xref: /openbmc/linux/drivers/dma/sh/rcar-dmac.c (revision 6b5fc336)
1 /*
2  * Renesas R-Car Gen2 DMA Controller Driver
3  *
4  * Copyright (C) 2014 Renesas Electronics Inc.
5  *
6  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7  *
8  * This is free software; you can redistribute it and/or modify
9  * it under the terms of version 2 of the GNU General Public License as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include "../dmaengine.h"
28 
29 /*
30  * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31  * @node: entry in the parent's chunks list
32  * @src_addr: device source address
33  * @dst_addr: device destination address
34  * @size: transfer size in bytes
35  */
36 struct rcar_dmac_xfer_chunk {
37 	struct list_head node;
38 
39 	dma_addr_t src_addr;
40 	dma_addr_t dst_addr;
41 	u32 size;
42 };
43 
44 /*
45  * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46  * @sar: value of the SAR register (source address)
47  * @dar: value of the DAR register (destination address)
48  * @tcr: value of the TCR register (transfer count)
49  */
50 struct rcar_dmac_hw_desc {
51 	u32 sar;
52 	u32 dar;
53 	u32 tcr;
54 	u32 reserved;
55 } __attribute__((__packed__));
56 
57 /*
58  * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59  * @async_tx: base DMA asynchronous transaction descriptor
60  * @direction: direction of the DMA transfer
61  * @xfer_shift: log2 of the transfer size
62  * @chcr: value of the channel configuration register for this transfer
63  * @node: entry in the channel's descriptors lists
64  * @chunks: list of transfer chunks for this transfer
65  * @running: the transfer chunk being currently processed
66  * @nchunks: number of transfer chunks for this transfer
67  * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68  * @hwdescs.mem: hardware descriptors memory for the transfer
69  * @hwdescs.dma: device address of the hardware descriptors memory
70  * @hwdescs.size: size of the hardware descriptors in bytes
71  * @size: transfer size in bytes
72  * @cyclic: when set indicates that the DMA transfer is cyclic
73  */
74 struct rcar_dmac_desc {
75 	struct dma_async_tx_descriptor async_tx;
76 	enum dma_transfer_direction direction;
77 	unsigned int xfer_shift;
78 	u32 chcr;
79 
80 	struct list_head node;
81 	struct list_head chunks;
82 	struct rcar_dmac_xfer_chunk *running;
83 	unsigned int nchunks;
84 
85 	struct {
86 		bool use;
87 		struct rcar_dmac_hw_desc *mem;
88 		dma_addr_t dma;
89 		size_t size;
90 	} hwdescs;
91 
92 	unsigned int size;
93 	bool cyclic;
94 };
95 
96 #define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
97 
98 /*
99  * struct rcar_dmac_desc_page - One page worth of descriptors
100  * @node: entry in the channel's pages list
101  * @descs: array of DMA descriptors
102  * @chunks: array of transfer chunk descriptors
103  */
104 struct rcar_dmac_desc_page {
105 	struct list_head node;
106 
107 	union {
108 		struct rcar_dmac_desc descs[0];
109 		struct rcar_dmac_xfer_chunk chunks[0];
110 	};
111 };
112 
113 #define RCAR_DMAC_DESCS_PER_PAGE					\
114 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
115 	sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
117 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
118 	sizeof(struct rcar_dmac_xfer_chunk))
119 
120 /*
121  * struct rcar_dmac_chan_slave - Slave configuration
122  * @slave_addr: slave memory address
123  * @xfer_size: size (in bytes) of hardware transfers
124  */
125 struct rcar_dmac_chan_slave {
126 	phys_addr_t slave_addr;
127 	unsigned int xfer_size;
128 };
129 
130 /*
131  * struct rcar_dmac_chan_map - Map of slave device phys to dma address
132  * @addr: slave dma address
133  * @dir: direction of mapping
134  * @slave: slave configuration that is mapped
135  */
136 struct rcar_dmac_chan_map {
137 	dma_addr_t addr;
138 	enum dma_data_direction dir;
139 	struct rcar_dmac_chan_slave slave;
140 };
141 
142 /*
143  * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
144  * @chan: base DMA channel object
145  * @iomem: channel I/O memory base
146  * @index: index of this channel in the controller
147  * @irq: channel IRQ
148  * @src: slave memory address and size on the source side
149  * @dst: slave memory address and size on the destination side
150  * @mid_rid: hardware MID/RID for the DMA client using this channel
151  * @lock: protects the channel CHCR register and the desc members
152  * @desc.free: list of free descriptors
153  * @desc.pending: list of pending descriptors (submitted with tx_submit)
154  * @desc.active: list of active descriptors (activated with issue_pending)
155  * @desc.done: list of completed descriptors
156  * @desc.wait: list of descriptors waiting for an ack
157  * @desc.running: the descriptor being processed (a member of the active list)
158  * @desc.chunks_free: list of free transfer chunk descriptors
159  * @desc.pages: list of pages used by allocated descriptors
160  */
161 struct rcar_dmac_chan {
162 	struct dma_chan chan;
163 	void __iomem *iomem;
164 	unsigned int index;
165 	int irq;
166 
167 	struct rcar_dmac_chan_slave src;
168 	struct rcar_dmac_chan_slave dst;
169 	struct rcar_dmac_chan_map map;
170 	int mid_rid;
171 
172 	spinlock_t lock;
173 
174 	struct {
175 		struct list_head free;
176 		struct list_head pending;
177 		struct list_head active;
178 		struct list_head done;
179 		struct list_head wait;
180 		struct rcar_dmac_desc *running;
181 
182 		struct list_head chunks_free;
183 
184 		struct list_head pages;
185 	} desc;
186 };
187 
188 #define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
189 
190 /*
191  * struct rcar_dmac - R-Car Gen2 DMA Controller
192  * @engine: base DMA engine object
193  * @dev: the hardware device
194  * @iomem: remapped I/O memory base
195  * @n_channels: number of available channels
196  * @channels: array of DMAC channels
197  * @modules: bitmask of client modules in use
198  */
199 struct rcar_dmac {
200 	struct dma_device engine;
201 	struct device *dev;
202 	void __iomem *iomem;
203 
204 	unsigned int n_channels;
205 	struct rcar_dmac_chan *channels;
206 
207 	DECLARE_BITMAP(modules, 256);
208 };
209 
210 #define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
211 
212 /* -----------------------------------------------------------------------------
213  * Registers
214  */
215 
216 #define RCAR_DMAC_CHAN_OFFSET(i)	(0x8000 + 0x80 * (i))
217 
218 #define RCAR_DMAISTA			0x0020
219 #define RCAR_DMASEC			0x0030
220 #define RCAR_DMAOR			0x0060
221 #define RCAR_DMAOR_PRI_FIXED		(0 << 8)
222 #define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
223 #define RCAR_DMAOR_AE			(1 << 2)
224 #define RCAR_DMAOR_DME			(1 << 0)
225 #define RCAR_DMACHCLR			0x0080
