xref: /openbmc/linux/drivers/dma/sh/rcar-dmac.c (revision d5e7cafd)
1 /*
2  * Renesas R-Car Gen2 DMA Controller Driver
3  *
4  * Copyright (C) 2014 Renesas Electronics Inc.
5  *
6  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7  *
8  * This is free software; you can redistribute it and/or modify
9  * it under the terms of version 2 of the GNU General Public License as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include "../dmaengine.h"
28 
29 /*
30  * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31  * @node: entry in the parent's chunks list
32  * @src_addr: device source address
33  * @dst_addr: device destination address
34  * @size: transfer size in bytes
35  */
36 struct rcar_dmac_xfer_chunk {
37 	struct list_head node;
38 
39 	dma_addr_t src_addr;
40 	dma_addr_t dst_addr;
41 	u32 size;
42 };
43 
44 /*
45  * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46  * @sar: value of the SAR register (source address)
47  * @dar: value of the DAR register (destination address)
48  * @tcr: value of the TCR register (transfer count)
49  */
50 struct rcar_dmac_hw_desc {
51 	u32 sar;
52 	u32 dar;
53 	u32 tcr;
54 	u32 reserved;
55 } __attribute__((__packed__));
56 
57 /*
58  * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59  * @async_tx: base DMA asynchronous transaction descriptor
60  * @direction: direction of the DMA transfer
61  * @xfer_shift: log2 of the transfer size
62  * @chcr: value of the channel configuration register for this transfer
63  * @node: entry in the channel's descriptors lists
64  * @chunks: list of transfer chunks for this transfer
65  * @running: the transfer chunk being currently processed
66  * @nchunks: number of transfer chunks for this transfer
67  * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68  * @hwdescs.mem: hardware descriptors memory for the transfer
69  * @hwdescs.dma: device address of the hardware descriptors memory
70  * @hwdescs.size: size of the hardware descriptors in bytes
71  * @size: transfer size in bytes
72  * @cyclic: when set indicates that the DMA transfer is cyclic
73  */
74 struct rcar_dmac_desc {
75 	struct dma_async_tx_descriptor async_tx;
76 	enum dma_transfer_direction direction;
77 	unsigned int xfer_shift;
78 	u32 chcr;
79 
80 	struct list_head node;
81 	struct list_head chunks;
82 	struct rcar_dmac_xfer_chunk *running;
83 	unsigned int nchunks;
84 
85 	struct {
86 		bool use;
87 		struct rcar_dmac_hw_desc *mem;
88 		dma_addr_t dma;
89 		size_t size;
90 	} hwdescs;
91 
92 	unsigned int size;
93 	bool cyclic;
94 };
95 
96 #define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
97 
98 /*
99  * struct rcar_dmac_desc_page - One page worth of descriptors
100  * @node: entry in the channel's pages list
101  * @descs: array of DMA descriptors
102  * @chunks: array of transfer chunk descriptors
103  */
104 struct rcar_dmac_desc_page {
105 	struct list_head node;
106 
107 	union {
108 		struct rcar_dmac_desc descs[0];
109 		struct rcar_dmac_xfer_chunk chunks[0];
110 	};
111 };
112 
113 #define RCAR_DMAC_DESCS_PER_PAGE					\
114 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
115 	sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
117 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
118 	sizeof(struct rcar_dmac_xfer_chunk))
119 
120 /*
121  * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
122  * @chan: base DMA channel object
123  * @iomem: channel I/O memory base
124  * @index: index of this channel in the controller
125  * @src_xfer_size: size (in bytes) of hardware transfers on the source side
126  * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side
127  * @src_slave_addr: slave source memory address
128  * @dst_slave_addr: slave destination memory address
129  * @mid_rid: hardware MID/RID for the DMA client using this channel
130  * @lock: protects the channel CHCR register and the desc members
131  * @desc.free: list of free descriptors
132  * @desc.pending: list of pending descriptors (submitted with tx_submit)
133  * @desc.active: list of active descriptors (activated with issue_pending)
134  * @desc.done: list of completed descriptors
135  * @desc.wait: list of descriptors waiting for an ack
136  * @desc.running: the descriptor being processed (a member of the active list)
137  * @desc.chunks_free: list of free transfer chunk descriptors
138  * @desc.pages: list of pages used by allocated descriptors
139  */
140 struct rcar_dmac_chan {
141 	struct dma_chan chan;
142 	void __iomem *iomem;
143 	unsigned int index;
144 
145 	unsigned int src_xfer_size;
146 	unsigned int dst_xfer_size;
147 	dma_addr_t src_slave_addr;
148 	dma_addr_t dst_slave_addr;
149 	int mid_rid;
150 
151 	spinlock_t lock;
152 
153 	struct {
154 		struct list_head free;
155 		struct list_head pending;
156 		struct list_head active;
157 		struct list_head done;
158 		struct list_head wait;
159 		struct rcar_dmac_desc *running;
160 
161 		struct list_head chunks_free;
162 
163 		struct list_head pages;
164 	} desc;
165 };
166 
167 #define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
168 
169 /*
170  * struct rcar_dmac - R-Car Gen2 DMA Controller
171  * @engine: base DMA engine object
172  * @dev: the hardware device
173  * @iomem: remapped I/O memory base
174  * @n_channels: number of available channels
175  * @channels: array of DMAC channels
176  * @modules: bitmask of client modules in use
177  */
178 struct rcar_dmac {
179 	struct dma_device engine;
180 	struct device *dev;
181 	void __iomem *iomem;
182 
183 	unsigned int n_channels;
184 	struct rcar_dmac_chan *channels;
185 
186 	unsigned long modules[256 / BITS_PER_LONG];
187 };
188 
189 #define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
190 
191 /* -----------------------------------------------------------------------------
192  * Registers
193  */
194 
195 #define RCAR_DMAC_CHAN_OFFSET(i)	(0x8000 + 0x80 * (i))
196 
197 #define RCAR_DMAISTA			0x0020
198 #define RCAR_DMASEC			0x0030
199 #define RCAR_DMAOR			0x0060
200 #define RCAR_DMAOR_PRI_FIXED		(0 << 8)
201 #define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
202 #define RCAR_DMAOR_AE			(1 << 2)
203 #define RCAR_DMAOR_DME			(1 << 0)
204 #define RCAR_DMACHCLR			0x0080
205 #define RCAR_DMADPSEC			0x00a0
206 
207 #define RCAR_DMASAR			0x0000
208 #define RCAR_DMADAR			0x0004
209 #define RCAR_DMATCR			0x0008
