1 /* 2 * Dmaengine driver base library for DMA controllers, found on SH-based SoCs 3 * 4 * extracted from shdma.c 5 * 6 * Copyright (C) 2011-2012 Guennadi Liakhovetski <g.liakhovetski@gmx.de> 7 * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com> 8 * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved. 9 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. 10 * 11 * This is free software; you can redistribute it and/or modify 12 * it under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 */ 15 16 #include <linux/delay.h> 17 #include <linux/shdma-base.h> 18 #include <linux/dmaengine.h> 19 #include <linux/init.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 26 #include "../dmaengine.h" 27 28 /* DMA descriptor control */ 29 enum shdma_desc_status { 30 DESC_IDLE, 31 DESC_PREPARED, 32 DESC_SUBMITTED, 33 DESC_COMPLETED, /* completed, have to call callback */ 34 DESC_WAITING, /* callback called, waiting for ack / re-submit */ 35 }; 36 37 #define NR_DESCS_PER_CHANNEL 32 38 39 #define to_shdma_chan(c) container_of(c, struct shdma_chan, dma_chan) 40 #define to_shdma_dev(d) container_of(d, struct shdma_dev, dma_dev) 41 42 /* 43 * For slave DMA we assume, that there is a finite number of DMA slaves in the 44 * system, and that each such slave can only use a finite number of channels. 45 * We use slave channel IDs to make sure, that no such slave channel ID is 46 * allocated more than once. 47 */ 48 static unsigned int slave_num = 256; 49 module_param(slave_num, uint, 0444); 50 51 /* A bitmask with slave_num bits */ 52 static unsigned long *shdma_slave_used; 53 54 /* Called under spin_lock_irq(&schan->chan_lock") */ 55 static void shdma_chan_xfer_ld_queue(struct shdma_chan *schan) 56 { 57 struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); 58 const struct shdma_ops *ops = sdev->ops; 59 struct shdma_desc *sdesc; 60 61 /* DMA work check */ 62 if (ops->channel_busy(schan)) 63 return; 64 65 /* Find the first not transferred descriptor */ 66 list_for_each_entry(sdesc, &schan->ld_queue, node) 67 if (sdesc->mark == DESC_SUBMITTED) { 68 ops->start_xfer(schan, sdesc); 69 break; 70 } 71 } 72 73 static dma_cookie_t shdma_tx_submit(struct dma_async_tx_descriptor *tx) 74 { 75 struct shdma_desc *chunk, *c, *desc = 76 container_of(tx, struct shdma_desc, async_tx); 77 struct shdma_chan *schan = to_shdma_chan(tx->chan); 78 dma_async_tx_callback callback = tx->callback; 79 dma_cookie_t cookie; 80 bool power_up; 81 82 spin_lock_irq(&schan->chan_lock); 83 84 power_up = list_empty(&schan->ld_queue); 85 86 cookie = dma_cookie_assign(tx); 87 88 /* Mark all chunks of this descriptor as submitted, move to the queue */ 89 list_for_each_entry_safe(chunk, c, desc->node.prev, node) { 90 /* 91 * All chunks are on the global ld_free, so, we have to find 92 * the end of the chain ourselves 93 */ 94 if (chunk != desc && (chunk->mark == DESC_IDLE || 95 chunk->async_tx.cookie > 0 || 96 chunk->async_tx.cookie == -EBUSY || 97 &chunk->node == &schan->ld_free)) 98 break; 99 chunk->mark = DESC_SUBMITTED; 100 if (chunk->chunks == 1) { 101 chunk->async_tx.callback = callback; 102 chunk->async_tx.callback_param = tx->callback_param; 103 } else { 104 /* Callback goes to the last chunk */ 105 chunk->async_tx.callback = NULL; 106 } 107 chunk->cookie = cookie; 108 list_move_tail(&chunk->node, &schan->ld_queue); 109 110 dev_dbg(schan->dev, "submit #%d@%p on %d\n", 111 tx->cookie, &chunk->async_tx, schan->id); 112 } 113 114 if (power_up) { 115 int ret; 116 schan->pm_state = SHDMA_PM_BUSY; 117 118 ret = pm_runtime_get(schan->dev); 119 120 spin_unlock_irq(&schan->chan_lock); 121 if (ret < 0) 122 dev_err(schan->dev, "%s(): GET = %d\n", __func__, ret); 123 124 pm_runtime_barrier(schan->dev); 125 126 spin_lock_irq(&schan->chan_lock); 127 128 /* Have we been reset, while waiting? */ 129 if (schan->pm_state != SHDMA_PM_ESTABLISHED) { 130 struct shdma_dev *sdev = 131 to_shdma_dev(schan->dma_chan.device); 132 const struct shdma_ops *ops = sdev->ops; 133 dev_dbg(schan->dev, "Bring up channel %d\n", 134 schan->id); 135 /* 136 * TODO: .xfer_setup() might fail on some platforms. 