xref: /openbmc/linux/drivers/dma/sh/rcar-dmac.c (revision de2bdb3d)
1 /*
2  * Renesas R-Car Gen2 DMA Controller Driver
3  *
4  * Copyright (C) 2014 Renesas Electronics Inc.
5  *
6  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7  *
8  * This is free software; you can redistribute it and/or modify
9  * it under the terms of version 2 of the GNU General Public License as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include "../dmaengine.h"
28 
29 /*
30  * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31  * @node: entry in the parent's chunks list
32  * @src_addr: device source address
33  * @dst_addr: device destination address
34  * @size: transfer size in bytes
35  */
36 struct rcar_dmac_xfer_chunk {
37 	struct list_head node;
38 
39 	dma_addr_t src_addr;
40 	dma_addr_t dst_addr;
41 	u32 size;
42 };
43 
44 /*
45  * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46  * @sar: value of the SAR register (source address)
47  * @dar: value of the DAR register (destination address)
48  * @tcr: value of the TCR register (transfer count)
49  */
50 struct rcar_dmac_hw_desc {
51 	u32 sar;
52 	u32 dar;
53 	u32 tcr;
54 	u32 reserved;
55 } __attribute__((__packed__));
56 
57 /*
58  * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59  * @async_tx: base DMA asynchronous transaction descriptor
60  * @direction: direction of the DMA transfer
61  * @xfer_shift: log2 of the transfer size
62  * @chcr: value of the channel configuration register for this transfer
63  * @node: entry in the channel's descriptors lists
64  * @chunks: list of transfer chunks for this transfer
65  * @running: the transfer chunk being currently processed
66  * @nchunks: number of transfer chunks for this transfer
67  * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68  * @hwdescs.mem: hardware descriptors memory for the transfer
69  * @hwdescs.dma: device address of the hardware descriptors memory
70  * @hwdescs.size: size of the hardware descriptors in bytes
71  * @size: transfer size in bytes
72  * @cyclic: when set indicates that the DMA transfer is cyclic
73  */
74 struct rcar_dmac_desc {
75 	struct dma_async_tx_descriptor async_tx;
76 	enum dma_transfer_direction direction;
77 	unsigned int xfer_shift;
78 	u32 chcr;
79 
80 	struct list_head node;
81 	struct list_head chunks;
82 	struct rcar_dmac_xfer_chunk *running;
83 	unsigned int nchunks;
84 
85 	struct {
86 		bool use;
87 		struct rcar_dmac_hw_desc *mem;
88 		dma_addr_t dma;
89 		size_t size;
90 	} hwdescs;
91 
92 	unsigned int size;
93 	bool cyclic;
94 };
95 
96 #define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
97 
98 /*
99  * struct rcar_dmac_desc_page - One page worth of descriptors
100  * @node: entry in the channel's pages list
101  * @descs: array of DMA descriptors
102  * @chunks: array of transfer chunk descriptors
103  */
104 struct rcar_dmac_desc_page {
105 	struct list_head node;
106 
107 	union {
108 		struct rcar_dmac_desc descs[0];
109 		struct rcar_dmac_xfer_chunk chunks[0];
110 	};
111 };
112 
113 #define RCAR_DMAC_DESCS_PER_PAGE					\
114 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
115 	sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
117 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
118 	sizeof(struct rcar_dmac_xfer_chunk))
119 
120 /*
121  * struct rcar_dmac_chan_slave - Slave configuration
122  * @slave_addr: slave memory address
123  * @xfer_size: size (in bytes) of hardware transfers
124  */
125 struct rcar_dmac_chan_slave {
126 	phys_addr_t slave_addr;
127 	unsigned int xfer_size;
128 };
129 
130 /*
131  * struct rcar_dmac_chan_map - Map of slave device phys to dma address
132  * @addr: slave dma address
133  * @dir: direction of mapping
134  * @slave: slave configuration that is mapped
135  */
136 struct rcar_dmac_chan_map {
137 	dma_addr_t addr;
138 	enum dma_data_direction dir;
139 	struct rcar_dmac_chan_slave slave;
140 };
141 
142 /*
143  * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
144  * @chan: base DMA channel object
145  * @iomem: channel I/O memory base
146  * @index: index of this channel in the controller
147  * @src: slave memory address and size on the source side
148  * @dst: slave memory address and size on the destination side
149  * @mid_rid: hardware MID/RID for the DMA client using this channel
150  * @lock: protects the channel CHCR register and the desc members
151  * @desc.free: list of free descriptors
152  * @desc.pending: list of pending descriptors (submitted with tx_submit)
153  * @desc.active: list of active descriptors (activated with issue_pending)
154  * @desc.done: list of completed descriptors
155  * @desc.wait: list of descriptors waiting for an ack
156  * @desc.running: the descriptor being processed (a member of the active list)
157  * @desc.chunks_free: list of free transfer chunk descriptors
158  * @desc.pages: list of pages used by allocated descriptors
159  */
160 struct rcar_dmac_chan {
161 	struct dma_chan chan;
162 	void __iomem *iomem;
163 	unsigned int index;
164 
165 	struct rcar_dmac_chan_slave src;
166 	struct rcar_dmac_chan_slave dst;
167 	struct rcar_dmac_chan_map map;
168 	int mid_rid;
169 
170 	spinlock_t lock;
171 
172 	struct {
173 		struct list_head free;
174 		struct list_head pending;
175 		struct list_head active;
176 		struct list_head done;
177 		struct list_head wait;
178 		struct rcar_dmac_desc *running;
179 
180 		struct list_head chunks_free;
181 
182 		struct list_head pages;
183 	} desc;
184 };
185 
186 #define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
187 
188 /*
189  * struct rcar_dmac - R-Car Gen2 DMA Controller
190  * @engine: base DMA engine object
191  * @dev: the hardware device
192  * @iomem: remapped I/O memory base
193  * @n_channels: number of available channels
194  * @channels: array of DMAC channels
195  * @modules: bitmask of client modules in use
196  */
197 struct rcar_dmac {
198 	struct dma_device engine;
199 	struct device *dev;
200 	void __iomem *iomem;
201 
202 	unsigned int n_channels;
203 	struct rcar_dmac_chan *channels;
204 
205 	DECLARE_BITMAP(modules, 256);
206 };
207 
208 #define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
209 
210 /* -----------------------------------------------------------------------------
211  * Registers
212  */
213 
214 #define RCAR_DMAC_CHAN_OFFSET(i)	(0x8000 + 0x80 * (i))
215 
216 #define RCAR_DMAISTA			0x0020
217 #define RCAR_DMASEC			0x0030
218 #define RCAR_DMAOR			0x0060
219 #define RCAR_DMAOR_PRI_FIXED		(0 << 8)
220 #define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
221 #define RCAR_DMAOR_AE			(1 << 2)