210 #define RCAR_DMATCR_MASK		0x00ffffff
211 #define RCAR_DMATSR			0x0028
212 #define RCAR_DMACHCR			0x000c
213 #define RCAR_DMACHCR_CAE		(1 << 31)
214 #define RCAR_DMACHCR_CAIE		(1 << 30)
215 #define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
216 #define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
217 #define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
218 #define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
219 #define RCAR_DMACHCR_RPT_SAR		(1 << 27)
220 #define RCAR_DMACHCR_RPT_DAR		(1 << 26)
221 #define RCAR_DMACHCR_RPT_TCR		(1 << 25)
222 #define RCAR_DMACHCR_DPB		(1 << 22)
223 #define RCAR_DMACHCR_DSE		(1 << 19)
224 #define RCAR_DMACHCR_DSIE		(1 << 18)
225 #define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
226 #define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
227 #define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
228 #define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
229 #define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
230 #define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
231 #define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
232 #define RCAR_DMACHCR_DM_FIXED		(0 << 14)
233 #define RCAR_DMACHCR_DM_INC		(1 << 14)
234 #define RCAR_DMACHCR_DM_DEC		(2 << 14)
235 #define RCAR_DMACHCR_SM_FIXED		(0 << 12)
236 #define RCAR_DMACHCR_SM_INC		(1 << 12)
237 #define RCAR_DMACHCR_SM_DEC		(2 << 12)
238 #define RCAR_DMACHCR_RS_AUTO		(4 << 8)
239 #define RCAR_DMACHCR_RS_DMARS		(8 << 8)
240 #define RCAR_DMACHCR_IE			(1 << 2)
241 #define RCAR_DMACHCR_TE			(1 << 1)
242 #define RCAR_DMACHCR_DE			(1 << 0)
243 #define RCAR_DMATCRB			0x0018
244 #define RCAR_DMATSRB			0x0038
245 #define RCAR_DMACHCRB			0x001c
246 #define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
247 #define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
248 #define RCAR_DMACHCRB_DPTR_SHIFT	16
249 #define RCAR_DMACHCRB_DRST		(1 << 15)
250 #define RCAR_DMACHCRB_DTS		(1 << 8)
251 #define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
252 #define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
253 #define RCAR_DMACHCRB_PRI(n)		((n) << 0)
254 #define RCAR_DMARS			0x0040
255 #define RCAR_DMABUFCR			0x0048
256 #define RCAR_DMABUFCR_MBU(n)		((n) << 16)
257 #define RCAR_DMABUFCR_ULB(n)		((n) << 0)
258 #define RCAR_DMADPBASE			0x0050
259 #define RCAR_DMADPBASE_MASK		0xfffffff0
260 #define RCAR_DMADPBASE_SEL		(1 << 0)
261 #define RCAR_DMADPCR			0x0054
262 #define RCAR_DMADPCR_DIPT(n)		((n) << 24)
263 #define RCAR_DMAFIXSAR			0x0010
264 #define RCAR_DMAFIXDAR			0x0014
265 #define RCAR_DMAFIXDPBASE		0x0060
266 
267 /* Hardcode the MEMCPY transfer size to 4 bytes. */
268 #define RCAR_DMAC_MEMCPY_XFER_SIZE	4
269 
270 /* -----------------------------------------------------------------------------
271  * Device access
272  */
273 
274 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
275 {
276 	if (reg == RCAR_DMAOR)
277 		writew(data, dmac->iomem + reg);
278 	else
279 		writel(data, dmac->iomem + reg);
280 }
281 
282 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
283 {
284 	if (reg == RCAR_DMAOR)
285 		return readw(dmac->iomem + reg);
286 	else
287 		return readl(dmac->iomem + reg);
288 }
289 
290 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
291 {
292 	if (reg == RCAR_DMARS)
293 		return readw(chan->iomem + reg);
294 	else
295 		return readl(chan->iomem + reg);
296 }
297 
298 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
299 {
300 	if (reg == RCAR_DMARS)
301 		writew(data, chan->iomem + reg);
302 	else
303 		writel(data, chan->iomem + reg);
304 }
305 
306 /* -----------------------------------------------------------------------------
307  * Initialization and configuration
308  */
309 
310 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
311 {
312 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
313 
314 	return (chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)) == RCAR_DMACHCR_DE;
315 }
316 
317 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
318 {
319 	struct rcar_dmac_desc *desc = chan->desc.running;
320 	u32 chcr = desc->chcr;
321 
322 	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
323 
324 	if (chan->mid_rid >= 0)
325 		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
326 
327 	if (desc->hwdescs.use) {
328 		struct rcar_dmac_xfer_chunk *chunk;
329 
330 		dev_dbg(chan->chan.device->dev,
331 			"chan%u: queue desc %p: %u@%pad\n",
332 			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
333 
334 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
335 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
336 				     desc->hwdescs.dma >> 32);
337 #endif
338 		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
339 				     (desc->hwdescs.dma & 0xfffffff0) |
340 				     RCAR_DMADPBASE_SEL);
341 		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
342 				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
343 				     RCAR_DMACHCRB_DRST);
344 
345 		/*
346 		 * Errata: When descriptor memory is accessed through an IOMMU
347 		 * the DMADAR register isn't initialized automatically from the
348 		 * first descriptor at beginning of transfer by the DMAC like it
349 		 * should. Initialize it manually with the destination address
350 		 * of the first chunk.
351 		 */
352 		chunk = list_first_entry(&desc->chunks,
353 					 struct rcar_dmac_xfer_chunk, node);
354 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
355 				     chunk->dst_addr & 0xffffffff);
356 
357 		/*
358 		 * Program the descriptor stage interrupt to occur after the end
359 		 * of the first stage.
360 		 */
361 		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
362 
363 		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
364 		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
365 
366 		/*
367 		 * If the descriptor isn't cyclic enable normal descriptor mode
368 		 * and the transfer completion interrupt.
369 		 */
370 		if (!desc->cyclic)
371 			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
372 		/*
373 		 * If the descriptor is cyclic and has a callback enable the
374 		 * descriptor stage interrupt in infinite repeat mode.
375 		 */
376 		else if (desc->async_tx.callback)
377 			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
378 		/*
379 		 * Otherwise just select infinite repeat mode without any
380 		 * interrupt.
