1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 4 */ 5 /* 6 * QCOM BAM DMA engine driver 7 * 8 * QCOM BAM DMA blocks are distributed amongst a number of the on-chip 9 * peripherals on the MSM 8x74. The configuration of the channels are dependent 10 * on the way they are hard wired to that specific peripheral. The peripheral 11 * device tree entries specify the configuration of each channel. 12 * 13 * The DMA controller requires the use of external memory for storage of the 14 * hardware descriptors for each channel. The descriptor FIFO is accessed as a 15 * circular buffer and operations are managed according to the offset within the 16 * FIFO. After pipe/channel reset, all of the pipe registers and internal state 17 * are back to defaults. 18 * 19 * During DMA operations, we write descriptors to the FIFO, being careful to 20 * handle wrapping and then write the last FIFO offset to that channel's 21 * P_EVNT_REG register to kick off the transaction. The P_SW_OFSTS register 22 * indicates the current FIFO offset that is being processed, so there is some 23 * indication of where the hardware is currently working. 24 */ 25 26 #include <linux/kernel.h> 27 #include <linux/io.h> 28 #include <linux/init.h> 29 #include <linux/slab.h> 30 #include <linux/module.h> 31 #include <linux/interrupt.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/scatterlist.h> 34 #include <linux/device.h> 35 #include <linux/platform_device.h> 36 #include <linux/of.h> 37 #include <linux/of_address.h> 38 #include <linux/of_irq.h> 39 #include <linux/of_dma.h> 40 #include <linux/circ_buf.h> 41 #include <linux/clk.h> 42 #include <linux/dmaengine.h> 43 #include <linux/pm_runtime.h> 44 45 #include "../dmaengine.h" 46 #include "../virt-dma.h" 47 48 struct bam_desc_hw { 49 __le32 addr; /* Buffer physical address */ 50 __le16 size; /* Buffer size in bytes */ 51 __le16 flags; 52 }; 53 54 #define BAM_DMA_AUTOSUSPEND_DELAY 100 55 56 #define DESC_FLAG_INT BIT(15) 57 #define DESC_FLAG_EOT BIT(14) 58 #define DESC_FLAG_EOB BIT(13) 59 #define DESC_FLAG_NWD BIT(12) 60 #define DESC_FLAG_CMD BIT(11) 61 62 struct bam_async_desc { 63 struct virt_dma_desc vd; 64 65 u32 num_desc; 66 u32 xfer_len; 67 68 /* transaction flags, EOT|EOB|NWD */ 69 u16 flags; 70 71 struct bam_desc_hw *curr_desc; 72 73 /* list node for the desc in the bam_chan list of descriptors */ 74 struct list_head desc_node; 75 enum dma_transfer_direction dir; 76 size_t length; 77 struct bam_desc_hw desc[]; 78 }; 79 80 enum bam_reg { 81 BAM_CTRL, 82 BAM_REVISION, 83 BAM_NUM_PIPES, 84 BAM_DESC_CNT_TRSHLD, 85 BAM_IRQ_SRCS, 86 BAM_IRQ_SRCS_MSK, 87 BAM_IRQ_SRCS_UNMASKED, 88 BAM_IRQ_STTS, 89 BAM_IRQ_CLR, 90 BAM_IRQ_EN, 91 BAM_CNFG_BITS, 92 BAM_IRQ_SRCS_EE, 93 BAM_IRQ_SRCS_MSK_EE, 94 BAM_P_CTRL, 95 BAM_P_RST, 96 BAM_P_HALT, 97 BAM_P_IRQ_STTS, 98 BAM_P_IRQ_CLR, 99 BAM_P_IRQ_EN, 100 BAM_P_EVNT_DEST_ADDR, 101 BAM_P_EVNT_REG, 102 BAM_P_SW_OFSTS, 103 BAM_P_DATA_FIFO_ADDR, 104 BAM_P_DESC_FIFO_ADDR, 105 BAM_P_EVNT_GEN_TRSHLD, 106 BAM_P_FIFO_SIZES, 107 }; 108 109 struct reg_offset_data { 110 u32 base_offset; 111 unsigned int pipe_mult, evnt_mult, ee_mult; 112 }; 113 114 static const struct reg_offset_data bam_v1_3_reg_info[] = { 115 [BAM_CTRL] = { 0x0F80, 0x00, 0x00, 0x00 }, 116 [BAM_REVISION] = { 0x0F84, 0x00, 0x00, 0x00 }, 117 [BAM_NUM_PIPES] = { 0x0FBC, 0x00, 0x00, 0x00 }, 118 [BAM_DESC_CNT_TRSHLD] = { 0x0F88, 0x00, 0x00, 0x00 }, 119 [BAM_IRQ_SRCS] = { 0x0F8C, 0x00, 0x00, 0x00 }, 120 [BAM_IRQ_SRCS_MSK] = { 0x0F90, 0x00, 0x00, 0x00 }, 121 [BAM_IRQ_SRCS_UNMASKED] = { 0x0FB0, 0x00, 0x00, 0x00 }, 122 [BAM_IRQ_STTS] = { 0x0F94, 0x00, 0x00, 0x00 }, 123 [BAM_IRQ_CLR] = { 0x0F98, 0x00, 0x00, 0x00 }, 124 [BAM_IRQ_EN] = { 0x0F9C, 0x00, 0x00, 0x00 }, 125 [BAM_CNFG_BITS] = { 0x0FFC, 0x00, 0x00, 0x00 }, 126 [BAM_IRQ_SRCS_EE] = { 0x1800, 0x00, 0x00, 0x80 }, 127 [BAM_IRQ_SRCS_MSK_EE] = { 0x1804, 0x00, 0x00, 0x80 }, 128 [BAM_P_CTRL] = { 0x0000, 0x80, 0x00, 0x00 }, 129 [BAM_P_RST] = { 0x0004, 0x80, 0x00, 0x00 }, 130 [BAM_P_HALT] = { 0x0008, 0x80, 0x00, 0x00 }, 131 [BAM_P_IRQ_STTS] = { 0x0010, 0x80, 0x00, 0x00 }, 132 [BAM_P_IRQ_CLR] = { 0x0014, 0x80, 0x00, 0x00 }, 133 [BAM_P_IRQ_EN] = { 0x0018, 0x80, 0x00, 0x00 }, 134 [BAM_P_EVNT_DEST_ADDR] = { 0x102C, 0x00, 0x40, 0x00 }, 135 [BAM_P_EVNT_REG] = { 0x1018, 0x00, 0x40, 0x00 }, 136 [BAM_P_SW_OFSTS] = { 0x1000, 0x00, 0x40, 0x00 }, 137 [BAM_P_DATA_FIFO_ADDR] = { 0x1024, 0x00, 0x40, 0x00 }, 138 [BAM_P_DESC_FIFO_ADDR] = { 0x101C, 0x00, 0x40, 0x00 }, 139 [BAM_P_EVNT_GEN_TRSHLD] = { 0x1028, 0x00, 0x40, 0x00 }, 140 [BAM_P_FIFO_SIZES] = { 0x1020, 0x00, 0x40, 0x00 }, 141 }; 142 143 static const struct reg_offset_data bam_v1_4_reg_info[] = { 144 [BAM_CTRL] = { 0x0000, 0x00, 0x00, 0x00 }, 145 [BAM_REVISION] = { 0x0004, 0x00, 0x00, 0x00 }, 146 [BAM_NUM_PIPES] = { 0x003C, 0x00, 0x00, 0x00 }, 147 [BAM_DESC_CNT_TRSHLD] = { 0x0008, 0x00, 0x00, 0x00 }, 148 [BAM_IRQ_SRCS] = { 0x000C, 0x00, 0x00, 0x00 }, 149 [BAM_IRQ_SRCS_MSK] = { 0x0010, 0x00, 0x00, 0x00 }, 150 [BAM_IRQ_SRCS_UNMASKED] = { 0x0030, 0x00, 0x00, 0x00 }, 151 [BAM_IRQ_STTS] = { 0x0014, 0x00, 0x00, 0x00 }, 152 [BAM_IRQ_CLR] = { 0x0018, 0x00, 0x00, 0x00 }, 153 [BAM_IRQ_EN] = { 0x001C, 0x00, 0x00, 0x00 }, 154 [BAM_CNFG_BITS] = { 0x007C, 0x00, 0x00, 0x00 }, 155 [BAM_IRQ_SRCS_EE] = { 0x0800, 0x00, 0x00, 0x80 }, 156 [BAM_IRQ_SRCS_MSK_EE] = { 0x0804, 0x00, 0x00, 0x80 }, 157 [BAM_P_CTRL] = { 0x1000, 0x1000, 0x00, 0x00 }, 158 [BAM_P_RST] = { 0x1004, 0x1000, 0x00, 0x00 }, 159 [BAM_P_HALT] = { 0x1008, 0x1000, 0x00, 0x00 }, 160 [BAM_P_IRQ_STTS] = { 0x1010, 0x1000, 0x00, 0x00 }, 161 [BAM_P_IRQ_CLR] = { 0x1014, 0x1000, 