137 * Make it int then, on error remove chunks from the 138 * queue again 139 */ 140 ops->setup_xfer(schan, schan->slave_id); 141 142 if (schan->pm_state == SHDMA_PM_PENDING) 143 shdma_chan_xfer_ld_queue(schan); 144 schan->pm_state = SHDMA_PM_ESTABLISHED; 145 } 146 } else { 147 /* 148 * Tell .device_issue_pending() not to run the queue, interrupts 149 * will do it anyway 150 */ 151 schan->pm_state = SHDMA_PM_PENDING; 152 } 153 154 spin_unlock_irq(&schan->chan_lock); 155 156 return cookie; 157 } 158 159 /* Called with desc_lock held */ 160 static struct shdma_desc *shdma_get_desc(struct shdma_chan *schan) 161 { 162 struct shdma_desc *sdesc; 163 164 list_for_each_entry(sdesc, &schan->ld_free, node) 165 if (sdesc->mark != DESC_PREPARED) { 166 BUG_ON(sdesc->mark != DESC_IDLE); 167 list_del(&sdesc->node); 168 return sdesc; 169 } 170 171 return NULL; 172 } 173 174 static int shdma_setup_slave(struct shdma_chan *schan, dma_addr_t slave_addr) 175 { 176 struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); 177 const struct shdma_ops *ops = sdev->ops; 178 int ret, match; 179 180 if (schan->dev->of_node) { 181 match = schan->hw_req; 182 ret = ops->set_slave(schan, match, slave_addr, true); 183 if (ret < 0) 184 return ret; 185 } else { 186 match = schan->real_slave_id; 187 } 188 189 if (schan->real_slave_id < 0 || schan->real_slave_id >= slave_num) 190 return -EINVAL; 191 192 if (test_and_set_bit(schan->real_slave_id, shdma_slave_used)) 193 return -EBUSY; 194 195 ret = ops->set_slave(schan, match, slave_addr, false); 196 if (ret < 0) { 197 clear_bit(schan->real_slave_id, shdma_slave_used); 198 return ret; 199 } 200 201 schan->slave_id = schan->real_slave_id; 202 203 return 0; 204 } 205 206 static int shdma_alloc_chan_resources(struct dma_chan *chan) 207 { 208 struct shdma_chan *schan = to_shdma_chan(chan); 209 struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); 210 const struct shdma_ops *ops = sdev->ops; 211 struct shdma_desc *desc; 212 struct shdma_slave *slave = chan->private; 213 int ret, i; 214 215 /* 216 * This relies on the guarantee from dmaengine that alloc_chan_resources 217 * never runs concurrently with itself or free_chan_resources. 218 */ 219 if (slave) { 220 /* Legacy mode: .private is set in filter */ 221 schan->real_slave_id = slave->slave_id; 222 ret = shdma_setup_slave(schan, 0); 223 if (ret < 0) 224 goto esetslave; 225 } else { 226 /* Normal mode: real_slave_id was set by filter */ 227 schan->slave_id = -EINVAL; 228 } 229 230 schan->desc = kcalloc(NR_DESCS_PER_CHANNEL, 231 sdev->desc_size, GFP_KERNEL); 232 if (!schan->desc) { 233 ret = -ENOMEM; 234 goto edescalloc; 235 } 236 schan->desc_num = NR_DESCS_PER_CHANNEL; 237 238 for (i = 0; i < NR_DESCS_PER_CHANNEL; i++) { 239 desc = ops->embedded_desc(schan->desc, i); 240 dma_async_tx_descriptor_init(&desc->async_tx, 241 &schan->dma_chan); 242 desc->async_tx.tx_submit = shdma_tx_submit; 243 desc->mark = DESC_IDLE; 244 245 list_add(&desc->node, &schan->ld_free); 246 } 247 248 return NR_DESCS_PER_CHANNEL; 249 250 edescalloc: 251 if (slave) 252 esetslave: 253 clear_bit(slave->slave_id, shdma_slave_used); 254 chan->private = NULL; 255 return ret; 256 } 257 258 /* 259 * This is the standard shdma filter function to be used as a replacement to the 260 * "old" method, using the .private pointer. 261 * You always have to pass a valid slave id as the argument, old drivers that 262 * pass ERR_PTR(-EINVAL) as a filter parameter and set it up in dma_slave_config 263 * need to be updated so we can remove the slave_id field from dma_slave_config. 