xref: /openbmc/linux/drivers/dma/sh/shdma-base.c (revision 275876e2)
1 /*
2  * Dmaengine driver base library for DMA controllers, found on SH-based SoCs
3  *
4  * extracted from shdma.c
5  *
6  * Copyright (C) 2011-2012 Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7  * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
8  * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
9  * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
10  *
11  * This is free software; you can redistribute it and/or modify
12  * it under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/shdma-base.h>
18 #include <linux/dmaengine.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 
26 #include "../dmaengine.h"
27 
28 /* DMA descriptor control */
29 enum shdma_desc_status {
30 	DESC_IDLE,
31 	DESC_PREPARED,
32 	DESC_SUBMITTED,
33 	DESC_COMPLETED,	/* completed, have to call callback */
34 	DESC_WAITING,	/* callback called, waiting for ack / re-submit */
35 };
36 
37 #define NR_DESCS_PER_CHANNEL 32
38 
39 #define to_shdma_chan(c) container_of(c, struct shdma_chan, dma_chan)
40 #define to_shdma_dev(d) container_of(d, struct shdma_dev, dma_dev)
41 
42 /*
43  * For slave DMA we assume, that there is a finite number of DMA slaves in the
44  * system, and that each such slave can only use a finite number of channels.
45  * We use slave channel IDs to make sure, that no such slave channel ID is
46  * allocated more than once.
47  */
48 static unsigned int slave_num = 256;
49 module_param(slave_num, uint, 0444);
50 
51 /* A bitmask with slave_num bits */
52 static unsigned long *shdma_slave_used;
53 
54 /* Called under spin_lock_irq(&schan->chan_lock") */
55 static void shdma_chan_xfer_ld_queue(struct shdma_chan *schan)
56 {
57 	struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device);
58 	const struct shdma_ops *ops = sdev->ops;
59 	struct shdma_desc *sdesc;
60 
61 	/* DMA work check */
62 	if (ops->channel_busy(schan))
63 		return;
64 
65 	/* Find the first not transferred descriptor */
66 	list_for_each_entry(sdesc, &schan->ld_queue, node)
67 		if (sdesc->mark == DESC_SUBMITTED) {
68 			ops->start_xfer(schan, sdesc);
69 			break;
70 		}
71 }
72 
73 static dma_cookie_t shdma_tx_submit(struct dma_async_tx_descriptor *tx)
74 {
75 	struct shdma_desc *chunk, *c, *desc =
76 		container_of(tx, struct shdma_desc, async_tx);
77 	struct shdma_chan *schan = to_shdma_chan(tx->chan);
78 	dma_async_tx_callback callback = tx->callback;
79 	dma_cookie_t cookie;
80 	bool power_up;
81 
82 	spin_lock_irq(&schan->chan_lock);
83 
84 	power_up = list_empty(&schan->ld_queue);
85 
86 	cookie = dma_cookie_assign(tx);
87 
88 	/* Mark all chunks of this descriptor as submitted, move to the queue */
89 	list_for_each_entry_safe(chunk, c, desc->node.prev, node) {
90 		/*
91 		 * All chunks are on the global ld_free, so, we have to find
92 		 * the end of the chain ourselves
93 		 */
94 		if (chunk != desc && (chunk->mark == DESC_IDLE ||
95 				      chunk->async_tx.cookie > 0 ||
96 				      chunk->async_tx.cookie == -EBUSY ||
97 				      &chunk->node == &schan->ld_free))
98 			break;
99 		chunk->mark = DESC_SUBMITTED;
100 		if (chunk->chunks == 1) {
101 			chunk->async_tx.callback = callback;
102 			chunk->async_tx.callback_param = tx->callback_param;
103 		} else {
104 			/* Callback goes to the last chunk */
105 			chunk->async_tx.callback = NULL;
106 		}
107 		chunk->cookie = cookie;
108 		list_move_tail(&chunk->node, &schan->ld_queue);
109 
110 		dev_dbg(schan->dev, "submit #%d@%p on %d\n",
111 			tx->cookie, &chunk->async_tx, schan->id);
112 	}
113 
114 	if (power_up) {
115 		int ret;
116 		schan->pm_state = SHDMA_PM_BUSY;
117 
118 		ret = pm_runtime_get(schan->dev);
119 
120 		spin_unlock_irq(&schan->chan_lock);
121 		if (ret < 0)
122 			dev_err(schan->dev, "%s(): GET = %d\n", __func__, ret);
123 
124 		pm_runtime_barrier(schan->dev);
125 
126 		spin_lock_irq(&schan->chan_lock);
127 
128 		/* Have we been reset, while waiting? */
129 		if (schan->pm_state != SHDMA_PM_ESTABLISHED) {
130 			struct shdma_dev *sdev =
131 				to_shdma_dev(schan->dma_chan.device);
132 			const struct shdma_ops *ops = sdev->ops;
133 			dev_dbg(schan->dev, "Bring up channel %d\n",
134 				schan->id);
135 			/*
136 			 * TODO: .xfer_setup() might fail on some platforms.
