1 /* 2 * Qualcomm Technologies HIDMA DMA engine low level code 3 * 4 * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 and 8 * only version 2 as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/dmaengine.h> 17 #include <linux/slab.h> 18 #include <linux/interrupt.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/iopoll.h> 25 #include <linux/kfifo.h> 26 #include <linux/bitops.h> 27 28 #include "hidma.h" 29 30 #define HIDMA_EVRE_SIZE 16 /* each EVRE is 16 bytes */ 31 32 #define HIDMA_TRCA_CTRLSTS_REG 0x000 33 #define HIDMA_TRCA_RING_LOW_REG 0x008 34 #define HIDMA_TRCA_RING_HIGH_REG 0x00C 35 #define HIDMA_TRCA_RING_LEN_REG 0x010 36 #define HIDMA_TRCA_DOORBELL_REG 0x400 37 38 #define HIDMA_EVCA_CTRLSTS_REG 0x000 39 #define HIDMA_EVCA_INTCTRL_REG 0x004 40 #define HIDMA_EVCA_RING_LOW_REG 0x008 41 #define HIDMA_EVCA_RING_HIGH_REG 0x00C 42 #define HIDMA_EVCA_RING_LEN_REG 0x010 43 #define HIDMA_EVCA_WRITE_PTR_REG 0x020 44 #define HIDMA_EVCA_DOORBELL_REG 0x400 45 46 #define HIDMA_EVCA_IRQ_STAT_REG 0x100 47 #define HIDMA_EVCA_IRQ_CLR_REG 0x108 48 #define HIDMA_EVCA_IRQ_EN_REG 0x110 49 50 #define HIDMA_EVRE_CFG_IDX 0 51 52 #define HIDMA_EVRE_ERRINFO_BIT_POS 24 53 #define HIDMA_EVRE_CODE_BIT_POS 28 54 55 #define HIDMA_EVRE_ERRINFO_MASK GENMASK(3, 0) 56 #define HIDMA_EVRE_CODE_MASK GENMASK(3, 0) 57 58 #define HIDMA_CH_CONTROL_MASK GENMASK(7, 0) 59 #define HIDMA_CH_STATE_MASK GENMASK(7, 0) 60 #define HIDMA_CH_STATE_BIT_POS 0x8 61 62 #define HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS 0 63 #define HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS 1 64 #define HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS 9 65 #define HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS 10 66 #define HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS 11 67 #define HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS 14 68 69 #define ENABLE_IRQS (BIT(HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS) | \ 70 BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \ 71 BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \ 72 BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \ 73 BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS) | \ 74 BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS)) 75 76 #define HIDMA_INCREMENT_ITERATOR(iter, size, ring_size) \ 77 do { \ 78 iter += size; \ 79 if (iter >= ring_size) \ 80 iter -= ring_size; \ 81 } while (0) 82 83 #define HIDMA_CH_STATE(val) \ 84 ((val >> HIDMA_CH_STATE_BIT_POS) & HIDMA_CH_STATE_MASK) 85 86 #define HIDMA_ERR_INT_MASK \ 87 (BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS) | \ 88 BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \ 89 BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \ 90 BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \ 91 BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS)) 92 93 enum ch_command { 94 HIDMA_CH_DISABLE = 0, 95 HIDMA_CH_ENABLE = 1, 96 HIDMA_CH_SUSPEND = 2, 97 HIDMA_CH_RESET = 9, 98 }; 99 100 enum ch_state { 101 HIDMA_CH_DISABLED = 0, 102 HIDMA_CH_ENABLED = 1, 103 HIDMA_CH_RUNNING = 2, 104 HIDMA_CH_SUSPENDED = 3, 105 HIDMA_CH_STOPPED = 4, 106 }; 107 108 enum tre_type { 109 HIDMA_TRE_MEMCPY = 3, 110 }; 111 112 enum err_code { 113 HIDMA_EVRE_STATUS_COMPLETE = 1, 114 HIDMA_EVRE_STATUS_ERROR = 4, 115 }; 116 117 