DMA_BYTE_STEP		1
124 #define SPRD_DMA_SHORT_STEP		2
125 #define SPRD_DMA_WORD_STEP		4
126 #define SPRD_DMA_DWORD_STEP		8
127 
128 #define SPRD_DMA_SOFTWARE_UID		0
129 
130 /* dma data width values */
131 enum sprd_dma_datawidth {
132 	SPRD_DMA_DATAWIDTH_1_BYTE,
133 	SPRD_DMA_DATAWIDTH_2_BYTES,
134 	SPRD_DMA_DATAWIDTH_4_BYTES,
135 	SPRD_DMA_DATAWIDTH_8_BYTES,
136 };
137 
138 /* dma channel hardware configuration */
139 struct sprd_dma_chn_hw {
140 	u32 pause;
141 	u32 req;
142 	u32 cfg;
143 	u32 intc;
144 	u32 src_addr;
145 	u32 des_addr;
146 	u32 frg_len;
147 	u32 blk_len;
148 	u32 trsc_len;
149 	u32 trsf_step;
150 	u32 wrap_ptr;
151 	u32 wrap_to;
152 	u32 llist_ptr;
153 	u32 frg_step;
154 	u32 src_blk_step;
155 	u32 des_blk_step;
156 };
157 
158 /* dma request description */
159 struct sprd_dma_desc {
160 	struct virt_dma_desc	vd;
161 	struct sprd_dma_chn_hw	chn_hw;
162 };
163 
164 /* dma channel description */
165 struct sprd_dma_chn {
166 	struct virt_dma_chan	vc;
167 	void __iomem		*chn_base;
168 	struct sprd_dma_linklist	linklist;
169 	struct dma_slave_config	slave_cfg;
170 	u32			chn_num;
171 	u32			dev_id;
172 	struct sprd_dma_desc	*cur_desc;
173 };
174 
175 /* SPRD dma device */
176 struct sprd_dma_dev {
177 	struct dma_device	dma_dev;
178 	void __iomem		*glb_base;
179 	struct clk		*clk;
180 	struct clk		*ashb_clk;
181 	int			irq;
182 	u32			total_chns;
183 	struct sprd_dma_chn	channels[0];
184 };
185 
186 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
187 static struct of_dma_filter_info sprd_dma_info = {
188 	.filter_fn = sprd_dma_filter_fn,
189 };
190 
191 static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
192 {
193 	return container_of(c, struct sprd_dma_chn, vc.chan);
194 }
195 
196 static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
197 {
198 	struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
199 
200 	return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
201 }
202 
203 static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
204 {
205 	return container_of(vd, struct sprd_dma_desc, vd);
206 }
207 
208 static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
209 				u32 mask, u32 val)
210 {
211 	u32 orig = readl(schan->chn_base + reg);
212 	u32 tmp;
213 
214 	tmp = (orig & ~mask) | val;
215 	writel(tmp, schan->chn_base + reg);
216 }
217 
218 static int sprd_dma_enable(struct sprd_dma_dev *sdev)
219 {
220 	int ret;
221 
222 	ret = clk_prepare_enable(sdev->clk);
223 	if (ret)
224 		return ret;
225 
226 	/*
227 	 * The ashb_clk is optional and only for AGCP DMA controller, so we
228 	 * need add one condition to check if the ashb_clk need enable.
229 	 */
230 	if (!IS_ERR(sdev->ashb_clk))
231 		ret = clk_prepare_enable(sdev->ashb_clk);
232 
233 	return ret;
234 }
235 
236 static void sprd_dma_disable(struct sprd_dma_dev *sdev)
237 {
238 	clk_disable_unprepare(sdev->clk);
239 
240 	/*
241 	 * Need to check if we need disable the optional ashb_clk for AGCP DMA.