137 			 * Make it int then, on error remove chunks from the
138 			 * queue again
139 			 */
140 			ops->setup_xfer(schan, schan->slave_id);
141 
142 			if (schan->pm_state == SHDMA_PM_PENDING)
143 				shdma_chan_xfer_ld_queue(schan);
144 			schan->pm_state = SHDMA_PM_ESTABLISHED;
145 		}
146 	} else {
147 		/*
148 		 * Tell .device_issue_pending() not to run the queue, interrupts
149 		 * will do it anyway
150 		 */
151 		schan->pm_state = SHDMA_PM_PENDING;
152 	}
153 
154 	spin_unlock_irq(&schan->chan_lock);
155 
156 	return cookie;
157 }
158 
159 /* Called with desc_lock held */
160 static struct shdma_desc *shdma_get_desc(struct shdma_chan *schan)
161 {
162 	struct shdma_desc *sdesc;
163 
164 	list_for_each_entry(sdesc, &schan->ld_free, node)
165 		if (sdesc->mark != DESC_PREPARED) {
166 			BUG_ON(sdesc->mark != DESC_IDLE);
167 			list_del(&sdesc->node);
168 			return sdesc;
169 		}
170 
171 	return NULL;
172 }
173 
174 static int shdma_setup_slave(struct shdma_chan *schan, int slave_id,
175 			     dma_addr_t slave_addr)
176 {
177 	struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device);
178 	const struct shdma_ops *ops = sdev->ops;
179 	int ret, match;
180 
181 	if (schan->dev->of_node) {
182 		match = schan->hw_req;
183 		ret = ops->set_slave(schan, match, slave_addr, true);
184 		if (ret < 0)
185 			return ret;
186 
187 		slave_id = schan->slave_id;
188 	} else {
189 		match = slave_id;
190 	}
191 
192 	if (slave_id < 0 || slave_id >= slave_num)
193 		return -EINVAL;
194 
195 	if (test_and_set_bit(slave_id, shdma_slave_used))
196 		return -EBUSY;
197 
198 	ret = ops->set_slave(schan, match, slave_addr, false);
199 	if (ret < 0) {
200 		clear_bit(slave_id, shdma_slave_used);
201 		return ret;
202 	}
203 
204 	schan->slave_id = slave_id;
205 
206 	return 0;
207 }
208 
209 static int shdma_alloc_chan_resources(struct dma_chan *chan)
210 {
211 	struct shdma_chan *schan = to_shdma_chan(chan);
212 	struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device);
213 	const struct shdma_ops *ops = sdev->ops;
214 	struct shdma_desc *desc;
215 	struct shdma_slave *slave = chan->private;
216 	int ret, i;
217 
218 	/*
219 	 * This relies on the guarantee from dmaengine that alloc_chan_resources
220 	 * never runs concurrently with itself or free_chan_resources.
221 	 */
222 	if (slave) {
223 		/* Legacy mode: .private is set in filter */
224 		ret = shdma_setup_slave(schan, slave->slave_id, 0);
225 		if (ret < 0)
226 			goto esetslave;
227 	} else {
228 		schan->slave_id = -EINVAL;
229 	}
230 
231 	schan->desc = kcalloc(NR_DESCS_PER_CHANNEL,
232 			      sdev->desc_size, GFP_KERNEL);
233 	if (!schan->desc) {
234 		ret = -ENOMEM;
235 		goto edescalloc;
236 	}
237 	schan->desc_num = NR_DESCS_PER_CHANNEL;
238 
239 	for (i = 0; i < NR_DESCS_PER_CHANNEL; i++) {
240 		desc = ops->embedded_desc(schan->desc, i);
241 		dma_async_tx_descriptor_init(&desc->async_tx,
242 					     &schan->dma_chan);
243 		desc->async_tx.tx_submit = shdma_tx_submit;
244 		desc->mark = DESC_IDLE;
245 
246 		list_add(&desc->node, &schan->ld_free);
247 	}
248 
249 	return NR_DESCS_PER_CHANNEL;
250 
251 edescalloc:
252 	if (slave)
253 esetslave:
254 		clear_bit(slave->slave_id, shdma_slave_used);
255 	chan->private = NULL;
256 	return ret;
257 }
258 
259 /*
260  * This is the standard shdma filter function to be used as a replacement to the
261  * "old" method, using the .private pointer. If for some reason you allocate a
262  * channel without slave data, use something like ERR_PTR(-EINVAL) as a filter
263  * parameter. If this filter is used, the slave driver, after calling
264  * dma_request_channel(), will also have to call dmaengine_slave_config() with
265  * .slave_id, .direction, and either .src_addr or .dst_addr set.