264 * parameter. If this filter is used, the slave driver, after calling 265 * dma_request_channel(), will also have to call dmaengine_slave_config() with 266 * .direction, and either .src_addr or .dst_addr set. 267 * 268 * NOTE: this filter doesn't support multiple DMAC drivers with the DMA_SLAVE 269 * capability! If this becomes a requirement, hardware glue drivers, using this 270 * services would have to provide their own filters, which first would check 271 * the device driver, similar to how other DMAC drivers, e.g., sa11x0-dma.c, do 272 * this, and only then, in case of a match, call this common filter. 273 * NOTE 2: This filter function is also used in the DT case by shdma_of_xlate(). 274 * In that case the MID-RID value is used for slave channel filtering and is 275 * passed to this function in the "arg" parameter. 276 */ 277 bool shdma_chan_filter(struct dma_chan *chan, void *arg) 278 { 279 struct shdma_chan *schan; 280 struct shdma_dev *sdev; 281 int slave_id = (long)arg; 282 int ret; 283 284 /* Only support channels handled by this driver. */ 285 if (chan->device->device_alloc_chan_resources != 286 shdma_alloc_chan_resources) 287 return false; 288 289 schan = to_shdma_chan(chan); 290 sdev = to_shdma_dev(chan->device); 291 292 /* 293 * For DT, the schan->slave_id field is generated by the 294 * set_slave function from the slave ID that is passed in 295 * from xlate. For the non-DT case, the slave ID is 296 * directly passed into the filter function by the driver 297 */ 298 if (schan->dev->of_node) { 299 ret = sdev->ops->set_slave(schan, slave_id, 0, true); 300 if (ret < 0) 301 return false; 302 303 schan->real_slave_id = schan->slave_id; 304 return true; 305 } 306 307 if (slave_id < 0) { 308 /* No slave requested - arbitrary channel */ 309 dev_warn(sdev->dma_dev.dev, "invalid slave ID passed to dma_request_slave\n"); 310 return true; 311 } 312 313 if (slave_id >= slave_num) 314 return false; 315 316 ret = sdev->ops->set_slave(schan, slave_id, 0, true); 317 if (ret < 0) 318 return false; 319 320 schan->real_slave_id = slave_id; 321 322 return true; 323 } 324 EXPORT_SYMBOL(shdma_chan_filter); 325 326 static dma_async_tx_callback __ld_cleanup(struct shdma_chan *schan, bool all) 327 { 328 struct shdma_desc *desc, *_desc; 329 /* Is the "exposed" head of a chain acked? */ 330 bool head_acked = false; 331 dma_cookie_t cookie = 0; 332 dma_async_tx_callback callback = NULL; 333 void *param = NULL; 334 unsigned long flags; 335 LIST_HEAD(cyclic_list); 336 337 spin_lock_irqsave(&schan->chan_lock, flags); 338 list_for_each_entry_safe(desc, _desc, &schan->ld_queue, node) { 339 struct dma_async_tx_descriptor *tx = &desc->async_tx; 340 341 BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie); 342 BUG_ON(desc->mark != DESC_SUBMITTED && 343 desc->mark != DESC_COMPLETED && 344 desc->mark != DESC_WAITING); 345 346 /* 347 * queue is ordered, and we use this loop to (1) clean up all 348 * completed descriptors, and to (2) update descriptor flags of 349 * any chunks in a (partially) completed chain 350 */ 351 if (!all && desc->mark == DESC_SUBMITTED && 352 desc->cookie != cookie) 353 break; 354 355 if (tx->cookie > 0) 356 cookie = tx->cookie; 357 358 if (desc->mark == DESC_COMPLETED && desc->chunks == 1) { 359 if (schan->dma_chan.completed_cookie != desc->cookie - 1) 360 dev_dbg(schan->dev, 361 "Completing cookie %d, expected %d\n", 362 desc->cookie, 363 schan->dma_chan.completed_cookie + 1); 364 schan->dma_chan.completed_cookie = desc->cookie; 365 } 366 367 /* Call callback on the last chunk */ 368 if (desc->mark == DESC_COMPLETED && tx->callback) { 369 desc->mark = DESC_WAITING; 370 callback = tx->callback; 371 param = tx->callback_param; 372 dev_dbg(schan->dev, "descriptor #%d@%p on %d callback\n", 373 tx->cookie, tx, schan->id); 374 BUG_ON(desc->chunks != 1); 375 break; 376 } 377 378 if (tx->cookie > 0 || tx->cookie == -EBUSY) { 379 if (desc->mark == DESC_COMPLETED) { 380 BUG_ON(tx->cookie < 0); 381 desc->mark = DESC_WAITING; 382 } 383 head_acked = async_tx_test_ack(tx); 384 } else { 385 switch (desc->mark) { 386 case DESC_COMPLETED: 387 desc->mark = DESC_WAITING; 388 /* Fall through */ 389 case DESC_WAITING: 390 if (head_acked) 391 async_tx_ack(&desc->async_tx); 392 } 393 } 394 395 dev_dbg(schan->dev, "descriptor %p #%d completed.