381 		 */
382 		else
383 			chcr |= RCAR_DMACHCR_DPM_INFINITE;
384 	} else {
385 		struct rcar_dmac_xfer_chunk *chunk = desc->running;
386 
387 		dev_dbg(chan->chan.device->dev,
388 			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
389 			chan->index, chunk, chunk->size, &chunk->src_addr,
390 			&chunk->dst_addr);
391 
392 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
393 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
394 				     chunk->src_addr >> 32);
395 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
396 				     chunk->dst_addr >> 32);
397 #endif
398 		rcar_dmac_chan_write(chan, RCAR_DMASAR,
399 				     chunk->src_addr & 0xffffffff);
400 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
401 				     chunk->dst_addr & 0xffffffff);
402 		rcar_dmac_chan_write(chan, RCAR_DMATCR,
403 				     chunk->size >> desc->xfer_shift);
404 
405 		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
406 	}
407 
408 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
409 }
410 
411 static int rcar_dmac_init(struct rcar_dmac *dmac)
412 {
413 	u16 dmaor;
414 
415 	/* Clear all channels and enable the DMAC globally. */
416 	rcar_dmac_write(dmac, RCAR_DMACHCLR, 0x7fff);
417 	rcar_dmac_write(dmac, RCAR_DMAOR,
418 			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
419 
420 	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
421 	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
422 		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
423 		return -EIO;
424 	}
425 
426 	return 0;
427 }
428 
429 /* -----------------------------------------------------------------------------
430  * Descriptors submission
431  */
432 
433 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
434 {
435 	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
436 	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
437 	unsigned long flags;
438 	dma_cookie_t cookie;
439 
440 	spin_lock_irqsave(&chan->lock, flags);
441 
442 	cookie = dma_cookie_assign(tx);
443 
444 	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
445 		chan->index, tx->cookie, desc);
446 
447 	list_add_tail(&desc->node, &chan->desc.pending);
448 	desc->running = list_first_entry(&desc->chunks,
449 					 struct rcar_dmac_xfer_chunk, node);
450 
451 	spin_unlock_irqrestore(&chan->lock, flags);
452 
453 	return cookie;
454 }
455 
456 /* -----------------------------------------------------------------------------
457  * Descriptors allocation and free
458  */
459 
460 /*
461  * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
462  * @chan: the DMA channel
463  * @gfp: allocation flags
464  */
465 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
466 {
467 	struct rcar_dmac_desc_page *page;
468 	LIST_HEAD(list);
469 	unsigned int i;
470 
471 	page = (void *)get_zeroed_page(gfp);
472 	if (!page)
473 		return -ENOMEM;
474 
475 	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
476 		struct rcar_dmac_desc *desc = &page->descs[i];
477 
478 		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
479 		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
480 		INIT_LIST_HEAD(&desc->chunks);
481 
482 		list_add_tail(&desc->node, &list);
483 	}
484 
485 	spin_lock_irq(&chan->lock);
486 	list_splice_tail(&list, &chan->desc.free);
487 	list_add_tail(&page->node, &chan->desc.pages);
488 	spin_unlock_irq(&chan->lock);
489 
490 	return 0;
491 }
492 
493 /*
494  * rcar_dmac_desc_put - Release a DMA transfer descriptor
495  * @chan: the DMA channel
496  * @desc: the descriptor
497  *
498  * Put the descriptor and its transfer chunk descriptors back in the channel's
499  * free descriptors lists. The descriptor's chunks list will be reinitialized to
500  * an empty list as a result.
501  *
502  * The descriptor must have been removed from the channel's lists before calling
503  * this function.
504  */
505 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
506 			       struct rcar_dmac_desc *desc)
507 {
508 	unsigned long flags;
509 
510 	spin_lock_irqsave(&chan->lock, flags);
511 	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
512 	list_add_tail(&desc->node, &chan->desc.free);
513 	spin_unlock_irqrestore(&chan->lock, flags);
514 }
515 
516 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
517 {
518 	struct rcar_dmac_desc *desc, *_desc;
519 	LIST_HEAD(list);
520 
521 	/*
522 	 * We have to temporarily move all descriptors from the wait list to a
523 	 * local list as iterating over the wait list, even with
524 	 * list_for_each_entry_safe, isn't safe if we release the channel lock
525 	 * around the rcar_dmac_desc_put() call.
526 	 */
527 	spin_lock_irq(&chan->lock);
528 	list_splice_init(&chan->desc.wait, &list);
529 	spin_unlock_irq(&chan->lock);
530 
531 	list_for_each_entry_safe(desc, _desc, &list, node) {
532 		if (async_tx_test_ack(&desc->async_tx)) {
533 			list_del(&desc->node);
534 			rcar_dmac_desc_put(chan, desc);
535 		}
536 	}
537 
538 	if (list_empty(&list))
539 		return;
540 
541 	/* Put the remaining descriptors back in the wait list. */
542 	spin_lock_irq(&chan->lock);
543 	list_splice(&list, &chan->desc.wait);
544 	spin_unlock_irq(&chan->lock);
545 }
546 
547 /*
548  * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
549  * @chan: the DMA channel
550  *
551  * Locking: This function must be called in a non-atomic context.
552  *
553  * Return: A pointer to the allocated descriptor or NULL if no descriptor can
554  * be allocated.
555  */
556 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
557 {
558 	struct rcar_dmac_desc *desc;
559 	int ret;
560 
561 	/* Recycle acked descriptors before attempting allocation. */
562 	rcar_dmac_desc_recycle_acked(chan);
563 
564 	spin_lock_irq(&chan->lock);
565 
566 	while (list_empty(&chan->desc.free)) {
567 		/*
568 		 * No free descriptors, allocate a page worth of them and try
569 		 * again, as someone else could race us to get the newly
570 		 * allocated descriptors. If the allocation fails return an
571 		 * error.
572 		 */
573 		spin_unlock_irq(&chan->lock);
574 		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
575 		if (ret < 0)
576 			return NULL;
577 		spin_lock_irq(&chan->lock);
578 	}
579 
580 	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
581 	list_del(&desc->node);
582 
583 	spin_unlock_irq(&chan->lock);
584 
585 	return desc;
586 }
587 
588 /*
589  * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
590  * @chan: the DMA channel
591  * @gfp: allocation flags
592  */
593 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
594 {
595 	struct rcar_dmac_desc_page *page;
596 	LIST_HEAD(list);
597 	unsigned int i;
598 
599 	page = (void *)get_zeroed_page(gfp);
600 	if (!page)
601 		return -ENOMEM;
602 
603 	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
604 		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
605 
606 		list_add_tail(&chunk->node, &list);
607 	}
608 
609 	spin_lock_irq(&chan->lock);
610 	list_splice_tail(&list, &chan->desc.chunks_free);
611 	list_add_tail(&page->node, &chan->desc.pages);
612 	spin_unlock_irq(&chan->lock);
613 
614 	return 0;
615 }
616 
617 /*
618  * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
619  * @chan: the DMA channel
620  *
621  * Locking: This function must be called in a non-atomic context.
622  *
623  * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
624  * descriptor can be allocated.
625  */
626 static struct rcar_dmac_xfer_chunk *
627 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
628 {
629 	struct rcar_dmac_xfer_chunk *chunk;
630 	int ret;
631 
632 	spin_lock_irq(&chan->lock);
633 
634 	while (list_empty(&chan->desc.chunks_free)) {
635 		/*
636 		 * No free descriptors, allocate a page worth of them and try
637 		 * again, as someone else could race us to get the newly
638 		 * allocated descriptors. If the allocation fails return an
639 		 * error.