static int hidma_is_chan_enabled(int state) 118 { 119 switch (state) { 120 case HIDMA_CH_ENABLED: 121 case HIDMA_CH_RUNNING: 122 return true; 123 default: 124 return false; 125 } 126 } 127 128 void hidma_ll_free(struct hidma_lldev *lldev, u32 tre_ch) 129 { 130 struct hidma_tre *tre; 131 132 if (tre_ch >= lldev->nr_tres) { 133 dev_err(lldev->dev, "invalid TRE number in free:%d", tre_ch); 134 return; 135 } 136 137 tre = &lldev->trepool[tre_ch]; 138 if (atomic_read(&tre->allocated) != true) { 139 dev_err(lldev->dev, "trying to free an unused TRE:%d", tre_ch); 140 return; 141 } 142 143 atomic_set(&tre->allocated, 0); 144 } 145 146 int hidma_ll_request(struct hidma_lldev *lldev, u32 sig, const char *dev_name, 147 void (*callback)(void *data), void *data, u32 *tre_ch) 148 { 149 unsigned int i; 150 struct hidma_tre *tre; 151 u32 *tre_local; 152 153 if (!tre_ch || !lldev) 154 return -EINVAL; 155 156 /* need to have at least one empty spot in the queue */ 157 for (i = 0; i < lldev->nr_tres - 1; i++) { 158 if (atomic_add_unless(&lldev->trepool[i].allocated, 1, 1)) 159 break; 160 } 161 162 if (i == (lldev->nr_tres - 1)) 163 return -ENOMEM; 164 165 tre = &lldev->trepool[i]; 166 tre->dma_sig = sig; 167 tre->dev_name = dev_name; 168 tre->callback = callback; 169 tre->data = data; 170 tre->idx = i; 171 tre->status = 0; 172 tre->queued = 0; 173 tre->err_code = 0; 174 tre->err_info = 0; 175 tre->lldev = lldev; 176 tre_local = &tre->tre_local[0]; 177 tre_local[HIDMA_TRE_CFG_IDX] = HIDMA_TRE_MEMCPY; 178 tre_local[HIDMA_TRE_CFG_IDX] |= (lldev->chidx & 0xFF) << 8; 179 tre_local[HIDMA_TRE_CFG_IDX] |= BIT(16); /* set IEOB */ 180 *tre_ch = i; 181 if (callback) 182 callback(data); 183 return 0; 184 } 185 186 /* 187 * Multiple TREs may be queued and waiting in the pending queue. 188 */ 189 static void hidma_ll_tre_complete(unsigned long arg) 190 { 191 struct hidma_lldev *lldev = (struct hidma_lldev *)arg; 192 struct hidma_tre *tre; 193 194 while (kfifo_out(&lldev->handoff_fifo, &tre, 1)) { 195 /* call the user if it has been read by the hardware */ 196 if (tre->callback) 197 tre->callback(tre->data); 198 } 199 } 200 201 static int hidma_post_completed(struct hidma_lldev *lldev, int tre_iterator, 202 u8 err_info, u8 err_code) 203 { 204 struct hidma_tre *tre; 205 unsigned long flags; 206 207 spin_lock_irqsave(&lldev->lock, flags); 208 tre = lldev->pending_tre_list[tre_iterator / HIDMA_TRE_SIZE]; 209 if (!tre) { 210 spin_unlock_irqrestore(&lldev->lock, flags); 211 dev_warn(lldev->dev, "tre_index [%d] and tre out of sync\n", 212 tre_iterator / HIDMA_TRE_SIZE); 213 return -EINVAL; 214 } 215 lldev->pending_tre_list[tre->tre_index] = NULL; 216 217 /* 218 * Keep track of pending TREs that SW is expecting to receive 219 * from HW. We got one now. Decrement our counter. 220 */ 221 lldev->pending_tre_count--; 222 if (lldev->pending_tre_count < 0) { 223 dev_warn(lldev->dev, "tre count mismatch on completion"); 224 lldev->pending_tre_count = 0; 225 } 226 227 spin_unlock_irqrestore(&lldev->lock, flags); 228 229 tre->err_info = err_info; 230 tre->err_code = err_code; 231 tre->queued = 0; 232 233 kfifo_put(&lldev->handoff_fifo, tre); 234 tasklet_schedule(&lldev->task); 235 236 return 0; 237 } 238 239 /* 240 * Called to handle the interrupt for the channel. 