xref: /openbmc/linux/drivers/dma/sh/rcar-dmac.c (revision bb0eb050)
1 /*
2  * Renesas R-Car Gen2 DMA Controller Driver
3  *
4  * Copyright (C) 2014 Renesas Electronics Inc.
5  *
6  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7  *
8  * This is free software; you can redistribute it and/or modify
9  * it under the terms of version 2 of the GNU General Public License as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include "../dmaengine.h"
28 
29 /*
30  * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31  * @node: entry in the parent's chunks list
32  * @src_addr: device source address
33  * @dst_addr: device destination address
34  * @size: transfer size in bytes
35  */
36 struct rcar_dmac_xfer_chunk {
37 	struct list_head node;
38 
39 	dma_addr_t src_addr;
40 	dma_addr_t dst_addr;
41 	u32 size;
42 };
43 
44 /*
45  * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46  * @sar: value of the SAR register (source address)
47  * @dar: value of the DAR register (destination address)
48  * @tcr: value of the TCR register (transfer count)
49  */
50 struct rcar_dmac_hw_desc {
51 	u32 sar;
52 	u32 dar;
53 	u32 tcr;
54 	u32 reserved;
55 } __attribute__((__packed__));
56 
57 /*
58  * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59  * @async_tx: base DMA asynchronous transaction descriptor
60  * @direction: direction of the DMA transfer
61  * @xfer_shift: log2 of the transfer size
62  * @chcr: value of the channel configuration register for this transfer
63  * @node: entry in the channel's descriptors lists
64  * @chunks: list of transfer chunks for this transfer
65  * @running: the transfer chunk being currently processed
66  * @nchunks: number of transfer chunks for this transfer
67  * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68  * @hwdescs.mem: hardware descriptors memory for the transfer
69  * @hwdescs.dma: device address of the hardware descriptors memory
70  * @hwdescs.size: size of the hardware descriptors in bytes
71  * @size: transfer size in bytes
72  * @cyclic: when set indicates that the DMA transfer is cyclic
73  */
74 struct rcar_dmac_desc {
75 	struct dma_async_tx_descriptor async_tx;
76 	enum dma_transfer_direction direction;
77 	unsigned int xfer_shift;
78 	u32 chcr;
79 
80 	struct list_head node;
81 	struct list_head chunks;
82 	struct rcar_dmac_xfer_chunk *running;
83 	unsigned int nchunks;
84 
85 	struct {
86 		bool use;
87 		struct rcar_dmac_hw_desc *mem;
88 		dma_addr_t dma;
89 		size_t size;
90 	} hwdescs;
91 
92 	unsigned int size;
93 	bool cyclic;
94 };
95 
96 #define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
97 
98 /*
99  * struct rcar_dmac_desc_page - One page worth of descriptors
100  * @node: entry in the channel's pages list
101  * @descs: array of DMA descriptors
102  * @chunks: array of transfer chunk descriptors
103  */
104 struct rcar_dmac_desc_page {
105 	struct list_head node;
106 
107 	union {
108 		struct rcar_dmac_desc descs[0];
109 		struct rcar_dmac_xfer_chunk chunks[0];
110 	};
111 };
112 
113 #define RCAR_DMAC_DESCS_PER_PAGE					\
114 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
115 	sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
117 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
118 	sizeof(struct rcar_dmac_xfer_chunk))
119 
120 /*
121  * struct rcar_dmac_chan_slave - Slave configuration
122  * @slave_addr: slave memory address
123  * @xfer_size: size (in bytes) of hardware transfers
124  */
125 struct rcar_dmac_chan_slave {
126 	phys_addr_t slave_addr;
127 	unsigned int xfer_size;
128 };
129 
130 /*
131  * struct rcar_dmac_chan_map - Map of slave device phys to dma address
132  * @addr: slave dma address
133  * @dir: direction of mapping
134  * @slave: slave configuration that is mapped
135  */
136 struct rcar_dmac_chan_map {
137 	dma_addr_t addr;
138 	enum dma_data_direction dir;
139 	struct rcar_dmac_chan_slave slave;
140 };
141 
142 /*
143  * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
144  * @chan: base DMA channel object
145  * @iomem: channel I/O memory base
146  * @index: index of this channel in the controller
147  * @src: slave memory address and size on the source side
148  * @dst: slave memory address and size on the destination side
149  * @mid_rid: hardware MID/RID for the DMA client using this channel
150  * @lock: protects the channel CHCR register and the desc members
151  * @desc.free: list of free descriptors
152  * @desc.pending: list of pending descriptors (submitted with tx_submit)
153  * @desc.active: list of active descriptors (activated with issue_pending)
154  * @desc.done: list of completed descriptors
155  * @desc.wait: list of descriptors waiting for an ack
156  * @desc.running: the descriptor being processed (a member of the active list)
157  * @desc.chunks_free: list of free transfer chunk descriptors
158  * @desc.pages: list of pages used by allocated descriptors
159  */
160 struct rcar_dmac_chan {
161 	struct dma_chan chan;
162 	void __iomem *iomem;
163 	unsigned int index;
164 
165 	struct rcar_dmac_chan_slave src;
166 	struct rcar_dmac_chan_slave dst;
167 	struct rcar_dmac_chan_map map;
168 	int mid_rid;
169 
170 	spinlock_t lock;
171 
172 	struct {
173 		struct list_head free;
174 		struct list_head pending;
175 		struct list_head active;
176 		struct list_head done;
177 		struct list_head wait;
178 		struct rcar_dmac_desc *running;
179 
180 		struct list_head chunks_free;
181 
182 		struct list_head pages;
183 	} desc;
184 };
185 
186 #define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
187 
188 /*
189  * struct rcar_dmac - R-Car Gen2 DMA Controller
190  * @engine: base DMA engine object
191  * @dev: the hardware device
192  * @iomem: remapped I/O memory base
193  * @n_channels: number of available channels
194  * @channels: array of DMAC channels
195  * @modules: bitmask of client modules in use
196  */
197 struct rcar_dmac {
198 	struct dma_device engine;
199 	struct device *dev;
200 	void __iomem *iomem;
201 
202 	unsigned int n_channels;
203 	struct rcar_dmac_chan *channels;
204 
205 	DECLARE_BITMAP(modules, 256);
206 };
207 
208 #define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
209 
210 /* -----------------------------------------------------------------------------
211  * Registers
212  */
213 
214 #define RCAR_DMAC_CHAN_OFFSET(i)	(0x8000 + 0x80 * (i))
215 
216 #define RCAR_DMAISTA			0x0020
217 #define RCAR_DMASEC			0x0030
218 #define RCAR_DMAOR			0x0060
219 #define RCAR_DMAOR_PRI_FIXED		(0 << 8)
220 #define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
221 #define RCAR_DMAOR_AE			(1 << 2)
222 #define RCAR_DMAOR_DME			(1 << 0)
223 #define RCAR_DMACHCLR			0x0080