\n", 396 tx, tx->cookie); 397 398 if (((desc->mark == DESC_COMPLETED || 399 desc->mark == DESC_WAITING) && 400 async_tx_test_ack(&desc->async_tx)) || all) { 401 402 if (all || !desc->cyclic) { 403 /* Remove from ld_queue list */ 404 desc->mark = DESC_IDLE; 405 list_move(&desc->node, &schan->ld_free); 406 } else { 407 /* reuse as cyclic */ 408 desc->mark = DESC_SUBMITTED; 409 list_move_tail(&desc->node, &cyclic_list); 410 } 411 412 if (list_empty(&schan->ld_queue)) { 413 dev_dbg(schan->dev, "Bring down channel %d\n", schan->id); 414 pm_runtime_put(schan->dev); 415 schan->pm_state = SHDMA_PM_ESTABLISHED; 416 } else if (schan->pm_state == SHDMA_PM_PENDING) { 417 shdma_chan_xfer_ld_queue(schan); 418 } 419 } 420 } 421 422 if (all && !callback) 423 /* 424 * Terminating and the loop completed normally: forgive 425 * uncompleted cookies 426 */ 427 schan->dma_chan.completed_cookie = schan->dma_chan.cookie; 428 429 list_splice_tail(&cyclic_list, &schan->ld_queue); 430 431 spin_unlock_irqrestore(&schan->chan_lock, flags); 432 433 if (callback) 434 callback(param); 435 436 return callback; 437 } 438 439 /* 440 * shdma_chan_ld_cleanup - Clean up link descriptors 441 * 442 * Clean up the ld_queue of DMA channel. 443 */ 444 static void shdma_chan_ld_cleanup(struct shdma_chan *schan, bool all) 445 { 446 while (__ld_cleanup(schan, all)) 447 ; 448 } 449 450 /* 451 * shdma_free_chan_resources - Free all resources of the channel. 452 */ 453 static void shdma_free_chan_resources(struct dma_chan *chan) 454 { 455 struct shdma_chan *schan = to_shdma_chan(chan); 456 struct shdma_dev *sdev = to_shdma_dev(chan->device); 457 const struct shdma_ops *ops = sdev->ops; 458 LIST_HEAD(list); 459 460 /* Protect against ISR */ 461 spin_lock_irq(&schan->chan_lock); 462 ops->halt_channel(schan); 463 spin_unlock_irq(&schan->chan_lock); 464 465 /* Now no new interrupts will occur */ 466 467 /* Prepared and not submitted descriptors can still be on the queue */ 468 if (!list_empty(&schan->ld_queue)) 469 shdma_chan_ld_cleanup(schan, true); 470 471 if (schan->slave_id >= 0) { 472 /* The caller is holding dma_list_mutex */ 473 clear_bit(schan->slave_id, shdma_slave_used); 474 chan->private = NULL; 475 } 476 477 schan->real_slave_id = 0; 478 479 spin_lock_irq(&schan->chan_lock); 480 481 list_splice_init(&schan->ld_free, &list); 482 schan->desc_num = 0; 483 484 spin_unlock_irq(&schan->chan_lock); 485 486 kfree(schan->desc); 487 } 488 489 /** 490 * shdma_add_desc - get, set up and return one transfer descriptor 491 * @schan: DMA channel 492 * @flags: DMA transfer flags 493 * @dst: destination DMA address, incremented when direction equals 494 * DMA_DEV_TO_MEM or DMA_MEM_TO_MEM 495 * @src: source DMA address, incremented when direction equals 496 * DMA_MEM_TO_DEV or DMA_MEM_TO_MEM 497 * @len: DMA transfer length 498 * @first: if NULL, set to the current descriptor and cookie set to -EBUSY 499 * @direction: needed for slave DMA to decide which address to keep constant, 500 * equals DMA_MEM_TO_MEM for MEMCPY 501 * Returns 0 or an error 502 * Locks: called with desc_lock held 503 */ 504 static struct shdma_desc *shdma_add_desc(struct shdma_chan *schan, 505 unsigned long flags, dma_addr_t *dst, dma_addr_t *src, size_t *len, 506 struct shdma_desc **first, enum dma_transfer_direction direction) 507 { 508 struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); 509 const struct shdma_ops *ops = sdev->ops; 510 struct shdma_desc *new; 511 size_t copy_size = *len; 512 513 if (!copy_size) 514 return NULL; 515 516 /* Allocate the link descriptor from the free list */ 517 new = shdma_get_desc(schan); 518 if (!new) { 519 dev_err(schan->dev, "No free link descriptor available\n"); 520 return NULL; 521 } 522 523 ops->desc_setup(schan, new, *src, *dst, ©_size); 524 525 if (!