1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2020, Linaro Limited 5 */ 6 7 #include <dt-bindings/dma/qcom-gpi.h> 8 #include <linux/bitfield.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dmaengine.h> 11 #include <linux/module.h> 12 #include <linux/of_dma.h> 13 #include <linux/platform_device.h> 14 #include <linux/dma/qcom-gpi-dma.h> 15 #include <linux/scatterlist.h> 16 #include <linux/slab.h> 17 #include "../dmaengine.h" 18 #include "../virt-dma.h" 19 20 #define TRE_TYPE_DMA 0x10 21 #define TRE_TYPE_GO 0x20 22 #define TRE_TYPE_CONFIG0 0x22 23 24 /* TRE flags */ 25 #define TRE_FLAGS_CHAIN BIT(0) 26 #define TRE_FLAGS_IEOB BIT(8) 27 #define TRE_FLAGS_IEOT BIT(9) 28 #define TRE_FLAGS_BEI BIT(10) 29 #define TRE_FLAGS_LINK BIT(11) 30 #define TRE_FLAGS_TYPE GENMASK(23, 16) 31 32 /* SPI CONFIG0 WD0 */ 33 #define TRE_SPI_C0_WORD_SZ GENMASK(4, 0) 34 #define TRE_SPI_C0_LOOPBACK BIT(8) 35 #define TRE_SPI_C0_CS BIT(11) 36 #define TRE_SPI_C0_CPHA BIT(12) 37 #define TRE_SPI_C0_CPOL BIT(13) 38 #define TRE_SPI_C0_TX_PACK BIT(24) 39 #define TRE_SPI_C0_RX_PACK BIT(25) 40 41 /* CONFIG0 WD2 */ 42 #define TRE_C0_CLK_DIV GENMASK(11, 0) 43 #define TRE_C0_CLK_SRC GENMASK(19, 16) 44 45 /* SPI GO WD0 */ 46 #define TRE_SPI_GO_CMD GENMASK(4, 0) 47 #define TRE_SPI_GO_CS GENMASK(10, 8) 48 #define TRE_SPI_GO_FRAG BIT(26) 49 50 /* GO WD2 */ 51 #define TRE_RX_LEN GENMASK(23, 0) 52 53 /* I2C Config0 WD0 */ 54 #define TRE_I2C_C0_TLOW GENMASK(7, 0) 55 #define TRE_I2C_C0_THIGH GENMASK(15, 8) 56 #define TRE_I2C_C0_TCYL GENMASK(23, 16) 57 #define TRE_I2C_C0_TX_PACK BIT(24) 58 #define TRE_I2C_C0_RX_PACK BIT(25) 59 60 /* I2C GO WD0 */ 61 #define TRE_I2C_GO_CMD GENMASK(4, 0) 62 #define TRE_I2C_GO_ADDR GENMASK(14, 8) 63 #define TRE_I2C_GO_STRETCH BIT(26) 64 65 /* DMA TRE */ 66 #define TRE_DMA_LEN GENMASK(23, 0) 67 68 /* Register offsets from gpi-top */ 69 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k) (0x20000 + (0x4000 * (n)) + (0x80 * (k))) 70 #define GPII_n_CH_k_CNTXT_0_EL_SIZE GENMASK(31, 24) 71 #define GPII_n_CH_k_CNTXT_0_CHSTATE GENMASK(23, 20) 72 #define GPII_n_CH_k_CNTXT_0_ERIDX GENMASK(18, 14) 73 #define GPII_n_CH_k_CNTXT_0_DIR BIT(3) 74 #define GPII_n_CH_k_CNTXT_0_PROTO GENMASK(2, 0) 75 76 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto) \ 77 (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size) | \ 78 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex) | \ 79 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir) | \ 80 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto)) 81 82 #define GPI_CHTYPE_DIR_IN (0) 83 #define GPI_CHTYPE_DIR_OUT (1) 84 85 #define GPI_CHTYPE_PROTO_GPI (0x2) 86 87 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k) (0x22000 + (0x4000 * (n)) + (0x8 * (k))) 88 #define GPII_n_CH_CMD_OFFS(n) (0x23008 + (0x4000 * (n))) 89 #define GPII_n_CH_CMD_OPCODE GENMASK(31, 24) 90 #define GPII_n_CH_CMD_CHID GENMASK(7, 0) 91 #define GPII_n_CH_CMD(opcode, chid) \ 92 (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \ 93 FIELD_PREP(GPII_n_CH_CMD_CHID, chid)) 94 95 #define GPII_n_CH_CMD_ALLOCATE (0) 96 #define GPII_n_CH_CMD_START (1) 97 #define GPII_n_CH_CMD_STOP (2) 98 #define GPII_n_CH_CMD_RESET (9) 99 #define GPII_n_CH_CMD_DE_ALLOC (10) 100 #define GPII_n_CH_CMD_UART_SW_STALE (32) 101 #define GPII_n_CH_CMD_UART_RFR_READY (33) 102 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34) 103 104 /* EV Context Array */ 105 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k))) 106 #define GPII_n_EV_k_CNTXT_0_EL_SIZE GENMASK(31, 24) 107 #define GPII_n_EV_k_CNTXT_0_CHSTATE GENMASK(23, 20) 108 #define GPII_n_EV_k_CNTXT_0_INTYPE BIT(16) 109 #define GPII_n_EV_k_CNTXT_0_CHTYPE GENMASK(3, 0) 110 111 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype) \ 112 (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) | \ 113 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype) | \ 114 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype)) 115 116 #define GPI_INTTYPE_IRQ (1) 117 #define GPI_CHTYPE_GPI_EV (0x2) 118 119 enum CNTXT_OFFS { 120 CNTXT_0_CONFIG = 0x0, 121 CNTXT_1_R_LENGTH = 0x4, 122 CNTXT_2_RING_BASE_LSB = 0x8, 123 CNTXT_3_RING_BASE_MSB = 0xC, 124 CNTXT_4_RING_RP_LSB = 0x10, 125 CNTXT_5_RING_RP_MSB = 0x14, 126 CNTXT_6_RING_WP_LSB = 0x18, 127 CNTXT_7_RING_WP_MSB = 0x1C, 128 CNTXT_8_RING_INT_MOD = 0x20, 129 CNTXT_9_RING_INTVEC = 0x24, 130 CNTXT_10_RING_MSI_LSB = 0x28, 131 CNTXT_11_RING_MSI_MSB = 0x2C, 132 CNTXT_12_RING_RP_UPDATE_LSB = 0x30, 133 CNTXT_13_RING_RP_UPDATE_MSB = 0x34, 134 }; 135 136 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k) (0x22100 + (0x4000 * (n)) + (0x8 * (k))) 137 #define GPII_n_EV_CH_CMD_OFFS(n) (0x23010 + (0x4000 * (n))) 138 #define GPII_n_EV_CMD_OPCODE GENMASK(31, 24) 139 #define GPII_n_EV_CMD_CHID GENMASK(7, 0) 140 #define GPII_n_EV_CMD(opcode, chid) \ 141 (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \ 142 FIELD_PREP(GPII_n_EV_CMD_CHID, chid)) 143 144 #define GPII_n_EV_CH_CMD_ALLOCATE (0x00) 145 #define GPII_n_EV_CH_CMD_RESET (0x09) 146 #define GPII_n_EV_CH_CMD_DE_ALLOC (0x0A) 147 148 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n) (0x23080 + (0x4000 * (n))) 149 150 /* mask type register */ 151 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n) (0x23088 + (0x4000 * (n))) 152 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK GENMASK(6, 0) 153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL BIT(6) 154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB BIT(3) 155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB BIT(2) 156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL BIT(1) 157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL BIT(0) 158 159 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n) (0x23090 + (0x4000 * (n))) 160 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n) (0x23094 + (0x4000 * (n))) 161 162 /* Mask channel control interrupt register */ 163 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n) (0x23098 + (0x4000 * (n))) 164 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK GENMASK(1, 0) 165 166 /* Mask event control interrupt register */ 167 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n) (0x2309C + (0x4000 * (n))) 168 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK BIT(0) 169 170 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n) (0x230A0 + (0x4000 * (n))) 171 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n) (0x230A4 + (0x4000 * (n))) 172 173 /* Mask event interrupt register */ 174 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n) (0x230B8 + (0x4000 * (n))) 175 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK BIT(0) 176 177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n) (0x230C0 + (0x4000 * (n))) 178 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n) (0x23100 + (0x4000 * (n))) 179 #define GPI_GLOB_IRQ_ERROR_INT_MSK BIT(0) 180 181 /* GPII specific Global - Enable bit register */ 182 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n) (0x23108 + (0x4000 * (n))) 183 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n) (0x23110 + (0x4000 * (n))) 184 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n) (0x23118 + (0x4000 * (n))) 185 186 /* GPII general interrupt - Enable bit register */ 187 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n) (0x23120 + (0x4000 * (n))) 188 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK GENMASK(3, 0) 189 190 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n) (0x23128 + (0x4000 * (n))) 191 192 /* GPII Interrupt Type register */ 193 #define GPII_n_CNTXT_INTSET_OFFS(n) (0x23180 + (0x4000 * (n))) 194 #define GPII_n_CNTXT_INTSET_BMSK BIT(0) 195 196 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n) (0x23188 + (0x4000 * (n))) 197 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n) (0x2318C + (0x4000 * (n))) 198 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n) (0x23400 + (0x4000 * (n))) 199 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n) (0x23404 + (0x4000 * (n))) 200 201 #define GPII_n_ERROR_LOG_OFFS(n) (0x23200 + (0x4000 * (n))) 202 203 /* QOS Registers */ 204 #define GPII_n_CH_k_QOS_OFFS(n, k) (0x2005C + (0x4000 * (n)) + (0x80 * (k))) 205 206 /* Scratch registers */ 207 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k) (0x20060 + (0x4000 * (n)) + (0x80 * (k))) 208 #define GPII_n_CH_k_SCRATCH_0_SEID GENMASK(2, 0) 209 #define GPII_n_CH_k_SCRATCH_0_PROTO GENMASK(7, 4) 210 #define GPII_n_CH_k_SCRATCH_0_PAIR GENMASK(20, 16) 211 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid) \ 212 (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair) | \ 213 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto) | \ 214 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid)) 215 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k) (0x20064 + (0x4000 * (n)) + (0x80 * (k))) 216 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k) (0x20068 + (0x4000 * (n)) + (0x80 * (k))) 217 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k) (0x2006C + (0x4000 * (n)) + (0x80 * (k))) 218 219 struct __packed gpi_tre { 220 u32 dword[4]; 221 }; 