224 #define RCAR_DMADPSEC			0x00a0
225 
226 #define RCAR_DMASAR			0x0000
227 #define RCAR_DMADAR			0x0004
228 #define RCAR_DMATCR			0x0008
229 #define RCAR_DMATCR_MASK		0x00ffffff
230 #define RCAR_DMATSR			0x0028
231 #define RCAR_DMACHCR			0x000c
232 #define RCAR_DMACHCR_CAE		(1 << 31)
233 #define RCAR_DMACHCR_CAIE		(1 << 30)
234 #define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
235 #define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
236 #define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
237 #define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
238 #define RCAR_DMACHCR_RPT_SAR		(1 << 27)
239 #define RCAR_DMACHCR_RPT_DAR		(1 << 26)
240 #define RCAR_DMACHCR_RPT_TCR		(1 << 25)
241 #define RCAR_DMACHCR_DPB		(1 << 22)
242 #define RCAR_DMACHCR_DSE		(1 << 19)
243 #define RCAR_DMACHCR_DSIE		(1 << 18)
244 #define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
245 #define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
246 #define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
247 #define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
248 #define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
249 #define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
250 #define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
251 #define RCAR_DMACHCR_DM_FIXED		(0 << 14)
252 #define RCAR_DMACHCR_DM_INC		(1 << 14)
253 #define RCAR_DMACHCR_DM_DEC		(2 << 14)
254 #define RCAR_DMACHCR_SM_FIXED		(0 << 12)
255 #define RCAR_DMACHCR_SM_INC		(1 << 12)
256 #define RCAR_DMACHCR_SM_DEC		(2 << 12)
257 #define RCAR_DMACHCR_RS_AUTO		(4 << 8)
258 #define RCAR_DMACHCR_RS_DMARS		(8 << 8)
259 #define RCAR_DMACHCR_IE			(1 << 2)
260 #define RCAR_DMACHCR_TE			(1 << 1)
261 #define RCAR_DMACHCR_DE			(1 << 0)
262 #define RCAR_DMATCRB			0x0018
263 #define RCAR_DMATSRB			0x0038
264 #define RCAR_DMACHCRB			0x001c
265 #define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
266 #define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
267 #define RCAR_DMACHCRB_DPTR_SHIFT	16
268 #define RCAR_DMACHCRB_DRST		(1 << 15)
269 #define RCAR_DMACHCRB_DTS		(1 << 8)
270 #define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
271 #define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
272 #define RCAR_DMACHCRB_PRI(n)		((n) << 0)
273 #define RCAR_DMARS			0x0040
274 #define RCAR_DMABUFCR			0x0048
275 #define RCAR_DMABUFCR_MBU(n)		((n) << 16)
276 #define RCAR_DMABUFCR_ULB(n)		((n) << 0)
277 #define RCAR_DMADPBASE			0x0050
278 #define RCAR_DMADPBASE_MASK		0xfffffff0
279 #define RCAR_DMADPBASE_SEL		(1 << 0)
280 #define RCAR_DMADPCR			0x0054
281 #define RCAR_DMADPCR_DIPT(n)		((n) << 24)
282 #define RCAR_DMAFIXSAR			0x0010
283 #define RCAR_DMAFIXDAR			0x0014
284 #define RCAR_DMAFIXDPBASE		0x0060
285 
286 /* Hardcode the MEMCPY transfer size to 4 bytes. */
287 #define RCAR_DMAC_MEMCPY_XFER_SIZE	4
288 
289 /* -----------------------------------------------------------------------------
290  * Device access
291  */
292 
293 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
294 {
295 	if (reg == RCAR_DMAOR)
296 		writew(data, dmac->iomem + reg);
297 	else
298 		writel(data, dmac->iomem + reg);
299 }
300 
301 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
302 {
303 	if (reg == RCAR_DMAOR)
304 		return readw(dmac->iomem + reg);
305 	else
306 		return readl(dmac->iomem + reg);
307 }
308 
309 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
310 {
311 	if (reg == RCAR_DMARS)
312 		return readw(chan->iomem + reg);
313 	else
314 		return readl(chan->iomem + reg);
315 }
316 
317 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
318 {
319 	if (reg == RCAR_DMARS)
320 		writew(data, chan->iomem + reg);
321 	else
322 		writel(data, chan->iomem + reg);
323 }
324 
325 /* -----------------------------------------------------------------------------
326  * Initialization and configuration
327  */
328 
329 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
330 {
331 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
332 
333 	return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
334 }
335 
336 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
337 {
338 	struct rcar_dmac_desc *desc = chan->desc.running;
339 	u32 chcr = desc->chcr;
340 
341 	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
342 
343 	if (chan->mid_rid >= 0)
344 		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
345 
346 	if (desc->hwdescs.use) {
347 		struct rcar_dmac_xfer_chunk *chunk =
348 			list_first_entry(&desc->chunks,
349 					 struct rcar_dmac_xfer_chunk, node);
350 
351 		dev_dbg(chan->chan.device->dev,
352 			"chan%u: queue desc %p: %u@%pad\n",
353 			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
354 
355 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
356 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
357 				     chunk->src_addr >> 32);
358 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
359 				     chunk->dst_addr >> 32);
360 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
361 				     desc->hwdescs.dma >> 32);
362 #endif
363 		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
364 				     (desc->hwdescs.dma & 0xfffffff0) |
365 				     RCAR_DMADPBASE_SEL);
366 		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
367 				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
368 				     RCAR_DMACHCRB_DRST);
369 
370 		/*
371 		 * Errata: When descriptor memory is accessed through an IOMMU
372 		 * the DMADAR register isn't initialized automatically from the
373 		 * first descriptor at beginning of transfer by the DMAC like it
374 		 * should. Initialize it manually with the destination address
375 		 * of the first chunk.
376 		 */
377 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
378 				     chunk->dst_addr & 0xffffffff);
379 
380 		/*
381 		 * Program the descriptor stage interrupt to occur after the end
382 		 * of the first stage.
383 		 */
384 		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
385 
386 		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
387 		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
388 
389 		/*
390 		 * If the descriptor isn't cyclic enable normal descriptor mode
391 		 * and the transfer completion interrupt.
392 		 */
393 		if (!desc->cyclic)
394 			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
395 		/*
396 		 * If the descriptor is cyclic and has a callback enable the
397 		 * descriptor stage interrupt in infinite repeat mode.
398 		 */
399 		else if (desc->async_tx.callback)
400 			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
401 		/*
402 		 * Otherwise just select infinite repeat mode without any
403 		 * interrupt.