*first) { 526 /* First desc */ 527 new->async_tx.cookie = -EBUSY; 528 *first = new; 529 } else { 530 /* Other desc - invisible to the user */ 531 new->async_tx.cookie = -EINVAL; 532 } 533 534 dev_dbg(schan->dev, 535 "chaining (%zu/%zu)@%pad -> %pad with %p, cookie %d\n", 536 copy_size, *len, src, dst, &new->async_tx, 537 new->async_tx.cookie); 538 539 new->mark = DESC_PREPARED; 540 new->async_tx.flags = flags; 541 new->direction = direction; 542 new->partial = 0; 543 544 *len -= copy_size; 545 if (direction == DMA_MEM_TO_MEM || direction == DMA_MEM_TO_DEV) 546 *src += copy_size; 547 if (direction == DMA_MEM_TO_MEM || direction == DMA_DEV_TO_MEM) 548 *dst += copy_size; 549 550 return new; 551 } 552 553 /* 554 * shdma_prep_sg - prepare transfer descriptors from an SG list 555 * 556 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also 557 * converted to scatter-gather to guarantee consistent locking and a correct 558 * list manipulation. For slave DMA direction carries the usual meaning, and, 559 * logically, the SG list is RAM and the addr variable contains slave address, 560 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM 561 * and the SG list contains only one element and points at the source buffer. 562 */ 563 static struct dma_async_tx_descriptor *shdma_prep_sg(struct shdma_chan *schan, 564 struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr, 565 enum dma_transfer_direction direction, unsigned long flags, bool cyclic) 566 { 567 struct scatterlist *sg; 568 struct shdma_desc *first = NULL, *new = NULL /* compiler... */; 569 LIST_HEAD(tx_list); 570 int chunks = 0; 571 unsigned long irq_flags; 572 int i; 573 574 for_each_sg(sgl, sg, sg_len, i) 575 chunks += DIV_ROUND_UP(sg_dma_len(sg), schan->max_xfer_len); 576 577 /* Have to lock the whole loop to protect against concurrent release */ 578 spin_lock_irqsave(&schan->chan_lock, irq_flags); 579 580 /* 581 * Chaining: 582 * first descriptor is what user is dealing with in all API calls, its 583 * cookie is at first set to -EBUSY, at tx-submit to a positive 584 * number 585 * if more than one chunk is needed further chunks have cookie = -EINVAL 586 * the last chunk, if not equal to the first, has cookie = -ENOSPC 587 * all chunks are linked onto the tx_list head with their .node heads 588 * only during this function, then they are immediately spliced 589 * back onto the free list in form of a chain 590 */ 591 for_each_sg(sgl, sg, sg_len, i) { 592 dma_addr_t sg_addr = sg_dma_address(sg); 593 size_t len = sg_dma_len(sg); 594 595 if (!len) 596 goto err_get_desc; 597 598 do { 599 dev_dbg(schan->dev, "Add SG #%d@%p[%zu], dma %pad\n", 600 i, sg, len, &sg_addr); 601 602 if (direction == DMA_DEV_TO_MEM) 603 new = shdma_add_desc(schan, flags, 604 &sg_addr, addr, &len, &first, 605 direction); 606 else 607 new = shdma_add_desc(schan, flags, 608 addr, &sg_addr, &len, &first, 609 direction); 610 if (!new) 611 goto err_get_desc; 612 613 new->cyclic = cyclic; 614 if (cyclic) 615 new->chunks = 1; 616 else 617 new->chunks = chunks--; 618 list_add_tail(&new->node, &tx_list); 619 } while (len); 620 } 621 622 if (new != first) 623 new->async_tx.cookie = -ENOSPC; 624 625 /* Put them back on the free list, so, they don't get lost */ 626 list_splice_tail(&tx_list, &schan->ld_free); 627 628 spin_unlock_irqrestore(&schan->chan_lock, irq_flags); 629 630 return &first->async_tx; 631 632 err_get_desc: 633 list_for_each_entry(new, &tx_list, node) 634 new->mark = DESC_IDLE; 635 list_splice(&tx_list, &schan->ld_free); 636 637 spin_unlock_irqrestore(&schan->chan_lock, irq_flags); 638 639 return NULL; 640 } 