1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2020, Linaro Limited
5 */
6
7 #include <dt-bindings/dma/qcom-gpi.h>
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/dma/qcom-gpi-dma.h>
15 #include <linux/scatterlist.h>
16 #include <linux/slab.h>
17 #include "../dmaengine.h"
18 #include "../virt-dma.h"
19
20 #define TRE_TYPE_DMA 0x10
21 #define TRE_TYPE_GO 0x20
22 #define TRE_TYPE_CONFIG0 0x22
23
24 /* TRE flags */
25 #define TRE_FLAGS_CHAIN BIT(0)
26 #define TRE_FLAGS_IEOB BIT(8)
27 #define TRE_FLAGS_IEOT BIT(9)
28 #define TRE_FLAGS_BEI BIT(10)
29 #define TRE_FLAGS_LINK BIT(11)
30 #define TRE_FLAGS_TYPE GENMASK(23, 16)
31
32 /* SPI CONFIG0 WD0 */
33 #define TRE_SPI_C0_WORD_SZ GENMASK(4, 0)
34 #define TRE_SPI_C0_LOOPBACK BIT(8)
35 #define TRE_SPI_C0_CS BIT(11)
36 #define TRE_SPI_C0_CPHA BIT(12)
37 #define TRE_SPI_C0_CPOL BIT(13)
38 #define TRE_SPI_C0_TX_PACK BIT(24)
39 #define TRE_SPI_C0_RX_PACK BIT(25)
40
41 /* CONFIG0 WD2 */
42 #define TRE_C0_CLK_DIV GENMASK(11, 0)
43 #define TRE_C0_CLK_SRC GENMASK(19, 16)
44
45 /* SPI GO WD0 */
46 #define TRE_SPI_GO_CMD GENMASK(4, 0)
47 #define TRE_SPI_GO_CS GENMASK(10, 8)
48 #define TRE_SPI_GO_FRAG BIT(26)
49
50 /* GO WD2 */
51 #define TRE_RX_LEN GENMASK(23, 0)
52
53 /* I2C Config0 WD0 */
54 #define TRE_I2C_C0_TLOW GENMASK(7, 0)
55 #define TRE_I2C_C0_THIGH GENMASK(15, 8)
56 #define TRE_I2C_C0_TCYL GENMASK(23, 16)
57 #define TRE_I2C_C0_TX_PACK BIT(24)
58 #define TRE_I2C_C0_RX_PACK BIT(25)
59
60 /* I2C GO WD0 */
61 #define TRE_I2C_GO_CMD GENMASK(4, 0)
62 #define TRE_I2C_GO_ADDR GENMASK(14, 8)
63 #define TRE_I2C_GO_STRETCH BIT(26)
64
65 /* DMA TRE */
66 #define TRE_DMA_LEN GENMASK(23, 0)
67
68 /* Register offsets from gpi-top */
69 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k) (0x20000 + (0x4000 * (n)) + (0x80 * (k)))
70 #define GPII_n_CH_k_CNTXT_0_EL_SIZE GENMASK(31, 24)
71 #define GPII_n_CH_k_CNTXT_0_CHSTATE GENMASK(23, 20)
72 #define GPII_n_CH_k_CNTXT_0_ERIDX GENMASK(18, 14)
73 #define GPII_n_CH_k_CNTXT_0_DIR BIT(3)
74 #define GPII_n_CH_k_CNTXT_0_PROTO GENMASK(2, 0)
75
76 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto) \
77 (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size) | \
78 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex) | \
79 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir) | \
80 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
81
82 #define GPI_CHTYPE_DIR_IN (0)
83 #define GPI_CHTYPE_DIR_OUT (1)
84
85 #define GPI_CHTYPE_PROTO_GPI (0x2)
86
87 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k) (0x22000 + (0x4000 * (n)) + (0x8 * (k)))
88 #define GPII_n_CH_CMD_OFFS(n) (0x23008 + (0x4000 * (n)))
89 #define GPII_n_CH_CMD_OPCODE GENMASK(31, 24)
90 #define GPII_n_CH_CMD_CHID GENMASK(7, 0)
91 #define GPII_n_CH_CMD(opcode, chid) \
92 (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
93 FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
94
95 #define GPII_n_CH_CMD_ALLOCATE (0)
96 #define GPII_n_CH_CMD_START (1)
97 #define GPII_n_CH_CMD_STOP (2)
98 #define GPII_n_CH_CMD_RESET (9)
99 #define GPII_n_CH_CMD_DE_ALLOC (10)
100 #define GPII_n_CH_CMD_UART_SW_STALE (32)
101 #define GPII_n_CH_CMD_UART_RFR_READY (33)
102 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
103
104 /* EV Context Array */
105 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
106 #define GPII_n_EV_k_CNTXT_0_EL_SIZE GENMASK(31, 24)
107 #define GPII_n_EV_k_CNTXT_0_CHSTATE GENMASK(23, 20)
108 #define GPII_n_EV_k_CNTXT_0_INTYPE BIT(16)
109 #define GPII_n_EV_k_CNTXT_0_CHTYPE GENMASK(3, 0)
110
111 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype) \
112 (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) | \
113 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype) | \
114 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
115
116 #define GPI_INTTYPE_IRQ (1)
117 #define GPI_CHTYPE_GPI_EV (0x2)
118
119 enum CNTXT_OFFS {
120 CNTXT_0_CONFIG = 0x0,
121 CNTXT_1_R_LENGTH = 0x4,
122 CNTXT_2_RING_BASE_LSB = 0x8,
123 CNTXT_3_RING_BASE_MSB = 0xC,
124 CNTXT_4_RING_RP_LSB = 0x10,
125 CNTXT_5_RING_RP_MSB = 0x14,
126 CNTXT_6_RING_WP_LSB = 0x18,
127 CNTXT_7_RING_WP_MSB = 0x1C,
128 CNTXT_8_RING_INT_MOD = 0x20,
129 CNTXT_9_RING_INTVEC = 0x24,
130 CNTXT_10_RING_MSI_LSB = 0x28,
131 CNTXT_11_RING_MSI_MSB = 0x2C,
132 CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
133 CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
134 };
135
136 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k) (0x22100 + (0x4000 * (n)) + (0x8 * (k)))
137 #define GPII_n_EV_CH_CMD_OFFS(n) (0x23010 + (0x4000 * (n)))
138 #define GPII_n_EV_CMD_OPCODE GENMASK(31, 24)
139 #define GPII_n_EV_CMD_CHID GENMASK(7, 0)
140 #define GPII_n_EV_CMD(opcode, chid) \
141 (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
142 FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
143
144 #define GPII_n_EV_CH_CMD_ALLOCATE (0x00)
145 #define GPII_n_EV_CH_CMD_RESET (0x09)
146 #define GPII_n_EV_CH_CMD_DE_ALLOC (0x0A)
147
148 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n) (0x23080 + (0x4000 * (n)))
149
150 /* mask type register */
151 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n) (0x23088 + (0x4000 * (n)))
152 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK GENMASK(6, 0)
153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL BIT(6)
154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB BIT(3)
155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB BIT(2)
156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL BIT(1)
157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL BIT(0)
158
159 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n) (0x23090 + (0x4000 * (n)))
160 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n) (0x23094 + (0x4000 * (n)))
161
162 /* Mask channel control interrupt register */
163 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n) (0x23098 + (0x4000 * (n)))
164 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK GENMASK(1, 0)
165
166 /* Mask event control interrupt register */
167 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n) (0x2309C + (0x4000 * (n)))
168 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK BIT(0)
169
170 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n) (0x230A0 + (0x4000 * (n)))
171 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n) (0x230A4 + (0x4000 * (n)))
172
173 /* Mask event interrupt register */
174 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n) (0x230B8 + (0x4000 * (n)))
175 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK BIT(0)
176
177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n) (0x230C0 + (0x4000 * (n)))
178 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n) (0x23100 + (0x4000 * (n)))
179 #define GPI_GLOB_IRQ_ERROR_INT_MSK BIT(0)
180
181 /* GPII specific Global - Enable bit register */
182 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n) (0x23108 + (0x4000 * (n)))
183 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n) (0x23110 + (0x4000 * (n)))
184 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n) (0x23118 + (0x4000 * (n)))
185
186 /* GPII general interrupt - Enable bit register */
187 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n) (0x23120 + (0x4000 * (n)))
188 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK GENMASK(3, 0)
189
190 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n) (0x23128 + (0x4000 * (n)))
191
192 /* GPII Interrupt Type register */
193 #define GPII_n_CNTXT_INTSET_OFFS(n) (0x23180 + (0x4000 * (n)))
194 #define GPII_n_CNTXT_INTSET_BMSK BIT(0)
195
196 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n) (0x23188 + (0x4000 * (n)))
197 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n) (0x2318C + (0x4000 * (n)))
198 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n) (0x23400 + (0x4000 * (n)))
199 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n) (0x23404 + (0x4000 * (n)))
200
201 #define GPII_n_ERROR_LOG_OFFS(n) (0x23200 + (0x4000 * (n)))
202
203 /* QOS Registers */
204 #define GPII_n_CH_k_QOS_OFFS(n, k) (0x2005C + (0x4000 * (n)) + (0x80 * (k)))
205
206 /* Scratch registers */
207 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k) (0x20060 + (0x4000 * (n)) + (0x80 * (k)))
208 #define GPII_n_CH_k_SCRATCH_0_SEID GENMASK(2, 0)
209 #define GPII_n_CH_k_SCRATCH_0_PROTO GENMASK(7, 4)
210 #define GPII_n_CH_k_SCRATCH_0_PAIR GENMASK(20, 16)
211 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid) \
212 (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair) | \
213 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto) | \
214 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
215 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k) (0x20064 + (0x4000 * (n)) + (0x80 * (k)))
216 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k) (0x20068 + (0x4000 * (n)) + (0x80 * (k)))