640 		 */
641 		spin_unlock_irq(&chan->lock);
642 		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
643 		if (ret < 0)
644 			return NULL;
645 		spin_lock_irq(&chan->lock);
646 	}
647 
648 	chunk = list_first_entry(&chan->desc.chunks_free,
649 				 struct rcar_dmac_xfer_chunk, node);
650 	list_del(&chunk->node);
651 
652 	spin_unlock_irq(&chan->lock);
653 
654 	return chunk;
655 }
656 
657 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
658 				     struct rcar_dmac_desc *desc, size_t size)
659 {
660 	/*
661 	 * dma_alloc_coherent() allocates memory in page size increments. To
662 	 * avoid reallocating the hardware descriptors when the allocated size
663 	 * wouldn't change align the requested size to a multiple of the page
664 	 * size.
665 	 */
666 	size = PAGE_ALIGN(size);
667 
668 	if (desc->hwdescs.size == size)
669 		return;
670 
671 	if (desc->hwdescs.mem) {
672 		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
673 				  desc->hwdescs.mem, desc->hwdescs.dma);
674 		desc->hwdescs.mem = NULL;
675 		desc->hwdescs.size = 0;
676 	}
677 
678 	if (!size)
679 		return;
680 
681 	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
682 					       &desc->hwdescs.dma, GFP_NOWAIT);
683 	if (!desc->hwdescs.mem)
684 		return;
685 
686 	desc->hwdescs.size = size;
687 }
688 
689 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
690 				 struct rcar_dmac_desc *desc)
691 {
692 	struct rcar_dmac_xfer_chunk *chunk;
693 	struct rcar_dmac_hw_desc *hwdesc;
694 
695 	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
696 
697 	hwdesc = desc->hwdescs.mem;
698 	if (!hwdesc)
699 		return -ENOMEM;
700 
701 	list_for_each_entry(chunk, &desc->chunks, node) {
702 		hwdesc->sar = chunk->src_addr;
703 		hwdesc->dar = chunk->dst_addr;
704 		hwdesc->tcr = chunk->size >> desc->xfer_shift;
705 		hwdesc++;
706 	}
707 
708 	return 0;
709 }
710 
711 /* -----------------------------------------------------------------------------
712  * Stop and reset
713  */
714 
715 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
716 {
717 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
718 
719 	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
720 		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
721 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
722 }
723 
724 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
725 {
726 	struct rcar_dmac_desc *desc, *_desc;
727 	unsigned long flags;
728 	LIST_HEAD(descs);
729 
730 	spin_lock_irqsave(&chan->lock, flags);
731 
732 	/* Move all non-free descriptors to the local lists. */
733 	list_splice_init(&chan->desc.pending, &descs);
734 	list_splice_init(&chan->desc.active, &descs);
735 	list_splice_init(&chan->desc.done, &descs);
736 	list_splice_init(&chan->desc.wait, &descs);
737 
738 	chan->desc.running = NULL;
739 
740 	spin_unlock_irqrestore(&chan->lock, flags);
741 
742 	list_for_each_entry_safe(desc, _desc, &descs, node) {
743 		list_del(&desc->node);
744 		rcar_dmac_desc_put(chan, desc);
745 	}
746 }
747 
748 static void rcar_dmac_stop(struct rcar_dmac *dmac)
749 {
750 	rcar_dmac_write(dmac, RCAR_DMAOR, 0);
751 }
752 
753 static void rcar_dmac_abort(struct rcar_dmac *dmac)
754 {
755 	unsigned int i;
756 
757 	/* Stop all channels. */
758 	for (i = 0; i < dmac->n_channels; ++i) {
759 		struct rcar_dmac_chan *chan = &dmac->channels[i];
760 
761 		/* Stop and reinitialize the channel. */
762 		spin_lock(&chan->lock);
763 		rcar_dmac_chan_halt(chan);
764 		spin_unlock(&chan->lock);
765 
766 		rcar_dmac_chan_reinit(chan);
767 	}
768 }
769 
770 /* -----------------------------------------------------------------------------
771  * Descriptors preparation
772  */
773 
774 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
775 					  struct rcar_dmac_desc *desc)
776 {
777 	static const u32 chcr_ts[] = {
778 		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
779 		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
780 		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
781 		RCAR_DMACHCR_TS_64B,
782 	};
783 
784 	unsigned int xfer_size;
785 	u32 chcr;
786 
787 	switch (desc->direction) {
788 	case DMA_DEV_TO_MEM:
789 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
790 		     | RCAR_DMACHCR_RS_DMARS;
791 		xfer_size = chan->src_xfer_size;
792 		break;
793 
794 	case DMA_MEM_TO_DEV:
795 		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
796 		     | RCAR_DMACHCR_RS_DMARS;
797 		xfer_size = chan->dst_xfer_size;
798 		break;
799 
800 	case DMA_MEM_TO_MEM:
801 	default:
802 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
803 		     | RCAR_DMACHCR_RS_AUTO;
804 		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
805 		break;
806 	}
807 
808 	desc->xfer_shift = ilog2(xfer_size);
809 	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
810 }
811 
812 /*
813  * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
814  *
815  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
816  * converted to scatter-gather to guarantee consistent locking and a correct
817  * list manipulation. For slave DMA direction carries the usual meaning, and,
818  * logically, the SG list is RAM and the addr variable contains slave address,
819  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
820  * and the SG list contains only one element and points at the source buffer.
821  */
822 static struct dma_async_tx_descriptor *
823 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
824 		       unsigned int sg_len, dma_addr_t dev_addr,
825 		       enum dma_transfer_direction dir, unsigned long dma_flags,
826 		       bool cyclic)
827 {
828 	struct rcar_dmac_xfer_chunk *chunk;
829 	struct rcar_dmac_desc *desc;
830 	struct scatterlist *sg;
831 	unsigned int nchunks = 0;
832 	unsigned int max_chunk_size;
833 	unsigned int full_size = 0;
834 	bool highmem = false;
835 	unsigned int i;
836 
837 	desc = rcar_dmac_desc_get(chan);
838 	if (!desc)
839 		return NULL;
840 
841 	desc->async_tx.flags = dma_flags;
842 	desc->async_tx.cookie = -EBUSY;
843 
844 	desc->cyclic = cyclic;
845 	desc->direction = dir;
846 
847 	rcar_dmac_chan_configure_desc(chan, desc);
848 
849 	max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
850 
851 	/*
852 	 * Allocate and fill the transfer chunk descriptors. We own the only
853 	 * reference to the DMA descriptor, there's no need for locking.
854 	 */
855 	for_each_sg(sgl, sg, sg_len, i) {
856 		dma_addr_t mem_addr = sg_dma_address(sg);
857 		unsigned int len = sg_dma_len(sg);
858 
859 		full_size += len;
860 
861 		while (len) {
862 			unsigned int size = min(len, max_chunk_size);
863 
864 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
865 			/*
866 			 * Prevent individual transfers from crossing 4GB
867 			 * boundaries.
868 			 */
869 			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
870 				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
871 			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
872 				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
873 
874 			/*
875 			 * Check if either of the source or destination address
876 			 * can't be expressed in 32 bits. If so we can't use
877 			 * hardware descriptor lists.