266  * NOTE: this filter doesn't support multiple DMAC drivers with the DMA_SLAVE
267  * capability! If this becomes a requirement, hardware glue drivers, using this
268  * services would have to provide their own filters, which first would check
269  * the device driver, similar to how other DMAC drivers, e.g., sa11x0-dma.c, do
270  * this, and only then, in case of a match, call this common filter.
271  * NOTE 2: This filter function is also used in the DT case by shdma_of_xlate().
272  * In that case the MID-RID value is used for slave channel filtering and is
273  * passed to this function in the "arg" parameter.
274  */
275 bool shdma_chan_filter(struct dma_chan *chan, void *arg)
276 {
277 	struct shdma_chan *schan;
278 	struct shdma_dev *sdev;
279 	int match = (long)arg;
280 	int ret;
281 
282 	/* Only support channels handled by this driver. */
283 	if (chan->device->device_alloc_chan_resources !=
284 	    shdma_alloc_chan_resources)
285 		return false;
286 
287 	if (match < 0)
288 		/* No slave requested - arbitrary channel */
289 		return true;
290 
291 	schan = to_shdma_chan(chan);
292 	if (!schan->dev->of_node && match >= slave_num)
293 		return false;
294 
295 	sdev = to_shdma_dev(schan->dma_chan.device);
296 	ret = sdev->ops->set_slave(schan, match, 0, true);
297 	if (ret < 0)
298 		return false;
299 
300 	return true;
301 }
302 EXPORT_SYMBOL(shdma_chan_filter);
303 
304 static dma_async_tx_callback __ld_cleanup(struct shdma_chan *schan, bool all)
305 {
306 	struct shdma_desc *desc, *_desc;
307 	/* Is the "exposed" head of a chain acked? */
308 	bool head_acked = false;
309 	dma_cookie_t cookie = 0;
310 	dma_async_tx_callback callback = NULL;
311 	void *param = NULL;
312 	unsigned long flags;
313 	LIST_HEAD(cyclic_list);
314 
315 	spin_lock_irqsave(&schan->chan_lock, flags);
316 	list_for_each_entry_safe(desc, _desc, &schan->ld_queue, node) {
317 		struct dma_async_tx_descriptor *tx = &desc->async_tx;
318 
319 		BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie);
320 		BUG_ON(desc->mark != DESC_SUBMITTED &&
321 		       desc->mark != DESC_COMPLETED &&
322 		       desc->mark != DESC_WAITING);
323 
324 		/*
325 		 * queue is ordered, and we use this loop to (1) clean up all
326 		 * completed descriptors, and to (2) update descriptor flags of
327 		 * any chunks in a (partially) completed chain
328 		 */
329 		if (!all && desc->mark == DESC_SUBMITTED &&
330 		    desc->cookie != cookie)
331 			break;
332 
333 		if (tx->cookie > 0)
334 			cookie = tx->cookie;
335 
336 		if (desc->mark == DESC_COMPLETED && desc->chunks == 1) {
337 			if (schan->dma_chan.completed_cookie != desc->cookie - 1)
338 				dev_dbg(schan->dev,
339 					"Completing cookie %d, expected %d\n",
340 					desc->cookie,
341 					schan->dma_chan.completed_cookie + 1);
342 			schan->dma_chan.completed_cookie = desc->cookie;
343 		}
344 
345 		/* Call callback on the last chunk */
346 		if (desc->mark == DESC_COMPLETED && tx->callback) {
347 			desc->mark = DESC_WAITING;
348 			callback = tx->callback;
349 			param = tx->callback_param;
350 			dev_dbg(schan->dev, "descriptor #%d@%p on %d callback\n",
351 				tx->cookie, tx, schan->id);
352 			BUG_ON(desc->chunks != 1);
353 			break;
354 		}
355 
356 		if (tx->cookie > 0 || tx->cookie == -EBUSY) {
357 			if (desc->mark == DESC_COMPLETED) {
358 				BUG_ON(tx->cookie < 0);
359 				desc->mark = DESC_WAITING;
360 			}
361 			head_acked = async_tx_test_ack(tx);
362 		} else {
363 			switch (desc->mark) {
364 			case DESC_COMPLETED:
365 				desc->mark = DESC_WAITING;
366 				/* Fall through */
367 			case DESC_WAITING:
368 				if (head_acked)
369 					async_tx_ack(&desc->async_tx);
370 			}
371 		}
372 
373 		dev_dbg(schan->dev, "descriptor %p #%d completed.\n",
374 			tx, tx->cookie);
375 
376 		if (((desc->mark == DESC_COMPLETED ||
377 		      desc->mark == DESC_WAITING) &&
378 		     async_tx_test_ack(&desc->async_tx)) || all) {
379 
380 			if (all || !desc->cyclic) {
381 				/* Remove from ld_queue list */
382 				desc->mark = DESC_IDLE;
383 				list_move(&desc->node, &schan->ld_free);
384 			} else {
385 				/* reuse as cyclic */
386 				desc->mark = DESC_SUBMITTED;
387 				list_move_tail(&desc->node, &cyclic_list);
388 			}
389 
390 			if (list_empty(&schan->ld_queue)) {
391 				dev_dbg(schan->dev, "Bring down channel %d\n", schan->id);
392 				pm_runtime_put(schan->dev);
393 				schan->pm_state = SHDMA_PM_ESTABLISHED;
394 			}
395 		}
396 	}
397 
398 	if (all && !callback)
399 		/*
400 		 * Terminating and the loop completed normally: forgive
401 		 * uncompleted cookies
402 		 */
403 		schan->dma_chan.completed_cookie = schan->dma_chan.cookie;
404 
405 	list_splice_tail(&cyclic_list, &schan->ld_queue);
406 
407 	spin_unlock_irqrestore(&schan->chan_lock, flags);
408 
409 	if (callback)
410 		callback(param);
411 
412 	return callback;
413 }
414 
415 /*
416  * shdma_chan_ld_cleanup - Clean up link descriptors
417  *
418  * Clean up the ld_queue of DMA channel.
