xref: /openbmc/linux/drivers/dma/sprd-dma.c (revision 0e96cf7f)
1 /*
2  * Copyright (C) 2017 Spreadtrum Communications Inc.
3  *
4  * SPDX-License-Identifier: GPL-2.0
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/dma/sprd-dma.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_dma.h>
18 #include <linux/of_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 
22 #include "virt-dma.h"
23 
24 #define SPRD_DMA_CHN_REG_OFFSET		0x1000
25 #define SPRD_DMA_CHN_REG_LENGTH		0x40
26 #define SPRD_DMA_MEMCPY_MIN_SIZE	64
27 
28 /* DMA global registers definition */
29 #define SPRD_DMA_GLB_PAUSE		0x0
30 #define SPRD_DMA_GLB_FRAG_WAIT		0x4
31 #define SPRD_DMA_GLB_REQ_PEND0_EN	0x8
32 #define SPRD_DMA_GLB_REQ_PEND1_EN	0xc
33 #define SPRD_DMA_GLB_INT_RAW_STS	0x10
34 #define SPRD_DMA_GLB_INT_MSK_STS	0x14
35 #define SPRD_DMA_GLB_REQ_STS		0x18
36 #define SPRD_DMA_GLB_CHN_EN_STS		0x1c
37 #define SPRD_DMA_GLB_DEBUG_STS		0x20
38 #define SPRD_DMA_GLB_ARB_SEL_STS	0x24
39 #define SPRD_DMA_GLB_2STAGE_GRP1	0x28
40 #define SPRD_DMA_GLB_2STAGE_GRP2	0x2c
41 #define SPRD_DMA_GLB_REQ_UID(uid)	(0x4 * ((uid) - 1))
42 #define SPRD_DMA_GLB_REQ_UID_OFFSET	0x2000
43 
44 /* DMA channel registers definition */
45 #define SPRD_DMA_CHN_PAUSE		0x0
46 #define SPRD_DMA_CHN_REQ		0x4
47 #define SPRD_DMA_CHN_CFG		0x8
48 #define SPRD_DMA_CHN_INTC		0xc
49 #define SPRD_DMA_CHN_SRC_ADDR		0x10
50 #define SPRD_DMA_CHN_DES_ADDR		0x14
51 #define SPRD_DMA_CHN_FRG_LEN		0x18
52 #define SPRD_DMA_CHN_BLK_LEN		0x1c
53 #define SPRD_DMA_CHN_TRSC_LEN		0x20
54 #define SPRD_DMA_CHN_TRSF_STEP		0x24
55 #define SPRD_DMA_CHN_WARP_PTR		0x28
56 #define SPRD_DMA_CHN_WARP_TO		0x2c
57 #define SPRD_DMA_CHN_LLIST_PTR		0x30
58 #define SPRD_DMA_CHN_FRAG_STEP		0x34
59 #define SPRD_DMA_CHN_SRC_BLK_STEP	0x38
60 #define SPRD_DMA_CHN_DES_BLK_STEP	0x3c
61 
62 /* SPRD_DMA_GLB_2STAGE_GRP register definition */
63 #define SPRD_DMA_GLB_2STAGE_EN		BIT(24)
64 #define SPRD_DMA_GLB_CHN_INT_MASK	GENMASK(23, 20)
65 #define SPRD_DMA_GLB_DEST_INT		BIT(22)
66 #define SPRD_DMA_GLB_SRC_INT		BIT(20)
67 #define SPRD_DMA_GLB_LIST_DONE_TRG	BIT(19)
68 #define SPRD_DMA_GLB_TRANS_DONE_TRG	BIT(18)
69 #define SPRD_DMA_GLB_BLOCK_DONE_TRG	BIT(17)
70 #define SPRD_DMA_GLB_FRAG_DONE_TRG	BIT(16)
71 #define SPRD_DMA_GLB_TRG_OFFSET		16
72 #define SPRD_DMA_GLB_DEST_CHN_MASK	GENMASK(13, 8)
73 #define SPRD_DMA_GLB_DEST_CHN_OFFSET	8
74 #define SPRD_DMA_GLB_SRC_CHN_MASK	GENMASK(5, 0)
75 
76 /* SPRD_DMA_CHN_INTC register definition */
77 #define SPRD_DMA_INT_MASK		GENMASK(4, 0)
78 #define SPRD_DMA_INT_CLR_OFFSET		24
79 #define SPRD_DMA_FRAG_INT_EN		BIT(0)
80 #define SPRD_DMA_BLK_INT_EN		BIT(1)
81 #define SPRD_DMA_TRANS_INT_EN		BIT(2)
82 #define SPRD_DMA_LIST_INT_EN		BIT(3)
83 #define SPRD_DMA_CFG_ERR_INT_EN		BIT(4)
84 
85 /* SPRD_DMA_CHN_CFG register definition */
86 #define SPRD_DMA_CHN_EN			BIT(0)
87 #define SPRD_DMA_LINKLIST_EN		BIT(4)
88 #define SPRD_DMA_WAIT_BDONE_OFFSET	24
89 #define SPRD_DMA_DONOT_WAIT_BDONE	1
90 
91 /* SPRD_DMA_CHN_REQ register definition */
92 #define SPRD_DMA_REQ_EN			BIT(0)
93 
94 /* SPRD_DMA_CHN_PAUSE register definition */
95 #define SPRD_DMA_PAUSE_EN		BIT(0)
96 #define SPRD_DMA_PAUSE_STS		BIT(2)
97 #define SPRD_DMA_PAUSE_CNT		0x2000
98 
99 /* DMA_CHN_WARP_* register definition */
100 #define SPRD_DMA_HIGH_ADDR_MASK		GENMASK(31, 28)
101 #define SPRD_DMA_LOW_ADDR_MASK		GENMASK(31, 0)
102 #define SPRD_DMA_HIGH_ADDR_OFFSET	4
103 
104 /* SPRD_DMA_CHN_INTC register definition */
105 #define SPRD_DMA_FRAG_INT_STS		BIT(16)
106 #define SPRD_DMA_BLK_INT_STS		BIT(17)
107 #define SPRD_DMA_TRSC_INT_STS		BIT(18)
108 #define SPRD_DMA_LIST_INT_STS		BIT(19)
109 #define SPRD_DMA_CFGERR_INT_STS		BIT(20)
110 #define SPRD_DMA_CHN_INT_STS					\
111 	(SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS |		\
112 	 SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS |	\
113 	 SPRD_DMA_CFGERR_INT_STS)
114 
115 /* SPRD_DMA_CHN_FRG_LEN register definition */
116 #define SPRD_DMA_SRC_DATAWIDTH_OFFSET	30
117 #define SPRD_DMA_DES_DATAWIDTH_OFFSET	28
118 #define SPRD_DMA_SWT_MODE_OFFSET	26