222 #define RCAR_DMAOR_DME			(1 << 0)
223 #define RCAR_DMACHCLR			0x0080
224 #define RCAR_DMADPSEC			0x00a0
225 
226 #define RCAR_DMASAR			0x0000
227 #define RCAR_DMADAR			0x0004
228 #define RCAR_DMATCR			0x0008
229 #define RCAR_DMATCR_MASK		0x00ffffff
230 #define RCAR_DMATSR			0x0028
231 #define RCAR_DMACHCR			0x000c
232 #define RCAR_DMACHCR_CAE		(1 << 31)
233 #define RCAR_DMACHCR_CAIE		(1 << 30)
234 #define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
235 #define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
236 #define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
237 #define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
238 #define RCAR_DMACHCR_RPT_SAR		(1 << 27)
239 #define RCAR_DMACHCR_RPT_DAR		(1 << 26)
240 #define RCAR_DMACHCR_RPT_TCR		(1 << 25)
241 #define RCAR_DMACHCR_DPB		(1 << 22)
242 #define RCAR_DMACHCR_DSE		(1 << 19)
243 #define RCAR_DMACHCR_DSIE		(1 << 18)
244 #define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
245 #define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
246 #define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
247 #define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
248 #define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
249 #define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
250 #define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
251 #define RCAR_DMACHCR_DM_FIXED		(0 << 14)
252 #define RCAR_DMACHCR_DM_INC		(1 << 14)
253 #define RCAR_DMACHCR_DM_DEC		(2 << 14)
254 #define RCAR_DMACHCR_SM_FIXED		(0 << 12)
255 #define RCAR_DMACHCR_SM_INC		(1 << 12)
256 #define RCAR_DMACHCR_SM_DEC		(2 << 12)
257 #define RCAR_DMACHCR_RS_AUTO		(4 << 8)
258 #define RCAR_DMACHCR_RS_DMARS		(8 << 8)
259 #define RCAR_DMACHCR_IE			(1 << 2)
260 #define RCAR_DMACHCR_TE			(1 << 1)
261 #define RCAR_DMACHCR_DE			(1 << 0)
262 #define RCAR_DMATCRB			0x0018
263 #define RCAR_DMATSRB			0x0038
264 #define RCAR_DMACHCRB			0x001c
265 #define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
266 #define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
267 #define RCAR_DMACHCRB_DPTR_SHIFT	16
268 #define RCAR_DMACHCRB_DRST		(1 << 15)
269 #define RCAR_DMACHCRB_DTS		(1 << 8)
270 #define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
271 #define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
272 #define RCAR_DMACHCRB_PRI(n)		((n) << 0)
273 #define RCAR_DMARS			0x0040
274 #define RCAR_DMABUFCR			0x0048
275 #define RCAR_DMABUFCR_MBU(n)		((n) << 16)
276 #define RCAR_DMABUFCR_ULB(n)		((n) << 0)
277 #define RCAR_DMADPBASE			0x0050
278 #define RCAR_DMADPBASE_MASK		0xfffffff0
279 #define RCAR_DMADPBASE_SEL		(1 << 0)
280 #define RCAR_DMADPCR			0x0054
281 #define RCAR_DMADPCR_DIPT(n)		((n) << 24)
282 #define RCAR_DMAFIXSAR			0x0010
283 #define RCAR_DMAFIXDAR			0x0014
284 #define RCAR_DMAFIXDPBASE		0x0060
285 
286 /* Hardcode the MEMCPY transfer size to 4 bytes. */
287 #define RCAR_DMAC_MEMCPY_XFER_SIZE	4
288 
289 /* -----------------------------------------------------------------------------
290  * Device access
291  */
292 
293 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
294 {
295 	if (reg == RCAR_DMAOR)
296 		writew(data, dmac->iomem + reg);
297 	else
298 		writel(data, dmac->iomem + reg);
299 }
300 
301 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
302 {
303 	if (reg == RCAR_DMAOR)
304 		return readw(dmac->iomem + reg);
305 	else
306 		return readl(dmac->iomem + reg);
307 }
308 
309 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
310 {
311 	if (reg == RCAR_DMARS)
312 		return readw(chan->iomem + reg);
313 	else
314 		return readl(chan->iomem + reg);
315 }
316 
317 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
318 {
319 	if (reg == RCAR_DMARS)
320 		writew(data, chan->iomem + reg);
321 	else
322 		writel(data, chan->iomem + reg);
323 }
324 
325 /* -----------------------------------------------------------------------------
326  * Initialization and configuration
327  */
328 
329 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
330 {
331 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
332 
333 	return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
334 }
335 
336 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
337 {
338 	struct rcar_dmac_desc *desc = chan->desc.running;
339 	u32 chcr = desc->chcr;
340 
341 	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
342 
343 	if (chan->mid_rid >= 0)
344 		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
345 
346 	if (desc->hwdescs.use) {
347 		struct rcar_dmac_xfer_chunk *chunk;
348 
349 		dev_dbg(chan->chan.device->dev,
350 			"chan%u: queue desc %p: %u@%pad\n",
351 			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
352 
353 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
354 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
355 				     desc->hwdescs.dma >> 32);
356 #endif
357 		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
358 				     (desc->hwdescs.dma & 0xfffffff0) |
359 				     RCAR_DMADPBASE_SEL);
360 		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
361 				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
362 				     RCAR_DMACHCRB_DRST);
363 
364 		/*
365 		 * Errata: When descriptor memory is accessed through an IOMMU
366 		 * the DMADAR register isn't initialized automatically from the
367 		 * first descriptor at beginning of transfer by the DMAC like it
368 		 * should. Initialize it manually with the destination address
369 		 * of the first chunk.
370 		 */
371 		chunk = list_first_entry(&desc->chunks,
372 					 struct rcar_dmac_xfer_chunk, node);
373 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
374 				     chunk->dst_addr & 0xffffffff);
375 
376 		/*
377 		 * Program the descriptor stage interrupt to occur after the end
378 		 * of the first stage.
379 		 */
380 		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
381 
382 		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
383 		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
384 
385 		/*
386 		 * If the descriptor isn't cyclic enable normal descriptor mode
387 		 * and the transfer completion interrupt.
388 		 */
389 		if (!desc->cyclic)
390 			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
391 		/*
392 		 * If the descriptor is cyclic and has a callback enable the
393 		 * descriptor stage interrupt in infinite repeat mode.
394 		 */
395 		else if (desc->async_tx.callback)
396 			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
397 		/*
398 		 * Otherwise just select infinite repeat mode without any
399 		 * interrupt.