419  */
420 static void shdma_chan_ld_cleanup(struct shdma_chan *schan, bool all)
421 {
422 	while (__ld_cleanup(schan, all))
423 		;
424 }
425 
426 /*
427  * shdma_free_chan_resources - Free all resources of the channel.
428  */
429 static void shdma_free_chan_resources(struct dma_chan *chan)
430 {
431 	struct shdma_chan *schan = to_shdma_chan(chan);
432 	struct shdma_dev *sdev = to_shdma_dev(chan->device);
433 	const struct shdma_ops *ops = sdev->ops;
434 	LIST_HEAD(list);
435 
436 	/* Protect against ISR */
437 	spin_lock_irq(&schan->chan_lock);
438 	ops->halt_channel(schan);
439 	spin_unlock_irq(&schan->chan_lock);
440 
441 	/* Now no new interrupts will occur */
442 
443 	/* Prepared and not submitted descriptors can still be on the queue */
444 	if (!list_empty(&schan->ld_queue))
445 		shdma_chan_ld_cleanup(schan, true);
446 
447 	if (schan->slave_id >= 0) {
448 		/* The caller is holding dma_list_mutex */
449 		clear_bit(schan->slave_id, shdma_slave_used);
450 		chan->private = NULL;
451 	}
452 
453 	spin_lock_irq(&schan->chan_lock);
454 
455 	list_splice_init(&schan->ld_free, &list);
456 	schan->desc_num = 0;
457 
458 	spin_unlock_irq(&schan->chan_lock);
459 
460 	kfree(schan->desc);
461 }
462 
463 /**
464  * shdma_add_desc - get, set up and return one transfer descriptor
465  * @schan:	DMA channel
466  * @flags:	DMA transfer flags
467  * @dst:	destination DMA address, incremented when direction equals
468  *		DMA_DEV_TO_MEM or DMA_MEM_TO_MEM
469  * @src:	source DMA address, incremented when direction equals
470  *		DMA_MEM_TO_DEV or DMA_MEM_TO_MEM
471  * @len:	DMA transfer length
472  * @first:	if NULL, set to the current descriptor and cookie set to -EBUSY
473  * @direction:	needed for slave DMA to decide which address to keep constant,
474  *		equals DMA_MEM_TO_MEM for MEMCPY
475  * Returns 0 or an error
476  * Locks: called with desc_lock held
477  */
478 static struct shdma_desc *shdma_add_desc(struct shdma_chan *schan,
479 	unsigned long flags, dma_addr_t *dst, dma_addr_t *src, size_t *len,
480 	struct shdma_desc **first, enum dma_transfer_direction direction)
481 {
482 	struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device);
483 	const struct shdma_ops *ops = sdev->ops;
484 	struct shdma_desc *new;
485 	size_t copy_size = *len;
486 
487 	if (!copy_size)
488 		return NULL;
489 
490 	/* Allocate the link descriptor from the free list */
491 	new = shdma_get_desc(schan);
492 	if (!new) {
493 		dev_err(schan->dev, "No free link descriptor available\n");
494 		return NULL;
495 	}
496 
497 	ops->desc_setup(schan, new, *src, *dst, &copy_size);
498 
499 	if (!*first) {
500 		/* First desc */
501 		new->async_tx.cookie = -EBUSY;
502 		*first = new;
503 	} else {
504 		/* Other desc - invisible to the user */
505 		new->async_tx.cookie = -EINVAL;
506 	}
507 
508 	dev_dbg(schan->dev,
509 		"chaining (%zu/%zu)@%pad -> %pad with %p, cookie %d\n",
510 		copy_size, *len, src, dst, &new->async_tx,
511 		new->async_tx.cookie);
512 
513 	new->mark = DESC_PREPARED;
514 	new->async_tx.flags = flags;
515 	new->direction = direction;
516 	new->partial = 0;
517 
518 	*len -= copy_size;
519 	if (direction == DMA_MEM_TO_MEM || direction == DMA_MEM_TO_DEV)
520 		*src += copy_size;
521 	if (direction == DMA_MEM_TO_MEM || direction == DMA_DEV_TO_MEM)
522 		*dst += copy_size;
523 
524 	return new;
525 }
526 
527 /*
528  * shdma_prep_sg - prepare transfer descriptors from an SG list
529  *
530  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
531  * converted to scatter-gather to guarantee consistent locking and a correct
532  * list manipulation. For slave DMA direction carries the usual meaning, and,
533  * logically, the SG list is RAM and the addr variable contains slave address,
534  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
535  * and the SG list contains only one element and points at the source buffer.