0x00, 0x00 }, 162 [BAM_P_IRQ_EN] = { 0x1018, 0x1000, 0x00, 0x00 }, 163 [BAM_P_EVNT_DEST_ADDR] = { 0x182C, 0x00, 0x1000, 0x00 }, 164 [BAM_P_EVNT_REG] = { 0x1818, 0x00, 0x1000, 0x00 }, 165 [BAM_P_SW_OFSTS] = { 0x1800, 0x00, 0x1000, 0x00 }, 166 [BAM_P_DATA_FIFO_ADDR] = { 0x1824, 0x00, 0x1000, 0x00 }, 167 [BAM_P_DESC_FIFO_ADDR] = { 0x181C, 0x00, 0x1000, 0x00 }, 168 [BAM_P_EVNT_GEN_TRSHLD] = { 0x1828, 0x00, 0x1000, 0x00 }, 169 [BAM_P_FIFO_SIZES] = { 0x1820, 0x00, 0x1000, 0x00 }, 170 }; 171 172 static const struct reg_offset_data bam_v1_7_reg_info[] = { 173 [BAM_CTRL] = { 0x00000, 0x00, 0x00, 0x00 }, 174 [BAM_REVISION] = { 0x01000, 0x00, 0x00, 0x00 }, 175 [BAM_NUM_PIPES] = { 0x01008, 0x00, 0x00, 0x00 }, 176 [BAM_DESC_CNT_TRSHLD] = { 0x00008, 0x00, 0x00, 0x00 }, 177 [BAM_IRQ_SRCS] = { 0x03010, 0x00, 0x00, 0x00 }, 178 [BAM_IRQ_SRCS_MSK] = { 0x03014, 0x00, 0x00, 0x00 }, 179 [BAM_IRQ_SRCS_UNMASKED] = { 0x03018, 0x00, 0x00, 0x00 }, 180 [BAM_IRQ_STTS] = { 0x00014, 0x00, 0x00, 0x00 }, 181 [BAM_IRQ_CLR] = { 0x00018, 0x00, 0x00, 0x00 }, 182 [BAM_IRQ_EN] = { 0x0001C, 0x00, 0x00, 0x00 }, 183 [BAM_CNFG_BITS] = { 0x0007C, 0x00, 0x00, 0x00 }, 184 [BAM_IRQ_SRCS_EE] = { 0x03000, 0x00, 0x00, 0x1000 }, 185 [BAM_IRQ_SRCS_MSK_EE] = { 0x03004, 0x00, 0x00, 0x1000 }, 186 [BAM_P_CTRL] = { 0x13000, 0x1000, 0x00, 0x00 }, 187 [BAM_P_RST] = { 0x13004, 0x1000, 0x00, 0x00 }, 188 [BAM_P_HALT] = { 0x13008, 0x1000, 0x00, 0x00 }, 189 [BAM_P_IRQ_STTS] = { 0x13010, 0x1000, 0x00, 0x00 }, 190 [BAM_P_IRQ_CLR] = { 0x13014, 0x1000, 0x00, 0x00 }, 191 [BAM_P_IRQ_EN] = { 0x13018, 0x1000, 0x00, 0x00 }, 192 [BAM_P_EVNT_DEST_ADDR] = { 0x1382C, 0x00, 0x1000, 0x00 }, 193 [BAM_P_EVNT_REG] = { 0x13818, 0x00, 0x1000, 0x00 }, 194 [BAM_P_SW_OFSTS] = { 0x13800, 0x00, 0x1000, 0x00 }, 195 [BAM_P_DATA_FIFO_ADDR] = { 0x13824, 0x00, 0x1000, 0x00 }, 196 [BAM_P_DESC_FIFO_ADDR] = { 0x1381C, 0x00, 0x1000, 0x00 }, 197 [BAM_P_EVNT_GEN_TRSHLD] = { 0x13828, 0x00, 0x1000, 0x00 }, 198 [BAM_P_FIFO_SIZES] = { 0x13820, 0x00, 0x1000, 0x00 }, 199 }; 200 201 /* BAM CTRL */ 202 #define BAM_SW_RST BIT(0) 203 #define BAM_EN BIT(1) 204 #define BAM_EN_ACCUM BIT(4) 205 #define BAM_TESTBUS_SEL_SHIFT 5 206 #define BAM_TESTBUS_SEL_MASK 0x3F 207 #define BAM_DESC_CACHE_SEL_SHIFT 13 208 #define BAM_DESC_CACHE_SEL_MASK 0x3 209 #define BAM_CACHED_DESC_STORE BIT(15) 210 #define IBC_DISABLE BIT(16) 211 212 /* BAM REVISION */ 213 #define REVISION_SHIFT 0 214 #define REVISION_MASK 0xFF 215 #define NUM_EES_SHIFT 8 216 #define NUM_EES_MASK 0xF 217 #define CE_BUFFER_SIZE BIT(13) 218 #define AXI_ACTIVE BIT(14) 219 #define USE_VMIDMT BIT(15) 220 #define SECURED BIT(16) 221 #define BAM_HAS_NO_BYPASS BIT(17) 222 #define HIGH_FREQUENCY_BAM BIT(18) 223 #define INACTIV_TMRS_EXST BIT(19) 224 #define NUM_INACTIV_TMRS BIT(20) 225 #define DESC_CACHE_DEPTH_SHIFT 21 226 #define DESC_CACHE_DEPTH_1 (0 << DESC_CACHE_DEPTH_SHIFT) 227 #define DESC_CACHE_DEPTH_2 (1 << DESC_CACHE_DEPTH_SHIFT) 228 #define DESC_CACHE_DEPTH_3 (2 << DESC_CACHE_DEPTH_SHIFT) 229 #define DESC_CACHE_DEPTH_4 (3 << DESC_CACHE_DEPTH_SHIFT) 230 #define CMD_DESC_EN BIT(23) 231 #define INACTIV_TMR_BASE_SHIFT 24 232 #define INACTIV_TMR_BASE_MASK 0xFF 233 234 /* BAM NUM PIPES */ 235 #define BAM_NUM_PIPES_SHIFT 0 236 #define BAM_NUM_PIPES_MASK 0xFF 237 #define PERIPH_NON_PIPE_GRP_SHIFT 16 238 #define PERIPH_NON_PIP_GRP_MASK 0xFF 239 #define BAM_NON_PIPE_GRP_SHIFT 24 240 #define BAM_NON_PIPE_GRP_MASK 0xFF 241 242 /* BAM CNFG BITS */ 243 #define BAM_PIPE_CNFG BIT(2) 244 #define BAM_FULL_PIPE BIT(11) 245 #define BAM_NO_EXT_P_RST BIT(12) 246 #define BAM_IBC_DISABLE BIT(13) 247 #define BAM_SB_CLK_REQ BIT(14) 248 #define BAM_PSM_CSW_REQ BIT(15) 249 #define BAM_PSM_P_RES BIT(16) 250 #define BAM_AU_P_RES BIT(17) 251 #define BAM_SI_P_RES BIT(18) 252 #define BAM_WB_P_RES BIT(19) 253 #define BAM_WB_BLK_CSW BIT(20) 254 #define BAM_WB_CSW_ACK_IDL BIT(21) 255 #define BAM_WB_RETR_SVPNT BIT(22) 256 #define BAM_WB_DSC_AVL_P_RST BIT(23) 257 #define BAM_REG_P_EN BIT(24) 258 #define BAM_PSM_P_HD_DATA BIT(25) 259 #define BAM_AU_ACCUMED BIT(26) 260 #define BAM_CMD_ENABLE BIT(27) 261 262 #define BAM_CNFG_BITS_DEFAULT (BAM_PIPE_CNFG | \ 263 BAM_NO_EXT_P_RST | \ 264 BAM_IBC_DISABLE | \ 265 BAM_SB_CLK_REQ | \ 266 BAM_PSM_CSW_REQ | \ 267 BAM_PSM_P_RES | \ 268 BAM_AU_P_RES | \ 269 BAM_SI_P_RES | \ 270 BAM_WB_P_RES | \ 271 BAM_WB_BLK_CSW | \ 272 BAM_WB_CSW_ACK_IDL | \ 273 BAM_WB_RETR_SVPNT | \ 274 BAM_WB_DSC_AVL_P_RST | \ 275 BAM_REG_P_EN | \ 276 BAM_PSM_P_HD_DATA | \ 277 BAM_AU_ACCUMED | \ 278 BAM_CMD_ENABLE) 279 280 /* PIPE CTRL */ 281 #define P_EN BIT(1) 282 #define P_DIRECTION BIT(3) 283 #define P_SYS_STRM BIT(4) 284 #define P_SYS_MODE BIT(5) 285 #define P_AUTO_EOB BIT(6) 286 #define P_AUTO_EOB_SEL_SHIFT 7 287 #define P_AUTO_EOB_SEL_512 (0 << P_AUTO_EOB_SEL_SHIFT) 288 #define P_AUTO_EOB_SEL_256 (1 << P_AUTO_EOB_SEL_SHIFT) 289 #define P_AUTO_EOB_SEL_128 (2 << P_AUTO_EOB_SEL_SHIFT) 290 #define P_AUTO_EOB_SEL_64 (3 << P_AUTO_EOB_SEL_SHIFT) 291 #define P_PREFETCH_LIMIT_SHIFT 9 292 #define P_PREFETCH_LIMIT_32 (0 << P_PREFETCH_LIMIT_SHIFT) 293 #define P_PREFETCH_LIMIT_16 (1 << P_PREFETCH_LIMIT_SHIFT) 294 #define P_PREFETCH_LIMIT_4 (2 << P_PREFETCH_LIMIT_SHIFT) 295 #define P_WRITE_NWD BIT(11) 296 #define P_LOCK_GROUP_SHIFT 16 297 #define P_LOCK_GROUP_MASK 0x1F 298 299 /* BAM_DESC_CNT_TRSHLD */ 300 #define CNT_TRSHLD 0xffff 301 #define DEFAULT_CNT_THRSHLD 0x4 302 303 /* BAM_IRQ_SRCS */ 304 #define BAM_IRQ BIT(31) 305 #define P_IRQ 0x7fffffff 306 307 /* BAM_IRQ_SRCS_MSK */ 308 #define BAM_IRQ_MSK BAM_IRQ 309 #define P_IRQ_MSK P_IRQ 310 311 /* BAM_IRQ_STTS */ 312 #define