400 		 */
401 		else
402 			chcr |= RCAR_DMACHCR_DPM_INFINITE;
403 	} else {
404 		struct rcar_dmac_xfer_chunk *chunk = desc->running;
405 
406 		dev_dbg(chan->chan.device->dev,
407 			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
408 			chan->index, chunk, chunk->size, &chunk->src_addr,
409 			&chunk->dst_addr);
410 
411 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
412 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
413 				     chunk->src_addr >> 32);
414 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
415 				     chunk->dst_addr >> 32);
416 #endif
417 		rcar_dmac_chan_write(chan, RCAR_DMASAR,
418 				     chunk->src_addr & 0xffffffff);
419 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
420 				     chunk->dst_addr & 0xffffffff);
421 		rcar_dmac_chan_write(chan, RCAR_DMATCR,
422 				     chunk->size >> desc->xfer_shift);
423 
424 		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
425 	}
426 
427 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
428 }
429 
430 static int rcar_dmac_init(struct rcar_dmac *dmac)
431 {
432 	u16 dmaor;
433 
434 	/* Clear all channels and enable the DMAC globally. */
435 	rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
436 	rcar_dmac_write(dmac, RCAR_DMAOR,
437 			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
438 
439 	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
440 	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
441 		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
442 		return -EIO;
443 	}
444 
445 	return 0;
446 }
447 
448 /* -----------------------------------------------------------------------------
449  * Descriptors submission
450  */
451 
452 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
453 {
454 	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
455 	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
456 	unsigned long flags;
457 	dma_cookie_t cookie;
458 
459 	spin_lock_irqsave(&chan->lock, flags);
460 
461 	cookie = dma_cookie_assign(tx);
462 
463 	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
464 		chan->index, tx->cookie, desc);
465 
466 	list_add_tail(&desc->node, &chan->desc.pending);
467 	desc->running = list_first_entry(&desc->chunks,
468 					 struct rcar_dmac_xfer_chunk, node);
469 
470 	spin_unlock_irqrestore(&chan->lock, flags);
471 
472 	return cookie;
473 }
474 
475 /* -----------------------------------------------------------------------------
476  * Descriptors allocation and free
477  */
478 
479 /*
480  * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
481  * @chan: the DMA channel
482  * @gfp: allocation flags
483  */
484 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
485 {
486 	struct rcar_dmac_desc_page *page;
487 	unsigned long flags;
488 	LIST_HEAD(list);
489 	unsigned int i;
490 
491 	page = (void *)get_zeroed_page(gfp);
492 	if (!page)
493 		return -ENOMEM;
494 
495 	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
496 		struct rcar_dmac_desc *desc = &page->descs[i];
497 
498 		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
499 		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
500 		INIT_LIST_HEAD(&desc->chunks);
501 
502 		list_add_tail(&desc->node, &list);
503 	}
504 
505 	spin_lock_irqsave(&chan->lock, flags);
506 	list_splice_tail(&list, &chan->desc.free);
507 	list_add_tail(&page->node, &chan->desc.pages);
508 	spin_unlock_irqrestore(&chan->lock, flags);
509 
510 	return 0;
511 }
512 
513 /*
514  * rcar_dmac_desc_put - Release a DMA transfer descriptor
515  * @chan: the DMA channel
516  * @desc: the descriptor
517  *
518  * Put the descriptor and its transfer chunk descriptors back in the channel's
519  * free descriptors lists. The descriptor's chunks list will be reinitialized to
520  * an empty list as a result.
521  *
522  * The descriptor must have been removed from the channel's lists before calling
523  * this function.
524  */
525 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
526 			       struct rcar_dmac_desc *desc)
527 {
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&chan->lock, flags);
531 	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
532 	list_add(&desc->node, &chan->desc.free);
533 	spin_unlock_irqrestore(&chan->lock, flags);
534 }
535 
536 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
537 {
538 	struct rcar_dmac_desc *desc, *_desc;
539 	unsigned long flags;
540 	LIST_HEAD(list);
541 
542 	/*
543 	 * We have to temporarily move all descriptors from the wait list to a
544 	 * local list as iterating over the wait list, even with
545 	 * list_for_each_entry_safe, isn't safe if we release the channel lock
546 	 * around the rcar_dmac_desc_put() call.
547 	 */
548 	spin_lock_irqsave(&chan->lock, flags);
549 	list_splice_init(&chan->desc.wait, &list);
550 	spin_unlock_irqrestore(&chan->lock, flags);
551 
552 	list_for_each_entry_safe(desc, _desc, &list, node) {
553 		if (async_tx_test_ack(&desc->async_tx)) {
554 			list_del(&desc->node);
555 			rcar_dmac_desc_put(chan, desc);
556 		}
557 	}
558 
559 	if (list_empty(&list))
560 		return;
561 
562 	/* Put the remaining descriptors back in the wait list. */
563 	spin_lock_irqsave(&chan->lock, flags);
564 	list_splice(&list, &chan->desc.wait);
565 	spin_unlock_irqrestore(&chan->lock, flags);
566 }
567 
568 /*
569  * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
570  * @chan: the DMA channel
571  *
572  * Locking: This function must be called in a non-atomic context.
573  *
574  * Return: A pointer to the allocated descriptor or NULL if no descriptor can
575  * be allocated.
576  */
577 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
578 {
579 	struct rcar_dmac_desc *desc;
580 	unsigned long flags;
581 	int ret;
582 
583 	/* Recycle acked descriptors before attempting allocation. */
584 	rcar_dmac_desc_recycle_acked(chan);
585 
586 	spin_lock_irqsave(&chan->lock, flags);
587 
588 	while (list_empty(&chan->desc.free)) {
589 		/*
590 		 * No free descriptors, allocate a page worth of them and try
591 		 * again, as someone else could race us to get the newly
592 		 * allocated descriptors. If the allocation fails return an
593 		 * error.
594 		 */
595 		spin_unlock_irqrestore(&chan->lock, flags);
596 		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
597 		if (ret < 0)
598 			return NULL;
599 		spin_lock_irqsave(&chan->lock, flags);
600 	}
601 
602 	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
603 	list_del(&desc->node);
604 
605 	spin_unlock_irqrestore(&chan->lock, flags);
606 
607 	return desc;
608 }
609 
610 /*
611  * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
612  * @chan: the DMA channel
613  * @gfp: allocation flags
614  */
615 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
616 {
617 	struct rcar_dmac_desc_page *page;
618 	unsigned long flags;
619 	LIST_HEAD(list);
620 	unsigned int i;
621 
622 	page = (void *)get_zeroed_page(gfp);
623 	if (!page)
624 		return -ENOMEM;
625 
626 	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
627 		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
628 
629 		list_add_tail(&chunk->node, &list);
630 	}
631 
632 	spin_lock_irqsave(&chan->lock, flags);
633 	list_splice_tail(&list, &chan->desc.chunks_free);
634 	list_add_tail(&page->node, &chan->desc.pages);
635 	spin_unlock_irqrestore(&chan->lock, flags);
636 
637 	return 0;
638 }
639 
640 /*
641  * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
642  * @chan: the DMA channel
643  *
644  * Locking: This function must be called in a non-atomic context.
645  *
646  * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
647  * descriptor can be allocated.
648  */
649 static struct rcar_dmac_xfer_chunk *
650 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
651 {
652 	struct rcar_dmac_xfer_chunk *chunk;
653 	unsigned long flags;
654 	int ret;
655 
656 	spin_lock_irqsave(&chan->lock, flags);
657 
658 	while (list_empty(&chan->desc.chunks_free)) {
659 		/*
660 		 * No free descriptors, allocate a page worth of them and try
661 		 * again, as someone else could race us to get the newly
662 		 * allocated descriptors. If the allocation fails return an
663 		 * error.
664 		 */
665 		spin_unlock_irqrestore(&chan->lock, flags);
666 		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
667 		if (ret < 0)
668 			return NULL;
669 		spin_lock_irqsave(&chan->lock, flags);
670 	}
671 
672 	chunk = list_first_entry(&chan->desc.chunks_free,
673 				 struct rcar_dmac_xfer_chunk, node);
674 	list_del(&chunk->node);
675 
676 	spin_unlock_irqrestore(&chan->lock, flags);
677 
678 	return chunk;
679 }
680 
681 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
682 				     struct rcar_dmac_desc *desc, size_t size)
683 {
684 	/*
685 	 * dma_alloc_coherent() allocates memory in page size increments. To
686 	 * avoid reallocating the hardware descriptors when the allocated size
687 	 * wouldn't change align the requested size to a multiple of the page
688 	 * size.