641 642 static struct dma_async_tx_descriptor *shdma_prep_memcpy( 643 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, 644 size_t len, unsigned long flags) 645 { 646 struct shdma_chan *schan = to_shdma_chan(chan); 647 struct scatterlist sg; 648 649 if (!chan || !len) 650 return NULL; 651 652 BUG_ON(!schan->desc_num); 653 654 sg_init_table(&sg, 1); 655 sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len, 656 offset_in_page(dma_src)); 657 sg_dma_address(&sg) = dma_src; 658 sg_dma_len(&sg) = len; 659 660 return shdma_prep_sg(schan, &sg, 1, &dma_dest, DMA_MEM_TO_MEM, 661 flags, false); 662 } 663 664 static struct dma_async_tx_descriptor *shdma_prep_slave_sg( 665 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 666 enum dma_transfer_direction direction, unsigned long flags, void *context) 667 { 668 struct shdma_chan *schan = to_shdma_chan(chan); 669 struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); 670 const struct shdma_ops *ops = sdev->ops; 671 int slave_id = schan->slave_id; 672 dma_addr_t slave_addr; 673 674 if (!chan) 675 return NULL; 676 677 BUG_ON(!schan->desc_num); 678 679 /* Someone calling slave DMA on a generic channel? */ 680 if (slave_id < 0 || !sg_len) { 681 dev_warn(schan->dev, "%s: bad parameter: len=%d, id=%d\n", 682 __func__, sg_len, slave_id); 683 return NULL; 684 } 685 686 slave_addr = ops->slave_addr(schan); 687 688 return shdma_prep_sg(schan, sgl, sg_len, &slave_addr, 689 direction, flags, false); 690 } 691 692 #define SHDMA_MAX_SG_LEN 32 693 694 static struct dma_async_tx_descriptor *shdma_prep_dma_cyclic( 695 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 696 size_t period_len, enum dma_transfer_direction direction, 697 unsigned long flags) 698 { 699 struct shdma_chan *schan = to_shdma_chan(chan); 700 struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device); 701 struct dma_async_tx_descriptor *desc; 702 const struct shdma_ops *ops = sdev->ops; 703 unsigned int sg_len = buf_len / period_len; 704 int slave_id = schan->slave_id; 705 dma_addr_t slave_addr; 706 struct scatterlist *sgl; 707 int i; 708 709 if (!chan) 710 return NULL; 711 712 BUG_ON(!schan->desc_num); 713 714 if (sg_len > SHDMA_MAX_SG_LEN) { 715 dev_err(schan->dev, "sg length %d exceds limit %d", 716 sg_len, SHDMA_MAX_SG_LEN); 717 return NULL; 718 } 719 720 /* Someone calling slave DMA on a generic channel? */ 721 if (slave_id < 0 || (buf_len < period_len)) { 722 dev_warn(schan->dev, 723 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n", 724 __func__, buf_len, period_len, slave_id); 725 return NULL; 726 } 727 728 slave_addr = ops->slave_addr(schan); 729 730 /* 731 * Allocate the sg list dynamically as it would consumer too much stack 732 * space. 733 */ 734 sgl = kcalloc(sg_len, sizeof(*sgl), GFP_KERNEL); 735 if (!sgl) 736 return NULL; 737 738 sg_init_table(sgl, sg_len); 739 740 for (i = 0; i < sg_len; i++) { 741 dma_addr_t src = buf_addr + (period_len * i); 742 743 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len, 744 offset_in_page(src)); 745 sg_dma_address(&sgl[i]) = src; 746 sg_dma_len(&sgl[i]) = period_len; 747 } 748 749 desc = shdma_prep_sg(schan, sgl, sg_len, &slave_addr, 750 direction, flags, true); 751 752 kfree(sgl); 753 return desc; 754 } 755 756 static int shdma_terminate_all(struct dma_chan *chan) 757 { 758 struct shdma_chan *schan = to_shdma_chan(chan); 759 struct shdma_dev *sdev = to_shdma_dev(chan->device); 760 const struct shdma_ops *ops = sdev->ops; 761 unsigned long flags; 762 763 spin_lock_irqsave(&schan->chan_lock, flags); 764 ops->halt_channel(schan); 765 766 if (ops->get_partial && !list_empty(&schan->ld_queue)) { 767 /* Record partial transfer */ 768 struct shdma_desc *desc = list_first_entry(&schan->ld_queue, 769 struct shdma_desc, node); 770 desc->partial = ops->get_partial(schan, desc); 771 } 772 773 spin_unlock_irqrestore(&schan->chan_lock, flags); 774 775 shdma_chan_ld_cleanup(schan, true); 776 777 return 0; 778 } 779 780 static int shdma_config(struct dma_chan *chan, 781 struct dma_slave_config *config) 782 { 783 struct shdma_chan *schan = to_shdma_chan(chan); 784 785 /* 786 * So far only .slave_id is used, but the slave drivers are 787 * encouraged to also set a transfer direction and an address. 