xref: /openbmc/linux/drivers/dma/qcom/hidma_ll.c (revision 6a551c11)
1 /*
2  * Qualcomm Technologies HIDMA DMA engine low level code
3  *
4  * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/dmaengine.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/iopoll.h>
25 #include <linux/kfifo.h>
26 #include <linux/bitops.h>
27 
28 #include "hidma.h"
29 
30 #define HIDMA_EVRE_SIZE			16	/* each EVRE is 16 bytes */
31 
32 #define HIDMA_TRCA_CTRLSTS_REG			0x000
33 #define HIDMA_TRCA_RING_LOW_REG		0x008
34 #define HIDMA_TRCA_RING_HIGH_REG		0x00C
35 #define HIDMA_TRCA_RING_LEN_REG		0x010
36 #define HIDMA_TRCA_DOORBELL_REG		0x400
37 
38 #define HIDMA_EVCA_CTRLSTS_REG			0x000
39 #define HIDMA_EVCA_INTCTRL_REG			0x004
40 #define HIDMA_EVCA_RING_LOW_REG		0x008
41 #define HIDMA_EVCA_RING_HIGH_REG		0x00C
42 #define HIDMA_EVCA_RING_LEN_REG		0x010
43 #define HIDMA_EVCA_WRITE_PTR_REG		0x020
44 #define HIDMA_EVCA_DOORBELL_REG		0x400
45 
46 #define HIDMA_EVCA_IRQ_STAT_REG		0x100
47 #define HIDMA_EVCA_IRQ_CLR_REG			0x108
48 #define HIDMA_EVCA_IRQ_EN_REG			0x110
49 
50 #define HIDMA_EVRE_CFG_IDX			0
51 
52 #define HIDMA_EVRE_ERRINFO_BIT_POS		24
53 #define HIDMA_EVRE_CODE_BIT_POS		28
54 
55 #define HIDMA_EVRE_ERRINFO_MASK		GENMASK(3, 0)
56 #define HIDMA_EVRE_CODE_MASK			GENMASK(3, 0)
57 
58 #define HIDMA_CH_CONTROL_MASK			GENMASK(7, 0)
59 #define HIDMA_CH_STATE_MASK			GENMASK(7, 0)
60 #define HIDMA_CH_STATE_BIT_POS			0x8
61 
62 #define HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS	0
63 #define HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS	1
64 #define HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS	9
65 #define HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS	10
66 #define HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS	11
67 #define HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS	14
68 
69 #define ENABLE_IRQS (BIT(HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS)	| \
70 		     BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS)	| \
71 		     BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS)	| \
72 		     BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS)	| \
73 		     BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS)	| \
74 		     BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS))
75 
76 #define HIDMA_INCREMENT_ITERATOR(iter, size, ring_size)	\
77 do {								\
78 	iter += size;						\
79 	if (iter >= ring_size)					\
80 		iter -= ring_size;				\
81 } while (0)
82 
83 #define HIDMA_CH_STATE(val)	\
84 	((val >> HIDMA_CH_STATE_BIT_POS) & HIDMA_CH_STATE_MASK)
85 
86 #define HIDMA_ERR_INT_MASK				\
87 	(BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS)   |	\
88 	 BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) |	\
89 	 BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS)	    |	\
90 	 BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS)    |	\
91 	 BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS))
92 
93 enum ch_command {
94 	HIDMA_CH_DISABLE = 0,
95 	HIDMA_CH_ENABLE = 1,
96 	HIDMA_CH_SUSPEND = 2,
97 	HIDMA_CH_RESET = 9,
98 };
99 
100 enum ch_state {
101 	HIDMA_CH_DISABLED = 0,
102 	HIDMA_CH_ENABLED = 1,
