xref: /openbmc/linux/drivers/dma/ppc4xx/adma.c (revision e0bf6c5c)
1 /*
2  * Copyright (C) 2006-2009 DENX Software Engineering.
3  *
4  * Author: Yuri Tikhonov <yur@emcraft.com>
5  *
6  * Further porting to arch/powerpc by
7  * 	Anatolij Gustschin <agust@denx.de>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  */
26 
27 /*
28  * This driver supports the asynchrounous DMA copy and RAID engines available
29  * on the AMCC PPC440SPe Processors.
30  * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31  * ADMA driver written by D.Williams.
32  */
33 
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
44 #include <linux/of.h>
45 #include <linux/of_address.h>
46 #include <linux/of_irq.h>
47 #include <linux/of_platform.h>
48 #include <asm/dcr.h>
49 #include <asm/dcr-regs.h>
50 #include "adma.h"
51 #include "../dmaengine.h"
52 
53 enum ppc_adma_init_code {
54 	PPC_ADMA_INIT_OK = 0,
55 	PPC_ADMA_INIT_MEMRES,
56 	PPC_ADMA_INIT_MEMREG,
57 	PPC_ADMA_INIT_ALLOC,
58 	PPC_ADMA_INIT_COHERENT,
59 	PPC_ADMA_INIT_CHANNEL,
60 	PPC_ADMA_INIT_IRQ1,
61 	PPC_ADMA_INIT_IRQ2,
62 	PPC_ADMA_INIT_REGISTER
63 };
64 
65 static char *ppc_adma_errors[] = {
66 	[PPC_ADMA_INIT_OK] = "ok",
67 	[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
68 	[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
69 	[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
70 				"structure",
71 	[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
72 				   "hardware descriptors",
73 	[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
74 	[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
75 	[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
76 	[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
77 };
78 
79 static enum ppc_adma_init_code
80 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
81 
82 struct ppc_dma_chan_ref {
83 	struct dma_chan *chan;
84 	struct list_head node;
85 };
86 
87 /* The list of channels exported by ppc440spe ADMA */
88 struct list_head
89 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
90 
91 /* This flag is set when want to refetch the xor chain in the interrupt
92  * handler
93  */
94 static u32 do_xor_refetch;
95 
96 /* Pointer to DMA0, DMA1 CP/CS FIFO */
97 static void *ppc440spe_dma_fifo_buf;
98 
99 /* Pointers to last submitted to DMA0, DMA1 CDBs */
100 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
101 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
102 
103 /* Pointer to last linked and submitted xor CB */
104 static struct ppc440spe_adma_desc_slot *xor_last_linked;
105 static struct ppc440spe_adma_desc_slot *xor_last_submit;
106 
107 /* This array is used in data-check operations for storing a pattern */
108 static char ppc440spe_qword[16];
109 
110 static atomic_t ppc440spe_adma_err_irq_ref;
111 static dcr_host_t ppc440spe_mq_dcr_host;
112 static unsigned int ppc440spe_mq_dcr_len;
113 
114 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
115  * the block size in transactions, then we do not allow to activate more than
116  * only one RXOR transactions simultaneously. So use this var to store
117  * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
118  * set) or not (PPC440SPE_RXOR_RUN is clear).