689 	 */
690 	size = PAGE_ALIGN(size);
691 
692 	if (desc->hwdescs.size == size)
693 		return;
694 
695 	if (desc->hwdescs.mem) {
696 		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
697 				  desc->hwdescs.mem, desc->hwdescs.dma);
698 		desc->hwdescs.mem = NULL;
699 		desc->hwdescs.size = 0;
700 	}
701 
702 	if (!size)
703 		return;
704 
705 	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
706 					       &desc->hwdescs.dma, GFP_NOWAIT);
707 	if (!desc->hwdescs.mem)
708 		return;
709 
710 	desc->hwdescs.size = size;
711 }
712 
713 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
714 				 struct rcar_dmac_desc *desc)
715 {
716 	struct rcar_dmac_xfer_chunk *chunk;
717 	struct rcar_dmac_hw_desc *hwdesc;
718 
719 	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
720 
721 	hwdesc = desc->hwdescs.mem;
722 	if (!hwdesc)
723 		return -ENOMEM;
724 
725 	list_for_each_entry(chunk, &desc->chunks, node) {
726 		hwdesc->sar = chunk->src_addr;
727 		hwdesc->dar = chunk->dst_addr;
728 		hwdesc->tcr = chunk->size >> desc->xfer_shift;
729 		hwdesc++;
730 	}
731 
732 	return 0;
733 }
734 
735 /* -----------------------------------------------------------------------------
736  * Stop and reset
737  */
738 
739 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
740 {
741 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
742 
743 	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
744 		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
745 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
746 }
747 
748 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
749 {
750 	struct rcar_dmac_desc *desc, *_desc;
751 	unsigned long flags;
752 	LIST_HEAD(descs);
753 
754 	spin_lock_irqsave(&chan->lock, flags);
755 
756 	/* Move all non-free descriptors to the local lists. */
757 	list_splice_init(&chan->desc.pending, &descs);
758 	list_splice_init(&chan->desc.active, &descs);
759 	list_splice_init(&chan->desc.done, &descs);
760 	list_splice_init(&chan->desc.wait, &descs);
761 
762 	chan->desc.running = NULL;
763 
764 	spin_unlock_irqrestore(&chan->lock, flags);
765 
766 	list_for_each_entry_safe(desc, _desc, &descs, node) {
767 		list_del(&desc->node);
768 		rcar_dmac_desc_put(chan, desc);
769 	}
770 }
771 
772 static void rcar_dmac_stop(struct rcar_dmac *dmac)
773 {
774 	rcar_dmac_write(dmac, RCAR_DMAOR, 0);
775 }
776 
777 static void rcar_dmac_abort(struct rcar_dmac *dmac)
778 {
779 	unsigned int i;
780 
781 	/* Stop all channels. */
782 	for (i = 0; i < dmac->n_channels; ++i) {
783 		struct rcar_dmac_chan *chan = &dmac->channels[i];
784 
785 		/* Stop and reinitialize the channel. */
786 		spin_lock(&chan->lock);
787 		rcar_dmac_chan_halt(chan);
788 		spin_unlock(&chan->lock);
789 
790 		rcar_dmac_chan_reinit(chan);
791 	}
792 }
793 
794 /* -----------------------------------------------------------------------------
795  * Descriptors preparation
796  */
797 
798 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
799 					  struct rcar_dmac_desc *desc)
800 {
801 	static const u32 chcr_ts[] = {
802 		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
803 		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
804 		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
805 		RCAR_DMACHCR_TS_64B,
806 	};
807 
808 	unsigned int xfer_size;
809 	u32 chcr;
810 
811 	switch (desc->direction) {
812 	case DMA_DEV_TO_MEM:
813 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
814 		     | RCAR_DMACHCR_RS_DMARS;
815 		xfer_size = chan->src.xfer_size;
816 		break;
817 
818 	case DMA_MEM_TO_DEV:
819 		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
820 		     | RCAR_DMACHCR_RS_DMARS;
821 		xfer_size = chan->dst.xfer_size;
822 		break;
823 
824 	case DMA_MEM_TO_MEM:
825 	default:
826 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
827 		     | RCAR_DMACHCR_RS_AUTO;
828 		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
829 		break;
830 	}
831 
832 	desc->xfer_shift = ilog2(xfer_size);
833 	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
834 }
835 
836 /*
837  * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
838  *
839  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
840  * converted to scatter-gather to guarantee consistent locking and a correct
841  * list manipulation. For slave DMA direction carries the usual meaning, and,
842  * logically, the SG list is RAM and the addr variable contains slave address,
843  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
844  * and the SG list contains only one element and points at the source buffer.
845  */
846 static struct dma_async_tx_descriptor *
847 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
848 		       unsigned int sg_len, dma_addr_t dev_addr,
849 		       enum dma_transfer_direction dir, unsigned long dma_flags,
850 		       bool cyclic)
851 {
852 	struct rcar_dmac_xfer_chunk *chunk;
853 	struct rcar_dmac_desc *desc;
854 	struct scatterlist *sg;
855 	unsigned int nchunks = 0;
856 	unsigned int max_chunk_size;
857 	unsigned int full_size = 0;
858 	bool highmem = false;
859 	unsigned int i;
860 
861 	desc = rcar_dmac_desc_get(chan);
862 	if (!desc)
863 		return NULL;
864 
865 	desc->async_tx.flags = dma_flags;
866 	desc->async_tx.cookie = -EBUSY;
867 
868 	desc->cyclic = cyclic;
869 	desc->direction = dir;
870 
871 	rcar_dmac_chan_configure_desc(chan, desc);
872 
873 	max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
874 
875 	/*
876 	 * Allocate and fill the transfer chunk descriptors. We own the only
877 	 * reference to the DMA descriptor, there's no need for locking.
878 	 */
879 	for_each_sg(sgl, sg, sg_len, i) {
880 		dma_addr_t mem_addr = sg_dma_address(sg);
881 		unsigned int len = sg_dma_len(sg);
882 
883 		full_size += len;
884 
885 		while (len) {
886 			unsigned int size = min(len, max_chunk_size);
887 
888 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
889 			/*
890 			 * Prevent individual transfers from crossing 4GB
891 			 * boundaries.
892 			 */
893 			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
894 				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
895 			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
896 				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
897 
898 			/*
899 			 * Check if either of the source or destination address
900 			 * can't be expressed in 32 bits. If so we can't use
901 			 * hardware descriptor lists.
902 			 */
903 			if (dev_addr >> 32 || mem_addr >> 32)
904 				highmem = true;
905 #endif
906 
907 			chunk = rcar_dmac_xfer_chunk_get(chan);
908 			if (!chunk) {
909 				rcar_dmac_desc_put(chan, desc);
910 				return NULL;
911 			}
912 
913 			if (dir == DMA_DEV_TO_MEM) {
914 				chunk->src_addr = dev_addr;
915 				chunk->dst_addr = mem_addr;
916 			} else {
917 				chunk->src_addr = mem_addr;
918 				chunk->dst_addr = dev_addr;
919 			}
920 
921 			chunk->size = size;
922 
923 			dev_dbg(chan->chan.device->dev,
924 				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
925 				chan->index, chunk, desc, i, sg, size, len,
926 				&chunk->src_addr, &chunk->dst_addr);
927 
928 			mem_addr += size;
929 			if (dir == DMA_MEM_TO_MEM)
930 				dev_addr += size;
931 
932 			len -= size;
933 
934 			list_add_tail(&chunk->node, &desc->chunks);
935 			nchunks++;
936 		}
937 	}
938 
939 	desc->nchunks = nchunks;
940 	desc->size = full_size;
941 
942 	/*
943 	 * Use hardware descriptor lists if possible when more than one chunk
944 	 * needs to be transferred (otherwise they don't make much sense).