226 #define RCAR_DMADPSEC			0x00a0
227 
228 #define RCAR_DMASAR			0x0000
229 #define RCAR_DMADAR			0x0004
230 #define RCAR_DMATCR			0x0008
231 #define RCAR_DMATCR_MASK		0x00ffffff
232 #define RCAR_DMATSR			0x0028
233 #define RCAR_DMACHCR			0x000c
234 #define RCAR_DMACHCR_CAE		(1 << 31)
235 #define RCAR_DMACHCR_CAIE		(1 << 30)
236 #define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
237 #define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
238 #define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
239 #define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
240 #define RCAR_DMACHCR_RPT_SAR		(1 << 27)
241 #define RCAR_DMACHCR_RPT_DAR		(1 << 26)
242 #define RCAR_DMACHCR_RPT_TCR		(1 << 25)
243 #define RCAR_DMACHCR_DPB		(1 << 22)
244 #define RCAR_DMACHCR_DSE		(1 << 19)
245 #define RCAR_DMACHCR_DSIE		(1 << 18)
246 #define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
247 #define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
248 #define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
249 #define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
250 #define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
251 #define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
252 #define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
253 #define RCAR_DMACHCR_DM_FIXED		(0 << 14)
254 #define RCAR_DMACHCR_DM_INC		(1 << 14)
255 #define RCAR_DMACHCR_DM_DEC		(2 << 14)
256 #define RCAR_DMACHCR_SM_FIXED		(0 << 12)
257 #define RCAR_DMACHCR_SM_INC		(1 << 12)
258 #define RCAR_DMACHCR_SM_DEC		(2 << 12)
259 #define RCAR_DMACHCR_RS_AUTO		(4 << 8)
260 #define RCAR_DMACHCR_RS_DMARS		(8 << 8)
261 #define RCAR_DMACHCR_IE			(1 << 2)
262 #define RCAR_DMACHCR_TE			(1 << 1)
263 #define RCAR_DMACHCR_DE			(1 << 0)
264 #define RCAR_DMATCRB			0x0018
265 #define RCAR_DMATSRB			0x0038
266 #define RCAR_DMACHCRB			0x001c
267 #define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
268 #define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
269 #define RCAR_DMACHCRB_DPTR_SHIFT	16
270 #define RCAR_DMACHCRB_DRST		(1 << 15)
271 #define RCAR_DMACHCRB_DTS		(1 << 8)
272 #define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
273 #define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
274 #define RCAR_DMACHCRB_PRI(n)		((n) << 0)
275 #define RCAR_DMARS			0x0040
276 #define RCAR_DMABUFCR			0x0048
277 #define RCAR_DMABUFCR_MBU(n)		((n) << 16)
278 #define RCAR_DMABUFCR_ULB(n)		((n) << 0)
279 #define RCAR_DMADPBASE			0x0050
280 #define RCAR_DMADPBASE_MASK		0xfffffff0
281 #define RCAR_DMADPBASE_SEL		(1 << 0)
282 #define RCAR_DMADPCR			0x0054
283 #define RCAR_DMADPCR_DIPT(n)		((n) << 24)
284 #define RCAR_DMAFIXSAR			0x0010
285 #define RCAR_DMAFIXDAR			0x0014
286 #define RCAR_DMAFIXDPBASE		0x0060
287 
288 /* Hardcode the MEMCPY transfer size to 4 bytes. */
289 #define RCAR_DMAC_MEMCPY_XFER_SIZE	4
290 
291 /* -----------------------------------------------------------------------------
292  * Device access
293  */
294 
295 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
296 {
297 	if (reg == RCAR_DMAOR)
298 		writew(data, dmac->iomem + reg);
299 	else
300 		writel(data, dmac->iomem + reg);
301 }
302 
303 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
304 {
305 	if (reg == RCAR_DMAOR)
306 		return readw(dmac->iomem + reg);
307 	else
308 		return readl(dmac->iomem + reg);
309 }
310 
311 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
312 {
313 	if (reg == RCAR_DMARS)
314 		return readw(chan->iomem + reg);
315 	else
316 		return readl(chan->iomem + reg);
317 }
318 
319 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
320 {
321 	if (reg == RCAR_DMARS)
322 		writew(data, chan->iomem + reg);
323 	else
324 		writel(data, chan->iomem + reg);
325 }
326 
327 /* -----------------------------------------------------------------------------
328  * Initialization and configuration
329  */
330 
331 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
332 {
333 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
334 
335 	return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
336 }
337 
338 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
339 {
340 	struct rcar_dmac_desc *desc = chan->desc.running;
341 	u32 chcr = desc->chcr;
342 
343 	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
344 
345 	if (chan->mid_rid >= 0)
346 		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
347 
348 	if (desc->hwdescs.use) {
349 		struct rcar_dmac_xfer_chunk *chunk =
350 			list_first_entry(&desc->chunks,
351 					 struct rcar_dmac_xfer_chunk, node);
352 
353 		dev_dbg(chan->chan.device->dev,
354 			"chan%u: queue desc %p: %u@%pad\n",
355 			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
356 
357 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
358 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
359 				     chunk->src_addr >> 32);
360 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
361 				     chunk->dst_addr >> 32);
362 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
363 				     desc->hwdescs.dma >> 32);
364 #endif
365 		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
366 				     (desc->hwdescs.dma & 0xfffffff0) |
367 				     RCAR_DMADPBASE_SEL);
368 		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
369 				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
370 				     RCAR_DMACHCRB_DRST);
371 
372 		/*
373 		 * Errata: When descriptor memory is accessed through an IOMMU
374 		 * the DMADAR register isn't initialized automatically from the
375 		 * first descriptor at beginning of transfer by the DMAC like it
376 		 * should. Initialize it manually with the destination address
377 		 * of the first chunk.
378 		 */
379 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
380 				     chunk->dst_addr & 0xffffffff);
381 
382 		/*
383 		 * Program the descriptor stage interrupt to occur after the end
384 		 * of the first stage.
385 		 */
386 		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
387 
388 		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
389 		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
390 
391 		/*
392 		 * If the descriptor isn't cyclic enable normal descriptor mode
393 		 * and the transfer completion interrupt.
394 		 */
395 		if (!desc->cyclic)
396 			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
397 		/*
398 		 * If the descriptor is cyclic and has a callback enable the
399 		 * descriptor stage interrupt in infinite repeat mode.
400 		 */
401 		else if (desc->async_tx.callback)
402 			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
403 		/*
404 		 * Otherwise just select infinite repeat mode without any
405 		 * interrupt.