222 223 enum msm_gpi_tce_code { 224 MSM_GPI_TCE_SUCCESS = 1, 225 MSM_GPI_TCE_EOT = 2, 226 MSM_GPI_TCE_EOB = 4, 227 MSM_GPI_TCE_UNEXP_ERR = 16, 228 }; 229 230 #define CMD_TIMEOUT_MS (250) 231 232 #define MAX_CHANNELS_PER_GPII (2) 233 #define GPI_TX_CHAN (0) 234 #define GPI_RX_CHAN (1) 235 #define STATE_IGNORE (U32_MAX) 236 #define EV_FACTOR (2) 237 #define REQ_OF_DMA_ARGS (5) /* # of arguments required from client */ 238 #define CHAN_TRES 64 239 240 struct __packed xfer_compl_event { 241 u64 ptr; 242 u32 length:24; 243 u8 code; 244 u16 status; 245 u8 type; 246 u8 chid; 247 }; 248 249 struct __packed immediate_data_event { 250 u8 data_bytes[8]; 251 u8 length:4; 252 u8 resvd:4; 253 u16 tre_index; 254 u8 code; 255 u16 status; 256 u8 type; 257 u8 chid; 258 }; 259 260 struct __packed qup_notif_event { 261 u32 status; 262 u32 time; 263 u32 count:24; 264 u8 resvd; 265 u16 resvd1; 266 u8 type; 267 u8 chid; 268 }; 269 270 struct __packed gpi_ere { 271 u32 dword[4]; 272 }; 273 274 enum GPI_EV_TYPE { 275 XFER_COMPLETE_EV_TYPE = 0x22, 276 IMMEDIATE_DATA_EV_TYPE = 0x30, 277 QUP_NOTIF_EV_TYPE = 0x31, 278 STALE_EV_TYPE = 0xFF, 279 }; 280 281 union __packed gpi_event { 282 struct __packed xfer_compl_event xfer_compl_event; 283 struct __packed immediate_data_event immediate_data_event; 284 struct __packed qup_notif_event qup_notif_event; 285 struct __packed gpi_ere gpi_ere; 286 }; 287 288 enum gpii_irq_settings { 289 DEFAULT_IRQ_SETTINGS, 290 MASK_IEOB_SETTINGS, 291 }; 292 293 enum gpi_ev_state { 294 DEFAULT_EV_CH_STATE = 0, 295 EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE, 296 EV_STATE_ALLOCATED, 297 MAX_EV_STATES 298 }; 299 300 static const char *const gpi_ev_state_str[MAX_EV_STATES] = { 301 [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED", 302 [EV_STATE_ALLOCATED] = "ALLOCATED", 303 }; 304 305 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \ 306 "INVALID" : gpi_ev_state_str[(_state)]) 307 308 enum gpi_ch_state { 309 DEFAULT_CH_STATE = 0x0, 310 CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE, 311 CH_STATE_ALLOCATED = 0x1, 312 CH_STATE_STARTED = 0x2, 313 CH_STATE_STOPPED = 0x3, 314 CH_STATE_STOP_IN_PROC = 0x4, 315 CH_STATE_ERROR = 0xf, 316 MAX_CH_STATES 317 }; 318 319 enum gpi_cmd { 320 GPI_CH_CMD_BEGIN, 321 GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN, 322 GPI_CH_CMD_START, 323 GPI_CH_CMD_STOP, 324 GPI_CH_CMD_RESET, 325 GPI_CH_CMD_DE_ALLOC, 326 GPI_CH_CMD_UART_SW_STALE, 327 GPI_CH_CMD_UART_RFR_READY, 328 GPI_CH_CMD_UART_RFR_NOT_READY, 329 GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY, 330 GPI_EV_CMD_BEGIN, 331 GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN, 332 GPI_EV_CMD_RESET, 333 GPI_EV_CMD_DEALLOC, 334 GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC, 335 GPI_MAX_CMD, 336 }; 337 338 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END) 339 340 static const char *const gpi_cmd_str[GPI_MAX_CMD] = { 341 [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE", 342 [GPI_CH_CMD_START] = "CH START", 343 [GPI_CH_CMD_STOP] = "CH STOP", 344 [GPI_CH_CMD_RESET] = "CH_RESET", 345 [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC", 346 [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE", 347 [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY", 348 [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY", 349 [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE", 350 [GPI_EV_CMD_RESET] = "EV RESET", 351 [GPI_EV_CMD_DEALLOC] = "EV DEALLOC", 352 }; 353 354 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \ 355 gpi_cmd_str[(_cmd)]) 356 357 /* 358 * @DISABLE_STATE: no register access allowed 359 * @CONFIG_STATE: client has configured the channel 360 * @PREP_HARDWARE: register access is allowed 361 * however, no processing EVENTS 362 * @ACTIVE_STATE: channels are fully operational 363 * @PREPARE_TERMINATE: graceful termination of channels 364 * register access is allowed 365 * @PAUSE_STATE: channels are active, but not processing any events 366 */ 367 enum gpi_pm_state { 368 DISABLE_STATE, 369 CONFIG_STATE, 370 PREPARE_HARDWARE, 371 ACTIVE_STATE, 372 PREPARE_TERMINATE, 373 PAUSE_STATE, 374 MAX_PM_STATE 375 }; 376 377 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE) 378 379 static const char *const gpi_pm_state_str[MAX_PM_STATE] = { 380 [DISABLE_STATE] = "DISABLE", 381 [CONFIG_STATE] = "CONFIG", 382 [PREPARE_HARDWARE] = "PREPARE HARDWARE", 383 [ACTIVE_STATE] = "ACTIVE", 384 [PREPARE_TERMINATE] = "PREPARE TERMINATE", 385 [PAUSE_STATE] = "PAUSE", 386 }; 387 388 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \ 389 "INVALID" : gpi_pm_state_str[(_state)]) 390 391 static const struct { 392 enum gpi_cmd gpi_cmd; 393 u32 opcode; 394 u32 state; 395 } gpi_cmd_info[GPI_MAX_CMD] = { 396 { 397 GPI_CH_CMD_ALLOCATE, 398 GPII_n_CH_CMD_ALLOCATE, 399 CH_STATE_ALLOCATED, 400 }, 401 { 402 GPI_CH_CMD_START, 403 GPII_n_CH_CMD_START, 404 CH_STATE_STARTED, 405 }, 406 { 407 GPI_CH_CMD_STOP, 408 GPII_n_CH_CMD_STOP, 409 CH_STATE_STOPPED, 410 }, 411 { 412 GPI_CH_CMD_RESET, 413 GPII_n_CH_CMD_RESET, 414 CH_STATE_ALLOCATED, 415 }, 416 { 417 GPI_CH_CMD_DE_ALLOC, 418 GPII_n_CH_CMD_DE_ALLOC, 419 CH_STATE_NOT_ALLOCATED, 420 }, 421 { 422 GPI_CH_CMD_UART_SW_STALE, 423 GPII_n_CH_CMD_UART_SW_STALE, 424 STATE_IGNORE, 425 }, 426 { 427 GPI_CH_CMD_UART_RFR_READY, 428 GPII_n_CH_CMD_UART_RFR_READY, 429 STATE_IGNORE, 430 }, 431 { 432 GPI_CH_CMD_UART_RFR_NOT_READY, 433 GPII_n_CH_CMD_UART_RFR_NOT_READY, 434 STATE_IGNORE, 435 }, 436 { 437 GPI_EV_CMD_ALLOCATE, 438 GPII_n_EV_CH_CMD_ALLOCATE, 439 EV_STATE_ALLOCATED, 440 }, 441 { 442 GPI_EV_CMD_RESET, 443 GPII_n_EV_CH_CMD_RESET, 444 EV_STATE_ALLOCATED, 445 }, 446 { 447 GPI_EV_CMD_DEALLOC, 448 GPII_n_EV_CH_CMD_DE_ALLOC, 449 EV_STATE_NOT_ALLOCATED, 450 }, 451 }; 452 453 struct gpi_ring { 454 void *pre_aligned; 455 size_t alloc_size; 456 phys_addr_t phys_addr; 457 dma_addr_t dma_handle; 458 void *base; 459 void *wp; 460 void *rp; 461 u32 len; 462 u32 el_size; 463 u32 elements; 464 bool configured; 465 }; 466 467 struct gpi_dev { 468 struct dma_device dma_device; 469 struct device *dev; 470 struct resource *res; 471 void __iomem *regs; 472 void __iomem *ee_base; /*ee register base address*/ 473 u32 max_gpii; /* maximum # of gpii instances available per gpi block */ 474 u32 gpii_mask; /* gpii instances available for apps */ 475 u32 ev_factor; /* ev ring length factor */ 476 struct gpii *gpiis; 477 }; 478 479 struct reg_info { 480 char *name; 481 u32 offset; 482 u32 val; 483 }; 484 485 struct gchan { 486 struct virt_dma_chan vc; 487 u32 chid; 488 u32 seid; 489 u32 protocol; 490 struct gpii *gpii; 491 enum gpi_ch_state ch_state; 492 enum gpi_pm_state pm_state; 493 void __iomem *ch_cntxt_base_reg; 494 void __iomem *ch_cntxt_db_reg; 495 void __iomem *ch_cmd_reg; 496 u32 dir; 497 struct gpi_ring ch_ring; 498 void *config; 499 }; 500 501 struct gpii { 502 u32 gpii_id; 503 struct gchan gchan[MAX_CHANNELS_PER_GPII]; 504 struct gpi_dev *gpi_dev; 505 int irq; 506 void __iomem *regs; /* points to gpi top */ 507 void __iomem *ev_cntxt_base_reg; 508 void __iomem *ev_cntxt_db_reg; 509 void __iomem *ev_ring_rp_lsb_reg; 510 void __iomem *ev_cmd_reg; 511 void __iomem *ieob_clr_reg; 512 struct mutex ctrl_lock; 513 enum gpi_ev_state ev_state; 514 bool configured_irq; 515 enum gpi_pm_state pm_state; 516 rwlock_t pm_lock; 517 struct gpi_ring ev_ring; 518 struct tasklet_struct ev_task; /* event processing tasklet */ 519 struct completion cmd_completion; 520 enum gpi_cmd gpi_cmd; 521 u32 cntxt_type_irq_msk; 522 bool ieob_set; 523 }; 524 525 #define MAX_TRE 3 526 527 struct gpi_desc { 528 struct virt_dma_desc vd; 529 size_t len; 530 void *db; /* DB register to program */ 531 struct gchan *gchan; 532 struct gpi_tre tre[MAX_TRE]; 533 u32 num_tre; 534 }; 535 536 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = { 537 GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN 538 }; 539 540 static irqreturn_t gpi_handle_irq(int irq, void *data); 541 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring); 542 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp); 543 static void gpi_process_events(struct gpii *gpii); 544 545 static inline struct gchan *to_gchan(struct dma_chan *dma_chan) 546 { 547 return container_of(dma_chan, struct gchan, vc.chan); 548 } 549 550 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd) 551 { 552 return container_of(vd, struct gpi_desc, vd); 553 } 554 555 static inline phys_addr_t to_physical(const struct gpi_ring *const ring, 556 void *addr) 557 { 558 return ring->phys_addr + (addr - ring->base); 559 } 560 561 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr) 562 { 563 return ring->base + (addr - ring->phys_addr); 564 } 565 566 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr) 567 { 568 return readl_relaxed(addr); 569 } 570 571 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val) 572 { 573 writel_relaxed(val, addr); 574 } 575 576 /* gpi_write_reg_field - write to specific bit field */ 577 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr, 578 u32 mask, u32 shift, u32 val) 579 { 580 u32 tmp = gpi_read_reg(gpii, addr); 