xref: /openbmc/linux/drivers/dma/sa11x0-dma.c (revision 73eb94a0)
1 /*
2  * SA11x0 DMAengine support
3  *
4  * Copyright (C) 2012 Russell King
5  *   Derived in part from arch/arm/mach-sa1100/dma.c,
6  *   Copyright (C) 2000, 2001 by Nicolas Pitre
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/sched.h>
13 #include <linux/device.h>
14 #include <linux/dmaengine.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/sa11x0-dma.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 
24 #define NR_PHY_CHAN	6
25 #define DMA_ALIGN	3
26 #define DMA_MAX_SIZE	0x1fff
27 #define DMA_CHUNK_SIZE	0x1000
28 
29 #define DMA_DDAR	0x00
30 #define DMA_DCSR_S	0x04
31 #define DMA_DCSR_C	0x08
32 #define DMA_DCSR_R	0x0c
33 #define DMA_DBSA	0x10
34 #define DMA_DBTA	0x14
35 #define DMA_DBSB	0x18
36 #define DMA_DBTB	0x1c
37 #define DMA_SIZE	0x20
38 
39 #define DCSR_RUN	(1 << 0)
40 #define DCSR_IE		(1 << 1)
41 #define DCSR_ERROR	(1 << 2)
42 #define DCSR_DONEA	(1 << 3)
43 #define DCSR_STRTA	(1 << 4)
44 #define DCSR_DONEB	(1 << 5)
45 #define DCSR_STRTB	(1 << 6)
46 #define DCSR_BIU	(1 << 7)
47 
48 #define DDAR_RW		(1 << 0)	/* 0 = W, 1 = R */
49 #define DDAR_E		(1 << 1)	/* 0 = LE, 1 = BE */
50 #define DDAR_BS		(1 << 2)	/* 0 = BS4, 1 = BS8 */
51 #define DDAR_DW		(1 << 3)	/* 0 = 8b, 1 = 16b */
52 #define DDAR_Ser0UDCTr	(0x0 << 4)
53 #define DDAR_Ser0UDCRc	(0x1 << 4)
54 #define DDAR_Ser1SDLCTr	(0x2 << 4)
55 #define DDAR_Ser1SDLCRc	(0x3 << 4)
56 #define DDAR_Ser1UARTTr	(0x4 << 4)
57 #define DDAR_Ser1UARTRc	(0x5 << 4)
58 #define DDAR_Ser2ICPTr	(0x6 << 4)
59 #define DDAR_Ser2ICPRc	(0x7 << 4)
60 #define DDAR_Ser3UARTTr	(0x8 << 4)
61 #define DDAR_Ser3UARTRc	(0x9 << 4)
62 #define DDAR_Ser4MCP0Tr	(0xa << 4)
63 #define DDAR_Ser4MCP0Rc	(0xb << 4)
64 #define DDAR_Ser4MCP1Tr	(0xc << 4)
65 #define DDAR_Ser4MCP1Rc	(0xd << 4)
66 #define DDAR_Ser4SSPTr	(0xe << 4)
67 #define DDAR_Ser4SSPRc	(0xf << 4)
68 
69 struct sa11x0_dma_sg {
70 	u32			addr;
71 	u32			len;
72 };
73 
74 struct sa11x0_dma_desc {
75 	struct dma_async_tx_descriptor tx;
76 	u32			ddar;
77 	size_t			size;
78 
79 	/* maybe protected by c->lock */
80 	struct list_head	node;
81 	unsigned		sglen;
82 	struct sa11x0_dma_sg	sg[0];
83 };
84 
85 struct sa11x0_dma_phy;
86 
87 struct sa11x0_dma_chan {
88 	struct dma_chan		chan;
89 	spinlock_t		lock;
90 	dma_cookie_t		lc;
91 
92 	/* protected by c->lock */
93 	struct sa11x0_dma_phy	*phy;
94 	enum dma_status		status;
95 	struct list_head	desc_submitted;
96 	struct list_head	desc_issued;
97 
98 	/* protected by d->lock */
99 	struct list_head	node;
100 
101 	u32			ddar;
102 	const char		*name;
103 };
104 
105 struct sa11x0_dma_phy {
106 	void __iomem		*base;
107 	struct sa11x0_dma_dev	*dev;
108 	unsigned		num;
109 
110 	struct sa11x0_dma_chan	*vchan;
111 
112 	/* Protected by c->lock */
113 	unsigned		sg_load;
114 	struct sa11x0_dma_desc	*txd_load;
115 	unsigned		sg_done;
116 	struct sa11x0_dma_desc	*txd_done;
117 #ifdef CONFIG_PM_SLEEP
118 	u32			dbs[2];
119 	u32			dbt[2];
120 	u32			dcsr;
121 #endif
122 };
123 
124 struct sa11x0_dma_dev {
125 	struct dma_device	slave;
126 	void __iomem		*base;
127 	spinlock_t		lock;
128 	struct tasklet_struct	task;
129 	struct list_head	chan_pending;
130 	struct list_head	desc_complete;
131 	struct sa11x0_dma_phy	phy[NR_PHY_CHAN];
132 };
133 
134 static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
135 {
136 	return container_of(chan, struct sa11x0_dma_chan, chan);
137 }
138 
139 static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
140 {
141 	return container_of(dmadev, struct sa11x0_dma_dev, slave);
142 }
143 
144 static struct sa11x0_dma_desc *to_sa11x0_dma_tx(struct dma_async_tx_descriptor *tx)
145 {
146 	return container_of(tx, struct sa11x0_dma_desc, tx);
147 }
148 
149 static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
150 {
151 	if (list_empty(&c->desc_issued))
152 		return NULL;
153 
154 	return list_first_entry(&c->desc_issued, struct sa11x0_dma_desc, node);