945 	 *
946 	 * The highmem check currently covers the whole transfer. As an
947 	 * optimization we could use descriptor lists for consecutive lowmem
948 	 * chunks and direct manual mode for highmem chunks. Whether the
949 	 * performance improvement would be significant enough compared to the
950 	 * additional complexity remains to be investigated.
951 	 */
952 	desc->hwdescs.use = !highmem && nchunks > 1;
953 	if (desc->hwdescs.use) {
954 		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
955 			desc->hwdescs.use = false;
956 	}
957 
958 	return &desc->async_tx;
959 }
960 
961 /* -----------------------------------------------------------------------------
962  * DMA engine operations
963  */
964 
965 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
966 {
967 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
968 	int ret;
969 
970 	INIT_LIST_HEAD(&rchan->desc.chunks_free);
971 	INIT_LIST_HEAD(&rchan->desc.pages);
972 
973 	/* Preallocate descriptors. */
974 	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
975 	if (ret < 0)
976 		return -ENOMEM;
977 
978 	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
979 	if (ret < 0)
980 		return -ENOMEM;
981 
982 	return pm_runtime_get_sync(chan->device->dev);
983 }
984 
985 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
986 {
987 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
988 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
989 	struct rcar_dmac_desc_page *page, *_page;
990 	struct rcar_dmac_desc *desc;
991 	LIST_HEAD(list);
992 
993 	/* Protect against ISR */
994 	spin_lock_irq(&rchan->lock);
995 	rcar_dmac_chan_halt(rchan);
996 	spin_unlock_irq(&rchan->lock);
997 
998 	/* Now no new interrupts will occur */
999 
1000 	if (rchan->mid_rid >= 0) {
1001 		/* The caller is holding dma_list_mutex */
1002 		clear_bit(rchan->mid_rid, dmac->modules);
1003 		rchan->mid_rid = -EINVAL;
1004 	}
1005 
1006 	list_splice_init(&rchan->desc.free, &list);
1007 	list_splice_init(&rchan->desc.pending, &list);
1008 	list_splice_init(&rchan->desc.active, &list);
1009 	list_splice_init(&rchan->desc.done, &list);
1010 	list_splice_init(&rchan->desc.wait, &list);
1011 
1012 	rchan->desc.running = NULL;
1013 
1014 	list_for_each_entry(desc, &list, node)
1015 		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1016 
1017 	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1018 		list_del(&page->node);
1019 		free_page((unsigned long)page);
1020 	}
1021 
1022 	pm_runtime_put(chan->device->dev);
1023 }
1024 
1025 static struct dma_async_tx_descriptor *
1026 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1027 			  dma_addr_t dma_src, size_t len, unsigned long flags)
1028 {
1029 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1030 	struct scatterlist sgl;
1031 
1032 	if (!len)
1033 		return NULL;
1034 
1035 	sg_init_table(&sgl, 1);
1036 	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1037 		    offset_in_page(dma_src));
1038 	sg_dma_address(&sgl) = dma_src;
1039 	sg_dma_len(&sgl) = len;
1040 
1041 	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1042 				      DMA_MEM_TO_MEM, flags, false);
1043 }
1044 
1045 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1046 				    enum dma_transfer_direction dir)
1047 {
1048 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1049 	struct rcar_dmac_chan_map *map = &rchan->map;
1050 	phys_addr_t dev_addr;
1051 	size_t dev_size;
1052 	enum dma_data_direction dev_dir;
1053 
1054 	if (dir == DMA_DEV_TO_MEM) {
1055 		dev_addr = rchan->src.slave_addr;
1056 		dev_size = rchan->src.xfer_size;
1057 		dev_dir = DMA_TO_DEVICE;
1058 	} else {
1059 		dev_addr = rchan->dst.slave_addr;
1060 		dev_size = rchan->dst.xfer_size;
1061 		dev_dir = DMA_FROM_DEVICE;
1062 	}
1063 
1064 	/* Reuse current map if possible. */
1065 	if (dev_addr == map->slave.slave_addr &&
1066 	    dev_size == map->slave.xfer_size &&
1067 	    dev_dir == map->dir)
1068 		return 0;
1069 
1070 	/* Remove old mapping if present. */
1071 	if (map->slave.xfer_size)
1072 		dma_unmap_resource(chan->device->dev, map->addr,
1073 				   map->slave.xfer_size, map->dir, 0);
1074 	map->slave.xfer_size = 0;
1075 
1076 	/* Create new slave address map. */
1077 	map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1078 				     dev_dir, 0);
1079 
1080 	if (dma_mapping_error(chan->device->dev, map->addr)) {
1081 		dev_err(chan->device->dev,
1082 			"chan%u: failed to map %zx@%pap", rchan->index,
1083 			dev_size, &dev_addr);
1084 		return -EIO;
1085 	}
1086 
1087 	dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1088 		rchan->index, dev_size, &dev_addr, &map->addr,
1089 		dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1090 
1091 	map->slave.slave_addr = dev_addr;
1092 	map->slave.xfer_size = dev_size;
1093 	map->dir = dev_dir;
1094 
1095 	return 0;
1096 }
1097 
1098 static struct dma_async_tx_descriptor *
1099 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1100 			unsigned int sg_len, enum dma_transfer_direction dir,
1101 			unsigned long flags, void *context)
1102 {
1103 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1104 
1105 	/* Someone calling slave DMA on a generic channel? */
1106 	if (rchan->mid_rid < 0 || !sg_len) {
1107 		dev_warn(chan->device->dev,
1108 			 "%s: bad parameter: len=%d, id=%d\n",
1109 			 __func__, sg_len, rchan->mid_rid);
1110 		return NULL;
1111 	}
1112 
1113 	if (rcar_dmac_map_slave_addr(chan, dir))
1114 		return NULL;
1115 
1116 	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1117 				      dir, flags, false);
1118 }
1119 
1120 #define RCAR_DMAC_MAX_SG_LEN	32
1121 
1122 static struct dma_async_tx_descriptor *
1123 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1124 			  size_t buf_len, size_t period_len,
1125 			  enum dma_transfer_direction dir, unsigned long flags)
1126 {
1127 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1128 	struct dma_async_tx_descriptor *desc;
1129 	struct scatterlist *sgl;
1130 	unsigned int sg_len;
1131 	unsigned int i;
1132 
1133 	/* Someone calling slave DMA on a generic channel? */
1134 	if (rchan->mid_rid < 0 || buf_len < period_len) {
1135 		dev_warn(chan->device->dev,
1136 			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1137 			__func__, buf_len, period_len, rchan->mid_rid);
1138 		return NULL;
1139 	}
1140 
1141 	if (rcar_dmac_map_slave_addr(chan, dir))
1142 		return NULL;
1143 
1144 	sg_len = buf_len / period_len;
1145 	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1146 		dev_err(chan->device->dev,
1147 			"chan%u: sg length %d exceds limit %d",
1148 			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1149 		return NULL;
1150 	}
1151 
1152 	/*
1153 	 * Allocate the sg list dynamically as it would consume too much stack
1154 	 * space.
