1 /* 2 * Renesas R-Car Gen2 DMA Controller Driver 3 * 4 * Copyright (C) 2014 Renesas Electronics Inc. 5 * 6 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 7 * 8 * This is free software; you can redistribute it and/or modify 9 * it under the terms of version 2 of the GNU General Public License as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/interrupt.h> 16 #include <linux/list.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/of.h> 20 #include <linux/of_dma.h> 21 #include <linux/of_platform.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 27 #include "../dmaengine.h" 28 29 /* 30 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer 31 * @node: entry in the parent's chunks list 32 * @src_addr: device source address 33 * @dst_addr: device destination address 34 * @size: transfer size in bytes 35 */ 36 struct rcar_dmac_xfer_chunk { 37 struct list_head node; 38 39 dma_addr_t src_addr; 40 dma_addr_t dst_addr; 41 u32 size; 42 }; 43 44 /* 45 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk 46 * @sar: value of the SAR register (source address) 47 * @dar: value of the DAR register (destination address) 48 * @tcr: value of the TCR register (transfer count) 49 */ 50 struct rcar_dmac_hw_desc { 51 u32 sar; 52 u32 dar; 53 u32 tcr; 54 u32 reserved; 55 } __attribute__((__packed__)); 56 57 /* 58 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor 59 * @async_tx: base DMA asynchronous transaction descriptor 60 * @direction: direction of the DMA transfer 61 * @xfer_shift: log2 of the transfer size 62 * @chcr: value of the channel configuration register for this transfer 63 * @node: entry in the channel's descriptors lists 64 * @chunks: list of transfer chunks for this transfer 65 * @running: the transfer chunk being currently processed 66 * @nchunks: number of transfer chunks for this transfer 67 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors 68 * @hwdescs.mem: hardware descriptors memory for the transfer 69 * @hwdescs.dma: device address of the hardware descriptors memory 70 * @hwdescs.size: size of the hardware descriptors in bytes 71 * @size: transfer size in bytes 72 * @cyclic: when set indicates that the DMA transfer is cyclic 73 */ 74 struct rcar_dmac_desc { 75 struct dma_async_tx_descriptor async_tx; 76 enum dma_transfer_direction direction; 77 unsigned int xfer_shift; 78 u32 chcr; 79 80 struct list_head node; 81 struct list_head chunks; 82 struct rcar_dmac_xfer_chunk *running; 83 unsigned int nchunks; 84 85 struct { 86 bool use; 87 struct rcar_dmac_hw_desc *mem; 88 dma_addr_t dma; 89 size_t size; 90 } hwdescs; 91 92 unsigned int size; 93 bool cyclic; 94 }; 95 96 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx) 97 98 /* 99 * struct rcar_dmac_desc_page - One page worth of descriptors 100 * @node: entry in the channel's pages list 101 * @descs: array of DMA descriptors 102 * @chunks: array of transfer chunk descriptors 103 */ 104 struct rcar_dmac_desc_page { 105 struct list_head node; 106 107 union { 108 struct rcar_dmac_desc descs[0]; 109 struct rcar_dmac_xfer_chunk chunks[0]; 110 }; 111 }; 112 113 #define RCAR_DMAC_DESCS_PER_PAGE \ 114 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \ 115 sizeof(struct rcar_dmac_desc)) 116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \ 117 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \ 118 sizeof(struct rcar_dmac_xfer_chunk)) 119 120 /* 121 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel 122 * @chan: base DMA channel object 123 * @iomem: channel I/O memory base 124 * @index: index of this channel in the controller 125 * @src_xfer_size: size (in bytes) of hardware transfers on the source side 126 * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side 127 * @src_slave_addr: slave source memory address 128 * @dst_slave_addr: slave destination memory address 129 * @mid_rid: hardware MID/RID for the DMA client using this channel 130 * @lock: protects the channel CHCR register and the desc members 131 * @desc.free: list of free descriptors 132 * @desc.pending: list of pending descriptors (submitted with tx_submit) 133 * @desc.active: list of active descriptors (activated with issue_pending) 134 * @desc.done: list of completed descriptors 135 * @desc.wait: list of descriptors waiting for an ack 136 * @desc.running: the descriptor being processed (a member of the active list) 137 * @desc.chunks_free: list of free transfer chunk descriptors 138 * @desc.pages: list of pages used by allocated descriptors 139 */ 140 struct rcar_dmac_chan { 141 struct dma_chan chan; 142 void __iomem *iomem; 143 unsigned int index; 144 145 unsigned int src_xfer_size; 146 unsigned int dst_xfer_size; 147 dma_addr_t src_slave_addr; 148 dma_addr_t dst_slave_addr; 149 int mid_rid; 150 151 spinlock_t lock; 152 153 struct { 154 struct list_head free; 155 struct list_head pending; 156 struct list_head active; 157 struct list_head done; 158 struct list_head wait; 159 struct rcar_dmac_desc *running; 160 161 struct list_head chunks_free; 162 163 struct list_head pages; 164 } desc; 165 }; 166 167 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan) 168 169 /* 170 * struct rcar_dmac - R-Car Gen2 DMA Controller 171 * @engine: base DMA engine object 172 * @dev: the hardware device 173 * @iomem: remapped I/O memory base 174 * @n_channels: number of available channels 175 * @channels: array of DMAC channels 176 * @modules: bitmask of client modules in use 177 */ 178 struct rcar_dmac { 179 struct dma_device engine; 180 struct device *dev; 181 void __iomem *iomem; 182 183 unsigned int n_channels; 184 struct rcar_dmac_chan *channels; 185 186 unsigned long modules[256 / BITS_PER_LONG]; 187 }; 188 189 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine) 190 191 /* ----------------------------------------------------------------------------- 192 * Registers 193 */ 194 195 #define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i)) 196 197 #define RCAR_DMAISTA 0x0020 198 #define RCAR_DMASEC 0x0030 199 #define RCAR_DMAOR 0x0060 200 #define RCAR_DMAOR_PRI_FIXED (0 << 8) 201 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8) 202 #define RCAR_DMAOR_AE (1 << 2) 203 #define RCAR_DMAOR_DME (1 << 0) 204 #define RCAR_DMACHCLR 0x0080 205 #define RCAR_DMADPSEC 0x00a0 206 207 #define RCAR_DMASAR 0x0000 208 #define RCAR_DMADAR 0x0004 209 #define RCAR_DMATCR 0x0008 210 #define RCAR_DMATCR_MASK 0x00ffffff 211 #define RCAR_DMATSR 0x0028 212 #define RCAR_DMACHCR 0x000c 213 #define RCAR_DMACHCR_CAE (1 << 31) 214 #define RCAR_DMACHCR_CAIE (1 << 30) 215 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28) 216 