xref: /openbmc/linux/drivers/dma/qcom/hidma_ll.c (revision 82003e04)
1 /*
2  * Qualcomm Technologies HIDMA DMA engine low level code
3  *
4  * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/dmaengine.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/iopoll.h>
25 #include <linux/kfifo.h>
26 #include <linux/bitops.h>
27 
28 #include "hidma.h"
29 
30 #define HIDMA_EVRE_SIZE			16	/* each EVRE is 16 bytes */
31 
32 #define HIDMA_TRCA_CTRLSTS_REG			0x000
33 #define HIDMA_TRCA_RING_LOW_REG		0x008
34 #define HIDMA_TRCA_RING_HIGH_REG		0x00C
35 #define HIDMA_TRCA_RING_LEN_REG		0x010
36 #define HIDMA_TRCA_DOORBELL_REG		0x400
37 
38 #define HIDMA_EVCA_CTRLSTS_REG			0x000
39 #define HIDMA_EVCA_INTCTRL_REG			0x004
40 #define HIDMA_EVCA_RING_LOW_REG		0x008
41 #define HIDMA_EVCA_RING_HIGH_REG		0x00C
42 #define HIDMA_EVCA_RING_LEN_REG		0x010
43 #define HIDMA_EVCA_WRITE_PTR_REG		0x020
44 #define HIDMA_EVCA_DOORBELL_REG		0x400
45 
46 #define HIDMA_EVCA_IRQ_STAT_REG		0x100
47 #define HIDMA_EVCA_IRQ_CLR_REG			0x108
48 #define HIDMA_EVCA_IRQ_EN_REG			0x110
49 
50 #define HIDMA_EVRE_CFG_IDX			0
51 
52 #define HIDMA_EVRE_ERRINFO_BIT_POS		24
53 #define HIDMA_EVRE_CODE_BIT_POS		28
54 
55 #define HIDMA_EVRE_ERRINFO_MASK		GENMASK(3, 0)
56 #define HIDMA_EVRE_CODE_MASK			GENMASK(3, 0)
57 
58 #define HIDMA_CH_CONTROL_MASK			GENMASK(7, 0)
59 #define HIDMA_CH_STATE_MASK			GENMASK(7, 0)
60 #define HIDMA_CH_STATE_BIT_POS			0x8
61 
62 #define HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS	0
63 #define HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS	1
64 #define HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS	9
65 #define HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS	10
66 #define HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS	11
67 #define HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS	14
68 
69 #define ENABLE_IRQS (BIT(HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS)	| \
70 		     BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS)	| \
71 		     BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS)	| \
72 		     BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS)	| \
73 		     BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS)	| \
74 		     BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS))
75 
76 #define HIDMA_INCREMENT_ITERATOR(iter, size, ring_size)	\
77 do {								\
78 	iter += size;						\
79 	if (iter >= ring_size)					\
80 		iter -= ring_size;				\
81 } while (0)
82 
83 #define HIDMA_CH_STATE(val)	\
84 	((val >> HIDMA_CH_STATE_BIT_POS) & HIDMA_CH_STATE_MASK)
85 
86 #define HIDMA_ERR_INT_MASK				\
87 	(BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS)   |	\
88 	 BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) |	\
89 	 BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS)	    |	\
90 	 BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS)    |	\
91 	 BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS))
92 
93 enum ch_command {
94 	HIDMA_CH_DISABLE = 0,
95 	HIDMA_CH_ENABLE = 1,
96 	HIDMA_CH_SUSPEND = 2,
97 	HIDMA_CH_RESET = 9,
98 };
99 
100 enum ch_state {
101 	HIDMA_CH_DISABLED = 0,
102 	HIDMA_CH_ENABLED = 1,