788 */ 789 if (!config) 790 return -EINVAL; 791 792 /* 793 * overriding the slave_id through dma_slave_config is deprecated, 794 * but possibly some out-of-tree drivers still do it. 795 */ 796 if (WARN_ON_ONCE(config->slave_id && 797 config->slave_id != schan->real_slave_id)) 798 schan->real_slave_id = config->slave_id; 799 800 /* 801 * We could lock this, but you shouldn't be configuring the 802 * channel, while using it... 803 */ 804 return shdma_setup_slave(schan, 805 config->direction == DMA_DEV_TO_MEM ? 806 config->src_addr : config->dst_addr); 807 } 808 809 static void shdma_issue_pending(struct dma_chan *chan) 810 { 811 struct shdma_chan *schan = to_shdma_chan(chan); 812 813 spin_lock_irq(&schan->chan_lock); 814 if (schan->pm_state == SHDMA_PM_ESTABLISHED) 815 shdma_chan_xfer_ld_queue(schan); 816 else 817 schan->pm_state = SHDMA_PM_PENDING; 818 spin_unlock_irq(&schan->chan_lock); 819 } 820 821 static enum dma_status shdma_tx_status(struct dma_chan *chan, 822 dma_cookie_t cookie, 823 struct dma_tx_state *txstate) 824 { 825 struct shdma_chan *schan = to_shdma_chan(chan); 826 enum dma_status status; 827 unsigned long flags; 828 829 shdma_chan_ld_cleanup(schan, false); 830 831 spin_lock_irqsave(&schan->chan_lock, flags); 832 833 status = dma_cookie_status(chan, cookie, txstate); 834 835 /* 836 * If we don't find cookie on the queue, it has been aborted and we have 837 * to report error 838 */ 839 if (status != DMA_COMPLETE) { 840 struct shdma_desc *sdesc; 841 status = DMA_ERROR; 842 list_for_each_entry(sdesc, &schan->ld_queue, node) 843 if (sdesc->cookie == cookie) { 844 status = DMA_IN_PROGRESS; 845 break; 846 } 847 } 848 849 spin_unlock_irqrestore(&schan->chan_lock, flags); 850 851 return status; 852 } 853 854 /* Called from error IRQ or NMI */ 855 bool shdma_reset(struct shdma_dev *sdev) 856 { 857 const struct shdma_ops *ops = sdev->ops; 858 struct shdma_chan *schan; 859 unsigned int handled = 0; 860 int i; 861 862 /* Reset all channels */ 863 shdma_for_each_chan(schan, sdev, i) { 864 struct shdma_desc *sdesc; 865 LIST_HEAD(dl); 866 867 if (!schan) 868 continue; 869 870 spin_lock(&schan->chan_lock); 871 872 /* Stop the channel */ 873 ops->halt_channel(schan); 874 875 list_splice_init(&schan->ld_queue, &dl); 876 877 if (!list_empty(&dl)) { 878 dev_dbg(schan->dev, "Bring down channel %d\n", schan->id); 879 pm_runtime_put(schan->dev); 880 } 881 schan->pm_state = SHDMA_PM_ESTABLISHED; 882 883 spin_unlock(&schan->chan_lock); 884 885 /* Complete all */ 886 list_for_each_entry(sdesc, &dl, node) { 887 struct dma_async_tx_descriptor *tx = &sdesc->async_tx; 888 sdesc->mark = DESC_IDLE; 889 if (tx->callback) 890 tx->callback(tx->callback_param); 891 } 892 893 spin_lock(&schan->chan_lock); 894 list_splice(&dl, &schan->ld_free); 895 spin_unlock(&schan->chan_lock); 896 897 handled++; 898 } 899 900 return !!handled; 901 } 902 EXPORT_SYMBOL(shdma_reset); 903 904 static irqreturn_t chan_irq(int irq, void *dev) 905 { 906 struct shdma_chan *schan = dev; 907 const struct shdma_ops *ops = 908 to_shdma_dev(schan->dma_chan.device)->ops; 909 irqreturn_t ret; 910 911 spin_lock(&schan->chan_lock); 912 913 ret = ops->chan_irq(schan, irq) ? IRQ_WAKE_THREAD : IRQ_NONE; 914 915 spin_unlock(&schan->chan_lock); 916 917 return ret; 918 } 919 920 static irqreturn_t chan_irqt(int irq, void *dev) 921 { 922 struct shdma_chan *schan = dev; 923 const struct shdma_ops *ops = 924 to_shdma_dev(schan->dma_chan.device)->ops; 925 struct shdma_desc *sdesc; 926 927 spin_lock_irq(&schan->chan_lock); 