155 }
156 
157 static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
158 {
159 	list_del(&txd->node);
160 	p->txd_load = txd;
161 	p->sg_load = 0;
162 
163 	dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
164 		p->num, txd, txd->tx.cookie, txd->ddar);
165 }
166 
167 static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
168 	struct sa11x0_dma_chan *c)
169 {
170 	struct sa11x0_dma_desc *txd = p->txd_load;
171 	struct sa11x0_dma_sg *sg;
172 	void __iomem *base = p->base;
173 	unsigned dbsx, dbtx;
174 	u32 dcsr;
175 
176 	if (!txd)
177 		return;
178 
179 	dcsr = readl_relaxed(base + DMA_DCSR_R);
180 
181 	/* Don't try to load the next transfer if both buffers are started */
182 	if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
183 		return;
184 
185 	if (p->sg_load == txd->sglen) {
186 		struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);
187 
188 		/*
189 		 * We have reached the end of the current descriptor.
190 		 * Peek at the next descriptor, and if compatible with
191 		 * the current, start processing it.
192 		 */
193 		if (txn && txn->ddar == txd->ddar) {
194 			txd = txn;
195 			sa11x0_dma_start_desc(p, txn);
196 		} else {
197 			p->txd_load = NULL;
198 			return;
199 		}
200 	}
201 
202 	sg = &txd->sg[p->sg_load++];
203 
204 	/* Select buffer to load according to channel status */
205 	if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
206 	    ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
207 		dbsx = DMA_DBSA;
208 		dbtx = DMA_DBTA;
209 		dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
210 	} else {
211 		dbsx = DMA_DBSB;
212 		dbtx = DMA_DBTB;
213 		dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
214 	}
215 
216 	writel_relaxed(sg->addr, base + dbsx);
217 	writel_relaxed(sg->len, base + dbtx);
218 	writel(dcsr, base + DMA_DCSR_S);
219 
220 	dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
221 		p->num, dcsr,
222 		'A' + (dbsx == DMA_DBSB), sg->addr,
223 		'A' + (dbtx == DMA_DBTB), sg->len);
224 }
225 
226 static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
227 	struct sa11x0_dma_chan *c)
228 {
229 	struct sa11x0_dma_desc *txd = p->txd_done;
230 
231 	if (++p->sg_done == txd->sglen) {
232 		struct sa11x0_dma_dev *d = p->dev;
233 
234 		dev_vdbg(d->slave.dev, "pchan %u: txd %p[%x]: completed\n",
235 			p->num, p->txd_done, p->txd_done->tx.cookie);
236 
237 		c->lc = txd->tx.cookie;
238 
239 		spin_lock(&d->lock);
240 		list_add_tail(&txd->node, &d->desc_complete);
241 		spin_unlock(&d->lock);
242 
243 		p->sg_done = 0;
244 		p->txd_done = p->txd_load;
245 
246 		tasklet_schedule(&d->task);
247 	}
248 
249 	sa11x0_dma_start_sg(p, c);
250 }
251 
252 static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
253 {
254 	struct sa11x0_dma_phy *p = dev_id;
255 	struct sa11x0_dma_dev *d = p->dev;
256 	struct sa11x0_dma_chan *c;
257 	u32 dcsr;
258 
259 	dcsr = readl_relaxed(p->base + DMA_DCSR_R);
260 	if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
261 		return IRQ_NONE;
262 
263 	/* Clear reported status bits */
264 	writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
265 		p->base + DMA_DCSR_C);
266 
267 	dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);
268 
269 	if (dcsr & DCSR_ERROR) {
270 		dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
271 			p->num, dcsr,
272 			readl_relaxed(p->base + DMA_DDAR),
273 			readl_relaxed(p->base + DMA_DBSA),
274 			readl_relaxed(p->base + DMA_DBTA),
275 			readl_relaxed(p->base + DMA_DBSB),
276 			readl_relaxed(p->base + DMA_DBTB));
277 	}
278 
279 	c = p->vchan;
280 	if (c) {
281 		unsigned long flags;
282 
283 		spin_lock_irqsave(&c->lock, flags);
284 		/*
285 		 * Now that we're holding the lock, check that the vchan
286 		 * really is associated with this pchan before touching the
287 		 * hardware.  This should always succeed, because we won't
288 		 * change p->vchan or c->phy while the channel is actively
289 		 * transferring.