581 582 tmp &= ~mask; 583 val = tmp | ((val << shift) & mask); 584 gpi_write_reg(gpii, addr, val); 585 } 586 587 static __always_inline void 588 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val) 589 { 590 void __iomem *addr = gpii->regs + offset; 591 u32 tmp = gpi_read_reg(gpii, addr); 592 593 tmp &= ~mask; 594 tmp |= u32_encode_bits(val, mask); 595 596 gpi_write_reg(gpii, addr, tmp); 597 } 598 599 static void gpi_disable_interrupts(struct gpii *gpii) 600 { 601 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 602 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0); 603 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), 604 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0); 605 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), 606 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0); 607 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), 608 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0); 609 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), 610 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); 611 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), 612 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); 613 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), 614 GPII_n_CNTXT_INTSET_BMSK, 0); 615 616 gpii->cntxt_type_irq_msk = 0; 617 devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii); 618 gpii->configured_irq = false; 619 } 620 621 /* configure and enable interrupts */ 622 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask) 623 { 624 const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL | 625 GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB | 626 GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB | 627 GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL | 628 GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); 629 int ret; 630 631 if (!gpii->configured_irq) { 632 ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq, 633 gpi_handle_irq, IRQF_TRIGGER_HIGH, 634 "gpi-dma", gpii); 635 if (ret < 0) { 636 dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n", 637 gpii->irq, ret); 638 return ret; 639 } 640 } 641 642 if (settings == MASK_IEOB_SETTINGS) { 643 /* 644 * GPII only uses one EV ring per gpii so we can globally 645 * enable/disable IEOB interrupt 646 */ 647 if (mask) 648 gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; 649 else 650 gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB); 651 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 652 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk); 653 } else { 654 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 655 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable); 656 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), 657 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 658 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK); 659 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), 660 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 661 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK); 662 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), 663 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 664 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK); 665 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), 666 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 667 GPII_n_CNTXT_GPII_IRQ_EN_BMSK); 668 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), 669 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK); 670 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0); 671 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0); 672 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0); 673 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0); 674 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), 675 GPII_n_CNTXT_INTSET_BMSK, 1); 676 gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0); 677 678 gpii->cntxt_type_irq_msk = enable; 679 } 680 681 gpii->configured_irq = true; 682 return 0; 683 } 684 685 /* Sends gpii event or channel command */ 686 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan, 687 enum gpi_cmd gpi_cmd) 688 { 689 u32 chid = MAX_CHANNELS_PER_GPII; 690 unsigned long timeout; 691 void __iomem *cmd_reg; 692 u32 cmd; 693 694 if (gpi_cmd >= GPI_MAX_CMD) 695 return -EINVAL; 696 if (IS_CHAN_CMD(gpi_cmd)) 697 chid = gchan->chid; 698 699 dev_dbg(gpii->gpi_dev->dev, 700 "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid); 701 702 /* send opcode and wait for completion */ 703 reinit_completion(&gpii->cmd_completion); 704 gpii->gpi_cmd = gpi_cmd; 705 706 cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg; 707 cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) : 708 GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0); 709 gpi_write_reg(gpii, cmd_reg, cmd); 710 timeout = wait_for_completion_timeout(&gpii->cmd_completion, 711 msecs_to_jiffies(CMD_TIMEOUT_MS)); 712 if (!timeout) { 713 dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n", 714 TO_GPI_CMD_STR(gpi_cmd), chid); 715 return -EIO; 716 } 717 718 /* confirm new ch state is correct , if the cmd is a state change cmd */ 719 if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE) 720 return 0; 721 722 if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state) 723 return 0; 724 725 if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state) 726 return 0; 727 728 return -EIO; 729 } 730 731 /* program transfer ring DB register */ 732 static inline void gpi_write_ch_db(struct gchan *gchan, 733 struct gpi_ring *ring, void *wp) 734 { 735 struct gpii *gpii = gchan->gpii; 736 phys_addr_t p_wp; 737 738 p_wp = to_physical(ring, wp); 739 gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp); 740 } 741 742 /* program event ring DB register */ 743 static inline void gpi_write_ev_db(struct gpii *gpii, 744 struct gpi_ring *ring, void *wp) 745 { 746 phys_addr_t p_wp; 747 748 p_wp = ring->phys_addr + (wp - ring->base); 749 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp); 750 } 751 752 /* process transfer completion interrupt */ 753 static void gpi_process_ieob(struct gpii *gpii) 754 { 755 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); 756 757 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0); 758 tasklet_hi_schedule(&gpii->ev_task); 759 } 760 761 /* process channel control interrupt */ 762 static void gpi_process_ch_ctrl_irq(struct gpii *gpii) 763 { 764 u32 gpii_id = gpii->gpii_id; 765 u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id); 766 u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset); 767 struct gchan *gchan; 768 u32 chid, state; 769 770 /* clear the status */ 771 offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id); 772 gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq); 773 774 for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) { 775 if (!(BIT(chid) & ch_irq)) 776 continue; 777 778 gchan = &gpii->gchan[chid]; 779 state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg + 780 CNTXT_0_CONFIG); 781 state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state); 782 783 /* 784 * CH_CMD_DEALLOC cmd always successful. However cmd does 785 * not change hardware status. So overwriting software state 786 * to default state. 787 */ 788 if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC) 789 state = DEFAULT_CH_STATE; 790 gchan->ch_state = state; 791 792 /* 793 * Triggering complete all if ch_state is not a stop in process. 794 * Stop in process is a transition state and we will wait for 795 * stop interrupt before notifying. 796 */ 797 if (gchan->ch_state != CH_STATE_STOP_IN_PROC) 798 complete_all(&gpii->cmd_completion); 799 } 800 } 801 802 /* processing gpi general error interrupts */ 803 static void gpi_process_gen_err_irq(struct gpii *gpii) 804 { 805 u32 gpii_id = gpii->gpii_id; 806 u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id); 807 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); 808 809 /* clear the status */ 810 dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts); 811 812 /* Clear the register */ 813 offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id); 814 gpi_write_reg(gpii, gpii->regs + offset, irq_stts); 815 } 816 817 /* processing gpi level error interrupts */ 818 static void gpi_process_glob_err_irq(struct gpii *gpii) 819 { 820 u32 gpii_id = gpii->gpii_id; 821 u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id); 822 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); 823 824 offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id); 825 gpi_write_reg(gpii, gpii->regs + offset, irq_stts); 826 827 /* only error interrupt should be set */ 828 if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) { 829 dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts); 830 return; 831 } 832 833 offset = GPII_n_ERROR_LOG_OFFS(gpii_id); 834 gpi_write_reg(gpii, gpii->regs + offset, 0); 835 } 836 837 /* gpii interrupt handler */ 838 static irqreturn_t gpi_handle_irq(int irq, void *data) 839 { 840 struct gpii *gpii = data; 841 u32 gpii_id = gpii->gpii_id; 842 