406 		 */
407 		else
408 			chcr |= RCAR_DMACHCR_DPM_INFINITE;
409 	} else {
410 		struct rcar_dmac_xfer_chunk *chunk = desc->running;
411 
412 		dev_dbg(chan->chan.device->dev,
413 			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
414 			chan->index, chunk, chunk->size, &chunk->src_addr,
415 			&chunk->dst_addr);
416 
417 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
418 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
419 				     chunk->src_addr >> 32);
420 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
421 				     chunk->dst_addr >> 32);
422 #endif
423 		rcar_dmac_chan_write(chan, RCAR_DMASAR,
424 				     chunk->src_addr & 0xffffffff);
425 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
426 				     chunk->dst_addr & 0xffffffff);
427 		rcar_dmac_chan_write(chan, RCAR_DMATCR,
428 				     chunk->size >> desc->xfer_shift);
429 
430 		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
431 	}
432 
433 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
434 }
435 
436 static int rcar_dmac_init(struct rcar_dmac *dmac)
437 {
438 	u16 dmaor;
439 
440 	/* Clear all channels and enable the DMAC globally. */
441 	rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
442 	rcar_dmac_write(dmac, RCAR_DMAOR,
443 			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
444 
445 	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
446 	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
447 		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
448 		return -EIO;
449 	}
450 
451 	return 0;
452 }
453 
454 /* -----------------------------------------------------------------------------
455  * Descriptors submission
456  */
457 
458 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
459 {
460 	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
461 	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
462 	unsigned long flags;
463 	dma_cookie_t cookie;
464 
465 	spin_lock_irqsave(&chan->lock, flags);
466 
467 	cookie = dma_cookie_assign(tx);
468 
469 	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
470 		chan->index, tx->cookie, desc);
471 
472 	list_add_tail(&desc->node, &chan->desc.pending);
473 	desc->running = list_first_entry(&desc->chunks,
474 					 struct rcar_dmac_xfer_chunk, node);
475 
476 	spin_unlock_irqrestore(&chan->lock, flags);
477 
478 	return cookie;
479 }
480 
481 /* -----------------------------------------------------------------------------
482  * Descriptors allocation and free
483  */
484 
485 /*
486  * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
487  * @chan: the DMA channel
488  * @gfp: allocation flags
489  */
490 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
491 {
492 	struct rcar_dmac_desc_page *page;
493 	unsigned long flags;
494 	LIST_HEAD(list);
495 	unsigned int i;
496 
497 	page = (void *)get_zeroed_page(gfp);
498 	if (!page)
499 		return -ENOMEM;
500 
501 	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
502 		struct rcar_dmac_desc *desc = &page->descs[i];
503 
504 		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
505 		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
506 		INIT_LIST_HEAD(&desc->chunks);
507 
508 		list_add_tail(&desc->node, &list);
509 	}
510 
511 	spin_lock_irqsave(&chan->lock, flags);
512 	list_splice_tail(&list, &chan->desc.free);
513 	list_add_tail(&page->node, &chan->desc.pages);
514 	spin_unlock_irqrestore(&chan->lock, flags);
515 
516 	return 0;
517 }
518 
519 /*
520  * rcar_dmac_desc_put - Release a DMA transfer descriptor
521  * @chan: the DMA channel
522  * @desc: the descriptor
523  *
524  * Put the descriptor and its transfer chunk descriptors back in the channel's
525  * free descriptors lists. The descriptor's chunks list will be reinitialized to
526  * an empty list as a result.
527  *
528  * The descriptor must have been removed from the channel's lists before calling
529  * this function.
530  */
531 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
532 			       struct rcar_dmac_desc *desc)
533 {
534 	unsigned long flags;
535 
536 	spin_lock_irqsave(&chan->lock, flags);
537 	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
538 	list_add(&desc->node, &chan->desc.free);
539 	spin_unlock_irqrestore(&chan->lock, flags);
540 }
541 
542 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
543 {
544 	struct rcar_dmac_desc *desc, *_desc;
545 	unsigned long flags;
546 	LIST_HEAD(list);
547 
548 	/*
549 	 * We have to temporarily move all descriptors from the wait list to a
550 	 * local list as iterating over the wait list, even with
551 	 * list_for_each_entry_safe, isn't safe if we release the channel lock
552 	 * around the rcar_dmac_desc_put() call.
553 	 */
554 	spin_lock_irqsave(&chan->lock, flags);
555 	list_splice_init(&chan->desc.wait, &list);
556 	spin_unlock_irqrestore(&chan->lock, flags);
557 
558 	list_for_each_entry_safe(desc, _desc, &list, node) {
559 		if (async_tx_test_ack(&desc->async_tx)) {
560 			list_del(&desc->node);
561 			rcar_dmac_desc_put(chan, desc);
562 		}
563 	}
564 
565 	if (list_empty(&list))
566 		return;
567 
568 	/* Put the remaining descriptors back in the wait list. */
569 	spin_lock_irqsave(&chan->lock, flags);
570 	list_splice(&list, &chan->desc.wait);
571 	spin_unlock_irqrestore(&chan->lock, flags);
572 }
573 
574 /*
575  * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
576  * @chan: the DMA channel
577  *
578  * Locking: This function must be called in a non-atomic context.
579  *
580  * Return: A pointer to the allocated descriptor or NULL if no descriptor can
581  * be allocated.
582  */
583 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
584 {
585 	struct rcar_dmac_desc *desc;
586 	unsigned long flags;
587 	int ret;
588 
589 	/* Recycle acked descriptors before attempting allocation. */
590 	rcar_dmac_desc_recycle_acked(chan);
591 
592 	spin_lock_irqsave(&chan->lock, flags);
593 
594 	while (list_empty(&chan->desc.free)) {
595 		/*
596 		 * No free descriptors, allocate a page worth of them and try
597 		 * again, as someone else could race us to get the newly
598 		 * allocated descriptors. If the allocation fails return an
599 		 * error.
600 		 */
601 		spin_unlock_irqrestore(&chan->lock, flags);
602 		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
603 		if (ret < 0)
604 			return NULL;
605 		spin_lock_irqsave(&chan->lock, flags);
606 	}
607 
608 	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
609 	list_del(&desc->node);
610 
611 	spin_unlock_irqrestore(&chan->lock, flags);
612 
613 	return desc;
614 }
615 
616 /*
617  * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
618  * @chan: the DMA channel
619  * @gfp: allocation flags
620  */
621 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
622 {
623 	struct rcar_dmac_desc_page *page;
624 	unsigned long flags;
625 	LIST_HEAD(list);
626 	unsigned int i;
627 
628 	page = (void *)get_zeroed_page(gfp);
629 	if (!page)
630 		return -ENOMEM;
631 
632 	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
633 		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
634 
635 		list_add_tail(&chunk->node, &list);
636 	}
637 
638 	spin_lock_irqsave(&chan->lock, flags);
639 	list_splice_tail(&list, &chan->desc.chunks_free);
640 	list_add_tail(&page->node, &chan->desc.pages);
641 	spin_unlock_irqrestore(&chan->lock, flags);
642 
643 	return 0;
644 }
645 
646 /*
647  * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
648  * @chan: the DMA channel
649  *
650  * Locking: This function must be called in a non-atomic context.
651  *
652  * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
653  * descriptor can be allocated.
654  */
655 static struct rcar_dmac_xfer_chunk *
656 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
657 {
658 	struct rcar_dmac_xfer_chunk *chunk;
659 	unsigned long flags;
660 	int ret;
661 
662 	spin_lock_irqsave(&chan->lock, flags);
663 
664 	while (list_empty(&chan->desc.chunks_free)) {
665 		/*
666 		 * No free descriptors, allocate a page worth of them and try
667 		 * again, as someone else could race us to get the newly
668 		 * allocated descriptors. If the allocation fails return an
669 		 * error.
670 		 */
671 		spin_unlock_irqrestore(&chan->lock, flags);
672 		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
673 		if (ret < 0)
674 			return NULL;
675 		spin_lock_irqsave(&chan->lock, flags);
676 	}
677 
678 	chunk = list_first_entry(&chan->desc.chunks_free,
679 				 struct rcar_dmac_xfer_chunk, node);
680 	list_del(&chunk->node);
681 
682 	spin_unlock_irqrestore(&chan->lock, flags);
683 
684 	return chunk;
685 }
686 
687 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
688 				     struct rcar_dmac_desc *desc, size_t size)
689 {
690 	/*
691 	 * dma_alloc_coherent() allocates memory in page size increments. To
692 	 * avoid reallocating the hardware descriptors when the allocated size
693 	 * wouldn't change align the requested size to a multiple of the page
694 	 * size.