290 		 */
291 		if (c->phy == p) {
292 			if (dcsr & DCSR_DONEA)
293 				sa11x0_dma_complete(p, c);
294 			if (dcsr & DCSR_DONEB)
295 				sa11x0_dma_complete(p, c);
296 		}
297 		spin_unlock_irqrestore(&c->lock, flags);
298 	}
299 
300 	return IRQ_HANDLED;
301 }
302 
303 static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
304 {
305 	struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);
306 
307 	/* If the issued list is empty, we have no further txds to process */
308 	if (txd) {
309 		struct sa11x0_dma_phy *p = c->phy;
310 
311 		sa11x0_dma_start_desc(p, txd);
312 		p->txd_done = txd;
313 		p->sg_done = 0;
314 
315 		/* The channel should not have any transfers started */
316 		WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) &
317 				      (DCSR_STRTA | DCSR_STRTB));
318 
319 		/* Clear the run and start bits before changing DDAR */
320 		writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
321 			       p->base + DMA_DCSR_C);
322 		writel_relaxed(txd->ddar, p->base + DMA_DDAR);
323 
324 		/* Try to start both buffers */
325 		sa11x0_dma_start_sg(p, c);
326 		sa11x0_dma_start_sg(p, c);
327 	}
328 }
329 
330 static void sa11x0_dma_tasklet(unsigned long arg)
331 {
332 	struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
333 	struct sa11x0_dma_phy *p;
334 	struct sa11x0_dma_chan *c;
335 	struct sa11x0_dma_desc *txd, *txn;
336 	LIST_HEAD(head);
337 	unsigned pch, pch_alloc = 0;
338 
339 	dev_dbg(d->slave.dev, "tasklet enter\n");
340 
341 	/* Get the completed tx descriptors */
342 	spin_lock_irq(&d->lock);
343 	list_splice_init(&d->desc_complete, &head);
344 	spin_unlock_irq(&d->lock);
345 
346 	list_for_each_entry(txd, &head, node) {
347 		c = to_sa11x0_dma_chan(txd->tx.chan);
348 
349 		dev_dbg(d->slave.dev, "vchan %p: txd %p[%x] completed\n",
350 			c, txd, txd->tx.cookie);
351 
352 		spin_lock_irq(&c->lock);
353 		p = c->phy;
354 		if (p) {
355 			if (!p->txd_done)
356 				sa11x0_dma_start_txd(c);
357 			if (!p->txd_done) {
358 				/* No current txd associated with this channel */
359 				dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);
360 
361 				/* Mark this channel free */
362 				c->phy = NULL;
363 				p->vchan = NULL;
364 			}
365 		}
366 		spin_unlock_irq(&c->lock);
367 	}
368 
369 	spin_lock_irq(&d->lock);
370 	for (pch = 0; pch < NR_PHY_CHAN; pch++) {
371 		p = &d->phy[pch];
372 
373 		if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
374 			c = list_first_entry(&d->chan_pending,
375 				struct sa11x0_dma_chan, node);
376 			list_del_init(&c->node);
377 
378 			pch_alloc |= 1 << pch;
379 
380 			/* Mark this channel allocated */
381 			p->vchan = c;
382 
383 			dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, c);
384 		}
385 	}
386 	spin_unlock_irq(&d->lock);
387 
388 	for (pch = 0; pch < NR_PHY_CHAN; pch++) {
389 		if (pch_alloc & (1 << pch)) {
390 			p = &d->phy[pch];
391 			c = p->vchan;
392 
393 			spin_lock_irq(&c->lock);
394 			c->phy = p;
395 
396 			sa11x0_dma_start_txd(c);
397 			spin_unlock_irq(&c->lock);
398 		}
399 	}
400 
401 	/* Now free the completed tx descriptor, and call their callbacks */
402 	list_for_each_entry_safe(txd, txn, &head, node) {
403 		dma_async_tx_callback callback = txd->tx.callback;
404 		void *callback_param = txd->tx.callback_param;
405 
406 		dev_dbg(d->slave.dev, "txd %p[%x]: callback and free\n",
407 			txd, txd->tx.cookie);
408 
409 		kfree(txd);
410 
411 		if (callback)
412 			callback(callback_param);
413 	}
414 
415 	dev_dbg(d->slave.dev, "tasklet exit\n");
416 }
417 
418 