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28) 217 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28) 218 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28) 219 #define RCAR_DMACHCR_RPT_SAR (1 << 27) 220 #define RCAR_DMACHCR_RPT_DAR (1 << 26) 221 #define RCAR_DMACHCR_RPT_TCR (1 << 25) 222 #define RCAR_DMACHCR_DPB (1 << 22) 223 #define RCAR_DMACHCR_DSE (1 << 19) 224 #define RCAR_DMACHCR_DSIE (1 << 18) 225 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3)) 226 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3)) 227 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3)) 228 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3)) 229 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3)) 230 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3)) 231 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3)) 232 #define RCAR_DMACHCR_DM_FIXED (0 << 14) 233 #define RCAR_DMACHCR_DM_INC (1 << 14) 234 #define RCAR_DMACHCR_DM_DEC (2 << 14) 235 #define RCAR_DMACHCR_SM_FIXED (0 << 12) 236 #define RCAR_DMACHCR_SM_INC (1 << 12) 237 #define RCAR_DMACHCR_SM_DEC (2 << 12) 238 #define RCAR_DMACHCR_RS_AUTO (4 << 8) 239 #define RCAR_DMACHCR_RS_DMARS (8 << 8) 240 #define RCAR_DMACHCR_IE (1 << 2) 241 #define RCAR_DMACHCR_TE (1 << 1) 242 #define RCAR_DMACHCR_DE (1 << 0) 243 #define RCAR_DMATCRB 0x0018 244 #define RCAR_DMATSRB 0x0038 245 #define RCAR_DMACHCRB 0x001c 246 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24) 247 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16) 248 #define RCAR_DMACHCRB_DPTR_SHIFT 16 249 #define RCAR_DMACHCRB_DRST (1 << 15) 250 #define RCAR_DMACHCRB_DTS (1 << 8) 251 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4) 252 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4) 253 #define RCAR_DMACHCRB_PRI(n) ((n) << 0) 254 #define RCAR_DMARS 0x0040 255 #define RCAR_DMABUFCR 0x0048 256 #define RCAR_DMABUFCR_MBU(n) ((n) << 16) 257 #define RCAR_DMABUFCR_ULB(n) ((n) << 0) 258 #define RCAR_DMADPBASE 0x0050 259 #define RCAR_DMADPBASE_MASK 0xfffffff0 260 #define RCAR_DMADPBASE_SEL (1 << 0) 261 #define RCAR_DMADPCR 0x0054 262 #define RCAR_DMADPCR_DIPT(n) ((n) << 24) 263 #define RCAR_DMAFIXSAR 0x0010 264 #define RCAR_DMAFIXDAR 0x0014 265 #define RCAR_DMAFIXDPBASE 0x0060 266 267 /* Hardcode the MEMCPY transfer size to 4 bytes. */ 268 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4 269 270 /* ----------------------------------------------------------------------------- 271 * Device access 272 */ 273 274 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data) 275 { 276 if (reg == RCAR_DMAOR) 277 writew(data, dmac->iomem + reg); 278 else 279 writel(data, dmac->iomem + reg); 280 } 281 282 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg) 283 { 284 if (reg == RCAR_DMAOR) 285 return readw(dmac->iomem + reg); 286 else 287 return readl(dmac->iomem + reg); 288 } 289 290 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg) 291 { 292 if (reg == RCAR_DMARS) 293 return readw(chan->iomem + reg); 294 else 295 return readl(chan->iomem + reg); 296 } 297 298 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data) 299 { 300 if (reg == RCAR_DMARS) 301 writew(data, chan->iomem + reg); 302 else 303 writel(data, chan->iomem + reg); 304 } 305 306 /* ----------------------------------------------------------------------------- 307 * Initialization and configuration 308 */ 309 310 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan) 311 { 312 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); 313 314 return (chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)) == RCAR_DMACHCR_DE; 315 } 316 317 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan) 318 { 319 struct rcar_dmac_desc *desc = chan->desc.running; 320 u32 chcr = desc->chcr; 321 322 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan)); 323 324 if (chan->mid_rid >= 0) 325 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid); 326 327 if (desc->hwdescs.use) { 328 struct rcar_dmac_xfer_chunk *chunk; 329 330 dev_dbg(chan->chan.device->dev, 331 "chan%u: queue desc %p: %u@%pad\n", 332 chan->index, desc, desc->nchunks, &desc->hwdescs.dma); 333 334 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 335 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE, 336 desc->hwdescs.dma >> 32); 337 #endif 338 rcar_dmac_chan_write(chan, RCAR_DMADPBASE, 339 (desc->hwdescs.dma & 0xfffffff0) | 340 RCAR_DMADPBASE_SEL); 341 rcar_dmac_chan_write(chan, RCAR_DMACHCRB, 342 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) | 343 RCAR_DMACHCRB_DRST); 344 345 /* 346 * Errata: When descriptor memory is accessed through an IOMMU 347 * the DMADAR register isn't initialized automatically from the 348 * first descriptor at beginning of transfer by the DMAC like it 349 * should. Initialize it manually with the destination address 350 * of the first chunk. 351 */ 352 chunk = list_first_entry(&desc->chunks, 353 struct rcar_dmac_xfer_chunk, node); 354 rcar_dmac_chan_write(chan, RCAR_DMADAR, 355 chunk->dst_addr & 0xffffffff); 356 357 /* 358 * Program the descriptor stage interrupt to occur after the end 359 * of the first stage. 360 */ 361 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1)); 362 363 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR 364 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB; 365 366 /* 367 * If the descriptor isn't cyclic enable normal descriptor mode 368 * and the transfer completion interrupt. 369 */ 370 if (!desc->cyclic) 371 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE; 372 /* 373 * If the descriptor is cyclic and has a callback enable the 374 * descriptor stage interrupt in infinite repeat mode. 375 */ 376 else if (desc->async_tx.callback) 377 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE; 378 /* 379 * Otherwise just select infinite repeat mode without any 380 * interrupt. 381 */ 382 else 383 chcr |= RCAR_DMACHCR_DPM_INFINITE; 384 } else { 385 struct rcar_dmac_xfer_chunk *chunk = desc->running; 386 387 dev_dbg(chan->chan.device->dev, 388 "chan%u: queue chunk %p: %u@%pad -> %pad\n", 389 chan->index, chunk, chunk->size, &chunk->src_addr, 390 &chunk->dst_addr); 391 392 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 393 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR, 394 chunk->src_addr >> 32); 395 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR, 396 chunk->dst_addr >> 32); 397 #endif 398 rcar_dmac_chan_write(chan, RCAR_DMASAR, 399 chunk->src_addr & 0xffffffff); 400 rcar_dmac_chan_write(chan, RCAR_DMADAR, 401 chunk->dst_addr & 0xffffffff); 402 rcar_dmac_chan_write(chan, RCAR_DMATCR, 403 chunk->size >> desc->xfer_shift); 404 405 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE; 406 } 407 408 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE); 409 } 410 411 static int rcar_dmac_init(struct rcar_dmac *dmac) 412 { 413 u16 dmaor; 414 415 /* Clear all channels and enable the DMAC globally. */ 416 rcar_dmac_write(dmac, RCAR_DMACHCLR, 0x7fff); 417 rcar_dmac_write(dmac, RCAR_DMAOR, 418 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME); 419 420 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR); 421 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) { 422 dev_warn(dmac->dev, "DMAOR initialization failed.