878 			 */
879 			if (dev_addr >> 32 || mem_addr >> 32)
880 				highmem = true;
881 #endif
882 
883 			chunk = rcar_dmac_xfer_chunk_get(chan);
884 			if (!chunk) {
885 				rcar_dmac_desc_put(chan, desc);
886 				return NULL;
887 			}
888 
889 			if (dir == DMA_DEV_TO_MEM) {
890 				chunk->src_addr = dev_addr;
891 				chunk->dst_addr = mem_addr;
892 			} else {
893 				chunk->src_addr = mem_addr;
894 				chunk->dst_addr = dev_addr;
895 			}
896 
897 			chunk->size = size;
898 
899 			dev_dbg(chan->chan.device->dev,
900 				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
901 				chan->index, chunk, desc, i, sg, size, len,
902 				&chunk->src_addr, &chunk->dst_addr);
903 
904 			mem_addr += size;
905 			if (dir == DMA_MEM_TO_MEM)
906 				dev_addr += size;
907 
908 			len -= size;
909 
910 			list_add_tail(&chunk->node, &desc->chunks);
911 			nchunks++;
912 		}
913 	}
914 
915 	desc->nchunks = nchunks;
916 	desc->size = full_size;
917 
918 	/*
919 	 * Use hardware descriptor lists if possible when more than one chunk
920 	 * needs to be transferred (otherwise they don't make much sense).
921 	 *
922 	 * The highmem check currently covers the whole transfer. As an
923 	 * optimization we could use descriptor lists for consecutive lowmem
924 	 * chunks and direct manual mode for highmem chunks. Whether the
925 	 * performance improvement would be significant enough compared to the
926 	 * additional complexity remains to be investigated.
927 	 */
928 	desc->hwdescs.use = !highmem && nchunks > 1;
929 	if (desc->hwdescs.use) {
930 		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
931 			desc->hwdescs.use = false;
932 	}
933 
934 	return &desc->async_tx;
935 }
936 
937 /* -----------------------------------------------------------------------------
938  * DMA engine operations
939  */
940 
941 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
942 {
943 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
944 	int ret;
945 
946 	INIT_LIST_HEAD(&rchan->desc.chunks_free);
947 	INIT_LIST_HEAD(&rchan->desc.pages);
948 
949 	/* Preallocate descriptors. */
950 	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
951 	if (ret < 0)
952 		return -ENOMEM;
953 
954 	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
955 	if (ret < 0)
956 		return -ENOMEM;
957 
958 	return pm_runtime_get_sync(chan->device->dev);
959 }
960 
961 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
962 {
963 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
964 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
965 	struct rcar_dmac_desc_page *page, *_page;
966 	struct rcar_dmac_desc *desc;
967 	LIST_HEAD(list);
968 
969 	/* Protect against ISR */
970 	spin_lock_irq(&rchan->lock);
971 	rcar_dmac_chan_halt(rchan);
972 	spin_unlock_irq(&rchan->lock);
973 
974 	/* Now no new interrupts will occur */
975 
976 	if (rchan->mid_rid >= 0) {
977 		/* The caller is holding dma_list_mutex */
978 		clear_bit(rchan->mid_rid, dmac->modules);
979 		rchan->mid_rid = -EINVAL;
980 	}
981 
982 	list_splice_init(&rchan->desc.free, &list);
983 	list_splice_init(&rchan->desc.pending, &list);
984 	list_splice_init(&rchan->desc.active, &list);
985 	list_splice_init(&rchan->desc.done, &list);
986 	list_splice_init(&rchan->desc.wait, &list);
987 
988 	list_for_each_entry(desc, &list, node)
989 		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
990 
991 	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
992 		list_del(&page->node);
993 		free_page((unsigned long)page);
994 	}
995 
996 	pm_runtime_put(chan->device->dev);
997 }
998 
999 static struct dma_async_tx_descriptor *
1000 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1001 			  dma_addr_t dma_src, size_t len, unsigned long flags)
1002 {
1003 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1004 	struct scatterlist sgl;
1005 
1006 	if (!len)
1007 		return NULL;
1008 
1009 	sg_init_table(&sgl, 1);
1010 	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1011 		    offset_in_page(dma_src));
1012 	sg_dma_address(&sgl) = dma_src;
1013 	sg_dma_len(&sgl) = len;
1014 
1015 	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1016 				      DMA_MEM_TO_MEM, flags, false);
1017 }
1018 
1019 static struct dma_async_tx_descriptor *
1020 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1021 			unsigned int sg_len, enum dma_transfer_direction dir,
1022 			unsigned long flags, void *context)
1023 {
1024 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1025 	dma_addr_t dev_addr;
1026 
1027 	/* Someone calling slave DMA on a generic channel? */
1028 	if (rchan->mid_rid < 0 || !sg_len) {
1029 		dev_warn(chan->device->dev,
1030 			 "%s: bad parameter: len=%d, id=%d\n",
1031 			 __func__, sg_len, rchan->mid_rid);
1032 		return NULL;
1033 	}
1034 
1035 	dev_addr = dir == DMA_DEV_TO_MEM
1036 		 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1037 	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1038 				      dir, flags, false);
1039 }
1040 
1041 #define RCAR_DMAC_MAX_SG_LEN	32
1042 
1043 static struct dma_async_tx_descriptor *
1044 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1045 			  size_t buf_len, size_t period_len,
1046 			  enum dma_transfer_direction dir, unsigned long flags)
1047 {
1048 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1049 	struct dma_async_tx_descriptor *desc;
1050 	struct scatterlist *sgl;
1051 	dma_addr_t dev_addr;
1052 	unsigned int sg_len;
1053 	unsigned int i;
1054 
1055 	/* Someone calling slave DMA on a generic channel? */
1056 	if (rchan->mid_rid < 0 || buf_len < period_len) {
1057 		dev_warn(chan->device->dev,
1058 			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1059 			__func__, buf_len, period_len, rchan->mid_rid);
1060 		return NULL;
1061 	}
1062 
1063 	sg_len = buf_len / period_len;
1064 	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1065 		dev_err(chan->device->dev,
1066 			"chan%u: sg length %d exceds limit %d",
1067 			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1068 		return NULL;
1069 	}
1070 
1071 	/*
1072 	 * Allocate the sg list dynamically as it would consume too much stack
1073 	 * space.
1074 	 */
1075 	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1076 	if (!sgl)
1077 		return NULL;
1078 
1079 	sg_init_table(sgl, sg_len);
1080 
1081 	for (i = 0; i < sg_len; ++i) {
1082 		dma_addr_t src = buf_addr + (period_len * i);
1083 
1084 		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1085 			    offset_in_page(src));
1086 		sg_dma_address(&sgl[i]) = src;
1087 		sg_dma_len(&sgl[i]) = period_len;
1088 	}
1089 
1090 	dev_addr = dir == DMA_DEV_TO_MEM
1091 		 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1092 	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1093 				      dir, flags, true);
1094 
1095 	kfree(sgl);
1096 	return desc;
1097 }
1098 
1099 static int rcar_dmac_device_config(struct dma_chan *chan,
1100 				   struct dma_slave_config *cfg)
1101 {
1102 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1103 
1104 	/*
1105 	 * We could lock this, but you shouldn't be configuring the
1106 	 * channel, while using it...