419 static void sa11x0_dma_desc_free(struct sa11x0_dma_dev *d, struct list_head *head)
420 {
421 	struct sa11x0_dma_desc *txd, *txn;
422 
423 	list_for_each_entry_safe(txd, txn, head, node) {
424 		dev_dbg(d->slave.dev, "txd %p: freeing\n", txd);
425 		kfree(txd);
426 	}
427 }
428 
429 static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
430 {
431 	return 0;
432 }
433 
434 static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
435 {
436 	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
437 	struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
438 	unsigned long flags;
439 	LIST_HEAD(head);
440 
441 	spin_lock_irqsave(&c->lock, flags);
442 	spin_lock(&d->lock);
443 	list_del_init(&c->node);
444 	spin_unlock(&d->lock);
445 
446 	list_splice_tail_init(&c->desc_submitted, &head);
447 	list_splice_tail_init(&c->desc_issued, &head);
448 	spin_unlock_irqrestore(&c->lock, flags);
449 
450 	sa11x0_dma_desc_free(d, &head);
451 }
452 
453 static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
454 {
455 	unsigned reg;
456 	u32 dcsr;
457 
458 	dcsr = readl_relaxed(p->base + DMA_DCSR_R);
459 
460 	if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
461 	    (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
462 		reg = DMA_DBSA;
463 	else
464 		reg = DMA_DBSB;
465 
466 	return readl_relaxed(p->base + reg);
467 }
468 
469 static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
470 	dma_cookie_t cookie, struct dma_tx_state *state)
471 {
472 	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
473 	struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
474 	struct sa11x0_dma_phy *p;
475 	struct sa11x0_dma_desc *txd;
476 	dma_cookie_t last_used, last_complete;
477 	unsigned long flags;
478 	enum dma_status ret;
479 	size_t bytes = 0;
480 
481 	last_used = c->chan.cookie;
482 	last_complete = c->lc;
483 
484 	ret = dma_async_is_complete(cookie, last_complete, last_used);
485 	if (ret == DMA_SUCCESS) {
486 		dma_set_tx_state(state, last_complete, last_used, 0);
487 		return ret;
488 	}
489 
490 	spin_lock_irqsave(&c->lock, flags);
491 	p = c->phy;
492 	ret = c->status;
493 	if (p) {
494 		dma_addr_t addr = sa11x0_dma_pos(p);
495 
496 		dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);
497 
498 		txd = p->txd_done;
499 		if (txd) {
500 			unsigned i;
501 
502 			for (i = 0; i < txd->sglen; i++) {
503 				dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
504 					i, txd->sg[i].addr, txd->sg[i].len);
505 				if (addr >= txd->sg[i].addr &&
506 				    addr < txd->sg[i].addr + txd->sg[i].len) {
507 					unsigned len;
508 
509 					len = txd->sg[i].len -
510 						(addr - txd->sg[i].addr);
511 					dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
512 						i, len);
513 					bytes += len;
514 					i++;
515 					break;
516 				}
517 			}
518 			for (; i < txd->sglen; i++) {
519 				dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
520 					i, txd->sg[i].addr, txd->sg[i].len);
521 				bytes += txd->sg[i].len;
522 			}
523 		}
524 		if (txd != p->txd_load && p->txd_load)
525 			bytes += p->txd_load->size;
526 	}
527 	list_for_each_entry(txd, &c->desc_issued, node) {
528 		bytes += txd->size;
529 	}
530 	spin_unlock_irqrestore(&c->lock, flags);
531 
532 	dma_set_tx_state(state, last_complete, last_used, bytes);
533 
534 	dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", bytes);
535 
536 	return ret;
537 }
538 
539 /*
540  * Move pending txds to the issued list, and re-init pending list.
541  * If not already pending, add this channel to the list of pending
542  * channels and trigger the tasklet to run.