119 #define SPRD_DMA_REQ_MODE_OFFSET	24
120 #define SPRD_DMA_REQ_MODE_MASK		GENMASK(1, 0)
121 #define SPRD_DMA_FIX_SEL_OFFSET		21
122 #define SPRD_DMA_FIX_EN_OFFSET		20
123 #define SPRD_DMA_LLIST_END		BIT(19)
124 #define SPRD_DMA_FRG_LEN_MASK		GENMASK(16, 0)
125 
126 /* SPRD_DMA_CHN_BLK_LEN register definition */
127 #define SPRD_DMA_BLK_LEN_MASK		GENMASK(16, 0)
128 
129 /* SPRD_DMA_CHN_TRSC_LEN register definition */
130 #define SPRD_DMA_TRSC_LEN_MASK		GENMASK(27, 0)
131 
132 /* SPRD_DMA_CHN_TRSF_STEP register definition */
133 #define SPRD_DMA_DEST_TRSF_STEP_OFFSET	16
134 #define SPRD_DMA_SRC_TRSF_STEP_OFFSET	0
135 #define SPRD_DMA_TRSF_STEP_MASK		GENMASK(15, 0)
136 
137 /* define DMA channel mode & trigger mode mask */
138 #define SPRD_DMA_CHN_MODE_MASK		GENMASK(7, 0)
139 #define SPRD_DMA_TRG_MODE_MASK		GENMASK(7, 0)
140 #define SPRD_DMA_INT_TYPE_MASK		GENMASK(7, 0)
141 
142 /* define the DMA transfer step type */
143 #define SPRD_DMA_NONE_STEP		0
144 #define SPRD_DMA_BYTE_STEP		1
145 #define SPRD_DMA_SHORT_STEP		2
146 #define SPRD_DMA_WORD_STEP		4
147 #define SPRD_DMA_DWORD_STEP		8
148 
149 #define SPRD_DMA_SOFTWARE_UID		0
150 
151 /* dma data width values */
152 enum sprd_dma_datawidth {
153 	SPRD_DMA_DATAWIDTH_1_BYTE,
154 	SPRD_DMA_DATAWIDTH_2_BYTES,
155 	SPRD_DMA_DATAWIDTH_4_BYTES,
156 	SPRD_DMA_DATAWIDTH_8_BYTES,
157 };
158 
159 /* dma channel hardware configuration */
160 struct sprd_dma_chn_hw {
161 	u32 pause;
162 	u32 req;
163 	u32 cfg;
164 	u32 intc;
165 	u32 src_addr;
166 	u32 des_addr;
167 	u32 frg_len;
168 	u32 blk_len;
169 	u32 trsc_len;
170 	u32 trsf_step;
171 	u32 wrap_ptr;
172 	u32 wrap_to;
173 	u32 llist_ptr;
174 	u32 frg_step;
175 	u32 src_blk_step;
176 	u32 des_blk_step;
177 };
178 
179 /* dma request description */
180 struct sprd_dma_desc {
181 	struct virt_dma_desc	vd;
182 	struct sprd_dma_chn_hw	chn_hw;
183 	enum dma_transfer_direction dir;
184 };
185 
186 /* dma channel description */
187 struct sprd_dma_chn {
188 	struct virt_dma_chan	vc;
189 	void __iomem		*chn_base;
190 	struct sprd_dma_linklist	linklist;
191 	struct dma_slave_config	slave_cfg;
192 	u32			chn_num;
193 	u32			dev_id;
194 	enum sprd_dma_chn_mode	chn_mode;
195 	enum sprd_dma_trg_mode	trg_mode;
196 	enum sprd_dma_int_type	int_type;
197 	struct sprd_dma_desc	*cur_desc;
198 };
199 
200 /* SPRD dma device */
201 struct sprd_dma_dev {
202 	struct dma_device	dma_dev;
203 	void __iomem		*glb_base;
204 	struct clk		*clk;
205 	struct clk		*ashb_clk;
206 	int			irq;
207 	u32			total_chns;
208 	struct sprd_dma_chn	channels[0];
209 };
210 
211 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
212 static struct of_dma_filter_info sprd_dma_info = {
213 	.filter_fn = sprd_dma_filter_fn,
214 };
215 
216 static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
217 {
218 	return container_of(c, struct sprd_dma_chn, vc.chan);
219 }
220 
221 static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
222 {
223 	struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
224 
225 	return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
226 }
227 
228 static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
229 {
230 	return container_of(vd, struct sprd_dma_desc, vd);
231 }
232 
233 static void sprd_dma_glb_update(struct sprd_dma_dev *sdev, u32 reg,
234 				u32 mask, u32 val)
235 {
236 	u32 orig = readl(sdev->glb_base + reg);
237 	u32 tmp;
238 
239 	tmp = (orig & ~mask) | val;
240 	writel(tmp, sdev->glb_base + reg);
241 }
242 
243 static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
244 				u32 mask, u32 val)
245 {
246 	u32 orig = readl(schan->chn_base + reg);
247 	u32 tmp;
248 
249 	tmp = (orig & ~mask) | val;
250 	writel(tmp, schan->chn_base + reg);
251 }
252 
253 static int sprd_dma_enable(struct sprd_dma_dev *sdev)
254 {
255 	int ret;
256 
257 	ret = clk_prepare_enable(sdev->clk);
258 	if (ret)
259 		return ret;
260 
261 	/*
262 	 * The ashb_clk is optional and only for AGCP DMA controller, so we
263 	 * need add one condition to check if the ashb_clk need enable.