103 	HIDMA_CH_RUNNING = 2,
104 	HIDMA_CH_SUSPENDED = 3,
105 	HIDMA_CH_STOPPED = 4,
106 };
107 
108 enum tre_type {
109 	HIDMA_TRE_MEMCPY = 3,
110 };
111 
112 enum err_code {
113 	HIDMA_EVRE_STATUS_COMPLETE = 1,
114 	HIDMA_EVRE_STATUS_ERROR = 4,
115 };
116 
117 static int hidma_is_chan_enabled(int state)
118 {
119 	switch (state) {
120 	case HIDMA_CH_ENABLED:
121 	case HIDMA_CH_RUNNING:
122 		return true;
123 	default:
124 		return false;
125 	}
126 }
127 
128 void hidma_ll_free(struct hidma_lldev *lldev, u32 tre_ch)
129 {
130 	struct hidma_tre *tre;
131 
132 	if (tre_ch >= lldev->nr_tres) {
133 		dev_err(lldev->dev, "invalid TRE number in free:%d", tre_ch);
134 		return;
135 	}
136 
137 	tre = &lldev->trepool[tre_ch];
138 	if (atomic_read(&tre->allocated) != true) {
139 		dev_err(lldev->dev, "trying to free an unused TRE:%d", tre_ch);
140 		return;
141 	}
142 
143 	atomic_set(&tre->allocated, 0);
144 }
145 
146 int hidma_ll_request(struct hidma_lldev *lldev, u32 sig, const char *dev_name,
147 		     void (*callback)(void *data), void *data, u32 *tre_ch)
148 {
149 	unsigned int i;
150 	struct hidma_tre *tre;
151 	u32 *tre_local;
152 
153 	if (!tre_ch || !lldev)
154 		return -EINVAL;
155 
156 	/* need to have at least one empty spot in the queue */
157 	for (i = 0; i < lldev->nr_tres - 1; i++) {
158 		if (atomic_add_unless(&lldev->trepool[i].allocated, 1, 1))
159 			break;
160 	}
161 
162 	if (i == (lldev->nr_tres - 1))
163 		return -ENOMEM;
164 
165 	tre = &lldev->trepool[i];
166 	tre->dma_sig = sig;
167 	tre->dev_name = dev_name;
168 	tre->callback = callback;
169 	tre->data = data;
170 	tre->idx = i;
171 	tre->status = 0;
172 	tre->queued = 0;
173 	tre->err_code = 0;
174 	tre->err_info = 0;
175 	tre->lldev = lldev;
176 	tre_local = &tre->tre_local[0];
177 	tre_local[HIDMA_TRE_CFG_IDX] = HIDMA_TRE_MEMCPY;
178 	tre_local[HIDMA_TRE_CFG_IDX] |= (lldev->chidx & 0xFF) << 8;
179 	tre_local[HIDMA_TRE_CFG_IDX] |= BIT(16);	/* set IEOB */
180 	*tre_ch = i;
181 	if (callback)
182 		callback(data);
183 	return 0;
184 }
185 
186 /*
187  * Multiple TREs may be queued and waiting in the pending queue.
188  */
189 static void hidma_ll_tre_complete(unsigned long arg)
190 {
191 	struct hidma_lldev *lldev = (struct hidma_lldev *)arg;
192 	struct hidma_tre *tre;
193 
194 	while (kfifo_out(&lldev->handoff_fifo, &tre, 1)) {
195 		/* call the user if it has been read by the hardware */
196 		if (tre->callback)
197 			tre->callback(tre->data);
198 	}
199 }
200 
201 static int hidma_post_completed(struct hidma_lldev *lldev, int tre_iterator,
202 				u8 err_info, u8 err_code)
203 {
204 	struct hidma_tre *tre;
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&lldev->lock, flags);
208 	tre = lldev->pending_tre_list[tre_iterator / HIDMA_TRE_SIZE];
209 	if (!tre) {
210 		spin_unlock_irqrestore(&lldev->lock, flags);
211 		dev_warn(lldev->dev, "tre_index [%d] and tre out of sync\n",
212 			 tre_iterator / HIDMA_TRE_SIZE);
213 		return -EINVAL;
214 	}
215 	lldev->pending_tre_list[tre->tre_index] = NULL;
216 
217 	/*
218 	 * Keep track of pending TREs that SW is expecting to receive
219 	 * from HW. We got one now. Decrement our counter.