695 	 */
696 	size = PAGE_ALIGN(size);
697 
698 	if (desc->hwdescs.size == size)
699 		return;
700 
701 	if (desc->hwdescs.mem) {
702 		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
703 				  desc->hwdescs.mem, desc->hwdescs.dma);
704 		desc->hwdescs.mem = NULL;
705 		desc->hwdescs.size = 0;
706 	}
707 
708 	if (!size)
709 		return;
710 
711 	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
712 					       &desc->hwdescs.dma, GFP_NOWAIT);
713 	if (!desc->hwdescs.mem)
714 		return;
715 
716 	desc->hwdescs.size = size;
717 }
718 
719 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
720 				 struct rcar_dmac_desc *desc)
721 {
722 	struct rcar_dmac_xfer_chunk *chunk;
723 	struct rcar_dmac_hw_desc *hwdesc;
724 
725 	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
726 
727 	hwdesc = desc->hwdescs.mem;
728 	if (!hwdesc)
729 		return -ENOMEM;
730 
731 	list_for_each_entry(chunk, &desc->chunks, node) {
732 		hwdesc->sar = chunk->src_addr;
733 		hwdesc->dar = chunk->dst_addr;
734 		hwdesc->tcr = chunk->size >> desc->xfer_shift;
735 		hwdesc++;
736 	}
737 
738 	return 0;
739 }
740 
741 /* -----------------------------------------------------------------------------
742  * Stop and reset
743  */
744 
745 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
746 {
747 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
748 
749 	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
750 		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
751 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
752 }
753 
754 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
755 {
756 	struct rcar_dmac_desc *desc, *_desc;
757 	unsigned long flags;
758 	LIST_HEAD(descs);
759 
760 	spin_lock_irqsave(&chan->lock, flags);
761 
762 	/* Move all non-free descriptors to the local lists. */
763 	list_splice_init(&chan->desc.pending, &descs);
764 	list_splice_init(&chan->desc.active, &descs);
765 	list_splice_init(&chan->desc.done, &descs);
766 	list_splice_init(&chan->desc.wait, &descs);
767 
768 	chan->desc.running = NULL;
769 
770 	spin_unlock_irqrestore(&chan->lock, flags);
771 
772 	list_for_each_entry_safe(desc, _desc, &descs, node) {
773 		list_del(&desc->node);
774 		rcar_dmac_desc_put(chan, desc);
775 	}
776 }
777 
778 static void rcar_dmac_stop(struct rcar_dmac *dmac)
779 {
780 	rcar_dmac_write(dmac, RCAR_DMAOR, 0);
781 }
782 
783 static void rcar_dmac_abort(struct rcar_dmac *dmac)
784 {
785 	unsigned int i;
786 
787 	/* Stop all channels. */
788 	for (i = 0; i < dmac->n_channels; ++i) {
789 		struct rcar_dmac_chan *chan = &dmac->channels[i];
790 
791 		/* Stop and reinitialize the channel. */
792 		spin_lock(&chan->lock);
793 		rcar_dmac_chan_halt(chan);
794 		spin_unlock(&chan->lock);
795 
796 		rcar_dmac_chan_reinit(chan);
797 	}
798 }
799 
800 /* -----------------------------------------------------------------------------
801  * Descriptors preparation
802  */
803 
804 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
805 					  struct rcar_dmac_desc *desc)
806 {
807 	static const u32 chcr_ts[] = {
808 		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
809 		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
810 		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
811 		RCAR_DMACHCR_TS_64B,
812 	};
813 
814 	unsigned int xfer_size;
815 	u32 chcr;
816 
817 	switch (desc->direction) {
818 	case DMA_DEV_TO_MEM:
819 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
820 		     | RCAR_DMACHCR_RS_DMARS;
821 		xfer_size = chan->src.xfer_size;
822 		break;
823 
824 	case DMA_MEM_TO_DEV:
825 		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
826 		     | RCAR_DMACHCR_RS_DMARS;
827 		xfer_size = chan->dst.xfer_size;
828 		break;
829 
830 	case DMA_MEM_TO_MEM:
831 	default:
832 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
833 		     | RCAR_DMACHCR_RS_AUTO;
834 		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
835 		break;
836 	}
837 
838 	desc->xfer_shift = ilog2(xfer_size);
839 	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
840 }
841 
842 /*
843  * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
844  *
845  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
846  * converted to scatter-gather to guarantee consistent locking and a correct
847  * list manipulation. For slave DMA direction carries the usual meaning, and,
848  * logically, the SG list is RAM and the addr variable contains slave address,
849  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
850  * and the SG list contains only one element and points at the source buffer.
851  */
852 static struct dma_async_tx_descriptor *
853 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
854 		       unsigned int sg_len, dma_addr_t dev_addr,
855 		       enum dma_transfer_direction dir, unsigned long dma_flags,
856 		       bool cyclic)
857 {
858 	struct rcar_dmac_xfer_chunk *chunk;
859 	struct rcar_dmac_desc *desc;
860 	struct scatterlist *sg;
861 	unsigned int nchunks = 0;
862 	unsigned int max_chunk_size;
863 	unsigned int full_size = 0;
864 	bool cross_boundary = false;
865 	unsigned int i;
866 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
867 	u32 high_dev_addr;
868 	u32 high_mem_addr;
869 #endif
870 
871 	desc = rcar_dmac_desc_get(chan);
872 	if (!desc)
873 		return NULL;
874 
875 	desc->async_tx.flags = dma_flags;
876 	desc->async_tx.cookie = -EBUSY;
877 
878 	desc->cyclic = cyclic;
879 	desc->direction = dir;
880 
881 	rcar_dmac_chan_configure_desc(chan, desc);
882 
883 	max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
884 
885 	/*
886 	 * Allocate and fill the transfer chunk descriptors. We own the only
887 	 * reference to the DMA descriptor, there's no need for locking.
888 	 */
889 	for_each_sg(sgl, sg, sg_len, i) {
890 		dma_addr_t mem_addr = sg_dma_address(sg);
891 		unsigned int len = sg_dma_len(sg);
892 
893 		full_size += len;
894 
895 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
896 		if (i == 0) {
897 			high_dev_addr = dev_addr >> 32;
898 			high_mem_addr = mem_addr >> 32;
899 		}
900 
901 		if ((dev_addr >> 32 != high_dev_addr) ||
902 		    (mem_addr >> 32 != high_mem_addr))
903 			cross_boundary = true;
904 #endif
905 		while (len) {
906 			unsigned int size = min(len, max_chunk_size);
907 
908 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
909 			/*
910 			 * Prevent individual transfers from crossing 4GB
911 			 * boundaries.
912 			 */
913 			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
914 				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
915 				cross_boundary = true;
916 			}
917 			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
918 				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
919 				cross_boundary = true;
920 			}
921 #endif
922 
923 			chunk = rcar_dmac_xfer_chunk_get(chan);
924 			if (!chunk) {
925 				rcar_dmac_desc_put(chan, desc);
926 				return NULL;
927 			}
928 
929 			if (dir == DMA_DEV_TO_MEM) {
930 				chunk->src_addr = dev_addr;
931 				chunk->dst_addr = mem_addr;
932 			} else {
933 				chunk->src_addr = mem_addr;
934 				chunk->dst_addr = dev_addr;
935 			}
936 
937 			chunk->size = size;
938 
939 			dev_dbg(chan->chan.device->dev,
940 				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
941 				chan->index, chunk, desc, i, sg, size, len,
942 				&chunk->src_addr, &chunk->dst_addr);
943 
944 			mem_addr += size;
945 			if (dir == DMA_MEM_TO_MEM)
946 				dev_addr += size;
947 
948 			len -= size;
949 
950 			list_add_tail(&chunk->node, &desc->chunks);
951 			nchunks++;
952 		}
953 	}
954 
955 	desc->nchunks = nchunks;
956 	desc->size = full_size;
957 
958 	/*
959 	 * Use hardware descriptor lists if possible when more than one chunk
960 	 * needs to be transferred (otherwise they don't make much sense).