241 * Return a positive number if TRE or EVRE were consumed on this run. 242 * Return a positive number if there are pending TREs or EVREs. 243 * Return 0 if there is nothing to consume or no pending TREs/EVREs found. 244 */ 245 static int hidma_handle_tre_completion(struct hidma_lldev *lldev) 246 { 247 u32 evre_ring_size = lldev->evre_ring_size; 248 u32 tre_ring_size = lldev->tre_ring_size; 249 u32 err_info, err_code, evre_write_off; 250 u32 tre_iterator, evre_iterator; 251 u32 num_completed = 0; 252 253 evre_write_off = readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG); 254 tre_iterator = lldev->tre_processed_off; 255 evre_iterator = lldev->evre_processed_off; 256 257 if ((evre_write_off > evre_ring_size) || 258 (evre_write_off % HIDMA_EVRE_SIZE)) { 259 dev_err(lldev->dev, "HW reports invalid EVRE write offset\n"); 260 return 0; 261 } 262 263 /* 264 * By the time control reaches here the number of EVREs and TREs 265 * may not match. Only consume the ones that hardware told us. 266 */ 267 while ((evre_iterator != evre_write_off)) { 268 u32 *current_evre = lldev->evre_ring + evre_iterator; 269 u32 cfg; 270 271 cfg = current_evre[HIDMA_EVRE_CFG_IDX]; 272 err_info = cfg >> HIDMA_EVRE_ERRINFO_BIT_POS; 273 err_info &= HIDMA_EVRE_ERRINFO_MASK; 274 err_code = 275 (cfg >> HIDMA_EVRE_CODE_BIT_POS) & HIDMA_EVRE_CODE_MASK; 276 277 if (hidma_post_completed(lldev, tre_iterator, err_info, 278 err_code)) 279 break; 280 281 HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE, 282 tre_ring_size); 283 HIDMA_INCREMENT_ITERATOR(evre_iterator, HIDMA_EVRE_SIZE, 284 evre_ring_size); 285 286 /* 287 * Read the new event descriptor written by the HW. 288 * As we are processing the delivered events, other events 289 * get queued to the SW for processing. 290 */ 291 evre_write_off = 292 readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG); 293 num_completed++; 294 } 295 296 if (num_completed) { 297 u32 evre_read_off = (lldev->evre_processed_off + 298 HIDMA_EVRE_SIZE * num_completed); 299 u32 tre_read_off = (lldev->tre_processed_off + 300 HIDMA_TRE_SIZE * num_completed); 301 302 evre_read_off = evre_read_off % evre_ring_size; 303 tre_read_off = tre_read_off % tre_ring_size; 304 305 writel(evre_read_off, lldev->evca + HIDMA_EVCA_DOORBELL_REG); 306 307 /* record the last processed tre offset */ 308 lldev->tre_processed_off = tre_read_off; 309 lldev->evre_processed_off = evre_read_off; 310 } 311 312 return num_completed; 313 } 314 315 void hidma_cleanup_pending_tre(struct hidma_lldev *lldev, u8 err_info, 316 u8 err_code) 317 { 318 u32 tre_iterator; 319 u32 tre_ring_size = lldev->tre_ring_size; 320 int num_completed = 0; 321 u32 tre_read_off; 322 323 tre_iterator = lldev->tre_processed_off; 324 while (lldev->pending_tre_count) { 325 if (hidma_post_completed(lldev, tre_iterator, err_info, 326 err_code)) 327 break; 328 HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE, 329 tre_ring_size); 330 num_completed++; 331 } 332 tre_read_off = (lldev->tre_processed_off + 333 HIDMA_TRE_SIZE * num_completed); 334 335 tre_read_off = tre_read_off % tre_ring_size; 336 337 /* record the last processed tre offset */ 338 lldev->tre_processed_off = tre_read_off; 339 } 340 341 static int hidma_ll_reset(struct hidma_lldev *lldev) 342 { 343 u32 val; 344 int ret; 345 346 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG); 347 val &= ~(HIDMA_CH_CONTROL_MASK << 16); 348 val |= HIDMA_CH_RESET << 16; 349 writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG); 350 351 /* 352 * Delay 10ms after reset to allow DMA logic to quiesce. 