404 		 */
405 		else
406 			chcr |= RCAR_DMACHCR_DPM_INFINITE;
407 	} else {
408 		struct rcar_dmac_xfer_chunk *chunk = desc->running;
409 
410 		dev_dbg(chan->chan.device->dev,
411 			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
412 			chan->index, chunk, chunk->size, &chunk->src_addr,
413 			&chunk->dst_addr);
414 
415 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
416 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
417 				     chunk->src_addr >> 32);
418 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
419 				     chunk->dst_addr >> 32);
420 #endif
421 		rcar_dmac_chan_write(chan, RCAR_DMASAR,
422 				     chunk->src_addr & 0xffffffff);
423 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
424 				     chunk->dst_addr & 0xffffffff);
425 		rcar_dmac_chan_write(chan, RCAR_DMATCR,
426 				     chunk->size >> desc->xfer_shift);
427 
428 		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
429 	}
430 
431 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
432 }
433 
434 static int rcar_dmac_init(struct rcar_dmac *dmac)
435 {
436 	u16 dmaor;
437 
438 	/* Clear all channels and enable the DMAC globally. */
439 	rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
440 	rcar_dmac_write(dmac, RCAR_DMAOR,
441 			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
442 
443 	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
444 	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
445 		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
446 		return -EIO;
447 	}
448 
449 	return 0;
450 }
451 
452 /* -----------------------------------------------------------------------------
453  * Descriptors submission
454  */
455 
456 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
457 {
458 	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
459 	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
460 	unsigned long flags;
461 	dma_cookie_t cookie;
462 
463 	spin_lock_irqsave(&chan->lock, flags);
464 
465 	cookie = dma_cookie_assign(tx);
466 
467 	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
468 		chan->index, tx->cookie, desc);
469 
470 	list_add_tail(&desc->node, &chan->desc.pending);
471 	desc->running = list_first_entry(&desc->chunks,
472 					 struct rcar_dmac_xfer_chunk, node);
473 
474 	spin_unlock_irqrestore(&chan->lock, flags);
475 
476 	return cookie;
477 }
478 
479 /* -----------------------------------------------------------------------------
480  * Descriptors allocation and free
481  */
482 
483 /*
484  * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
485  * @chan: the DMA channel
486  * @gfp: allocation flags
487  */
488 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
489 {
490 	struct rcar_dmac_desc_page *page;
491 	unsigned long flags;
492 	LIST_HEAD(list);
493 	unsigned int i;
494 
495 	page = (void *)get_zeroed_page(gfp);
496 	if (!page)
497 		return -ENOMEM;
498 
499 	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
500 		struct rcar_dmac_desc *desc = &page->descs[i];
501 
502 		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
503 		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
504 		INIT_LIST_HEAD(&desc->chunks);
505 
506 		list_add_tail(&desc->node, &list);
507 	}
508 
509 	spin_lock_irqsave(&chan->lock, flags);
510 	list_splice_tail(&list, &chan->desc.free);
511 	list_add_tail(&page->node, &chan->desc.pages);
512 	spin_unlock_irqrestore(&chan->lock, flags);
513 
514 	return 0;
515 }
516 
517 /*
518  * rcar_dmac_desc_put - Release a DMA transfer descriptor
519  * @chan: the DMA channel
520  * @desc: the descriptor
521  *
522  * Put the descriptor and its transfer chunk descriptors back in the channel's
523  * free descriptors lists. The descriptor's chunks list will be reinitialized to
524  * an empty list as a result.
525  *
526  * The descriptor must have been removed from the channel's lists before calling
527  * this function.
528  */
529 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
530 			       struct rcar_dmac_desc *desc)
531 {
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&chan->lock, flags);
535 	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
536 	list_add(&desc->node, &chan->desc.free);
537 	spin_unlock_irqrestore(&chan->lock, flags);
538 }
539 
540 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
541 {
542 	struct rcar_dmac_desc *desc, *_desc;
543 	unsigned long flags;
544 	LIST_HEAD(list);
545 
546 	/*
547 	 * We have to temporarily move all descriptors from the wait list to a
548 	 * local list as iterating over the wait list, even with
549 	 * list_for_each_entry_safe, isn't safe if we release the channel lock
550 	 * around the rcar_dmac_desc_put() call.
551 	 */
552 	spin_lock_irqsave(&chan->lock, flags);
553 	list_splice_init(&chan->desc.wait, &list);
554 	spin_unlock_irqrestore(&chan->lock, flags);
555 
556 	list_for_each_entry_safe(desc, _desc, &list, node) {
557 		if (async_tx_test_ack(&desc->async_tx)) {
558 			list_del(&desc->node);
559 			rcar_dmac_desc_put(chan, desc);
560 		}
561 	}
562 
563 	if (list_empty(&list))
564 		return;
565 
566 	/* Put the remaining descriptors back in the wait list. */
567 	spin_lock_irqsave(&chan->lock, flags);
568 	list_splice(&list, &chan->desc.wait);
569 	spin_unlock_irqrestore(&chan->lock, flags);
570 }
571 
572 /*
573  * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
574  * @chan: the DMA channel
575  *
576  * Locking: This function must be called in a non-atomic context.
577  *
578  * Return: A pointer to the allocated descriptor or NULL if no descriptor can
579  * be allocated.
580  */
581 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
582 {
583 	struct rcar_dmac_desc *desc;
584 	unsigned long flags;
585 	int ret;
586 
587 	/* Recycle acked descriptors before attempting allocation. */
588 	rcar_dmac_desc_recycle_acked(chan);
589 
590 	spin_lock_irqsave(&chan->lock, flags);
591 
592 	while (list_empty(&chan->desc.free)) {
593 		/*
594 		 * No free descriptors, allocate a page worth of them and try
595 		 * again, as someone else could race us to get the newly
596 		 * allocated descriptors. If the allocation fails return an
597 		 * error.
598 		 */
599 		spin_unlock_irqrestore(&chan->lock, flags);
600 		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
601 		if (ret < 0)
602 			return NULL;
603 		spin_lock_irqsave(&chan->lock, flags);
604 	}
605 
606 	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
607 	list_del(&desc->node);
608 
609 	spin_unlock_irqrestore(&chan->lock, flags);
610 
611 	return desc;
612 }
613 
614 /*
615  * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
616  * @chan: the DMA channel
617  * @gfp: allocation flags
618  */
619 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
620 {
621 	struct rcar_dmac_desc_page *page;
622 	unsigned long flags;
623 	LIST_HEAD(list);
624 	unsigned int i;
625 
626 	page = (void *)get_zeroed_page(gfp);
627 	if (!page)
628 		return -ENOMEM;
629 
630 	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
631 		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
632 
633 		list_add_tail(&chunk->node, &list);
634 	}
635 
636 	spin_lock_irqsave(&chan->lock, flags);
637 	list_splice_tail(&list, &chan->desc.chunks_free);
638 	list_add_tail(&page->node, &chan->desc.pages);
639 	spin_unlock_irqrestore(&chan->lock, flags);
640 
641 	return 0;
642 }
643 
644 /*
645  * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
646  * @chan: the DMA channel
647  *
648  * Locking: This function must be called in a non-atomic context.
649  *
650  * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
651  * descriptor can be allocated.
652  */
653 static struct rcar_dmac_xfer_chunk *
654 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
655 {
656 	struct rcar_dmac_xfer_chunk *chunk;
657 	unsigned long flags;
658 	int ret;
659 
660 	spin_lock_irqsave(&chan->lock, flags);
661 
662 	while (list_empty(&chan->desc.chunks_free)) {
663 		/*
664 		 * No free descriptors, allocate a page worth of them and try
665 		 * again, as someone else could race us to get the newly
666 		 * allocated descriptors. If the allocation fails return an
667 		 * error.
668 		 */
669 		spin_unlock_irqrestore(&chan->lock, flags);
670 		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
671 		if (ret < 0)
672 			return NULL;
673 		spin_lock_irqsave(&chan->lock, flags);
674 	}
675 
676 	chunk = list_first_entry(&chan->desc.chunks_free,
677 				 struct rcar_dmac_xfer_chunk, node);
678 	list_del(&chunk->node);
679 
680 	spin_unlock_irqrestore(&chan->lock, flags);
681 
682 	return chunk;
683 }
684 
685 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
686 				     struct rcar_dmac_desc *desc, size_t size)
687 {
688 	/*
689 	 * dma_alloc_coherent() allocates memory in page size increments. To
690 	 * avoid reallocating the hardware descriptors when the allocated size
691 	 * wouldn't change align the requested size to a multiple of the page
692 	 * size.