1155 	 */
1156 	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1157 	if (!sgl)
1158 		return NULL;
1159 
1160 	sg_init_table(sgl, sg_len);
1161 
1162 	for (i = 0; i < sg_len; ++i) {
1163 		dma_addr_t src = buf_addr + (period_len * i);
1164 
1165 		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1166 			    offset_in_page(src));
1167 		sg_dma_address(&sgl[i]) = src;
1168 		sg_dma_len(&sgl[i]) = period_len;
1169 	}
1170 
1171 	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1172 				      dir, flags, true);
1173 
1174 	kfree(sgl);
1175 	return desc;
1176 }
1177 
1178 static int rcar_dmac_device_config(struct dma_chan *chan,
1179 				   struct dma_slave_config *cfg)
1180 {
1181 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1182 
1183 	/*
1184 	 * We could lock this, but you shouldn't be configuring the
1185 	 * channel, while using it...
1186 	 */
1187 	rchan->src.slave_addr = cfg->src_addr;
1188 	rchan->dst.slave_addr = cfg->dst_addr;
1189 	rchan->src.xfer_size = cfg->src_addr_width;
1190 	rchan->dst.xfer_size = cfg->dst_addr_width;
1191 
1192 	return 0;
1193 }
1194 
1195 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1196 {
1197 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1198 	unsigned long flags;
1199 
1200 	spin_lock_irqsave(&rchan->lock, flags);
1201 	rcar_dmac_chan_halt(rchan);
1202 	spin_unlock_irqrestore(&rchan->lock, flags);
1203 
1204 	/*
1205 	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1206 	 * be running.
1207 	 */
1208 
1209 	rcar_dmac_chan_reinit(rchan);
1210 
1211 	return 0;
1212 }
1213 
1214 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1215 					       dma_cookie_t cookie)
1216 {
1217 	struct rcar_dmac_desc *desc = chan->desc.running;
1218 	struct rcar_dmac_xfer_chunk *running = NULL;
1219 	struct rcar_dmac_xfer_chunk *chunk;
1220 	enum dma_status status;
1221 	unsigned int residue = 0;
1222 	unsigned int dptr = 0;
1223 
1224 	if (!desc)
1225 		return 0;
1226 
1227 	/*
1228 	 * If the cookie corresponds to a descriptor that has been completed
1229 	 * there is no residue. The same check has already been performed by the
1230 	 * caller but without holding the channel lock, so the descriptor could
1231 	 * now be complete.
1232 	 */
1233 	status = dma_cookie_status(&chan->chan, cookie, NULL);
1234 	if (status == DMA_COMPLETE)
1235 		return 0;
1236 
1237 	/*
1238 	 * If the cookie doesn't correspond to the currently running transfer
1239 	 * then the descriptor hasn't been processed yet, and the residue is
1240 	 * equal to the full descriptor size.
1241 	 */
1242 	if (cookie != desc->async_tx.cookie) {
1243 		list_for_each_entry(desc, &chan->desc.pending, node) {
1244 			if (cookie == desc->async_tx.cookie)
1245 				return desc->size;
1246 		}
1247 		list_for_each_entry(desc, &chan->desc.active, node) {
1248 			if (cookie == desc->async_tx.cookie)
1249 				return desc->size;
1250 		}
1251 
1252 		/*
1253 		 * No descriptor found for the cookie, there's thus no residue.
1254 		 * This shouldn't happen if the calling driver passes a correct
1255 		 * cookie value.
1256 		 */
1257 		WARN(1, "No descriptor for cookie!");
1258 		return 0;
1259 	}
1260 
1261 	/*
1262 	 * In descriptor mode the descriptor running pointer is not maintained
1263 	 * by the interrupt handler, find the running descriptor from the
1264 	 * descriptor pointer field in the CHCRB register. In non-descriptor
1265 	 * mode just use the running descriptor pointer.
1266 	 */
1267 	if (desc->hwdescs.use) {
1268 		dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1269 			RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1270 		WARN_ON(dptr >= desc->nchunks);
1271 	} else {
1272 		running = desc->running;
1273 	}
1274 
1275 	/* Compute the size of all chunks still to be transferred. */
1276 	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1277 		if (chunk == running || ++dptr == desc->nchunks)
1278 			break;
1279 
1280 		residue += chunk->size;
1281 	}
1282 
1283 	/* Add the residue for the current chunk. */
1284 	residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1285 
1286 	return residue;
1287 }
1288 
1289 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1290 					   dma_cookie_t cookie,
1291 					   struct dma_tx_state *txstate)
1292 {
1293 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1294 	enum dma_status status;
1295 	unsigned long flags;
1296 	unsigned int residue;
1297 
1298 	status = dma_cookie_status(chan, cookie, txstate);
1299 	if (status == DMA_COMPLETE || !txstate)
1300 		return status;
1301 
1302 	spin_lock_irqsave(&rchan->lock, flags);
1303 	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1304 	spin_unlock_irqrestore(&rchan->lock, flags);
1305 
1306 	/* if there's no residue, the cookie is complete */
1307 	if (!residue)
1308 		return DMA_COMPLETE;
1309 
1310 	dma_set_residue(txstate, residue);
1311 
1312 	return status;
1313 }
1314 
1315 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1316 {
1317 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1318 	unsigned long flags;
1319 
1320 	spin_lock_irqsave(&rchan->lock, flags);
1321 
1322 	if (list_empty(&rchan->desc.pending))
1323 		goto done;
1324 
1325 	/* Append the pending list to the active list. */
1326 	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1327 
1328 	/*
1329 	 * If no transfer is running pick the first descriptor from the active
1330 	 * list and start the transfer.
1331 	 */
1332 	if (!rchan->desc.running) {
1333 		struct rcar_dmac_desc *desc;
1334 
1335 		desc = list_first_entry(&rchan->desc.active,
1336 					struct rcar_dmac_desc, node);
1337 		rchan->desc.running = desc;
1338 
1339 		rcar_dmac_chan_start_xfer(rchan);
1340 	}
1341 
1342 done:
1343 	spin_unlock_irqrestore(&rchan->lock, flags);
1344 }
1345 
1346 /* -----------------------------------------------------------------------------
1347  * IRQ handling
1348  */
1349 
1350 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1351 {
1352 	struct rcar_dmac_desc *desc = chan->desc.running;
1353 	unsigned int stage;
1354 
1355 	if (WARN_ON(!desc || !desc->cyclic)) {
1356 		/*
1357 		 * This should never happen, there should always be a running
1358 		 * cyclic descriptor when a descriptor stage end interrupt is
1359 		 * triggered. Warn and return.
1360 		 */
1361 		return IRQ_NONE;
1362 	}
1363 
1364 	/* Program the interrupt pointer to the next stage. */
1365 	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1366 		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1367 	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1368 
1369 	return IRQ_WAKE_THREAD;
1370 }
1371 
1372 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1373 {
1374 	struct rcar_dmac_desc *desc = chan->desc.running;
1375 	irqreturn_t ret = IRQ_WAKE_THREAD;
1376 
1377 	if (WARN_ON_ONCE(!desc)) {
1378 		/*
1379 		 * This should never happen, there should always be a running
1380 		 * descriptor when a transfer end interrupt is triggered. Warn
1381 		 * and return.
1382 		 */
1383 		return IRQ_NONE;
1384 	}
1385 
1386 	/*
1387 	 * The transfer end interrupt isn't generated for each chunk when using
1388 	 * descriptor mode. Only update the running chunk pointer in
1389 	 * non-descriptor mode.
1390 	 */
1391 	if (!desc->hwdescs.use) {
1392 		/*
1393 		 * If we haven't completed the last transfer chunk simply move
1394 		 * to the next one. Only wake the IRQ thread if the transfer is
1395 		 * cyclic.