264 	 */
265 	if (!IS_ERR(sdev->ashb_clk))
266 		ret = clk_prepare_enable(sdev->ashb_clk);
267 
268 	return ret;
269 }
270 
271 static void sprd_dma_disable(struct sprd_dma_dev *sdev)
272 {
273 	clk_disable_unprepare(sdev->clk);
274 
275 	/*
276 	 * Need to check if we need disable the optional ashb_clk for AGCP DMA.
277 	 */
278 	if (!IS_ERR(sdev->ashb_clk))
279 		clk_disable_unprepare(sdev->ashb_clk);
280 }
281 
282 static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
283 {
284 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
285 	u32 dev_id = schan->dev_id;
286 
287 	if (dev_id != SPRD_DMA_SOFTWARE_UID) {
288 		u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
289 				 SPRD_DMA_GLB_REQ_UID(dev_id);
290 
291 		writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
292 	}
293 }
294 
295 static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
296 {
297 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
298 	u32 dev_id = schan->dev_id;
299 
300 	if (dev_id != SPRD_DMA_SOFTWARE_UID) {
301 		u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
302 				 SPRD_DMA_GLB_REQ_UID(dev_id);
303 
304 		writel(0, sdev->glb_base + uid_offset);
305 	}
306 }
307 
308 static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
309 {
310 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
311 			    SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
312 			    SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
313 }
314 
315 static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
316 {
317 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
318 			    SPRD_DMA_CHN_EN);
319 }
320 
321 static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
322 {
323 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
324 }
325 
326 static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
327 {
328 	sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
329 			    SPRD_DMA_REQ_EN);
330 }
331 
332 static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
333 {
334 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
335 	u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
336 
337 	if (enable) {
338 		sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
339 				    SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
340 
341 		do {
342 			pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
343 			if (pause & SPRD_DMA_PAUSE_STS)
344 				break;
345 
346 			cpu_relax();
347 		} while (--timeout > 0);
348 
349 		if (!timeout)
350 			dev_warn(sdev->dma_dev.dev,
351 				 "pause dma controller timeout\n");
352 	} else {
353 		sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
354 				    SPRD_DMA_PAUSE_EN, 0);
355 	}
356 }
357 
358 static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
359 {
360 	u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
361 
362 	if (!(cfg & SPRD_DMA_CHN_EN))
363 		return;
364 
365 	sprd_dma_pause_resume(schan, true);
366 	sprd_dma_disable_chn(schan);
367 }
368 
369 static unsigned long sprd_dma_get_src_addr(struct sprd_dma_chn *schan)
370 {
371 	unsigned long addr, addr_high;
372 
373 	addr = readl(schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
374 	addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_PTR) &
375 		    SPRD_DMA_HIGH_ADDR_MASK;
376 
377 	return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
378 }
379 
380 static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
381 {
382 	unsigned long addr, addr_high;
383 
384 	addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
385 	addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
386 		    SPRD_DMA_HIGH_ADDR_MASK;
387 
388 	return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
389 }
390 
391 static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
392 {
393 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
394 	u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
395 		       SPRD_DMA_CHN_INT_STS;
396 
397 	switch (intc_sts) {
398 	case SPRD_DMA_CFGERR_INT_STS:
399 		return SPRD_DMA_CFGERR_INT;
400 
401 	case SPRD_DMA_LIST_INT_STS:
402 		return SPRD_DMA_LIST_INT;
403 
404 	case SPRD_DMA_TRSC_INT_STS:
405 		return SPRD_DMA_TRANS_INT;
406 
407 	case SPRD_DMA_BLK_INT_STS:
408 		return SPRD_DMA_BLK_INT;
409 
410 	case SPRD_DMA_FRAG_INT_STS:
411 		return SPRD_DMA_FRAG_INT;
412 
413 	default:
414 		dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
415 		return SPRD_DMA_NO_INT;
416 	}
417 }
418 
419 static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
420 {
421 	u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
422 
423 	return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
424 }
425 
426 static int sprd_dma_set_2stage_config(struct sprd_dma_chn *schan)
427 {
428 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
429 	u32 val, chn = schan->chn_num + 1;
430 
431 	switch (schan->chn_mode) {
432 	case SPRD_DMA_SRC_CHN0:
433 		val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
434 		val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
435 		val |= SPRD_DMA_GLB_2STAGE_EN;
436 		if (schan->int_type != SPRD_DMA_NO_INT)
437 			val |= SPRD_DMA_GLB_SRC_INT;
438 
439 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
440 		break;
441 
442 	case SPRD_DMA_SRC_CHN1:
443 		val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