543  */
544 static void sa11x0_dma_issue_pending(struct dma_chan *chan)
545 {
546 	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
547 	struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
548 	unsigned long flags;
549 
550 	spin_lock_irqsave(&c->lock, flags);
551 	list_splice_tail_init(&c->desc_submitted, &c->desc_issued);
552 	if (!list_empty(&c->desc_issued)) {
553 		spin_lock(&d->lock);
554 		if (!c->phy && list_empty(&c->node)) {
555 			list_add_tail(&c->node, &d->chan_pending);
556 			tasklet_schedule(&d->task);
557 			dev_dbg(d->slave.dev, "vchan %p: issued\n", c);
558 		}
559 		spin_unlock(&d->lock);
560 	} else
561 		dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", c);
562 	spin_unlock_irqrestore(&c->lock, flags);
563 }
564 
565 static dma_cookie_t sa11x0_dma_tx_submit(struct dma_async_tx_descriptor *tx)
566 {
567 	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(tx->chan);
568 	struct sa11x0_dma_desc *txd = to_sa11x0_dma_tx(tx);
569 	unsigned long flags;
570 
571 	spin_lock_irqsave(&c->lock, flags);
572 	c->chan.cookie += 1;
573 	if (c->chan.cookie < 0)
574 		c->chan.cookie = 1;
575 	txd->tx.cookie = c->chan.cookie;
576 
577 	list_add_tail(&txd->node, &c->desc_submitted);
578 	spin_unlock_irqrestore(&c->lock, flags);
579 
580 	dev_dbg(tx->chan->device->dev, "vchan %p: txd %p[%x]: submitted\n",
581 		c, txd, txd->tx.cookie);
582 
583 	return txd->tx.cookie;
584 }
585 
586 static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
587 	struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
588 	enum dma_transfer_direction dir, unsigned long flags, void *context)
589 {
590 	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
591 	struct sa11x0_dma_desc *txd;
592 	struct scatterlist *sgent;
593 	unsigned i, j = sglen;
594 	size_t size = 0;
595 
596 	/* SA11x0 channels can only operate in their native direction */
597 	if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
598 		dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
599 			c, c->ddar, dir);
600 		return NULL;
601 	}
602 
603 	/* Do not allow zero-sized txds */
604 	if (sglen == 0)
605 		return NULL;
606 
607 	for_each_sg(sg, sgent, sglen, i) {
608 		dma_addr_t addr = sg_dma_address(sgent);
609 		unsigned int len = sg_dma_len(sgent);
610 
611 		if (len > DMA_MAX_SIZE)
612 			j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
613 		if (addr & DMA_ALIGN) {
614 			dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
615 				c, addr);
616 			return NULL;
617 		}
618 	}
619 
620 	txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
621 	if (!txd) {
622 		dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", c);
623 		return NULL;
624 	}
625 
626 	j = 0;
627 	for_each_sg(sg, sgent, sglen, i) {
628 		dma_addr_t addr = sg_dma_address(sgent);
629 		unsigned len = sg_dma_len(sgent);
630 
631 		size += len;
632 
633 		do {
634 			unsigned tlen = len;
635 
636 			/*
637 			 * Check whether the transfer will fit.  If not, try
638 			 * to split the transfer up such that we end up with
639 			 * equal chunks - but make sure that we preserve the
640 			 * alignment.  This avoids small segments.
641 			 */
642 			if (tlen > DMA_MAX_SIZE) {
643 				unsigned mult = DIV_ROUND_UP(tlen,
644 					DMA_MAX_SIZE & ~DMA_ALIGN);
645 
646 				tlen = (tlen / mult) & ~DMA_ALIGN;
647 			}
648 
649 			txd->sg[j].addr = addr;
650 			txd->sg[j].len = tlen;
651 
652 			addr += tlen;
653 			len -= tlen;
654 			j++;
655 		} while (len);
656 	}
657 
658 	dma_async_tx_descriptor_init(&txd->tx, &c->chan);
659 	txd->tx.flags = flags;
660 	txd->tx.tx_submit = sa11x0_dma_tx_submit;
661 	txd->ddar = c->ddar;
662 	txd->size = size;
663 	txd->sglen = j;
664 
665 	dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
666 		c, txd, txd->size, txd->sglen);
667 
668 	return &txd->tx;
669 }
670 
671 static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
672 {
673 	u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
674 	dma_addr_t addr;
675 	enum dma_slave_buswidth width;
676 	u32 maxburst;
677 
678 	if (ddar & DDAR_RW) {
679 		addr = cfg->src_addr;
680 		width = cfg->src_addr_width;