\n"); 423 return -EIO; 424 } 425 426 return 0; 427 } 428 429 /* ----------------------------------------------------------------------------- 430 * Descriptors submission 431 */ 432 433 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx) 434 { 435 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan); 436 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx); 437 unsigned long flags; 438 dma_cookie_t cookie; 439 440 spin_lock_irqsave(&chan->lock, flags); 441 442 cookie = dma_cookie_assign(tx); 443 444 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n", 445 chan->index, tx->cookie, desc); 446 447 list_add_tail(&desc->node, &chan->desc.pending); 448 desc->running = list_first_entry(&desc->chunks, 449 struct rcar_dmac_xfer_chunk, node); 450 451 spin_unlock_irqrestore(&chan->lock, flags); 452 453 return cookie; 454 } 455 456 /* ----------------------------------------------------------------------------- 457 * Descriptors allocation and free 458 */ 459 460 /* 461 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors 462 * @chan: the DMA channel 463 * @gfp: allocation flags 464 */ 465 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp) 466 { 467 struct rcar_dmac_desc_page *page; 468 LIST_HEAD(list); 469 unsigned int i; 470 471 page = (void *)get_zeroed_page(gfp); 472 if (!page) 473 return -ENOMEM; 474 475 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) { 476 struct rcar_dmac_desc *desc = &page->descs[i]; 477 478 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan); 479 desc->async_tx.tx_submit = rcar_dmac_tx_submit; 480 INIT_LIST_HEAD(&desc->chunks); 481 482 list_add_tail(&desc->node, &list); 483 } 484 485 spin_lock_irq(&chan->lock); 486 list_splice_tail(&list, &chan->desc.free); 487 list_add_tail(&page->node, &chan->desc.pages); 488 spin_unlock_irq(&chan->lock); 489 490 return 0; 491 } 492 493 /* 494 * rcar_dmac_desc_put - Release a DMA transfer descriptor 495 * @chan: the DMA channel 496 * @desc: the descriptor 497 * 498 * Put the descriptor and its transfer chunk descriptors back in the channel's 499 * free descriptors lists. The descriptor's chunks list will be reinitialized to 500 * an empty list as a result. 501 * 502 * The descriptor must have been removed from the channel's lists before calling 503 * this function. 504 */ 505 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan, 506 struct rcar_dmac_desc *desc) 507 { 508 unsigned long flags; 509 510 spin_lock_irqsave(&chan->lock, flags); 511 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free); 512 list_add_tail(&desc->node, &chan->desc.free); 513 spin_unlock_irqrestore(&chan->lock, flags); 514 } 515 516 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan) 517 { 518 struct rcar_dmac_desc *desc, *_desc; 519 LIST_HEAD(list); 520 521 /* 522 * We have to temporarily move all descriptors from the wait list to a 523 * local list as iterating over the wait list, even with 524 * list_for_each_entry_safe, isn't safe if we release the channel lock 525 * around the rcar_dmac_desc_put() call. 526 */ 527 spin_lock_irq(&chan->lock); 528 list_splice_init(&chan->desc.wait, &list); 529 spin_unlock_irq(&chan->lock); 530 531 list_for_each_entry_safe(desc, _desc, &list, node) { 532 if (async_tx_test_ack(&desc->async_tx)) { 533 list_del(&desc->node); 534 rcar_dmac_desc_put(chan, desc); 535 } 536 } 537 538 if (list_empty(&list)) 539 return; 540 541 /* Put the remaining descriptors back in the wait list. */ 542 spin_lock_irq(&chan->lock); 543 list_splice(&list, &chan->desc.wait); 544 spin_unlock_irq(&chan->lock); 545 } 546 547 /* 548 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer 549 * @chan: the DMA channel 550 * 551 * Locking: This function must be called in a non-atomic context. 552 * 553 * Return: A pointer to the allocated descriptor or NULL if no descriptor can 554 * be allocated. 555 */ 556 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan) 557 { 558 struct rcar_dmac_desc *desc; 559 int ret; 560 561 /* Recycle acked descriptors before attempting allocation. */ 562 rcar_dmac_desc_recycle_acked(chan); 563 564 spin_lock_irq(&chan->lock); 565 566 while (list_empty(&chan->desc.free)) { 567 /* 568 * No free descriptors, allocate a page worth of them and try 569 * again, as someone else could race us to get the newly 570 * allocated descriptors. If the allocation fails return an 571 * error. 572 */ 573 spin_unlock_irq(&chan->lock); 574 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT); 575 if (ret < 0) 576 return NULL; 577 spin_lock_irq(&chan->lock); 578 } 579 580 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node); 581 list_del(&desc->node); 582 583 spin_unlock_irq(&chan->lock); 584 585 return desc; 586 } 587 588 /* 589 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks 590 * @chan: the DMA channel 591 * @gfp: allocation flags 592 */ 593 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp) 594 { 595 struct rcar_dmac_desc_page *page; 596 LIST_HEAD(list); 597 unsigned int i; 598 599 page = (void *)get_zeroed_page(gfp); 600 if (!page) 601 return -ENOMEM; 602 603 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) { 604 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i]; 605 606 list_add_tail(&chunk->node, &list); 607 } 608 609 spin_lock_irq(&chan->lock); 610 list_splice_tail(&list, &chan->desc.chunks_free); 611 list_add_tail(&page->node, &chan->desc.pages); 612 spin_unlock_irq(&chan->lock); 613 614 return 0; 615 } 616 617 /* 618 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer 619 * @chan: the DMA channel 620 * 621 * Locking: This function must be called in a non-atomic context. 622 * 623 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no 624 * descriptor can be allocated. 625 */ 626 static struct rcar_dmac_xfer_chunk * 627 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan) 628 { 629 struct rcar_dmac_xfer_chunk *chunk; 630 int ret; 631 632 spin_lock_irq(&chan->lock); 633 634 while (list_empty(&chan->desc.chunks_free)) { 635 /* 636 * No free descriptors, allocate a page worth of them and try 637 * again, as someone else could race us to get the newly 638 * allocated descriptors. If the allocation fails return an 639 * error. 