220 	 */
221 	lldev->pending_tre_count--;
222 	if (lldev->pending_tre_count < 0) {
223 		dev_warn(lldev->dev, "tre count mismatch on completion");
224 		lldev->pending_tre_count = 0;
225 	}
226 
227 	spin_unlock_irqrestore(&lldev->lock, flags);
228 
229 	tre->err_info = err_info;
230 	tre->err_code = err_code;
231 	tre->queued = 0;
232 
233 	kfifo_put(&lldev->handoff_fifo, tre);
234 	tasklet_schedule(&lldev->task);
235 
236 	return 0;
237 }
238 
239 /*
240  * Called to handle the interrupt for the channel.
241  * Return a positive number if TRE or EVRE were consumed on this run.
242  * Return a positive number if there are pending TREs or EVREs.
243  * Return 0 if there is nothing to consume or no pending TREs/EVREs found.
244  */
245 static int hidma_handle_tre_completion(struct hidma_lldev *lldev)
246 {
247 	u32 evre_ring_size = lldev->evre_ring_size;
248 	u32 tre_ring_size = lldev->tre_ring_size;
249 	u32 err_info, err_code, evre_write_off;
250 	u32 tre_iterator, evre_iterator;
251 	u32 num_completed = 0;
252 
253 	evre_write_off = readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
254 	tre_iterator = lldev->tre_processed_off;
255 	evre_iterator = lldev->evre_processed_off;
256 
257 	if ((evre_write_off > evre_ring_size) ||
258 	    (evre_write_off % HIDMA_EVRE_SIZE)) {
259 		dev_err(lldev->dev, "HW reports invalid EVRE write offset\n");
260 		return 0;
261 	}
262 
263 	/*
264 	 * By the time control reaches here the number of EVREs and TREs
265 	 * may not match. Only consume the ones that hardware told us.
266 	 */
267 	while ((evre_iterator != evre_write_off)) {
268 		u32 *current_evre = lldev->evre_ring + evre_iterator;
269 		u32 cfg;
270 
271 		cfg = current_evre[HIDMA_EVRE_CFG_IDX];
272 		err_info = cfg >> HIDMA_EVRE_ERRINFO_BIT_POS;
273 		err_info &= HIDMA_EVRE_ERRINFO_MASK;
274 		err_code =
275 		    (cfg >> HIDMA_EVRE_CODE_BIT_POS) & HIDMA_EVRE_CODE_MASK;
276 
277 		if (hidma_post_completed(lldev, tre_iterator, err_info,
278 					 err_code))
279 			break;
280 
281 		HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
282 					 tre_ring_size);
283 		HIDMA_INCREMENT_ITERATOR(evre_iterator, HIDMA_EVRE_SIZE,
284 					 evre_ring_size);
285 
286 		/*
287 		 * Read the new event descriptor written by the HW.
288 		 * As we are processing the delivered events, other events
289 		 * get queued to the SW for processing.