103 	HIDMA_CH_RUNNING = 2,
104 	HIDMA_CH_SUSPENDED = 3,
105 	HIDMA_CH_STOPPED = 4,
106 };
107 
108 enum tre_type {
109 	HIDMA_TRE_MEMCPY = 3,
110 };
111 
112 enum err_code {
113 	HIDMA_EVRE_STATUS_COMPLETE = 1,
114 	HIDMA_EVRE_STATUS_ERROR = 4,
115 };
116 
117 static int hidma_is_chan_enabled(int state)
118 {
119 	switch (state) {
120 	case HIDMA_CH_ENABLED:
121 	case HIDMA_CH_RUNNING:
122 		return true;
123 	default:
124 		return false;
125 	}
126 }
127 
128 void hidma_ll_free(struct hidma_lldev *lldev, u32 tre_ch)
129 {
130 	struct hidma_tre *tre;
131 
132 	if (tre_ch >= lldev->nr_tres) {
133 		dev_err(lldev->dev, "invalid TRE number in free:%d", tre_ch);
134 		return;
135 	}
136 
137 	tre = &lldev->trepool[tre_ch];
138 	if (atomic_read(&tre->allocated) != true) {
139 		dev_err(lldev->dev, "trying to free an unused TRE:%d", tre_ch);
140 		return;
141 	}
142 
143 	atomic_set(&tre->allocated, 0);
144 }
145 
146 int hidma_ll_request(struct hidma_lldev *lldev, u32 sig, const char *dev_name,
147 		     void (*callback)(void *data), void *data, u32 *tre_ch)
148 {
149 	unsigned int i;
150 	struct hidma_tre *tre;
151 	u32 *tre_local;
152 
153 	if (!tre_ch || !lldev)
154 		return -EINVAL;
155 
156 	/* need to have at least one empty spot in the queue */
157 	for (i = 0; i < lldev->nr_tres - 1; i++) {
158 		if (atomic_add_unless(&lldev->trepool[i].allocated, 1, 1))
159 			break;
160 	}
161 
162 	if (i == (lldev->nr_tres - 1))
163 		return -ENOMEM;
164 
165 	tre = &lldev->trepool[i];
166 	tre->dma_sig = sig;
167 	tre->dev_name = dev_name;
168 	tre->callback = callback;
169 	tre->data = data;
170 	tre->idx = i;
171 	tre->status = 0;
172 	tre->queued = 0;
173 	tre->err_code = 0;
174 	tre->err_info = 0;
175 	tre->lldev = lldev;
176 	tre_local = &tre->tre_local[0];
177 	tre_local[HIDMA_TRE_CFG_IDX] = HIDMA_TRE_MEMCPY;
178 	tre_local[HIDMA_TRE_CFG_IDX] |= (lldev->chidx & 0xFF) << 8;
179 	tre_local[HIDMA_TRE_CFG_IDX] |= BIT(16);	/* set IEOB */
180 	*tre_ch = i;
181 	if (callback)
182 		callback(data);
183 	return 0;
184 }
185 
186 /*
187  * Multiple TREs may be queued and waiting in the pending queue.
188  */
189 static void hidma_ll_tre_complete(unsigned long arg)
190 {
191 	struct hidma_lldev *lldev = (struct hidma_lldev *)arg;
192 	struct hidma_tre *tre;
193 
194 	while (kfifo_out(&lldev->handoff_fifo, &tre, 1)) {
195 		/* call the user if it has been read by the hardware */
196 		if (tre->callback)
197 			tre->callback(tre->data);
198 	}
199 }
200 
201 static int hidma_post_completed(struct hidma_lldev *lldev, int tre_iterator,
202 				u8 err_info, u8 err_code)
203 {
204 	struct hidma_tre *tre;
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&lldev->lock, flags);
208 	tre = lldev->pending_tre_list[tre_iterator / HIDMA_TRE_SIZE];
209 	if (!tre) {
210 		spin_unlock_irqrestore(&lldev->lock, flags);
211 		dev_warn(lldev->dev, "tre_index [%d] and tre out of sync\n",
212 			 tre_iterator / HIDMA_TRE_SIZE);
213 		return -EINVAL;
214 	}
215 	lldev->pending_tre_list[tre->tre_index] = NULL;
216 
217 	/*
218 	 * Keep track of pending TREs that SW is expecting to receive
219 	 * from HW. We got one now. Decrement our counter.