640 */ 641 spin_unlock_irq(&chan->lock); 642 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT); 643 if (ret < 0) 644 return NULL; 645 spin_lock_irq(&chan->lock); 646 } 647 648 chunk = list_first_entry(&chan->desc.chunks_free, 649 struct rcar_dmac_xfer_chunk, node); 650 list_del(&chunk->node); 651 652 spin_unlock_irq(&chan->lock); 653 654 return chunk; 655 } 656 657 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan, 658 struct rcar_dmac_desc *desc, size_t size) 659 { 660 /* 661 * dma_alloc_coherent() allocates memory in page size increments. To 662 * avoid reallocating the hardware descriptors when the allocated size 663 * wouldn't change align the requested size to a multiple of the page 664 * size. 665 */ 666 size = PAGE_ALIGN(size); 667 668 if (desc->hwdescs.size == size) 669 return; 670 671 if (desc->hwdescs.mem) { 672 dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size, 673 desc->hwdescs.mem, desc->hwdescs.dma); 674 desc->hwdescs.mem = NULL; 675 desc->hwdescs.size = 0; 676 } 677 678 if (!size) 679 return; 680 681 desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size, 682 &desc->hwdescs.dma, GFP_NOWAIT); 683 if (!desc->hwdescs.mem) 684 return; 685 686 desc->hwdescs.size = size; 687 } 688 689 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan, 690 struct rcar_dmac_desc *desc) 691 { 692 struct rcar_dmac_xfer_chunk *chunk; 693 struct rcar_dmac_hw_desc *hwdesc; 694 695 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc)); 696 697 hwdesc = desc->hwdescs.mem; 698 if (!hwdesc) 699 return -ENOMEM; 700 701 list_for_each_entry(chunk, &desc->chunks, node) { 702 hwdesc->sar = chunk->src_addr; 703 hwdesc->dar = chunk->dst_addr; 704 hwdesc->tcr = chunk->size >> desc->xfer_shift; 705 hwdesc++; 706 } 707 708 return 0; 709 } 710 711 /* ----------------------------------------------------------------------------- 712 * Stop and reset 713 */ 714 715 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan) 716 { 717 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); 718 719 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE | 720 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE); 721 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr); 722 } 723 724 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan) 725 { 726 struct rcar_dmac_desc *desc, *_desc; 727 unsigned long flags; 728 LIST_HEAD(descs); 729 730 spin_lock_irqsave(&chan->lock, flags); 731 732 /* Move all non-free descriptors to the local lists. */ 733 list_splice_init(&chan->desc.pending, &descs); 734 list_splice_init(&chan->desc.active, &descs); 735 list_splice_init(&chan->desc.done, &descs); 736 list_splice_init(&chan->desc.wait, &descs); 737 738 chan->desc.running = NULL; 739 740 spin_unlock_irqrestore(&chan->lock, flags); 741 742 list_for_each_entry_safe(desc, _desc, &descs, node) { 743 list_del(&desc->node); 744 rcar_dmac_desc_put(chan, desc); 745 } 746 } 747 748 static void rcar_dmac_stop(struct rcar_dmac *dmac) 749 { 750 rcar_dmac_write(dmac, RCAR_DMAOR, 0); 751 } 752 753 static void rcar_dmac_abort(struct rcar_dmac *dmac) 754 { 755 unsigned int i; 756 757 /* Stop all channels. */ 758 for (i = 0; i < dmac->n_channels; ++i) { 759 struct rcar_dmac_chan *chan = &dmac->channels[i]; 760 761 /* Stop and reinitialize the channel. */ 762 spin_lock(&chan->lock); 763 rcar_dmac_chan_halt(chan); 764 spin_unlock(&chan->lock); 765 766 rcar_dmac_chan_reinit(chan); 767 } 768 } 769 770 /* ----------------------------------------------------------------------------- 771 * Descriptors preparation 772 */ 773 774 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan, 775 struct rcar_dmac_desc *desc) 776 { 777 static const u32 chcr_ts[] = { 778 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B, 779 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B, 780 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B, 781 RCAR_DMACHCR_TS_64B, 782 }; 783 784 unsigned int xfer_size; 785 u32 chcr; 786 787 switch (desc->direction) { 788 case DMA_DEV_TO_MEM: 789 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED 790 | RCAR_DMACHCR_RS_DMARS; 791 xfer_size = chan->src_xfer_size; 792 break; 793 794 case DMA_MEM_TO_DEV: 795 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC 796 | RCAR_DMACHCR_RS_DMARS; 797 xfer_size = chan->dst_xfer_size; 798 break; 799 800 case DMA_MEM_TO_MEM: 801 default: 802 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC 803 | RCAR_DMACHCR_RS_AUTO; 804 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE; 805 break; 806 } 807 808 desc->xfer_shift = ilog2(xfer_size); 809 desc->chcr = chcr | chcr_ts[desc->xfer_shift]; 810 } 811 812 /* 813 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list 814 * 815 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also 816 * converted to scatter-gather to guarantee consistent locking and a correct 817 * list manipulation. For slave DMA direction carries the usual meaning, and, 818 * logically, the SG list is RAM and the addr variable contains slave address, 819 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM 820 * and the SG list contains only one element and points at the source buffer. 821 */ 822 static struct dma_async_tx_descriptor * 823 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl, 824 unsigned int sg_len, dma_addr_t dev_addr, 825 enum dma_transfer_direction dir, unsigned long dma_flags, 826 bool cyclic) 827 { 828 struct rcar_dmac_xfer_chunk *chunk; 829 struct rcar_dmac_desc *desc; 830 struct scatterlist *sg; 831 unsigned int nchunks = 0; 832 unsigned int max_chunk_size; 833 unsigned int full_size = 0; 834 bool highmem = false; 835 unsigned int i; 836 837 desc = rcar_dmac_desc_get(chan); 838 if (!desc) 839 return NULL; 840 841 desc->async_tx.flags = dma_flags; 842 desc->async_tx.cookie = -EBUSY; 843 844 desc->cyclic = cyclic; 845 desc->direction = dir; 846 847 rcar_dmac_chan_configure_desc(chan, desc); 848 849 max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift; 850 851 /* 852 * Allocate and fill the transfer chunk descriptors. We own the only 853 * reference to the DMA descriptor, there's no need for locking. 854 */ 855 for_each_sg(sgl, sg, sg_len, i) { 856 dma_addr_t mem_addr = sg_dma_address(sg); 857 unsigned int len = sg_dma_len(sg); 858 859 full_size += len; 860 861 while (len) { 862 unsigned int size = min(len, max_chunk_size); 863 864 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 865 /* 866 * Prevent individual transfers from crossing 4GB 867 * boundaries. 