536  */
537 static struct dma_async_tx_descriptor *shdma_prep_sg(struct shdma_chan *schan,
538 	struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr,
539 	enum dma_transfer_direction direction, unsigned long flags, bool cyclic)
540 {
541 	struct scatterlist *sg;
542 	struct shdma_desc *first = NULL, *new = NULL /* compiler... */;
543 	LIST_HEAD(tx_list);
544 	int chunks = 0;
545 	unsigned long irq_flags;
546 	int i;
547 
548 	for_each_sg(sgl, sg, sg_len, i)
549 		chunks += DIV_ROUND_UP(sg_dma_len(sg), schan->max_xfer_len);
550 
551 	/* Have to lock the whole loop to protect against concurrent release */
552 	spin_lock_irqsave(&schan->chan_lock, irq_flags);
553 
554 	/*
555 	 * Chaining:
556 	 * first descriptor is what user is dealing with in all API calls, its
557 	 *	cookie is at first set to -EBUSY, at tx-submit to a positive
558 	 *	number
559 	 * if more than one chunk is needed further chunks have cookie = -EINVAL
560 	 * the last chunk, if not equal to the first, has cookie = -ENOSPC
561 	 * all chunks are linked onto the tx_list head with their .node heads
562 	 *	only during this function, then they are immediately spliced
563 	 *	back onto the free list in form of a chain
564 	 */
565 	for_each_sg(sgl, sg, sg_len, i) {
566 		dma_addr_t sg_addr = sg_dma_address(sg);
567 		size_t len = sg_dma_len(sg);
568 
569 		if (!len)
570 			goto err_get_desc;
571 
572 		do {
573 			dev_dbg(schan->dev, "Add SG #%d@%p[%zu], dma %pad\n",
574 				i, sg, len, &sg_addr);
575 
576 			if (direction == DMA_DEV_TO_MEM)
577 				new = shdma_add_desc(schan, flags,
578 						&sg_addr, addr, &len, &first,
579 						direction);
580 			else
581 				new = shdma_add_desc(schan, flags,
582 						addr, &sg_addr, &len, &first,
583 						direction);
584 			if (!new)
585 				goto err_get_desc;
586 
587 			new->cyclic = cyclic;
588 			if (cyclic)
589 				new->chunks = 1;
590 			else
591 				new->chunks = chunks--;
592 			list_add_tail(&new->node, &tx_list);
593 		} while (len);
594 	}
595 
596 	if (new != first)
597 		new->async_tx.cookie = -ENOSPC;
598 
599 	/* Put them back on the free list, so, they don't get lost */
600 	list_splice_tail(&tx_list, &schan->ld_free);
601 
602 	spin_unlock_irqrestore(&schan->chan_lock, irq_flags);
603 
604 	return &first->async_tx;
605 
606 err_get_desc:
607 	list_for_each_entry(new, &tx_list, node)
608 		new->mark = DESC_IDLE;
609 	list_splice(&tx_list, &schan->ld_free);
610 
611 	spin_unlock_irqrestore(&schan->chan_lock, irq_flags);
612 
613 	return NULL;
614 }
615 
616 static struct dma_async_tx_descriptor *shdma_prep_memcpy(
617 	struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
618 	size_t len, unsigned long flags)
619 {
620 	struct shdma_chan *schan = to_shdma_chan(chan);
621 	struct scatterlist sg;
622 
623 	if (!chan || !len)
624 		return NULL;
625 
626 	BUG_ON(!schan->desc_num);
627 
628 	sg_init_table(&sg, 1);
629 	sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len,
630 		    offset_in_page(dma_src));
631 	sg_dma_address(&sg) = dma_src;
632 	sg_dma_len(&sg) = len;
633 
634 	return shdma_prep_sg(schan, &sg, 1, &dma_dest, DMA_MEM_TO_MEM,
635 			     flags, false);
636 }
637 
638 static struct dma_async_tx_descriptor *shdma_prep_slave_sg(
639 	struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
640 	enum dma_transfer_direction direction, unsigned long flags, void *context)
641 {
642 	struct shdma_chan *schan = to_shdma_chan(chan);
643 	struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device);
644 	const struct shdma_ops *ops = sdev->ops;
645 	int slave_id = schan->slave_id;
646 	dma_addr_t slave_addr;
647 
648 	if (!chan)
649 		return NULL;