242 	 */
243 	if (!IS_ERR(sdev->ashb_clk))
244 		clk_disable_unprepare(sdev->ashb_clk);
245 }
246 
247 static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
248 {
249 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
250 	u32 dev_id = schan->dev_id;
251 
252 	if (dev_id != SPRD_DMA_SOFTWARE_UID) {
253 		u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
254 				 SPRD_DMA_GLB_REQ_UID(dev_id);
255 
256 		writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
257 	}
258 }
259 
260 static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
261 {
262 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
263 	u32 dev_id = schan->dev_id;
264 
265 	if (dev_id != SPRD_DMA_SOFTWARE_UID) {
266 		u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
267 				 SPRD_DMA_GLB_REQ_UID(dev_id);
268 
269 		writel(0, sdev->glb_base + uid_offset);
270 	}
271 }
272 
273 static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
274 {
275 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
276 			    SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
277 			    SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
278 }
279 
280 static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
281 {
282 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
283 			    SPRD_DMA_CHN_EN);
284 }
285 
286 static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
287 {
288 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
289 }
290 
291 static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
292 {
293 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
294 			    SPRD_DMA_REQ_EN);
295 }
296 
297 static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
298 {
299 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
300 	u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
301 
302 	if (enable) {
303 		sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
304 				    SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
305 
306 		do {
307 			pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
308 			if (pause & SPRD_DMA_PAUSE_STS)
309 				break;
310 
311 			cpu_relax();
312 		} while (--timeout > 0);
313 
314 		if (!timeout)
315 			dev_warn(sdev->dma_dev.dev,
316 				 "pause dma controller timeout\n");
317 	} else {
318 		sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
319 				    SPRD_DMA_PAUSE_EN, 0);
320 	}
321 }
322 
323 static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
324 {
325 	u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
326 
327 	if (!(cfg & SPRD_DMA_CHN_EN))
328 		return;
329 
330 	sprd_dma_pause_resume(schan, true);
331 	sprd_dma_disable_chn(schan);
332 }
333 
334 static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
335 {
336 	unsigned long addr, addr_high;
337 
338 	addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
339 	addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
340 		    SPRD_DMA_HIGH_ADDR_MASK;
341 
342 	return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
343 }
344 
345 static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
346 {
347 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
348 	u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
349 		       SPRD_DMA_CHN_INT_STS;
350 
351 	switch (intc_sts) {
352 	case SPRD_DMA_CFGERR_INT_STS:
353 		return SPRD_DMA_CFGERR_INT;
354 
355 	case SPRD_DMA_LIST_INT_STS:
356 		return SPRD_DMA_LIST_INT;
357 
358 	case SPRD_DMA_TRSC_INT_STS:
359 		return SPRD_DMA_TRANS_INT;
360 
361 	case SPRD_DMA_BLK_INT_STS:
362 		return SPRD_DMA_BLK_INT;
363 
364 	case SPRD_DMA_FRAG_INT_STS:
365 		return SPRD_DMA_FRAG_INT;
366 
367 	default:
368 		dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
369 		return SPRD_DMA_NO_INT;
370 	}
371 }
372 
373 static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
374 {
375 	u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
376 
377 	return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
378 }
379 
380 static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
381 				    struct sprd_dma_desc *sdesc)
382 {
383 	struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
384 
385 	writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
386 	writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
387 	writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
388 	writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
389 	writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
390 	writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
391 	writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
392 	writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
393 	writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
394 	writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
395 	writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
396 	writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
397 	writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
398 	writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
399 	writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
400 	writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
401 }
402 
403 static void sprd_dma_start(struct sprd_dma_chn *schan)
404 {
405 	struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
406 
407 	if (!vd)
408 		return;
409 
410 	list_del(&vd->node);
411 	schan->cur_desc = to_sprd_dma_desc(vd);
412 
413 	/*
414 	 * Copy the DMA configuration from DMA descriptor to this hardware
415 	 * channel.