217 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k) (0x2006C + (0x4000 * (n)) + (0x80 * (k)))
218
219 struct __packed gpi_tre {
220 u32 dword[4];
221 };
222
223 enum msm_gpi_tce_code {
224 MSM_GPI_TCE_SUCCESS = 1,
225 MSM_GPI_TCE_EOT = 2,
226 MSM_GPI_TCE_EOB = 4,
227 MSM_GPI_TCE_UNEXP_ERR = 16,
228 };
229
230 #define CMD_TIMEOUT_MS (250)
231
232 #define MAX_CHANNELS_PER_GPII (2)
233 #define GPI_TX_CHAN (0)
234 #define GPI_RX_CHAN (1)
235 #define STATE_IGNORE (U32_MAX)
236 #define EV_FACTOR (2)
237 #define REQ_OF_DMA_ARGS (5) /* # of arguments required from client */
238 #define CHAN_TRES 64
239
240 struct __packed xfer_compl_event {
241 u64 ptr;
242 u32 length:24;
243 u8 code;
244 u16 status;
245 u8 type;
246 u8 chid;
247 };
248
249 struct __packed immediate_data_event {
250 u8 data_bytes[8];
251 u8 length:4;
252 u8 resvd:4;
253 u16 tre_index;
254 u8 code;
255 u16 status;
256 u8 type;
257 u8 chid;
258 };
259
260 struct __packed qup_notif_event {
261 u32 status;
262 u32 time;
263 u32 count:24;
264 u8 resvd;
265 u16 resvd1;
266 u8 type;
267 u8 chid;
268 };
269
270 struct __packed gpi_ere {
271 u32 dword[4];
272 };
273
274 enum GPI_EV_TYPE {
275 XFER_COMPLETE_EV_TYPE = 0x22,
276 IMMEDIATE_DATA_EV_TYPE = 0x30,
277 QUP_NOTIF_EV_TYPE = 0x31,
278 STALE_EV_TYPE = 0xFF,
279 };
280
281 union __packed gpi_event {
282 struct __packed xfer_compl_event xfer_compl_event;
283 struct __packed immediate_data_event immediate_data_event;
284 struct __packed qup_notif_event qup_notif_event;
285 struct __packed gpi_ere gpi_ere;
286 };
287
288 enum gpii_irq_settings {
289 DEFAULT_IRQ_SETTINGS,
290 MASK_IEOB_SETTINGS,
291 };
292
293 enum gpi_ev_state {
294 DEFAULT_EV_CH_STATE = 0,
295 EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
296 EV_STATE_ALLOCATED,
297 MAX_EV_STATES
298 };
299
300 static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
301 [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
302 [EV_STATE_ALLOCATED] = "ALLOCATED",
303 };
304
305 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
306 "INVALID" : gpi_ev_state_str[(_state)])
307
308 enum gpi_ch_state {
309 DEFAULT_CH_STATE = 0x0,
310 CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
311 CH_STATE_ALLOCATED = 0x1,
312 CH_STATE_STARTED = 0x2,
313 CH_STATE_STOPPED = 0x3,
314 CH_STATE_STOP_IN_PROC = 0x4,
315 CH_STATE_ERROR = 0xf,
316 MAX_CH_STATES
317 };
318
319 enum gpi_cmd {
320 GPI_CH_CMD_BEGIN,
321 GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
322 GPI_CH_CMD_START,
323 GPI_CH_CMD_STOP,
324 GPI_CH_CMD_RESET,
325 GPI_CH_CMD_DE_ALLOC,
326 GPI_CH_CMD_UART_SW_STALE,
327 GPI_CH_CMD_UART_RFR_READY,
328 GPI_CH_CMD_UART_RFR_NOT_READY,
329 GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
330 GPI_EV_CMD_BEGIN,
331 GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
332 GPI_EV_CMD_RESET,
333 GPI_EV_CMD_DEALLOC,
334 GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
335 GPI_MAX_CMD,
336 };
337
338 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
339
340 static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
341 [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
342 [GPI_CH_CMD_START] = "CH START",
343 [GPI_CH_CMD_STOP] = "CH STOP",
344 [GPI_CH_CMD_RESET] = "CH_RESET",
345 [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
346 [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
347 [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
348 [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
349 [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
350 [GPI_EV_CMD_RESET] = "EV RESET",
351 [GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
352 };
353
354 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
355 gpi_cmd_str[(_cmd)])
356
357 /*
358 * @DISABLE_STATE: no register access allowed
359 * @CONFIG_STATE: client has configured the channel
360 * @PREP_HARDWARE: register access is allowed
361 * however, no processing EVENTS
362 * @ACTIVE_STATE: channels are fully operational
363 * @PREPARE_TERMINATE: graceful termination of channels
364 * register access is allowed
365 * @PAUSE_STATE: channels are active, but not processing any events
366 */
367 enum gpi_pm_state {
368 DISABLE_STATE,
369 CONFIG_STATE,
370 PREPARE_HARDWARE,
371 ACTIVE_STATE,
372 PREPARE_TERMINATE,
373 PAUSE_STATE,
374 MAX_PM_STATE
375 };
376
377 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
378
379 static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
380 [DISABLE_STATE] = "DISABLE",
381 [CONFIG_STATE] = "CONFIG",
382 [PREPARE_HARDWARE] = "PREPARE HARDWARE",
383 [ACTIVE_STATE] = "ACTIVE",
384 [PREPARE_TERMINATE] = "PREPARE TERMINATE",
385 [PAUSE_STATE] = "PAUSE",
386 };
387
388 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
389 "INVALID" : gpi_pm_state_str[(_state)])
390
391 static const struct {
392 enum gpi_cmd gpi_cmd;
393 u32 opcode;
394 u32 state;
395 } gpi_cmd_info[GPI_MAX_CMD] = {
396 {
397 GPI_CH_CMD_ALLOCATE,
398 GPII_n_CH_CMD_ALLOCATE,
399 CH_STATE_ALLOCATED,
400 },
401 {
402 GPI_CH_CMD_START,
403 GPII_n_CH_CMD_START,
404 CH_STATE_STARTED,
405 },
406 {
407 GPI_CH_CMD_STOP,
408 GPII_n_CH_CMD_STOP,
409 CH_STATE_STOPPED,
410 },
411 {
412 GPI_CH_CMD_RESET,
413 GPII_n_CH_CMD_RESET,
414 CH_STATE_ALLOCATED,
415 },
416 {
417 GPI_CH_CMD_DE_ALLOC,
418 GPII_n_CH_CMD_DE_ALLOC,
419 CH_STATE_NOT_ALLOCATED,
420 },
421 {
422 GPI_CH_CMD_UART_SW_STALE,
423 GPII_n_CH_CMD_UART_SW_STALE,
424 STATE_IGNORE,
425 },
426 {
427 GPI_CH_CMD_UART_RFR_READY,
428 GPII_n_CH_CMD_UART_RFR_READY,
429 STATE_IGNORE,
430 },
431 {
432 GPI_CH_CMD_UART_RFR_NOT_READY,
433 GPII_n_CH_CMD_UART_RFR_NOT_READY,
434 STATE_IGNORE,
435 },
436 {
437 GPI_EV_CMD_ALLOCATE,
438 GPII_n_EV_CH_CMD_ALLOCATE,
439 EV_STATE_ALLOCATED,
440 },
441 {
442 GPI_EV_CMD_RESET,
443 GPII_n_EV_CH_CMD_RESET,
444 EV_STATE_ALLOCATED,
445 },
446 {
447 GPI_EV_CMD_DEALLOC,
448 GPII_n_EV_CH_CMD_DE_ALLOC,
449 EV_STATE_NOT_ALLOCATED,
450 },
451 };
452
453 struct gpi_ring {
454 void *pre_aligned;
455 size_t alloc_size;
456 phys_addr_t phys_addr;
457 dma_addr_t dma_handle;
458 void *base;
459 void *wp;
460 void *rp;
461 u32 len;
462 u32 el_size;
463 u32 elements;
464 bool configured;
465 };
466
467 struct gpi_dev {
468 struct dma_device dma_device;
469 struct device *dev;
470 struct resource *res;
471 void __iomem *regs;
472 void __iomem *ee_base; /*ee register base address*/
473 u32 max_gpii; /* maximum # of gpii instances available per gpi block */
474 u32 gpii_mask; /* gpii instances available for apps */
475 u32 ev_factor; /* ev ring length factor */
476 struct gpii *gpiis;
477 };
478
479 struct reg_info {
480 char *name;
481 u32 offset;
482 u32 val;
483 };
484
485 struct gchan {
486 struct virt_dma_chan vc;
487 u32 chid;
488 u32 seid;
489 u32 protocol;
490 struct gpii *gpii;
491 enum gpi_ch_state ch_state;
492 enum gpi_pm_state pm_state;
493 void __iomem *ch_cntxt_base_reg;
494 void __iomem *ch_cntxt_db_reg;
495 void __iomem *ch_cmd_reg;
496 u32 dir;
497 struct gpi_ring ch_ring;
498 void *config;
499 };
500
501 struct gpii {
502 u32 gpii_id;
503 struct gchan gchan[MAX_CHANNELS_PER_GPII];
504 struct gpi_dev *gpi_dev;
505 int irq;
506 void __iomem *regs; /* points to gpi top */
507 void __iomem *ev_cntxt_base_reg;
508 void __iomem *ev_cntxt_db_reg;
509 void __iomem *ev_ring_rp_lsb_reg;
510 void __iomem *ev_cmd_reg;
511 void __iomem *ieob_clr_reg;
512 struct mutex ctrl_lock;
513 enum gpi_ev_state ev_state;
514 bool configured_irq;
515 enum gpi_pm_state pm_state;
516 rwlock_t pm_lock;
517 struct gpi_ring ev_ring;
518 struct tasklet_struct ev_task; /* event processing tasklet */
519 struct completion cmd_completion;
520 enum gpi_cmd gpi_cmd;
521 u32 cntxt_type_irq_msk;
522 bool ieob_set;
523 };
524
525 #define MAX_TRE 3
526
527 struct gpi_desc {
528 struct virt_dma_desc vd;
529 size_t len;
530 void *db; /* DB register to program */
531 struct gchan *gchan;
532 struct gpi_tre tre[MAX_TRE];
533 u32 num_tre;
534 };
535
536 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
537 GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
538 };
539
540 static irqreturn_t gpi_handle_irq(int irq, void *data);
541 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
542 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
543 static void gpi_process_events(struct gpii *gpii);
544
to_gchan(struct dma_chan * dma_chan)545 static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
546 {
547 return container_of(dma_chan, struct gchan, vc.chan);
548 }
549
to_gpi_desc(struct virt_dma_desc * vd)550 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
551 {
552 return container_of(vd, struct gpi_desc, vd);
553 }
554
to_physical(const struct gpi_ring * const ring,void * addr)555 static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