119  */
120 static unsigned long ppc440spe_rxor_state;
121 
122 /* These are used in enable & check routines
123  */
124 static u32 ppc440spe_r6_enabled;
125 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
126 static struct completion ppc440spe_r6_test_comp;
127 
128 static int ppc440spe_adma_dma2rxor_prep_src(
129 		struct ppc440spe_adma_desc_slot *desc,
130 		struct ppc440spe_rxor *cursor, int index,
131 		int src_cnt, u32 addr);
132 static void ppc440spe_adma_dma2rxor_set_src(
133 		struct ppc440spe_adma_desc_slot *desc,
134 		int index, dma_addr_t addr);
135 static void ppc440spe_adma_dma2rxor_set_mult(
136 		struct ppc440spe_adma_desc_slot *desc,
137 		int index, u8 mult);
138 
139 #ifdef ADMA_LL_DEBUG
140 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
141 #else
142 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
143 #endif
144 
145 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
146 {
147 	struct dma_cdb *cdb;
148 	struct xor_cb *cb;
149 	int i;
150 
151 	switch (chan->device->id) {
152 	case 0:
153 	case 1:
154 		cdb = block;
155 
156 		pr_debug("CDB at %p [%d]:\n"
157 			"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
158 			"\t sg1u 0x%08x sg1l 0x%08x\n"
159 			"\t sg2u 0x%08x sg2l 0x%08x\n"
160 			"\t sg3u 0x%08x sg3l 0x%08x\n",
161 			cdb, chan->device->id,
162 			cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
163 			le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
164 			le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
165 			le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
166 		);
167 		break;
168 	case 2:
169 		cb = block;
170 
171 		pr_debug("CB at %p [%d]:\n"
172 			"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
173 			"\t cbtah 0x%08x cbtal 0x%08x\n"
174 			"\t cblah 0x%08x cblal 0x%08x\n",
175 			cb, chan->device->id,
176 			cb->cbc, cb->cbbc, cb->cbs,
177 			cb->cbtah, cb->cbtal,
178 			cb->cblah, cb->cblal);
179 		for (i = 0; i < 16; i++) {
180 			if (i && !cb->ops[i].h && !cb->ops[i].l)
181 				continue;
182 			pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
183 				i, cb->ops[i].h, cb->ops[i].l);
184 		}
185 		break;
186 	}
187 }
188 
189 static void print_cb_list(struct ppc440spe_adma_chan *chan,
190 			  struct ppc440spe_adma_desc_slot *iter)
191 {
192 	for (; iter; iter = iter->hw_next)
193 		print_cb(chan, iter->hw_desc);
194 }
195 
196 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
197 			     unsigned int src_cnt)
198 {
199 	int i;
200 
201 	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
202 	for (i = 0; i < src_cnt; i++)
203 		pr_debug("\t0x%016llx ", src[i]);
204 	pr_debug("dst:\n\t0x%016llx\n", dst);
205 }
206 
207 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
208 			    unsigned int src_cnt)
209 {
210 	int i;
211 
212 	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
213 	for (i = 0; i < src_cnt; i++)
214 		pr_debug("\t0x%016llx ", src[i]);
215 	pr_debug("dst: ");
216 	for (i = 0; i < 2; i++)
217 		pr_debug("\t0x%016llx ", dst[i]);
218 }
219 
220 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
221 				    unsigned int src_cnt,
222 				    const unsigned char *scf)
223 {
224 	int i;
225 
226 	pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
227 	if (scf) {
228 		for (i = 0; i < src_cnt; i++)
229 			pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
230 	} else {
231 		for (i = 0; i < src_cnt; i++)
232 			pr_debug("\t0x%016llx(no) ", src[i]);
233 	}
234 
235 	pr_debug("dst: ");
236 	for (i = 0; i < 2; i++)
237 		pr_debug("\t0x%016llx ", src[src_cnt + i]);
238 }
239 
240 /******************************************************************************
241  * Command (Descriptor) Blocks low-level routines
242  ******************************************************************************/
243 /**
244  * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
245  * pseudo operation
246  */
247 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
248 					  struct ppc440spe_adma_chan *chan)
249 {
250 	struct xor_cb *p;
251 
252 	switch (chan->device->id) {
253 	case PPC440SPE_XOR_ID:
254 		p = desc->hw_desc;