444 		val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
445 		val |= SPRD_DMA_GLB_2STAGE_EN;
446 		if (schan->int_type != SPRD_DMA_NO_INT)
447 			val |= SPRD_DMA_GLB_SRC_INT;
448 
449 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
450 		break;
451 
452 	case SPRD_DMA_DST_CHN0:
453 		val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
454 			SPRD_DMA_GLB_DEST_CHN_MASK;
455 		val |= SPRD_DMA_GLB_2STAGE_EN;
456 		if (schan->int_type != SPRD_DMA_NO_INT)
457 			val |= SPRD_DMA_GLB_DEST_INT;
458 
459 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
460 		break;
461 
462 	case SPRD_DMA_DST_CHN1:
463 		val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
464 			SPRD_DMA_GLB_DEST_CHN_MASK;
465 		val |= SPRD_DMA_GLB_2STAGE_EN;
466 		if (schan->int_type != SPRD_DMA_NO_INT)
467 			val |= SPRD_DMA_GLB_DEST_INT;
468 
469 		sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
470 		break;
471 
472 	default:
473 		dev_err(sdev->dma_dev.dev, "invalid channel mode setting %d\n",
474 			schan->chn_mode);
475 		return -EINVAL;
476 	}
477 
478 	return 0;
479 }
480 
481 static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
482 				    struct sprd_dma_desc *sdesc)
483 {
484 	struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
485 
486 	writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
487 	writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
488 	writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
489 	writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
490 	writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
491 	writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
492 	writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
493 	writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
494 	writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
495 	writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
496 	writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
497 	writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
498 	writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
499 	writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
500 	writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
501 	writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
502 }
503 
504 static void sprd_dma_start(struct sprd_dma_chn *schan)
505 {
506 	struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
507 
508 	if (!vd)
509 		return;
510 
511 	list_del(&vd->node);
512 	schan->cur_desc = to_sprd_dma_desc(vd);
513 
514 	/*
515 	 * Set 2-stage configuration if the channel starts one 2-stage
516 	 * transfer.
517 	 */
518 	if (schan->chn_mode && sprd_dma_set_2stage_config(schan))
519 		return;
520 
521 	/*
522 	 * Copy the DMA configuration from DMA descriptor to this hardware
523 	 * channel.
524 	 */
525 	sprd_dma_set_chn_config(schan, schan->cur_desc);
526 	sprd_dma_set_uid(schan);
527 	sprd_dma_enable_chn(schan);
528 
529 	if (schan->dev_id == SPRD_DMA_SOFTWARE_UID &&
530 	    schan->chn_mode != SPRD_DMA_DST_CHN0 &&
531 	    schan->chn_mode != SPRD_DMA_DST_CHN1)
532 		sprd_dma_soft_request(schan);
533 }
534 
535 static void sprd_dma_stop(struct sprd_dma_chn *schan)
536 {
537 	sprd_dma_stop_and_disable(schan);
538 	sprd_dma_unset_uid(schan);
539 	sprd_dma_clear_int(schan);
540 	schan->cur_desc = NULL;
541 }
542 
543 static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
544 				      enum sprd_dma_int_type int_type,
545 				      enum sprd_dma_req_mode req_mode)
546 {
547 	if (int_type == SPRD_DMA_NO_INT)
548 		return false;
549 
550 	if (int_type >= req_mode + 1)
551 		return true;
552 	else
553 		return false;
554 }
555 
556 static irqreturn_t dma_irq_handle(int irq, void *dev_id)
557 {
558 	struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
559 	u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
560 	struct sprd_dma_chn *schan;
561 	struct sprd_dma_desc *sdesc;
562 	enum sprd_dma_req_mode req_type;
563 	enum sprd_dma_int_type int_type;
564 	bool trans_done = false, cyclic = false;
565 	u32 i;
566 
567 	while (irq_status) {
568 		i = __ffs(irq_status);
569 		irq_status &= (irq_status - 1);
570 		schan = &sdev->channels[i];
571 
572 		spin_lock(&schan->vc.lock);
573 
574 		sdesc = schan->cur_desc;
575 		if (!sdesc) {
576 			spin_unlock(&schan->vc.lock);
577 			return IRQ_HANDLED;
578 		}
579 
580 		int_type = sprd_dma_get_int_type(schan);
581 		req_type = sprd_dma_get_req_type(schan);
582 		sprd_dma_clear_int(schan);
583 
584 		/* cyclic mode schedule callback */
585 		cyclic = schan->linklist.phy_addr ? true : false;
586 		if (cyclic == true) {
587 			vchan_cyclic_callback(&sdesc->vd);
588 		} else {
589 			/* Check if the dma request descriptor is done. */
590 			trans_done = sprd_dma_check_trans_done(sdesc, int_type,
591 							       req_type);
592 			if (trans_done == true) {
593 				vchan_cookie_complete(&sdesc->vd);
594 				schan->cur_desc = NULL;
595 				sprd_dma_start(schan);
596 			}
597 		}
598 		spin_unlock(&schan->vc.lock);
599 	}
600 
601 	return IRQ_HANDLED;
602 }
603 
604 static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
605 {
606 	return pm_runtime_get_sync(chan->device->dev);
607 }
608 
609 static void sprd_dma_free_chan_resources(struct dma_chan *chan)
610 {
611 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
612 	unsigned long flags;
613 