556 void *addr)
557 {
558 return ring->phys_addr + (addr - ring->base);
559 }
560
to_virtual(const struct gpi_ring * const ring,phys_addr_t addr)561 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
562 {
563 return ring->base + (addr - ring->phys_addr);
564 }
565
gpi_read_reg(struct gpii * gpii,void __iomem * addr)566 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
567 {
568 return readl_relaxed(addr);
569 }
570
gpi_write_reg(struct gpii * gpii,void __iomem * addr,u32 val)571 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
572 {
573 writel_relaxed(val, addr);
574 }
575
576 /* gpi_write_reg_field - write to specific bit field */
gpi_write_reg_field(struct gpii * gpii,void __iomem * addr,u32 mask,u32 shift,u32 val)577 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
578 u32 mask, u32 shift, u32 val)
579 {
580 u32 tmp = gpi_read_reg(gpii, addr);
581
582 tmp &= ~mask;
583 val = tmp | ((val << shift) & mask);
584 gpi_write_reg(gpii, addr, val);
585 }
586
587 static __always_inline void
gpi_update_reg(struct gpii * gpii,u32 offset,u32 mask,u32 val)588 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
589 {
590 void __iomem *addr = gpii->regs + offset;
591 u32 tmp = gpi_read_reg(gpii, addr);
592
593 tmp &= ~mask;
594 tmp |= u32_encode_bits(val, mask);
595
596 gpi_write_reg(gpii, addr, tmp);
597 }
598
gpi_disable_interrupts(struct gpii * gpii)599 static void gpi_disable_interrupts(struct gpii *gpii)
600 {
601 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
602 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
603 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
604 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
605 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
606 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
607 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
608 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
609 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
610 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
611 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
612 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
613 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
614 GPII_n_CNTXT_INTSET_BMSK, 0);
615
616 gpii->cntxt_type_irq_msk = 0;
617 devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
618 gpii->configured_irq = false;
619 }
620
621 /* configure and enable interrupts */
gpi_config_interrupts(struct gpii * gpii,enum gpii_irq_settings settings,bool mask)622 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
623 {
624 const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
625 GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
626 GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
627 GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
628 GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
629 int ret;
630
631 if (!gpii->configured_irq) {
632 ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
633 gpi_handle_irq, IRQF_TRIGGER_HIGH,
634 "gpi-dma", gpii);
635 if (ret < 0) {
636 dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
637 gpii->irq, ret);
638 return ret;
639 }
640 }
641
642 if (settings == MASK_IEOB_SETTINGS) {
643 /*
644 * GPII only uses one EV ring per gpii so we can globally
645 * enable/disable IEOB interrupt
646 */
647 if (mask)
648 gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
649 else
650 gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
651 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
652 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
653 } else {
654 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
655 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
656 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
657 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
658 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
659 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
660 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
661 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
662 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
663 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
664 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
665 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
666 GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
667 GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
668 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
669 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
670 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
671 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
672 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
673 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
674 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
675 GPII_n_CNTXT_INTSET_BMSK, 1);
676 gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
677
678 gpii->cntxt_type_irq_msk = enable;
679 }
680
681 gpii->configured_irq = true;
682 return 0;
683 }
684
685 /* Sends gpii event or channel command */
gpi_send_cmd(struct gpii * gpii,struct gchan * gchan,enum gpi_cmd gpi_cmd)686 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
687 enum gpi_cmd gpi_cmd)
688 {
689 u32 chid = MAX_CHANNELS_PER_GPII;
690 unsigned long timeout;
691 void __iomem *cmd_reg;
692 u32 cmd;
693
694 if (gpi_cmd >= GPI_MAX_CMD)
695 return -EINVAL;
696 if (IS_CHAN_CMD(gpi_cmd))
697 chid = gchan->chid;
698
699 dev_dbg(gpii->gpi_dev->dev,
700 "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
701
702 /* send opcode and wait for completion */
703 reinit_completion(&gpii->cmd_completion);
704 gpii->gpi_cmd = gpi_cmd;
705
706 cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
707 cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
708 GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
709 gpi_write_reg(gpii, cmd_reg, cmd);
710 timeout = wait_for_completion_timeout(&gpii->cmd_completion,
711 msecs_to_jiffies(CMD_TIMEOUT_MS));
712 if (!timeout) {
713 dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
714 TO_GPI_CMD_STR(gpi_cmd), chid);
715 return -EIO;
716 }
717
718 /* confirm new ch state is correct , if the cmd is a state change cmd */
719 if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
720 return 0;
721
722 if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
723 return 0;
724
725 if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
726 return 0;
727
728 return -EIO;
729 }
730
731 /* program transfer ring DB register */
gpi_write_ch_db(struct gchan * gchan,struct gpi_ring * ring,void * wp)732 static inline void gpi_write_ch_db(struct gchan *gchan,
733 struct gpi_ring *ring, void *wp)
734 {
735 struct gpii *gpii = gchan->gpii;
736 phys_addr_t p_wp;
737
738 p_wp = to_physical(ring, wp);
739 gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
740 }
741
742 /* program event ring DB register */
gpi_write_ev_db(struct gpii * gpii,struct gpi_ring * ring,void * wp)743 static inline void gpi_write_ev_db(struct gpii *gpii,
744 struct gpi_ring *ring, void *wp)
745 {
746 phys_addr_t p_wp;
747
748 p_wp = ring->phys_addr + (wp - ring->base);
749 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
750 }
751
752 /* process transfer completion interrupt */
gpi_process_ieob(struct gpii * gpii)753 static void gpi_process_ieob(struct gpii *gpii)
754 {
755 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
756
757 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
758 tasklet_hi_schedule(&gpii->ev_task);
759 }
760
761 /* process channel control interrupt */
gpi_process_ch_ctrl_irq(struct gpii * gpii)762 static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
763 {
764 u32 gpii_id = gpii->gpii_id;
765 u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
766 u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
767 struct gchan *gchan;
768 u32 chid, state;
769
770 /* clear the status */
771 offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
772 gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
773
774 for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
775 if (!(BIT(chid) & ch_irq))
776 continue;
777
778 gchan = &gpii->gchan[chid];
779 state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
780 CNTXT_0_CONFIG);
781 state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
782
783 /*
784 * CH_CMD_DEALLOC cmd always successful. However cmd does
785 * not change hardware status. So overwriting software state
786 * to default state.
787 */
788 if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
789 state = DEFAULT_CH_STATE;
790 gchan->ch_state = state;
791
792 /*
793 * Triggering complete all if ch_state is not a stop in process.
794 * Stop in process is a transition state and we will wait for
795 * stop interrupt before notifying.