416 	 */
417 	sprd_dma_set_chn_config(schan, schan->cur_desc);
418 	sprd_dma_set_uid(schan);
419 	sprd_dma_enable_chn(schan);
420 
421 	if (schan->dev_id == SPRD_DMA_SOFTWARE_UID)
422 		sprd_dma_soft_request(schan);
423 }
424 
425 static void sprd_dma_stop(struct sprd_dma_chn *schan)
426 {
427 	sprd_dma_stop_and_disable(schan);
428 	sprd_dma_unset_uid(schan);
429 	sprd_dma_clear_int(schan);
430 }
431 
432 static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
433 				      enum sprd_dma_int_type int_type,
434 				      enum sprd_dma_req_mode req_mode)
435 {
436 	if (int_type == SPRD_DMA_NO_INT)
437 		return false;
438 
439 	if (int_type >= req_mode + 1)
440 		return true;
441 	else
442 		return false;
443 }
444 
445 static irqreturn_t dma_irq_handle(int irq, void *dev_id)
446 {
447 	struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
448 	u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
449 	struct sprd_dma_chn *schan;
450 	struct sprd_dma_desc *sdesc;
451 	enum sprd_dma_req_mode req_type;
452 	enum sprd_dma_int_type int_type;
453 	bool trans_done = false;
454 	u32 i;
455 
456 	while (irq_status) {
457 		i = __ffs(irq_status);
458 		irq_status &= (irq_status - 1);
459 		schan = &sdev->channels[i];
460 
461 		spin_lock(&schan->vc.lock);
462 		int_type = sprd_dma_get_int_type(schan);
463 		req_type = sprd_dma_get_req_type(schan);
464 		sprd_dma_clear_int(schan);
465 
466 		sdesc = schan->cur_desc;
467 
468 		/* Check if the dma request descriptor is done. */
469 		trans_done = sprd_dma_check_trans_done(sdesc, int_type,
470 						       req_type);
471 		if (trans_done == true) {
472 			vchan_cookie_complete(&sdesc->vd);
473 			schan->cur_desc = NULL;
474 			sprd_dma_start(schan);
475 		}
476 		spin_unlock(&schan->vc.lock);
477 	}
478 
479 	return IRQ_HANDLED;
480 }
481 
482 static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
483 {
484 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
485 	int ret;
486 
487 	ret = pm_runtime_get_sync(chan->device->dev);
488 	if (ret < 0)
489 		return ret;
490 
491 	schan->dev_id = SPRD_DMA_SOFTWARE_UID;
492 	return 0;
493 }
494 
495 static void sprd_dma_free_chan_resources(struct dma_chan *chan)
496 {
497 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
498 	unsigned long flags;
499 
500 	spin_lock_irqsave(&schan->vc.lock, flags);
501 	sprd_dma_stop(schan);
502 	spin_unlock_irqrestore(&schan->vc.lock, flags);
503 
504 	vchan_free_chan_resources(&schan->vc);
505 	pm_runtime_put(chan->device->dev);
506 }
507 
508 static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
509 					  dma_cookie_t cookie,
510 					  struct dma_tx_state *txstate)
511 {
512 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
513 	struct virt_dma_desc *vd;
514 	unsigned long flags;
515 	enum dma_status ret;
516 	u32 pos;
517 
518 	ret = dma_cookie_status(chan, cookie, txstate);
519 	if (ret == DMA_COMPLETE || !txstate)
520 		return ret;
521 
522 	spin_lock_irqsave(&schan->vc.lock, flags);
523 	vd = vchan_find_desc(&schan->vc, cookie);
524 	if (vd) {
525 		struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
526 		struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
527 
528 		if (hw->trsc_len > 0)
529 			pos = hw->trsc_len;
530 		else if (hw->blk_len > 0)
531 			pos = hw->blk_len;
532 		else if (hw->frg_len > 0)
533 			pos = hw->frg_len;
534 		else
535 			pos = 0;
536 	} else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
537 		pos = sprd_dma_get_dst_addr(schan);
538 	} else {
539 		pos = 0;
540 	}
541 	spin_unlock_irqrestore(&schan->vc.lock, flags);