614 	spin_lock_irqsave(&schan->vc.lock, flags);
615 	sprd_dma_stop(schan);
616 	spin_unlock_irqrestore(&schan->vc.lock, flags);
617 
618 	vchan_free_chan_resources(&schan->vc);
619 	pm_runtime_put(chan->device->dev);
620 }
621 
622 static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
623 					  dma_cookie_t cookie,
624 					  struct dma_tx_state *txstate)
625 {
626 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
627 	struct virt_dma_desc *vd;
628 	unsigned long flags;
629 	enum dma_status ret;
630 	u32 pos;
631 
632 	ret = dma_cookie_status(chan, cookie, txstate);
633 	if (ret == DMA_COMPLETE || !txstate)
634 		return ret;
635 
636 	spin_lock_irqsave(&schan->vc.lock, flags);
637 	vd = vchan_find_desc(&schan->vc, cookie);
638 	if (vd) {
639 		struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
640 		struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
641 
642 		if (hw->trsc_len > 0)
643 			pos = hw->trsc_len;
644 		else if (hw->blk_len > 0)
645 			pos = hw->blk_len;
646 		else if (hw->frg_len > 0)
647 			pos = hw->frg_len;
648 		else
649 			pos = 0;
650 	} else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
651 		struct sprd_dma_desc *sdesc = schan->cur_desc;
652 
653 		if (sdesc->dir == DMA_DEV_TO_MEM)
654 			pos = sprd_dma_get_dst_addr(schan);
655 		else
656 			pos = sprd_dma_get_src_addr(schan);
657 	} else {
658 		pos = 0;
659 	}
660 	spin_unlock_irqrestore(&schan->vc.lock, flags);
661 
662 	dma_set_residue(txstate, pos);
663 	return ret;
664 }
665 
666 static void sprd_dma_issue_pending(struct dma_chan *chan)
667 {
668 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
669 	unsigned long flags;
670 
671 	spin_lock_irqsave(&schan->vc.lock, flags);
672 	if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
673 		sprd_dma_start(schan);
674 	spin_unlock_irqrestore(&schan->vc.lock, flags);
675 }
676 
677 static int sprd_dma_get_datawidth(enum dma_slave_buswidth buswidth)
678 {
679 	switch (buswidth) {
680 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
681 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
682 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
683 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
684 		return ffs(buswidth) - 1;
685 
686 	default:
687 		return -EINVAL;
688 	}
689 }
690 
691 static int sprd_dma_get_step(enum dma_slave_buswidth buswidth)
692 {
693 	switch (buswidth) {
694 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
695 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
696 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
697 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
698 		return buswidth;
699 
700 	default:
701 		return -EINVAL;
702 	}
703 }
704 
705 static int sprd_dma_fill_desc(struct dma_chan *chan,
706 			      struct sprd_dma_chn_hw *hw,
707 			      unsigned int sglen, int sg_index,
708 			      dma_addr_t src, dma_addr_t dst, u32 len,
709 			      enum dma_transfer_direction dir,
710 			      unsigned long flags,
711 			      struct dma_slave_config *slave_cfg)
712 {
713 	struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
714 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
715 	enum sprd_dma_chn_mode chn_mode = schan->chn_mode;
716 	u32 req_mode = (flags >> SPRD_DMA_REQ_SHIFT) & SPRD_DMA_REQ_MODE_MASK;
717 	u32 int_mode = flags & SPRD_DMA_INT_MASK;
718 	int src_datawidth, dst_datawidth, src_step, dst_step;
719 	u32 temp, fix_mode = 0, fix_en = 0;
720 
721 	if (dir == DMA_MEM_TO_DEV) {
722 		src_step = sprd_dma_get_step(slave_cfg->src_addr_width);
723 		if (src_step < 0) {
724 			dev_err(sdev->dma_dev.dev, "invalid source step\n");
725 			return src_step;
726 		}
727 
728 		/*
729 		 * For 2-stage transfer, destination channel step can not be 0,
730 		 * since destination device is AON IRAM.
731 		 */
732 		if (chn_mode == SPRD_DMA_DST_CHN0 ||
733 		    chn_mode == SPRD_DMA_DST_CHN1)
734 			dst_step = src_step;
735 		else
736 			dst_step = SPRD_DMA_NONE_STEP;
737 	} else {
738 		dst_step = sprd_dma_get_step(slave_cfg->dst_addr_width);
739 		if (dst_step < 0) {
740 			dev_err(sdev->dma_dev.dev, "invalid destination step\n");
741 			return dst_step;
742 		}
743 		src_step = SPRD_DMA_NONE_STEP;
744 	}
745 
746 	src_datawidth = sprd_dma_get_datawidth(slave_cfg->src_addr_width);
747 	if (src_datawidth < 0) {
748 		dev_err(sdev->dma_dev.dev, "invalid source datawidth\n");
749 		return src_datawidth;
750 	}
751 
752 	dst_datawidth = sprd_dma_get_datawidth(slave_cfg->dst_addr_width);
753 	if (dst_datawidth < 0) {
754 		dev_err(sdev->dma_dev.dev, "invalid destination datawidth\n");
755 		return dst_datawidth;
756 	}
757 
758 	if (slave_cfg->slave_id)
759 		schan->dev_id = slave_cfg->slave_id;
760 
761 	hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
762 
763 	/*
764 	 * wrap_ptr and wrap_to will save the high 4 bits source address and
765 	 * destination address.
766 	 */
767 	hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
768 	hw->wrap_to = (dst >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
769 	hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
770 	hw->des_addr = dst & SPRD_DMA_LOW_ADDR_MASK;
771 
772 	/*
773 	 * If the src step and dst step both are 0 or both are not 0, that means
774 	 * we can not enable the fix mode. If one is 0 and another one is not,
775 	 * we can enable the fix mode.