868 */ 869 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) 870 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr; 871 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) 872 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr; 873 874 /* 875 * Check if either of the source or destination address 876 * can't be expressed in 32 bits. If so we can't use 877 * hardware descriptor lists. 878 */ 879 if (dev_addr >> 32 || mem_addr >> 32) 880 highmem = true; 881 #endif 882 883 chunk = rcar_dmac_xfer_chunk_get(chan); 884 if (!chunk) { 885 rcar_dmac_desc_put(chan, desc); 886 return NULL; 887 } 888 889 if (dir == DMA_DEV_TO_MEM) { 890 chunk->src_addr = dev_addr; 891 chunk->dst_addr = mem_addr; 892 } else { 893 chunk->src_addr = mem_addr; 894 chunk->dst_addr = dev_addr; 895 } 896 897 chunk->size = size; 898 899 dev_dbg(chan->chan.device->dev, 900 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n", 901 chan->index, chunk, desc, i, sg, size, len, 902 &chunk->src_addr, &chunk->dst_addr); 903 904 mem_addr += size; 905 if (dir == DMA_MEM_TO_MEM) 906 dev_addr += size; 907 908 len -= size; 909 910 list_add_tail(&chunk->node, &desc->chunks); 911 nchunks++; 912 } 913 } 914 915 desc->nchunks = nchunks; 916 desc->size = full_size; 917 918 /* 919 * Use hardware descriptor lists if possible when more than one chunk 920 * needs to be transferred (otherwise they don't make much sense). 921 * 922 * The highmem check currently covers the whole transfer. As an 923 * optimization we could use descriptor lists for consecutive lowmem 924 * chunks and direct manual mode for highmem chunks. Whether the 925 * performance improvement would be significant enough compared to the 926 * additional complexity remains to be investigated. 927 */ 928 desc->hwdescs.use = !highmem && nchunks > 1; 929 if (desc->hwdescs.use) { 930 if (rcar_dmac_fill_hwdesc(chan, desc) < 0) 931 desc->hwdescs.use = false; 932 } 933 934 return &desc->async_tx; 935 } 936 937 /* ----------------------------------------------------------------------------- 938 * DMA engine operations 939 */ 940 941 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan) 942 { 943 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 944 int ret; 945 946 INIT_LIST_HEAD(&rchan->desc.chunks_free); 947 INIT_LIST_HEAD(&rchan->desc.pages); 948 949 /* Preallocate descriptors. */ 950 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL); 951 if (ret < 0) 952 return -ENOMEM; 953 954 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL); 955 if (ret < 0) 956 return -ENOMEM; 957 958 return pm_runtime_get_sync(chan->device->dev); 959 } 960 961 static void rcar_dmac_free_chan_resources(struct dma_chan *chan) 962 { 963 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 964 struct rcar_dmac *dmac = to_rcar_dmac(chan->device); 965 struct rcar_dmac_desc_page *page, *_page; 966 struct rcar_dmac_desc *desc; 967 LIST_HEAD(list); 968 969 /* Protect against ISR */ 970 spin_lock_irq(&rchan->lock); 971 rcar_dmac_chan_halt(rchan); 972 spin_unlock_irq(&rchan->lock); 973 974 /* Now no new interrupts will occur */ 975 976 if (rchan->mid_rid >= 0) { 977 /* The caller is holding dma_list_mutex */ 978 clear_bit(rchan->mid_rid, dmac->modules); 979 rchan->mid_rid = -EINVAL; 980 } 981 982 list_splice_init(&rchan->desc.free, &list); 983 list_splice_init(&rchan->desc.pending, &list); 984 list_splice_init(&rchan->desc.active, &list); 985 list_splice_init(&rchan->desc.done, &list); 986 list_splice_init(&rchan->desc.wait, &list); 987 988 list_for_each_entry(desc, &list, node) 989 rcar_dmac_realloc_hwdesc(rchan, desc, 0); 990 991 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) { 992 list_del(&page->node); 993 free_page((unsigned long)page); 994 } 995 996 pm_runtime_put(chan->device->dev); 997 } 998 999 static struct dma_async_tx_descriptor * 1000 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest, 1001 dma_addr_t dma_src, size_t len, unsigned long flags) 1002 { 1003 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1004 struct scatterlist sgl; 1005 1006 if (!len) 1007 return NULL; 1008 1009 sg_init_table(&sgl, 1); 1010 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len, 1011 offset_in_page(dma_src)); 1012 sg_dma_address(&sgl) = dma_src; 1013 sg_dma_len(&sgl) = len; 1014 1015 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest, 1016 DMA_MEM_TO_MEM, flags, false); 1017 } 1018 1019 static struct dma_async_tx_descriptor * 1020 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1021 unsigned int sg_len, enum dma_transfer_direction dir, 1022 unsigned long flags, void *context) 1023 { 1024 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1025 dma_addr_t dev_addr; 1026 1027 /* Someone calling slave DMA on a generic channel? */ 1028 if (rchan->mid_rid < 0 || !sg_len) { 1029 dev_warn(chan->device->dev, 1030 "%s: bad parameter: len=%d, id=%d\n", 1031 __func__, sg_len, rchan->mid_rid); 1032 return NULL; 1033 } 1034 1035 dev_addr = dir == DMA_DEV_TO_MEM 1036 ? rchan->src_slave_addr : rchan->dst_slave_addr; 1037 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr, 1038 dir, flags, false); 1039 } 1040 1041 #define RCAR_DMAC_MAX_SG_LEN 32 1042 1043 static struct dma_async_tx_descriptor * 1044 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 1045 size_t buf_len, size_t period_len, 1046 enum dma_transfer_direction dir, unsigned long flags) 1047 { 1048 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1049 struct dma_async_tx_descriptor *desc; 1050 struct scatterlist *sgl; 1051 dma_addr_t dev_addr; 1052 unsigned int sg_len; 1053 unsigned int i; 1054 1055 /* Someone calling slave DMA on a generic channel? */ 1056 if (rchan->mid_rid < 0 || buf_len < period_len) { 1057 dev_warn(chan->device->dev, 1058 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n", 1059 __func__, buf_len, period_len, rchan->mid_rid); 1060 return NULL; 1061 } 1062 1063 sg_len = buf_len / period_len; 1064 if (sg_len > RCAR_DMAC_MAX_SG_LEN) { 1065 dev_err(chan->device->dev, 1066 "chan%u: sg length %d exceds limit %d", 1067 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN); 1068 return NULL; 1069 } 1070 1071 /* 1072 * Allocate the sg list dynamically as it would consume too much stack 1073 * space. 