220 	 */
221 	lldev->pending_tre_count--;
222 	if (lldev->pending_tre_count < 0) {
223 		dev_warn(lldev->dev, "tre count mismatch on completion");
224 		lldev->pending_tre_count = 0;
225 	}
226 
227 	spin_unlock_irqrestore(&lldev->lock, flags);
228 
229 	tre->err_info = err_info;
230 	tre->err_code = err_code;
231 	tre->queued = 0;
232 
233 	kfifo_put(&lldev->handoff_fifo, tre);
234 	tasklet_schedule(&lldev->task);
235 
236 	return 0;
237 }
238 
239 /*
240  * Called to handle the interrupt for the channel.
241  * Return a positive number if TRE or EVRE were consumed on this run.
242  * Return a positive number if there are pending TREs or EVREs.
243  * Return 0 if there is nothing to consume or no pending TREs/EVREs found.
244  */
245 static int hidma_handle_tre_completion(struct hidma_lldev *lldev)
246 {
247 	u32 evre_ring_size = lldev->evre_ring_size;
248 	u32 tre_ring_size = lldev->tre_ring_size;
249 	u32 err_info, err_code, evre_write_off;
250 	u32 tre_iterator, evre_iterator;
251 	u32 num_completed = 0;
252 
253 	evre_write_off = readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
254 	tre_iterator = lldev->tre_processed_off;
255 	evre_iterator = lldev->evre_processed_off;
256 
257 	if ((evre_write_off > evre_ring_size) ||
258 	    (evre_write_off % HIDMA_EVRE_SIZE)) {
259 		dev_err(lldev->dev, "HW reports invalid EVRE write offset\n");
260 		return 0;
261 	}
262 
263 	/*
264 	 * By the time control reaches here the number of EVREs and TREs
265 	 * may not match. Only consume the ones that hardware told us.
266 	 */
267 	while ((evre_iterator != evre_write_off)) {
268 		u32 *current_evre = lldev->evre_ring + evre_iterator;
269 		u32 cfg;
270 
271 		cfg = current_evre[HIDMA_EVRE_CFG_IDX];
272 		err_info = cfg >> HIDMA_EVRE_ERRINFO_BIT_POS;
273 		err_info &= HIDMA_EVRE_ERRINFO_MASK;
274 		err_code =
275 		    (cfg >> HIDMA_EVRE_CODE_BIT_POS) & HIDMA_EVRE_CODE_MASK;
276 
277 		if (hidma_post_completed(lldev, tre_iterator, err_info,
278 					 err_code))
279 			break;
280 
281 		HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
282 					 tre_ring_size);
283 		HIDMA_INCREMENT_ITERATOR(evre_iterator, HIDMA_EVRE_SIZE,
284 					 evre_ring_size);
285 
286 		/*
287 		 * Read the new event descriptor written by the HW.
288 		 * As we are processing the delivered events, other events
289 		 * get queued to the SW for processing.