u32 type, offset; 843 unsigned long flags; 844 845 read_lock_irqsave(&gpii->pm_lock, flags); 846 847 /* 848 * States are out of sync to receive interrupt 849 * while software state is in DISABLE state, bailing out. 850 */ 851 if (!REG_ACCESS_VALID(gpii->pm_state)) { 852 dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n", 853 TO_GPI_PM_STR(gpii->pm_state)); 854 goto exit_irq; 855 } 856 857 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); 858 type = gpi_read_reg(gpii, gpii->regs + offset); 859 860 do { 861 /* global gpii error */ 862 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) { 863 gpi_process_glob_err_irq(gpii); 864 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB); 865 } 866 867 /* transfer complete interrupt */ 868 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) { 869 gpi_process_ieob(gpii); 870 type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; 871 } 872 873 /* event control irq */ 874 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) { 875 u32 ev_state; 876 u32 ev_ch_irq; 877 878 dev_dbg(gpii->gpi_dev->dev, 879 "processing EV CTRL interrupt\n"); 880 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id); 881 ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset); 882 883 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS 884 (gpii_id); 885 gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq); 886 ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg + 887 CNTXT_0_CONFIG); 888 ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state); 889 890 /* 891 * CMD EV_CMD_DEALLOC is always successful. However 892 * cmd does not change hardware status. So overwriting 893 * software state to default state. 894 */ 895 if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC) 896 ev_state = DEFAULT_EV_CH_STATE; 897 898 gpii->ev_state = ev_state; 899 dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n", 900 TO_GPI_EV_STATE_STR(gpii->ev_state)); 901 complete_all(&gpii->cmd_completion); 902 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL); 903 } 904 905 /* channel control irq */ 906 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) { 907 dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n"); 908 gpi_process_ch_ctrl_irq(gpii); 909 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); 910 } 911 912 if (type) { 913 dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type); 914 gpi_process_gen_err_irq(gpii); 915 goto exit_irq; 916 } 917 918 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); 919 type = gpi_read_reg(gpii, gpii->regs + offset); 920 } while (type); 921 922 exit_irq: 923 read_unlock_irqrestore(&gpii->pm_lock, flags); 924 925 return IRQ_HANDLED; 926 } 927 928 /* process DMA Immediate completion data events */ 929 static void gpi_process_imed_data_event(struct gchan *gchan, 930 struct immediate_data_event *imed_event) 931 { 932 struct gpii *gpii = gchan->gpii; 933 struct gpi_ring *ch_ring = &gchan->ch_ring; 934 void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index); 935 struct dmaengine_result result; 936 struct gpi_desc *gpi_desc; 937 struct virt_dma_desc *vd; 938 unsigned long flags; 939 u32 chid; 940 941 /* 942 * If channel not active don't process event 943 */ 944 if (gchan->pm_state != ACTIVE_STATE) { 945 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", 946 TO_GPI_PM_STR(gchan->pm_state)); 947 return; 948 } 949 950 spin_lock_irqsave(&gchan->vc.lock, flags); 951 vd = vchan_next_desc(&gchan->vc); 952 if (!vd) { 953 struct gpi_ere *gpi_ere; 954 struct gpi_tre *gpi_tre; 955 956 spin_unlock_irqrestore(&gchan->vc.lock, flags); 957 dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n"); 958 gpi_ere = (struct gpi_ere *)imed_event; 959 dev_dbg(gpii->gpi_dev->dev, 960 "Event: %08x %08x %08x %08x\n", 961 gpi_ere->dword[0], gpi_ere->dword[1], 962 gpi_ere->dword[2], gpi_ere->dword[3]); 963 gpi_tre = tre; 964 dev_dbg(gpii->gpi_dev->dev, 965 "Pending TRE: %08x %08x %08x %08x\n", 966 gpi_tre->dword[0], gpi_tre->dword[1], 967 gpi_tre->dword[2], gpi_tre->dword[3]); 968 return; 969 } 970 gpi_desc = to_gpi_desc(vd); 971 spin_unlock_irqrestore(&gchan->vc.lock, flags); 972 973 /* 974 * RP pointed by Event is to last TRE processed, 975 * we need to update ring rp to tre + 1 976 */ 977 tre += ch_ring->el_size; 978 if (tre >= (ch_ring->base + ch_ring->len)) 979 tre = ch_ring->base; 980 ch_ring->rp = tre; 981 982 /* make sure rp updates are immediately visible to all cores */ 983 smp_wmb(); 984 985 chid = imed_event->chid; 986 if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { 987 if (chid == GPI_RX_CHAN) 988 goto gpi_free_desc; 989 else 990 return; 991 } 992 993 if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR) 994 result.result = DMA_TRANS_ABORTED; 995 else 996 result.result = DMA_TRANS_NOERROR; 997 result.residue = gpi_desc->len - imed_event->length; 998 999 dma_cookie_complete(&vd->tx); 1000 dmaengine_desc_get_callback_invoke(&vd->tx, &result); 1001 1002 gpi_free_desc: 1003 spin_lock_irqsave(&gchan->vc.lock, flags); 1004 list_del(&vd->node); 1005 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1006 kfree(gpi_desc); 1007 gpi_desc = NULL; 1008 } 1009 1010 /* processing transfer completion events */ 1011 static void gpi_process_xfer_compl_event(struct gchan *gchan, 1012 struct xfer_compl_event *compl_event) 1013 { 1014 struct gpii *gpii = gchan->gpii; 1015 struct gpi_ring *ch_ring = &gchan->ch_ring; 1016 void *ev_rp = to_virtual(ch_ring, compl_event->ptr); 1017 struct virt_dma_desc *vd; 1018 struct gpi_desc *gpi_desc; 1019 struct dmaengine_result result; 1020 unsigned long flags; 1021 u32 chid; 1022 1023 /* only process events on active channel */ 1024 if (unlikely(gchan->pm_state != ACTIVE_STATE)) { 1025 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", 1026 TO_GPI_PM_STR(gchan->pm_state)); 1027 return; 1028 } 1029 1030 spin_lock_irqsave(&gchan->vc.lock, flags); 1031 vd = vchan_next_desc(&gchan->vc); 1032 if (!vd) { 1033 struct gpi_ere *gpi_ere; 1034 1035 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1036 dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n"); 1037 gpi_ere = (struct gpi_ere *)compl_event; 1038 dev_err(gpii->gpi_dev->dev, 1039 "Event: %08x %08x %08x %08x\n", 1040 gpi_ere->dword[0], gpi_ere->dword[1], 1041 gpi_ere->dword[2], gpi_ere->dword[3]); 1042 return; 1043 } 1044 1045 gpi_desc = to_gpi_desc(vd); 1046 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1047 1048 /* 1049 * RP pointed by Event is to last TRE processed, 1050 * we need to update ring rp to ev_rp + 1 1051 */ 1052 ev_rp += ch_ring->el_size; 1053 if (ev_rp >= (ch_ring->base + ch_ring->len)) 1054 ev_rp = ch_ring->base; 1055 ch_ring->rp = ev_rp; 1056 1057 /* update must be visible to other cores */ 1058 smp_wmb(); 1059 1060 chid = compl_event->chid; 1061 if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { 1062 if (chid == GPI_RX_CHAN) 1063 goto gpi_free_desc; 1064 else 1065 return; 1066 } 1067 1068 if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) { 1069 dev_err(gpii->gpi_dev->dev, "Error in Transaction\n"); 1070 result.result = DMA_TRANS_ABORTED; 1071 } else { 1072 dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n"); 1073 result.result = DMA_TRANS_NOERROR; 1074 } 1075 result.residue = gpi_desc->len - compl_event->length; 1076 dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue); 1077 1078 dma_cookie_complete(&vd->tx); 1079 dmaengine_desc_get_callback_invoke(&vd->tx, &result); 1080 1081 gpi_free_desc: 1082 spin_lock_irqsave(&gchan->vc.lock, flags); 1083 list_del(&vd->node); 1084 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1085 kfree(gpi_desc); 1086 gpi_desc = NULL; 1087 } 1088 1089 /* process all events */ 1090 static void gpi_process_events(struct gpii *gpii) 1091 { 1092 struct gpi_ring *ev_ring = &gpii->ev_ring; 1093 phys_addr_t cntxt_rp; 1094 void *rp; 1095 union gpi_event *gpi_event; 1096 struct gchan *gchan; 1097 u32 chid, type; 1098 1099 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1100 rp = to_virtual(ev_ring, cntxt_rp); 1101 1102 do { 1103 while (rp != ev_ring->rp) { 1104 gpi_event = ev_ring->rp; 1105 chid = gpi_event->xfer_compl_event.chid; 1106 type = gpi_event->xfer_compl_event.type; 1107 1108 dev_dbg(gpii->gpi_dev->dev, 1109 "Event: CHID:%u, type:%x %08x %08x %08x %08x\n", 1110 chid, type, gpi_event->gpi_ere.dword[0], 1111 gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2], 1112 gpi_event->gpi_ere.dword[3]); 1113 1114 switch (type) { 1115 case XFER_COMPLETE_EV_TYPE: 1116 gchan = &gpii->gchan[chid]; 1117 gpi_process_xfer_compl_event(gchan, 1118 &gpi_event->xfer_compl_event); 1119 break; 1120 case STALE_EV_TYPE: 1121 dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n"); 1122 break; 1123 case IMMEDIATE_DATA_EV_TYPE: 1124 gchan = &gpii->gchan[chid]; 1125 gpi_process_imed_data_event(gchan, 1126 &gpi_event->immediate_data_event); 1127 break; 1128 case QUP_NOTIF_EV_TYPE: 1129 dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n"); 1130 break; 1131 default: 1132 dev_dbg(gpii->gpi_dev->dev, 1133 "not supported event type:0x%x\n", type); 1134 } 1135 