650 
651 	BUG_ON(!schan->desc_num);
652 
653 	/* Someone calling slave DMA on a generic channel? */
654 	if (slave_id < 0 || !sg_len) {
655 		dev_warn(schan->dev, "%s: bad parameter: len=%d, id=%d\n",
656 			 __func__, sg_len, slave_id);
657 		return NULL;
658 	}
659 
660 	slave_addr = ops->slave_addr(schan);
661 
662 	return shdma_prep_sg(schan, sgl, sg_len, &slave_addr,
663 			     direction, flags, false);
664 }
665 
666 #define SHDMA_MAX_SG_LEN 32
667 
668 static struct dma_async_tx_descriptor *shdma_prep_dma_cyclic(
669 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
670 	size_t period_len, enum dma_transfer_direction direction,
671 	unsigned long flags)
672 {
673 	struct shdma_chan *schan = to_shdma_chan(chan);
674 	struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device);
675 	struct dma_async_tx_descriptor *desc;
676 	const struct shdma_ops *ops = sdev->ops;
677 	unsigned int sg_len = buf_len / period_len;
678 	int slave_id = schan->slave_id;
679 	dma_addr_t slave_addr;
680 	struct scatterlist *sgl;
681 	int i;
682 
683 	if (!chan)
684 		return NULL;
685 
686 	BUG_ON(!schan->desc_num);
687 
688 	if (sg_len > SHDMA_MAX_SG_LEN) {
689 		dev_err(schan->dev, "sg length %d exceds limit %d",
690 				sg_len, SHDMA_MAX_SG_LEN);
691 		return NULL;
692 	}
693 
694 	/* Someone calling slave DMA on a generic channel? */
695 	if (slave_id < 0 || (buf_len < period_len)) {
696 		dev_warn(schan->dev,
697 			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
698 			__func__, buf_len, period_len, slave_id);
699 		return NULL;
700 	}
701 
702 	slave_addr = ops->slave_addr(schan);
703 
704 	/*
705 	 * Allocate the sg list dynamically as it would consumer too much stack
706 	 * space.
707 	 */
708 	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_KERNEL);
709 	if (!sgl)
710 		return NULL;
711 
712 	sg_init_table(sgl, sg_len);
713 
714 	for (i = 0; i < sg_len; i++) {
715 		dma_addr_t src = buf_addr + (period_len * i);
716 
717 		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
718 			    offset_in_page(src));
719 		sg_dma_address(&sgl[i]) = src;
720 		sg_dma_len(&sgl[i]) = period_len;
721 	}
722 
723 	desc = shdma_prep_sg(schan, sgl, sg_len, &slave_addr,
724 			     direction, flags, true);
725 
726 	kfree(sgl);
727 	return desc;
728 }
729 
730 static int shdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
731 			  unsigned long arg)
732 {
733 	struct shdma_chan *schan = to_shdma_chan(chan);
734 	struct shdma_dev *sdev = to_shdma_dev(chan->device);
735 	const struct shdma_ops *ops = sdev->ops;
736 	struct dma_slave_config *config;
737 	unsigned long flags;
738 	int ret;
739 
740 	switch (cmd) {
741 	case DMA_TERMINATE_ALL:
742 		spin_lock_irqsave(&schan->chan_lock, flags);
743 		ops->halt_channel(schan);
744 
745 		if (ops->get_partial && !list_empty(&schan->ld_queue)) {
746 			/* Record partial transfer */
747 			struct shdma_desc *desc = list_first_entry(&schan->ld_queue,
748 						struct shdma_desc, node);
749 			desc->partial = ops->get_partial(schan, desc);
750 		}
751 
752 		spin_unlock_irqrestore(&schan->chan_lock, flags);
753 
754 		shdma_chan_ld_cleanup(schan, true);
755 		break;
756 	case DMA_SLAVE_CONFIG:
757 		/*
758 		 * So far only .slave_id is used, but the slave drivers are
759 		 * encouraged to also set a transfer direction and an address.
760 		 */
761 		if (!arg)
762 			return -EINVAL;
763 		/*
764 		 * We could lock this, but you shouldn't be configuring the
765 		 * channel, while using it...
766 		 */
767 		config = (struct dma_slave_config *)arg;
768 		ret = shdma_setup_slave(schan, config->slave_id,
769 					config->direction == DMA_DEV_TO_MEM ?