290 		 */
291 		evre_write_off =
292 		    readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
293 		num_completed++;
294 	}
295 
296 	if (num_completed) {
297 		u32 evre_read_off = (lldev->evre_processed_off +
298 				     HIDMA_EVRE_SIZE * num_completed);
299 		u32 tre_read_off = (lldev->tre_processed_off +
300 				    HIDMA_TRE_SIZE * num_completed);
301 
302 		evre_read_off = evre_read_off % evre_ring_size;
303 		tre_read_off = tre_read_off % tre_ring_size;
304 
305 		writel(evre_read_off, lldev->evca + HIDMA_EVCA_DOORBELL_REG);
306 
307 		/* record the last processed tre offset */
308 		lldev->tre_processed_off = tre_read_off;
309 		lldev->evre_processed_off = evre_read_off;
310 	}
311 
312 	return num_completed;
313 }
314 
315 void hidma_cleanup_pending_tre(struct hidma_lldev *lldev, u8 err_info,
316 			       u8 err_code)
317 {
318 	u32 tre_iterator;
319 	u32 tre_ring_size = lldev->tre_ring_size;
320 	int num_completed = 0;
321 	u32 tre_read_off;
322 
323 	tre_iterator = lldev->tre_processed_off;
324 	while (lldev->pending_tre_count) {
325 		if (hidma_post_completed(lldev, tre_iterator, err_info,
326 					 err_code))
327 			break;
328 		HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
329 					 tre_ring_size);
330 		num_completed++;
331 	}
332 	tre_read_off = (lldev->tre_processed_off +
333 			HIDMA_TRE_SIZE * num_completed);
334 
335 	tre_read_off = tre_read_off % tre_ring_size;
336 
337 	/* record the last processed tre offset */
338 	lldev->tre_processed_off = tre_read_off;
339 }
340 
341 static int hidma_ll_reset(struct hidma_lldev *lldev)
342 {
343 	u32 val;
344 	int ret;
345 
346 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
347 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
348 	val |= HIDMA_CH_RESET << 16;
349 	writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
350 
351 	/*
352 	 * Delay 10ms after reset to allow DMA logic to quiesce.
353 	 * Do a polled read up to 1ms and 10ms maximum.
354 	 */
355 	ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
356 				 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
357 				 1000, 10000);
358 	if (ret) {
359 		dev_err(lldev->dev, "transfer channel did not reset\n");
360 		return ret;
361 	}
362 
363 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
364 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
365 	val |= HIDMA_CH_RESET << 16;
366 	writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
367 
368 	/*
369 	 * Delay 10ms after reset to allow DMA logic to quiesce.
370 	 * Do a polled read up to 1ms and 10ms maximum.
371 	 */
372 	ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
373 				 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
374 				 1000, 10000);
375 	if (ret)
376 		return ret;
377 
378 	lldev->trch_state = HIDMA_CH_DISABLED;
379 	lldev->evch_state = HIDMA_CH_DISABLED;
380 	return 0;
381 }
382 
383 /*
384  * The interrupt handler for HIDMA will try to consume as many pending
385  * EVRE from the event queue as possible. Each EVRE has an associated
386  * TRE that holds the user interface parameters. EVRE reports the
387  * result of the transaction. Hardware guarantees ordering between EVREs
388  * and TREs. We use last processed offset to figure out which TRE is
389  * associated with which EVRE. If two TREs are consumed by HW, the EVREs
390  * are in order in the event ring.
391  *
392  * This handler will do a one pass for consuming EVREs. Other EVREs may
393  * be delivered while we are working. It will try to consume incoming
394  * EVREs one more time and return.
395  *
396  * For unprocessed EVREs, hardware will trigger another interrupt until
397  * all the interrupt bits are cleared.
398  *
399  * Hardware guarantees that by the time interrupt is observed, all data
400  * transactions in flight are delivered to their respective places and
401  * are visible to the CPU.
402  *
403  * On demand paging for IOMMU is only supported for PCIe via PRI
404  * (Page Request Interface) not for HIDMA. All other hardware instances
405  * including HIDMA work on pinned DMA addresses.
406  *
407  * HIDMA is not aware of IOMMU presence since it follows the DMA API. All
408  * IOMMU latency will be built into the data movement time. By the time
409  * interrupt happens, IOMMU lookups + data movement has already taken place.
410  *
411  * While the first read in a typical PCI endpoint ISR flushes all outstanding
412  * requests traditionally to the destination, this concept does not apply
413  * here for this HW.
414  */
415 irqreturn_t hidma_ll_inthandler(int chirq, void *arg)
416 {
417 	struct hidma_lldev *lldev = arg;
418 	u32 status;
419 	u32 enable;
420 	u32 cause;
421 
422 	/*
423 	 * Fine tuned for this HW...