928 list_for_each_entry(sdesc, &schan->ld_queue, node) { 929 if (sdesc->mark == DESC_SUBMITTED && 930 ops->desc_completed(schan, sdesc)) { 931 dev_dbg(schan->dev, "done #%d@%p\n", 932 sdesc->async_tx.cookie, &sdesc->async_tx); 933 sdesc->mark = DESC_COMPLETED; 934 break; 935 } 936 } 937 /* Next desc */ 938 shdma_chan_xfer_ld_queue(schan); 939 spin_unlock_irq(&schan->chan_lock); 940 941 shdma_chan_ld_cleanup(schan, false); 942 943 return IRQ_HANDLED; 944 } 945 946 int shdma_request_irq(struct shdma_chan *schan, int irq, 947 unsigned long flags, const char *name) 948 { 949 int ret = devm_request_threaded_irq(schan->dev, irq, chan_irq, 950 chan_irqt, flags, name, schan); 951 952 schan->irq = ret < 0 ? ret : irq; 953 954 return ret; 955 } 956 EXPORT_SYMBOL(shdma_request_irq); 957 958 void shdma_chan_probe(struct shdma_dev *sdev, 959 struct shdma_chan *schan, int id) 960 { 961 schan->pm_state = SHDMA_PM_ESTABLISHED; 962 963 /* reference struct dma_device */ 964 schan->dma_chan.device = &sdev->dma_dev; 965 dma_cookie_init(&schan->dma_chan); 966 967 schan->dev = sdev->dma_dev.dev; 968 schan->id = id; 969 970 if (!schan->max_xfer_len) 971 schan->max_xfer_len = PAGE_SIZE; 972 973 spin_lock_init(&schan->chan_lock); 974 975 /* Init descripter manage list */ 976 INIT_LIST_HEAD(&schan->ld_queue); 977 INIT_LIST_HEAD(&schan->ld_free); 978 979 /* Add the channel to DMA device channel list */ 980 list_add_tail(&schan->dma_chan.device_node, 981 &sdev->dma_dev.channels); 982 sdev->schan[id] = schan; 983 } 984 EXPORT_SYMBOL(shdma_chan_probe); 985 986 void shdma_chan_remove(struct shdma_chan *schan) 987 { 988 list_del(&schan->dma_chan.device_node); 989 } 990 EXPORT_SYMBOL(shdma_chan_remove); 991 992 int shdma_init(struct device *dev, struct shdma_dev *sdev, 993 int chan_num) 994 { 995 struct dma_device *dma_dev = &sdev->dma_dev; 996 997 /* 998 * Require all call-backs for now, they can trivially be made optional 999 * later as required 1000 */ 1001 if (!sdev->ops || 1002 !sdev->desc_size || 1003 !sdev->ops->embedded_desc || 1004 !sdev->ops->start_xfer || 1005 !sdev->ops->setup_xfer || 1006 !sdev->ops->set_slave || 1007 !sdev->ops->desc_setup || 1008 !sdev->ops->slave_addr || 1009 !sdev->ops->channel_busy || 1010 !sdev->ops->halt_channel || 1011 !sdev->ops->desc_completed) 1012 return -EINVAL; 1013 1014 sdev->schan = kcalloc(chan_num, sizeof(*sdev->schan), GFP_KERNEL); 1015 if (!sdev->schan) 1016 return -ENOMEM; 1017 1018 INIT_LIST_HEAD(&dma_dev->channels); 1019 1020 /* Common and MEMCPY operations */ 1021 dma_dev->device_alloc_chan_resources 1022 = shdma_alloc_chan_resources; 1023 dma_dev->device_free_chan_resources = shdma_free_chan_resources; 1024 dma_dev->device_prep_dma_memcpy = shdma_prep_memcpy; 1025 dma_dev->device_tx_status = shdma_tx_status; 1026 dma_dev->device_issue_pending = shdma_issue_pending; 1027 1028 /* Compulsory for DMA_SLAVE fields */ 1029 dma_dev->device_prep_slave_sg = shdma_prep_slave_sg; 1030 dma_dev->device_prep_dma_cyclic = shdma_prep_dma_cyclic; 1031 dma_dev->device_config = shdma_config; 1032 dma_dev->device_terminate_all = shdma_terminate_all; 1033 1034 dma_dev->dev = dev; 1035 1036 return 0; 1037 } 1038 EXPORT_SYMBOL(shdma_init); 1039 1040 void shdma_cleanup(struct shdma_dev *sdev) 1041 { 1042 kfree(sdev->schan); 1043 } 1044 EXPORT_SYMBOL(shdma_cleanup); 1045 1046 static int __init shdma_enter(void) 1047 { 1048 shdma_slave_used = kzalloc(DIV_ROUND_UP(slave_num, BITS_PER_LONG) * 1049 sizeof(long), GFP_KERNEL); 1050 if (!shdma_slave_used) 1051 return -ENOMEM; 1052 return 0; 1053 } 1054 module_init(shdma_enter); 1055 1056 static void __exit shdma_exit(void) 1057 { 1058 kfree(shdma_slave_used); 1059 } 1060 module_exit(shdma_exit); 1061 1062 MODULE_LICENSE("GPL v2"); 1063 MODULE_DESCRIPTION("SH-DMA driver base library"); 1064 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); 1065