290 		 */
291 		evre_write_off =
292 		    readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
293 		num_completed++;
294 	}
295 
296 	if (num_completed) {
297 		u32 evre_read_off = (lldev->evre_processed_off +
298 				     HIDMA_EVRE_SIZE * num_completed);
299 		u32 tre_read_off = (lldev->tre_processed_off +
300 				    HIDMA_TRE_SIZE * num_completed);
301 
302 		evre_read_off = evre_read_off % evre_ring_size;
303 		tre_read_off = tre_read_off % tre_ring_size;
304 
305 		writel(evre_read_off, lldev->evca + HIDMA_EVCA_DOORBELL_REG);
306 
307 		/* record the last processed tre offset */
308 		lldev->tre_processed_off = tre_read_off;
309 		lldev->evre_processed_off = evre_read_off;
310 	}
311 
312 	return num_completed;
313 }
314 
315 void hidma_cleanup_pending_tre(struct hidma_lldev *lldev, u8 err_info,
316 			       u8 err_code)
317 {
318 	u32 tre_iterator;
319 	u32 tre_ring_size = lldev->tre_ring_size;
320 	int num_completed = 0;
321 	u32 tre_read_off;
322 
323 	tre_iterator = lldev->tre_processed_off;
324 	while (lldev->pending_tre_count) {
325 		if (hidma_post_completed(lldev, tre_iterator, err_info,
326 					 err_code))
327 			break;
328 		HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
329 					 tre_ring_size);
330 		num_completed++;
331 	}
332 	tre_read_off = (lldev->tre_processed_off +
333 			HIDMA_TRE_SIZE * num_completed);
334 
335 	tre_read_off = tre_read_off % tre_ring_size;
336 
337 	/* record the last processed tre offset */
338 	lldev->tre_processed_off = tre_read_off;
339 }
340 
341 static int hidma_ll_reset(struct hidma_lldev *lldev)
342 {
343 	u32 val;
344 	int ret;
345 
346 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
347 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
348 	val |= HIDMA_CH_RESET << 16;
349 	writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
350 
351 	/*
352 	 * Delay 10ms after reset to allow DMA logic to quiesce.
353 	 * Do a polled read up to 1ms and 10ms maximum.
354 	 */
355 	ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
356 				 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
357 				 1000, 10000);
358 	if (ret) {
359 		dev_err(lldev->dev, "transfer channel did not reset\n");
360 		return ret;
361 	}
362 
363 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
364 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
365 	val |= HIDMA_CH_RESET << 16;
366 	writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
367 
368 	/*
369 	 * Delay 10ms after reset to allow DMA logic to quiesce.
370 	 * Do a polled read up to 1ms and 10ms maximum.
371 	 */
372 	ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
373 				 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
374 				 1000, 10000);
375 	if (ret)
376 		return ret;
377 
378 	lldev->trch_state = HIDMA_CH_DISABLED;
379 	lldev->evch_state = HIDMA_CH_DISABLED;
380 	return 0;
381 }
382 
383 /*
384  * Abort all transactions and perform a reset.
385  */
386 static void hidma_ll_abort(unsigned long arg)
387 {
388 	struct hidma_lldev *lldev = (struct hidma_lldev *)arg;
389 	u8 err_code = HIDMA_EVRE_STATUS_ERROR;
390 	u8 err_info = 0xFF;
391 	int rc;
392 
393 	hidma_cleanup_pending_tre(lldev, err_info, err_code);
394 
395 	/* reset the channel for recovery */
396 	rc = hidma_ll_setup(lldev);
397 	if (rc) {
398 		dev_err(lldev->dev, "channel reinitialize failed after error\n");
399 		return;
400 	}
401 	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
402 }
403 
404 /*
405  * The interrupt handler for HIDMA will try to consume as many pending
406  * EVRE from the event queue as possible. Each EVRE has an associated
407  * TRE that holds the user interface parameters. EVRE reports the
408  * result of the transaction. Hardware guarantees ordering between EVREs
409  * and TREs. We use last processed offset to figure out which TRE is
410  * associated with which EVRE. If two TREs are consumed by HW, the EVREs
411  * are in order in the event ring.
412  *
413  * This handler will do a one pass for consuming EVREs. Other EVREs may
414  * be delivered while we are working. It will try to consume incoming
415  * EVREs one more time and return.
416  *
417  * For unprocessed EVREs, hardware will trigger another interrupt until
418  * all the interrupt bits are cleared.
419  *
420  * Hardware guarantees that by the time interrupt is observed, all data
421  * transactions in flight are delivered to their respective places and
422  * are visible to the CPU.
423  *
424  * On demand paging for IOMMU is only supported for PCIe via PRI
425  * (Page Request Interface) not for HIDMA. All other hardware instances
426  * including HIDMA work on pinned DMA addresses.
427  *
428  * HIDMA is not aware of IOMMU presence since it follows the DMA API. All
429  * IOMMU latency will be built into the data movement time. By the time
430  * interrupt happens, IOMMU lookups + data movement has already taken place.