BAM_TIMER_IRQ BIT(4) 313 #define BAM_EMPTY_IRQ BIT(3) 314 #define BAM_ERROR_IRQ BIT(2) 315 #define BAM_HRESP_ERR_IRQ BIT(1) 316 317 /* BAM_IRQ_CLR */ 318 #define BAM_TIMER_CLR BIT(4) 319 #define BAM_EMPTY_CLR BIT(3) 320 #define BAM_ERROR_CLR BIT(2) 321 #define BAM_HRESP_ERR_CLR BIT(1) 322 323 /* BAM_IRQ_EN */ 324 #define BAM_TIMER_EN BIT(4) 325 #define BAM_EMPTY_EN BIT(3) 326 #define BAM_ERROR_EN BIT(2) 327 #define BAM_HRESP_ERR_EN BIT(1) 328 329 /* BAM_P_IRQ_EN */ 330 #define P_PRCSD_DESC_EN BIT(0) 331 #define P_TIMER_EN BIT(1) 332 #define P_WAKE_EN BIT(2) 333 #define P_OUT_OF_DESC_EN BIT(3) 334 #define P_ERR_EN BIT(4) 335 #define P_TRNSFR_END_EN BIT(5) 336 #define P_DEFAULT_IRQS_EN (P_PRCSD_DESC_EN | P_ERR_EN | P_TRNSFR_END_EN) 337 338 /* BAM_P_SW_OFSTS */ 339 #define P_SW_OFSTS_MASK 0xffff 340 341 #define BAM_DESC_FIFO_SIZE SZ_32K 342 #define MAX_DESCRIPTORS (BAM_DESC_FIFO_SIZE / sizeof(struct bam_desc_hw) - 1) 343 #define BAM_FIFO_SIZE (SZ_32K - 8) 344 #define IS_BUSY(chan) (CIRC_SPACE(bchan->tail, bchan->head,\ 345 MAX_DESCRIPTORS + 1) == 0) 346 347 struct bam_chan { 348 struct virt_dma_chan vc; 349 350 struct bam_device *bdev; 351 352 /* configuration from device tree */ 353 u32 id; 354 355 /* runtime configuration */ 356 struct dma_slave_config slave; 357 358 /* fifo storage */ 359 struct bam_desc_hw *fifo_virt; 360 dma_addr_t fifo_phys; 361 362 /* fifo markers */ 363 unsigned short head; /* start of active descriptor entries */ 364 unsigned short tail; /* end of active descriptor entries */ 365 366 unsigned int initialized; /* is the channel hw initialized? */ 367 unsigned int paused; /* is the channel paused? */ 368 unsigned int reconfigure; /* new slave config? */ 369 /* list of descriptors currently processed */ 370 struct list_head desc_list; 371 372 struct list_head node; 373 }; 374 375 static inline struct bam_chan *to_bam_chan(struct dma_chan *common) 376 { 377 return container_of(common, struct bam_chan, vc.chan); 378 } 379 380 struct bam_device { 381 void __iomem *regs; 382 struct device *dev; 383 struct dma_device common; 384 struct bam_chan *channels; 385 u32 num_channels; 386 u32 num_ees; 387 388 /* execution environment ID, from DT */ 389 u32 ee; 390 bool controlled_remotely; 391 392 const struct reg_offset_data *layout; 393 394 struct clk *bamclk; 395 int irq; 396 397 /* dma start transaction tasklet */ 398 struct tasklet_struct task; 399 }; 400 401 /** 402 * bam_addr - returns BAM register address 403 * @bdev: bam device 404 * @pipe: pipe instance (ignored when register doesn't have multiple instances) 405 * @reg: register enum 406 */ 407 static inline void __iomem *bam_addr(struct bam_device *bdev, u32 pipe, 408 enum bam_reg reg) 409 { 410 const struct reg_offset_data r = bdev->layout[reg]; 411 412 return bdev->regs + r.base_offset + 413 r.pipe_mult * pipe + 414 r.evnt_mult * pipe + 415 r.ee_mult * bdev->ee; 416 } 417 418 /** 419 * bam_reset_channel - Reset individual BAM DMA channel 420 * @bchan: bam channel 421 * 422 * This function resets a specific BAM channel 423 */ 424 static void bam_reset_channel(struct bam_chan *bchan) 425 { 426 struct bam_device *bdev = bchan->bdev; 427 428 lockdep_assert_held(&bchan->vc.lock); 429 430 /* reset channel */ 431 writel_relaxed(1, bam_addr(bdev, bchan->id, BAM_P_RST)); 432 writel_relaxed(0, bam_addr(bdev, bchan->id, BAM_P_RST)); 433 434 /* don't allow cpu to reorder BAM register accesses done after this */ 435 wmb(); 436 437 /* make sure hw is initialized when channel is used the first time */ 438 bchan->initialized = 0; 439 } 440 441 /** 442 * bam_chan_init_hw - Initialize channel hardware 443 * @bchan: bam channel 444 * @dir: DMA transfer direction 445 * 446 * This function resets and initializes the BAM channel 447 */ 448 static void bam_chan_init_hw(struct bam_chan *bchan, 449 enum dma_transfer_direction dir) 450 { 451 struct bam_device *bdev = bchan->bdev; 452 u32 val; 453 454 /* Reset the channel to clear internal state of the FIFO */ 455 bam_reset_channel(bchan); 456 457 /* 458 * write out 8 byte aligned address. We have enough space for this 459 * because we allocated 1 more descriptor (8 bytes) than we can use 460 */ 461 writel_relaxed(ALIGN(bchan->fifo_phys, sizeof(struct bam_desc_hw)), 462 bam_addr(bdev, bchan->id, BAM_P_DESC_FIFO_ADDR)); 463 writel_relaxed(BAM_FIFO_SIZE, 464 bam_addr(bdev, bchan->id, BAM_P_FIFO_SIZES)); 465 466 /* enable the per pipe interrupts, enable EOT, ERR, and INT irqs */ 467 writel_relaxed(P_DEFAULT_IRQS_EN, 468 bam_addr(bdev, bchan->id, BAM_P_IRQ_EN)); 469 470 /* unmask the specific pipe and EE combo */ 471 val = readl_relaxed(bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); 472 val |= BIT(bchan->id); 473 writel_relaxed(val, bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); 474 475 /* don't allow cpu to reorder the channel enable done below */ 476 wmb(); 477 478 /* set fixed direction and mode, then enable channel */ 479 val = P_EN | P_SYS_MODE; 480 if (dir == DMA_DEV_TO_MEM) 481 val |= P_DIRECTION; 482 483 writel_relaxed(val, bam_addr(bdev, bchan->id, BAM_P_CTRL)); 484 485 bchan->initialized = 1; 486 487 /* init FIFO pointers */ 488 bchan->head = 0; 489 bchan->tail = 0; 490 } 491 492 /** 493 * bam_alloc_chan - Allocate channel resources for DMA channel. 