gpi_ring_recycle_ev_element(ev_ring); 1136 } 1137 gpi_write_ev_db(gpii, ev_ring, ev_ring->wp); 1138 1139 /* clear pending IEOB events */ 1140 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); 1141 1142 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1143 rp = to_virtual(ev_ring, cntxt_rp); 1144 1145 } while (rp != ev_ring->rp); 1146 } 1147 1148 /* processing events using tasklet */ 1149 static void gpi_ev_tasklet(unsigned long data) 1150 { 1151 struct gpii *gpii = (struct gpii *)data; 1152 1153 read_lock(&gpii->pm_lock); 1154 if (!REG_ACCESS_VALID(gpii->pm_state)) { 1155 read_unlock(&gpii->pm_lock); 1156 dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n", 1157 TO_GPI_PM_STR(gpii->pm_state)); 1158 return; 1159 } 1160 1161 /* process the events */ 1162 gpi_process_events(gpii); 1163 1164 /* enable IEOB, switching back to interrupts */ 1165 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1); 1166 read_unlock(&gpii->pm_lock); 1167 } 1168 1169 /* marks all pending events for the channel as stale */ 1170 static void gpi_mark_stale_events(struct gchan *gchan) 1171 { 1172 struct gpii *gpii = gchan->gpii; 1173 struct gpi_ring *ev_ring = &gpii->ev_ring; 1174 u32 cntxt_rp, local_rp; 1175 void *ev_rp; 1176 1177 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1178 1179 ev_rp = ev_ring->rp; 1180 local_rp = (u32)to_physical(ev_ring, ev_rp); 1181 while (local_rp != cntxt_rp) { 1182 union gpi_event *gpi_event = ev_rp; 1183 u32 chid = gpi_event->xfer_compl_event.chid; 1184 1185 if (chid == gchan->chid) 1186 gpi_event->xfer_compl_event.type = STALE_EV_TYPE; 1187 ev_rp += ev_ring->el_size; 1188 if (ev_rp >= (ev_ring->base + ev_ring->len)) 1189 ev_rp = ev_ring->base; 1190 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1191 local_rp = (u32)to_physical(ev_ring, ev_rp); 1192 } 1193 } 1194 1195 /* reset sw state and issue channel reset or de-alloc */ 1196 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd) 1197 { 1198 struct gpii *gpii = gchan->gpii; 1199 struct gpi_ring *ch_ring = &gchan->ch_ring; 1200 unsigned long flags; 1201 LIST_HEAD(list); 1202 int ret; 1203 1204 ret = gpi_send_cmd(gpii, gchan, gpi_cmd); 1205 if (ret) { 1206 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1207 TO_GPI_CMD_STR(gpi_cmd), ret); 1208 return ret; 1209 } 1210 1211 /* initialize the local ring ptrs */ 1212 ch_ring->rp = ch_ring->base; 1213 ch_ring->wp = ch_ring->base; 1214 1215 /* visible to other cores */ 1216 smp_wmb(); 1217 1218 /* check event ring for any stale events */ 1219 write_lock_irq(&gpii->pm_lock); 1220 gpi_mark_stale_events(gchan); 1221 1222 /* remove all async descriptors */ 1223 spin_lock_irqsave(&gchan->vc.lock, flags); 1224 vchan_get_all_descriptors(&gchan->vc, &list); 1225 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1226 write_unlock_irq(&gpii->pm_lock); 1227 vchan_dma_desc_free_list(&gchan->vc, &list); 1228 1229 return 0; 1230 } 1231 1232 static int gpi_start_chan(struct gchan *gchan) 1233 { 1234 struct gpii *gpii = gchan->gpii; 1235 int ret; 1236 1237 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START); 1238 if (ret) { 1239 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1240 TO_GPI_CMD_STR(GPI_CH_CMD_START), ret); 1241 return ret; 1242 } 1243 1244 /* gpii CH is active now */ 1245 write_lock_irq(&gpii->pm_lock); 1246 gchan->pm_state = ACTIVE_STATE; 1247 write_unlock_irq(&gpii->pm_lock); 1248 1249 return 0; 1250 } 1251 1252 static int gpi_stop_chan(struct gchan *gchan) 1253 { 1254 struct gpii *gpii = gchan->gpii; 1255 int ret; 1256 1257 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP); 1258 if (ret) { 1259 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1260 TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret); 1261 return ret; 1262 } 1263 1264 return 0; 1265 } 1266 1267 /* allocate and configure the transfer channel */ 1268 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd) 1269 { 1270 struct gpii *gpii = chan->gpii; 1271 struct gpi_ring *ring = &chan->ch_ring; 1272 int ret; 1273 u32 id = gpii->gpii_id; 1274 u32 chid = chan->chid; 1275 u32 pair_chid = !chid; 1276 1277 if (send_alloc_cmd) { 1278 ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE); 1279 if (ret) { 1280 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1281 TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret); 1282 return ret; 1283 } 1284 } 1285 1286 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG, 1287 GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI)); 1288 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len); 1289 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr); 1290 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB, 1291 upper_32_bits(ring->phys_addr)); 1292 gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, 1293 upper_32_bits(ring->phys_addr)); 1294 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid), 1295 GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid)); 1296 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0); 1297 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0); 1298 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0); 1299 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1); 1300 1301 /* flush all the writes */ 1302 wmb(); 1303 return 0; 1304 } 1305 1306 /* allocate and configure event ring */ 1307 static int gpi_alloc_ev_chan(struct gpii *gpii) 1308 { 1309 struct gpi_ring *ring = &gpii->ev_ring; 1310 void __iomem *base = gpii->ev_cntxt_base_reg; 1311 int ret; 1312 1313 ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE); 1314 if (ret) { 1315 dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n", 1316 TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret); 1317 return ret; 1318 } 1319 1320 /* program event context */ 1321 gpi_write_reg(gpii, base + CNTXT_0_CONFIG, 1322 GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV)); 1323 gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len); 1324 gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr)); 1325 gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr)); 1326 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, 1327 upper_32_bits(ring->phys_addr)); 1328 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); 1329 gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0); 1330 gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0); 1331 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); 1332 gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0); 1333 gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0); 1334 1335 /* add events to ring */ 1336 ring->wp = (ring->base + ring->len - ring->el_size); 1337 1338 /* flush all the writes */ 1339 wmb(); 1340 1341 /* gpii is active now */ 1342 write_lock_irq(&gpii->pm_lock); 1343 gpii->pm_state = ACTIVE_STATE; 1344 write_unlock_irq(&gpii->pm_lock); 1345 gpi_write_ev_db(gpii, ring, ring->wp); 1346 1347 return 0; 1348 } 1349 1350 /* calculate # of ERE/TRE available to queue */ 1351 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring) 1352 { 1353 int elements = 0; 1354 1355 if (ring->wp < ring->rp) { 1356 elements = ((ring->rp - ring->wp) / ring->el_size) - 1; 1357 } else { 1358 elements = (ring->rp - ring->base) / ring->el_size; 1359 elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1; 1360 } 1361 1362 return elements; 1363 } 1364 1365 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp) 1366 { 1367 if (gpi_ring_num_elements_avail(ring) <= 0) 1368 return -ENOMEM; 1369 1370 *wp = ring->wp; 1371 ring->wp += ring->el_size; 1372 if (ring->wp >= (ring->base + ring->len)) 1373 ring->wp = ring->base; 1374 1375 /* visible to other cores */ 1376 smp_wmb(); 1377 1378 return 0; 1379 } 1380 1381 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring) 1382 { 1383 /* Update the WP */ 1384 ring->wp += ring->el_size; 1385 if (ring->wp >= (ring->base + ring->len)) 1386 ring->wp = ring->base; 1387 1388 /* Update the RP */ 1389 ring->rp += ring->el_size; 1390 if (ring->rp >= (ring->base + ring->len)) 1391 ring->rp = ring->base; 1392 1393 /* visible to other cores */ 1394 smp_wmb(); 1395 } 1396 1397 static void gpi_free_ring(struct gpi_ring *ring, 1398 struct gpii *gpii) 1399 { 1400 dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size, 1401 ring->pre_aligned, ring->dma_handle); 1402 memset(ring, 0, sizeof(*ring)); 1403 } 1404 1405 /* allocate memory for transfer and event rings */ 1406 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements, 1407 u32 el_size, struct gpii *gpii) 1408 { 1409 u64 len = elements * el_size; 1410 int bit; 1411 1412 /* ring len must be power of 2 */ 1413 bit = find_last_bit((unsigned long *)&len, 32); 1414 if (((1 << bit) - 1) & len) 1415 bit++; 1416 len = 1 << bit; 1417 ring->alloc_size = (len + (len - 1)); 1418 dev_dbg(gpii->gpi_dev->dev, 1419 "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n", 1420 elements, el_size, (elements * el_size), len, 1421 ring->alloc_size); 1422 1423 ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev, 1424 ring->alloc_size, 1425 &ring->dma_handle, GFP_KERNEL); 1426 if (!ring->pre_aligned) { 1427 dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n", 1428 ring->alloc_size); 1429 return -ENOMEM; 1430 } 1431 1432 /* align the physical mem */ 1433 ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1); 1434 ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle); 1435 ring->rp = ring->base; 1436 ring->wp = ring->base; 1437 ring->len = len; 1438 ring->el_size = el_size; 1439 ring->elements = ring->len / ring->el_size; 1440 memset(ring->base, 0, ring->len); 1441 ring->configured = true; 1442 1443 /* update to other cores */ 1444 smp_wmb(); 1445 1446 dev_dbg(gpii->gpi_dev->dev, 1447 "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n", 1448 &ring->dma_handle, &ring->phys_addr, ring->len, 1449 ring->el_size, ring->elements); 1450 1451 return 0; 1452 } 1453 1454 /* copy tre into transfer ring */ 1455 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan, 1456 struct gpi_tre *gpi_tre, void **wp) 1457 { 1458 struct gpi_tre *ch_tre; 1459 int ret; 1460 1461 /* get next tre location we can copy */ 1462 ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre); 1463 if (unlikely(ret)) { 1464 dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n"); 1465 return; 1466 } 1467 1468 /* copy the tre info */ 1469 memcpy(ch_tre, gpi_tre, sizeof(*ch_tre)); 1470 *wp = ch_tre; 1471 } 1472 1473 /* reset and restart transfer channel */ 1474 static int gpi_terminate_all(struct dma_chan *chan) 1475 { 1476 struct gchan *gchan = to_gchan(chan); 1477 struct gpii *gpii = gchan->gpii; 1478 int schid, echid, i; 1479 int ret = 0; 1480 1481 mutex_lock(&gpii->ctrl_lock); 1482 1483 /* 1484 * treat both channels as a group if its protocol is not UART 1485 * STOP, RESET, or START needs to be in lockstep 1486 */ 1487 schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0; 1488 echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII; 1489 1490 /* stop the channel */ 1491 for (i = schid; i < echid; i++) { 1492 gchan = &gpii->gchan[i]; 1493 1494 /* disable ch state so no more TRE processing */ 1495 write_lock_irq(&gpii->pm_lock); 1496 gchan->pm_state = PREPARE_TERMINATE; 1497 write_unlock_irq(&gpii->pm_lock); 1498 1499 /* send command to Stop the channel */ 1500 ret = gpi_stop_chan(gchan); 1501 } 1502 1503 /* reset the channels (clears any pending tre) */ 1504 for (i = schid; i < echid; i++) { 1505 gchan = &gpii->gchan[i]; 1506 1507 ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET); 1508 if (ret) { 1509 dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret); 1510 goto terminate_exit; 1511 } 1512 1513 /* reprogram channel CNTXT */ 1514 ret = gpi_alloc_chan(gchan, false); 1515 if (ret) { 1516 dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret); 1517 goto terminate_exit; 1518 } 1519 } 1520 1521 /* restart the channels */ 1522 for (i = schid; i < echid; i++) { 1523 gchan = &gpii->gchan[i]; 1524 1525 ret = gpi_start_chan(gchan); 1526 if (ret) { 1527 dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret); 1528 goto terminate_exit; 1529 } 1530 } 1531 1532 terminate_exit: 1533 mutex_unlock(&gpii->ctrl_lock); 1534 return ret; 1535 } 1536 1537 /* pause dma transfer for all channels */ 1538 static int gpi_pause(struct dma_chan *chan) 1539 { 1540 struct gchan *gchan = to_gchan(chan); 1541 struct gpii *gpii = gchan->gpii; 1542 int i, ret; 1543 1544 mutex_lock(&gpii->ctrl_lock); 1545 1546 /* 1547 * pause/resume are per gpii not per channel, so 1548 * client needs to call pause only once 1549 */ 1550 if (gpii->pm_state == PAUSE_STATE) { 1551 dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n"); 1552 mutex_unlock(&gpii->ctrl_lock); 1553 return 0; 1554 } 1555 1556 /* send stop command to stop the channels */ 1557 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1558 ret = gpi_stop_chan(&gpii->gchan[i]); 1559 if (ret) { 1560 mutex_unlock(&gpii->ctrl_lock); 1561 return ret; 1562 } 1563 } 1564 1565 disable_irq(gpii->irq); 1566 1567 /* Wait for threads to complete out */ 1568 tasklet_kill(&gpii->ev_task); 1569 1570 write_lock_irq(&gpii->pm_lock); 1571 gpii->pm_state = PAUSE_STATE; 1572 write_unlock_irq(&gpii->pm_lock); 1573 mutex_unlock(&gpii->ctrl_lock); 1574 1575 return 0; 1576 } 1577 1578 /* resume dma transfer */ 1579 static int gpi_resume(struct dma_chan *chan) 1580 { 1581 struct gchan *gchan = to_gchan(chan); 1582 struct gpii *gpii = gchan->gpii; 1583 int i, ret; 1584 1585 mutex_lock(&gpii->ctrl_lock); 1586 if (gpii->pm_state == ACTIVE_STATE) { 1587 dev_dbg(gpii->gpi_dev->dev, "channel is already active\n"); 1588 mutex_unlock(&gpii->ctrl_lock); 1589 return 0; 1590 } 1591 1592 enable_irq(gpii->irq); 1593 1594 /* send start command to start the channels */ 1595 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1596 ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START); 1597 if (ret) { 1598 dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret); 1599 mutex_unlock(&gpii->ctrl_lock); 1600 return ret; 1601 } 1602 } 1603 1604 write_lock_irq(&gpii->pm_lock); 1605 gpii->pm_state = ACTIVE_STATE; 1606 write_unlock_irq(&gpii->pm_lock); 1607 mutex_unlock(&gpii->ctrl_lock); 1608 1609 return 0; 1610 } 1611 1612 static void gpi_desc_free(struct virt_dma_desc *vd) 1613 { 1614 struct gpi_desc *gpi_desc = to_gpi_desc(vd); 1615 1616 kfree(gpi_desc); 1617 gpi_desc = NULL; 1618 } 1619 1620 static int 1621 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config) 1622 { 1623 struct gchan *gchan = to_gchan(chan); 1624 1625 if (!config->peripheral_config) 1626 return -EINVAL; 1627 1628 gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT); 1629 if (!gchan->config) 1630 return -ENOMEM; 1631 1632 memcpy(gchan->config, config->peripheral_config, config->peripheral_size); 1633 1634 return 0; 1635 } 1636 1637 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc, 1638 struct scatterlist *sgl, enum dma_transfer_direction direction) 1639 { 1640 struct gpi_i2c_config *i2c = chan->config; 1641 struct device *dev = chan->gpii->gpi_dev->dev; 1642 unsigned int tre_idx = 0; 1643 dma_addr_t address; 1644 struct gpi_tre *tre; 1645 unsigned int i; 1646 1647 /* first create config tre if applicable */ 1648 if (i2c->set_config) { 1649 tre = &desc->tre[tre_idx]; 1650 tre_idx++; 1651 1652 tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW); 1653 tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH); 1654 tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL); 1655 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK); 1656 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK); 1657 1658 tre->dword[1] = 0; 1659 1660 tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV); 1661 1662 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); 1663 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1664 } 1665 1666 /* create the GO tre for Tx */ 1667 if (i2c->op == I2C_WRITE) { 1668 tre = &desc->tre[tre_idx]; 1669 tre_idx++; 1670 1671 if (i2c->multi_msg) 1672 tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD); 1673 else 1674 tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD); 1675 1676 tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR); 1677 tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH); 1678 1679 tre->dword[1] = 0; 1680 tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN); 1681 1682 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); 1683 1684 if (i2c->multi_msg) 1685 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1686 else 1687 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1688 } 1689 1690 if (i2c->op == I2C_READ || i2c->multi_msg == false) { 1691 /* create the DMA TRE */ 1692 tre = &desc->tre[tre_idx]; 1693 tre_idx++; 1694 1695 address = sg_dma_address(sgl); 1696 tre->dword[0] = lower_32_bits(address); 1697 tre->dword[1] = upper_32_bits(address); 1698 1699 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN); 1700 1701 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); 1702 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT); 1703 } 1704 1705 for (i = 0; i < tre_idx; i++) 1706 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], 1707 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); 1708 1709 return tre_idx; 1710 } 1711 1712 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc, 1713 struct scatterlist *sgl, enum dma_transfer_direction direction) 1714 { 1715 struct gpi_spi_config *spi = chan->config; 1716 struct device *dev = chan->gpii->gpi_dev->dev; 1717 unsigned int tre_idx = 0; 1718 dma_addr_t address; 1719 struct gpi_tre *tre; 1720 unsigned int i; 1721 1722 /* first create config tre if applicable */ 1723 if (direction == DMA_MEM_TO_DEV && spi->set_config) { 1724 tre = &desc->tre[tre_idx]; 1725 tre_idx++; 1726 1727 tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ); 1728 tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK); 1729 tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL); 1730 tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA); 1731 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK); 1732 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK); 1733 1734 tre->dword[1] = 0; 1735 1736 tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV); 