693 	 */
694 	size = PAGE_ALIGN(size);
695 
696 	if (desc->hwdescs.size == size)
697 		return;
698 
699 	if (desc->hwdescs.mem) {
700 		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
701 				  desc->hwdescs.mem, desc->hwdescs.dma);
702 		desc->hwdescs.mem = NULL;
703 		desc->hwdescs.size = 0;
704 	}
705 
706 	if (!size)
707 		return;
708 
709 	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
710 					       &desc->hwdescs.dma, GFP_NOWAIT);
711 	if (!desc->hwdescs.mem)
712 		return;
713 
714 	desc->hwdescs.size = size;
715 }
716 
717 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
718 				 struct rcar_dmac_desc *desc)
719 {
720 	struct rcar_dmac_xfer_chunk *chunk;
721 	struct rcar_dmac_hw_desc *hwdesc;
722 
723 	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
724 
725 	hwdesc = desc->hwdescs.mem;
726 	if (!hwdesc)
727 		return -ENOMEM;
728 
729 	list_for_each_entry(chunk, &desc->chunks, node) {
730 		hwdesc->sar = chunk->src_addr;
731 		hwdesc->dar = chunk->dst_addr;
732 		hwdesc->tcr = chunk->size >> desc->xfer_shift;
733 		hwdesc++;
734 	}
735 
736 	return 0;
737 }
738 
739 /* -----------------------------------------------------------------------------
740  * Stop and reset
741  */
742 
743 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
744 {
745 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
746 
747 	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
748 		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
749 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
750 }
751 
752 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
753 {
754 	struct rcar_dmac_desc *desc, *_desc;
755 	unsigned long flags;
756 	LIST_HEAD(descs);
757 
758 	spin_lock_irqsave(&chan->lock, flags);
759 
760 	/* Move all non-free descriptors to the local lists. */
761 	list_splice_init(&chan->desc.pending, &descs);
762 	list_splice_init(&chan->desc.active, &descs);
763 	list_splice_init(&chan->desc.done, &descs);
764 	list_splice_init(&chan->desc.wait, &descs);
765 
766 	chan->desc.running = NULL;
767 
768 	spin_unlock_irqrestore(&chan->lock, flags);
769 
770 	list_for_each_entry_safe(desc, _desc, &descs, node) {
771 		list_del(&desc->node);
772 		rcar_dmac_desc_put(chan, desc);
773 	}
774 }
775 
776 static void rcar_dmac_stop(struct rcar_dmac *dmac)
777 {
778 	rcar_dmac_write(dmac, RCAR_DMAOR, 0);
779 }
780 
781 static void rcar_dmac_abort(struct rcar_dmac *dmac)
782 {
783 	unsigned int i;
784 
785 	/* Stop all channels. */
786 	for (i = 0; i < dmac->n_channels; ++i) {
787 		struct rcar_dmac_chan *chan = &dmac->channels[i];
788 
789 		/* Stop and reinitialize the channel. */
790 		spin_lock(&chan->lock);
791 		rcar_dmac_chan_halt(chan);
792 		spin_unlock(&chan->lock);
793 
794 		rcar_dmac_chan_reinit(chan);
795 	}
796 }
797 
798 /* -----------------------------------------------------------------------------
799  * Descriptors preparation
800  */
801 
802 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
803 					  struct rcar_dmac_desc *desc)
804 {
805 	static const u32 chcr_ts[] = {
806 		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
807 		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
808 		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
809 		RCAR_DMACHCR_TS_64B,
810 	};
811 
812 	unsigned int xfer_size;
813 	u32 chcr;
814 
815 	switch (desc->direction) {
816 	case DMA_DEV_TO_MEM:
817 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
818 		     | RCAR_DMACHCR_RS_DMARS;
819 		xfer_size = chan->src.xfer_size;
820 		break;
821 
822 	case DMA_MEM_TO_DEV:
823 		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
824 		     | RCAR_DMACHCR_RS_DMARS;
825 		xfer_size = chan->dst.xfer_size;
826 		break;
827 
828 	case DMA_MEM_TO_MEM:
829 	default:
830 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
831 		     | RCAR_DMACHCR_RS_AUTO;
832 		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
833 		break;
834 	}
835 
836 	desc->xfer_shift = ilog2(xfer_size);
837 	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
838 }
839 
840 /*
841  * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
842  *
843  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
844  * converted to scatter-gather to guarantee consistent locking and a correct
845  * list manipulation. For slave DMA direction carries the usual meaning, and,
846  * logically, the SG list is RAM and the addr variable contains slave address,
847  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
848  * and the SG list contains only one element and points at the source buffer.
849  */
850 static struct dma_async_tx_descriptor *
851 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
852 		       unsigned int sg_len, dma_addr_t dev_addr,
853 		       enum dma_transfer_direction dir, unsigned long dma_flags,
854 		       bool cyclic)
855 {
856 	struct rcar_dmac_xfer_chunk *chunk;
857 	struct rcar_dmac_desc *desc;
858 	struct scatterlist *sg;
859 	unsigned int nchunks = 0;
860 	unsigned int max_chunk_size;
861 	unsigned int full_size = 0;
862 	bool cross_boundary = false;
863 	unsigned int i;
864 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
865 	u32 high_dev_addr;
866 	u32 high_mem_addr;
867 #endif
868 
869 	desc = rcar_dmac_desc_get(chan);
870 	if (!desc)
871 		return NULL;
872 
873 	desc->async_tx.flags = dma_flags;
874 	desc->async_tx.cookie = -EBUSY;
875 
876 	desc->cyclic = cyclic;
877 	desc->direction = dir;
878 
879 	rcar_dmac_chan_configure_desc(chan, desc);
880 
881 	max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
882 
883 	/*
884 	 * Allocate and fill the transfer chunk descriptors. We own the only
885 	 * reference to the DMA descriptor, there's no need for locking.
886 	 */
887 	for_each_sg(sgl, sg, sg_len, i) {
888 		dma_addr_t mem_addr = sg_dma_address(sg);
889 		unsigned int len = sg_dma_len(sg);
890 
891 		full_size += len;
892 
893 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
894 		if (i == 0) {
895 			high_dev_addr = dev_addr >> 32;
896 			high_mem_addr = mem_addr >> 32;
897 		}
898 
899 		if ((dev_addr >> 32 != high_dev_addr) ||
900 		    (mem_addr >> 32 != high_mem_addr))
901 			cross_boundary = true;
902 #endif
903 		while (len) {
904 			unsigned int size = min(len, max_chunk_size);
905 
906 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
907 			/*
908 			 * Prevent individual transfers from crossing 4GB
909 			 * boundaries.
910 			 */
911 			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
912 				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
913 				cross_boundary = true;
914 			}
915 			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
916 				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
917 				cross_boundary = true;
918 			}
919 #endif
920 
921 			chunk = rcar_dmac_xfer_chunk_get(chan);
922 			if (!chunk) {
923 				rcar_dmac_desc_put(chan, desc);
924 				return NULL;
925 			}
926 
927 			if (dir == DMA_DEV_TO_MEM) {
928 				chunk->src_addr = dev_addr;
929 				chunk->dst_addr = mem_addr;
930 			} else {
931 				chunk->src_addr = mem_addr;
932 				chunk->dst_addr = dev_addr;
933 			}
934 
935 			chunk->size = size;
936 
937 			dev_dbg(chan->chan.device->dev,
938 				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
939 				chan->index, chunk, desc, i, sg, size, len,
940 				&chunk->src_addr, &chunk->dst_addr);
941 
942 			mem_addr += size;
943 			if (dir == DMA_MEM_TO_MEM)
944 				dev_addr += size;
945 
946 			len -= size;
947 
948 			list_add_tail(&chunk->node, &desc->chunks);
949 			nchunks++;
950 		}
951 	}
952 
953 	desc->nchunks = nchunks;
954 	desc->size = full_size;
955 
956 	/*
957 	 * Use hardware descriptor lists if possible when more than one chunk
958 	 * needs to be transferred (otherwise they don't make much sense).