424 	 *
425 	 * This ISR has been designed for this particular hardware. Relaxed
426 	 * read and write accessors are used for performance reasons due to
427 	 * interrupt delivery guarantees. Do not copy this code blindly and
428 	 * expect that to work.
429 	 */
430 	status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
431 	enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
432 	cause = status & enable;
433 
434 	while (cause) {
435 		if (cause & HIDMA_ERR_INT_MASK) {
436 			dev_err(lldev->dev, "error 0x%x, disabling...\n",
437 					cause);
438 
439 			/* Clear out pending interrupts */
440 			writel(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
441 
442 			/* No further submissions. */
443 			hidma_ll_disable(lldev);
444 
445 			/* Driver completes the txn and intimates the client.*/
446 			hidma_cleanup_pending_tre(lldev, 0xFF,
447 						  HIDMA_EVRE_STATUS_ERROR);
448 			goto out;
449 		}
450 
451 		/*
452 		 * Try to consume as many EVREs as possible.
453 		 */
454 		hidma_handle_tre_completion(lldev);
455 
456 		/* We consumed TREs or there are pending TREs or EVREs. */
457 		writel_relaxed(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
458 
459 		/*
460 		 * Another interrupt might have arrived while we are
461 		 * processing this one. Read the new cause.
462 		 */
463 		status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
464 		enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
465 		cause = status & enable;
466 	}
467 
468 out:
469 	return IRQ_HANDLED;
470 }
471 
472 int hidma_ll_enable(struct hidma_lldev *lldev)
473 {
474 	u32 val;
475 	int ret;
476 
477 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
478 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
479 	val |= HIDMA_CH_ENABLE << 16;
480 	writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
481 
482 	ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
483 				 hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
484 				 1000, 10000);
485 	if (ret) {
486 		dev_err(lldev->dev, "event channel did not get enabled\n");
487 		return ret;
488 	}
489 
490 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
491 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
492 	val |= HIDMA_CH_ENABLE << 16;
493 	writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
494 
495 	ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
496 				 hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
497 				 1000, 10000);
498 	if (ret) {
499 		dev_err(lldev->dev, "transfer channel did not get enabled\n");
500 		return ret;
501 	}
502 
503 	lldev->trch_state = HIDMA_CH_ENABLED;
504 	lldev->evch_state = HIDMA_CH_ENABLED;
505 
506 	return 0;
507 }
508 
509 void hidma_ll_start(struct hidma_lldev *lldev)
510 {
511 	unsigned long irqflags;
512 
513 	spin_lock_irqsave(&lldev->lock, irqflags);
514 	writel(lldev->tre_write_offset, lldev->trca + HIDMA_TRCA_DOORBELL_REG);
515 	spin_unlock_irqrestore(&lldev->lock, irqflags);
516 }
517 
518 bool hidma_ll_isenabled(struct hidma_lldev *lldev)
519 {
520 	u32 val;
521 
522 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
523 	lldev->trch_state = HIDMA_CH_STATE(val);
524 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
525 	lldev->evch_state = HIDMA_CH_STATE(val);
526 
527 	/* both channels have to be enabled before calling this function */
528 	if (hidma_is_chan_enabled(lldev->trch_state) &&
529 	    hidma_is_chan_enabled(lldev->evch_state))
530 		return true;
531 
532 	return false;
533 }
534 
535 void hidma_ll_queue_request(struct hidma_lldev *lldev, u32 tre_ch)
536 {
537 	struct hidma_tre *tre;
538 	unsigned long flags;
539 
540 	tre = &lldev->trepool[tre_ch];
541 
542 	/* copy the TRE into its location in the TRE ring */
543 	spin_lock_irqsave(&lldev->lock, flags);
544 	tre->tre_index = lldev->tre_write_offset / HIDMA_TRE_SIZE;
545 	lldev->pending_tre_list[tre->tre_index] = tre;
546 	memcpy(lldev->tre_ring + lldev->tre_write_offset,
547 			&tre->tre_local[0], HIDMA_TRE_SIZE);
548 	tre->err_code = 0;
549 	tre->err_info = 0;
550 	tre->queued = 1;
551 	lldev->pending_tre_count++;
552 	lldev->tre_write_offset = (lldev->tre_write_offset + HIDMA_TRE_SIZE)
553 					% lldev->tre_ring_size;
554 	spin_unlock_irqrestore(&lldev->lock, flags);
555 }
556 
557 /*
558  * Note that even though we stop this channel if there is a pending transaction
559  * in flight it will complete and follow the callback. This request will
560  * prevent further requests to be made.