1737 tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC); 1738 1739 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); 1740 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1741 } 1742 1743 /* create the GO tre for Tx */ 1744 if (direction == DMA_MEM_TO_DEV) { 1745 tre = &desc->tre[tre_idx]; 1746 tre_idx++; 1747 1748 tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG); 1749 tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS); 1750 tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD); 1751 1752 tre->dword[1] = 0; 1753 1754 tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN); 1755 1756 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); 1757 if (spi->cmd == SPI_RX) { 1758 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB); 1759 } else if (spi->cmd == SPI_TX) { 1760 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1761 } else { /* SPI_DUPLEX */ 1762 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1763 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1764 } 1765 } 1766 1767 /* create the dma tre */ 1768 tre = &desc->tre[tre_idx]; 1769 tre_idx++; 1770 1771 address = sg_dma_address(sgl); 1772 tre->dword[0] = lower_32_bits(address); 1773 tre->dword[1] = upper_32_bits(address); 1774 1775 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN); 1776 1777 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); 1778 if (direction == DMA_MEM_TO_DEV) 1779 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT); 1780 1781 for (i = 0; i < tre_idx; i++) 1782 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], 1783 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); 1784 1785 return tre_idx; 1786 } 1787 1788 /* copy tre into transfer ring */ 1789 static struct dma_async_tx_descriptor * 1790 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1791 unsigned int sg_len, enum dma_transfer_direction direction, 1792 unsigned long flags, void *context) 1793 { 1794 struct gchan *gchan = to_gchan(chan); 1795 struct gpii *gpii = gchan->gpii; 1796 struct device *dev = gpii->gpi_dev->dev; 1797 struct gpi_ring *ch_ring = &gchan->ch_ring; 1798 struct gpi_desc *gpi_desc; 1799 u32 nr, nr_tre = 0; 1800 u8 set_config; 1801 int i; 1802 1803 gpii->ieob_set = false; 1804 if (!is_slave_direction(direction)) { 1805 dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction); 1806 return NULL; 1807 } 1808 1809 if (sg_len > 1) { 1810 dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len); 1811 return NULL; 1812 } 1813 1814 nr_tre = 3; 1815 set_config = *(u32 *)gchan->config; 1816 if (!set_config) 1817 nr_tre = 2; 1818 if (direction == DMA_DEV_TO_MEM) /* rx */ 1819 nr_tre = 1; 1820 1821 /* calculate # of elements required & available */ 1822 nr = gpi_ring_num_elements_avail(ch_ring); 1823 if (nr < nr_tre) { 1824 dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre); 1825 return NULL; 1826 } 1827 1828 gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT); 1829 if (!gpi_desc) 1830 return NULL; 1831 1832 /* create TREs for xfer */ 1833 if (gchan->protocol == QCOM_GPI_SPI) { 1834 i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction); 1835 } else if (gchan->protocol == QCOM_GPI_I2C) { 1836 i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction); 1837 } else { 1838 dev_err(dev, "invalid peripheral: %d\n", gchan->protocol); 1839 kfree(gpi_desc); 1840 return NULL; 1841 } 1842 1843 /* set up the descriptor */ 1844 gpi_desc->gchan = gchan; 1845 gpi_desc->len = sg_dma_len(sgl); 1846 gpi_desc->num_tre = i; 1847 1848 return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags); 1849 } 1850 1851 /* rings transfer ring db to being transfer */ 1852 static void gpi_issue_pending(struct dma_chan *chan) 1853 { 1854 struct gchan *gchan = to_gchan(chan); 1855 struct gpii *gpii = gchan->gpii; 1856 unsigned long flags, pm_lock_flags; 1857 struct virt_dma_desc *vd = NULL; 1858 struct gpi_desc *gpi_desc; 1859 struct gpi_ring *ch_ring = &gchan->ch_ring; 1860 void *tre, *wp = NULL; 1861 int i; 1862 1863 read_lock_irqsave(&gpii->pm_lock, pm_lock_flags); 1864 1865 /* move all submitted discriptors to issued list */ 1866 spin_lock_irqsave(&gchan->vc.lock, flags); 1867 if (vchan_issue_pending(&gchan->vc)) 1868 vd = list_last_entry(&gchan->vc.desc_issued, 1869 struct virt_dma_desc, node); 1870 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1871 1872 /* nothing to do list is empty */ 1873 if (!vd) { 1874 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); 1875 return; 1876 } 1877 1878 gpi_desc = to_gpi_desc(vd); 1879 for (i = 0; i < gpi_desc->num_tre; i++) { 1880 tre = &gpi_desc->tre[i]; 1881 gpi_queue_xfer(gpii, gchan, tre, &wp); 1882 } 1883 1884 gpi_desc->db = ch_ring->wp; 1885 gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db); 1886 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); 1887 } 1888 1889 static int gpi_ch_init(struct gchan *gchan) 1890 { 1891 struct gpii *gpii = gchan->gpii; 1892 const int ev_factor = gpii->gpi_dev->ev_factor; 1893 u32 elements; 1894 int i = 0, ret = 0; 1895 1896 gchan->pm_state = CONFIG_STATE; 1897 1898 /* check if both channels are configured before continue */ 1899 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) 1900 if (gpii->gchan[i].pm_state != CONFIG_STATE) 1901 goto exit_gpi_init; 1902 1903 /* protocol must be same for both channels */ 1904 if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) { 1905 dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n", 1906 gpii->gchan[0].protocol, gpii->gchan[1].protocol); 1907 ret = -EINVAL; 1908 goto exit_gpi_init; 1909 } 1910 1911 /* allocate memory for event ring */ 1912 elements = CHAN_TRES << ev_factor; 1913 ret = gpi_alloc_ring(&gpii->ev_ring, elements, 1914 sizeof(union gpi_event), gpii); 1915 if (ret) 1916 goto exit_gpi_init; 1917 1918 /* configure interrupts */ 1919 write_lock_irq(&gpii->pm_lock); 1920 gpii->pm_state = PREPARE_HARDWARE; 1921 write_unlock_irq(&gpii->pm_lock); 1922 ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0); 1923 if (ret) { 1924 dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret); 1925 goto error_config_int; 1926 } 1927 1928 /* allocate event rings */ 1929 ret = gpi_alloc_ev_chan(gpii); 1930 if (ret) { 1931 dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret); 1932 goto error_alloc_ev_ring; 1933 } 1934 1935 /* Allocate all channels */ 1936 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1937 ret = gpi_alloc_chan(&gpii->gchan[i], true); 1938 if (ret) { 1939 dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret); 1940 goto error_alloc_chan; 1941 } 1942 } 1943 1944 /* start channels */ 1945 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1946 ret = gpi_start_chan(&gpii->gchan[i]); 1947 if (ret) { 1948 dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret); 1949 goto error_start_chan; 1950 } 1951 } 1952 return ret; 1953 1954 error_start_chan: 1955 for (i = i - 1; i >= 0; i--) { 1956 gpi_stop_chan(&gpii->gchan[i]); 1957 gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); 1958 } 1959 i = 2; 1960 error_alloc_chan: 1961 for (i = i - 1; i >= 0; i--) 1962 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); 1963 error_alloc_ev_ring: 1964 gpi_disable_interrupts(gpii); 1965 error_config_int: 1966 gpi_free_ring(&gpii->ev_ring, gpii); 1967 exit_gpi_init: 1968 mutex_unlock(&gpii->ctrl_lock); 1969 return ret; 1970 } 1971 1972 /* release all channel resources */ 1973 static void gpi_free_chan_resources(struct dma_chan *chan) 1974 { 1975 struct gchan *gchan = to_gchan(chan); 1976 struct gpii *gpii = gchan->gpii; 1977 enum gpi_pm_state cur_state; 1978 int ret, i; 1979 1980 mutex_lock(&gpii->ctrl_lock); 1981 1982 cur_state = gchan->pm_state; 1983 1984 /* disable ch state so no more TRE processing for this channel */ 1985 write_lock_irq(&gpii->pm_lock); 1986 gchan->pm_state = PREPARE_TERMINATE; 1987 write_unlock_irq(&gpii->pm_lock); 1988 1989 /* attempt to do graceful hardware shutdown */ 1990 if (cur_state == ACTIVE_STATE) { 1991 gpi_stop_chan(gchan); 1992 1993 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); 1994 if (ret) 1995 dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret); 1996 1997 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); 1998 } 1999 2000 /* free all allocated memory */ 2001 gpi_free_ring(&gchan->ch_ring, gpii); 2002 vchan_free_chan_resources(&gchan->vc); 2003 kfree(gchan->config); 2004 2005 write_lock_irq(&gpii->pm_lock); 2006 gchan->pm_state = DISABLE_STATE; 2007 write_unlock_irq(&gpii->pm_lock); 2008 2009 /* if other rings are still active exit */ 2010 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) 2011 if (gpii->gchan[i].ch_ring.configured) 2012 goto exit_free; 2013 2014 /* deallocate EV Ring */ 2015 cur_state = gpii->pm_state; 2016 write_lock_irq(&gpii->pm_lock); 2017 gpii->pm_state = PREPARE_TERMINATE; 2018 write_unlock_irq(&gpii->pm_lock); 2019 2020 /* wait for threads to complete out */ 2021 tasklet_kill(&gpii->ev_task); 2022 2023 /* send command to de allocate event ring */ 2024 if (cur_state == ACTIVE_STATE) 2025 gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC); 2026 2027 gpi_free_ring(&gpii->ev_ring, gpii); 2028 2029 /* disable interrupts */ 2030 if (cur_state == ACTIVE_STATE) 2031 gpi_disable_interrupts(gpii); 2032 2033 /* set final state to disable */ 2034 write_lock_irq(&gpii->pm_lock); 2035 gpii->pm_state = DISABLE_STATE; 2036 write_unlock_irq(&gpii->pm_lock); 2037 2038 exit_free: 2039 mutex_unlock(&gpii->ctrl_lock); 2040 } 2041 2042 /* allocate channel resources */ 2043 static int gpi_alloc_chan_resources(struct dma_chan *chan) 2044 { 2045 struct gchan *gchan = to_gchan(chan); 2046 struct gpii *gpii = gchan->gpii; 2047 int ret; 2048 2049 mutex_lock(&gpii->ctrl_lock); 2050 2051 /* allocate memory for transfer ring */ 2052 ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES, 2053 sizeof(struct gpi_tre), gpii); 2054 if (ret) 2055 goto xfer_alloc_err; 2056 2057 ret = gpi_ch_init(gchan); 2058 2059 mutex_unlock(&gpii->ctrl_lock); 2060 2061 return ret; 2062 xfer_alloc_err: 2063 mutex_unlock(&gpii->ctrl_lock); 2064 2065 return ret; 2066 } 2067 2068 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid) 2069 { 2070 struct gchan *tx_chan, *rx_chan; 2071 unsigned int gpii; 2072 2073 /* check if same seid is already configured for another chid */ 2074 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { 2075 if (!