353 * Do a polled read up to 1ms and 10ms maximum. 354 */ 355 ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val, 356 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED, 357 1000, 10000); 358 if (ret) { 359 dev_err(lldev->dev, "transfer channel did not reset\n"); 360 return ret; 361 } 362 363 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG); 364 val &= ~(HIDMA_CH_CONTROL_MASK << 16); 365 val |= HIDMA_CH_RESET << 16; 366 writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG); 367 368 /* 369 * Delay 10ms after reset to allow DMA logic to quiesce. 370 * Do a polled read up to 1ms and 10ms maximum. 371 */ 372 ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val, 373 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED, 374 1000, 10000); 375 if (ret) 376 return ret; 377 378 lldev->trch_state = HIDMA_CH_DISABLED; 379 lldev->evch_state = HIDMA_CH_DISABLED; 380 return 0; 381 } 382 383 /* 384 * Abort all transactions and perform a reset. 385 */ 386 static void hidma_ll_abort(unsigned long arg) 387 { 388 struct hidma_lldev *lldev = (struct hidma_lldev *)arg; 389 u8 err_code = HIDMA_EVRE_STATUS_ERROR; 390 u8 err_info = 0xFF; 391 int rc; 392 393 hidma_cleanup_pending_tre(lldev, err_info, err_code); 394 395 /* reset the channel for recovery */ 396 rc = hidma_ll_setup(lldev); 397 if (rc) { 398 dev_err(lldev->dev, "channel reinitialize failed after error\n"); 399 return; 400 } 401 writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); 402 } 403 404 /* 405 * The interrupt handler for HIDMA will try to consume as many pending 406 * EVRE from the event queue as possible. Each EVRE has an associated 407 * TRE that holds the user interface parameters. EVRE reports the 408 * result of the transaction. Hardware guarantees ordering between EVREs 409 * and TREs. We use last processed offset to figure out which TRE is 410 * associated with which EVRE. If two TREs are consumed by HW, the EVREs 411 * are in order in the event ring. 412 * 413 * This handler will do a one pass for consuming EVREs. Other EVREs may 414 * be delivered while we are working. It will try to consume incoming 415 * EVREs one more time and return. 416 * 417 * For unprocessed EVREs, hardware will trigger another interrupt until 418 * all the interrupt bits are cleared. 419 * 420 * Hardware guarantees that by the time interrupt is observed, all data 421 * transactions in flight are delivered to their respective places and 422 * are visible to the CPU. 423 * 424 * On demand paging for IOMMU is only supported for PCIe via PRI 425 * (Page Request Interface) not for HIDMA. All other hardware instances 426 * including HIDMA work on pinned DMA addresses. 427 * 428 * HIDMA is not aware of IOMMU presence since it follows the DMA API. All 429 * IOMMU latency will be built into the data movement time. By the time 430 * interrupt happens, IOMMU lookups + data movement has already taken place. 