255 		memset(desc->hw_desc, 0, sizeof(struct xor_cb));
256 		/* NOP with Command Block Complete Enable */
257 		p->cbc = XOR_CBCR_CBCE_BIT;
258 		break;
259 	case PPC440SPE_DMA0_ID:
260 	case PPC440SPE_DMA1_ID:
261 		memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
262 		/* NOP with interrupt */
263 		set_bit(PPC440SPE_DESC_INT, &desc->flags);
264 		break;
265 	default:
266 		printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
267 				__func__);
268 		break;
269 	}
270 }
271 
272 /**
273  * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
274  * pseudo operation
275  */
276 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
277 {
278 	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
279 	desc->hw_next = NULL;
280 	desc->src_cnt = 0;
281 	desc->dst_cnt = 1;
282 }
283 
284 /**
285  * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
286  */
287 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
288 					 int src_cnt, unsigned long flags)
289 {
290 	struct xor_cb *hw_desc = desc->hw_desc;
291 
292 	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
293 	desc->hw_next = NULL;
294 	desc->src_cnt = src_cnt;
295 	desc->dst_cnt = 1;
296 
297 	hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
298 	if (flags & DMA_PREP_INTERRUPT)
299 		/* Enable interrupt on completion */
300 		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
301 }
302 
303 /**
304  * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
305  * operation in DMA2 controller
306  */
307 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
308 		int dst_cnt, int src_cnt, unsigned long flags)
309 {
310 	struct xor_cb *hw_desc = desc->hw_desc;
311 
312 	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
313 	desc->hw_next = NULL;
314 	desc->src_cnt = src_cnt;
315 	desc->dst_cnt = dst_cnt;
316 	memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
317 	desc->descs_per_op = 0;
318 
319 	hw_desc->cbc = XOR_CBCR_TGT_BIT;
320 	if (flags & DMA_PREP_INTERRUPT)
321 		/* Enable interrupt on completion */
322 		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
323 }
324 
325 #define DMA_CTRL_FLAGS_LAST	DMA_PREP_FENCE
326 #define DMA_PREP_ZERO_P		(DMA_CTRL_FLAGS_LAST << 1)
327 #define DMA_PREP_ZERO_Q		(DMA_PREP_ZERO_P << 1)
328 
329 /**
330  * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
331  * with DMA0/1
332  */
333 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
334 				int dst_cnt, int src_cnt, unsigned long flags,
335 				unsigned long op)
336 {
337 	struct dma_cdb *hw_desc;
338 	struct ppc440spe_adma_desc_slot *iter;
339 	u8 dopc;
340 
341 	/* Common initialization of a PQ descriptors chain */
342 	set_bits(op, &desc->flags);
343 	desc->src_cnt = src_cnt;
344 	desc->dst_cnt = dst_cnt;
345 
346 	/* WXOR MULTICAST if both P and Q are being computed
347 	 * MV_SG1_SG2 if Q only
348 	 */
349 	dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
350 		DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
351 
352 	list_for_each_entry(iter, &desc->group_list, chain_node) {
353 		hw_desc = iter->hw_desc;
354 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
355 
356 		if (likely(!list_is_last(&iter->chain_node,
357 				&desc->group_list))) {
358 			/* set 'next' pointer */
359 			iter->hw_next = list_entry(iter->chain_node.next,
360 				struct ppc440spe_adma_desc_slot, chain_node);
361 			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
362 		} else {
363 			/* this is the last descriptor.
364 			 * this slot will be pasted from ADMA level
365 			 * each time it wants to configure parameters
366 			 * of the transaction (src, dst, ...)
367 			 */
368 			iter->hw_next = NULL;
369 			if (flags & DMA_PREP_INTERRUPT)
370 				set_bit(PPC440SPE_DESC_INT, &iter->flags);
371 			else
372 				clear_bit(PPC440SPE_DESC_INT, &iter->flags);
373 		}
374 	}
375 
376 	/* Set OPS depending on WXOR/RXOR type of operation */
377 	if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
378 		/* This is a WXOR only chain:
379 		 * - first descriptors are for zeroing destinations
380 		 *   if PPC440SPE_ZERO_P/Q set;
381 		 * - descriptors remained are for GF-XOR operations.