542 
543 	dma_set_residue(txstate, pos);
544 	return ret;
545 }
546 
547 static void sprd_dma_issue_pending(struct dma_chan *chan)
548 {
549 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(&schan->vc.lock, flags);
553 	if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
554 		sprd_dma_start(schan);
555 	spin_unlock_irqrestore(&schan->vc.lock, flags);
556 }
557 
558 static int sprd_dma_get_datawidth(enum dma_slave_buswidth buswidth)
559 {
560 	switch (buswidth) {
561 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
562 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
563 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
564 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
565 		return ffs(buswidth) - 1;
566 
567 	default:
568 		return -EINVAL;
569 	}
570 }
571 
572 static int sprd_dma_get_step(enum dma_slave_buswidth buswidth)
573 {
574 	switch (buswidth) {
575 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
576 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
577 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
578 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
579 		return buswidth;
580 
581 	default:
582 		return -EINVAL;
583 	}
584 }
585 
586 static int sprd_dma_fill_desc(struct dma_chan *chan,
587 			      struct sprd_dma_chn_hw *hw,
588 			      unsigned int sglen, int sg_index,
589 			      dma_addr_t src, dma_addr_t dst, u32 len,
590 			      enum dma_transfer_direction dir,
591 			      unsigned long flags,
592 			      struct dma_slave_config *slave_cfg)
593 {
594 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
595 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
596 	u32 req_mode = (flags >> SPRD_DMA_REQ_SHIFT) & SPRD_DMA_REQ_MODE_MASK;
597 	u32 int_mode = flags & SPRD_DMA_INT_MASK;
598 	int src_datawidth, dst_datawidth, src_step, dst_step;
599 	u32 temp, fix_mode = 0, fix_en = 0;
600 
601 	if (dir == DMA_MEM_TO_DEV) {
602 		src_step = sprd_dma_get_step(slave_cfg->src_addr_width);
603 		if (src_step < 0) {
604 			dev_err(sdev->dma_dev.dev, "invalid source step\n");
605 			return src_step;
606 		}
607 		dst_step = SPRD_DMA_NONE_STEP;
608 	} else {
609 		dst_step = sprd_dma_get_step(slave_cfg->dst_addr_width);
610 		if (dst_step < 0) {
611 			dev_err(sdev->dma_dev.dev, "invalid destination step\n");
612 			return dst_step;
613 		}
614 		src_step = SPRD_DMA_NONE_STEP;
615 	}
616 
617 	src_datawidth = sprd_dma_get_datawidth(slave_cfg->src_addr_width);
618 	if (src_datawidth < 0) {
619 		dev_err(sdev->dma_dev.dev, "invalid source datawidth\n");
620 		return src_datawidth;
621 	}
622 
623 	dst_datawidth = sprd_dma_get_datawidth(slave_cfg->dst_addr_width);
624 	if (dst_datawidth < 0) {
625 		dev_err(sdev->dma_dev.dev, "invalid destination datawidth\n");
626 		return dst_datawidth;
627 	}
628 
629 	if (slave_cfg->slave_id)
630 		schan->dev_id = slave_cfg->slave_id;
631 
632 	hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
633 
634 	/*
635 	 * wrap_ptr and wrap_to will save the high 4 bits source address and
636 	 * destination address.
637 	 */
638 	hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
639 	hw->wrap_to = (dst >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
640 	hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
641 	hw->des_addr = dst & SPRD_DMA_LOW_ADDR_MASK;
642 
643 	/*
644 	 * If the src step and dst step both are 0 or both are not 0, that means
645 	 * we can not enable the fix mode. If one is 0 and another one is not,
646 	 * we can enable the fix mode.