431 * 432 * While the first read in a typical PCI endpoint ISR flushes all outstanding 433 * requests traditionally to the destination, this concept does not apply 434 * here for this HW. 435 */ 436 irqreturn_t hidma_ll_inthandler(int chirq, void *arg) 437 { 438 struct hidma_lldev *lldev = arg; 439 u32 status; 440 u32 enable; 441 u32 cause; 442 443 /* 444 * Fine tuned for this HW... 445 * 446 * This ISR has been designed for this particular hardware. Relaxed 447 * read and write accessors are used for performance reasons due to 448 * interrupt delivery guarantees. Do not copy this code blindly and 449 * expect that to work. 450 */ 451 status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); 452 enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG); 453 cause = status & enable; 454 455 while (cause) { 456 if (cause & HIDMA_ERR_INT_MASK) { 457 dev_err(lldev->dev, "error 0x%x, resetting...\n", 458 cause); 459 460 /* Clear out pending interrupts */ 461 writel(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); 462 463 tasklet_schedule(&lldev->rst_task); 464 goto out; 465 } 466 467 /* 468 * Try to consume as many EVREs as possible. 469 */ 470 hidma_handle_tre_completion(lldev); 471 472 /* We consumed TREs or there are pending TREs or EVREs. */ 473 writel_relaxed(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); 474 475 /* 476 * Another interrupt might have arrived while we are 477 * processing this one. Read the new cause. 478 */ 479 status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); 480 enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG); 481 cause = status & enable; 482 } 483 484 out: 485 return IRQ_HANDLED; 486 } 487 488 int hidma_ll_enable(struct hidma_lldev *lldev) 489 { 490 u32 val; 491 int ret; 492 493 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG); 494 val &= ~(HIDMA_CH_CONTROL_MASK << 16); 495 val |= HIDMA_CH_ENABLE << 16; 496 writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG); 497 498 ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val, 499 hidma_is_chan_enabled(HIDMA_CH_STATE(val)), 500 1000, 10000); 501 if (ret) { 502 dev_err(lldev->dev, "event channel did not get enabled\n"); 503 return ret; 504 } 505 506 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG); 507 val &= ~(HIDMA_CH_CONTROL_MASK << 16); 508 val |= HIDMA_CH_ENABLE << 16; 509 writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG); 510 511 ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val, 512 hidma_is_chan_enabled(HIDMA_CH_STATE(val)), 513 1000, 10000); 514 if (ret) { 515 dev_err(lldev->dev, "transfer channel did not get enabled\n"); 516 return ret; 517 } 518 519 lldev->trch_state = HIDMA_CH_ENABLED; 520 lldev->evch_state = HIDMA_CH_ENABLED; 521 522 return 0; 523 } 524 525 void hidma_ll_start(struct hidma_lldev *lldev) 526 { 527 unsigned long irqflags; 528 529 spin_lock_irqsave(&lldev->lock, irqflags); 530 writel(lldev->tre_write_offset, lldev->trca + HIDMA_TRCA_DOORBELL_REG); 531 spin_unlock_irqrestore(&lldev->lock, irqflags); 532 } 533 534 bool hidma_ll_isenabled(struct hidma_lldev *lldev) 535 { 536 u32 val; 537 538 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG); 539 lldev->trch_state = HIDMA_CH_STATE(val); 540 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG); 541 lldev->evch_state = HIDMA_CH_STATE(val); 542 543 /* both channels have to be enabled before calling this function */ 544 if (hidma_is_chan_enabled(lldev->trch_state) && 545 