961 	 *
962 	 * Source/Destination address should be located in same 4GiB region
963 	 * in the 40bit address space when it uses Hardware descriptor,
964 	 * and cross_boundary is checking it.
965 	 */
966 	desc->hwdescs.use = !cross_boundary && nchunks > 1;
967 	if (desc->hwdescs.use) {
968 		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
969 			desc->hwdescs.use = false;
970 	}
971 
972 	return &desc->async_tx;
973 }
974 
975 /* -----------------------------------------------------------------------------
976  * DMA engine operations
977  */
978 
979 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
980 {
981 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
982 	int ret;
983 
984 	INIT_LIST_HEAD(&rchan->desc.chunks_free);
985 	INIT_LIST_HEAD(&rchan->desc.pages);
986 
987 	/* Preallocate descriptors. */
988 	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
989 	if (ret < 0)
990 		return -ENOMEM;
991 
992 	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
993 	if (ret < 0)
994 		return -ENOMEM;
995 
996 	return pm_runtime_get_sync(chan->device->dev);
997 }
998 
999 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1000 {
1001 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1002 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1003 	struct rcar_dmac_chan_map *map = &rchan->map;
1004 	struct rcar_dmac_desc_page *page, *_page;
1005 	struct rcar_dmac_desc *desc;
1006 	LIST_HEAD(list);
1007 
1008 	/* Protect against ISR */
1009 	spin_lock_irq(&rchan->lock);
1010 	rcar_dmac_chan_halt(rchan);
1011 	spin_unlock_irq(&rchan->lock);
1012 
1013 	/*
1014 	 * Now no new interrupts will occur, but one might already be
1015 	 * running. Wait for it to finish before freeing resources.
1016 	 */
1017 	synchronize_irq(rchan->irq);
1018 
1019 	if (rchan->mid_rid >= 0) {
1020 		/* The caller is holding dma_list_mutex */
1021 		clear_bit(rchan->mid_rid, dmac->modules);
1022 		rchan->mid_rid = -EINVAL;
1023 	}
1024 
1025 	list_splice_init(&rchan->desc.free, &list);
1026 	list_splice_init(&rchan->desc.pending, &list);
1027 	list_splice_init(&rchan->desc.active, &list);
1028 	list_splice_init(&rchan->desc.done, &list);
1029 	list_splice_init(&rchan->desc.wait, &list);
1030 
1031 	rchan->desc.running = NULL;
1032 
1033 	list_for_each_entry(desc, &list, node)
1034 		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1035 
1036 	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1037 		list_del(&page->node);
1038 		free_page((unsigned long)page);
1039 	}
1040 
1041 	/* Remove slave mapping if present. */
1042 	if (map->slave.xfer_size) {
1043 		dma_unmap_resource(chan->device->dev, map->addr,
1044 				   map->slave.xfer_size, map->dir, 0);
1045 		map->slave.xfer_size = 0;
1046 	}
1047 
1048 	pm_runtime_put(chan->device->dev);
1049 }
1050 
1051 static struct dma_async_tx_descriptor *
1052 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1053 			  dma_addr_t dma_src, size_t len, unsigned long flags)
1054 {
1055 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1056 	struct scatterlist sgl;
1057 
1058 	if (!len)
1059 		return NULL;
1060 
1061 	sg_init_table(&sgl, 1);
1062 	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1063 		    offset_in_page(dma_src));
1064 	sg_dma_address(&sgl) = dma_src;
1065 	sg_dma_len(&sgl) = len;
1066 
1067 	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1068 				      DMA_MEM_TO_MEM, flags, false);
1069 }
1070 
1071 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1072 				    enum dma_transfer_direction dir)
1073 {
1074 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1075 	struct rcar_dmac_chan_map *map = &rchan->map;
1076 	phys_addr_t dev_addr;
1077 	size_t dev_size;
1078 	enum dma_data_direction dev_dir;
1079 
1080 	if (dir == DMA_DEV_TO_MEM) {
1081 		dev_addr = rchan->src.slave_addr;
1082 		dev_size = rchan->src.xfer_size;
1083 		dev_dir = DMA_TO_DEVICE;
1084 	} else {
1085 		dev_addr = rchan->dst.slave_addr;
1086 		dev_size = rchan->dst.xfer_size;
1087 		dev_dir = DMA_FROM_DEVICE;
1088 	}
1089 
1090 	/* Reuse current map if possible. */
1091 	if (dev_addr == map->slave.slave_addr &&
1092 	    dev_size == map->slave.xfer_size &&
1093 	    dev_dir == map->dir)
1094 		return 0;
1095 
1096 	/* Remove old mapping if present. */
1097 	if (map->slave.xfer_size)
1098 		dma_unmap_resource(chan->device->dev, map->addr,
1099 				   map->slave.xfer_size, map->dir, 0);
1100 	map->slave.xfer_size = 0;
1101 
1102 	/* Create new slave address map. */
1103 	map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1104 				     dev_dir, 0);
1105 
1106 	if (dma_mapping_error(chan->device->dev, map->addr)) {
1107 		dev_err(chan->device->dev,
1108 			"chan%u: failed to map %zx@%pap", rchan->index,
1109 			dev_size, &dev_addr);
1110 		return -EIO;
1111 	}
1112 
1113 	dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1114 		rchan->index, dev_size, &dev_addr, &map->addr,
1115 		dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1116 
1117 	map->slave.slave_addr = dev_addr;
1118 	map->slave.xfer_size = dev_size;
1119 	map->dir = dev_dir;
1120 
1121 	return 0;
1122 }
1123 
1124 static struct dma_async_tx_descriptor *
1125 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1126 			unsigned int sg_len, enum dma_transfer_direction dir,
1127 			unsigned long flags, void *context)
1128 {
1129 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1130 
1131 	/* Someone calling slave DMA on a generic channel? */
1132 	if (rchan->mid_rid < 0 || !sg_len) {
1133 		dev_warn(chan->device->dev,
1134 			 "%s: bad parameter: len=%d, id=%d\n",
1135 			 __func__, sg_len, rchan->mid_rid);
1136 		return NULL;
1137 	}
1138 
1139 	if (rcar_dmac_map_slave_addr(chan, dir))
1140 		return NULL;
1141 
1142 	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1143 				      dir, flags, false);
1144 }
1145 
1146 #define RCAR_DMAC_MAX_SG_LEN	32
1147 
1148 static struct dma_async_tx_descriptor *
1149 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1150 			  size_t buf_len, size_t period_len,
1151 			  enum dma_transfer_direction dir, unsigned long flags)
1152 {
1153 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1154 	struct dma_async_tx_descriptor *desc;
1155 	struct scatterlist *sgl;
1156 	unsigned int sg_len;
1157 	unsigned int i;
1158 
1159 	/* Someone calling slave DMA on a generic channel? */
1160 	if (rchan->mid_rid < 0 || buf_len < period_len) {
1161 		dev_warn(chan->device->dev,
1162 			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1163 			__func__, buf_len, period_len, rchan->mid_rid);
1164 		return NULL;
1165 	}
1166 
1167 	if (rcar_dmac_map_slave_addr(chan, dir))
1168 		return NULL;
1169 
1170 	sg_len = buf_len / period_len;
1171 	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1172 		dev_err(chan->device->dev,
1173 			"chan%u: sg length %d exceds limit %d",
1174 			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1175 		return NULL;
1176 	}
1177 
1178 	/*
1179 	 * Allocate the sg list dynamically as it would consume too much stack
1180 	 * space.