1396 		 */
1397 		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1398 			desc->running = list_next_entry(desc->running, node);
1399 			if (!desc->cyclic)
1400 				ret = IRQ_HANDLED;
1401 			goto done;
1402 		}
1403 
1404 		/*
1405 		 * We've completed the last transfer chunk. If the transfer is
1406 		 * cyclic, move back to the first one.
1407 		 */
1408 		if (desc->cyclic) {
1409 			desc->running =
1410 				list_first_entry(&desc->chunks,
1411 						 struct rcar_dmac_xfer_chunk,
1412 						 node);
1413 			goto done;
1414 		}
1415 	}
1416 
1417 	/* The descriptor is complete, move it to the done list. */
1418 	list_move_tail(&desc->node, &chan->desc.done);
1419 
1420 	/* Queue the next descriptor, if any. */
1421 	if (!list_empty(&chan->desc.active))
1422 		chan->desc.running = list_first_entry(&chan->desc.active,
1423 						      struct rcar_dmac_desc,
1424 						      node);
1425 	else
1426 		chan->desc.running = NULL;
1427 
1428 done:
1429 	if (chan->desc.running)
1430 		rcar_dmac_chan_start_xfer(chan);
1431 
1432 	return ret;
1433 }
1434 
1435 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1436 {
1437 	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1438 	struct rcar_dmac_chan *chan = dev;
1439 	irqreturn_t ret = IRQ_NONE;
1440 	u32 chcr;
1441 
1442 	spin_lock(&chan->lock);
1443 
1444 	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1445 	if (chcr & RCAR_DMACHCR_TE)
1446 		mask |= RCAR_DMACHCR_DE;
1447 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1448 
1449 	if (chcr & RCAR_DMACHCR_DSE)
1450 		ret |= rcar_dmac_isr_desc_stage_end(chan);
1451 
1452 	if (chcr & RCAR_DMACHCR_TE)
1453 		ret |= rcar_dmac_isr_transfer_end(chan);
1454 
1455 	spin_unlock(&chan->lock);
1456 
1457 	return ret;
1458 }
1459 
1460 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1461 {
1462 	struct rcar_dmac_chan *chan = dev;
1463 	struct rcar_dmac_desc *desc;
1464 	struct dmaengine_desc_callback cb;
1465 
1466 	spin_lock_irq(&chan->lock);
1467 
1468 	/* For cyclic transfers notify the user after every chunk. */
1469 	if (chan->desc.running && chan->desc.running->cyclic) {
1470 		desc = chan->desc.running;
1471 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1472 
1473 		if (dmaengine_desc_callback_valid(&cb)) {
1474 			spin_unlock_irq(&chan->lock);
1475 			dmaengine_desc_callback_invoke(&cb, NULL);
1476 			spin_lock_irq(&chan->lock);
1477 		}
1478 	}
1479 
1480 	/*
1481 	 * Call the callback function for all descriptors on the done list and
1482 	 * move them to the ack wait list.
1483 	 */
1484 	while (!list_empty(&chan->desc.done)) {
1485 		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1486 					node);
1487 		dma_cookie_complete(&desc->async_tx);
1488 		list_del(&desc->node);
1489 
1490 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1491 		if (dmaengine_desc_callback_valid(&cb)) {
1492 			spin_unlock_irq(&chan->lock);
1493 			/*
1494 			 * We own the only reference to this descriptor, we can
1495 			 * safely dereference it without holding the channel
1496 			 * lock.
1497 			 */
1498 			dmaengine_desc_callback_invoke(&cb, NULL);
1499 			spin_lock_irq(&chan->lock);
1500 		}
1501 
1502 		list_add_tail(&desc->node, &chan->desc.wait);
1503 	}
1504 
1505 	spin_unlock_irq(&chan->lock);
1506 
1507 	/* Recycle all acked descriptors. */
1508 	rcar_dmac_desc_recycle_acked(chan);
1509 
1510 	return IRQ_HANDLED;
1511 }
1512 
1513 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1514 {
1515 	struct rcar_dmac *dmac = data;
1516 
1517 	if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1518 		return IRQ_NONE;
1519 
1520 	/*
1521 	 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1522 	 * abort transfers on all channels, and reinitialize the DMAC.
1523 	 */
1524 	rcar_dmac_stop(dmac);
1525 	rcar_dmac_abort(dmac);
1526 	rcar_dmac_init(dmac);
1527 
1528 	return IRQ_HANDLED;
1529 }
1530 
1531 /* -----------------------------------------------------------------------------
1532  * OF xlate and channel filter
1533  */
1534 
1535 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1536 {
1537 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1538 	struct of_phandle_args *dma_spec = arg;
1539 
1540 	/*
1541 	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1542 	 * function knows from which device it wants to allocate a channel from,
1543 	 * and would be perfectly capable of selecting the channel it wants.
1544 	 * Forcing it to call dma_request_channel() and iterate through all
1545 	 * channels from all controllers is just pointless.
1546 	 */
1547 	if (chan->device->device_config != rcar_dmac_device_config ||
1548 	    dma_spec->np != chan->device->dev->of_node)
1549 		return false;
1550 
1551 	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1552 }
1553 
1554 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1555 					   struct of_dma *ofdma)
1556 {
1557 	struct rcar_dmac_chan *rchan;
1558 	struct dma_chan *chan;
1559 	dma_cap_mask_t mask;
1560 
1561 	if (dma_spec->args_count != 1)
1562 		return NULL;
1563 
1564 	/* Only slave DMA channels can be allocated via DT */
1565 	dma_cap_zero(mask);
1566 	dma_cap_set(DMA_SLAVE, mask);
1567 
1568 	chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1569 	if (!chan)
1570 		return NULL;
1571 
1572 	rchan = to_rcar_dmac_chan(chan);
1573 	rchan->mid_rid = dma_spec->args[0];
1574 
1575 	return chan;
1576 }
1577 
1578 /* -----------------------------------------------------------------------------
1579  * Power management
1580  */
1581 
1582 #ifdef CONFIG_PM_SLEEP
1583 static int rcar_dmac_sleep_suspend(struct device *dev)
1584 {
1585 	/*
1586 	 * TODO: Wait for the current transfer to complete and stop the device.