647 	 */
648 	if ((src_step != 0 && dst_step != 0) || (src_step | dst_step) == 0) {
649 		fix_en = 0;
650 	} else {
651 		fix_en = 1;
652 		if (src_step)
653 			fix_mode = 1;
654 		else
655 			fix_mode = 0;
656 	}
657 
658 	hw->intc = int_mode | SPRD_DMA_CFG_ERR_INT_EN;
659 
660 	temp = src_datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
661 	temp |= dst_datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
662 	temp |= req_mode << SPRD_DMA_REQ_MODE_OFFSET;
663 	temp |= fix_mode << SPRD_DMA_FIX_SEL_OFFSET;
664 	temp |= fix_en << SPRD_DMA_FIX_EN_OFFSET;
665 	temp |= slave_cfg->src_maxburst & SPRD_DMA_FRG_LEN_MASK;
666 	hw->frg_len = temp;
667 
668 	hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
669 	hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
670 
671 	temp = (dst_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
672 	temp |= (src_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
673 	hw->trsf_step = temp;
674 
675 	/* link-list configuration */
676 	if (schan->linklist.phy_addr) {
677 		if (sg_index == sglen - 1)
678 			hw->frg_len |= SPRD_DMA_LLIST_END;
679 
680 		hw->cfg |= SPRD_DMA_LINKLIST_EN;
681 
682 		/* link-list index */
683 		temp = (sg_index + 1) % sglen;
684 		/* Next link-list configuration's physical address offset */
685 		temp = temp * sizeof(*hw) + SPRD_DMA_CHN_SRC_ADDR;
686 		/*
687 		 * Set the link-list pointer point to next link-list
688 		 * configuration's physical address.
689 		 */
690 		hw->llist_ptr = schan->linklist.phy_addr + temp;
691 	} else {
692 		hw->llist_ptr = 0;
693 	}
694 
695 	hw->frg_step = 0;
696 	hw->src_blk_step = 0;
697 	hw->des_blk_step = 0;
698 	return 0;
699 }
700 
701 static int sprd_dma_fill_linklist_desc(struct dma_chan *chan,
702 				       unsigned int sglen, int sg_index,
703 				       dma_addr_t src, dma_addr_t dst, u32 len,
704 				       enum dma_transfer_direction dir,
705 				       unsigned long flags,
706 				       struct dma_slave_config *slave_cfg)
707 {
708 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
709 	struct sprd_dma_chn_hw *hw;
710 
711 	if (!schan->linklist.virt_addr)
712 		return -EINVAL;
713 
714 	hw = (struct sprd_dma_chn_hw *)(schan->linklist.virt_addr +
715 					sg_index * sizeof(*hw));
716 
717 	return sprd_dma_fill_desc(chan, hw, sglen, sg_index, src, dst, len,
718 				  dir, flags, slave_cfg);
719 }
720 
721 static struct dma_async_tx_descriptor *
722 sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
723 			 size_t len, unsigned long flags)
724 {
725 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
726 	struct sprd_dma_desc *sdesc;
727 	struct sprd_dma_chn_hw *hw;
728 	enum sprd_dma_datawidth datawidth;
729 	u32 step, temp;
730 
731 	sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
732 	if (!sdesc)
733 		return NULL;
734 
735 	hw = &sdesc->chn_hw;
736 
737 	hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
738 	hw->intc = SPRD_DMA_TRANS_INT | SPRD_DMA_CFG_ERR_INT_EN;
739 	hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
740 	hw->des_addr = dest & SPRD_DMA_LOW_ADDR_MASK;
741 	hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
742 		SPRD_DMA_HIGH_ADDR_MASK;
743 	hw->wrap_to = (dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
744 		SPRD_DMA_HIGH_ADDR_MASK;
745 
746 	if (IS_ALIGNED(len, 8)) {
747 		datawidth = SPRD_DMA_DATAWIDTH_8_BYTES;
748 		step = SPRD_DMA_DWORD_STEP;
749 	} else if (IS_ALIGNED(len, 4)) {
750 		datawidth = SPRD_DMA_DATAWIDTH_4_BYTES;
751 		step = SPRD_DMA_WORD_STEP;
752 	} else if (IS_ALIGNED(len, 2)) {
753 		datawidth = SPRD_DMA_DATAWIDTH_2_BYTES;