494 * @chan: specified channel 495 * 496 * This function allocates the FIFO descriptor memory 497 */ 498 static int bam_alloc_chan(struct dma_chan *chan) 499 { 500 struct bam_chan *bchan = to_bam_chan(chan); 501 struct bam_device *bdev = bchan->bdev; 502 503 if (bchan->fifo_virt) 504 return 0; 505 506 /* allocate FIFO descriptor space, but only if necessary */ 507 bchan->fifo_virt = dma_alloc_wc(bdev->dev, BAM_DESC_FIFO_SIZE, 508 &bchan->fifo_phys, GFP_KERNEL); 509 510 if (!bchan->fifo_virt) { 511 dev_err(bdev->dev, "Failed to allocate desc fifo\n"); 512 return -ENOMEM; 513 } 514 515 return 0; 516 } 517 518 static int bam_pm_runtime_get_sync(struct device *dev) 519 { 520 if (pm_runtime_enabled(dev)) 521 return pm_runtime_get_sync(dev); 522 523 return 0; 524 } 525 526 /** 527 * bam_free_chan - Frees dma resources associated with specific channel 528 * @chan: specified channel 529 * 530 * Free the allocated fifo descriptor memory and channel resources 531 * 532 */ 533 static void bam_free_chan(struct dma_chan *chan) 534 { 535 struct bam_chan *bchan = to_bam_chan(chan); 536 struct bam_device *bdev = bchan->bdev; 537 u32 val; 538 unsigned long flags; 539 int ret; 540 541 ret = bam_pm_runtime_get_sync(bdev->dev); 542 if (ret < 0) 543 return; 544 545 vchan_free_chan_resources(to_virt_chan(chan)); 546 547 if (!list_empty(&bchan->desc_list)) { 548 dev_err(bchan->bdev->dev, "Cannot free busy channel\n"); 549 goto err; 550 } 551 552 spin_lock_irqsave(&bchan->vc.lock, flags); 553 bam_reset_channel(bchan); 554 spin_unlock_irqrestore(&bchan->vc.lock, flags); 555 556 dma_free_wc(bdev->dev, BAM_DESC_FIFO_SIZE, bchan->fifo_virt, 557 bchan->fifo_phys); 558 bchan->fifo_virt = NULL; 559 560 /* mask irq for pipe/channel */ 561 val = readl_relaxed(bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); 562 val &= ~BIT(bchan->id); 563 writel_relaxed(val, bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); 564 565 /* disable irq */ 566 writel_relaxed(0, bam_addr(bdev, bchan->id, BAM_P_IRQ_EN)); 567 568 err: 569 pm_runtime_mark_last_busy(bdev->dev); 570 pm_runtime_put_autosuspend(bdev->dev); 571 } 572 573 /** 574 * bam_slave_config - set slave configuration for channel 575 * @chan: dma channel 576 * @cfg: slave configuration 577 * 578 * Sets slave configuration for channel 579 * 580 */ 581 static int bam_slave_config(struct dma_chan *chan, 582 struct dma_slave_config *cfg) 583 { 584 struct bam_chan *bchan = to_bam_chan(chan); 585 unsigned long flag; 586 587 spin_lock_irqsave(&bchan->vc.lock, flag); 588 memcpy(&bchan->slave, cfg, sizeof(*cfg)); 589 bchan->reconfigure = 1; 590 spin_unlock_irqrestore(&bchan->vc.lock, flag); 591 592 return 0; 593 } 594 595 /** 596 * bam_prep_slave_sg - Prep slave sg transaction 597 * 598 * @chan: dma channel 599 * @sgl: scatter gather list 600 * @sg_len: length of sg 601 * @direction: DMA transfer direction 602 * @flags: DMA flags 603 * @context: transfer context (unused) 604 */ 605 static struct dma_async_tx_descriptor *bam_prep_slave_sg(struct dma_chan *chan, 606 struct scatterlist *sgl, unsigned int sg_len, 607 enum dma_transfer_direction direction, unsigned long flags, 608 void *context) 609 { 610 struct bam_chan *bchan = to_bam_chan(chan); 611 struct bam_device *bdev = bchan->bdev; 612 struct bam_async_desc *async_desc; 613 struct scatterlist *sg; 614 u32 i; 615 struct bam_desc_hw *desc; 616 unsigned int num_alloc = 0; 617 618 619 if (!is_slave_direction(direction)) { 620 dev_err(bdev->dev, "invalid dma direction\n"); 621 return NULL; 622 } 623 624 /* calculate number of required entries */ 625 for_each_sg(sgl, sg, sg_len, i) 626 num_alloc += DIV_ROUND_UP(sg_dma_len(sg), BAM_FIFO_SIZE); 627 628 /* allocate enough room to accomodate the number of entries */ 629 async_desc = kzalloc(struct_size(async_desc, desc, num_alloc), 630 GFP_NOWAIT); 631 632 if (!async_desc) 633 goto err_out; 634 635 if (flags & DMA_PREP_FENCE) 636 async_desc->flags |= DESC_FLAG_NWD; 637 638 if (flags & DMA_PREP_INTERRUPT) 639 async_desc->flags |= DESC_FLAG_EOT; 640 641 async_desc->num_desc = num_alloc; 642 async_desc->curr_desc = async_desc->desc; 643 async_desc->dir = direction; 644 645 /* fill in temporary descriptors */ 646 desc = async_desc->desc; 647 for_each_sg(sgl, sg, sg_len, i) { 648 unsigned int remainder = sg_dma_len(sg); 649 unsigned int curr_offset = 0; 650 651 do { 652 if (flags & DMA_PREP_CMD) 653 desc->flags |= cpu_to_le16(DESC_FLAG_CMD); 654 655 desc->addr = cpu_to_le32(sg_dma_address(sg) + 656 curr_offset); 657 658 if (remainder > BAM_FIFO_SIZE) { 659 desc->size = cpu_to_le16(BAM_FIFO_SIZE); 660 remainder -= BAM_FIFO_SIZE; 661 curr_offset += BAM_FIFO_SIZE; 662 } else { 663 desc->size = cpu_to_le16(remainder); 664 remainder = 0; 665 } 666 667 async_desc->length += le16_to_cpu(desc->size); 668 desc++; 669 } while (remainder > 0); 670 } 671 672 return vchan_tx_prep(&bchan->vc, &async_desc->vd, flags); 673 674 err_out: 675 kfree(async_desc); 676 return NULL; 677 } 678 679 /** 680 * bam_dma_terminate_all - terminate all transactions on a channel 681 * @chan: bam dma channel 682 * 683 * Dequeues and frees all transactions 684 * No callbacks are done 685 * 686 */ 687 static int bam_dma_terminate_all(struct dma_chan *chan) 688 { 689 struct bam_chan *bchan = to_bam_chan(chan); 690 struct bam_async_desc *async_desc, *tmp; 691 unsigned long flag; 692 LIST_HEAD(head); 693 694 /* remove all transactions, including active transaction */ 695 spin_lock_irqsave(&bchan->vc.lock, flag); 696 /* 697 * If we have transactions queued, then some might be committed to the 698 * hardware in the desc fifo. The only way to reset the desc fifo is 699 * to do a hardware reset (either by pipe or the entire block). 