681 		maxburst = cfg->src_maxburst;
682 	} else {
683 		addr = cfg->dst_addr;
684 		width = cfg->dst_addr_width;
685 		maxburst = cfg->dst_maxburst;
686 	}
687 
688 	if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
689 	     width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
690 	    (maxburst != 4 && maxburst != 8))
691 		return -EINVAL;
692 
693 	if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
694 		ddar |= DDAR_DW;
695 	if (maxburst == 8)
696 		ddar |= DDAR_BS;
697 
698 	dev_dbg(c->chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
699 		c, addr, width, maxburst);
700 
701 	c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;
702 
703 	return 0;
704 }
705 
706 static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
707 	unsigned long arg)
708 {
709 	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
710 	struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
711 	struct sa11x0_dma_phy *p;
712 	LIST_HEAD(head);
713 	unsigned long flags;
714 	int ret;
715 
716 	switch (cmd) {
717 	case DMA_SLAVE_CONFIG:
718 		return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);
719 
720 	case DMA_TERMINATE_ALL:
721 		dev_dbg(d->slave.dev, "vchan %p: terminate all\n", c);
722 		/* Clear the tx descriptor lists */
723 		spin_lock_irqsave(&c->lock, flags);
724 		list_splice_tail_init(&c->desc_submitted, &head);
725 		list_splice_tail_init(&c->desc_issued, &head);
726 
727 		p = c->phy;
728 		if (p) {
729 			struct sa11x0_dma_desc *txd, *txn;
730 
731 			dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
732 			/* vchan is assigned to a pchan - stop the channel */
733 			writel(DCSR_RUN | DCSR_IE |
734 				DCSR_STRTA | DCSR_DONEA |
735 				DCSR_STRTB | DCSR_DONEB,
736 				p->base + DMA_DCSR_C);
737 
738 			list_for_each_entry_safe(txd, txn, &d->desc_complete, node)
739 				if (txd->tx.chan == &c->chan)
740 					list_move(&txd->node, &head);
741 
742 			if (p->txd_load) {
743 				if (p->txd_load != p->txd_done)
744 					list_add_tail(&p->txd_load->node, &head);
745 				p->txd_load = NULL;
746 			}
747 			if (p->txd_done) {
748 				list_add_tail(&p->txd_done->node, &head);
749 				p->txd_done = NULL;
750 			}
751 			c->phy = NULL;
752 			spin_lock(&d->lock);
753 			p->vchan = NULL;
754 			spin_unlock(&d->lock);
755 			tasklet_schedule(&d->task);
756 		}
757 		spin_unlock_irqrestore(&c->lock, flags);
758 		sa11x0_dma_desc_free(d, &head);
759 		ret = 0;
760 		break;
761 
762 	case DMA_PAUSE:
763 		dev_dbg(d->slave.dev, "vchan %p: pause\n", c);
764 		spin_lock_irqsave(&c->lock, flags);
765 		if (c->status == DMA_IN_PROGRESS) {
766 			c->status = DMA_PAUSED;
767 
768 			p = c->phy;
769 			if (p) {
770 				writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
771 			} else {
772 				spin_lock(&d->lock);
773 				list_del_init(&c->node);
774 				spin_unlock(&d->lock);
775 			}
776 		}
777 		spin_unlock_irqrestore(&c->lock, flags);
778 		ret = 0;
779 		break;
780 
781 	case DMA_RESUME:
782 		dev_dbg(d->slave.dev, "vchan %p: resume\n", c);
783 		spin_lock_irqsave(&c->lock, flags);
784 		if (c->status == DMA_PAUSED) {
785 			c->status = DMA_IN_PROGRESS;
786 
787 			p = c->phy;
788 			if (p) {
789 				writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S);
790 			} else if (!list_empty(&c->desc_issued)) {
791 				spin_lock(&d->lock);
792 				list_add_tail(&c->node, &d->chan_pending);
793 				spin_unlock(&d->lock);
794 			}
795 		}
796 		spin_unlock_irqrestore(&c->lock, flags);
797 		ret = 0;
798 		break;
799 
800 	default:
801 		ret = -ENXIO;
802 		break;
803 	}
804 
805 	return ret;
806 }
807 
808 struct sa11x0_dma_channel_desc {
809 	u32 ddar;
810 	const char *name;
811 };
812 
813 #define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
814 static const struct sa11x0_dma_channel_desc chan_desc[] = {
815 	CD(Ser0UDCTr, 0),
816 	CD(Ser0UDCRc, DDAR_RW),
817 	CD(Ser1SDLCTr, 0),
818 	CD(Ser1SDLCRc, DDAR_RW),
819 	CD(Ser1UARTTr, 0),
820 	CD(Ser1UARTRc, DDAR_RW),
821 	CD(Ser2ICPTr, 0),
822 	CD(Ser2ICPRc, DDAR_RW),
823 	CD(Ser3UARTTr, 0),
824 	CD(Ser3UARTRc, DDAR_RW),
825 	CD(Ser4MCP0Tr, 0),
826 	CD(Ser4MCP0Rc, DDAR_RW),
827 	CD(Ser4MCP1Tr, 0),
828 	CD(Ser4MCP1Rc, DDAR_RW),