1074 */ 1075 sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT); 1076 if (!sgl) 1077 return NULL; 1078 1079 sg_init_table(sgl, sg_len); 1080 1081 for (i = 0; i < sg_len; ++i) { 1082 dma_addr_t src = buf_addr + (period_len * i); 1083 1084 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len, 1085 offset_in_page(src)); 1086 sg_dma_address(&sgl[i]) = src; 1087 sg_dma_len(&sgl[i]) = period_len; 1088 } 1089 1090 dev_addr = dir == DMA_DEV_TO_MEM 1091 ? rchan->src_slave_addr : rchan->dst_slave_addr; 1092 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr, 1093 dir, flags, true); 1094 1095 kfree(sgl); 1096 return desc; 1097 } 1098 1099 static int rcar_dmac_device_config(struct dma_chan *chan, 1100 struct dma_slave_config *cfg) 1101 { 1102 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1103 1104 /* 1105 * We could lock this, but you shouldn't be configuring the 1106 * channel, while using it... 1107 */ 1108 rchan->src_slave_addr = cfg->src_addr; 1109 rchan->dst_slave_addr = cfg->dst_addr; 1110 rchan->src_xfer_size = cfg->src_addr_width; 1111 rchan->dst_xfer_size = cfg->dst_addr_width; 1112 1113 return 0; 1114 } 1115 1116 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan) 1117 { 1118 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1119 unsigned long flags; 1120 1121 spin_lock_irqsave(&rchan->lock, flags); 1122 rcar_dmac_chan_halt(rchan); 1123 spin_unlock_irqrestore(&rchan->lock, flags); 1124 1125 /* 1126 * FIXME: No new interrupt can occur now, but the IRQ thread might still 1127 * be running. 1128 */ 1129 1130 rcar_dmac_chan_reinit(rchan); 1131 1132 return 0; 1133 } 1134 1135 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan, 1136 dma_cookie_t cookie) 1137 { 1138 struct rcar_dmac_desc *desc = chan->desc.running; 1139 struct rcar_dmac_xfer_chunk *running = NULL; 1140 struct rcar_dmac_xfer_chunk *chunk; 1141 unsigned int residue = 0; 1142 unsigned int dptr = 0; 1143 1144 if (!desc) 1145 return 0; 1146 1147 /* 1148 * If the cookie doesn't correspond to the currently running transfer 1149 * then the descriptor hasn't been processed yet, and the residue is 1150 * equal to the full descriptor size. 1151 */ 1152 if (cookie != desc->async_tx.cookie) 1153 return desc->size; 1154 1155 /* 1156 * In descriptor mode the descriptor running pointer is not maintained 1157 * by the interrupt handler, find the running descriptor from the 1158 * descriptor pointer field in the CHCRB register. In non-descriptor 1159 * mode just use the running descriptor pointer. 1160 */ 1161 if (desc->hwdescs.use) { 1162 dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) & 1163 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT; 1164 WARN_ON(dptr >= desc->nchunks); 1165 } else { 1166 running = desc->running; 1167 } 1168 1169 /* Compute the size of all chunks still to be transferred. */ 1170 list_for_each_entry_reverse(chunk, &desc->chunks, node) { 1171 if (chunk == running || ++dptr == desc->nchunks) 1172 break; 1173 1174 residue += chunk->size; 1175 } 1176 1177 /* Add the residue for the current chunk. */ 1178 residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift; 1179 1180 return residue; 1181 } 1182 1183 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan, 1184 dma_cookie_t cookie, 1185 struct dma_tx_state *txstate) 1186 { 1187 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1188 enum dma_status status; 1189 unsigned long flags; 1190 unsigned int residue; 1191 1192 status = dma_cookie_status(chan, cookie, txstate); 1193 if (status == DMA_COMPLETE || !txstate) 1194 return status; 1195 1196 spin_lock_irqsave(&rchan->lock, flags); 1197 residue = rcar_dmac_chan_get_residue(rchan, cookie); 1198 spin_unlock_irqrestore(&rchan->lock, flags); 1199 1200 dma_set_residue(txstate, residue); 1201 1202 return status; 1203 } 1204 1205 static void rcar_dmac_issue_pending(struct dma_chan *chan) 1206 { 1207 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1208 unsigned long flags; 1209 1210 spin_lock_irqsave(&rchan->lock, flags); 1211 1212 if (list_empty(&rchan->desc.pending)) 1213 goto done; 1214 1215 /* Append the pending list to the active list. */ 1216 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active); 1217 1218 /* 1219 * If no transfer is running pick the first descriptor from the active 1220 * list and start the transfer. 1221 */ 1222 if (!rchan->desc.running) { 1223 struct rcar_dmac_desc *desc; 1224 1225 desc = list_first_entry(&rchan->desc.active, 1226 struct rcar_dmac_desc, node); 1227 rchan->desc.running = desc; 1228 1229 rcar_dmac_chan_start_xfer(rchan); 1230 } 1231 1232 done: 1233 spin_unlock_irqrestore(&rchan->lock, flags); 1234 } 1235 1236 /* ----------------------------------------------------------------------------- 1237 * IRQ handling 1238 */ 1239 1240 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan) 1241 { 1242 struct rcar_dmac_desc *desc = chan->desc.running; 1243 unsigned int stage; 1244 1245 if (WARN_ON(!desc || !desc->cyclic)) { 1246 /* 1247 * This should never happen, there should always be a running 1248 * cyclic descriptor when a descriptor stage end interrupt is 1249 * triggered. Warn and return. 1250 */ 1251 return IRQ_NONE; 1252 } 1253 1254 /* Program the interrupt pointer to the next stage. */ 1255 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) & 1256 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT; 1257 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage)); 1258 1259 return IRQ_WAKE_THREAD; 1260 } 1261 1262 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan) 1263 { 1264 struct rcar_dmac_desc *desc = chan->desc.running; 1265 irqreturn_t ret = IRQ_WAKE_THREAD; 1266 1267 if (WARN_ON_ONCE(!desc)) { 1268 /* 1269 * This should never happen, there should always be a running 1270 * descriptor when a transfer end interrupt is triggered. Warn 1271 * and return. 1272 */ 1273 return IRQ_NONE; 1274 } 1275 1276 /* 1277 * The transfer end interrupt isn't generated for each chunk when using 1278 * descriptor mode. Only update the running chunk pointer in 1279 * non-descriptor mode. 1280 */ 1281 if (!desc->hwdescs.use) { 1282 /* 1283 * If we haven't completed the last transfer chunk simply move 1284 * to the next one. Only wake the IRQ thread if the transfer is 1285 * cyclic. 