561  */
562 int hidma_ll_disable(struct hidma_lldev *lldev)
563 {
564 	u32 val;
565 	int ret;
566 
567 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
568 	lldev->evch_state = HIDMA_CH_STATE(val);
569 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
570 	lldev->trch_state = HIDMA_CH_STATE(val);
571 
572 	/* already suspended by this OS */
573 	if ((lldev->trch_state == HIDMA_CH_SUSPENDED) ||
574 	    (lldev->evch_state == HIDMA_CH_SUSPENDED))
575 		return 0;
576 
577 	/* already stopped by the manager */
578 	if ((lldev->trch_state == HIDMA_CH_STOPPED) ||
579 	    (lldev->evch_state == HIDMA_CH_STOPPED))
580 		return 0;
581 
582 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
583 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
584 	val |= HIDMA_CH_SUSPEND << 16;
585 	writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
586 
587 	/*
588 	 * Start the wait right after the suspend is confirmed.
589 	 * Do a polled read up to 1ms and 10ms maximum.
590 	 */
591 	ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
592 				 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
593 				 1000, 10000);
594 	if (ret)
595 		return ret;
596 
597 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
598 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
599 	val |= HIDMA_CH_SUSPEND << 16;
600 	writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
601 
602 	/*
603 	 * Start the wait right after the suspend is confirmed
604 	 * Delay up to 10ms after reset to allow DMA logic to quiesce.
605 	 */
606 	ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
607 				 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
608 				 1000, 10000);
609 	if (ret)
610 		return ret;
611 
612 	lldev->trch_state = HIDMA_CH_SUSPENDED;
613 	lldev->evch_state = HIDMA_CH_SUSPENDED;
614 	return 0;
615 }
616 
617 void hidma_ll_set_transfer_params(struct hidma_lldev *lldev, u32 tre_ch,
618 				  dma_addr_t src, dma_addr_t dest, u32 len,
619 				  u32 flags)
620 {
621 	struct hidma_tre *tre;
622 	u32 *tre_local;
623 
624 	if (tre_ch >= lldev->nr_tres) {
625 		dev_err(lldev->dev, "invalid TRE number in transfer params:%d",
626 			tre_ch);
627 		return;
628 	}
629 
630 	tre = &lldev->trepool[tre_ch];
631 	if (atomic_read(&tre->allocated) != true) {
632 		dev_err(lldev->dev, "trying to set params on an unused TRE:%d",
633 			tre_ch);
634 		return;
635 	}
636 
637 	tre_local = &tre->tre_local[0];
638 	tre_local[HIDMA_TRE_LEN_IDX] = len;
639 	tre_local[HIDMA_TRE_SRC_LOW_IDX] = lower_32_bits(src);
640 	tre_local[HIDMA_TRE_SRC_HI_IDX] = upper_32_bits(src);
641 	tre_local[HIDMA_TRE_DEST_LOW_IDX] = lower_32_bits(dest);
642 	tre_local[HIDMA_TRE_DEST_HI_IDX] = upper_32_bits(dest);
643 	tre->int_flags = flags;
644 }
645 
646 /*
647  * Called during initialization and after an error condition
648  * to restore hardware state.