754 		step = SPRD_DMA_SHORT_STEP;
755 	} else {
756 		datawidth = SPRD_DMA_DATAWIDTH_1_BYTE;
757 		step = SPRD_DMA_BYTE_STEP;
758 	}
759 
760 	temp = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
761 	temp |= datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
762 	temp |= SPRD_DMA_TRANS_REQ << SPRD_DMA_REQ_MODE_OFFSET;
763 	temp |= len & SPRD_DMA_FRG_LEN_MASK;
764 	hw->frg_len = temp;
765 
766 	hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
767 	hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
768 
769 	temp = (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
770 	temp |= (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
771 	hw->trsf_step = temp;
772 
773 	return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
774 }
775 
776 static struct dma_async_tx_descriptor *
777 sprd_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
778 		       unsigned int sglen, enum dma_transfer_direction dir,
779 		       unsigned long flags, void *context)
780 {
781 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
782 	struct dma_slave_config *slave_cfg = &schan->slave_cfg;
783 	dma_addr_t src = 0, dst = 0;
784 	struct sprd_dma_desc *sdesc;
785 	struct scatterlist *sg;
786 	u32 len = 0;
787 	int ret, i;
788 
789 	if (!is_slave_direction(dir))
790 		return NULL;
791 
792 	if (context) {
793 		struct sprd_dma_linklist *ll_cfg =
794 			(struct sprd_dma_linklist *)context;
795 
796 		schan->linklist.phy_addr = ll_cfg->phy_addr;
797 		schan->linklist.virt_addr = ll_cfg->virt_addr;
798 	} else {
799 		schan->linklist.phy_addr = 0;
800 		schan->linklist.virt_addr = 0;
801 	}
802 
803 	sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
804 	if (!sdesc)
805 		return NULL;
806 
807 	for_each_sg(sgl, sg, sglen, i) {
808 		len = sg_dma_len(sg);
809 
810 		if (dir == DMA_MEM_TO_DEV) {
811 			src = sg_dma_address(sg);
812 			dst = slave_cfg->dst_addr;
813 		} else {
814 			src = slave_cfg->src_addr;
815 			dst = sg_dma_address(sg);
816 		}
817 
818 		/*
819 		 * The link-list mode needs at least 2 link-list
820 		 * configurations. If there is only one sg, it doesn't
821 		 * need to fill the link-list configuration.
822 		 */
823 		if (sglen < 2)
824 			break;
825 
826 		ret = sprd_dma_fill_linklist_desc(chan, sglen, i, src, dst, len,
827 						  dir, flags, slave_cfg);
828 		if (ret) {
829 			kfree(sdesc);
830 			return NULL;
831 		}
832 	}
833 
834 	ret = sprd_dma_fill_desc(chan, &sdesc->chn_hw, 0, 0, src, dst, len,
835 				 dir, flags, slave_cfg);
836 	if (ret) {
837 		kfree(sdesc);
838 		return NULL;
839 	}
840 
841 	return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
842 }
843 
844 static int sprd_dma_slave_config(struct dma_chan *chan,
845 				 struct dma_slave_config *config)
846 {
847 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
848 	struct dma_slave_config *slave_cfg = &schan->slave_cfg;
849 
850 	if (!is_slave_direction(config->direction))
851 		return -EINVAL;
852 
853 	memcpy(slave_cfg, config, sizeof(*config));
854 	return 0;
855 }
856 
857 static int sprd_dma_pause(struct dma_chan *chan)
858 {
859 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
860 	unsigned long flags;
861 
862 	spin_lock_irqsave(&schan->vc.lock, flags);
863 	sprd_dma_pause_resume(schan, true);
864 	spin_unlock_irqrestore(&schan->vc.lock, flags);
865 
866 	return 0;
867 }
868 
869 static int sprd_dma_resume(struct dma_chan *chan)
870 {
871 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
872 	unsigned long flags;
873 
874 	spin_lock_irqsave(&schan->vc.lock, flags);
875 	sprd_dma_pause_resume(schan, false);