431  *
432  * While the first read in a typical PCI endpoint ISR flushes all outstanding
433  * requests traditionally to the destination, this concept does not apply
434  * here for this HW.
435  */
436 irqreturn_t hidma_ll_inthandler(int chirq, void *arg)
437 {
438 	struct hidma_lldev *lldev = arg;
439 	u32 status;
440 	u32 enable;
441 	u32 cause;
442 
443 	/*
444 	 * Fine tuned for this HW...
445 	 *
446 	 * This ISR has been designed for this particular hardware. Relaxed
447 	 * read and write accessors are used for performance reasons due to
448 	 * interrupt delivery guarantees. Do not copy this code blindly and
449 	 * expect that to work.
450 	 */
451 	status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
452 	enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
453 	cause = status & enable;
454 
455 	while (cause) {
456 		if (cause & HIDMA_ERR_INT_MASK) {
457 			dev_err(lldev->dev, "error 0x%x, resetting...\n",
458 					cause);
459 
460 			/* Clear out pending interrupts */
461 			writel(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
462 
463 			tasklet_schedule(&lldev->rst_task);
464 			goto out;
465 		}
466 
467 		/*
468 		 * Try to consume as many EVREs as possible.
469 		 */
470 		hidma_handle_tre_completion(lldev);
471 
472 		/* We consumed TREs or there are pending TREs or EVREs. */
473 		writel_relaxed(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
474 
475 		/*
476 		 * Another interrupt might have arrived while we are
477 		 * processing this one. Read the new cause.
478 		 */
479 		status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
480 		enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
481 		cause = status & enable;
482 	}
483 
484 out:
485 	return IRQ_HANDLED;
486 }
487 
488 int hidma_ll_enable(struct hidma_lldev *lldev)
489 {
490 	u32 val;
491 	int ret;
492 
493 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
494 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
495 	val |= HIDMA_CH_ENABLE << 16;
496 	writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
497 
498 	ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
499 				 hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
500 				 1000, 10000);
501 	if (ret) {
502 		dev_err(lldev->dev, "event channel did not get enabled\n");
503 		return ret;
504 	}
505 
506 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
507 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
508 	val |= HIDMA_CH_ENABLE << 16;
509 	writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
510 
511 	ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
512 				 hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
513 				 1000, 10000);
514 	if (ret) {
515 		dev_err(lldev->dev, "transfer channel did not get enabled\n");
516 		return ret;
517 	}
518 
519 	lldev->trch_state = HIDMA_CH_ENABLED;
520 	lldev->evch_state = HIDMA_CH_ENABLED;
521 
522 	return 0;
523 }
524 
525 void hidma_ll_start(struct hidma_lldev *lldev)
526 {
527 	unsigned long irqflags;
528 
529 	spin_lock_irqsave(&lldev->lock, irqflags);
530 	writel(lldev->tre_write_offset, lldev->trca + HIDMA_TRCA_DOORBELL_REG);
531 	spin_unlock_irqrestore(&lldev->lock, irqflags);
532 }
533 
534 bool hidma_ll_isenabled(struct hidma_lldev *lldev)
535 {
536 	u32 val;
537 
538 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
539 	lldev->trch_state = HIDMA_CH_STATE(val);
540 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
541 	lldev->evch_state = HIDMA_CH_STATE(val);
542 
543 	/* both channels have to be enabled before calling this function */
544 	if (hidma_is_chan_enabled(lldev->trch_state) &&
545 	    hidma_is_chan_enabled(lldev->evch_state))
546 		return true;
547 
548 	return false;
549 }
550 
551 void hidma_ll_queue_request(struct hidma_lldev *lldev, u32 tre_ch)
552 {
553 	struct hidma_tre *tre;
554 	unsigned long flags;
555 
556 	tre = &lldev->trepool[tre_ch];
557 
558 	/* copy the TRE into its location in the TRE ring */
559 	spin_lock_irqsave(&lldev->lock, flags);
560 	tre->tre_index = lldev->tre_write_offset / HIDMA_TRE_SIZE;
561 	lldev->pending_tre_list[tre->tre_index] = tre;
562 	memcpy(lldev->tre_ring + lldev->tre_write_offset,
563 			&tre->tre_local[0], HIDMA_TRE_SIZE);
564 	tre->err_code = 0;
565 	tre->err_info = 0;
566 	tre->queued = 1;
567 	lldev->pending_tre_count++;
568 	lldev->tre_write_offset = (lldev->tre_write_offset + HIDMA_TRE_SIZE)
569 					% lldev->tre_ring_size;
570 	spin_unlock_irqrestore(&lldev->lock, flags);
571 }
572 
573 /*
574  * Note that even though we stop this channel if there is a pending transaction
575  * in flight it will complete and follow the callback. This request will
576  * prevent further requests to be made.