959 	 *
960 	 * Source/Destination address should be located in same 4GiB region
961 	 * in the 40bit address space when it uses Hardware descriptor,
962 	 * and cross_boundary is checking it.
963 	 */
964 	desc->hwdescs.use = !cross_boundary && nchunks > 1;
965 	if (desc->hwdescs.use) {
966 		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
967 			desc->hwdescs.use = false;
968 	}
969 
970 	return &desc->async_tx;
971 }
972 
973 /* -----------------------------------------------------------------------------
974  * DMA engine operations
975  */
976 
977 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
978 {
979 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
980 	int ret;
981 
982 	INIT_LIST_HEAD(&rchan->desc.chunks_free);
983 	INIT_LIST_HEAD(&rchan->desc.pages);
984 
985 	/* Preallocate descriptors. */
986 	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
987 	if (ret < 0)
988 		return -ENOMEM;
989 
990 	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
991 	if (ret < 0)
992 		return -ENOMEM;
993 
994 	return pm_runtime_get_sync(chan->device->dev);
995 }
996 
997 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
998 {
999 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1000 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1001 	struct rcar_dmac_chan_map *map = &rchan->map;
1002 	struct rcar_dmac_desc_page *page, *_page;
1003 	struct rcar_dmac_desc *desc;
1004 	LIST_HEAD(list);
1005 
1006 	/* Protect against ISR */
1007 	spin_lock_irq(&rchan->lock);
1008 	rcar_dmac_chan_halt(rchan);
1009 	spin_unlock_irq(&rchan->lock);
1010 
1011 	/* Now no new interrupts will occur */
1012 
1013 	if (rchan->mid_rid >= 0) {
1014 		/* The caller is holding dma_list_mutex */
1015 		clear_bit(rchan->mid_rid, dmac->modules);
1016 		rchan->mid_rid = -EINVAL;
1017 	}
1018 
1019 	list_splice_init(&rchan->desc.free, &list);
1020 	list_splice_init(&rchan->desc.pending, &list);
1021 	list_splice_init(&rchan->desc.active, &list);
1022 	list_splice_init(&rchan->desc.done, &list);
1023 	list_splice_init(&rchan->desc.wait, &list);
1024 
1025 	rchan->desc.running = NULL;
1026 
1027 	list_for_each_entry(desc, &list, node)
1028 		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1029 
1030 	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1031 		list_del(&page->node);
1032 		free_page((unsigned long)page);
1033 	}
1034 
1035 	/* Remove slave mapping if present. */
1036 	if (map->slave.xfer_size) {
1037 		dma_unmap_resource(chan->device->dev, map->addr,
1038 				   map->slave.xfer_size, map->dir, 0);
1039 		map->slave.xfer_size = 0;
1040 	}
1041 
1042 	pm_runtime_put(chan->device->dev);
1043 }
1044 
1045 static struct dma_async_tx_descriptor *
1046 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1047 			  dma_addr_t dma_src, size_t len, unsigned long flags)
1048 {
1049 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1050 	struct scatterlist sgl;
1051 
1052 	if (!len)
1053 		return NULL;
1054 
1055 	sg_init_table(&sgl, 1);
1056 	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1057 		    offset_in_page(dma_src));
1058 	sg_dma_address(&sgl) = dma_src;
1059 	sg_dma_len(&sgl) = len;
1060 
1061 	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1062 				      DMA_MEM_TO_MEM, flags, false);
1063 }
1064 
1065 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1066 				    enum dma_transfer_direction dir)
1067 {
1068 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1069 	struct rcar_dmac_chan_map *map = &rchan->map;
1070 	phys_addr_t dev_addr;
1071 	size_t dev_size;
1072 	enum dma_data_direction dev_dir;
1073 
1074 	if (dir == DMA_DEV_TO_MEM) {
1075 		dev_addr = rchan->src.slave_addr;
1076 		dev_size = rchan->src.xfer_size;
1077 		dev_dir = DMA_TO_DEVICE;
1078 	} else {
1079 		dev_addr = rchan->dst.slave_addr;
1080 		dev_size = rchan->dst.xfer_size;
1081 		dev_dir = DMA_FROM_DEVICE;
1082 	}
1083 
1084 	/* Reuse current map if possible. */
1085 	if (dev_addr == map->slave.slave_addr &&
1086 	    dev_size == map->slave.xfer_size &&
1087 	    dev_dir == map->dir)
1088 		return 0;
1089 
1090 	/* Remove old mapping if present. */
1091 	if (map->slave.xfer_size)
1092 		dma_unmap_resource(chan->device->dev, map->addr,
1093 				   map->slave.xfer_size, map->dir, 0);
1094 	map->slave.xfer_size = 0;
1095 
1096 	/* Create new slave address map. */
1097 	map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1098 				     dev_dir, 0);
1099 
1100 	if (dma_mapping_error(chan->device->dev, map->addr)) {
1101 		dev_err(chan->device->dev,
1102 			"chan%u: failed to map %zx@%pap", rchan->index,
1103 			dev_size, &dev_addr);
1104 		return -EIO;
1105 	}
1106 
1107 	dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1108 		rchan->index, dev_size, &dev_addr, &map->addr,
1109 		dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1110 
1111 	map->slave.slave_addr = dev_addr;
1112 	map->slave.xfer_size = dev_size;
1113 	map->dir = dev_dir;
1114 
1115 	return 0;
1116 }
1117 
1118 static struct dma_async_tx_descriptor *
1119 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1120 			unsigned int sg_len, enum dma_transfer_direction dir,
1121 			unsigned long flags, void *context)
1122 {
1123 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1124 
1125 	/* Someone calling slave DMA on a generic channel? */
1126 	if (rchan->mid_rid < 0 || !sg_len) {
1127 		dev_warn(chan->device->dev,
1128 			 "%s: bad parameter: len=%d, id=%d\n",
1129 			 __func__, sg_len, rchan->mid_rid);
1130 		return NULL;
1131 	}
1132 
1133 	if (rcar_dmac_map_slave_addr(chan, dir))
1134 		return NULL;
1135 
1136 	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1137 				      dir, flags, false);
1138 }
1139 
1140 #define RCAR_DMAC_MAX_SG_LEN	32
1141 
1142 static struct dma_async_tx_descriptor *
1143 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1144 			  size_t buf_len, size_t period_len,
1145 			  enum dma_transfer_direction dir, unsigned long flags)
1146 {
1147 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1148 	struct dma_async_tx_descriptor *desc;
1149 	struct scatterlist *sgl;
1150 	unsigned int sg_len;
1151 	unsigned int i;
1152 
1153 	/* Someone calling slave DMA on a generic channel? */
1154 	if (rchan->mid_rid < 0 || buf_len < period_len) {
1155 		dev_warn(chan->device->dev,
1156 			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1157 			__func__, buf_len, period_len, rchan->mid_rid);
1158 		return NULL;
1159 	}
1160 
1161 	if (rcar_dmac_map_slave_addr(chan, dir))
1162 		return NULL;
1163 
1164 	sg_len = buf_len / period_len;
1165 	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1166 		dev_err(chan->device->dev,
1167 			"chan%u: sg length %d exceds limit %d",
1168 			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1169 		return NULL;
1170 	}
1171 
1172 	/*
1173 	 * Allocate the sg list dynamically as it would consume too much stack
1174 	 * space.