1107 	 */
1108 	rchan->src_slave_addr = cfg->src_addr;
1109 	rchan->dst_slave_addr = cfg->dst_addr;
1110 	rchan->src_xfer_size = cfg->src_addr_width;
1111 	rchan->dst_xfer_size = cfg->dst_addr_width;
1112 
1113 	return 0;
1114 }
1115 
1116 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1117 {
1118 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1119 	unsigned long flags;
1120 
1121 	spin_lock_irqsave(&rchan->lock, flags);
1122 	rcar_dmac_chan_halt(rchan);
1123 	spin_unlock_irqrestore(&rchan->lock, flags);
1124 
1125 	/*
1126 	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1127 	 * be running.
1128 	 */
1129 
1130 	rcar_dmac_chan_reinit(rchan);
1131 
1132 	return 0;
1133 }
1134 
1135 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1136 					       dma_cookie_t cookie)
1137 {
1138 	struct rcar_dmac_desc *desc = chan->desc.running;
1139 	struct rcar_dmac_xfer_chunk *running = NULL;
1140 	struct rcar_dmac_xfer_chunk *chunk;
1141 	unsigned int residue = 0;
1142 	unsigned int dptr = 0;
1143 
1144 	if (!desc)
1145 		return 0;
1146 
1147 	/*
1148 	 * If the cookie doesn't correspond to the currently running transfer
1149 	 * then the descriptor hasn't been processed yet, and the residue is
1150 	 * equal to the full descriptor size.
1151 	 */
1152 	if (cookie != desc->async_tx.cookie)
1153 		return desc->size;
1154 
1155 	/*
1156 	 * In descriptor mode the descriptor running pointer is not maintained
1157 	 * by the interrupt handler, find the running descriptor from the
1158 	 * descriptor pointer field in the CHCRB register. In non-descriptor
1159 	 * mode just use the running descriptor pointer.
1160 	 */
1161 	if (desc->hwdescs.use) {
1162 		dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1163 			RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1164 		WARN_ON(dptr >= desc->nchunks);
1165 	} else {
1166 		running = desc->running;
1167 	}
1168 
1169 	/* Compute the size of all chunks still to be transferred. */
1170 	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1171 		if (chunk == running || ++dptr == desc->nchunks)
1172 			break;
1173 
1174 		residue += chunk->size;
1175 	}
1176 
1177 	/* Add the residue for the current chunk. */
1178 	residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1179 
1180 	return residue;
1181 }
1182 
1183 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1184 					   dma_cookie_t cookie,
1185 					   struct dma_tx_state *txstate)
1186 {
1187 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1188 	enum dma_status status;
1189 	unsigned long flags;
1190 	unsigned int residue;
1191 
1192 	status = dma_cookie_status(chan, cookie, txstate);
1193 	if (status == DMA_COMPLETE || !txstate)
1194 		return status;
1195 
1196 	spin_lock_irqsave(&rchan->lock, flags);
1197 	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1198 	spin_unlock_irqrestore(&rchan->lock, flags);
1199 
1200 	dma_set_residue(txstate, residue);
1201 
1202 	return status;
1203 }
1204 
1205 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1206 {
1207 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1208 	unsigned long flags;
1209 
1210 	spin_lock_irqsave(&rchan->lock, flags);
1211 
1212 	if (list_empty(&rchan->desc.pending))
1213 		goto done;
1214 
1215 	/* Append the pending list to the active list. */
1216 	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1217 
1218 	/*
1219 	 * If no transfer is running pick the first descriptor from the active
1220 	 * list and start the transfer.
1221 	 */
1222 	if (!rchan->desc.running) {
1223 		struct rcar_dmac_desc *desc;
1224 
1225 		desc = list_first_entry(&rchan->desc.active,
1226 					struct rcar_dmac_desc, node);
1227 		rchan->desc.running = desc;
1228 
1229 		rcar_dmac_chan_start_xfer(rchan);
1230 	}
1231 
1232 done:
1233 	spin_unlock_irqrestore(&rchan->lock, flags);
1234 }
1235 
1236 /* -----------------------------------------------------------------------------
1237  * IRQ handling
1238  */
1239 
1240 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1241 {
1242 	struct rcar_dmac_desc *desc = chan->desc.running;
1243 	unsigned int stage;
1244 
1245 	if (WARN_ON(!desc || !desc->cyclic)) {
1246 		/*
1247 		 * This should never happen, there should always be a running
1248 		 * cyclic descriptor when a descriptor stage end interrupt is
1249 		 * triggered. Warn and return.
1250 		 */
1251 		return IRQ_NONE;
1252 	}
1253 
1254 	/* Program the interrupt pointer to the next stage. */
1255 	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1256 		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1257 	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1258 
1259 	return IRQ_WAKE_THREAD;
1260 }
1261 
1262 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1263 {
1264 	struct rcar_dmac_desc *desc = chan->desc.running;
1265 	irqreturn_t ret = IRQ_WAKE_THREAD;
1266 
1267 	if (WARN_ON_ONCE(!desc)) {
1268 		/*
1269 		 * This should never happen, there should always be a running
1270 		 * descriptor when a transfer end interrupt is triggered. Warn
1271 		 * and return.
1272 		 */
1273 		return IRQ_NONE;
1274 	}
1275 
1276 	/*
1277 	 * The transfer end interrupt isn't generated for each chunk when using
1278 	 * descriptor mode. Only update the running chunk pointer in
1279 	 * non-descriptor mode.
1280 	 */
1281 	if (!desc->hwdescs.use) {
1282 		/*
1283 		 * If we haven't completed the last transfer chunk simply move
1284 		 * to the next one. Only wake the IRQ thread if the transfer is
1285 		 * cyclic.
1286 		 */
1287 		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1288 			desc->running = list_next_entry(desc->running, node);
1289 			if (!desc->cyclic)
1290 				ret = IRQ_HANDLED;
1291 			goto done;
1292 		}
1293 
1294 		/*
1295 		 * We've completed the last transfer chunk. If the transfer is
1296 		 * cyclic, move back to the first one.