577  */
578 int hidma_ll_disable(struct hidma_lldev *lldev)
579 {
580 	u32 val;
581 	int ret;
582 
583 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
584 	lldev->evch_state = HIDMA_CH_STATE(val);
585 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
586 	lldev->trch_state = HIDMA_CH_STATE(val);
587 
588 	/* already suspended by this OS */
589 	if ((lldev->trch_state == HIDMA_CH_SUSPENDED) ||
590 	    (lldev->evch_state == HIDMA_CH_SUSPENDED))
591 		return 0;
592 
593 	/* already stopped by the manager */
594 	if ((lldev->trch_state == HIDMA_CH_STOPPED) ||
595 	    (lldev->evch_state == HIDMA_CH_STOPPED))
596 		return 0;
597 
598 	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
599 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
600 	val |= HIDMA_CH_SUSPEND << 16;
601 	writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
602 
603 	/*
604 	 * Start the wait right after the suspend is confirmed.
605 	 * Do a polled read up to 1ms and 10ms maximum.
606 	 */
607 	ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
608 				 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
609 				 1000, 10000);
610 	if (ret)
611 		return ret;
612 
613 	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
614 	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
615 	val |= HIDMA_CH_SUSPEND << 16;
616 	writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
617 
618 	/*
619 	 * Start the wait right after the suspend is confirmed
620 	 * Delay up to 10ms after reset to allow DMA logic to quiesce.
621 	 */
622 	ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
623 				 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
624 				 1000, 10000);
625 	if (ret)
626 		return ret;
627 
628 	lldev->trch_state = HIDMA_CH_SUSPENDED;
629 	lldev->evch_state = HIDMA_CH_SUSPENDED;
630 	return 0;
631 }
632 
633 void hidma_ll_set_transfer_params(struct hidma_lldev *lldev, u32 tre_ch,
634 				  dma_addr_t src, dma_addr_t dest, u32 len,
635 				  u32 flags)
636 {
637 	struct hidma_tre *tre;
638 	u32 *tre_local;
639 
640 	if (tre_ch >= lldev->nr_tres) {
641 		dev_err(lldev->dev, "invalid TRE number in transfer params:%d",
642 			tre_ch);
643 		return;
644 	}
645 
646 	tre = &lldev->trepool[tre_ch];
647 	if (atomic_read(&tre->allocated) != true) {
648 		dev_err(lldev->dev, "trying to set params on an unused TRE:%d",
649 			tre_ch);
650 		return;
651 	}
652 
653 	tre_local = &tre->tre_local[0];
654 	tre_local[HIDMA_TRE_LEN_IDX] = len;
655 	tre_local[HIDMA_TRE_SRC_LOW_IDX] = lower_32_bits(src);
656 	tre_local[HIDMA_TRE_SRC_HI_IDX] = upper_32_bits(src);
657 	tre_local[HIDMA_TRE_DEST_LOW_IDX] = lower_32_bits(dest);
658 	tre_local[HIDMA_TRE_DEST_HI_IDX] = upper_32_bits(dest);
659 	tre->int_flags = flags;
660 }
661 
662 /*
663  * Called during initialization and after an error condition
664  * to restore hardware state.