770 					config->src_addr : config->dst_addr);
771 		if (ret < 0)
772 			return ret;
773 		break;
774 	default:
775 		return -ENXIO;
776 	}
777 
778 	return 0;
779 }
780 
781 static void shdma_issue_pending(struct dma_chan *chan)
782 {
783 	struct shdma_chan *schan = to_shdma_chan(chan);
784 
785 	spin_lock_irq(&schan->chan_lock);
786 	if (schan->pm_state == SHDMA_PM_ESTABLISHED)
787 		shdma_chan_xfer_ld_queue(schan);
788 	else
789 		schan->pm_state = SHDMA_PM_PENDING;
790 	spin_unlock_irq(&schan->chan_lock);
791 }
792 
793 static enum dma_status shdma_tx_status(struct dma_chan *chan,
794 					dma_cookie_t cookie,
795 					struct dma_tx_state *txstate)
796 {
797 	struct shdma_chan *schan = to_shdma_chan(chan);
798 	enum dma_status status;
799 	unsigned long flags;
800 
801 	shdma_chan_ld_cleanup(schan, false);
802 
803 	spin_lock_irqsave(&schan->chan_lock, flags);
804 
805 	status = dma_cookie_status(chan, cookie, txstate);
806 
807 	/*
808 	 * If we don't find cookie on the queue, it has been aborted and we have
809 	 * to report error
810 	 */
811 	if (status != DMA_COMPLETE) {
812 		struct shdma_desc *sdesc;
813 		status = DMA_ERROR;
814 		list_for_each_entry(sdesc, &schan->ld_queue, node)
815 			if (sdesc->cookie == cookie) {
816 				status = DMA_IN_PROGRESS;
817 				break;
818 			}
819 	}
820 
821 	spin_unlock_irqrestore(&schan->chan_lock, flags);
822 
823 	return status;
824 }
825 
826 /* Called from error IRQ or NMI */
827 bool shdma_reset(struct shdma_dev *sdev)
828 {
829 	const struct shdma_ops *ops = sdev->ops;
830 	struct shdma_chan *schan;
831 	unsigned int handled = 0;
832 	int i;
833 
834 	/* Reset all channels */
835 	shdma_for_each_chan(schan, sdev, i) {
836 		struct shdma_desc *sdesc;
837 		LIST_HEAD(dl);
838 
839 		if (!schan)
840 			continue;
841 
842 		spin_lock(&schan->chan_lock);
843 
844 		/* Stop the channel */
845 		ops->halt_channel(schan);
846 
847 		list_splice_init(&schan->ld_queue, &dl);
848 
849 		if (!list_empty(&dl)) {
850 			dev_dbg(schan->dev, "Bring down channel %d\n", schan->id);
851 			pm_runtime_put(schan->dev);
852 		}
853 		schan->pm_state = SHDMA_PM_ESTABLISHED;
854 
855 		spin_unlock(&schan->chan_lock);
856 
857 		/* Complete all  */
858 		list_for_each_entry(sdesc, &dl, node) {
859 			struct dma_async_tx_descriptor *tx = &sdesc->async_tx;
860 			sdesc->mark = DESC_IDLE;
861 			if (tx->callback)
862 				tx->callback(tx->callback_param);
863 		}
864 
865 		spin_lock(&schan->chan_lock);
866 		list_splice(&dl, &schan->ld_free);
867 		spin_unlock(&schan->chan_lock);
868 
869 		handled++;
870 	}
871 
872 	return !!handled;
873 }
874 EXPORT_SYMBOL(shdma_reset);
875 
876 static irqreturn_t chan_irq(int irq, void *dev)
877 {
878 	struct shdma_chan *schan = dev;
879 	const struct shdma_ops *ops =
880 		to_shdma_dev(schan->dma_chan.device)->ops;
881 	irqreturn_t ret;
882 
883 	spin_lock(&schan->chan_lock);
884 
885 	ret = ops->chan_irq(schan, irq) ? IRQ_WAKE_THREAD : IRQ_NONE;
886 
887 	spin_unlock(&schan->chan_lock);
888 
889 	return ret;
890 }
891 
892 static irqreturn_t chan_irqt(int irq, void *dev)
893 {
894 	struct shdma_chan *schan = dev;
895 	const struct shdma_ops *ops =
896 		to_shdma_dev(schan->dma_chan.device)->ops;
897 	struct shdma_desc *sdesc;
898 
899 	spin_lock_irq(&schan->chan_lock);
900 	list_for_each_entry(sdesc, &schan->ld_queue, node) {
901 		if (sdesc->mark == DESC_SUBMITTED &&
902 		    ops->desc_completed(schan, sdesc)) {
903 			dev_dbg(schan->dev, "done #%d@%p\n",
904 				sdesc->async_tx.cookie, &sdesc->async_tx);
905 			sdesc->mark = DESC_COMPLETED;
906 			break;
907 		}
908 	}
909 	/* Next desc */
910 	shdma_chan_xfer_ld_queue(schan);