796 */
797 if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
798 complete_all(&gpii->cmd_completion);
799 }
800 }
801
802 /* processing gpi general error interrupts */
gpi_process_gen_err_irq(struct gpii * gpii)803 static void gpi_process_gen_err_irq(struct gpii *gpii)
804 {
805 u32 gpii_id = gpii->gpii_id;
806 u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
807 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
808
809 /* clear the status */
810 dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
811
812 /* Clear the register */
813 offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
814 gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
815 }
816
817 /* processing gpi level error interrupts */
gpi_process_glob_err_irq(struct gpii * gpii)818 static void gpi_process_glob_err_irq(struct gpii *gpii)
819 {
820 u32 gpii_id = gpii->gpii_id;
821 u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
822 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
823
824 offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
825 gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
826
827 /* only error interrupt should be set */
828 if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
829 dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
830 return;
831 }
832
833 offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
834 gpi_write_reg(gpii, gpii->regs + offset, 0);
835 }
836
837 /* gpii interrupt handler */
gpi_handle_irq(int irq,void * data)838 static irqreturn_t gpi_handle_irq(int irq, void *data)
839 {
840 struct gpii *gpii = data;
841 u32 gpii_id = gpii->gpii_id;
842 u32 type, offset;
843 unsigned long flags;
844
845 read_lock_irqsave(&gpii->pm_lock, flags);
846
847 /*
848 * States are out of sync to receive interrupt
849 * while software state is in DISABLE state, bailing out.
850 */
851 if (!REG_ACCESS_VALID(gpii->pm_state)) {
852 dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
853 TO_GPI_PM_STR(gpii->pm_state));
854 goto exit_irq;
855 }
856
857 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
858 type = gpi_read_reg(gpii, gpii->regs + offset);
859
860 do {
861 /* global gpii error */
862 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
863 gpi_process_glob_err_irq(gpii);
864 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
865 }
866
867 /* transfer complete interrupt */
868 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
869 gpi_process_ieob(gpii);
870 type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
871 }
872
873 /* event control irq */
874 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
875 u32 ev_state;
876 u32 ev_ch_irq;
877
878 dev_dbg(gpii->gpi_dev->dev,
879 "processing EV CTRL interrupt\n");
880 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
881 ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
882
883 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
884 (gpii_id);
885 gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
886 ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
887 CNTXT_0_CONFIG);
888 ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
889
890 /*
891 * CMD EV_CMD_DEALLOC is always successful. However
892 * cmd does not change hardware status. So overwriting
893 * software state to default state.
894 */
895 if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
896 ev_state = DEFAULT_EV_CH_STATE;
897
898 gpii->ev_state = ev_state;
899 dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
900 TO_GPI_EV_STATE_STR(gpii->ev_state));
901 complete_all(&gpii->cmd_completion);
902 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
903 }
904
905 /* channel control irq */
906 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
907 dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
908 gpi_process_ch_ctrl_irq(gpii);
909 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
910 }
911
912 if (type) {
913 dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
914 gpi_process_gen_err_irq(gpii);
915 goto exit_irq;
916 }
917
918 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
919 type = gpi_read_reg(gpii, gpii->regs + offset);
920 } while (type);
921
922 exit_irq:
923 read_unlock_irqrestore(&gpii->pm_lock, flags);
924
925 return IRQ_HANDLED;
926 }
927
928 /* process DMA Immediate completion data events */
gpi_process_imed_data_event(struct gchan * gchan,struct immediate_data_event * imed_event)929 static void gpi_process_imed_data_event(struct gchan *gchan,
930 struct immediate_data_event *imed_event)
931 {
932 struct gpii *gpii = gchan->gpii;
933 struct gpi_ring *ch_ring = &gchan->ch_ring;
934 void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
935 struct dmaengine_result result;
936 struct gpi_desc *gpi_desc;
937 struct virt_dma_desc *vd;
938 unsigned long flags;
939 u32 chid;
940
941 /*
942 * If channel not active don't process event
943 */
944 if (gchan->pm_state != ACTIVE_STATE) {
945 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
946 TO_GPI_PM_STR(gchan->pm_state));
947 return;
948 }
949
950 spin_lock_irqsave(&gchan->vc.lock, flags);
951 vd = vchan_next_desc(&gchan->vc);
952 if (!vd) {
953 struct gpi_ere *gpi_ere;
954 struct gpi_tre *gpi_tre;
955
956 spin_unlock_irqrestore(&gchan->vc.lock, flags);
957 dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
958 gpi_ere = (struct gpi_ere *)imed_event;
959 dev_dbg(gpii->gpi_dev->dev,
960 "Event: %08x %08x %08x %08x\n",
961 gpi_ere->dword[0], gpi_ere->dword[1],
962 gpi_ere->dword[2], gpi_ere->dword[3]);
963 gpi_tre = tre;
964 dev_dbg(gpii->gpi_dev->dev,
965 "Pending TRE: %08x %08x %08x %08x\n",
966 gpi_tre->dword[0], gpi_tre->dword[1],
967 gpi_tre->dword[2], gpi_tre->dword[3]);
968 return;
969 }
970 gpi_desc = to_gpi_desc(vd);
971 spin_unlock_irqrestore(&gchan->vc.lock, flags);
972
973 /*
974 * RP pointed by Event is to last TRE processed,
975 * we need to update ring rp to tre + 1
976 */
977 tre += ch_ring->el_size;
978 if (tre >= (ch_ring->base + ch_ring->len))
979 tre = ch_ring->base;
980 ch_ring->rp = tre;
981
982 /* make sure rp updates are immediately visible to all cores */
983 smp_wmb();
984
985 chid = imed_event->chid;
986 if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
987 if (chid == GPI_RX_CHAN)
988 goto gpi_free_desc;
989 else
990 return;
991 }
992
993 if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
994 result.result = DMA_TRANS_ABORTED;
995 else
996 result.result = DMA_TRANS_NOERROR;
997 result.residue = gpi_desc->len - imed_event->length;
998
999 dma_cookie_complete(&vd->tx);
1000 dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1001
1002 gpi_free_desc:
1003 spin_lock_irqsave(&gchan->vc.lock, flags);
1004 list_del(&vd->node);
1005 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1006 kfree(gpi_desc);
1007 gpi_desc = NULL;
1008 }
1009
1010 /* processing transfer completion events */
gpi_process_xfer_compl_event(struct gchan * gchan,struct xfer_compl_event * compl_event)1011 static void gpi_process_xfer_compl_event(struct gchan *gchan,
1012 struct xfer_compl_event *compl_event)
1013 {
1014 struct gpii *gpii = gchan->gpii;
1015 struct gpi_ring *ch_ring = &gchan->ch_ring;
1016 void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1017 struct virt_dma_desc *vd;
1018 struct gpi_desc *gpi_desc;
1019 struct dmaengine_result result;
1020 unsigned long flags;
1021 u32 chid;
1022
1023 /* only process events on active channel */
1024 if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1025 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1026 TO_GPI_PM_STR(gchan->pm_state));
1027 return;
1028 }
1029
1030 spin_lock_irqsave(&gchan->vc.lock, flags);
1031 vd = vchan_next_desc(&gchan->vc);
1032 if (!vd) {
1033 struct gpi_ere *gpi_ere;
1034
1035 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1036 dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1037 gpi_ere = (struct gpi_ere *)compl_event;
1038 dev_err(gpii->gpi_dev->dev,
1039 "Event: %08x %08x %08x %08x\n",
1040 gpi_ere->dword[0], gpi_ere->dword[1],
1041 gpi_ere->dword[2], gpi_ere->dword[3]);
1042 return;
1043 }
1044
1045 gpi_desc = to_gpi_desc(vd);
1046 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1047
1048 /*
1049 * RP pointed by Event is to last TRE processed,
1050 * we need to update ring rp to ev_rp + 1
1051 */
1052 ev_rp += ch_ring->el_size;
1053 if (ev_rp >= (ch_ring->base + ch_ring->len))
1054 ev_rp = ch_ring->base;
1055 ch_ring->rp = ev_rp;
1056
1057 /* update must be visible to other cores */
1058 smp_wmb();
1059
1060 chid = compl_event->chid;
1061 if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1062 if (chid == GPI_RX_CHAN)
1063 goto gpi_free_desc;
1064 else
1065 return;
1066 }
1067
1068 if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1069 dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1070 result.result = DMA_TRANS_ABORTED;
1071 } else {
1072 dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1073 result.result = DMA_TRANS_NOERROR;
1074 }
1075 result.residue = gpi_desc->len - compl_event->length;
1076 dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1077
1078 dma_cookie_complete(&vd->tx);
1079 dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1080
1081 gpi_free_desc:
1082 spin_lock_irqsave(&gchan->vc.lock, flags);
1083 list_del(&vd->node);
1084 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1085 kfree(gpi_desc);
1086 gpi_desc = NULL;
1087 }
1088
1089 /* process all events */
gpi_process_events(struct gpii * gpii)1090 static void gpi_process_events(struct gpii *gpii)
1091 {
1092 struct gpi_ring *ev_ring = &gpii->ev_ring;
1093 phys_addr_t cntxt_rp;
1094 void *rp;
1095 union gpi_event *gpi_event;
1096 struct gchan *gchan;
1097 u32 chid, type;