1297 		 */
1298 		if (desc->cyclic) {
1299 			desc->running =
1300 				list_first_entry(&desc->chunks,
1301 						 struct rcar_dmac_xfer_chunk,
1302 						 node);
1303 			goto done;
1304 		}
1305 	}
1306 
1307 	/* The descriptor is complete, move it to the done list. */
1308 	list_move_tail(&desc->node, &chan->desc.done);
1309 
1310 	/* Queue the next descriptor, if any. */
1311 	if (!list_empty(&chan->desc.active))
1312 		chan->desc.running = list_first_entry(&chan->desc.active,
1313 						      struct rcar_dmac_desc,
1314 						      node);
1315 	else
1316 		chan->desc.running = NULL;
1317 
1318 done:
1319 	if (chan->desc.running)
1320 		rcar_dmac_chan_start_xfer(chan);
1321 
1322 	return ret;
1323 }
1324 
1325 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1326 {
1327 	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1328 	struct rcar_dmac_chan *chan = dev;
1329 	irqreturn_t ret = IRQ_NONE;
1330 	u32 chcr;
1331 
1332 	spin_lock(&chan->lock);
1333 
1334 	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1335 	if (chcr & RCAR_DMACHCR_TE)
1336 		mask |= RCAR_DMACHCR_DE;
1337 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1338 
1339 	if (chcr & RCAR_DMACHCR_DSE)
1340 		ret |= rcar_dmac_isr_desc_stage_end(chan);
1341 
1342 	if (chcr & RCAR_DMACHCR_TE)
1343 		ret |= rcar_dmac_isr_transfer_end(chan);
1344 
1345 	spin_unlock(&chan->lock);
1346 
1347 	return ret;
1348 }
1349 
1350 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1351 {
1352 	struct rcar_dmac_chan *chan = dev;
1353 	struct rcar_dmac_desc *desc;
1354 
1355 	spin_lock_irq(&chan->lock);
1356 
1357 	/* For cyclic transfers notify the user after every chunk. */
1358 	if (chan->desc.running && chan->desc.running->cyclic) {
1359 		dma_async_tx_callback callback;
1360 		void *callback_param;
1361 
1362 		desc = chan->desc.running;
1363 		callback = desc->async_tx.callback;
1364 		callback_param = desc->async_tx.callback_param;
1365 
1366 		if (callback) {
1367 			spin_unlock_irq(&chan->lock);
1368 			callback(callback_param);
1369 			spin_lock_irq(&chan->lock);
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * Call the callback function for all descriptors on the done list and
1375 	 * move them to the ack wait list.
1376 	 */
1377 	while (!list_empty(&chan->desc.done)) {
1378 		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1379 					node);
1380 		dma_cookie_complete(&desc->async_tx);
1381 		list_del(&desc->node);
1382 
1383 		if (desc->async_tx.callback) {
1384 			spin_unlock_irq(&chan->lock);
1385 			/*
1386 			 * We own the only reference to this descriptor, we can
1387 			 * safely dereference it without holding the channel
1388 			 * lock.
1389 			 */
1390 			desc->async_tx.callback(desc->async_tx.callback_param);
1391 			spin_lock_irq(&chan->lock);
1392 		}
1393 
1394 		list_add_tail(&desc->node, &chan->desc.wait);
1395 	}
1396 
1397 	spin_unlock_irq(&chan->lock);
1398 
1399 	/* Recycle all acked descriptors. */
1400 	rcar_dmac_desc_recycle_acked(chan);
1401 
1402 	return IRQ_HANDLED;
1403 }
1404 
1405 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1406 {
1407 	struct rcar_dmac *dmac = data;
1408 
1409 	if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1410 		return IRQ_NONE;
1411 
1412 	/*
1413 	 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1414 	 * abort transfers on all channels, and reinitialize the DMAC.
1415 	 */
1416 	rcar_dmac_stop(dmac);
1417 	rcar_dmac_abort(dmac);
1418 	rcar_dmac_init(dmac);
1419 
1420 	return IRQ_HANDLED;
1421 }
1422 
1423 /* -----------------------------------------------------------------------------
1424  * OF xlate and channel filter
1425  */
1426 
1427 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1428 {
1429 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1430 	struct of_phandle_args *dma_spec = arg;
1431 
1432 	/*
1433 	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1434 	 * function knows from which device it wants to allocate a channel from,
1435 	 * and would be perfectly capable of selecting the channel it wants.
1436 	 * Forcing it to call dma_request_channel() and iterate through all
1437 	 * channels from all controllers is just pointless.
1438 	 */
1439 	if (chan->device->device_config != rcar_dmac_device_config ||
1440 	    dma_spec->np != chan->device->dev->of_node)
1441 		return false;
1442 
1443 	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1444 }
1445 
1446 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1447 					   struct of_dma *ofdma)
1448 {
1449 	struct rcar_dmac_chan *rchan;
1450 	struct dma_chan *chan;
1451 	dma_cap_mask_t mask;
1452 
1453 	if (dma_spec->args_count != 1)
1454 		return NULL;
1455 
1456 	/* Only slave DMA channels can be allocated via DT */
1457 	dma_cap_zero(mask);
1458 	dma_cap_set(DMA_SLAVE, mask);
1459 
1460 	chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1461 	if (!chan)
1462 		return NULL;
1463 
1464 	rchan = to_rcar_dmac_chan(chan);
1465 	rchan->mid_rid = dma_spec->args[0];
1466 
1467 	return chan;
1468 }
1469 
1470 /* -----------------------------------------------------------------------------
1471  * Power management
1472  */
1473 
1474 #ifdef CONFIG_PM_SLEEP
1475 static int rcar_dmac_sleep_suspend(struct device *dev)
1476 {
1477 	/*
1478 	 * TODO: Wait for the current transfer to complete and stop the device.
1479 	 */
1480 	return 0;
1481 }
1482 
1483 static int rcar_dmac_sleep_resume(struct device *dev)
1484 {
1485 	/* TODO: Resume transfers, if any. */
1486 	return 0;
1487 }
1488 #endif
1489 
1490 #ifdef CONFIG_PM
1491 static int rcar_dmac_runtime_suspend(struct device *dev)
1492 {
1493 	return 0;
1494 }
1495 
1496 static int rcar_dmac_runtime_resume(struct device *dev)
1497 {
1498 	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1499 
1500 	return rcar_dmac_init(dmac);
1501 }
1502 #endif
1503 
1504 static const struct dev_pm_ops rcar_dmac_pm = {
1505 	SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1506 	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1507 			   NULL)
1508 };
1509 
1510 /* -----------------------------------------------------------------------------
1511  * Probe and remove
1512  */
1513 
1514 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1515 				struct rcar_dmac_chan *rchan,
1516 				unsigned int index)
1517 {
1518 	struct platform_device *pdev = to_platform_device(dmac->dev);
1519 	struct dma_chan *chan = &rchan->chan;
1520 	char pdev_irqname[5];
1521 	char *irqname;
1522 	int irq;
1523 	int ret;
1524 
1525 	rchan->index = index;
1526 	rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1527 	rchan->mid_rid = -EINVAL;
1528 
1529 	spin_lock_init(&rchan->lock);
1530 
1531 	INIT_LIST_HEAD(&rchan->desc.free);
1532 	INIT_LIST_HEAD(&rchan->desc.pending);
1533 	INIT_LIST_HEAD(&rchan->desc.active);
1534 	INIT_LIST_HEAD(&rchan->desc.done);
1535 	INIT_LIST_HEAD(&rchan->desc.wait);
1536 
1537 	/* Request the channel interrupt. */
1538 	sprintf(pdev_irqname, "ch%u", index);
1539 	irq = platform_get_irq_byname(pdev, pdev_irqname);
1540 	if (irq < 0) {
1541 		dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1542 		return -ENODEV;
1543 	}
1544 
1545 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1546 				 dev_name(dmac->dev), index);
1547 	if (!irqname)
1548 		return -ENOMEM;
1549 
1550 	ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1551 					rcar_dmac_isr_channel_thread, 0,
1552 					irqname, rchan);
1553 	if (ret) {
1554 		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1555 		return ret;
1556 	}
1557 
1558 	/*
1559 	 * Initialize the DMA engine channel and add it to the DMA engine
1560 	 * channels list.