1587 	 */
1588 	return 0;
1589 }
1590 
1591 static int rcar_dmac_sleep_resume(struct device *dev)
1592 {
1593 	/* TODO: Resume transfers, if any. */
1594 	return 0;
1595 }
1596 #endif
1597 
1598 #ifdef CONFIG_PM
1599 static int rcar_dmac_runtime_suspend(struct device *dev)
1600 {
1601 	return 0;
1602 }
1603 
1604 static int rcar_dmac_runtime_resume(struct device *dev)
1605 {
1606 	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1607 
1608 	return rcar_dmac_init(dmac);
1609 }
1610 #endif
1611 
1612 static const struct dev_pm_ops rcar_dmac_pm = {
1613 	SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1614 	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1615 			   NULL)
1616 };
1617 
1618 /* -----------------------------------------------------------------------------
1619  * Probe and remove
1620  */
1621 
1622 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1623 				struct rcar_dmac_chan *rchan,
1624 				unsigned int index)
1625 {
1626 	struct platform_device *pdev = to_platform_device(dmac->dev);
1627 	struct dma_chan *chan = &rchan->chan;
1628 	char pdev_irqname[5];
1629 	char *irqname;
1630 	int irq;
1631 	int ret;
1632 
1633 	rchan->index = index;
1634 	rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1635 	rchan->mid_rid = -EINVAL;
1636 
1637 	spin_lock_init(&rchan->lock);
1638 
1639 	INIT_LIST_HEAD(&rchan->desc.free);
1640 	INIT_LIST_HEAD(&rchan->desc.pending);
1641 	INIT_LIST_HEAD(&rchan->desc.active);
1642 	INIT_LIST_HEAD(&rchan->desc.done);
1643 	INIT_LIST_HEAD(&rchan->desc.wait);
1644 
1645 	/* Request the channel interrupt. */
1646 	sprintf(pdev_irqname, "ch%u", index);
1647 	irq = platform_get_irq_byname(pdev, pdev_irqname);
1648 	if (irq < 0) {
1649 		dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1650 		return -ENODEV;
1651 	}
1652 
1653 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1654 				 dev_name(dmac->dev), index);
1655 	if (!irqname)
1656 		return -ENOMEM;
1657 
1658 	ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1659 					rcar_dmac_isr_channel_thread, 0,
1660 					irqname, rchan);
1661 	if (ret) {
1662 		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1663 		return ret;
1664 	}
1665 
1666 	/*
1667 	 * Initialize the DMA engine channel and add it to the DMA engine
1668 	 * channels list.
1669 	 */
1670 	chan->device = &dmac->engine;
1671 	dma_cookie_init(chan);
1672 
1673 	list_add_tail(&chan->device_node, &dmac->engine.channels);
1674 
1675 	return 0;
1676 }
1677 
1678 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1679 {
1680 	struct device_node *np = dev->of_node;
1681 	int ret;
1682 
1683 	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1684 	if (ret < 0) {
1685 		dev_err(dev, "unable to read dma-channels property\n");
1686 		return ret;
1687 	}
1688 
1689 	if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1690 		dev_err(dev, "invalid number of channels %u\n",
1691 			dmac->n_channels);
1692 		return -EINVAL;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 static int rcar_dmac_probe(struct platform_device *pdev)
1699 {
1700 	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1701 		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1702 		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1703 		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1704 	unsigned int channels_offset = 0;
1705 	struct dma_device *engine;
1706 	struct rcar_dmac *dmac;
1707 	struct resource *mem;
1708 	unsigned int i;
1709 	char *irqname;
1710 	int irq;
1711 	int ret;
1712 
1713 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1714 	if (!dmac)
1715 		return -ENOMEM;
1716 
1717 	dmac->dev = &pdev->dev;
1718 	platform_set_drvdata(pdev, dmac);
1719 
1720 	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1721 	if (ret < 0)
1722 		return ret;
1723 
1724 	/*
1725 	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1726 	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1727 	 * is connected to microTLB 0 on currently supported platforms, so we
1728 	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1729 	 * level we can't disable it selectively, so ignore channel 0 for now if
1730 	 * the device is part of an IOMMU group.
1731 	 */
1732 	if (pdev->dev.iommu_group) {
1733 		dmac->n_channels--;
1734 		channels_offset = 1;
1735 	}
1736 
1737 	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1738 				      sizeof(*dmac->channels), GFP_KERNEL);
1739 	if (!dmac->channels)
1740 		return -ENOMEM;
1741 
1742 	/* Request resources. */
1743 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1744 	dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1745 	if (IS_ERR(dmac->iomem))
1746 		return PTR_ERR(dmac->iomem);
1747 
1748 	irq = platform_get_irq_byname(pdev, "error");
1749 	if (irq < 0) {
1750 		dev_err(&pdev->dev, "no error IRQ specified\n");
1751 		return -ENODEV;
1752 	}
1753 
1754 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1755 				 dev_name(dmac->dev));
1756 	if (!irqname)
1757 		return -ENOMEM;
1758 
1759 	ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1760 			       irqname, dmac);
1761 	if (ret) {
1762 		dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1763 			irq, ret);
1764 		return ret;
1765 	}
1766 
1767 	/* Enable runtime PM and initialize the device. */
1768 	pm_runtime_enable(&pdev->dev);
1769 	ret = pm_runtime_get_sync(&pdev->dev);
1770 	if (ret < 0) {
1771 		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1772 		return ret;
1773 	}
1774 
1775 	ret = rcar_dmac_init(dmac);
1776 	pm_runtime_put(&pdev->dev);
1777 
1778 	if (ret) {
1779 		dev_err(&pdev->dev, "failed to reset device\n");
1780 		goto error;
1781 	}
1782 
1783 	/* Initialize the channels. */
1784 	INIT_LIST_HEAD(&dmac->engine.channels);
1785 
1786 	for (i = 0; i < dmac->n_channels; ++i) {
1787 		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1788 					   i + channels_offset);
1789 		if (ret < 0)
1790 			goto error;
1791 	}
1792 
1793 	/* Register the DMAC as a DMA provider for DT. */
1794 	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1795 					 NULL);
1796 	if (ret < 0)
1797 		goto error;
1798 
1799 	/*
1800 	 * Register the DMA engine device.
1801 	 *
1802 	 * Default transfer size of 32 bytes requires 32-byte alignment.
1803 	 */
1804 	engine = &dmac->engine;
1805 	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1806 	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1807 
1808 	engine->dev = &pdev->dev;
1809 	engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1810 
1811 	engine->src_addr_widths = widths;
1812 	engine->dst_addr_widths = widths;
1813 	engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1814 	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1815 
1816 	engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1817 	engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1818 	engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1819 	engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1820 	engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1821 	engine->device_config = rcar_dmac_device_config;
1822 	engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1823 	engine->device_tx_status = rcar_dmac_tx_status;
1824 	engine->device_issue_pending = rcar_dmac_issue_pending;
1825 
1826 	ret = dma_async_device_register(engine);
1827 	if (ret < 0)
1828 		goto error;
1829 
1830 	return 0;
1831 
1832 error:
1833 	of_dma_controller_free(pdev->dev.of_node);
1834 	pm_runtime_disable(&pdev->dev);
1835 	return ret;
1836 }
1837 
1838 static int rcar_dmac_remove(struct platform_device *pdev)
1839 {
1840 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1841 
1842 	of_dma_controller_free(pdev->dev.of_node);
1843 	dma_async_device_unregister(&dmac->engine);
1844 
1845 	pm_runtime_disable(&pdev->dev);
1846 
1847 	return 0;
1848 }
1849 
1850 static void rcar_dmac_shutdown(struct platform_device *pdev)
1851 {
1852 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1853 
1854 	rcar_dmac_stop(dmac);
1855 }
1856 
1857 static const struct of_device_id rcar_dmac_of_ids[] = {
1858 	{ .compatible = "renesas,rcar-dmac", },
1859 	{ /* Sentinel */ }
1860 };
1861 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1862 
1863 static struct platform_driver rcar_dmac_driver = {
1864 	.driver		= {
1865 		.pm	= &rcar_dmac_pm,
1866 		.name	= "rcar-dmac",
1867 		.of_match_table = rcar_dmac_of_ids,
1868 	},
1869 	.probe		= rcar_dmac_probe,
1870 	.remove		= rcar_dmac_remove,
1871 	.shutdown	= rcar_dmac_shutdown,
1872 };
1873 
1874 module_platform_driver(rcar_dmac_driver);
1875 
1876 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1877 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1878 MODULE_LICENSE("GPL v2");
1879