649  */
650 int hidma_ll_setup(struct hidma_lldev *lldev)
651 {
652 	int rc;
653 	u64 addr;
654 	u32 val;
655 	u32 nr_tres = lldev->nr_tres;
656 
657 	lldev->pending_tre_count = 0;
658 	lldev->tre_processed_off = 0;
659 	lldev->evre_processed_off = 0;
660 	lldev->tre_write_offset = 0;
661 
662 	/* disable interrupts */
663 	writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
664 
665 	/* clear all pending interrupts */
666 	val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
667 	writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
668 
669 	rc = hidma_ll_reset(lldev);
670 	if (rc)
671 		return rc;
672 
673 	/*
674 	 * Clear all pending interrupts again.
675 	 * Otherwise, we observe reset complete interrupts.
676 	 */
677 	val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
678 	writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
679 
680 	/* disable interrupts again after reset */
681 	writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
682 
683 	addr = lldev->tre_dma;
684 	writel(lower_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_LOW_REG);
685 	writel(upper_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_HIGH_REG);
686 	writel(lldev->tre_ring_size, lldev->trca + HIDMA_TRCA_RING_LEN_REG);
687 
688 	addr = lldev->evre_dma;
689 	writel(lower_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_LOW_REG);
690 	writel(upper_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_HIGH_REG);
691 	writel(HIDMA_EVRE_SIZE * nr_tres,
692 			lldev->evca + HIDMA_EVCA_RING_LEN_REG);
693 
694 	/* support IRQ only for now */
695 	val = readl(lldev->evca + HIDMA_EVCA_INTCTRL_REG);
696 	val &= ~0xF;
697 	val |= 0x1;
698 	writel(val, lldev->evca + HIDMA_EVCA_INTCTRL_REG);
699 
700 	/* clear all pending interrupts and enable them */
701 	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
702 	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
703 
704 	return hidma_ll_enable(lldev);
705 }
706 
707 struct hidma_lldev *hidma_ll_init(struct device *dev, u32 nr_tres,
708 				  void __iomem *trca, void __iomem *evca,
709 				  u8 chidx)
710 {
711 	u32 required_bytes;
712 	struct hidma_lldev *lldev;
713 	int rc;
714 	size_t sz;
715 
716 	if (!trca || !evca || !dev || !nr_tres)
717 		return NULL;
718 
719 	/* need at least four TREs */
720 	if (nr_tres < 4)
721 		return NULL;
722 
723 	/* need an extra space */
724 	nr_tres += 1;
725 
726 	lldev = devm_kzalloc(dev, sizeof(struct hidma_lldev), GFP_KERNEL);
727 	if (!lldev)
728 		return NULL;
729 
730 	lldev->evca = evca;
731 	lldev->trca = trca;
732 	lldev->dev = dev;
733 	sz = sizeof(struct hidma_tre);
734 	lldev->trepool = devm_kcalloc(lldev->dev, nr_tres, sz, GFP_KERNEL);
735 	if (!lldev->trepool)
736 		return NULL;
737 
738 	required_bytes = sizeof(lldev->pending_tre_list[0]);
739 	lldev->pending_tre_list = devm_kcalloc(dev, nr_tres, required_bytes,
740 					       GFP_KERNEL);
741 	if (!lldev->pending_tre_list)
742 		return NULL;
743 
744 	sz = (HIDMA_TRE_SIZE + 1) * nr_tres;
745 	lldev->tre_ring = dmam_alloc_coherent(dev, sz, &lldev->tre_dma,
746 					      GFP_KERNEL);
747 	if (!lldev->tre_ring)
748 		return NULL;