776 	 */
777 	if ((src_step != 0 && dst_step != 0) || (src_step | dst_step) == 0) {
778 		fix_en = 0;
779 	} else {
780 		fix_en = 1;
781 		if (src_step)
782 			fix_mode = 1;
783 		else
784 			fix_mode = 0;
785 	}
786 
787 	hw->intc = int_mode | SPRD_DMA_CFG_ERR_INT_EN;
788 
789 	temp = src_datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
790 	temp |= dst_datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
791 	temp |= req_mode << SPRD_DMA_REQ_MODE_OFFSET;
792 	temp |= fix_mode << SPRD_DMA_FIX_SEL_OFFSET;
793 	temp |= fix_en << SPRD_DMA_FIX_EN_OFFSET;
794 	temp |= slave_cfg->src_maxburst & SPRD_DMA_FRG_LEN_MASK;
795 	hw->frg_len = temp;
796 
797 	hw->blk_len = slave_cfg->src_maxburst & SPRD_DMA_BLK_LEN_MASK;
798 	hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
799 
800 	temp = (dst_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
801 	temp |= (src_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
802 	hw->trsf_step = temp;
803 
804 	/* link-list configuration */
805 	if (schan->linklist.phy_addr) {
806 		hw->cfg |= SPRD_DMA_LINKLIST_EN;
807 
808 		/* link-list index */
809 		temp = sglen ? (sg_index + 1) % sglen : 0;
810 
811 		/* Next link-list configuration's physical address offset */
812 		temp = temp * sizeof(*hw) + SPRD_DMA_CHN_SRC_ADDR;
813 		/*
814 		 * Set the link-list pointer point to next link-list
815 		 * configuration's physical address.
816 		 */
817 		hw->llist_ptr = schan->linklist.phy_addr + temp;
818 	} else {
819 		hw->llist_ptr = 0;
820 	}
821 
822 	hw->frg_step = 0;
823 	hw->src_blk_step = 0;
824 	hw->des_blk_step = 0;
825 	return 0;
826 }
827 
828 static int sprd_dma_fill_linklist_desc(struct dma_chan *chan,
829 				       unsigned int sglen, int sg_index,
830 				       dma_addr_t src, dma_addr_t dst, u32 len,
831 				       enum dma_transfer_direction dir,
832 				       unsigned long flags,
833 				       struct dma_slave_config *slave_cfg)
834 {
835 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
836 	struct sprd_dma_chn_hw *hw;
837 
838 	if (!schan->linklist.virt_addr)
839 		return -EINVAL;
840 
841 	hw = (struct sprd_dma_chn_hw *)(schan->linklist.virt_addr +
842 					sg_index * sizeof(*hw));
843 
844 	return sprd_dma_fill_desc(chan, hw, sglen, sg_index, src, dst, len,
845 				  dir, flags, slave_cfg);
846 }
847 
848 static struct dma_async_tx_descriptor *
849 sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
850 			 size_t len, unsigned long flags)
851 {
852 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
853 	struct sprd_dma_desc *sdesc;
854 	struct sprd_dma_chn_hw *hw;
855 	enum sprd_dma_datawidth datawidth;
856 	u32 step, temp;
857 
858 	sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
859 	if (!sdesc)
860 		return NULL;
861 
862 	hw = &sdesc->chn_hw;
863 
864 	hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
865 	hw->intc = SPRD_DMA_TRANS_INT | SPRD_DMA_CFG_ERR_INT_EN;
866 	hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
867 	hw->des_addr = dest & SPRD_DMA_LOW_ADDR_MASK;
868 	hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
869 		SPRD_DMA_HIGH_ADDR_MASK;
870 	hw->wrap_to = (dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
871 		SPRD_DMA_HIGH_ADDR_MASK;
872 
873 	if (IS_ALIGNED(len, 8)) {
874 		datawidth = SPRD_DMA_DATAWIDTH_8_BYTES;
875 		step = SPRD_DMA_DWORD_STEP;
876 	} else if (IS_ALIGNED(len, 4)) {
877 		datawidth = SPRD_DMA_DATAWIDTH_4_BYTES;
878 		step = SPRD_DMA_WORD_STEP;
879 	} else if (IS_ALIGNED(len, 2)) {
880 		datawidth = SPRD_DMA_DATAWIDTH_2_BYTES;
881 		step = SPRD_DMA_SHORT_STEP;
882 	} else {
883 		datawidth = SPRD_DMA_DATAWIDTH_1_BYTE;
884 		step = SPRD_DMA_BYTE_STEP;
885 	}
886 
887 	temp = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
888 	temp |= datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
889 	temp |= SPRD_DMA_TRANS_REQ << SPRD_DMA_REQ_MODE_OFFSET;
890 	temp |= len & SPRD_DMA_FRG_LEN_MASK;
891 	hw->frg_len = temp;
892 
893 	hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
894 	hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
895 
896 	temp = (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
897 	temp |= (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
898 	hw->trsf_step = temp;
899 
900 	return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
901 }
902 
903 static struct dma_async_tx_descriptor *
904 sprd_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
905 		       unsigned int sglen, enum dma_transfer_direction dir,
906 		       unsigned long flags, void *context)
907 {
908 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
909 	struct dma_slave_config *slave_cfg = &schan->slave_cfg;
910 	dma_addr_t src = 0, dst = 0;
911 	struct sprd_dma_desc *sdesc;
912 	struct scatterlist *sg;
913 	u32 len = 0;
914 	int ret, i;
915 
916 	if (!is_slave_direction(dir))
917 		return NULL;
918 
919 	if (context) {
920 		struct sprd_dma_linklist *ll_cfg =
921 			(struct sprd_dma_linklist *)context;
922 
923 		schan->linklist.phy_addr = ll_cfg->phy_addr;
924 		schan->linklist.virt_addr = ll_cfg->virt_addr;
925 	} else {
926 		schan->linklist.phy_addr = 0;
927 		schan->linklist.virt_addr = 0;
928 	}
929 
930 	/*
931 	 * Set channel mode, interrupt mode and trigger mode for 2-stage
932 	 * transfer.