665  */
666 int hidma_ll_setup(struct hidma_lldev *lldev)
667 {
668 	int rc;
669 	u64 addr;
670 	u32 val;
671 	u32 nr_tres = lldev->nr_tres;
672 
673 	lldev->pending_tre_count = 0;
674 	lldev->tre_processed_off = 0;
675 	lldev->evre_processed_off = 0;
676 	lldev->tre_write_offset = 0;
677 
678 	/* disable interrupts */
679 	writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
680 
681 	/* clear all pending interrupts */
682 	val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
683 	writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
684 
685 	rc = hidma_ll_reset(lldev);
686 	if (rc)
687 		return rc;
688 
689 	/*
690 	 * Clear all pending interrupts again.
691 	 * Otherwise, we observe reset complete interrupts.
692 	 */
693 	val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
694 	writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
695 
696 	/* disable interrupts again after reset */
697 	writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
698 
699 	addr = lldev->tre_dma;
700 	writel(lower_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_LOW_REG);
701 	writel(upper_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_HIGH_REG);
702 	writel(lldev->tre_ring_size, lldev->trca + HIDMA_TRCA_RING_LEN_REG);
703 
704 	addr = lldev->evre_dma;
705 	writel(lower_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_LOW_REG);
706 	writel(upper_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_HIGH_REG);
707 	writel(HIDMA_EVRE_SIZE * nr_tres,
708 			lldev->evca + HIDMA_EVCA_RING_LEN_REG);
709 
710 	/* support IRQ only for now */
711 	val = readl(lldev->evca + HIDMA_EVCA_INTCTRL_REG);
712 	val &= ~0xF;
713 	val |= 0x1;
714 	writel(val, lldev->evca + HIDMA_EVCA_INTCTRL_REG);
715 
716 	/* clear all pending interrupts and enable them */
717 	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
718 	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
719 
720 	return hidma_ll_enable(lldev);
721 }
722 
723 struct hidma_lldev *hidma_ll_init(struct device *dev, u32 nr_tres,
724 				  void __iomem *trca, void __iomem *evca,
725 				  u8 chidx)
726 {
727 	u32 required_bytes;
728 	struct hidma_lldev *lldev;
729 	int rc;
730 	size_t sz;
731 
732 	if (!trca || !evca || !dev || !nr_tres)
733 		return NULL;
734 
735 	/* need at least four TREs */
736 	if (nr_tres < 4)
737 		return NULL;
738 
739 	/* need an extra space */
740 	nr_tres += 1;
741 
742 	lldev = devm_kzalloc(dev, sizeof(struct hidma_lldev), GFP_KERNEL);
743 	if (!lldev)
744 		return NULL;
745 
746 	lldev->evca = evca;
747 	lldev->trca = trca;
748 	lldev->dev = dev;
749 	sz = sizeof(struct hidma_tre);
750 	lldev->trepool = devm_kcalloc(lldev->dev, nr_tres, sz, GFP_KERNEL);
751 	if (!lldev->trepool)
752 		return NULL;
753 
754 	required_bytes = sizeof(lldev->pending_tre_list[0]);
755 	lldev->pending_tre_list = devm_kcalloc(dev, nr_tres, required_bytes,
756 					       GFP_KERNEL);
757 	if (!lldev->pending_tre_list)
758 		return NULL;
759 
760 	sz = (HIDMA_TRE_SIZE + 1) * nr_tres;
761 	lldev->tre_ring = dmam_alloc_coherent(dev, sz, &lldev->tre_dma,
762 					      GFP_KERNEL);
763 	if (!lldev->tre_ring)
764 		return NULL;
765 