700 * bam_chan_init_hw() will trigger a pipe reset, and also reinit the 701 * pipe. If the pipe is left disabled (default state after pipe reset) 702 * and is accessed by a connected hardware engine, a fatal error in 703 * the BAM will occur. There is a small window where this could happen 704 * with bam_chan_init_hw(), but it is assumed that the caller has 705 * stopped activity on any attached hardware engine. Make sure to do 706 * this first so that the BAM hardware doesn't cause memory corruption 707 * by accessing freed resources. 708 */ 709 if (!list_empty(&bchan->desc_list)) { 710 async_desc = list_first_entry(&bchan->desc_list, 711 struct bam_async_desc, desc_node); 712 bam_chan_init_hw(bchan, async_desc->dir); 713 } 714 715 list_for_each_entry_safe(async_desc, tmp, 716 &bchan->desc_list, desc_node) { 717 list_add(&async_desc->vd.node, &bchan->vc.desc_issued); 718 list_del(&async_desc->desc_node); 719 } 720 721 vchan_get_all_descriptors(&bchan->vc, &head); 722 spin_unlock_irqrestore(&bchan->vc.lock, flag); 723 724 vchan_dma_desc_free_list(&bchan->vc, &head); 725 726 return 0; 727 } 728 729 /** 730 * bam_pause - Pause DMA channel 731 * @chan: dma channel 732 * 733 */ 734 static int bam_pause(struct dma_chan *chan) 735 { 736 struct bam_chan *bchan = to_bam_chan(chan); 737 struct bam_device *bdev = bchan->bdev; 738 unsigned long flag; 739 int ret; 740 741 ret = bam_pm_runtime_get_sync(bdev->dev); 742 if (ret < 0) 743 return ret; 744 745 spin_lock_irqsave(&bchan->vc.lock, flag); 746 writel_relaxed(1, bam_addr(bdev, bchan->id, BAM_P_HALT)); 747 bchan->paused = 1; 748 spin_unlock_irqrestore(&bchan->vc.lock, flag); 749 pm_runtime_mark_last_busy(bdev->dev); 750 pm_runtime_put_autosuspend(bdev->dev); 751 752 return 0; 753 } 754 755 /** 756 * bam_resume - Resume DMA channel operations 757 * @chan: dma channel 758 * 759 */ 760 static int bam_resume(struct dma_chan *chan) 761 { 762 struct bam_chan *bchan = to_bam_chan(chan); 763 struct bam_device *bdev = bchan->bdev; 764 unsigned long flag; 765 int ret; 766 767 ret = bam_pm_runtime_get_sync(bdev->dev); 768 if (ret < 0) 769 return ret; 770 771 spin_lock_irqsave(&bchan->vc.lock, flag); 772 writel_relaxed(0, bam_addr(bdev, bchan->id, BAM_P_HALT)); 773 bchan->paused = 0; 774 spin_unlock_irqrestore(&bchan->vc.lock, flag); 775 pm_runtime_mark_last_busy(bdev->dev); 776 pm_runtime_put_autosuspend(bdev->dev); 777 778 return 0; 779 } 780 781 /** 782 * process_channel_irqs - processes the channel interrupts 783 * @bdev: bam controller 784 * 785 * This function processes the channel interrupts 786 * 787 */ 788 static u32 process_channel_irqs(struct bam_device *bdev) 789 { 790 u32 i, srcs, pipe_stts, offset, avail; 791 unsigned long flags; 792 struct bam_async_desc *async_desc, *tmp; 793 794 srcs = readl_relaxed(bam_addr(bdev, 0, BAM_IRQ_SRCS_EE)); 795 796 /* return early if no pipe/channel interrupts are present */ 797 if (!(srcs & P_IRQ)) 798 return srcs; 799 800 for (i = 0; i < bdev->num_channels; i++) { 801 struct bam_chan *bchan = &bdev->channels[i]; 802 803 if (!(srcs & BIT(i))) 804 continue; 805 806 /* clear pipe irq */ 807 pipe_stts = readl_relaxed(bam_addr(bdev, i, BAM_P_IRQ_STTS)); 808 809 writel_relaxed(pipe_stts, bam_addr(bdev, i, BAM_P_IRQ_CLR)); 810 811 spin_lock_irqsave(&bchan->vc.lock, flags); 812 813 offset = readl_relaxed(bam_addr(bdev, i, BAM_P_SW_OFSTS)) & 814 P_SW_OFSTS_MASK; 815 offset /= sizeof(struct bam_desc_hw); 816 817 /* Number of bytes available to read */ 818 avail = CIRC_CNT(offset, bchan->head, MAX_DESCRIPTORS + 1); 819 820 if (offset < bchan->head) 821 avail--; 822 823 list_for_each_entry_safe(async_desc, tmp, 824 &bchan->desc_list, desc_node) { 825 /* Not enough data to read */ 826 if (avail < async_desc->xfer_len) 827 break; 828 829 /* manage FIFO */ 830 bchan->head += async_desc->xfer_len; 831 bchan->head %= MAX_DESCRIPTORS; 832 833 async_desc->num_desc -= async_desc->xfer_len; 834 async_desc->curr_desc += async_desc->xfer_len; 835 avail -= async_desc->xfer_len; 836 837 /* 838 * if complete, process cookie. Otherwise 839 * push back to front of desc_issued so that 840 * it gets restarted by the tasklet 841 */ 842 if (!async_desc->num_desc) { 843 vchan_cookie_complete(&async_desc->vd); 844 } else { 845 list_add(&async_desc->vd.node, 846 &bchan->vc.desc_issued); 847 } 848 list_del(&async_desc->desc_node); 849 } 850 851 spin_unlock_irqrestore(&bchan->vc.lock, flags); 852 } 853 854 return srcs; 855 } 856 857 /** 858 * bam_dma_irq - irq handler for bam controller 859 * @irq: IRQ of interrupt 860 * @data: callback data 861 * 862 * IRQ handler for the bam controller 863 */ 864 static irqreturn_t bam_dma_irq(int irq, void *data) 865 { 866 struct bam_device *bdev = data; 867 u32 clr_mask = 0, srcs = 0; 868 int ret; 869 870 srcs |= process_channel_irqs(bdev); 871 872 /* kick off tasklet to start next dma transfer */ 873 if (srcs & P_IRQ) 874 tasklet_schedule(&bdev->task); 875 876 ret = bam_pm_runtime_get_sync(bdev->dev); 877 if (ret < 0) 878 return IRQ_NONE; 879 880 if (srcs & BAM_IRQ) { 881 clr_mask = readl_relaxed(bam_addr(bdev, 0, BAM_IRQ_STTS)); 882 883 /* 884 * don't allow reorder of the various accesses to the BAM 885 * registers 886 */ 887 mb(); 888 889 writel_relaxed(clr_mask, bam_addr(bdev, 0, BAM_IRQ_CLR)); 890 } 891 892 pm_runtime_mark_last_busy(bdev->dev); 893 pm_runtime_put_autosuspend(bdev->dev); 894 895 return IRQ_HANDLED; 896 } 897 898 /** 899 * bam_tx_status - returns status of transaction 900 * @chan: dma channel 901 * @cookie: transaction cookie 902 * @txstate: DMA transaction state 903 * 904 * Return status of dma transaction 905 */ 906 static enum dma_status bam_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 907 struct dma_tx_state *txstate) 908 { 909 struct bam_chan *bchan = to_bam_chan(chan); 910 struct