933 	 */
934 	schan->chn_mode =
935 		(flags >> SPRD_DMA_CHN_MODE_SHIFT) & SPRD_DMA_CHN_MODE_MASK;
936 	schan->trg_mode =
937 		(flags >> SPRD_DMA_TRG_MODE_SHIFT) & SPRD_DMA_TRG_MODE_MASK;
938 	schan->int_type = flags & SPRD_DMA_INT_TYPE_MASK;
939 
940 	sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
941 	if (!sdesc)
942 		return NULL;
943 
944 	sdesc->dir = dir;
945 
946 	for_each_sg(sgl, sg, sglen, i) {
947 		len = sg_dma_len(sg);
948 
949 		if (dir == DMA_MEM_TO_DEV) {
950 			src = sg_dma_address(sg);
951 			dst = slave_cfg->dst_addr;
952 		} else {
953 			src = slave_cfg->src_addr;
954 			dst = sg_dma_address(sg);
955 		}
956 
957 		/*
958 		 * The link-list mode needs at least 2 link-list
959 		 * configurations. If there is only one sg, it doesn't
960 		 * need to fill the link-list configuration.
961 		 */
962 		if (sglen < 2)
963 			break;
964 
965 		ret = sprd_dma_fill_linklist_desc(chan, sglen, i, src, dst, len,
966 						  dir, flags, slave_cfg);
967 		if (ret) {
968 			kfree(sdesc);
969 			return NULL;
970 		}
971 	}
972 
973 	ret = sprd_dma_fill_desc(chan, &sdesc->chn_hw, 0, 0, src, dst, len,
974 				 dir, flags, slave_cfg);
975 	if (ret) {
976 		kfree(sdesc);
977 		return NULL;
978 	}
979 
980 	return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
981 }
982 
983 static int sprd_dma_slave_config(struct dma_chan *chan,
984 				 struct dma_slave_config *config)
985 {
986 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
987 	struct dma_slave_config *slave_cfg = &schan->slave_cfg;
988 
989 	memcpy(slave_cfg, config, sizeof(*config));
990 	return 0;
991 }
992 
993 static int sprd_dma_pause(struct dma_chan *chan)
994 {
995 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
996 	unsigned long flags;
997 
998 	spin_lock_irqsave(&schan->vc.lock, flags);
999 	sprd_dma_pause_resume(schan, true);
1000 	spin_unlock_irqrestore(&schan->vc.lock, flags);
1001 
1002 	return 0;
1003 }
1004 
1005 static int sprd_dma_resume(struct dma_chan *chan)
1006 {
1007 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1008 	unsigned long flags;
1009 
1010 	spin_lock_irqsave(&schan->vc.lock, flags);
1011 	sprd_dma_pause_resume(schan, false);
1012 	spin_unlock_irqrestore(&schan->vc.lock, flags);
1013 
1014 	return 0;
1015 }
1016 
1017 static int sprd_dma_terminate_all(struct dma_chan *chan)
1018 {
1019 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1020 	unsigned long flags;
1021 	LIST_HEAD(head);
1022 
1023 	spin_lock_irqsave(&schan->vc.lock, flags);
1024 	sprd_dma_stop(schan);
1025 
1026 	vchan_get_all_descriptors(&schan->vc, &head);
1027 	spin_unlock_irqrestore(&schan->vc.lock, flags);
1028 
1029 	vchan_dma_desc_free_list(&schan->vc, &head);
1030 	return 0;
1031 }
1032 
1033 static void sprd_dma_free_desc(struct virt_dma_desc *vd)
1034 {
1035 	struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
1036 
1037 	kfree(sdesc);
1038 }
1039 
1040 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
1041 {
1042 	struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1043 	u32 slave_id = *(u32 *)param;
1044 
1045 	schan->dev_id = slave_id;
1046 	return true;
1047 }
1048 
1049 static int sprd_dma_probe(struct platform_device *pdev)
1050 {
1051 	struct device_node *np = pdev->dev.of_node;
1052 	struct sprd_dma_dev *sdev;
1053 	struct sprd_dma_chn *dma_chn;
1054 	struct resource *res;
1055 	u32 chn_count;
1056 	int ret, i;
1057 
1058 	ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
1059 	if (ret) {
1060 		dev_err(&pdev->dev, "get dma channels count failed\n");
1061 		return ret;
1062 	}
1063 
1064 	sdev = devm_kzalloc(&pdev->dev,
1065 			    struct_size(sdev, channels, chn_count),
1066 			    GFP_KERNEL);
1067 	if (!sdev)
1068 		return -ENOMEM;
1069 
1070 	sdev->clk = devm_clk_get(&pdev->dev, "enable");
1071 	if (IS_ERR(sdev->clk)) {
1072 		dev_err(&pdev->dev, "get enable clock failed\n");
1073 		return PTR_ERR(sdev->clk);
1074 	}
1075 
1076 	/* ashb clock is optional for AGCP DMA */
1077 	sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
1078 	if (IS_ERR(sdev->ashb_clk))
1079 		dev_warn(&pdev->dev, "no optional ashb eb clock\n");
1080 
1081 	/*
1082 	 * We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
1083 	 * DMA controller, it can or do not request the irq, which will save
1084 	 * system power without resuming system by DMA interrupts if AGCP DMA
1085 	 * does not request the irq. Thus the DMA interrupts property should
1086 	 * be optional.