1175 	 */
1176 	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1177 	if (!sgl)
1178 		return NULL;
1179 
1180 	sg_init_table(sgl, sg_len);
1181 
1182 	for (i = 0; i < sg_len; ++i) {
1183 		dma_addr_t src = buf_addr + (period_len * i);
1184 
1185 		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1186 			    offset_in_page(src));
1187 		sg_dma_address(&sgl[i]) = src;
1188 		sg_dma_len(&sgl[i]) = period_len;
1189 	}
1190 
1191 	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1192 				      dir, flags, true);
1193 
1194 	kfree(sgl);
1195 	return desc;
1196 }
1197 
1198 static int rcar_dmac_device_config(struct dma_chan *chan,
1199 				   struct dma_slave_config *cfg)
1200 {
1201 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1202 
1203 	/*
1204 	 * We could lock this, but you shouldn't be configuring the
1205 	 * channel, while using it...
1206 	 */
1207 	rchan->src.slave_addr = cfg->src_addr;
1208 	rchan->dst.slave_addr = cfg->dst_addr;
1209 	rchan->src.xfer_size = cfg->src_addr_width;
1210 	rchan->dst.xfer_size = cfg->dst_addr_width;
1211 
1212 	return 0;
1213 }
1214 
1215 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1216 {
1217 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1218 	unsigned long flags;
1219 
1220 	spin_lock_irqsave(&rchan->lock, flags);
1221 	rcar_dmac_chan_halt(rchan);
1222 	spin_unlock_irqrestore(&rchan->lock, flags);
1223 
1224 	/*
1225 	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1226 	 * be running.
1227 	 */
1228 
1229 	rcar_dmac_chan_reinit(rchan);
1230 
1231 	return 0;
1232 }
1233 
1234 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1235 					       dma_cookie_t cookie)
1236 {
1237 	struct rcar_dmac_desc *desc = chan->desc.running;
1238 	struct rcar_dmac_xfer_chunk *running = NULL;
1239 	struct rcar_dmac_xfer_chunk *chunk;
1240 	enum dma_status status;
1241 	unsigned int residue = 0;
1242 	unsigned int dptr = 0;
1243 
1244 	if (!desc)
1245 		return 0;
1246 
1247 	/*
1248 	 * If the cookie corresponds to a descriptor that has been completed
1249 	 * there is no residue. The same check has already been performed by the
1250 	 * caller but without holding the channel lock, so the descriptor could
1251 	 * now be complete.
1252 	 */
1253 	status = dma_cookie_status(&chan->chan, cookie, NULL);
1254 	if (status == DMA_COMPLETE)
1255 		return 0;
1256 
1257 	/*
1258 	 * If the cookie doesn't correspond to the currently running transfer
1259 	 * then the descriptor hasn't been processed yet, and the residue is
1260 	 * equal to the full descriptor size.
1261 	 */
1262 	if (cookie != desc->async_tx.cookie) {
1263 		list_for_each_entry(desc, &chan->desc.pending, node) {
1264 			if (cookie == desc->async_tx.cookie)
1265 				return desc->size;
1266 		}
1267 		list_for_each_entry(desc, &chan->desc.active, node) {
1268 			if (cookie == desc->async_tx.cookie)
1269 				return desc->size;
1270 		}
1271 
1272 		/*
1273 		 * No descriptor found for the cookie, there's thus no residue.
1274 		 * This shouldn't happen if the calling driver passes a correct
1275 		 * cookie value.
1276 		 */
1277 		WARN(1, "No descriptor for cookie!");
1278 		return 0;
1279 	}
1280 
1281 	/*
1282 	 * In descriptor mode the descriptor running pointer is not maintained
1283 	 * by the interrupt handler, find the running descriptor from the
1284 	 * descriptor pointer field in the CHCRB register. In non-descriptor
1285 	 * mode just use the running descriptor pointer.
1286 	 */
1287 	if (desc->hwdescs.use) {
1288 		dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1289 			RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1290 		if (dptr == 0)
1291 			dptr = desc->nchunks;
1292 		dptr--;
1293 		WARN_ON(dptr >= desc->nchunks);
1294 	} else {
1295 		running = desc->running;
1296 	}
1297 
1298 	/* Compute the size of all chunks still to be transferred. */
1299 	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1300 		if (chunk == running || ++dptr == desc->nchunks)
1301 			break;
1302 
1303 		residue += chunk->size;
1304 	}
1305 
1306 	/* Add the residue for the current chunk. */
1307 	residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1308 
1309 	return residue;
1310 }
1311 
1312 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1313 					   dma_cookie_t cookie,
1314 					   struct dma_tx_state *txstate)
1315 {
1316 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1317 	enum dma_status status;
1318 	unsigned long flags;
1319 	unsigned int residue;
1320 
1321 	status = dma_cookie_status(chan, cookie, txstate);
1322 	if (status == DMA_COMPLETE || !txstate)
1323 		return status;
1324 
1325 	spin_lock_irqsave(&rchan->lock, flags);
1326 	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1327 	spin_unlock_irqrestore(&rchan->lock, flags);
1328 
1329 	/* if there's no residue, the cookie is complete */
1330 	if (!residue)
1331 		return DMA_COMPLETE;
1332 
1333 	dma_set_residue(txstate, residue);
1334 
1335 	return status;
1336 }
1337 
1338 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1339 {
1340 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1341 	unsigned long flags;
1342 
1343 	spin_lock_irqsave(&rchan->lock, flags);
1344 
1345 	if (list_empty(&rchan->desc.pending))
1346 		goto done;
1347 
1348 	/* Append the pending list to the active list. */
1349 	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1350 
1351 	/*
1352 	 * If no transfer is running pick the first descriptor from the active
1353 	 * list and start the transfer.
1354 	 */
1355 	if (!rchan->desc.running) {
1356 		struct rcar_dmac_desc *desc;
1357 
1358 		desc = list_first_entry(&rchan->desc.active,
1359 					struct rcar_dmac_desc, node);
1360 		rchan->desc.running = desc;
1361 
1362 		rcar_dmac_chan_start_xfer(rchan);
1363 	}
1364 
1365 done:
1366 	spin_unlock_irqrestore(&rchan->lock, flags);
1367 }
1368 
1369 /* -----------------------------------------------------------------------------
1370  * IRQ handling
1371  */
1372 
1373 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1374 {
1375 	struct rcar_dmac_desc *desc = chan->desc.running;
1376 	unsigned int stage;
1377 
1378 	if (WARN_ON(!desc || !desc->cyclic)) {
1379 		/*
1380 		 * This should never happen, there should always be a running
1381 		 * cyclic descriptor when a descriptor stage end interrupt is
1382 		 * triggered. Warn and return.
1383 		 */
1384 		return IRQ_NONE;
1385 	}
1386 
1387 	/* Program the interrupt pointer to the next stage. */
1388 	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1389 		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1390 	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1391 
1392 	return IRQ_WAKE_THREAD;
1393 }
1394 
1395 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1396 {
1397 	struct rcar_dmac_desc *desc = chan->desc.running;
1398 	irqreturn_t ret = IRQ_WAKE_THREAD;
1399 
1400 	if (WARN_ON_ONCE(!desc)) {
1401 		/*
1402 		 * This should never happen, there should always be a running
1403 		 * descriptor when a transfer end interrupt is triggered. Warn
1404 		 * and return.
1405 		 */
1406 		return IRQ_NONE;
1407 	}
1408 
1409 	/*
1410 	 * The transfer end interrupt isn't generated for each chunk when using
1411 	 * descriptor mode. Only update the running chunk pointer in
1412 	 * non-descriptor mode.