hidma_is_chan_enabled(lldev->evch_state)) 546 return true; 547 548 return false; 549 } 550 551 void hidma_ll_queue_request(struct hidma_lldev *lldev, u32 tre_ch) 552 { 553 struct hidma_tre *tre; 554 unsigned long flags; 555 556 tre = &lldev->trepool[tre_ch]; 557 558 /* copy the TRE into its location in the TRE ring */ 559 spin_lock_irqsave(&lldev->lock, flags); 560 tre->tre_index = lldev->tre_write_offset / HIDMA_TRE_SIZE; 561 lldev->pending_tre_list[tre->tre_index] = tre; 562 memcpy(lldev->tre_ring + lldev->tre_write_offset, 563 &tre->tre_local[0], HIDMA_TRE_SIZE); 564 tre->err_code = 0; 565 tre->err_info = 0; 566 tre->queued = 1; 567 lldev->pending_tre_count++; 568 lldev->tre_write_offset = (lldev->tre_write_offset + HIDMA_TRE_SIZE) 569 % lldev->tre_ring_size; 570 spin_unlock_irqrestore(&lldev->lock, flags); 571 } 572 573 /* 574 * Note that even though we stop this channel if there is a pending transaction 575 * in flight it will complete and follow the callback. This request will 576 * prevent further requests to be made. 577 */ 578 int hidma_ll_disable(struct hidma_lldev *lldev) 579 { 580 u32 val; 581 int ret; 582 583 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG); 584 lldev->evch_state = HIDMA_CH_STATE(val); 585 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG); 586 lldev->trch_state = HIDMA_CH_STATE(val); 587 588 /* already suspended by this OS */ 589 if ((lldev->trch_state == HIDMA_CH_SUSPENDED) || 590 (lldev->evch_state == HIDMA_CH_SUSPENDED)) 591 return 0; 592 593 /* already stopped by the manager */ 594 if ((lldev->trch_state == HIDMA_CH_STOPPED) || 595 (lldev->evch_state == HIDMA_CH_STOPPED)) 596 return 0; 597 598 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG); 599 val &= ~(HIDMA_CH_CONTROL_MASK << 16); 600 val |= HIDMA_CH_SUSPEND << 16; 601 writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG); 602 603 /* 604 * Start the wait right after the suspend is confirmed. 605 * Do a polled read up to 1ms and 10ms maximum. 606 */ 607 ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val, 608 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED, 609 1000, 10000); 610 if (ret) 611 return ret; 612 613 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG); 614 val &= ~(HIDMA_CH_CONTROL_MASK << 16); 615 val |= HIDMA_CH_SUSPEND << 16; 616 writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG); 617 618 /* 619 * Start the wait right after the suspend is confirmed 620 * Delay up to 10ms after reset to allow DMA logic to quiesce. 621 */ 622 ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val, 623 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED, 624 1000, 10000); 625 if (ret) 626 return ret; 627 628 lldev->trch_state = HIDMA_CH_SUSPENDED; 629 lldev->evch_state = HIDMA_CH_SUSPENDED; 630 return 0; 631 } 632 633 void hidma_ll_set_transfer_params(struct hidma_lldev *lldev, u32 tre_ch, 634 dma_addr_t src, dma_addr_t dest, u32 len, 635 u32 flags) 636 { 637 struct hidma_tre *tre; 638 u32 *tre_local; 639 640 if (tre_ch >= lldev->nr_tres) { 641 dev_err(lldev->dev, "invalid TRE number in transfer params:%d", 642 tre_ch); 643 return; 644 } 645 646 tre = &lldev->trepool[tre_ch]; 647 if (atomic_read(&tre->allocated) != true) { 648 dev_err(lldev->dev, "trying to set params on an unused TRE:%d", 649 tre_ch); 650 return; 651 } 652 653 tre_local = &tre->tre_local[0]; 654 tre_local[HIDMA_TRE_LEN_IDX] = len; 655 tre_local[HIDMA_TRE_SRC_LOW_IDX] = lower_32_bits(src); 656 tre_local[HIDMA_TRE_SRC_HI_IDX] = upper_32_bits(src); 657 tre_local[HIDMA_TRE_DEST_LOW_IDX] = lower_32_bits(dest); 658 tre_local[HIDMA_TRE_DEST_HI_IDX] = upper_32_bits(dest); 659 tre->int_flags = flags; 660 } 661 662 /* 663 * Called during initialization and after an error condition 664 * to restore hardware state. 