829 	CD(Ser4SSPTr, 0),
830 	CD(Ser4SSPRc, DDAR_RW),
831 };
832 
833 static int __devinit sa11x0_dma_init_dmadev(struct dma_device *dmadev,
834 	struct device *dev)
835 {
836 	unsigned i;
837 
838 	dmadev->chancnt = ARRAY_SIZE(chan_desc);
839 	INIT_LIST_HEAD(&dmadev->channels);
840 	dmadev->dev = dev;
841 	dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
842 	dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
843 	dmadev->device_control = sa11x0_dma_control;
844 	dmadev->device_tx_status = sa11x0_dma_tx_status;
845 	dmadev->device_issue_pending = sa11x0_dma_issue_pending;
846 
847 	for (i = 0; i < dmadev->chancnt; i++) {
848 		struct sa11x0_dma_chan *c;
849 
850 		c = kzalloc(sizeof(*c), GFP_KERNEL);
851 		if (!c) {
852 			dev_err(dev, "no memory for channel %u\n", i);
853 			return -ENOMEM;
854 		}
855 
856 		c->chan.device = dmadev;
857 		c->status = DMA_IN_PROGRESS;
858 		c->ddar = chan_desc[i].ddar;
859 		c->name = chan_desc[i].name;
860 		spin_lock_init(&c->lock);
861 		INIT_LIST_HEAD(&c->desc_submitted);
862 		INIT_LIST_HEAD(&c->desc_issued);
863 		INIT_LIST_HEAD(&c->node);
864 		list_add_tail(&c->chan.device_node, &dmadev->channels);
865 	}
866 
867 	return dma_async_device_register(dmadev);
868 }
869 
870 static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
871 	void *data)
872 {
873 	int irq = platform_get_irq(pdev, nr);
874 
875 	if (irq <= 0)
876 		return -ENXIO;
877 
878 	return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
879 }
880 
881 static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
882 	void *data)
883 {
884 	int irq = platform_get_irq(pdev, nr);
885 	if (irq > 0)
886 		free_irq(irq, data);
887 }
888 
889 static void sa11x0_dma_free_channels(struct dma_device *dmadev)
890 {
891 	struct sa11x0_dma_chan *c, *cn;
892 
893 	list_for_each_entry_safe(c, cn, &dmadev->channels, chan.device_node) {
894 		list_del(&c->chan.device_node);
895 		kfree(c);
896 	}
897 }
898 
899 static int __devinit sa11x0_dma_probe(struct platform_device *pdev)
900 {
901 	struct sa11x0_dma_dev *d;
902 	struct resource *res;
903 	unsigned i;
904 	int ret;
905 
906 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
907 	if (!res)
908 		return -ENXIO;
909 
910 	d = kzalloc(sizeof(*d), GFP_KERNEL);
911 	if (!d) {
912 		ret = -ENOMEM;
913 		goto err_alloc;
914 	}
915 
916 	spin_lock_init(&d->lock);
917 	INIT_LIST_HEAD(&d->chan_pending);
918 	INIT_LIST_HEAD(&d->desc_complete);
919 
920 	d->base = ioremap(res->start, resource_size(res));
921 	if (!d->base) {
922 		ret = -ENOMEM;
923 		goto err_ioremap;
924 	}
925 
926 	tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);
927 
928 	for (i = 0; i < NR_PHY_CHAN; i++) {
929 		struct sa11x0_dma_phy *p = &d->phy[i];
930 
931 		p->dev = d;
932 		p->num = i;
933 		p->base = d->base + i * DMA_SIZE;
934 		writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
935 			DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB,
936 			p->base + DMA_DCSR_C);
937 		writel_relaxed(0, p->base + DMA_DDAR);
938 
939 		ret = sa11x0_dma_request_irq(pdev, i, p);
940 		if (ret) {
941 			while (i) {
942 				i--;
943 				sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
944 			}
945 			goto err_irq;
946 		}
947 	}
948 
949 	dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
950 	d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
951 	ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
952 	if (ret) {
953 		dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
954 			ret);
955 		goto err_slave_reg;
956 	}
957 
958 	platform_set_drvdata(pdev, d);
959 	return 0;
960 
961  err_slave_reg:
962 	sa11x0_dma_free_channels(&d->slave);
963 	for (i = 0; i < NR_PHY_CHAN; i++)
964 		sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
965  err_irq:
966 	tasklet_kill(&d->task);
967 	iounmap(d->base);
968  err_ioremap:
969 	kfree(d);
970  err_alloc:
971 	return ret;
972 }
973 
974 static int __devexit sa11x0_dma_remove(struct platform_device *pdev)
975 {
976 	struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
977 	unsigned pch;
978 
979 	dma_async_device_unregister(&d->slave);
980 
981 	sa11x0_dma_free_channels(&d->slave);