1098
1099 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1100 rp = to_virtual(ev_ring, cntxt_rp);
1101
1102 do {
1103 while (rp != ev_ring->rp) {
1104 gpi_event = ev_ring->rp;
1105 chid = gpi_event->xfer_compl_event.chid;
1106 type = gpi_event->xfer_compl_event.type;
1107
1108 dev_dbg(gpii->gpi_dev->dev,
1109 "Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1110 chid, type, gpi_event->gpi_ere.dword[0],
1111 gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1112 gpi_event->gpi_ere.dword[3]);
1113
1114 switch (type) {
1115 case XFER_COMPLETE_EV_TYPE:
1116 gchan = &gpii->gchan[chid];
1117 gpi_process_xfer_compl_event(gchan,
1118 &gpi_event->xfer_compl_event);
1119 break;
1120 case STALE_EV_TYPE:
1121 dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1122 break;
1123 case IMMEDIATE_DATA_EV_TYPE:
1124 gchan = &gpii->gchan[chid];
1125 gpi_process_imed_data_event(gchan,
1126 &gpi_event->immediate_data_event);
1127 break;
1128 case QUP_NOTIF_EV_TYPE:
1129 dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1130 break;
1131 default:
1132 dev_dbg(gpii->gpi_dev->dev,
1133 "not supported event type:0x%x\n", type);
1134 }
1135 gpi_ring_recycle_ev_element(ev_ring);
1136 }
1137 gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1138
1139 /* clear pending IEOB events */
1140 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1141
1142 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1143 rp = to_virtual(ev_ring, cntxt_rp);
1144
1145 } while (rp != ev_ring->rp);
1146 }
1147
1148 /* processing events using tasklet */
gpi_ev_tasklet(unsigned long data)1149 static void gpi_ev_tasklet(unsigned long data)
1150 {
1151 struct gpii *gpii = (struct gpii *)data;
1152
1153 read_lock(&gpii->pm_lock);
1154 if (!REG_ACCESS_VALID(gpii->pm_state)) {
1155 read_unlock(&gpii->pm_lock);
1156 dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1157 TO_GPI_PM_STR(gpii->pm_state));
1158 return;
1159 }
1160
1161 /* process the events */
1162 gpi_process_events(gpii);
1163
1164 /* enable IEOB, switching back to interrupts */
1165 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1166 read_unlock(&gpii->pm_lock);
1167 }
1168
1169 /* marks all pending events for the channel as stale */
gpi_mark_stale_events(struct gchan * gchan)1170 static void gpi_mark_stale_events(struct gchan *gchan)
1171 {
1172 struct gpii *gpii = gchan->gpii;
1173 struct gpi_ring *ev_ring = &gpii->ev_ring;
1174 u32 cntxt_rp, local_rp;
1175 void *ev_rp;
1176
1177 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1178
1179 ev_rp = ev_ring->rp;
1180 local_rp = (u32)to_physical(ev_ring, ev_rp);
1181 while (local_rp != cntxt_rp) {
1182 union gpi_event *gpi_event = ev_rp;
1183 u32 chid = gpi_event->xfer_compl_event.chid;
1184
1185 if (chid == gchan->chid)
1186 gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1187 ev_rp += ev_ring->el_size;
1188 if (ev_rp >= (ev_ring->base + ev_ring->len))
1189 ev_rp = ev_ring->base;
1190 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1191 local_rp = (u32)to_physical(ev_ring, ev_rp);
1192 }
1193 }
1194
1195 /* reset sw state and issue channel reset or de-alloc */
gpi_reset_chan(struct gchan * gchan,enum gpi_cmd gpi_cmd)1196 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1197 {
1198 struct gpii *gpii = gchan->gpii;
1199 struct gpi_ring *ch_ring = &gchan->ch_ring;
1200 unsigned long flags;
1201 LIST_HEAD(list);
1202 int ret;
1203
1204 ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1205 if (ret) {
1206 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1207 TO_GPI_CMD_STR(gpi_cmd), ret);
1208 return ret;
1209 }
1210
1211 /* initialize the local ring ptrs */
1212 ch_ring->rp = ch_ring->base;
1213 ch_ring->wp = ch_ring->base;
1214
1215 /* visible to other cores */
1216 smp_wmb();
1217
1218 /* check event ring for any stale events */
1219 write_lock_irq(&gpii->pm_lock);
1220 gpi_mark_stale_events(gchan);
1221
1222 /* remove all async descriptors */
1223 spin_lock_irqsave(&gchan->vc.lock, flags);
1224 vchan_get_all_descriptors(&gchan->vc, &list);
1225 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1226 write_unlock_irq(&gpii->pm_lock);
1227 vchan_dma_desc_free_list(&gchan->vc, &list);
1228
1229 return 0;
1230 }
1231
gpi_start_chan(struct gchan * gchan)1232 static int gpi_start_chan(struct gchan *gchan)
1233 {
1234 struct gpii *gpii = gchan->gpii;
1235 int ret;
1236
1237 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1238 if (ret) {
1239 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1240 TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1241 return ret;
1242 }
1243
1244 /* gpii CH is active now */
1245 write_lock_irq(&gpii->pm_lock);
1246 gchan->pm_state = ACTIVE_STATE;
1247 write_unlock_irq(&gpii->pm_lock);
1248
1249 return 0;
1250 }
1251
gpi_stop_chan(struct gchan * gchan)1252 static int gpi_stop_chan(struct gchan *gchan)
1253 {
1254 struct gpii *gpii = gchan->gpii;
1255 int ret;
1256
1257 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1258 if (ret) {
1259 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1260 TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1261 return ret;
1262 }
1263
1264 return 0;
1265 }
1266
1267 /* allocate and configure the transfer channel */
gpi_alloc_chan(struct gchan * chan,bool send_alloc_cmd)1268 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1269 {
1270 struct gpii *gpii = chan->gpii;
1271 struct gpi_ring *ring = &chan->ch_ring;
1272 int ret;
1273 u32 id = gpii->gpii_id;
1274 u32 chid = chan->chid;
1275 u32 pair_chid = !chid;
1276
1277 if (send_alloc_cmd) {
1278 ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1279 if (ret) {
1280 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1281 TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1282 return ret;
1283 }
1284 }
1285
1286 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1287 GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1288 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1289 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1290 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1291 upper_32_bits(ring->phys_addr));
1292 gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1293 upper_32_bits(ring->phys_addr));
1294 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1295 GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1296 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1297 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1298 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1299 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1300
1301 /* flush all the writes */
1302 wmb();
1303 return 0;
1304 }
1305
1306 /* allocate and configure event ring */
gpi_alloc_ev_chan(struct gpii * gpii)1307 static int gpi_alloc_ev_chan(struct gpii *gpii)
1308 {
1309 struct gpi_ring *ring = &gpii->ev_ring;
1310 void __iomem *base = gpii->ev_cntxt_base_reg;
1311 int ret;
1312
1313 ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1314 if (ret) {
1315 dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1316 TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1317 return ret;
1318 }
1319
1320 /* program event context */
1321 gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1322 GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1323 gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1324 gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1325 gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1326 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1327 upper_32_bits(ring->phys_addr));
1328 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1329 gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1330 gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1331 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1332 gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1333 gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1334
1335 /* add events to ring */
1336 ring->wp = (ring->base + ring->len - ring->el_size);
1337
1338 /* flush all the writes */
1339 wmb();
1340
1341 /* gpii is active now */
1342 write_lock_irq(&gpii->pm_lock);
1343 gpii->pm_state = ACTIVE_STATE;
1344 write_unlock_irq(&gpii->pm_lock);
1345 gpi_write_ev_db(gpii, ring, ring->wp);
1346
1347 return 0;
1348 }
1349
1350 /* calculate # of ERE/TRE available to queue */
gpi_ring_num_elements_avail(const struct gpi_ring * const ring)1351 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1352 {
1353 int elements = 0;
1354
1355 if (ring->wp < ring->rp) {
1356 elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1357 } else {
1358 elements = (ring->rp - ring->base) / ring->el_size;
1359 elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1360 }
1361
1362 return elements;
1363 }
1364
gpi_ring_add_element(struct gpi_ring * ring,void ** wp)1365 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1366 {
1367 if (gpi_ring_num_elements_avail(ring) <= 0)
1368 return -ENOMEM;
1369
1370 *wp = ring->wp;
1371 ring->wp += ring->el_size;
1372 if (ring->wp >= (ring->base + ring->len))
1373 ring->wp = ring->base;
1374
1375 /* visible to other cores */
1376 smp_wmb();
1377
1378 return 0;
1379 }
1380
gpi_ring_recycle_ev_element(struct gpi_ring * ring)1381 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1382 {
1383 /* Update the WP */
1384 ring->wp += ring->el_size;
1385 if (ring->wp >= (ring->base + ring->len))
1386 ring->wp = ring->base;
1387
1388 /* Update the RP */
1389 ring->rp += ring->el_size;
1390 if (ring->rp >= (ring->base + ring->len))
1391 ring->rp = ring->base;
1392
1393 /* visible to other cores */
1394 smp_wmb();
1395 }
1396
gpi_free_ring(struct gpi_ring * ring,struct gpii * gpii)1397 static void gpi_free_ring(struct gpi_ring *ring,