1181 	 */
1182 	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1183 	if (!sgl)
1184 		return NULL;
1185 
1186 	sg_init_table(sgl, sg_len);
1187 
1188 	for (i = 0; i < sg_len; ++i) {
1189 		dma_addr_t src = buf_addr + (period_len * i);
1190 
1191 		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1192 			    offset_in_page(src));
1193 		sg_dma_address(&sgl[i]) = src;
1194 		sg_dma_len(&sgl[i]) = period_len;
1195 	}
1196 
1197 	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1198 				      dir, flags, true);
1199 
1200 	kfree(sgl);
1201 	return desc;
1202 }
1203 
1204 static int rcar_dmac_device_config(struct dma_chan *chan,
1205 				   struct dma_slave_config *cfg)
1206 {
1207 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1208 
1209 	/*
1210 	 * We could lock this, but you shouldn't be configuring the
1211 	 * channel, while using it...
1212 	 */
1213 	rchan->src.slave_addr = cfg->src_addr;
1214 	rchan->dst.slave_addr = cfg->dst_addr;
1215 	rchan->src.xfer_size = cfg->src_addr_width;
1216 	rchan->dst.xfer_size = cfg->dst_addr_width;
1217 
1218 	return 0;
1219 }
1220 
1221 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1222 {
1223 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1224 	unsigned long flags;
1225 
1226 	spin_lock_irqsave(&rchan->lock, flags);
1227 	rcar_dmac_chan_halt(rchan);
1228 	spin_unlock_irqrestore(&rchan->lock, flags);
1229 
1230 	/*
1231 	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1232 	 * be running.
1233 	 */
1234 
1235 	rcar_dmac_chan_reinit(rchan);
1236 
1237 	return 0;
1238 }
1239 
1240 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1241 					       dma_cookie_t cookie)
1242 {
1243 	struct rcar_dmac_desc *desc = chan->desc.running;
1244 	struct rcar_dmac_xfer_chunk *running = NULL;
1245 	struct rcar_dmac_xfer_chunk *chunk;
1246 	enum dma_status status;
1247 	unsigned int residue = 0;
1248 	unsigned int dptr = 0;
1249 
1250 	if (!desc)
1251 		return 0;
1252 
1253 	/*
1254 	 * If the cookie corresponds to a descriptor that has been completed
1255 	 * there is no residue. The same check has already been performed by the
1256 	 * caller but without holding the channel lock, so the descriptor could
1257 	 * now be complete.
1258 	 */
1259 	status = dma_cookie_status(&chan->chan, cookie, NULL);
1260 	if (status == DMA_COMPLETE)
1261 		return 0;
1262 
1263 	/*
1264 	 * If the cookie doesn't correspond to the currently running transfer
1265 	 * then the descriptor hasn't been processed yet, and the residue is
1266 	 * equal to the full descriptor size.
1267 	 */
1268 	if (cookie != desc->async_tx.cookie) {
1269 		list_for_each_entry(desc, &chan->desc.pending, node) {
1270 			if (cookie == desc->async_tx.cookie)
1271 				return desc->size;
1272 		}
1273 		list_for_each_entry(desc, &chan->desc.active, node) {
1274 			if (cookie == desc->async_tx.cookie)
1275 				return desc->size;
1276 		}
1277 
1278 		/*
1279 		 * No descriptor found for the cookie, there's thus no residue.
1280 		 * This shouldn't happen if the calling driver passes a correct
1281 		 * cookie value.
1282 		 */
1283 		WARN(1, "No descriptor for cookie!");
1284 		return 0;
1285 	}
1286 
1287 	/*
1288 	 * In descriptor mode the descriptor running pointer is not maintained
1289 	 * by the interrupt handler, find the running descriptor from the
1290 	 * descriptor pointer field in the CHCRB register. In non-descriptor
1291 	 * mode just use the running descriptor pointer.
1292 	 */
1293 	if (desc->hwdescs.use) {
1294 		dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1295 			RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1296 		if (dptr == 0)
1297 			dptr = desc->nchunks;
1298 		dptr--;
1299 		WARN_ON(dptr >= desc->nchunks);
1300 	} else {
1301 		running = desc->running;
1302 	}
1303 
1304 	/* Compute the size of all chunks still to be transferred. */
1305 	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1306 		if (chunk == running || ++dptr == desc->nchunks)
1307 			break;
1308 
1309 		residue += chunk->size;
1310 	}
1311 
1312 	/* Add the residue for the current chunk. */
1313 	residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1314 
1315 	return residue;
1316 }
1317 
1318 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1319 					   dma_cookie_t cookie,
1320 					   struct dma_tx_state *txstate)
1321 {
1322 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1323 	enum dma_status status;
1324 	unsigned long flags;
1325 	unsigned int residue;
1326 
1327 	status = dma_cookie_status(chan, cookie, txstate);
1328 	if (status == DMA_COMPLETE || !txstate)
1329 		return status;
1330 
1331 	spin_lock_irqsave(&rchan->lock, flags);
1332 	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1333 	spin_unlock_irqrestore(&rchan->lock, flags);
1334 
1335 	/* if there's no residue, the cookie is complete */
1336 	if (!residue)
1337 		return DMA_COMPLETE;
1338 
1339 	dma_set_residue(txstate, residue);
1340 
1341 	return status;
1342 }
1343 
1344 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1345 {
1346 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1347 	unsigned long flags;
1348 
1349 	spin_lock_irqsave(&rchan->lock, flags);
1350 
1351 	if (list_empty(&rchan->desc.pending))
1352 		goto done;
1353 
1354 	/* Append the pending list to the active list. */
1355 	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1356 
1357 	/*
1358 	 * If no transfer is running pick the first descriptor from the active
1359 	 * list and start the transfer.
1360 	 */
1361 	if (!rchan->desc.running) {
1362 		struct rcar_dmac_desc *desc;
1363 
1364 		desc = list_first_entry(&rchan->desc.active,
1365 					struct rcar_dmac_desc, node);
1366 		rchan->desc.running = desc;
1367 
1368 		rcar_dmac_chan_start_xfer(rchan);
1369 	}
1370 
1371 done:
1372 	spin_unlock_irqrestore(&rchan->lock, flags);
1373 }
1374 
1375 static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1376 {
1377 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1378 
1379 	synchronize_irq(rchan->irq);
1380 }
1381 
1382 /* -----------------------------------------------------------------------------
1383  * IRQ handling
1384  */
1385 
1386 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1387 {
1388 	struct rcar_dmac_desc *desc = chan->desc.running;
1389 	unsigned int stage;
1390 
1391 	if (WARN_ON(!desc || !desc->cyclic)) {
1392 		/*
1393 		 * This should never happen, there should always be a running
1394 		 * cyclic descriptor when a descriptor stage end interrupt is
1395 		 * triggered. Warn and return.
1396 		 */
1397 		return IRQ_NONE;
1398 	}
1399 
1400 	/* Program the interrupt pointer to the next stage. */
1401 	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1402 		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1403 	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1404 
1405 	return IRQ_WAKE_THREAD;
1406 }
1407 
1408 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1409 {
1410 	struct rcar_dmac_desc *desc = chan->desc.running;
1411 	irqreturn_t ret = IRQ_WAKE_THREAD;
1412 
1413 	if (WARN_ON_ONCE(!desc)) {
1414 		/*
1415 		 * This should never happen, there should always be a running
1416 		 * descriptor when a transfer end interrupt is triggered. Warn
1417 		 * and return.
1418 		 */
1419 		return IRQ_NONE;
1420 	}
1421 
1422 	/*
1423 	 * The transfer end interrupt isn't generated for each chunk when using
1424 	 * descriptor mode. Only update the running chunk pointer in
1425 	 * non-descriptor mode.