1561 	 */
1562 	chan->device = &dmac->engine;
1563 	dma_cookie_init(chan);
1564 
1565 	list_add_tail(&chan->device_node, &dmac->engine.channels);
1566 
1567 	return 0;
1568 }
1569 
1570 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1571 {
1572 	struct device_node *np = dev->of_node;
1573 	int ret;
1574 
1575 	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1576 	if (ret < 0) {
1577 		dev_err(dev, "unable to read dma-channels property\n");
1578 		return ret;
1579 	}
1580 
1581 	if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1582 		dev_err(dev, "invalid number of channels %u\n",
1583 			dmac->n_channels);
1584 		return -EINVAL;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 static int rcar_dmac_probe(struct platform_device *pdev)
1591 {
1592 	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1593 		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1594 		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1595 		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1596 	unsigned int channels_offset = 0;
1597 	struct dma_device *engine;
1598 	struct rcar_dmac *dmac;
1599 	struct resource *mem;
1600 	unsigned int i;
1601 	char *irqname;
1602 	int irq;
1603 	int ret;
1604 
1605 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1606 	if (!dmac)
1607 		return -ENOMEM;
1608 
1609 	dmac->dev = &pdev->dev;
1610 	platform_set_drvdata(pdev, dmac);
1611 
1612 	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1613 	if (ret < 0)
1614 		return ret;
1615 
1616 	/*
1617 	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1618 	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1619 	 * is connected to microTLB 0 on currently supported platforms, so we
1620 	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1621 	 * level we can't disable it selectively, so ignore channel 0 for now if
1622 	 * the device is part of an IOMMU group.
1623 	 */
1624 	if (pdev->dev.iommu_group) {
1625 		dmac->n_channels--;
1626 		channels_offset = 1;
1627 	}
1628 
1629 	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1630 				      sizeof(*dmac->channels), GFP_KERNEL);
1631 	if (!dmac->channels)
1632 		return -ENOMEM;
1633 
1634 	/* Request resources. */
1635 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1636 	dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1637 	if (IS_ERR(dmac->iomem))
1638 		return PTR_ERR(dmac->iomem);
1639 
1640 	irq = platform_get_irq_byname(pdev, "error");
1641 	if (irq < 0) {
1642 		dev_err(&pdev->dev, "no error IRQ specified\n");
1643 		return -ENODEV;
1644 	}
1645 
1646 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1647 				 dev_name(dmac->dev));
1648 	if (!irqname)
1649 		return -ENOMEM;
1650 
1651 	ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1652 			       irqname, dmac);
1653 	if (ret) {
1654 		dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1655 			irq, ret);
1656 		return ret;
1657 	}
1658 
1659 	/* Enable runtime PM and initialize the device. */
1660 	pm_runtime_enable(&pdev->dev);
1661 	ret = pm_runtime_get_sync(&pdev->dev);
1662 	if (ret < 0) {
1663 		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1664 		return ret;
1665 	}
1666 
1667 	ret = rcar_dmac_init(dmac);
1668 	pm_runtime_put(&pdev->dev);
1669 
1670 	if (ret) {
1671 		dev_err(&pdev->dev, "failed to reset device\n");
1672 		goto error;
1673 	}
1674 
1675 	/* Initialize the channels. */
1676 	INIT_LIST_HEAD(&dmac->engine.channels);
1677 
1678 	for (i = 0; i < dmac->n_channels; ++i) {
1679 		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1680 					   i + channels_offset);
1681 		if (ret < 0)
1682 			goto error;
1683 	}
1684 
1685 	/* Register the DMAC as a DMA provider for DT. */
1686 	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1687 					 NULL);
1688 	if (ret < 0)
1689 		goto error;
1690 
1691 	/*
1692 	 * Register the DMA engine device.
1693 	 *
1694 	 * Default transfer size of 32 bytes requires 32-byte alignment.
1695 	 */
1696 	engine = &dmac->engine;
1697 	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1698 	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1699 
1700 	engine->dev = &pdev->dev;
1701 	engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1702 
1703 	engine->src_addr_widths = widths;
1704 	engine->dst_addr_widths = widths;
1705 	engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1706 	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1707 
1708 	engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1709 	engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1710 	engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1711 	engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1712 	engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1713 	engine->device_config = rcar_dmac_device_config;
1714 	engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1715 	engine->device_tx_status = rcar_dmac_tx_status;
1716 	engine->device_issue_pending = rcar_dmac_issue_pending;
1717 
1718 	ret = dma_async_device_register(engine);
1719 	if (ret < 0)
1720 		goto error;
1721 
1722 	return 0;
1723 
1724 error:
1725 	of_dma_controller_free(pdev->dev.of_node);
1726 	pm_runtime_disable(&pdev->dev);
1727 	return ret;
1728 }
1729 
1730 static int rcar_dmac_remove(struct platform_device *pdev)
1731 {
1732 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1733 
1734 	of_dma_controller_free(pdev->dev.of_node);
1735 	dma_async_device_unregister(&dmac->engine);
1736 
1737 	pm_runtime_disable(&pdev->dev);
1738 
1739 	return 0;
1740 }
1741 
1742 static void rcar_dmac_shutdown(struct platform_device *pdev)
1743 {
1744 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1745 
1746 	rcar_dmac_stop(dmac);
1747 }
1748 
1749 static const struct of_device_id rcar_dmac_of_ids[] = {
1750 	{ .compatible = "renesas,rcar-dmac", },
1751 	{ /* Sentinel */ }
1752 };
1753 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1754 
1755 static struct platform_driver rcar_dmac_driver = {
1756 	.driver		= {
1757 		.pm	= &rcar_dmac_pm,
1758 		.name	= "rcar-dmac",
1759 		.of_match_table = rcar_dmac_of_ids,
1760 	},
1761 	.probe		= rcar_dmac_probe,
1762 	.remove		= rcar_dmac_remove,
1763 	.shutdown	= rcar_dmac_shutdown,
1764 };
1765 
1766 module_platform_driver(rcar_dmac_driver);
1767 
1768 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1769 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1770 MODULE_LICENSE("GPL v2");
1771