1398 struct gpii *gpii)
1399 {
1400 dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1401 ring->pre_aligned, ring->dma_handle);
1402 memset(ring, 0, sizeof(*ring));
1403 }
1404
1405 /* allocate memory for transfer and event rings */
gpi_alloc_ring(struct gpi_ring * ring,u32 elements,u32 el_size,struct gpii * gpii)1406 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1407 u32 el_size, struct gpii *gpii)
1408 {
1409 u64 len = elements * el_size;
1410 int bit;
1411
1412 /* ring len must be power of 2 */
1413 bit = find_last_bit((unsigned long *)&len, 32);
1414 if (((1 << bit) - 1) & len)
1415 bit++;
1416 len = 1 << bit;
1417 ring->alloc_size = (len + (len - 1));
1418 dev_dbg(gpii->gpi_dev->dev,
1419 "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
1420 elements, el_size, (elements * el_size), len,
1421 ring->alloc_size);
1422
1423 ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1424 ring->alloc_size,
1425 &ring->dma_handle, GFP_KERNEL);
1426 if (!ring->pre_aligned) {
1427 dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
1428 ring->alloc_size);
1429 return -ENOMEM;
1430 }
1431
1432 /* align the physical mem */
1433 ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1434 ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1435 ring->rp = ring->base;
1436 ring->wp = ring->base;
1437 ring->len = len;
1438 ring->el_size = el_size;
1439 ring->elements = ring->len / ring->el_size;
1440 memset(ring->base, 0, ring->len);
1441 ring->configured = true;
1442
1443 /* update to other cores */
1444 smp_wmb();
1445
1446 dev_dbg(gpii->gpi_dev->dev,
1447 "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
1448 &ring->dma_handle, &ring->phys_addr, ring->len,
1449 ring->el_size, ring->elements);
1450
1451 return 0;
1452 }
1453
1454 /* copy tre into transfer ring */
gpi_queue_xfer(struct gpii * gpii,struct gchan * gchan,struct gpi_tre * gpi_tre,void ** wp)1455 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1456 struct gpi_tre *gpi_tre, void **wp)
1457 {
1458 struct gpi_tre *ch_tre;
1459 int ret;
1460
1461 /* get next tre location we can copy */
1462 ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1463 if (unlikely(ret)) {
1464 dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1465 return;
1466 }
1467
1468 /* copy the tre info */
1469 memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1470 *wp = ch_tre;
1471 }
1472
1473 /* reset and restart transfer channel */
gpi_terminate_all(struct dma_chan * chan)1474 static int gpi_terminate_all(struct dma_chan *chan)
1475 {
1476 struct gchan *gchan = to_gchan(chan);
1477 struct gpii *gpii = gchan->gpii;
1478 int schid, echid, i;
1479 int ret = 0;
1480
1481 mutex_lock(&gpii->ctrl_lock);
1482
1483 /*
1484 * treat both channels as a group if its protocol is not UART
1485 * STOP, RESET, or START needs to be in lockstep
1486 */
1487 schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1488 echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1489
1490 /* stop the channel */
1491 for (i = schid; i < echid; i++) {
1492 gchan = &gpii->gchan[i];
1493
1494 /* disable ch state so no more TRE processing */
1495 write_lock_irq(&gpii->pm_lock);
1496 gchan->pm_state = PREPARE_TERMINATE;
1497 write_unlock_irq(&gpii->pm_lock);
1498
1499 /* send command to Stop the channel */
1500 ret = gpi_stop_chan(gchan);
1501 }
1502
1503 /* reset the channels (clears any pending tre) */
1504 for (i = schid; i < echid; i++) {
1505 gchan = &gpii->gchan[i];
1506
1507 ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1508 if (ret) {
1509 dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1510 goto terminate_exit;
1511 }
1512
1513 /* reprogram channel CNTXT */
1514 ret = gpi_alloc_chan(gchan, false);
1515 if (ret) {
1516 dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1517 goto terminate_exit;
1518 }
1519 }
1520
1521 /* restart the channels */
1522 for (i = schid; i < echid; i++) {
1523 gchan = &gpii->gchan[i];
1524
1525 ret = gpi_start_chan(gchan);
1526 if (ret) {
1527 dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1528 goto terminate_exit;
1529 }
1530 }
1531
1532 terminate_exit:
1533 mutex_unlock(&gpii->ctrl_lock);
1534 return ret;
1535 }
1536
1537 /* pause dma transfer for all channels */
gpi_pause(struct dma_chan * chan)1538 static int gpi_pause(struct dma_chan *chan)
1539 {
1540 struct gchan *gchan = to_gchan(chan);
1541 struct gpii *gpii = gchan->gpii;
1542 int i, ret;
1543
1544 mutex_lock(&gpii->ctrl_lock);
1545
1546 /*
1547 * pause/resume are per gpii not per channel, so
1548 * client needs to call pause only once
1549 */
1550 if (gpii->pm_state == PAUSE_STATE) {
1551 dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1552 mutex_unlock(&gpii->ctrl_lock);
1553 return 0;
1554 }
1555
1556 /* send stop command to stop the channels */
1557 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1558 ret = gpi_stop_chan(&gpii->gchan[i]);
1559 if (ret) {
1560 mutex_unlock(&gpii->ctrl_lock);
1561 return ret;
1562 }
1563 }
1564
1565 disable_irq(gpii->irq);
1566
1567 /* Wait for threads to complete out */
1568 tasklet_kill(&gpii->ev_task);
1569
1570 write_lock_irq(&gpii->pm_lock);
1571 gpii->pm_state = PAUSE_STATE;
1572 write_unlock_irq(&gpii->pm_lock);
1573 mutex_unlock(&gpii->ctrl_lock);
1574
1575 return 0;
1576 }
1577
1578 /* resume dma transfer */
gpi_resume(struct dma_chan * chan)1579 static int gpi_resume(struct dma_chan *chan)
1580 {
1581 struct gchan *gchan = to_gchan(chan);
1582 struct gpii *gpii = gchan->gpii;
1583 int i, ret;
1584
1585 mutex_lock(&gpii->ctrl_lock);
1586 if (gpii->pm_state == ACTIVE_STATE) {
1587 dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1588 mutex_unlock(&gpii->ctrl_lock);
1589 return 0;
1590 }
1591
1592 enable_irq(gpii->irq);
1593
1594 /* send start command to start the channels */
1595 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1596 ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1597 if (ret) {
1598 dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1599 mutex_unlock(&gpii->ctrl_lock);
1600 return ret;
1601 }
1602 }
1603
1604 write_lock_irq(&gpii->pm_lock);
1605 gpii->pm_state = ACTIVE_STATE;
1606 write_unlock_irq(&gpii->pm_lock);
1607 mutex_unlock(&gpii->ctrl_lock);
1608
1609 return 0;
1610 }
1611
gpi_desc_free(struct virt_dma_desc * vd)1612 static void gpi_desc_free(struct virt_dma_desc *vd)
1613 {
1614 struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1615
1616 kfree(gpi_desc);
1617 gpi_desc = NULL;
1618 }
1619
1620 static int
gpi_peripheral_config(struct dma_chan * chan,struct dma_slave_config * config)1621 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1622 {
1623 struct gchan *gchan = to_gchan(chan);
1624
1625 if (!config->peripheral_config)
1626 return -EINVAL;
1627
1628 gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1629 if (!gchan->config)
1630 return -ENOMEM;
1631
1632 memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1633
1634 return 0;
1635 }
1636
gpi_create_i2c_tre(struct gchan * chan,struct gpi_desc * desc,struct scatterlist * sgl,enum dma_transfer_direction direction)1637 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1638 struct scatterlist *sgl, enum dma_transfer_direction direction)
1639 {
1640 struct gpi_i2c_config *i2c = chan->config;
1641 struct device *dev = chan->gpii->gpi_dev->dev;
1642 unsigned int tre_idx = 0;
1643 dma_addr_t address;
1644 struct gpi_tre *tre;
1645 unsigned int i;
1646
1647 /* first create config tre if applicable */
1648 if (i2c->set_config) {
1649 tre = &desc->tre[tre_idx];
1650 tre_idx++;
1651
1652 tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1653 tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1654 tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1655 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1656 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1657
1658 tre->dword[1] = 0;
1659
1660 tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1661
1662 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1663 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1664 }
1665
1666 /* create the GO tre for Tx */
1667 if (i2c->op == I2C_WRITE) {
1668 tre = &desc->tre[tre_idx];
1669 tre_idx++;
1670
1671 if (i2c->multi_msg)
1672 tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1673 else
1674 tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1675
1676 tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1677 tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1678
1679 tre->dword[1] = 0;
1680 tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1681
1682 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1683
1684 if (i2c->multi_msg)
1685 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1686 else
1687 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1688 }
1689
1690 if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1691 /* create the DMA TRE */
1692 tre = &desc->tre[tre_idx];
1693 tre_idx++;
1694
1695 address = sg_dma_address(sgl);
1696 tre->dword[0] = lower_32_bits(address);
1697 tre->dword[1] = upper_32_bits(address);
1698
1699 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1700
1701 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1702 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1703 }
1704
1705 for (i = 0; i < tre_idx; i++)
1706 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1707 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1708
1709 return tre_idx;
1710 }
1711
gpi_create_spi_tre(struct gchan * chan,struct gpi_desc * desc,struct scatterlist * sgl,enum dma_transfer_direction direction)1712 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1713 struct scatterlist *sgl, enum dma_transfer_direction direction)