1087 	 */
1088 	sdev->irq = platform_get_irq(pdev, 0);
1089 	if (sdev->irq > 0) {
1090 		ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
1091 				       0, "sprd_dma", (void *)sdev);
1092 		if (ret < 0) {
1093 			dev_err(&pdev->dev, "request dma irq failed\n");
1094 			return ret;
1095 		}
1096 	} else {
1097 		dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
1098 	}
1099 
1100 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1101 	sdev->glb_base = devm_ioremap_resource(&pdev->dev, res);
1102 	if (IS_ERR(sdev->glb_base))
1103 		return PTR_ERR(sdev->glb_base);
1104 
1105 	dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
1106 	sdev->total_chns = chn_count;
1107 	sdev->dma_dev.chancnt = chn_count;
1108 	INIT_LIST_HEAD(&sdev->dma_dev.channels);
1109 	INIT_LIST_HEAD(&sdev->dma_dev.global_node);
1110 	sdev->dma_dev.dev = &pdev->dev;
1111 	sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
1112 	sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
1113 	sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
1114 	sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
1115 	sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
1116 	sdev->dma_dev.device_prep_slave_sg = sprd_dma_prep_slave_sg;
1117 	sdev->dma_dev.device_config = sprd_dma_slave_config;
1118 	sdev->dma_dev.device_pause = sprd_dma_pause;
1119 	sdev->dma_dev.device_resume = sprd_dma_resume;
1120 	sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
1121 
1122 	for (i = 0; i < chn_count; i++) {
1123 		dma_chn = &sdev->channels[i];
1124 		dma_chn->chn_num = i;
1125 		dma_chn->cur_desc = NULL;
1126 		/* get each channel's registers base address. */
1127 		dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
1128 				    SPRD_DMA_CHN_REG_LENGTH * i;
1129 
1130 		dma_chn->vc.desc_free = sprd_dma_free_desc;
1131 		vchan_init(&dma_chn->vc, &sdev->dma_dev);
1132 	}
1133 
1134 	platform_set_drvdata(pdev, sdev);
1135 	ret = sprd_dma_enable(sdev);
1136 	if (ret)
1137 		return ret;
1138 
1139 	pm_runtime_set_active(&pdev->dev);
1140 	pm_runtime_enable(&pdev->dev);
1141 
1142 	ret = pm_runtime_get_sync(&pdev->dev);
1143 	if (ret < 0)
1144 		goto err_rpm;
1145 
1146 	ret = dma_async_device_register(&sdev->dma_dev);
1147 	if (ret < 0) {
1148 		dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
1149 		goto err_register;
1150 	}
1151 
1152 	sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
1153 	ret = of_dma_controller_register(np, of_dma_simple_xlate,
1154 					 &sprd_dma_info);
1155 	if (ret)
1156 		goto err_of_register;
1157 
1158 	pm_runtime_put(&pdev->dev);
1159 	return 0;
1160 
1161 err_of_register:
1162 	dma_async_device_unregister(&sdev->dma_dev);
1163 err_register:
1164 	pm_runtime_put_noidle(&pdev->dev);
1165 	pm_runtime_disable(&pdev->dev);
1166 err_rpm:
1167 	sprd_dma_disable(sdev);
1168 	return ret;
1169 }
1170 
1171 static int sprd_dma_remove(struct platform_device *pdev)
1172 {
1173 	struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
1174 	struct sprd_dma_chn *c, *cn;
1175 	int ret;
1176 
1177 	ret = pm_runtime_get_sync(&pdev->dev);
1178 	if (ret < 0)
1179 		return ret;
1180 
1181 	/* explicitly free the irq */
1182 	if (sdev->irq > 0)
1183 		devm_free_irq(&pdev->dev, sdev->irq, sdev);
1184 
1185 	list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
1186 				 vc.chan.device_node) {
1187 		list_del(&c->vc.chan.device_node);
1188 		tasklet_kill(&c->vc.task);
1189 	}
1190 
1191 	of_dma_controller_free(pdev->dev.of_node);
1192 	dma_async_device_unregister(&sdev->dma_dev);
1193 	sprd_dma_disable(sdev);
1194 
1195 	pm_runtime_put_noidle(&pdev->dev);
1196 	pm_runtime_disable(&pdev->dev);
1197 	return 0;
1198 }
1199 
1200 static const struct of_device_id sprd_dma_match[] = {
1201 	{ .compatible = "sprd,sc9860-dma", },
1202 	{},
1203 };
1204 
1205 static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
1206 {
1207 	struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1208 
1209 	sprd_dma_disable(sdev);
1210 	return 0;
1211 }
1212 
1213 static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
1214 {
1215 	struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1216 	int ret;
1217 
1218 	ret = sprd_dma_enable(sdev);
1219 	if (ret)
1220 		dev_err(sdev->dma_dev.dev, "enable dma failed\n");
1221 
1222 	return ret;
1223 }
1224 
1225 static const struct dev_pm_ops sprd_dma_pm_ops = {
1226 	SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
1227 			   sprd_dma_runtime_resume,
1228 			   NULL)
1229 };
1230 
1231 static struct platform_driver sprd_dma_driver = {
1232 	.probe = sprd_dma_probe,
1233 	.remove = sprd_dma_remove,
1234 	.driver = {
1235 		.name = "sprd-dma",
1236 		.of_match_table = sprd_dma_match,
1237 		.pm = &sprd_dma_pm_ops,
1238 	},
1239 };
1240 module_platform_driver(sprd_dma_driver);
1241 
1242 MODULE_LICENSE("GPL v2");
1243 MODULE_DESCRIPTION("DMA driver for Spreadtrum");
1244 MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
1245 MODULE_AUTHOR("Eric Long <eric.long@spreadtrum.com>");
1246 MODULE_ALIAS("platform:sprd-dma");
1247