1413 	 */
1414 	if (!desc->hwdescs.use) {
1415 		/*
1416 		 * If we haven't completed the last transfer chunk simply move
1417 		 * to the next one. Only wake the IRQ thread if the transfer is
1418 		 * cyclic.
1419 		 */
1420 		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1421 			desc->running = list_next_entry(desc->running, node);
1422 			if (!desc->cyclic)
1423 				ret = IRQ_HANDLED;
1424 			goto done;
1425 		}
1426 
1427 		/*
1428 		 * We've completed the last transfer chunk. If the transfer is
1429 		 * cyclic, move back to the first one.
1430 		 */
1431 		if (desc->cyclic) {
1432 			desc->running =
1433 				list_first_entry(&desc->chunks,
1434 						 struct rcar_dmac_xfer_chunk,
1435 						 node);
1436 			goto done;
1437 		}
1438 	}
1439 
1440 	/* The descriptor is complete, move it to the done list. */
1441 	list_move_tail(&desc->node, &chan->desc.done);
1442 
1443 	/* Queue the next descriptor, if any. */
1444 	if (!list_empty(&chan->desc.active))
1445 		chan->desc.running = list_first_entry(&chan->desc.active,
1446 						      struct rcar_dmac_desc,
1447 						      node);
1448 	else
1449 		chan->desc.running = NULL;
1450 
1451 done:
1452 	if (chan->desc.running)
1453 		rcar_dmac_chan_start_xfer(chan);
1454 
1455 	return ret;
1456 }
1457 
1458 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1459 {
1460 	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1461 	struct rcar_dmac_chan *chan = dev;
1462 	irqreturn_t ret = IRQ_NONE;
1463 	u32 chcr;
1464 
1465 	spin_lock(&chan->lock);
1466 
1467 	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1468 	if (chcr & RCAR_DMACHCR_TE)
1469 		mask |= RCAR_DMACHCR_DE;
1470 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1471 
1472 	if (chcr & RCAR_DMACHCR_DSE)
1473 		ret |= rcar_dmac_isr_desc_stage_end(chan);
1474 
1475 	if (chcr & RCAR_DMACHCR_TE)
1476 		ret |= rcar_dmac_isr_transfer_end(chan);
1477 
1478 	spin_unlock(&chan->lock);
1479 
1480 	return ret;
1481 }
1482 
1483 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1484 {
1485 	struct rcar_dmac_chan *chan = dev;
1486 	struct rcar_dmac_desc *desc;
1487 	struct dmaengine_desc_callback cb;
1488 
1489 	spin_lock_irq(&chan->lock);
1490 
1491 	/* For cyclic transfers notify the user after every chunk. */
1492 	if (chan->desc.running && chan->desc.running->cyclic) {
1493 		desc = chan->desc.running;
1494 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1495 
1496 		if (dmaengine_desc_callback_valid(&cb)) {
1497 			spin_unlock_irq(&chan->lock);
1498 			dmaengine_desc_callback_invoke(&cb, NULL);
1499 			spin_lock_irq(&chan->lock);
1500 		}
1501 	}
1502 
1503 	/*
1504 	 * Call the callback function for all descriptors on the done list and
1505 	 * move them to the ack wait list.
1506 	 */
1507 	while (!list_empty(&chan->desc.done)) {
1508 		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1509 					node);
1510 		dma_cookie_complete(&desc->async_tx);
1511 		list_del(&desc->node);
1512 
1513 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1514 		if (dmaengine_desc_callback_valid(&cb)) {
1515 			spin_unlock_irq(&chan->lock);
1516 			/*
1517 			 * We own the only reference to this descriptor, we can
1518 			 * safely dereference it without holding the channel
1519 			 * lock.
1520 			 */
1521 			dmaengine_desc_callback_invoke(&cb, NULL);
1522 			spin_lock_irq(&chan->lock);
1523 		}
1524 
1525 		list_add_tail(&desc->node, &chan->desc.wait);
1526 	}
1527 
1528 	spin_unlock_irq(&chan->lock);
1529 
1530 	/* Recycle all acked descriptors. */
1531 	rcar_dmac_desc_recycle_acked(chan);
1532 
1533 	return IRQ_HANDLED;
1534 }
1535 
1536 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1537 {
1538 	struct rcar_dmac *dmac = data;
1539 
1540 	if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1541 		return IRQ_NONE;
1542 
1543 	/*
1544 	 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1545 	 * abort transfers on all channels, and reinitialize the DMAC.
1546 	 */
1547 	rcar_dmac_stop(dmac);
1548 	rcar_dmac_abort(dmac);
1549 	rcar_dmac_init(dmac);
1550 
1551 	return IRQ_HANDLED;
1552 }
1553 
1554 /* -----------------------------------------------------------------------------
1555  * OF xlate and channel filter
1556  */
1557 
1558 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1559 {
1560 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1561 	struct of_phandle_args *dma_spec = arg;
1562 
1563 	/*
1564 	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1565 	 * function knows from which device it wants to allocate a channel from,
1566 	 * and would be perfectly capable of selecting the channel it wants.
1567 	 * Forcing it to call dma_request_channel() and iterate through all
1568 	 * channels from all controllers is just pointless.
1569 	 */
1570 	if (chan->device->device_config != rcar_dmac_device_config ||
1571 	    dma_spec->np != chan->device->dev->of_node)
1572 		return false;
1573 
1574 	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1575 }
1576 
1577 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1578 					   struct of_dma *ofdma)
1579 {
1580 	struct rcar_dmac_chan *rchan;
1581 	struct dma_chan *chan;
1582 	dma_cap_mask_t mask;
1583 
1584 	if (dma_spec->args_count != 1)
1585 		return NULL;
1586 
1587 	/* Only slave DMA channels can be allocated via DT */
1588 	dma_cap_zero(mask);
1589 	dma_cap_set(DMA_SLAVE, mask);
1590 
1591 	chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1592 	if (!chan)
1593 		return NULL;
1594 
1595 	rchan = to_rcar_dmac_chan(chan);
1596 	rchan->mid_rid = dma_spec->args[0];
1597 
1598 	return chan;
1599 }
1600 
1601 /* -----------------------------------------------------------------------------
1602  * Power management
1603  */
1604 
1605 #ifdef CONFIG_PM_SLEEP
1606 static int rcar_dmac_sleep_suspend(struct device *dev)
1607 {
1608 	/*
1609 	 * TODO: Wait for the current transfer to complete and stop the device.