bam_async_desc *async_desc; 911 struct virt_dma_desc *vd; 912 int ret; 913 size_t residue = 0; 914 unsigned int i; 915 unsigned long flags; 916 917 ret = dma_cookie_status(chan, cookie, txstate); 918 if (ret == DMA_COMPLETE) 919 return ret; 920 921 if (!txstate) 922 return bchan->paused ? DMA_PAUSED : ret; 923 924 spin_lock_irqsave(&bchan->vc.lock, flags); 925 vd = vchan_find_desc(&bchan->vc, cookie); 926 if (vd) { 927 residue = container_of(vd, struct bam_async_desc, vd)->length; 928 } else { 929 list_for_each_entry(async_desc, &bchan->desc_list, desc_node) { 930 if (async_desc->vd.tx.cookie != cookie) 931 continue; 932 933 for (i = 0; i < async_desc->num_desc; i++) 934 residue += le16_to_cpu( 935 async_desc->curr_desc[i].size); 936 } 937 } 938 939 spin_unlock_irqrestore(&bchan->vc.lock, flags); 940 941 dma_set_residue(txstate, residue); 942 943 if (ret == DMA_IN_PROGRESS && bchan->paused) 944 ret = DMA_PAUSED; 945 946 return ret; 947 } 948 949 /** 950 * bam_apply_new_config 951 * @bchan: bam dma channel 952 * @dir: DMA direction 953 */ 954 static void bam_apply_new_config(struct bam_chan *bchan, 955 enum dma_transfer_direction dir) 956 { 957 struct bam_device *bdev = bchan->bdev; 958 u32 maxburst; 959 960 if (!bdev->controlled_remotely) { 961 if (dir == DMA_DEV_TO_MEM) 962 maxburst = bchan->slave.src_maxburst; 963 else 964 maxburst = bchan->slave.dst_maxburst; 965 966 writel_relaxed(maxburst, 967 bam_addr(bdev, 0, BAM_DESC_CNT_TRSHLD)); 968 } 969 970 bchan->reconfigure = 0; 971 } 972 973 /** 974 * bam_start_dma - start next transaction 975 * @bchan: bam dma channel 976 */ 977 static void bam_start_dma(struct bam_chan *bchan) 978 { 979 struct virt_dma_desc *vd = vchan_next_desc(&bchan->vc); 980 struct bam_device *bdev = bchan->bdev; 981 struct bam_async_desc *async_desc = NULL; 982 struct bam_desc_hw *desc; 983 struct bam_desc_hw *fifo = PTR_ALIGN(bchan->fifo_virt, 984 sizeof(struct bam_desc_hw)); 985 int ret; 986 unsigned int avail; 987 struct dmaengine_desc_callback cb; 988 989 lockdep_assert_held(&bchan->vc.lock); 990 991 if (!vd) 992 return; 993 994 ret = bam_pm_runtime_get_sync(bdev->dev); 995 if (ret < 0) 996 return; 997 998 while (vd && !IS_BUSY(bchan)) { 999 list_del(&vd->node); 1000 1001 async_desc = container_of(vd, struct bam_async_desc, vd); 1002 1003 /* on first use, initialize the channel hardware */ 1004 if (!bchan->initialized) 1005 bam_chan_init_hw(bchan, async_desc->dir); 1006 1007 /* apply new slave config changes, if necessary */ 1008 if (bchan->reconfigure) 1009 bam_apply_new_config(bchan, async_desc->dir); 1010 1011 desc = async_desc->curr_desc; 1012 avail = CIRC_SPACE(bchan->tail, bchan->head, 1013 MAX_DESCRIPTORS + 1); 1014 1015 if (async_desc->num_desc > avail) 1016 async_desc->xfer_len = avail; 1017 else 1018 async_desc->xfer_len = async_desc->num_desc; 1019 1020 /* set any special flags on the last descriptor */ 1021 if (async_desc->num_desc == async_desc->xfer_len) 1022 desc[async_desc->xfer_len - 1].flags |= 1023 cpu_to_le16(async_desc->flags); 1024 1025 vd = vchan_next_desc(&bchan->vc); 1026 1027 dmaengine_desc_get_callback(&async_desc->vd.tx, &cb); 1028 1029 /* 1030 * An interrupt is generated at this desc, if 1031 * - FIFO is FULL. 1032 * - No more descriptors to add. 1033 * - If a callback completion was requested for this DESC, 1034 * In this case, BAM will deliver the completion callback 1035 * for this desc and continue processing the next desc. 1036 */ 1037 if (((avail <= async_desc->xfer_len) || !vd || 1038 dmaengine_desc_callback_valid(&cb)) && 1039 !(async_desc->flags & DESC_FLAG_EOT)) 1040 desc[async_desc->xfer_len - 1].flags |= 1041 cpu_to_le16(DESC_FLAG_INT); 1042 1043 if (bchan->tail + async_desc->xfer_len > MAX_DESCRIPTORS) { 1044 u32 partial = MAX_DESCRIPTORS - bchan->tail; 1045 1046 memcpy(&fifo[bchan->tail], desc, 1047 partial * sizeof(struct bam_desc_hw)); 1048 memcpy(fifo, &desc[partial], 1049 (async_desc->xfer_len - partial) * 1050 sizeof(struct bam_desc_hw)); 1051 } else { 1052 memcpy(&fifo[bchan->tail], desc, 1053 async_desc->xfer_len * 1054 sizeof(struct bam_desc_hw)); 1055 } 1056 1057 bchan->tail += async_desc->xfer_len; 1058 bchan->tail %= MAX_DESCRIPTORS; 1059 list_add_tail(&async_desc->desc_node, &bchan->desc_list); 1060 } 1061 1062 /* ensure descriptor writes and dma start not reordered */ 1063 wmb(); 1064 writel_relaxed(bchan->tail * sizeof(struct bam_desc_hw), 1065 bam_addr(bdev, bchan->id, BAM_P_EVNT_REG)); 1066 1067 pm_runtime_mark_last_busy(bdev->dev); 1068 pm_runtime_put_autosuspend(bdev->dev); 1069 } 1070 1071 /** 1072 * dma_tasklet - DMA IRQ tasklet 1073 * @t: tasklet argument (bam controller structure) 1074 * 1075 * Sets up next DMA operation and then processes all completed transactions 1076 */ 1077 static void dma_tasklet(struct tasklet_struct *t) 1078 { 1079 struct bam_device *bdev = from_tasklet(bdev, t, task); 1080 struct bam_chan *bchan; 1081 unsigned long flags; 1082 unsigned int i; 1083 1084 /* go through the channels and kick off transactions */ 1085 for (i = 0; i < bdev->num_channels; i++) { 1086 bchan = &bdev->channels[i]; 1087 spin_lock_irqsave(&bchan->vc.lock, flags); 1088 1089 if (!list_empty(&bchan->vc.desc_issued) && !IS_BUSY(bchan)) 1090 bam_start_dma(bchan); 1091 spin_unlock_irqrestore(&bchan->vc.lock, flags); 1092 } 1093 1094 } 1095 1096 /** 1097 * bam_issue_pending - starts pending transactions 1098 * @chan: dma channel 1099 * 1100 * Calls tasklet directly which in turn starts any pending transactions 1101 */ 1102 static void bam_issue_pending(struct dma_chan *chan) 1103 { 1104 struct bam_chan *bchan = to_bam_chan(chan); 1105 unsigned long flags; 1106 1107 spin_lock_irqsave(&bchan->vc.lock, flags); 1108 1109 /* if work pending and idle, start a transaction */ 1110 if (vchan_issue_pending(&bchan->vc) && !IS_BUSY(bchan)) 1111 bam_start_dma(bchan); 1112 1113 spin_unlock_irqrestore(&bchan->vc.lock, flags); 1114 } 1115 1116 /** 1117 * bam_dma_free_desc - free descriptor memory 1118 * @vd: virtual descriptor 1119 * 1120 */ 1121 static void bam_dma_free_desc(struct virt_dma_desc *vd) 1122 { 1123 struct bam_async_desc *async_desc = container_of(vd, 1124 struct bam_async_desc, vd); 1125 1126 kfree(async_desc); 1127 } 1128 1129 static struct dma_chan *bam_dma_xlate(struct of_phandle_args *dma_spec, 1130 struct of_dma *of) 1131 { 1132 struct bam_device *bdev = container_of(of->of_dma_data, 1133 struct bam_device, common); 1134 unsigned int request; 1135 1136 if (dma_spec->args_count != 1) 1137 return NULL; 1138 1139 request = dma_spec->args[0]; 1140 if (request >= bdev->num_channels) 1141 return NULL; 1142 1143 return dma_get_slave_channel(&(bdev->channels[request].vc.chan)); 1144 } 1145 1146 /** 1147 * bam_init 1148 * @bdev: bam device 1149 * 1150 * Initialization helper for global bam registers 1151 */ 1152 static int bam_init(struct bam_device *bdev) 1153 { 1154 u32 val; 1155 1156 /* read revision and configuration information */ 1157 if (!bdev->num_ees) { 1158 val = readl_relaxed(bam_addr(bdev, 0, BAM_REVISION)); 1159 bdev->num_ees = (val >> NUM_EES_SHIFT) & NUM_EES_MASK; 1160 } 1161 1162 /* check that configured EE is within range */ 1163 if (bdev->ee >= bdev->num_ees) 1164 return -EINVAL; 1165 1166 if (!bdev->num_channels) { 1167 val = readl_relaxed(bam_addr(bdev, 0, BAM_NUM_PIPES)); 1168 bdev->num_channels = val & BAM_NUM_PIPES_MASK; 1169 } 1170 1171 if (bdev->controlled_remotely) 1172 return 0; 1173 1174 /* s/w reset bam */ 1175 /* after reset all pipes are disabled and idle */ 1176 val = readl_relaxed(bam_addr(bdev, 0, BAM_CTRL)); 1177 val |= BAM_SW_RST; 1178 writel_relaxed(val, bam_addr(bdev, 0, BAM_CTRL)); 1179 val &= ~BAM_SW_RST; 1180 writel_relaxed(val, bam_addr(bdev, 0, BAM_CTRL)); 1181 1182 /* make sure previous stores are visible before enabling BAM */ 1183 wmb(); 1184 1185 /* enable bam */ 1186 val |= BAM_EN; 1187 writel_relaxed(val, bam_addr(bdev, 0, BAM_CTRL)); 1188 1189 /* set descriptor threshhold, start with 4 bytes */ 1190 writel_relaxed(DEFAULT_CNT_THRSHLD, 1191 bam_addr(bdev, 0, BAM_DESC_CNT_TRSHLD)); 1192 1193 /* Enable default set of h/w workarounds, ie all except BAM_FULL_PIPE */ 1194 writel_relaxed(BAM_CNFG_BITS_DEFAULT, bam_addr(bdev, 0, BAM_CNFG_BITS)); 1195 1196 /* enable irqs for errors */ 1197 writel_relaxed(BAM_ERROR_EN | BAM_HRESP_ERR_EN, 1198 bam_addr(bdev, 0, BAM_IRQ_EN)); 1199 1200 /* unmask global bam interrupt */ 1201 writel_relaxed(BAM_IRQ_MSK, bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); 1202 1203 return 0; 1204 } 1205 1206 static void bam_channel_init(struct bam_device *bdev, struct bam_chan *bchan, 1207 u32 index) 1208 { 1209 bchan->id = index; 1210 bchan->bdev = bdev; 1211 1212 vchan_init(&bchan->vc, &bdev->common); 1213 bchan->vc.desc_free = bam_dma_free_desc; 1214 INIT_LIST_HEAD(&bchan->desc_list); 1215 } 1216 1217 static const struct of_device_id bam_of_match[] = { 1218 { .compatible = "qcom,bam-v1.3.0", .data = &bam_v1_3_reg_info }, 1219 { .compatible = "qcom,bam-v1.4.0", .data = &bam_v1_4_reg_info }, 1220 { .compatible = "qcom,bam-v1.7.0", .data = &bam_v1_7_reg_info }, 1221 {} 1222 }; 1223 1224 MODULE_DEVICE_TABLE(of, bam_of_match); 1225 1226 static int bam_dma_probe(struct platform_device *pdev) 1227 { 1228 struct bam_device *bdev; 1229 const struct of_device_id *match; 1230 struct resource *iores; 1231 int ret, i; 1232 1233 bdev = devm_kzalloc(&pdev->dev, sizeof(*bdev), GFP_KERNEL); 1234 if (!bdev) 1235 return -ENOMEM; 1236 1237 bdev->dev = &pdev->dev; 1238 1239 match = of_match_node(bam_of_match, pdev->dev.of_node); 1240 if (!match) { 1241 dev_err(&pdev->dev, "Unsupported BAM module\n"); 1242 return -ENODEV; 1243 } 1244 1245 bdev->layout = match->data; 1246 1247 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1248 bdev->regs = devm_ioremap_resource(&pdev->dev, iores); 1249 if (IS_ERR(bdev->regs)) 1250 return PTR_ERR(bdev->regs); 1251 1252 bdev->irq = platform_get_irq(pdev, 0); 1253 if (bdev->irq < 0) 1254 return bdev->irq; 1255 1256 ret = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &bdev->ee); 1257 if (ret) { 1258 dev_err(bdev->dev, "Execution environment unspecified\n"); 1259 return ret; 1260 } 1261 1262 bdev->controlled_remotely = of_property_read_bool(pdev->dev.of_node, 1263 "qcom,controlled-remotely"); 1264 1265 if (bdev->controlled_remotely) { 1266 ret = of_property_read_u32(pdev->dev.of_node, "num-channels", 1267 &bdev->num_channels); 1268 if (ret) 1269 dev_err(bdev->dev, "num-channels unspecified in dt\n"); 1270 1271 ret = of_property_read_u32(pdev->dev.of_node, "qcom,num-ees", 1272 &bdev->num_ees); 1273 if (ret) 1274 dev_err(bdev->dev, "num-ees unspecified in dt\n"); 1275 } 1276 1277 bdev->bamclk = devm_clk_get(bdev->dev, "bam_clk"); 1278 if (IS_ERR(bdev->bamclk)) { 1279 if (!bdev->controlled_remotely) 1280 return PTR_ERR(bdev->bamclk); 1281 1282 bdev->bamclk = NULL; 1283 } 1284 1285 ret = clk_prepare_enable(bdev->bamclk); 1286 if (ret) { 1287 dev_err(bdev->dev, "failed to prepare/enable clock\n"); 1288 return ret; 1289 } 1290 1291 ret = bam_init(bdev); 1292 if (ret) 1293 goto err_disable_clk; 1294 1295 tasklet_setup(&bdev->task, dma_tasklet); 1296 1297 bdev->channels = devm_kcalloc(bdev->dev, bdev->num_channels, 