876 	spin_unlock_irqrestore(&schan->vc.lock, flags);
877 
878 	return 0;
879 }
880 
881 static int sprd_dma_terminate_all(struct dma_chan *chan)
882 {
883 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
884 	unsigned long flags;
885 	LIST_HEAD(head);
886 
887 	spin_lock_irqsave(&schan->vc.lock, flags);
888 	sprd_dma_stop(schan);
889 
890 	vchan_get_all_descriptors(&schan->vc, &head);
891 	spin_unlock_irqrestore(&schan->vc.lock, flags);
892 
893 	vchan_dma_desc_free_list(&schan->vc, &head);
894 	return 0;
895 }
896 
897 static void sprd_dma_free_desc(struct virt_dma_desc *vd)
898 {
899 	struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
900 
901 	kfree(sdesc);
902 }
903 
904 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
905 {
906 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
907 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
908 	u32 req = *(u32 *)param;
909 
910 	if (req < sdev->total_chns)
911 		return req == schan->chn_num + 1;
912 	else
913 		return false;
914 }
915 
916 static int sprd_dma_probe(struct platform_device *pdev)
917 {
918 	struct device_node *np = pdev->dev.of_node;
919 	struct sprd_dma_dev *sdev;
920 	struct sprd_dma_chn *dma_chn;
921 	struct resource *res;
922 	u32 chn_count;
923 	int ret, i;
924 
925 	ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
926 	if (ret) {
927 		dev_err(&pdev->dev, "get dma channels count failed\n");
928 		return ret;
929 	}
930 
931 	sdev = devm_kzalloc(&pdev->dev,
932 			    struct_size(sdev, channels, chn_count),
933 			    GFP_KERNEL);
934 	if (!sdev)
935 		return -ENOMEM;
936 
937 	sdev->clk = devm_clk_get(&pdev->dev, "enable");
938 	if (IS_ERR(sdev->clk)) {
939 		dev_err(&pdev->dev, "get enable clock failed\n");
940 		return PTR_ERR(sdev->clk);
941 	}
942 
943 	/* ashb clock is optional for AGCP DMA */
944 	sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
945 	if (IS_ERR(sdev->ashb_clk))
946 		dev_warn(&pdev->dev, "no optional ashb eb clock\n");
947 
948 	/*
949 	 * We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
950 	 * DMA controller, it can or do not request the irq, which will save
951 	 * system power without resuming system by DMA interrupts if AGCP DMA
952 	 * does not request the irq. Thus the DMA interrupts property should
953 	 * be optional.
954 	 */
955 	sdev->irq = platform_get_irq(pdev, 0);
956 	if (sdev->irq > 0) {
957 		ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
958 				       0, "sprd_dma", (void *)sdev);
959 		if (ret < 0) {
960 			dev_err(&pdev->dev, "request dma irq failed\n");
961 			return ret;
962 		}
963 	} else {
964 		dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
965 	}
966 
967 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
968 	sdev->glb_base = devm_ioremap_resource(&pdev->dev, res);
969 	if (IS_ERR(sdev->glb_base))
970 		return PTR_ERR(sdev->glb_base);
971 
972 	dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
973 	sdev->total_chns = chn_count;
974 	sdev->dma_dev.chancnt = chn_count;
975 	INIT_LIST_HEAD(&sdev->dma_dev.channels);
976 	INIT_LIST_HEAD(&sdev->dma_dev.global_node);
977 	sdev->dma_dev.dev = &pdev->dev;
978 	sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
979 	sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
980 	sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
981 	sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
982 	sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
983 	sdev->dma_dev.device_prep_slave_sg = sprd_dma_prep_slave_sg;
984 	sdev->dma_dev.device_config = sprd_dma_slave_config;
985 	sdev->dma_dev.device_pause = sprd_dma_pause;