1610 	 */
1611 	return 0;
1612 }
1613 
1614 static int rcar_dmac_sleep_resume(struct device *dev)
1615 {
1616 	/* TODO: Resume transfers, if any. */
1617 	return 0;
1618 }
1619 #endif
1620 
1621 #ifdef CONFIG_PM
1622 static int rcar_dmac_runtime_suspend(struct device *dev)
1623 {
1624 	return 0;
1625 }
1626 
1627 static int rcar_dmac_runtime_resume(struct device *dev)
1628 {
1629 	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1630 
1631 	return rcar_dmac_init(dmac);
1632 }
1633 #endif
1634 
1635 static const struct dev_pm_ops rcar_dmac_pm = {
1636 	SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1637 	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1638 			   NULL)
1639 };
1640 
1641 /* -----------------------------------------------------------------------------
1642  * Probe and remove
1643  */
1644 
1645 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1646 				struct rcar_dmac_chan *rchan,
1647 				unsigned int index)
1648 {
1649 	struct platform_device *pdev = to_platform_device(dmac->dev);
1650 	struct dma_chan *chan = &rchan->chan;
1651 	char pdev_irqname[5];
1652 	char *irqname;
1653 	int irq;
1654 	int ret;
1655 
1656 	rchan->index = index;
1657 	rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1658 	rchan->mid_rid = -EINVAL;
1659 
1660 	spin_lock_init(&rchan->lock);
1661 
1662 	INIT_LIST_HEAD(&rchan->desc.free);
1663 	INIT_LIST_HEAD(&rchan->desc.pending);
1664 	INIT_LIST_HEAD(&rchan->desc.active);
1665 	INIT_LIST_HEAD(&rchan->desc.done);
1666 	INIT_LIST_HEAD(&rchan->desc.wait);
1667 
1668 	/* Request the channel interrupt. */
1669 	sprintf(pdev_irqname, "ch%u", index);
1670 	irq = platform_get_irq_byname(pdev, pdev_irqname);
1671 	if (irq < 0) {
1672 		dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1673 		return -ENODEV;
1674 	}
1675 
1676 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1677 				 dev_name(dmac->dev), index);
1678 	if (!irqname)
1679 		return -ENOMEM;
1680 
1681 	ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1682 					rcar_dmac_isr_channel_thread, 0,
1683 					irqname, rchan);
1684 	if (ret) {
1685 		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1686 		return ret;
1687 	}
1688 
1689 	/*
1690 	 * Initialize the DMA engine channel and add it to the DMA engine
1691 	 * channels list.
1692 	 */
1693 	chan->device = &dmac->engine;
1694 	dma_cookie_init(chan);
1695 
1696 	list_add_tail(&chan->device_node, &dmac->engine.channels);
1697 
1698 	return 0;
1699 }
1700 
1701 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1702 {
1703 	struct device_node *np = dev->of_node;
1704 	int ret;
1705 
1706 	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1707 	if (ret < 0) {
1708 		dev_err(dev, "unable to read dma-channels property\n");
1709 		return ret;
1710 	}
1711 
1712 	if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1713 		dev_err(dev, "invalid number of channels %u\n",
1714 			dmac->n_channels);
1715 		return -EINVAL;
1716 	}
1717 
1718 	return 0;
1719 }
1720 
1721 static int rcar_dmac_probe(struct platform_device *pdev)
1722 {
1723 	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1724 		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1725 		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1726 		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1727 	unsigned int channels_offset = 0;
1728 	struct dma_device *engine;
1729 	struct rcar_dmac *dmac;
1730 	struct resource *mem;
1731 	unsigned int i;
1732 	char *irqname;
1733 	int irq;
1734 	int ret;
1735 
1736 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1737 	if (!dmac)
1738 		return -ENOMEM;
1739 
1740 	dmac->dev = &pdev->dev;
1741 	platform_set_drvdata(pdev, dmac);
1742 	dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1743 
1744 	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1745 	if (ret < 0)
1746 		return ret;
1747 
1748 	/*
1749 	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1750 	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1751 	 * is connected to microTLB 0 on currently supported platforms, so we
1752 	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1753 	 * level we can't disable it selectively, so ignore channel 0 for now if
1754 	 * the device is part of an IOMMU group.
1755 	 */
1756 	if (pdev->dev.iommu_group) {
1757 		dmac->n_channels--;
1758 		channels_offset = 1;
1759 	}
1760 
1761 	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1762 				      sizeof(*dmac->channels), GFP_KERNEL);
1763 	if (!dmac->channels)
1764 		return -ENOMEM;
1765 
1766 	/* Request resources. */
1767 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1768 	dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1769 	if (IS_ERR(dmac->iomem))
1770 		return PTR_ERR(dmac->iomem);
1771 
1772 	irq = platform_get_irq_byname(pdev, "error");
1773 	if (irq < 0) {
1774 		dev_err(&pdev->dev, "no error IRQ specified\n");
1775 		return -ENODEV;
1776 	}
1777 
1778 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1779 				 dev_name(dmac->dev));
1780 	if (!irqname)
1781 		return -ENOMEM;
1782 
1783 	ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1784 			       irqname, dmac);
1785 	if (ret) {
1786 		dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1787 			irq, ret);
1788 		return ret;
1789 	}
1790 
1791 	/* Enable runtime PM and initialize the device. */
1792 	pm_runtime_enable(&pdev->dev);
1793 	ret = pm_runtime_get_sync(&pdev->dev);
1794 	if (ret < 0) {
1795 		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1796 		return ret;
1797 	}
1798 
1799 	ret = rcar_dmac_init(dmac);
1800 	pm_runtime_put(&pdev->dev);
1801 
1802 	if (ret) {
1803 		dev_err(&pdev->dev, "failed to reset device\n");
1804 		goto error;
1805 	}
1806 
1807 	/* Initialize the channels. */
1808 	INIT_LIST_HEAD(&dmac->engine.channels);
1809 
1810 	for (i = 0; i < dmac->n_channels; ++i) {
1811 		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1812 					   i + channels_offset);
1813 		if (ret < 0)
1814 			goto error;
1815 	}
1816 
1817 	/* Register the DMAC as a DMA provider for DT. */
1818 	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1819 					 NULL);
1820 	if (ret < 0)
1821 		goto error;
1822 
1823 	/*
1824 	 * Register the DMA engine device.
1825 	 *
1826 	 * Default transfer size of 32 bytes requires 32-byte alignment.
1827 	 */
1828 	engine = &dmac->engine;
1829 	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1830 	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1831 
1832 	engine->dev = &pdev->dev;
1833 	engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1834 
1835 	engine->src_addr_widths = widths;
1836 	engine->dst_addr_widths = widths;
1837 	engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1838 	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1839 
1840 	engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1841 	engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1842 	engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1843 	engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1844 	engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1845 	engine->device_config = rcar_dmac_device_config;
1846 	engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1847 	engine->device_tx_status = rcar_dmac_tx_status;
1848 	engine->device_issue_pending = rcar_dmac_issue_pending;
1849 
1850 	ret = dma_async_device_register(engine);
1851 	if (ret < 0)
1852 		goto error;
1853 
1854 	return 0;
1855 
1856 error:
1857 	of_dma_controller_free(pdev->dev.of_node);
1858 	pm_runtime_disable(&pdev->dev);
1859 	return ret;
1860 }
1861 
1862 static int rcar_dmac_remove(struct platform_device *pdev)
1863 {
1864 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1865 
1866 	of_dma_controller_free(pdev->dev.of_node);
1867 	dma_async_device_unregister(&dmac->engine);
1868 
1869 	pm_runtime_disable(&pdev->dev);
1870 
1871 	return 0;
1872 }
1873 
1874 static void rcar_dmac_shutdown(struct platform_device *pdev)
1875 {
1876 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1877 
1878 	rcar_dmac_stop(dmac);
1879 }
1880 
1881 static const struct of_device_id rcar_dmac_of_ids[] = {
1882 	{ .compatible = "renesas,rcar-dmac", },
1883 	{ /* Sentinel */ }
1884 };
1885 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1886 
1887 static struct platform_driver rcar_dmac_driver = {
1888 	.driver		= {
1889 		.pm	= &rcar_dmac_pm,
1890 		.name	= "rcar-dmac",
1891 		.of_match_table = rcar_dmac_of_ids,
1892 	},
1893 	.probe		= rcar_dmac_probe,
1894 	.remove		= rcar_dmac_remove,
1895 	.shutdown	= rcar_dmac_shutdown,
1896 };
1897 
1898 module_platform_driver(rcar_dmac_driver);
1899 
1900 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1901 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1902 MODULE_LICENSE("GPL v2");
1903