665 */ 666 int hidma_ll_setup(struct hidma_lldev *lldev) 667 { 668 int rc; 669 u64 addr; 670 u32 val; 671 u32 nr_tres = lldev->nr_tres; 672 673 lldev->pending_tre_count = 0; 674 lldev->tre_processed_off = 0; 675 lldev->evre_processed_off = 0; 676 lldev->tre_write_offset = 0; 677 678 /* disable interrupts */ 679 writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); 680 681 /* clear all pending interrupts */ 682 val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); 683 writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); 684 685 rc = hidma_ll_reset(lldev); 686 if (rc) 687 return rc; 688 689 /* 690 * Clear all pending interrupts again. 691 * Otherwise, we observe reset complete interrupts. 692 */ 693 val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); 694 writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); 695 696 /* disable interrupts again after reset */ 697 writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); 698 699 addr = lldev->tre_dma; 700 writel(lower_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_LOW_REG); 701 writel(upper_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_HIGH_REG); 702 writel(lldev->tre_ring_size, lldev->trca + HIDMA_TRCA_RING_LEN_REG); 703 704 addr = lldev->evre_dma; 705 writel(lower_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_LOW_REG); 706 writel(upper_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_HIGH_REG); 707 writel(HIDMA_EVRE_SIZE * nr_tres, 708 lldev->evca + HIDMA_EVCA_RING_LEN_REG); 709 710 /* support IRQ only for now */ 711 val = readl(lldev->evca + HIDMA_EVCA_INTCTRL_REG); 712 val &= ~0xF; 713 val |= 0x1; 714 writel(val, lldev->evca + HIDMA_EVCA_INTCTRL_REG); 715 716 /* clear all pending interrupts and enable them */ 717 writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); 718 writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); 719 720 return hidma_ll_enable(lldev); 721 } 722 723 struct hidma_lldev *hidma_ll_init(struct device *dev, u32 nr_tres, 724 void __iomem *trca, void __iomem *evca, 725 u8 chidx) 726 { 727 u32 required_bytes; 728 struct hidma_lldev *lldev; 729 int rc; 730 size_t sz; 731 732 if (!trca || !evca || !dev || !nr_tres) 733 return NULL; 734 735 /* need at least four TREs */ 736 if (nr_tres < 4) 737 return NULL; 738 739 /* need an extra space */ 740 nr_tres += 1; 741 742 lldev = devm_kzalloc(dev, sizeof(struct hidma_lldev), GFP_KERNEL); 743 if (!lldev) 744 return NULL; 745 746 lldev->evca = evca; 747 lldev->trca = trca; 748 lldev->dev = dev; 749 sz = sizeof(struct hidma_tre); 750 lldev->trepool = devm_kcalloc(lldev->dev, nr_tres, sz, GFP_KERNEL); 751 if (!lldev->trepool) 752 return NULL; 753 754 required_bytes = sizeof(lldev->pending_tre_list[0]); 755 lldev->pending_tre_list = devm_kcalloc(dev, nr_tres, required_bytes, 756 GFP_KERNEL); 757 if (!lldev->pending_tre_list) 758 return