1714 {
1715 struct gpi_spi_config *spi = chan->config;
1716 struct device *dev = chan->gpii->gpi_dev->dev;
1717 unsigned int tre_idx = 0;
1718 dma_addr_t address;
1719 struct gpi_tre *tre;
1720 unsigned int i;
1721
1722 /* first create config tre if applicable */
1723 if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1724 tre = &desc->tre[tre_idx];
1725 tre_idx++;
1726
1727 tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1728 tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1729 tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1730 tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1731 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1732 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1733
1734 tre->dword[1] = 0;
1735
1736 tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1737 tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1738
1739 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1740 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1741 }
1742
1743 /* create the GO tre for Tx */
1744 if (direction == DMA_MEM_TO_DEV) {
1745 tre = &desc->tre[tre_idx];
1746 tre_idx++;
1747
1748 tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1749 tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1750 tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1751
1752 tre->dword[1] = 0;
1753
1754 tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1755
1756 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1757 if (spi->cmd == SPI_RX) {
1758 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1759 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1760 } else if (spi->cmd == SPI_TX) {
1761 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1762 } else { /* SPI_DUPLEX */
1763 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1764 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1765 }
1766 }
1767
1768 /* create the dma tre */
1769 tre = &desc->tre[tre_idx];
1770 tre_idx++;
1771
1772 address = sg_dma_address(sgl);
1773 tre->dword[0] = lower_32_bits(address);
1774 tre->dword[1] = upper_32_bits(address);
1775
1776 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1777
1778 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1779 if (direction == DMA_MEM_TO_DEV)
1780 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1781
1782 for (i = 0; i < tre_idx; i++)
1783 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1784 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1785
1786 return tre_idx;
1787 }
1788
1789 /* copy tre into transfer ring */
1790 static struct dma_async_tx_descriptor *
gpi_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1791 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1792 unsigned int sg_len, enum dma_transfer_direction direction,
1793 unsigned long flags, void *context)
1794 {
1795 struct gchan *gchan = to_gchan(chan);
1796 struct gpii *gpii = gchan->gpii;
1797 struct device *dev = gpii->gpi_dev->dev;
1798 struct gpi_ring *ch_ring = &gchan->ch_ring;
1799 struct gpi_desc *gpi_desc;
1800 u32 nr, nr_tre = 0;
1801 u8 set_config;
1802 int i;
1803
1804 gpii->ieob_set = false;
1805 if (!is_slave_direction(direction)) {
1806 dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1807 return NULL;
1808 }
1809
1810 if (sg_len > 1) {
1811 dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1812 return NULL;
1813 }
1814
1815 nr_tre = 3;
1816 set_config = *(u32 *)gchan->config;
1817 if (!set_config)
1818 nr_tre = 2;
1819 if (direction == DMA_DEV_TO_MEM) /* rx */
1820 nr_tre = 1;
1821
1822 /* calculate # of elements required & available */
1823 nr = gpi_ring_num_elements_avail(ch_ring);
1824 if (nr < nr_tre) {
1825 dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1826 return NULL;
1827 }
1828
1829 gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1830 if (!gpi_desc)
1831 return NULL;
1832
1833 /* create TREs for xfer */
1834 if (gchan->protocol == QCOM_GPI_SPI) {
1835 i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1836 } else if (gchan->protocol == QCOM_GPI_I2C) {
1837 i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1838 } else {
1839 dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1840 kfree(gpi_desc);
1841 return NULL;
1842 }
1843
1844 /* set up the descriptor */
1845 gpi_desc->gchan = gchan;
1846 gpi_desc->len = sg_dma_len(sgl);
1847 gpi_desc->num_tre = i;
1848
1849 return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1850 }
1851
1852 /* rings transfer ring db to being transfer */
gpi_issue_pending(struct dma_chan * chan)1853 static void gpi_issue_pending(struct dma_chan *chan)
1854 {
1855 struct gchan *gchan = to_gchan(chan);
1856 struct gpii *gpii = gchan->gpii;
1857 unsigned long flags, pm_lock_flags;
1858 struct virt_dma_desc *vd = NULL;
1859 struct gpi_desc *gpi_desc;
1860 struct gpi_ring *ch_ring = &gchan->ch_ring;
1861 void *tre, *wp = NULL;
1862 int i;
1863
1864 read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1865
1866 /* move all submitted discriptors to issued list */
1867 spin_lock_irqsave(&gchan->vc.lock, flags);
1868 if (vchan_issue_pending(&gchan->vc))
1869 vd = list_last_entry(&gchan->vc.desc_issued,
1870 struct virt_dma_desc, node);
1871 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1872
1873 /* nothing to do list is empty */
1874 if (!vd) {
1875 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1876 return;
1877 }
1878
1879 gpi_desc = to_gpi_desc(vd);
1880 for (i = 0; i < gpi_desc->num_tre; i++) {
1881 tre = &gpi_desc->tre[i];
1882 gpi_queue_xfer(gpii, gchan, tre, &wp);
1883 }
1884
1885 gpi_desc->db = ch_ring->wp;
1886 gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1887 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1888 }
1889
gpi_ch_init(struct gchan * gchan)1890 static int gpi_ch_init(struct gchan *gchan)
1891 {
1892 struct gpii *gpii = gchan->gpii;
1893 const int ev_factor = gpii->gpi_dev->ev_factor;
1894 u32 elements;
1895 int i = 0, ret = 0;
1896
1897 gchan->pm_state = CONFIG_STATE;
1898
1899 /* check if both channels are configured before continue */
1900 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1901 if (gpii->gchan[i].pm_state != CONFIG_STATE)
1902 goto exit_gpi_init;
1903
1904 /* protocol must be same for both channels */
1905 if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1906 dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1907 gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1908 ret = -EINVAL;
1909 goto exit_gpi_init;
1910 }
1911
1912 /* allocate memory for event ring */
1913 elements = CHAN_TRES << ev_factor;
1914 ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1915 sizeof(union gpi_event), gpii);
1916 if (ret)
1917 goto exit_gpi_init;
1918
1919 /* configure interrupts */
1920 write_lock_irq(&gpii->pm_lock);
1921 gpii->pm_state = PREPARE_HARDWARE;
1922 write_unlock_irq(&gpii->pm_lock);
1923 ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1924 if (ret) {
1925 dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1926 goto error_config_int;
1927 }
1928
1929 /* allocate event rings */
1930 ret = gpi_alloc_ev_chan(gpii);
1931 if (ret) {
1932 dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1933 goto error_alloc_ev_ring;
1934 }
1935
1936 /* Allocate all channels */
1937 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1938 ret = gpi_alloc_chan(&gpii->gchan[i], true);
1939 if (ret) {
1940 dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1941 goto error_alloc_chan;
1942 }
1943 }
1944
1945 /* start channels */
1946 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1947 ret = gpi_start_chan(&gpii->gchan[i]);
1948 if (ret) {
1949 dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1950 goto error_start_chan;
1951 }
1952 }
1953 return ret;
1954
1955 error_start_chan:
1956 for (i = i - 1; i >= 0; i--) {
1957 gpi_stop_chan(&gpii->gchan[i]);
1958 gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1959 }
1960 i = 2;
1961 error_alloc_chan:
1962 for (i = i - 1; i >= 0; i--)
1963 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1964 error_alloc_ev_ring:
1965 gpi_disable_interrupts(gpii);
1966 error_config_int:
1967 gpi_free_ring(&gpii->ev_ring, gpii);
1968 exit_gpi_init:
1969 return ret;
1970 }
1971
1972 /* release all channel resources */
gpi_free_chan_resources(struct dma_chan * chan)1973 static void gpi_free_chan_resources(struct dma_chan *chan)
1974 {
1975 struct gchan *gchan = to_gchan(chan);
1976 struct gpii *gpii = gchan->gpii;
1977 enum gpi_pm_state cur_state;
1978 int ret, i;
1979
1980 mutex_lock(&gpii->ctrl_lock);
1981
1982 cur_state = gchan->pm_state;
1983
1984 /* disable ch state so no more TRE processing for this channel */
1985 write_lock_irq(&gpii->pm_lock);
1986 gchan->pm_state = PREPARE_TERMINATE;
1987 write_unlock_irq(&gpii->pm_lock);
1988
1989 /* attempt to do graceful hardware shutdown */
1990 if (cur_state == ACTIVE_STATE) {
1991 gpi_stop_chan(gchan);
1992
1993 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1994 if (ret)
1995 dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
1996
1997 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1998 }
1999
2000 /* free all allocated memory */
2001 gpi_free_ring(&gchan->ch_ring, gpii);
2002 vchan_free_chan_resources(&gchan->vc);
2003 kfree(gchan->config);
2004
2005 write_lock_irq(&gpii->pm_lock);
2006 gchan->pm_state = DISABLE_STATE;
2007 write_unlock_irq(&gpii->pm_lock);
2008
2009 /* if other rings are still active exit */
2010 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2011 if (gpii->gchan[i].ch_ring.configured)
2012 goto exit_free;
2013
2014 /* deallocate EV Ring */
2015 cur_state = gpii->pm_state;