((1 << gpii) & gpi_dev->gpii_mask)) 2076 continue; 2077 2078 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; 2079 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; 2080 2081 if (rx_chan->vc.chan.client_count && rx_chan->seid == seid) 2082 return gpii; 2083 if (tx_chan->vc.chan.client_count && tx_chan->seid == seid) 2084 return gpii; 2085 } 2086 2087 /* no channels configured with same seid, return next avail gpii */ 2088 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { 2089 if (!((1 << gpii) & gpi_dev->gpii_mask)) 2090 continue; 2091 2092 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; 2093 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; 2094 2095 /* check if gpii is configured */ 2096 if (tx_chan->vc.chan.client_count || 2097 rx_chan->vc.chan.client_count) 2098 continue; 2099 2100 /* found a free gpii */ 2101 return gpii; 2102 } 2103 2104 /* no gpii instance available to use */ 2105 return -EIO; 2106 } 2107 2108 /* gpi_of_dma_xlate: open client requested channel */ 2109 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args, 2110 struct of_dma *of_dma) 2111 { 2112 struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data; 2113 u32 seid, chid; 2114 int gpii; 2115 struct gchan *gchan; 2116 2117 if (args->args_count < 3) { 2118 dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n", 2119 args->args_count); 2120 return NULL; 2121 } 2122 2123 chid = args->args[0]; 2124 if (chid >= MAX_CHANNELS_PER_GPII) { 2125 dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid); 2126 return NULL; 2127 } 2128 2129 seid = args->args[1]; 2130 2131 /* find next available gpii to use */ 2132 gpii = gpi_find_avail_gpii(gpi_dev, seid); 2133 if (gpii < 0) { 2134 dev_err(gpi_dev->dev, "no available gpii instances\n"); 2135 return NULL; 2136 } 2137 2138 gchan = &gpi_dev->gpiis[gpii].gchan[chid]; 2139 if (gchan->vc.chan.client_count) { 2140 dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n", 2141 gpii, chid, gchan->seid); 2142 return NULL; 2143 } 2144 2145 gchan->seid = seid; 2146 gchan->protocol = args->args[2]; 2147 2148 return dma_get_slave_channel(&gchan->vc.chan); 2149 } 2150 2151 static int gpi_probe(struct platform_device *pdev) 2152 { 2153 struct gpi_dev *gpi_dev; 2154 unsigned int i; 2155 u32 ee_offset; 2156 int ret; 2157 2158 gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL); 2159 if (!gpi_dev) 2160 return -ENOMEM; 2161 2162 gpi_dev->dev = &pdev->dev; 2163 gpi_dev->res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2164 gpi_dev->regs = devm_ioremap_resource(gpi_dev->dev, gpi_dev->res); 2165 if (IS_ERR(gpi_dev->regs)) 2166 return PTR_ERR(gpi_dev->regs); 2167 gpi_dev->ee_base = gpi_dev->regs; 2168 2169 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels", 2170 &gpi_dev->max_gpii); 2171 if (ret) { 2172 dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n"); 2173 return ret; 2174 } 2175 2176 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask", 2177 &gpi_dev->gpii_mask); 2178 if (ret) { 2179 dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n"); 2180 return ret; 2181 } 2182 2183 ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev); 2184 gpi_dev->ee_base = gpi_dev->ee_base - ee_offset; 2185 2186 gpi_dev->ev_factor = EV_FACTOR; 2187 2188 ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64)); 2189 if (ret) { 2190 dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret); 2191 return ret; 2192 } 2193 2194 gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) * 2195 gpi_dev->max_gpii, GFP_KERNEL); 2196 if (!gpi_dev->gpiis) 2197 return -ENOMEM; 2198 2199 /* setup all the supported gpii */ 2200 INIT_LIST_HEAD(&gpi_dev->dma_device.channels); 2201 for (i = 0; i < gpi_dev->max_gpii; i++) { 2202 struct gpii *gpii = &gpi_dev->gpiis[i]; 2203 int chan; 2204 2205 if (!((1 << i) & gpi_dev->gpii_mask)) 2206 continue; 2207 2208 /* set up ev cntxt register map */ 2209 gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0); 2210 gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0); 2211 gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB; 2212 gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i); 2213 gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i); 2214 2215 /* set up irq */ 2216 ret = platform_get_irq(pdev, i); 2217 if (ret < 0) 2218 return ret; 2219 gpii->irq = ret; 2220 2221 /* set up channel specific register info */ 2222 for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) { 2223 struct gchan *gchan = &gpii->gchan[chan]; 2224 2225 /* set up ch cntxt register map */ 2226 gchan->ch_cntxt_base_reg = gpi_dev->ee_base + 2227 GPII_n_CH_k_CNTXT_0_OFFS(i, chan); 2228 gchan->ch_cntxt_db_reg = gpi_dev->ee_base + 2229 GPII_n_CH_k_DOORBELL_0_OFFS(i, chan); 2230 gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i); 2231 2232 /* vchan setup */ 2233 vchan_init(&gchan->vc, &gpi_dev->dma_device); 2234 gchan->vc.desc_free = gpi_desc_free; 2235 gchan->chid = chan; 2236 gchan->gpii = gpii; 2237 gchan->dir = GPII_CHAN_DIR[chan]; 2238 } 2239 mutex_init(&gpii->ctrl_lock); 2240 rwlock_init(&gpii->pm_lock); 2241 tasklet_init(&gpii->ev_task, gpi_ev_tasklet, 2242 (unsigned long)gpii); 2243 init_completion(&gpii->cmd_completion); 2244 gpii->gpii_id = i; 2245 gpii->regs = gpi_dev->ee_base; 2246 gpii->gpi_dev = gpi_dev; 2247 } 2248 2249 platform_set_drvdata(pdev, gpi_dev); 2250 2251 /* clear and Set capabilities */ 2252 dma_cap_zero(gpi_dev->dma_device.cap_mask); 2253 dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask); 2254 2255 /* configure dmaengine apis */ 2256 gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2257 gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 2258 gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; 2259 gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; 2260 gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources; 2261 gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources; 2262 gpi_dev->dma_device.device_tx_status = dma_cookie_status; 2263 gpi_dev->dma_device.device_issue_pending = gpi_issue_pending; 2264 gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg; 2265 gpi_dev->dma_device.device_config = gpi_peripheral_config; 2266 gpi_dev->dma_device.device_terminate_all = gpi_terminate_all; 2267 gpi_dev->dma_device.dev = gpi_dev->dev; 2268 gpi_dev->dma_device.device_pause = gpi_pause; 2269 gpi_dev->dma_device.device_resume = gpi_resume; 2270 2271 /* register with dmaengine framework */ 2272 ret = dma_async_device_register(&gpi_dev->dma_device); 2273 if (ret) { 2274 dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret); 2275 return ret; 2276 } 2277 2278 ret = of_dma_controller_register(gpi_dev->dev->of_node, 2279 gpi_of_dma_xlate, gpi_dev); 2280 if (ret) { 2281 dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret); 2282 return ret; 2283 } 2284 2285 return ret; 2286 } 2287 2288 static const struct of_device_id gpi_of_match[] = { 2289 { .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 }, 2290 { .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 }, 2291 { .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 }, 2292 { .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 }, 2293 { .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 }, 2294 { .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 }, 2295 { .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 }, 2296 { }, 2297 }; 2298 MODULE_DEVICE_TABLE(of, gpi_of_match); 2299 2300 static struct platform_driver gpi_driver = { 2301 .probe = gpi_probe, 2302 .driver = { 2303 .name = KBUILD_MODNAME, 2304 .of_match_table = gpi_of_match, 2305 }, 2306 }; 2307 2308 static int __init gpi_init(void) 2309 { 2310 return platform_driver_register(&gpi_driver); 2311 } 2312 subsys_initcall(gpi_init) 2313 2314 MODULE_DESCRIPTION("QCOM GPI DMA engine driver"); 2315 MODULE_LICENSE("GPL v2"); 2316