982 	for (pch = 0; pch < NR_PHY_CHAN; pch++)
983 		sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
984 	tasklet_kill(&d->task);
985 	iounmap(d->base);
986 	kfree(d);
987 
988 	return 0;
989 }
990 
991 #ifdef CONFIG_PM_SLEEP
992 static int sa11x0_dma_suspend(struct device *dev)
993 {
994 	struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
995 	unsigned pch;
996 
997 	for (pch = 0; pch < NR_PHY_CHAN; pch++) {
998 		struct sa11x0_dma_phy *p = &d->phy[pch];
999 		u32 dcsr, saved_dcsr;
1000 
1001 		dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1002 		if (dcsr & DCSR_RUN) {
1003 			writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
1004 			dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1005 		}
1006 
1007 		saved_dcsr &= DCSR_RUN | DCSR_IE;
1008 		if (dcsr & DCSR_BIU) {
1009 			p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
1010 			p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
1011 			p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
1012 			p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
1013 			saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
1014 				      (dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
1015 		} else {
1016 			p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
1017 			p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
1018 			p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
1019 			p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
1020 			saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
1021 		}
1022 		p->dcsr = saved_dcsr;
1023 
1024 		writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C);
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static int sa11x0_dma_resume(struct device *dev)
1031 {
1032 	struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
1033 	unsigned pch;
1034 
1035 	for (pch = 0; pch < NR_PHY_CHAN; pch++) {
1036 		struct sa11x0_dma_phy *p = &d->phy[pch];
1037 		struct sa11x0_dma_desc *txd = NULL;
1038 		u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1039 
1040 		WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));
1041 
1042 		if (p->txd_done)
1043 			txd = p->txd_done;
1044 		else if (p->txd_load)
1045 			txd = p->txd_load;
1046 
1047 		if (!txd)
1048 			continue;
1049 
1050 		writel_relaxed(txd->ddar, p->base + DMA_DDAR);
1051 
1052 		writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
1053 		writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
1054 		writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
1055 		writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
1056 		writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
1057 	}
1058 
1059 	return 0;
1060 }
1061 #endif
1062 
1063 static const struct dev_pm_ops sa11x0_dma_pm_ops = {
1064 	.suspend_noirq = sa11x0_dma_suspend,
1065 	.resume_noirq = sa11x0_dma_resume,
1066 	.freeze_noirq = sa11x0_dma_suspend,
1067 	.thaw_noirq = sa11x0_dma_resume,
1068 	.poweroff_noirq = sa11x0_dma_suspend,
1069 	.restore_noirq = sa11x0_dma_resume,
1070 };
1071 
1072 static struct platform_driver sa11x0_dma_driver = {
1073 	.driver = {
1074 		.name	= "sa11x0-dma",
1075 		.owner	= THIS_MODULE,
1076 		.pm	= &sa11x0_dma_pm_ops,
1077 	},
1078 	.probe		= sa11x0_dma_probe,
1079 	.remove		= __devexit_p(sa11x0_dma_remove),
1080 };
1081 
1082 bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
1083 {
1084 	if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
1085 		struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
1086 		const char *p = param;
1087 
1088 		return !strcmp(c->name, p);
1089 	}
1090 	return false;
1091 }
1092 EXPORT_SYMBOL(sa11x0_dma_filter_fn);
1093 
1094 static int __init sa11x0_dma_init(void)
1095 {
1096 	return platform_driver_register(&sa11x0_dma_driver);
1097 }
1098 subsys_initcall(sa11x0_dma_init);
1099 
1100 static void __exit sa11x0_dma_exit(void)
1101 {
1102 	platform_driver_unregister(&sa11x0_dma_driver);
1103 }
1104 module_exit(sa11x0_dma_exit);
1105 
1106 MODULE_AUTHOR("Russell King");
1107 MODULE_DESCRIPTION("SA-11x0 DMA driver");
1108 MODULE_LICENSE("GPL v2");
1109 MODULE_ALIAS("platform:sa11x0-dma");
1110