749 
750 	memset(lldev->tre_ring, 0, (HIDMA_TRE_SIZE + 1) * nr_tres);
751 	lldev->tre_ring_size = HIDMA_TRE_SIZE * nr_tres;
752 	lldev->nr_tres = nr_tres;
753 
754 	/* the TRE ring has to be TRE_SIZE aligned */
755 	if (!IS_ALIGNED(lldev->tre_dma, HIDMA_TRE_SIZE)) {
756 		u8 tre_ring_shift;
757 
758 		tre_ring_shift = lldev->tre_dma % HIDMA_TRE_SIZE;
759 		tre_ring_shift = HIDMA_TRE_SIZE - tre_ring_shift;
760 		lldev->tre_dma += tre_ring_shift;
761 		lldev->tre_ring += tre_ring_shift;
762 	}
763 
764 	sz = (HIDMA_EVRE_SIZE + 1) * nr_tres;
765 	lldev->evre_ring = dmam_alloc_coherent(dev, sz, &lldev->evre_dma,
766 					       GFP_KERNEL);
767 	if (!lldev->evre_ring)
768 		return NULL;
769 
770 	memset(lldev->evre_ring, 0, (HIDMA_EVRE_SIZE + 1) * nr_tres);
771 	lldev->evre_ring_size = HIDMA_EVRE_SIZE * nr_tres;
772 
773 	/* the EVRE ring has to be EVRE_SIZE aligned */
774 	if (!IS_ALIGNED(lldev->evre_dma, HIDMA_EVRE_SIZE)) {
775 		u8 evre_ring_shift;
776 
777 		evre_ring_shift = lldev->evre_dma % HIDMA_EVRE_SIZE;
778 		evre_ring_shift = HIDMA_EVRE_SIZE - evre_ring_shift;
779 		lldev->evre_dma += evre_ring_shift;
780 		lldev->evre_ring += evre_ring_shift;
781 	}
782 	lldev->nr_tres = nr_tres;
783 	lldev->chidx = chidx;
784 
785 	sz = nr_tres * sizeof(struct hidma_tre *);
786 	rc = kfifo_alloc(&lldev->handoff_fifo, sz, GFP_KERNEL);
787 	if (rc)
788 		return NULL;
789 
790 	rc = hidma_ll_setup(lldev);
791 	if (rc)
792 		return NULL;
793 
794 	spin_lock_init(&lldev->lock);
795 	tasklet_init(&lldev->task, hidma_ll_tre_complete, (unsigned long)lldev);
796 	lldev->initialized = 1;
797 	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
798 	return lldev;
799 }
800 
801 int hidma_ll_uninit(struct hidma_lldev *lldev)
802 {
803 	u32 required_bytes;
804 	int rc = 0;
805 	u32 val;
806 
807 	if (!lldev)
808 		return -ENODEV;
809 
810 	if (!lldev->initialized)
811 		return 0;
812 
813 	lldev->initialized = 0;
814 
815 	required_bytes = sizeof(struct hidma_tre) * lldev->nr_tres;
816 	tasklet_kill(&lldev->task);
817 	memset(lldev->trepool, 0, required_bytes);
818 	lldev->trepool = NULL;
819 	lldev->pending_tre_count = 0;
820 	lldev->tre_write_offset = 0;
821 
822 	rc = hidma_ll_reset(lldev);
823 
824 	/*
825 	 * Clear all pending interrupts again.
826 	 * Otherwise, we observe reset complete interrupts.
827 	 */
828 	val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
829 	writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
830 	writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
831 	return rc;
832 }
833 
834 enum dma_status hidma_ll_status(struct hidma_lldev *lldev, u32 tre_ch)
835 {
836 	enum dma_status ret = DMA_ERROR;
837 	struct hidma_tre *tre;
838 	unsigned long flags;
839 	u8 err_code;
840 
841 	spin_lock_irqsave(&lldev->lock, flags);
842 
843 	tre = &lldev->trepool[tre_ch];
844 	err_code = tre->err_code;
845 
846 	if (err_code & HIDMA_EVRE_STATUS_COMPLETE)
847 		ret = DMA_COMPLETE;
848 	else if (err_code & HIDMA_EVRE_STATUS_ERROR)
849 		ret = DMA_ERROR;
850 	else
851 		ret = DMA_IN_PROGRESS;
852 	spin_unlock_irqrestore(&lldev->lock, flags);
853 
854 	return ret;
855 }
856