2016 write_lock_irq(&gpii->pm_lock);
2017 gpii->pm_state = PREPARE_TERMINATE;
2018 write_unlock_irq(&gpii->pm_lock);
2019
2020 /* wait for threads to complete out */
2021 tasklet_kill(&gpii->ev_task);
2022
2023 /* send command to de allocate event ring */
2024 if (cur_state == ACTIVE_STATE)
2025 gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2026
2027 gpi_free_ring(&gpii->ev_ring, gpii);
2028
2029 /* disable interrupts */
2030 if (cur_state == ACTIVE_STATE)
2031 gpi_disable_interrupts(gpii);
2032
2033 /* set final state to disable */
2034 write_lock_irq(&gpii->pm_lock);
2035 gpii->pm_state = DISABLE_STATE;
2036 write_unlock_irq(&gpii->pm_lock);
2037
2038 exit_free:
2039 mutex_unlock(&gpii->ctrl_lock);
2040 }
2041
2042 /* allocate channel resources */
gpi_alloc_chan_resources(struct dma_chan * chan)2043 static int gpi_alloc_chan_resources(struct dma_chan *chan)
2044 {
2045 struct gchan *gchan = to_gchan(chan);
2046 struct gpii *gpii = gchan->gpii;
2047 int ret;
2048
2049 mutex_lock(&gpii->ctrl_lock);
2050
2051 /* allocate memory for transfer ring */
2052 ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2053 sizeof(struct gpi_tre), gpii);
2054 if (ret)
2055 goto xfer_alloc_err;
2056
2057 ret = gpi_ch_init(gchan);
2058
2059 mutex_unlock(&gpii->ctrl_lock);
2060
2061 return ret;
2062 xfer_alloc_err:
2063 mutex_unlock(&gpii->ctrl_lock);
2064
2065 return ret;
2066 }
2067
gpi_find_avail_gpii(struct gpi_dev * gpi_dev,u32 seid)2068 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2069 {
2070 struct gchan *tx_chan, *rx_chan;
2071 unsigned int gpii;
2072
2073 /* check if same seid is already configured for another chid */
2074 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2075 if (!((1 << gpii) & gpi_dev->gpii_mask))
2076 continue;
2077
2078 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2079 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2080
2081 if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2082 return gpii;
2083 if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2084 return gpii;
2085 }
2086
2087 /* no channels configured with same seid, return next avail gpii */
2088 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2089 if (!((1 << gpii) & gpi_dev->gpii_mask))
2090 continue;
2091
2092 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2093 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2094
2095 /* check if gpii is configured */
2096 if (tx_chan->vc.chan.client_count ||
2097 rx_chan->vc.chan.client_count)
2098 continue;
2099
2100 /* found a free gpii */
2101 return gpii;
2102 }
2103
2104 /* no gpii instance available to use */
2105 return -EIO;
2106 }
2107
2108 /* gpi_of_dma_xlate: open client requested channel */
gpi_of_dma_xlate(struct of_phandle_args * args,struct of_dma * of_dma)2109 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2110 struct of_dma *of_dma)
2111 {
2112 struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2113 u32 seid, chid;
2114 int gpii;
2115 struct gchan *gchan;
2116
2117 if (args->args_count < 3) {
2118 dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2119 args->args_count);
2120 return NULL;
2121 }
2122
2123 chid = args->args[0];
2124 if (chid >= MAX_CHANNELS_PER_GPII) {
2125 dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2126 return NULL;
2127 }
2128
2129 seid = args->args[1];
2130
2131 /* find next available gpii to use */
2132 gpii = gpi_find_avail_gpii(gpi_dev, seid);
2133 if (gpii < 0) {
2134 dev_err(gpi_dev->dev, "no available gpii instances\n");
2135 return NULL;
2136 }
2137
2138 gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2139 if (gchan->vc.chan.client_count) {
2140 dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2141 gpii, chid, gchan->seid);
2142 return NULL;
2143 }
2144
2145 gchan->seid = seid;
2146 gchan->protocol = args->args[2];
2147
2148 return dma_get_slave_channel(&gchan->vc.chan);
2149 }
2150
gpi_probe(struct platform_device * pdev)2151 static int gpi_probe(struct platform_device *pdev)
2152 {
2153 struct gpi_dev *gpi_dev;
2154 unsigned int i;
2155 u32 ee_offset;
2156 int ret;
2157
2158 gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2159 if (!gpi_dev)
2160 return -ENOMEM;
2161
2162 gpi_dev->dev = &pdev->dev;
2163 gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res);
2164 if (IS_ERR(gpi_dev->regs))
2165 return PTR_ERR(gpi_dev->regs);
2166 gpi_dev->ee_base = gpi_dev->regs;
2167
2168 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2169 &gpi_dev->max_gpii);
2170 if (ret) {
2171 dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2172 return ret;
2173 }
2174
2175 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2176 &gpi_dev->gpii_mask);
2177 if (ret) {
2178 dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2179 return ret;
2180 }
2181
2182 ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
2183 gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
2184
2185 gpi_dev->ev_factor = EV_FACTOR;
2186
2187 ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2188 if (ret) {
2189 dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2190 return ret;
2191 }
2192
2193 gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2194 gpi_dev->max_gpii, GFP_KERNEL);
2195 if (!gpi_dev->gpiis)
2196 return -ENOMEM;
2197
2198 /* setup all the supported gpii */
2199 INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2200 for (i = 0; i < gpi_dev->max_gpii; i++) {
2201 struct gpii *gpii = &gpi_dev->gpiis[i];
2202 int chan;
2203
2204 if (!((1 << i) & gpi_dev->gpii_mask))
2205 continue;
2206
2207 /* set up ev cntxt register map */
2208 gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2209 gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2210 gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2211 gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2212 gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2213
2214 /* set up irq */
2215 ret = platform_get_irq(pdev, i);
2216 if (ret < 0)
2217 return ret;
2218 gpii->irq = ret;
2219
2220 /* set up channel specific register info */
2221 for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2222 struct gchan *gchan = &gpii->gchan[chan];
2223
2224 /* set up ch cntxt register map */
2225 gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2226 GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2227 gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2228 GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2229 gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2230
2231 /* vchan setup */
2232 vchan_init(&gchan->vc, &gpi_dev->dma_device);
2233 gchan->vc.desc_free = gpi_desc_free;
2234 gchan->chid = chan;
2235 gchan->gpii = gpii;
2236 gchan->dir = GPII_CHAN_DIR[chan];
2237 }
2238 mutex_init(&gpii->ctrl_lock);
2239 rwlock_init(&gpii->pm_lock);
2240 tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2241 (unsigned long)gpii);
2242 init_completion(&gpii->cmd_completion);
2243 gpii->gpii_id = i;
2244 gpii->regs = gpi_dev->ee_base;
2245 gpii->gpi_dev = gpi_dev;
2246 }
2247
2248 platform_set_drvdata(pdev, gpi_dev);
2249
2250 /* clear and Set capabilities */
2251 dma_cap_zero(gpi_dev->dma_device.cap_mask);
2252 dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2253
2254 /* configure dmaengine apis */
2255 gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2256 gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2257 gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2258 gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2259 gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2260 gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2261 gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2262 gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2263 gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2264 gpi_dev->dma_device.device_config = gpi_peripheral_config;
2265 gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2266 gpi_dev->dma_device.dev = gpi_dev->dev;
2267 gpi_dev->dma_device.device_pause = gpi_pause;
2268 gpi_dev->dma_device.device_resume = gpi_resume;
2269
2270 /* register with dmaengine framework */
2271 ret = dma_async_device_register(&gpi_dev->dma_device);
2272 if (ret) {
2273 dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2274 return ret;
2275 }
2276
2277 ret = of_dma_controller_register(gpi_dev->dev->of_node,
2278 gpi_of_dma_xlate, gpi_dev);
2279 if (ret) {
2280 dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2281 return ret;
2282 }
2283
2284 return ret;
2285 }
2286
2287 static const struct of_device_id gpi_of_match[] = {
2288 { .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
2289 { .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 },
2290 /*
2291 * Do not grow the list for compatible devices. Instead use
2292 * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma
2293 * (for ee_offset = 0x10000).
2294 */
2295 { .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
2296 { .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
2297 { .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
2298 { .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
2299 { .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
2300 { },
2301 };
2302 MODULE_DEVICE_TABLE(of, gpi_of_match);
2303
2304 static struct platform_driver gpi_driver = {
2305 .probe = gpi_probe,
2306 .driver = {
2307 .name = KBUILD_MODNAME,
2308 .of_match_table = gpi_of_match,
2309 },
2310 };
2311
gpi_init(void)2312 static int __init gpi_init(void)
2313 {
2314 return platform_driver_register(&gpi_driver);
2315 }
2316 subsys_initcall(gpi_init)
2317
2318 MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2319 MODULE_LICENSE("GPL v2");
2320