1298 sizeof(*bdev->channels), GFP_KERNEL); 1299 1300 if (!bdev->channels) { 1301 ret = -ENOMEM; 1302 goto err_tasklet_kill; 1303 } 1304 1305 /* allocate and initialize channels */ 1306 INIT_LIST_HEAD(&bdev->common.channels); 1307 1308 for (i = 0; i < bdev->num_channels; i++) 1309 bam_channel_init(bdev, &bdev->channels[i], i); 1310 1311 ret = devm_request_irq(bdev->dev, bdev->irq, bam_dma_irq, 1312 IRQF_TRIGGER_HIGH, "bam_dma", bdev); 1313 if (ret) 1314 goto err_bam_channel_exit; 1315 1316 /* set max dma segment size */ 1317 bdev->common.dev = bdev->dev; 1318 ret = dma_set_max_seg_size(bdev->common.dev, BAM_FIFO_SIZE); 1319 if (ret) { 1320 dev_err(bdev->dev, "cannot set maximum segment size\n"); 1321 goto err_bam_channel_exit; 1322 } 1323 1324 platform_set_drvdata(pdev, bdev); 1325 1326 /* set capabilities */ 1327 dma_cap_zero(bdev->common.cap_mask); 1328 dma_cap_set(DMA_SLAVE, bdev->common.cap_mask); 1329 1330 /* initialize dmaengine apis */ 1331 bdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1332 bdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 1333 bdev->common.src_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES; 1334 bdev->common.dst_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES; 1335 bdev->common.device_alloc_chan_resources = bam_alloc_chan; 1336 bdev->common.device_free_chan_resources = bam_free_chan; 1337 bdev->common.device_prep_slave_sg = bam_prep_slave_sg; 1338 bdev->common.device_config = bam_slave_config; 1339 bdev->common.device_pause = bam_pause; 1340 bdev->common.device_resume = bam_resume; 1341 bdev->common.device_terminate_all = bam_dma_terminate_all; 1342 bdev->common.device_issue_pending = bam_issue_pending; 1343 bdev->common.device_tx_status = bam_tx_status; 1344 bdev->common.dev = bdev->dev; 1345 1346 ret = dma_async_device_register(&bdev->common); 1347 if (ret) { 1348 dev_err(bdev->dev, "failed to register dma async device\n"); 1349 goto err_bam_channel_exit; 1350 } 1351 1352 ret = of_dma_controller_register(pdev->dev.of_node, bam_dma_xlate, 1353 &bdev->common); 1354 if (ret) 1355 goto err_unregister_dma; 1356 1357 if (bdev->controlled_remotely) { 1358 pm_runtime_disable(&pdev->dev); 1359 return 0; 1360 } 1361 1362 pm_runtime_irq_safe(&pdev->dev); 1363 pm_runtime_set_autosuspend_delay(&pdev->dev, BAM_DMA_AUTOSUSPEND_DELAY); 1364 pm_runtime_use_autosuspend(&pdev->dev); 1365 pm_runtime_mark_last_busy(&pdev->dev); 1366 pm_runtime_set_active(&pdev->dev); 1367 pm_runtime_enable(&pdev->dev); 1368 1369 return 0; 1370 1371 err_unregister_dma: 1372 dma_async_device_unregister(&bdev->common); 1373 err_bam_channel_exit: 1374 for (i = 0; i < bdev->num_channels; i++) 1375 tasklet_kill(&bdev->channels[i].vc.task); 1376 err_tasklet_kill: 1377 tasklet_kill(&bdev->task); 1378 err_disable_clk: 1379 clk_disable_unprepare(bdev->bamclk); 1380 1381 return ret; 1382 } 1383 1384 static int bam_dma_remove(struct platform_device *pdev) 1385 { 1386 struct bam_device *bdev = platform_get_drvdata(pdev); 1387 u32 i; 1388 1389 pm_runtime_force_suspend(&pdev->dev); 1390 1391 of_dma_controller_free(pdev->dev.of_node); 1392 dma_async_device_unregister(&bdev->common); 1393 1394 /* mask all interrupts for this execution environment */ 1395 writel_relaxed(0, bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); 1396 1397 devm_free_irq(bdev->dev, bdev->irq, bdev); 1398 1399 for (i = 0; i < bdev->num_channels; i++) { 1400 bam_dma_terminate_all(&bdev->channels[i].vc.chan); 1401 tasklet_kill(&bdev->channels[i].vc.task); 1402 1403 if (!bdev->channels[i].fifo_virt) 1404 continue; 1405 1406 dma_free_wc(bdev->dev, BAM_DESC_FIFO_SIZE, 1407 bdev->channels[i].fifo_virt, 1408 bdev->channels[i].fifo_phys); 1409 } 1410 1411 tasklet_kill(&bdev->task); 1412 1413 clk_disable_unprepare(bdev->bamclk); 1414 1415 return 0; 1416 } 1417 1418 static int __maybe_unused bam_dma_runtime_suspend(struct device *dev) 1419 { 1420 struct bam_device *bdev = dev_get_drvdata(dev); 1421 1422 clk_disable(bdev->bamclk); 1423 1424 return 0; 1425 } 1426 1427 static int __maybe_unused bam_dma_runtime_resume(struct device *dev) 1428 { 1429 struct bam_device *bdev = dev_get_drvdata(dev); 1430 int ret; 1431 1432 ret = clk_enable(bdev->bamclk); 1433 if (ret < 0) { 1434 dev_err(dev, "clk_enable failed: %d\n", ret); 1435 return ret; 1436 } 1437 1438 return 0; 1439 } 1440 1441 static int __maybe_unused bam_dma_suspend(struct device *dev) 1442 { 1443 struct bam_device *bdev = dev_get_drvdata(dev); 1444 1445 if (!bdev->controlled_remotely) 1446 pm_runtime_force_suspend(dev); 1447 1448 clk_unprepare(bdev->bamclk); 1449 1450 return 0; 1451 } 1452 1453 static int __maybe_unused bam_dma_resume(struct device *dev) 1454 { 1455 struct bam_device *bdev = dev_get_drvdata(dev); 1456 int ret; 1457 1458 ret = clk_prepare(bdev->bamclk); 1459 if (ret) 1460 return ret; 1461 1462 if (!bdev->controlled_remotely) 1463 pm_runtime_force_resume(dev); 1464 1465 return 0; 1466 } 1467 1468 static const struct dev_pm_ops bam_dma_pm_ops = { 1469 SET_LATE_SYSTEM_SLEEP_PM_OPS(bam_dma_suspend, bam_dma_resume) 1470 SET_RUNTIME_PM_OPS(bam_dma_runtime_suspend, bam_dma_runtime_resume, 1471 NULL) 1472 }; 1473 1474 static struct platform_driver bam_dma_driver = { 1475 .probe = bam_dma_probe, 1476 .remove = bam_dma_remove, 1477 .driver = { 1478 .name = "bam-dma-engine", 1479 .pm = &bam_dma_pm_ops, 1480 .of_match_table = bam_of_match, 1481 }, 1482 }; 1483 1484 module_platform_driver(bam_dma_driver); 1485 1486 MODULE_AUTHOR("Andy Gross <agross@codeaurora.org>"); 1487 MODULE_DESCRIPTION("QCOM BAM DMA engine driver"); 1488 MODULE_LICENSE("GPL v2"); 1489