1426 	 */
1427 	if (!desc->hwdescs.use) {
1428 		/*
1429 		 * If we haven't completed the last transfer chunk simply move
1430 		 * to the next one. Only wake the IRQ thread if the transfer is
1431 		 * cyclic.
1432 		 */
1433 		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1434 			desc->running = list_next_entry(desc->running, node);
1435 			if (!desc->cyclic)
1436 				ret = IRQ_HANDLED;
1437 			goto done;
1438 		}
1439 
1440 		/*
1441 		 * We've completed the last transfer chunk. If the transfer is
1442 		 * cyclic, move back to the first one.
1443 		 */
1444 		if (desc->cyclic) {
1445 			desc->running =
1446 				list_first_entry(&desc->chunks,
1447 						 struct rcar_dmac_xfer_chunk,
1448 						 node);
1449 			goto done;
1450 		}
1451 	}
1452 
1453 	/* The descriptor is complete, move it to the done list. */
1454 	list_move_tail(&desc->node, &chan->desc.done);
1455 
1456 	/* Queue the next descriptor, if any. */
1457 	if (!list_empty(&chan->desc.active))
1458 		chan->desc.running = list_first_entry(&chan->desc.active,
1459 						      struct rcar_dmac_desc,
1460 						      node);
1461 	else
1462 		chan->desc.running = NULL;
1463 
1464 done:
1465 	if (chan->desc.running)
1466 		rcar_dmac_chan_start_xfer(chan);
1467 
1468 	return ret;
1469 }
1470 
1471 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1472 {
1473 	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1474 	struct rcar_dmac_chan *chan = dev;
1475 	irqreturn_t ret = IRQ_NONE;
1476 	u32 chcr;
1477 
1478 	spin_lock(&chan->lock);
1479 
1480 	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1481 	if (chcr & RCAR_DMACHCR_TE)
1482 		mask |= RCAR_DMACHCR_DE;
1483 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1484 
1485 	if (chcr & RCAR_DMACHCR_DSE)
1486 		ret |= rcar_dmac_isr_desc_stage_end(chan);
1487 
1488 	if (chcr & RCAR_DMACHCR_TE)
1489 		ret |= rcar_dmac_isr_transfer_end(chan);
1490 
1491 	spin_unlock(&chan->lock);
1492 
1493 	return ret;
1494 }
1495 
1496 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1497 {
1498 	struct rcar_dmac_chan *chan = dev;
1499 	struct rcar_dmac_desc *desc;
1500 	struct dmaengine_desc_callback cb;
1501 
1502 	spin_lock_irq(&chan->lock);
1503 
1504 	/* For cyclic transfers notify the user after every chunk. */
1505 	if (chan->desc.running && chan->desc.running->cyclic) {
1506 		desc = chan->desc.running;
1507 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1508 
1509 		if (dmaengine_desc_callback_valid(&cb)) {
1510 			spin_unlock_irq(&chan->lock);
1511 			dmaengine_desc_callback_invoke(&cb, NULL);
1512 			spin_lock_irq(&chan->lock);
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * Call the callback function for all descriptors on the done list and
1518 	 * move them to the ack wait list.
1519 	 */
1520 	while (!list_empty(&chan->desc.done)) {
1521 		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1522 					node);
1523 		dma_cookie_complete(&desc->async_tx);
1524 		list_del(&desc->node);
1525 
1526 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1527 		if (dmaengine_desc_callback_valid(&cb)) {
1528 			spin_unlock_irq(&chan->lock);
1529 			/*
1530 			 * We own the only reference to this descriptor, we can
1531 			 * safely dereference it without holding the channel
1532 			 * lock.
1533 			 */
1534 			dmaengine_desc_callback_invoke(&cb, NULL);
1535 			spin_lock_irq(&chan->lock);
1536 		}
1537 
1538 		list_add_tail(&desc->node, &chan->desc.wait);
1539 	}
1540 
1541 	spin_unlock_irq(&chan->lock);
1542 
1543 	/* Recycle all acked descriptors. */
1544 	rcar_dmac_desc_recycle_acked(chan);
1545 
1546 	return IRQ_HANDLED;
1547 }
1548 
1549 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1550 {
1551 	struct rcar_dmac *dmac = data;
1552 
1553 	if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1554 		return IRQ_NONE;
1555 
1556 	/*
1557 	 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1558 	 * abort transfers on all channels, and reinitialize the DMAC.
1559 	 */
1560 	rcar_dmac_stop(dmac);
1561 	rcar_dmac_abort(dmac);
1562 	rcar_dmac_init(dmac);
1563 
1564 	return IRQ_HANDLED;
1565 }
1566 
1567 /* -----------------------------------------------------------------------------
1568  * OF xlate and channel filter
1569  */
1570 
1571 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1572 {
1573 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1574 	struct of_phandle_args *dma_spec = arg;
1575 
1576 	/*
1577 	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1578 	 * function knows from which device it wants to allocate a channel from,
1579 	 * and would be perfectly capable of selecting the channel it wants.
1580 	 * Forcing it to call dma_request_channel() and iterate through all
1581 	 * channels from all controllers is just pointless.
1582 	 */
1583 	if (chan->device->device_config != rcar_dmac_device_config ||
1584 	    dma_spec->np != chan->device->dev->of_node)
1585 		return false;
1586 
1587 	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1588 }
1589 
1590 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1591 					   struct of_dma *ofdma)
1592 {
1593 	struct rcar_dmac_chan *rchan;
1594 	struct dma_chan *chan;
1595 	dma_cap_mask_t mask;
1596 
1597 	if (dma_spec->args_count != 1)
1598 		return NULL;
1599 
1600 	/* Only slave DMA channels can be allocated via DT */
1601 	dma_cap_zero(mask);
1602 	dma_cap_set(DMA_SLAVE, mask);
1603 
1604 	chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1605 	if (!chan)
1606 		return NULL;
1607 
1608 	rchan = to_rcar_dmac_chan(chan);
1609 	rchan->mid_rid = dma_spec->args[0];
1610 
1611 	return chan;
1612 }
1613 
1614 /* -----------------------------------------------------------------------------
1615  * Power management
1616  */
1617 
1618 #ifdef CONFIG_PM_SLEEP
1619 static int rcar_dmac_sleep_suspend(struct device *dev)
1620 {
1621 	/*
1622 	 * TODO: Wait for the current transfer to complete and stop the device.