911 	spin_unlock_irq(&schan->chan_lock);
912 
913 	shdma_chan_ld_cleanup(schan, false);
914 
915 	return IRQ_HANDLED;
916 }
917 
918 int shdma_request_irq(struct shdma_chan *schan, int irq,
919 			   unsigned long flags, const char *name)
920 {
921 	int ret = devm_request_threaded_irq(schan->dev, irq, chan_irq,
922 					    chan_irqt, flags, name, schan);
923 
924 	schan->irq = ret < 0 ? ret : irq;
925 
926 	return ret;
927 }
928 EXPORT_SYMBOL(shdma_request_irq);
929 
930 void shdma_chan_probe(struct shdma_dev *sdev,
931 			   struct shdma_chan *schan, int id)
932 {
933 	schan->pm_state = SHDMA_PM_ESTABLISHED;
934 
935 	/* reference struct dma_device */
936 	schan->dma_chan.device = &sdev->dma_dev;
937 	dma_cookie_init(&schan->dma_chan);
938 
939 	schan->dev = sdev->dma_dev.dev;
940 	schan->id = id;
941 
942 	if (!schan->max_xfer_len)
943 		schan->max_xfer_len = PAGE_SIZE;
944 
945 	spin_lock_init(&schan->chan_lock);
946 
947 	/* Init descripter manage list */
948 	INIT_LIST_HEAD(&schan->ld_queue);
949 	INIT_LIST_HEAD(&schan->ld_free);
950 
951 	/* Add the channel to DMA device channel list */
952 	list_add_tail(&schan->dma_chan.device_node,
953 			&sdev->dma_dev.channels);
954 	sdev->schan[sdev->dma_dev.chancnt++] = schan;
955 }
956 EXPORT_SYMBOL(shdma_chan_probe);
957 
958 void shdma_chan_remove(struct shdma_chan *schan)
959 {
960 	list_del(&schan->dma_chan.device_node);
961 }
962 EXPORT_SYMBOL(shdma_chan_remove);
963 
964 int shdma_init(struct device *dev, struct shdma_dev *sdev,
965 		    int chan_num)
966 {
967 	struct dma_device *dma_dev = &sdev->dma_dev;
968 
969 	/*
970 	 * Require all call-backs for now, they can trivially be made optional
971 	 * later as required
972 	 */
973 	if (!sdev->ops ||
974 	    !sdev->desc_size ||
975 	    !sdev->ops->embedded_desc ||
976 	    !sdev->ops->start_xfer ||
977 	    !sdev->ops->setup_xfer ||
978 	    !sdev->ops->set_slave ||
979 	    !sdev->ops->desc_setup ||
980 	    !sdev->ops->slave_addr ||
981 	    !sdev->ops->channel_busy ||
982 	    !sdev->ops->halt_channel ||
983 	    !sdev->ops->desc_completed)
984 		return -EINVAL;
985 
986 	sdev->schan = kcalloc(chan_num, sizeof(*sdev->schan), GFP_KERNEL);
987 	if (!sdev->schan)
988 		return -ENOMEM;
989 
990 	INIT_LIST_HEAD(&dma_dev->channels);
991 
992 	/* Common and MEMCPY operations */
993 	dma_dev->device_alloc_chan_resources
994 		= shdma_alloc_chan_resources;
995 	dma_dev->device_free_chan_resources = shdma_free_chan_resources;
996 	dma_dev->device_prep_dma_memcpy = shdma_prep_memcpy;
997 	dma_dev->device_tx_status = shdma_tx_status;
998 	dma_dev->device_issue_pending = shdma_issue_pending;
999 
1000 	/* Compulsory for DMA_SLAVE fields */
1001 	dma_dev->device_prep_slave_sg = shdma_prep_slave_sg;
1002 	dma_dev->device_prep_dma_cyclic = shdma_prep_dma_cyclic;
1003 	dma_dev->device_control = shdma_control;
1004 
1005 	dma_dev->dev = dev;
1006 
1007 	return 0;
1008 }
1009 EXPORT_SYMBOL(shdma_init);
1010 
1011 void shdma_cleanup(struct shdma_dev *sdev)
1012 {
1013 	kfree(sdev->schan);
1014 }
1015 EXPORT_SYMBOL(shdma_cleanup);
1016 
1017 static int __init shdma_enter(void)
1018 {
1019 	shdma_slave_used = kzalloc(DIV_ROUND_UP(slave_num, BITS_PER_LONG) *
1020 				    sizeof(long), GFP_KERNEL);
1021 	if (!shdma_slave_used)
1022 		return -ENOMEM;
1023 	return 0;
1024 }
1025 module_init(shdma_enter);
1026 
1027 static void __exit shdma_exit(void)
1028 {
1029 	kfree(shdma_slave_used);
1030 }
1031 module_exit(shdma_exit);
1032 
1033 MODULE_LICENSE("GPL v2");
1034 MODULE_DESCRIPTION("SH-DMA driver base library");
1035 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1036