1286 */ 1287 if (!list_is_last(&desc->running->node, &desc->chunks)) { 1288 desc->running = list_next_entry(desc->running, node); 1289 if (!desc->cyclic) 1290 ret = IRQ_HANDLED; 1291 goto done; 1292 } 1293 1294 /* 1295 * We've completed the last transfer chunk. If the transfer is 1296 * cyclic, move back to the first one. 1297 */ 1298 if (desc->cyclic) { 1299 desc->running = 1300 list_first_entry(&desc->chunks, 1301 struct rcar_dmac_xfer_chunk, 1302 node); 1303 goto done; 1304 } 1305 } 1306 1307 /* The descriptor is complete, move it to the done list. */ 1308 list_move_tail(&desc->node, &chan->desc.done); 1309 1310 /* Queue the next descriptor, if any. */ 1311 if (!list_empty(&chan->desc.active)) 1312 chan->desc.running = list_first_entry(&chan->desc.active, 1313 struct rcar_dmac_desc, 1314 node); 1315 else 1316 chan->desc.running = NULL; 1317 1318 done: 1319 if (chan->desc.running) 1320 rcar_dmac_chan_start_xfer(chan); 1321 1322 return ret; 1323 } 1324 1325 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev) 1326 { 1327 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE; 1328 struct rcar_dmac_chan *chan = dev; 1329 irqreturn_t ret = IRQ_NONE; 1330 u32 chcr; 1331 1332 spin_lock(&chan->lock); 1333 1334 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); 1335 if (chcr & RCAR_DMACHCR_TE) 1336 mask |= RCAR_DMACHCR_DE; 1337 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask); 1338 1339 if (chcr & RCAR_DMACHCR_DSE) 1340 ret |= rcar_dmac_isr_desc_stage_end(chan); 1341 1342 if (chcr & RCAR_DMACHCR_TE) 1343 ret |= rcar_dmac_isr_transfer_end(chan); 1344 1345 spin_unlock(&chan->lock); 1346 1347 return ret; 1348 } 1349 1350 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev) 1351 { 1352 struct rcar_dmac_chan *chan = dev; 1353 struct rcar_dmac_desc *desc; 1354 1355 spin_lock_irq(&chan->lock); 1356 1357 /* For cyclic transfers notify the user after every chunk. */ 1358 if (chan->desc.running && chan->desc.running->cyclic) { 1359 dma_async_tx_callback callback; 1360 void *callback_param; 1361 1362 desc = chan->desc.running; 1363 callback = desc->async_tx.callback; 1364 callback_param = desc->async_tx.callback_param; 1365 1366 if (callback) { 1367 spin_unlock_irq(&chan->lock); 1368 callback(callback_param); 1369 spin_lock_irq(&chan->lock); 1370 } 1371 } 1372 1373 /* 1374 * Call the callback function for all descriptors on the done list and 1375 * move them to the ack wait list. 1376 */ 1377 while (!list_empty(&chan->desc.done)) { 1378 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc, 1379 node); 1380 dma_cookie_complete(&desc->async_tx); 1381 list_del(&desc->node); 1382 1383 if (desc->async_tx.callback) { 1384 spin_unlock_irq(&chan->lock); 1385 /* 1386 * We own the only reference to this descriptor, we can 1387 * safely dereference it without holding the channel 1388 * lock. 1389 */ 1390 desc->async_tx.callback(desc->async_tx.callback_param); 1391 spin_lock_irq(&chan->lock); 1392 } 1393 1394 list_add_tail(&desc->node, &chan->desc.wait); 1395 } 1396 1397 spin_unlock_irq(&chan->lock); 1398 1399 /* Recycle all acked descriptors. */ 1400 rcar_dmac_desc_recycle_acked(chan); 1401 1402 return IRQ_HANDLED; 1403 } 1404 1405 static irqreturn_t rcar_dmac_isr_error(int irq, void *data) 1406 { 1407 struct rcar_dmac *dmac = data; 1408 1409 if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE)) 1410 return IRQ_NONE; 1411 1412 /* 1413 * An unrecoverable error occurred on an unknown channel. Halt the DMAC, 1414 * abort transfers on all channels, and reinitialize the DMAC. 1415 */ 1416 rcar_dmac_stop(dmac); 1417 rcar_dmac_abort(dmac); 1418 rcar_dmac_init(dmac); 1419 1420 return IRQ_HANDLED; 1421 } 1422 1423 /* ----------------------------------------------------------------------------- 1424 * OF xlate and channel filter 1425 */ 1426 1427 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg) 1428 { 1429 struct rcar_dmac *dmac = to_rcar_dmac(chan->device); 1430 struct of_phandle_args *dma_spec = arg; 1431 1432 /* 1433 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate 1434 * function knows from which device it wants to allocate a channel from, 1435 * and would be perfectly capable of selecting the channel it wants. 1436 * Forcing it to call dma_request_channel() and iterate through all 1437 * channels from all controllers is just pointless. 1438 */ 1439 if (chan->device->device_config != rcar_dmac_device_config || 1440 dma_spec->np != chan->device->dev->of_node) 1441 return false; 1442 1443 return !test_and_set_bit(dma_spec->args[0], dmac->modules); 1444 } 1445 1446 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec, 1447 struct of_dma *ofdma) 1448 { 1449 struct rcar_dmac_chan *rchan; 1450 struct dma_chan *chan; 1451 dma_cap_mask_t mask; 1452 1453 if (dma_spec->args_count != 1) 1454 return NULL; 1455 1456 /* Only slave DMA channels can be allocated via DT */ 1457 dma_cap_zero(mask); 1458 dma_cap_set(DMA_SLAVE, mask); 1459 1460 chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec); 1461 if (!chan) 1462 return NULL; 1463 1464 rchan = to_rcar_dmac_chan(chan); 1465 rchan->mid_rid = dma_spec->args[0]; 1466 1467 return chan; 1468 } 1469 1470 /* ----------------------------------------------------------------------------- 1471 * Power management 1472 */ 1473 1474 #ifdef CONFIG_PM_SLEEP 1475 static int rcar_dmac_sleep_suspend(struct device *dev) 1476 { 1477 /* 1478 * TODO: Wait for the current transfer to complete and stop the device. 1479 */ 1480 return 0; 1481 } 1482 1483 static int rcar_dmac_sleep_resume(struct device *dev) 1484 { 1485 /* TODO: Resume transfers, if any. */ 1486 return 0; 1487 } 1488 #endif 1489 1490 #ifdef CONFIG_PM 1491 static int rcar_dmac_runtime_suspend(struct device *dev) 1492 { 1493 return 0; 1494 } 1495 1496 static int rcar_dmac_runtime_resume(struct device *dev) 1497 { 1498 struct rcar_dmac *dmac = dev_get_drvdata(dev); 1499 1500 return rcar_dmac_init(dmac); 1501 } 1502 #endif 1503 1504 static const struct dev_pm_ops rcar_dmac_pm = { 1505 SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume) 1506 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume, 1507 NULL) 1508 }; 1509 1510 /* ----------------------------------------------------------------------------- 1511 * Probe and remove 1512 */ 1513 1514 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac, 1515 struct rcar_dmac_chan *rchan, 1516 unsigned int index) 1517 { 1518 struct platform_device *pdev = to_platform_device(dmac->dev); 1519 struct dma_chan *chan = &rchan->chan; 1520 char pdev_irqname[5]; 1521 char *irqname; 1522 int irq; 1523 int ret; 1524 1525 rchan->index = index; 1526 rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index); 1527 rchan->mid_rid = -EINVAL; 1528 1529 spin_lock_init(&rchan->lock); 1530 1531 INIT_LIST_HEAD(&rchan->desc.free); 1532 INIT_LIST_HEAD(&rchan->desc.pending); 1533 INIT_LIST_HEAD(&rchan->desc.active); 1534 INIT_LIST_HEAD(&rchan->desc.done); 1535 INIT_LIST_HEAD(&rchan->desc.wait); 1536 1537 /* Request the channel interrupt. */ 1538 sprintf(pdev_irqname, "ch%u", index); 1539 irq = platform_get_irq_byname(pdev, pdev_irqname); 1540 if (irq < 0) { 1541 dev_err(dmac->dev, "no IRQ specified for channel %u\n", index); 1542 return -ENODEV; 1543 } 1544 1545 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u", 1546 dev_name(dmac->dev), index); 1547 if (!irqname) 1548 return -ENOMEM; 1549 1550 ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel, 1551 rcar_dmac_isr_channel_thread, 0, 1552 irqname, rchan); 1553 if (ret) { 1554 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret); 1555 return ret; 1556 } 1557 1558 /* 1559 * Initialize the DMA engine channel and add it to the DMA engine 1560 * channels list. 1561 */ 1562 chan->device = &dmac->engine; 1563 dma_cookie_init(chan); 1564 1565 list_add_tail(&chan->device_node, &dmac->engine.channels); 1566 1567 return 0; 1568 } 1569 1570 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac) 1571 { 1572 struct device_node *np = dev->of_node; 1573 int ret; 1574 1575 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels); 1576 if (ret < 0) { 1577 dev_err(dev, "unable to read dma-channels property\n"); 1578 return ret; 1579 } 1580 1581 if (dmac->n_channels <= 0 || dmac->n_channels >= 100) { 1582 dev_err(dev, "invalid number of channels %u\n", 1583 dmac->n_channels); 1584 return -EINVAL; 1585 } 1586 1587 return 0; 1588 } 1589 1590 static int rcar_dmac_probe(struct platform_device *pdev) 1591 { 1592 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE | 1593 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES | 1594 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES | 1595 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES; 1596 unsigned int channels_offset = 0; 1597 struct dma_device *engine; 1598 struct rcar_dmac *dmac; 1599 struct resource *mem; 1600 unsigned int i; 1601 char *irqname; 1602 int irq; 1603 int ret; 1604 1605 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL); 1606 if (!dmac) 1607 return -ENOMEM; 1608 1609 dmac->dev = &pdev->dev; 1610 platform_set_drvdata(pdev, dmac); 1611 1612 ret = rcar_dmac_parse_of(&pdev->dev, dmac); 1613 if (ret < 0) 1614 return ret; 1615 1616 /* 1617 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be 1618 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0 1619 * is connected to microTLB 0 on currently supported platforms, so we 1620 * can't use it with the IPMMU. As the IOMMU API operates at the device 1621 * level we can't disable it selectively, so ignore channel 0 for now if 1622 * the device is part of an IOMMU group. 1623 */ 1624 if (pdev->dev.iommu_group) { 1625 dmac->n_channels--; 1626 channels_offset = 1; 1627 } 1628 1629 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels, 1630 sizeof(*dmac->channels), GFP_KERNEL); 1631 if (!dmac->channels) 1632 return -ENOMEM; 1633 1634 /* Request resources. */ 1635 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1636 dmac->iomem = devm_ioremap_resource(&pdev->dev, mem); 1637 if (IS_ERR(dmac->iomem)) 1638 return PTR_ERR(dmac->iomem); 1639 1640 irq = platform_get_irq_byname(pdev, "error"); 1641 if (irq < 0) { 1642 dev_err(&pdev->dev, "no error IRQ specified\n"); 1643 return -ENODEV; 1644 } 1645 1646 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error", 1647 dev_name(dmac->dev)); 1648 if (!irqname) 1649 return -ENOMEM; 1650 1651 ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0, 1652 irqname, dmac); 1653 if (ret) { 1654 dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n", 1655 irq, ret); 1656 return ret; 1657 } 1658 1659 /* Enable runtime PM and initialize the device. */ 1660 pm_runtime_enable(&pdev->dev); 1661 ret = pm_runtime_get_sync(&pdev->dev); 1662 if (ret < 0) { 1663 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret); 1664 return ret; 1665 } 1666 1667 ret = rcar_dmac_init(dmac); 1668 pm_runtime_put(&pdev->dev); 1669 1670 if (ret) { 1671 dev_err(&pdev->dev, "failed to reset device\n"); 1672 goto error; 1673 } 1674 1675 /* Initialize the channels. */ 1676 INIT_LIST_HEAD(&dmac->engine.channels); 1677 1678 for (i = 0; i < dmac->n_channels; ++i) { 1679 ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i], 1680 i + channels_offset); 1681 if (ret < 0) 1682 goto error; 1683 } 1684 1685 /* Register the DMAC as a DMA provider for DT. */ 1686 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate, 1687 NULL); 1688 if (ret < 0) 1689 goto error; 1690 1691 /* 1692 * Register the DMA engine device. 1693 * 1694 * Default transfer size of 32 bytes requires 32-byte alignment. 1695 */ 1696 engine = &dmac->engine; 1697 dma_cap_set(DMA_MEMCPY, engine->cap_mask); 1698 dma_cap_set(DMA_SLAVE, engine->cap_mask); 1699 1700 engine->dev = &pdev->dev; 1701 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE); 1702 1703 engine->src_addr_widths = widths; 1704 engine->dst_addr_widths = widths; 1705 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); 1706 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1707 1708 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources; 1709 engine->device_free_chan_resources = rcar_dmac_free_chan_resources; 1710 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy; 1711 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg; 1712 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic; 1713 engine->device_config = rcar_dmac_device_config; 1714 engine->device_terminate_all = rcar_dmac_chan_terminate_all; 1715 engine->device_tx_status = rcar_dmac_tx_status; 1716 engine->device_issue_pending = rcar_dmac_issue_pending; 1717 1718 ret = dma_async_device_register(engine); 1719 if (ret < 0) 1720 goto error; 1721 1722 return 0; 1723 1724 error: 1725 of_dma_controller_free(pdev->dev.of_node); 1726 pm_runtime_disable(&pdev->dev); 1727 return ret; 1728 } 1729 1730 static int rcar_dmac_remove(struct platform_device *pdev) 1731 { 1732 struct rcar_dmac *dmac = platform_get_drvdata(pdev); 1733 1734 of_dma_controller_free(pdev->dev.of_node); 1735 dma_async_device_unregister(&dmac->engine); 1736 1737 pm_runtime_disable(&pdev->dev); 1738 1739 return 0; 1740 } 1741 1742 static void rcar_dmac_shutdown(struct platform_device *pdev) 1743 { 1744 struct rcar_dmac *dmac = platform_get_drvdata(pdev); 1745 1746 rcar_dmac_stop(dmac); 1747 } 1748 1749 static const struct of_device_id rcar_dmac_of_ids[] = { 1750 { .compatible = "renesas,rcar-dmac", }, 1751 { /* Sentinel */ } 1752 }; 1753 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids); 1754 1755 static struct platform_driver rcar_dmac_driver = { 1756 .driver = { 1757 .pm = &rcar_dmac_pm, 1758 .name = "rcar-dmac", 1759 .of_match_table = rcar_dmac_of_ids, 1760 }, 1761 .probe = rcar_dmac_probe, 1762 .remove = rcar_dmac_remove, 1763 .shutdown = rcar_dmac_shutdown, 1764 }; 1765 1766 module_platform_driver(rcar_dmac_driver); 1767 1768 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver"); 1769 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); 1770 MODULE_LICENSE("GPL v2"); 1771