1623 	 */
1624 	return 0;
1625 }
1626 
1627 static int rcar_dmac_sleep_resume(struct device *dev)
1628 {
1629 	/* TODO: Resume transfers, if any. */
1630 	return 0;
1631 }
1632 #endif
1633 
1634 #ifdef CONFIG_PM
1635 static int rcar_dmac_runtime_suspend(struct device *dev)
1636 {
1637 	return 0;
1638 }
1639 
1640 static int rcar_dmac_runtime_resume(struct device *dev)
1641 {
1642 	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1643 
1644 	return rcar_dmac_init(dmac);
1645 }
1646 #endif
1647 
1648 static const struct dev_pm_ops rcar_dmac_pm = {
1649 	SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1650 	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1651 			   NULL)
1652 };
1653 
1654 /* -----------------------------------------------------------------------------
1655  * Probe and remove
1656  */
1657 
1658 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1659 				struct rcar_dmac_chan *rchan,
1660 				unsigned int index)
1661 {
1662 	struct platform_device *pdev = to_platform_device(dmac->dev);
1663 	struct dma_chan *chan = &rchan->chan;
1664 	char pdev_irqname[5];
1665 	char *irqname;
1666 	int ret;
1667 
1668 	rchan->index = index;
1669 	rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1670 	rchan->mid_rid = -EINVAL;
1671 
1672 	spin_lock_init(&rchan->lock);
1673 
1674 	INIT_LIST_HEAD(&rchan->desc.free);
1675 	INIT_LIST_HEAD(&rchan->desc.pending);
1676 	INIT_LIST_HEAD(&rchan->desc.active);
1677 	INIT_LIST_HEAD(&rchan->desc.done);
1678 	INIT_LIST_HEAD(&rchan->desc.wait);
1679 
1680 	/* Request the channel interrupt. */
1681 	sprintf(pdev_irqname, "ch%u", index);
1682 	rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1683 	if (rchan->irq < 0) {
1684 		dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1685 		return -ENODEV;
1686 	}
1687 
1688 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1689 				 dev_name(dmac->dev), index);
1690 	if (!irqname)
1691 		return -ENOMEM;
1692 
1693 	ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1694 					rcar_dmac_isr_channel,
1695 					rcar_dmac_isr_channel_thread, 0,
1696 					irqname, rchan);
1697 	if (ret) {
1698 		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1699 			rchan->irq, ret);
1700 		return ret;
1701 	}
1702 
1703 	/*
1704 	 * Initialize the DMA engine channel and add it to the DMA engine
1705 	 * channels list.
1706 	 */
1707 	chan->device = &dmac->engine;
1708 	dma_cookie_init(chan);
1709 
1710 	list_add_tail(&chan->device_node, &dmac->engine.channels);
1711 
1712 	return 0;
1713 }
1714 
1715 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1716 {
1717 	struct device_node *np = dev->of_node;
1718 	int ret;
1719 
1720 	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1721 	if (ret < 0) {
1722 		dev_err(dev, "unable to read dma-channels property\n");
1723 		return ret;
1724 	}
1725 
1726 	if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1727 		dev_err(dev, "invalid number of channels %u\n",
1728 			dmac->n_channels);
1729 		return -EINVAL;
1730 	}
1731 
1732 	return 0;
1733 }
1734 
1735 static int rcar_dmac_probe(struct platform_device *pdev)
1736 {
1737 	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1738 		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1739 		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1740 		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1741 	unsigned int channels_offset = 0;
1742 	struct dma_device *engine;
1743 	struct rcar_dmac *dmac;
1744 	struct resource *mem;
1745 	unsigned int i;
1746 	char *irqname;
1747 	int irq;
1748 	int ret;
1749 
1750 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1751 	if (!dmac)
1752 		return -ENOMEM;
1753 
1754 	dmac->dev = &pdev->dev;
1755 	platform_set_drvdata(pdev, dmac);
1756 	dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1757 
1758 	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1759 	if (ret < 0)
1760 		return ret;
1761 
1762 	/*
1763 	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1764 	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1765 	 * is connected to microTLB 0 on currently supported platforms, so we
1766 	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1767 	 * level we can't disable it selectively, so ignore channel 0 for now if
1768 	 * the device is part of an IOMMU group.
1769 	 */
1770 	if (pdev->dev.iommu_group) {
1771 		dmac->n_channels--;
1772 		channels_offset = 1;
1773 	}
1774 
1775 	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1776 				      sizeof(*dmac->channels), GFP_KERNEL);
1777 	if (!dmac->channels)
1778 		return -ENOMEM;
1779 
1780 	/* Request resources. */
1781 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1782 	dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1783 	if (IS_ERR(dmac->iomem))
1784 		return PTR_ERR(dmac->iomem);
1785 
1786 	irq = platform_get_irq_byname(pdev, "error");
1787 	if (irq < 0) {
1788 		dev_err(&pdev->dev, "no error IRQ specified\n");
1789 		return -ENODEV;
1790 	}
1791 
1792 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1793 				 dev_name(dmac->dev));
1794 	if (!irqname)
1795 		return -ENOMEM;
1796 
1797 	ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1798 			       irqname, dmac);
1799 	if (ret) {
1800 		dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1801 			irq, ret);
1802 		return ret;
1803 	}
1804 
1805 	/* Enable runtime PM and initialize the device. */
1806 	pm_runtime_enable(&pdev->dev);
1807 	ret = pm_runtime_get_sync(&pdev->dev);
1808 	if (ret < 0) {
1809 		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1810 		return ret;
1811 	}
1812 
1813 	ret = rcar_dmac_init(dmac);
1814 	pm_runtime_put(&pdev->dev);
1815 
1816 	if (ret) {
1817 		dev_err(&pdev->dev, "failed to reset device\n");
1818 		goto error;
1819 	}
1820 
1821 	/* Initialize the channels. */
1822 	INIT_LIST_HEAD(&dmac->engine.channels);
1823 
1824 	for (i = 0; i < dmac->n_channels; ++i) {
1825 		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1826 					   i + channels_offset);
1827 		if (ret < 0)
1828 			goto error;
1829 	}
1830 
1831 	/* Register the DMAC as a DMA provider for DT. */
1832 	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1833 					 NULL);
1834 	if (ret < 0)
1835 		goto error;
1836 
1837 	/*
1838 	 * Register the DMA engine device.
1839 	 *
1840 	 * Default transfer size of 32 bytes requires 32-byte alignment.
1841 	 */
1842 	engine = &dmac->engine;
1843 	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1844 	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1845 
1846 	engine->dev = &pdev->dev;
1847 	engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1848 
1849 	engine->src_addr_widths = widths;
1850 	engine->dst_addr_widths = widths;
1851 	engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1852 	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1853 
1854 	engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1855 	engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1856 	engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1857 	engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1858 	engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1859 	engine->device_config = rcar_dmac_device_config;
1860 	engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1861 	engine->device_tx_status = rcar_dmac_tx_status;
1862 	engine->device_issue_pending = rcar_dmac_issue_pending;
1863 	engine->device_synchronize = rcar_dmac_device_synchronize;
1864 
1865 	ret = dma_async_device_register(engine);
1866 	if (ret < 0)
1867 		goto error;
1868 
1869 	return 0;
1870 
1871 error:
1872 	of_dma_controller_free(pdev->dev.of_node);
1873 	pm_runtime_disable(&pdev->dev);
1874 	return ret;
1875 }
1876 
1877 static int rcar_dmac_remove(struct platform_device *pdev)
1878 {
1879 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1880 
1881 	of_dma_controller_free(pdev->dev.of_node);
1882 	dma_async_device_unregister(&dmac->engine);
1883 
1884 	pm_runtime_disable(&pdev->dev);
1885 
1886 	return 0;
1887 }
1888 
1889 static void rcar_dmac_shutdown(struct platform_device *pdev)
1890 {
1891 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1892 
1893 	rcar_dmac_stop(dmac);
1894 }
1895 
1896 static const struct of_device_id rcar_dmac_of_ids[] = {
1897 	{ .compatible = "renesas,rcar-dmac", },
1898 	{ /* Sentinel */ }
1899 };
1900 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1901 
1902 static struct platform_driver rcar_dmac_driver = {
1903 	.driver		= {
1904 		.pm	= &rcar_dmac_pm,
1905 		.name	= "rcar-dmac",
1906 		.of_match_table = rcar_dmac_of_ids,
1907 	},
1908 	.probe		= rcar_dmac_probe,
1909 	.remove		= rcar_dmac_remove,
1910 	.shutdown	= rcar_dmac_shutdown,
1911 };
1912 
1913 module_platform_driver(rcar_dmac_driver);
1914 
1915 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1916 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1917 MODULE_LICENSE("GPL v2");
1918