766 	memset(lldev->tre_ring, 0, (HIDMA_TRE_SIZE + 1) * nr_tres);
767 	lldev->tre_ring_size = HIDMA_TRE_SIZE * nr_tres;
768 	lldev->nr_tres = nr_tres;
769 
770 	/* the TRE ring has to be TRE_SIZE aligned */
771 	if (!IS_ALIGNED(lldev->tre_dma, HIDMA_TRE_SIZE)) {
772 		u8 tre_ring_shift;
773 
774 		tre_ring_shift = lldev->tre_dma % HIDMA_TRE_SIZE;
775 		tre_ring_shift = HIDMA_TRE_SIZE - tre_ring_shift;
776 		lldev->tre_dma += tre_ring_shift;
777 		lldev->tre_ring += tre_ring_shift;
778 	}
779 
780 	sz = (HIDMA_EVRE_SIZE + 1) * nr_tres;
781 	lldev->evre_ring = dmam_alloc_coherent(dev, sz, &lldev->evre_dma,
782 					       GFP_KERNEL);
783 	if (!lldev->evre_ring)
784 		return NULL;
785 
786 	memset(lldev->evre_ring, 0, (HIDMA_EVRE_SIZE + 1) * nr_tres);
787 	lldev->evre_ring_size = HIDMA_EVRE_SIZE * nr_tres;
788 
789 	/* the EVRE ring has to be EVRE_SIZE aligned */
790 	if (!IS_ALIGNED(lldev->evre_dma, HIDMA_EVRE_SIZE)) {
791 		u8 evre_ring_shift;
792 
793 		evre_ring_shift = lldev->evre_dma % HIDMA_EVRE_SIZE;
794 		evre_ring_shift = HIDMA_EVRE_SIZE - evre_ring_shift;
795 		lldev->evre_dma += evre_ring_shift;
796 		lldev->evre_ring += evre_ring_shift;
797 	}
798 	lldev->nr_tres = nr_tres;
799 	lldev->chidx = chidx;
800 
801 	sz = nr_tres * sizeof(struct hidma_tre *);
802 	rc = kfifo_alloc(&lldev->handoff_fifo, sz, GFP_KERNEL);
803 	if (rc)
804 		return NULL;
805 
806 	rc = hidma_ll_setup(lldev);
807 	if (rc)
808 		return NULL;
809 
810 	spin_lock_init(&lldev->lock);
811 	tasklet_init(&lldev->rst_task, hidma_ll_abort, (unsigned long)lldev);
812 	tasklet_init(&lldev->task, hidma_ll_tre_complete, (unsigned long)lldev);
813 	lldev->initialized = 1;
814 	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
815 	return lldev;
816 }
817 
818 int hidma_ll_uninit(struct hidma_lldev *lldev)
819 {
820 	u32 required_bytes;
821 	int rc = 0;
822 	u32 val;
823 
824 	if (!lldev)
825 		return -ENODEV;
826 
827 	if (!lldev->initialized)
828 		return 0;
829 
830 	lldev->initialized = 0;
831 
832 	required_bytes = sizeof(struct hidma_tre) * lldev->nr_tres;
833 	tasklet_kill(&lldev->task);
834 	memset(lldev->trepool, 0, required_bytes);
835 	lldev->trepool = NULL;
836 	lldev->pending_tre_count = 0;
837 	lldev->tre_write_offset = 0;
838 
839 	rc = hidma_ll_reset(lldev);
840 
841 	/*
842 	 * Clear all pending interrupts again.
843 	 * Otherwise, we observe reset complete interrupts.
844 	 */
845 	val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
846 	writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
847 	writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
848 	return rc;
849 }
850 
851 enum dma_status hidma_ll_status(struct hidma_lldev *lldev, u32 tre_ch)
852 {
853 	enum dma_status ret = DMA_ERROR;
854 	struct hidma_tre *tre;
855 	unsigned long flags;
856 	u8 err_code;
857 
858 	spin_lock_irqsave(&lldev->lock, flags);
859 
860 	tre = &lldev->trepool[tre_ch];
861 	err_code = tre->err_code;
862 
863 	if (err_code & HIDMA_EVRE_STATUS_COMPLETE)
864 		ret = DMA_COMPLETE;
865 	else if (err_code & HIDMA_EVRE_STATUS_ERROR)
866 		ret = DMA_ERROR;
867 	else
868 		ret = DMA_IN_PROGRESS;
869 	spin_unlock_irqrestore(&lldev->lock, flags);
870 
871 	return ret;
872 }
873