NULL; 759 760 sz = (HIDMA_TRE_SIZE + 1) * nr_tres; 761 lldev->tre_ring = dmam_alloc_coherent(dev, sz, &lldev->tre_dma, 762 GFP_KERNEL); 763 if (!lldev->tre_ring) 764 return NULL; 765 766 memset(lldev->tre_ring, 0, (HIDMA_TRE_SIZE + 1) * nr_tres); 767 lldev->tre_ring_size = HIDMA_TRE_SIZE * nr_tres; 768 lldev->nr_tres = nr_tres; 769 770 /* the TRE ring has to be TRE_SIZE aligned */ 771 if (!IS_ALIGNED(lldev->tre_dma, HIDMA_TRE_SIZE)) { 772 u8 tre_ring_shift; 773 774 tre_ring_shift = lldev->tre_dma % HIDMA_TRE_SIZE; 775 tre_ring_shift = HIDMA_TRE_SIZE - tre_ring_shift; 776 lldev->tre_dma += tre_ring_shift; 777 lldev->tre_ring += tre_ring_shift; 778 } 779 780 sz = (HIDMA_EVRE_SIZE + 1) * nr_tres; 781 lldev->evre_ring = dmam_alloc_coherent(dev, sz, &lldev->evre_dma, 782 GFP_KERNEL); 783 if (!lldev->evre_ring) 784 return NULL; 785 786 memset(lldev->evre_ring, 0, (HIDMA_EVRE_SIZE + 1) * nr_tres); 787 lldev->evre_ring_size = HIDMA_EVRE_SIZE * nr_tres; 788 789 /* the EVRE ring has to be EVRE_SIZE aligned */ 790 if (!IS_ALIGNED(lldev->evre_dma, HIDMA_EVRE_SIZE)) { 791 u8 evre_ring_shift; 792 793 evre_ring_shift = lldev->evre_dma % HIDMA_EVRE_SIZE; 794 evre_ring_shift = HIDMA_EVRE_SIZE - evre_ring_shift; 795 lldev->evre_dma += evre_ring_shift; 796 lldev->evre_ring += evre_ring_shift; 797 } 798 lldev->nr_tres = nr_tres; 799 lldev->chidx = chidx; 800 801 sz = nr_tres * sizeof(struct hidma_tre *); 802 rc = kfifo_alloc(&lldev->handoff_fifo, sz, GFP_KERNEL); 803 if (rc) 804 return NULL; 805 806 rc = hidma_ll_setup(lldev); 807 if (rc) 808 return NULL; 809 810 spin_lock_init(&lldev->lock); 811 tasklet_init(&lldev->rst_task, hidma_ll_abort, (unsigned long)lldev); 812 tasklet_init(&lldev->task, hidma_ll_tre_complete, (unsigned long)lldev); 813 lldev->initialized = 1; 814 writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); 815 return lldev; 816 } 817 818 int hidma_ll_uninit(struct hidma_lldev *lldev) 819 { 820 u32 required_bytes; 821 int rc = 0; 822 u32 val; 823 824 if (!lldev) 825 return -ENODEV; 826 827 if (!lldev->initialized) 828 return 0; 829 830 lldev->initialized = 0; 831 832 required_bytes = sizeof(struct hidma_tre) * lldev->nr_tres; 833 tasklet_kill(&lldev->task); 834 tasklet_kill(&lldev->rst_task); 835 memset(lldev->trepool, 0, required_bytes); 836 lldev->trepool = NULL; 837 lldev->pending_tre_count = 0; 838 lldev->tre_write_offset = 0; 839 840 rc = hidma_ll_reset(lldev); 841 842 /* 843 * Clear all pending interrupts again. 844 * Otherwise, we observe reset complete interrupts. 845 */ 846 val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); 847 writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); 848 writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); 849 return rc; 850 } 851 852 enum dma_status hidma_ll_status(struct hidma_lldev *lldev, u32 tre_ch) 853 { 854 enum dma_status ret = DMA_ERROR; 855 struct hidma_tre *tre; 856 unsigned long flags; 857 u8 err_code; 858 859 spin_lock_irqsave(&lldev->lock, flags); 860 861 tre = &lldev->trepool[tre_ch]; 862 err_code = tre->err_code; 863 864 if (err_code & HIDMA_EVRE_STATUS_COMPLETE) 865 ret = DMA_COMPLETE; 866 else if (err_code & HIDMA_EVRE_STATUS_ERROR) 867 ret = DMA_ERROR; 868 else 869 ret = DMA_IN_PROGRESS; 870 spin_unlock_irqrestore(&lldev->lock, flags); 871 872 return ret; 873 } 874