986 	sdev->dma_dev.device_resume = sprd_dma_resume;
987 	sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
988 
989 	for (i = 0; i < chn_count; i++) {
990 		dma_chn = &sdev->channels[i];
991 		dma_chn->chn_num = i;
992 		dma_chn->cur_desc = NULL;
993 		/* get each channel's registers base address. */
994 		dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
995 				    SPRD_DMA_CHN_REG_LENGTH * i;
996 
997 		dma_chn->vc.desc_free = sprd_dma_free_desc;
998 		vchan_init(&dma_chn->vc, &sdev->dma_dev);
999 	}
1000 
1001 	platform_set_drvdata(pdev, sdev);
1002 	ret = sprd_dma_enable(sdev);
1003 	if (ret)
1004 		return ret;
1005 
1006 	pm_runtime_set_active(&pdev->dev);
1007 	pm_runtime_enable(&pdev->dev);
1008 
1009 	ret = pm_runtime_get_sync(&pdev->dev);
1010 	if (ret < 0)
1011 		goto err_rpm;
1012 
1013 	ret = dma_async_device_register(&sdev->dma_dev);
1014 	if (ret < 0) {
1015 		dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
1016 		goto err_register;
1017 	}
1018 
1019 	sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
1020 	ret = of_dma_controller_register(np, of_dma_simple_xlate,
1021 					 &sprd_dma_info);
1022 	if (ret)
1023 		goto err_of_register;
1024 
1025 	pm_runtime_put(&pdev->dev);
1026 	return 0;
1027 
1028 err_of_register:
1029 	dma_async_device_unregister(&sdev->dma_dev);
1030 err_register:
1031 	pm_runtime_put_noidle(&pdev->dev);
1032 	pm_runtime_disable(&pdev->dev);
1033 err_rpm:
1034 	sprd_dma_disable(sdev);
1035 	return ret;
1036 }
1037 
1038 static int sprd_dma_remove(struct platform_device *pdev)
1039 {
1040 	struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
1041 	struct sprd_dma_chn *c, *cn;
1042 	int ret;
1043 
1044 	ret = pm_runtime_get_sync(&pdev->dev);
1045 	if (ret < 0)
1046 		return ret;
1047 
1048 	/* explicitly free the irq */
1049 	if (sdev->irq > 0)
1050 		devm_free_irq(&pdev->dev, sdev->irq, sdev);
1051 
1052 	list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
1053 				 vc.chan.device_node) {
1054 		list_del(&c->vc.chan.device_node);
1055 		tasklet_kill(&c->vc.task);
1056 	}
1057 
1058 	of_dma_controller_free(pdev->dev.of_node);
1059 	dma_async_device_unregister(&sdev->dma_dev);
1060 	sprd_dma_disable(sdev);
1061 
1062 	pm_runtime_put_noidle(&pdev->dev);
1063 	pm_runtime_disable(&pdev->dev);
1064 	return 0;
1065 }
1066 
1067 static const struct of_device_id sprd_dma_match[] = {
1068 	{ .compatible = "sprd,sc9860-dma", },
1069 	{},
1070 };
1071 
1072 static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
1073 {
1074 	struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1075 
1076 	sprd_dma_disable(sdev);
1077 	return 0;
1078 }
1079 
1080 static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
1081 {
1082 	struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1083 	int ret;
1084 
1085 	ret = sprd_dma_enable(sdev);
1086 	if (ret)
1087 		dev_err(sdev->dma_dev.dev, "enable dma failed\n");
1088 
1089 	return ret;
1090 }
1091 
1092 static const struct dev_pm_ops sprd_dma_pm_ops = {
1093 	SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
1094 			   sprd_dma_runtime_resume,
1095 			   NULL)
1096 };
1097 
1098 static struct platform_driver sprd_dma_driver = {
1099 	.probe = sprd_dma_probe,
1100 	.remove = sprd_dma_remove,
1101 	.driver = {
1102 		.name = "sprd-dma",
1103 		.of_match_table = sprd_dma_match,
1104 		.pm = &sprd_dma_pm_ops,
1105 	},
1106 };
1107 module_platform_driver(sprd_dma_driver);
1108 
1109 MODULE_LICENSE("GPL v2");
1110 MODULE_DESCRIPTION("DMA driver for Spreadtrum");
1111 MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
1112 MODULE_ALIAS("platform:sprd-dma");
1113