382 		 */
383 		iter = list_first_entry(&desc->group_list,
384 					struct ppc440spe_adma_desc_slot,
385 					chain_node);
386 
387 		if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
388 			hw_desc = iter->hw_desc;
389 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
390 			iter = list_first_entry(&iter->chain_node,
391 					struct ppc440spe_adma_desc_slot,
392 					chain_node);
393 		}
394 
395 		if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
396 			hw_desc = iter->hw_desc;
397 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
398 			iter = list_first_entry(&iter->chain_node,
399 					struct ppc440spe_adma_desc_slot,
400 					chain_node);
401 		}
402 
403 		list_for_each_entry_from(iter, &desc->group_list, chain_node) {
404 			hw_desc = iter->hw_desc;
405 			hw_desc->opc = dopc;
406 		}
407 	} else {
408 		/* This is either RXOR-only or mixed RXOR/WXOR */
409 
410 		/* The first 1 or 2 slots in chain are always RXOR,
411 		 * if need to calculate P & Q, then there are two
412 		 * RXOR slots; if only P or only Q, then there is one
413 		 */
414 		iter = list_first_entry(&desc->group_list,
415 					struct ppc440spe_adma_desc_slot,
416 					chain_node);
417 		hw_desc = iter->hw_desc;
418 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
419 
420 		if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
421 			iter = list_first_entry(&iter->chain_node,
422 						struct ppc440spe_adma_desc_slot,
423 						chain_node);
424 			hw_desc = iter->hw_desc;
425 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
426 		}
427 
428 		/* The remaining descs (if any) are WXORs */
429 		if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
430 			iter = list_first_entry(&iter->chain_node,
431 						struct ppc440spe_adma_desc_slot,
432 						chain_node);
433 			list_for_each_entry_from(iter, &desc->group_list,
434 						chain_node) {
435 				hw_desc = iter->hw_desc;
436 				hw_desc->opc = dopc;
437 			}
438 		}
439 	}
440 }
441 
442 /**
443  * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
444  * for PQ_ZERO_SUM operation
445  */
446 static void ppc440spe_desc_init_dma01pqzero_sum(
447 				struct ppc440spe_adma_desc_slot *desc,
448 				int dst_cnt, int src_cnt)
449 {
450 	struct dma_cdb *hw_desc;
451 	struct ppc440spe_adma_desc_slot *iter;
452 	int i = 0;
453 	u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
454 				   DMA_CDB_OPC_MV_SG1_SG2;
455 	/*
456 	 * Initialize starting from 2nd or 3rd descriptor dependent
457 	 * on dst_cnt. First one or two slots are for cloning P
458 	 * and/or Q to chan->pdest and/or chan->qdest as we have
459 	 * to preserve original P/Q.
460 	 */
461 	iter = list_first_entry(&desc->group_list,
462 				struct ppc440spe_adma_desc_slot, chain_node);
463 	iter = list_entry(iter->chain_node.next,
464 			  struct ppc440spe_adma_desc_slot, chain_node);
465 
466 	if (dst_cnt > 1) {
467 		iter = list_entry(iter->chain_node.next,
468 				  struct ppc440spe_adma_desc_slot, chain_node);
469 	}
470 	/* initialize each source descriptor in chain */
471 	list_for_each_entry_from(iter, &desc->group_list, chain_node) {
472 		hw_desc = iter->hw_desc;
473 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
474 		iter->src_cnt = 0;
475 		iter->dst_cnt = 0;
476 
477 		/* This is a ZERO_SUM operation:
478 		 * - <src_cnt> descriptors starting from 2nd or 3rd
479 		 *   descriptor are for GF-XOR operations;
480 		 * - remaining <dst_cnt> descriptors are for checking the result
481 		 */
482 		if (i++ < src_cnt)
483 			/* MV_SG1_SG2 if only Q is being verified
484 			 * MULTICAST if both P and Q are being verified
485 			 */
486 			hw_desc->opc = dopc;
487 		else
488 			/* DMA_CDB_OPC_DCHECK128 operation */
489 			hw_desc->opc = DMA_CDB_OPC_DCHECK128;
490 
491 		if (likely(!list_is_last(&iter->chain_node,
492 					 &desc->group_list))) {
493 			/* set 'next' pointer */
494 			iter->hw_next = list_entry(iter->chain_node.next,
495 						struct ppc440spe_adma_desc_slot,
496 						chain_node);
497 		} else {
498 			/* this is the last descriptor.
499 			 * this slot will be pasted from ADMA level
500 			 * each time it wants to configure parameters
501 			 * of the transaction (src, dst, ...)
502 			 */
503 			iter->hw_next = NULL;
504 			/* always enable interrupt generation since we get
505 			 * the status of pqzero from the handler
506 			 */
507 			set_bit(PPC440SPE_DESC_INT, &iter->flags);
508 		}
509 	}
510 	desc->src_cnt = src_cnt;
511 	desc->dst_cnt = dst_cnt;
512 }
513 
514 /**
515  * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
516  */
517 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
518 					unsigned long flags)
519 {
520 	struct dma_cdb *hw_desc = desc->hw_desc;
521 
522 	memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
523 	desc->hw_next = NULL;
524 	desc->src_cnt = 1;
525 	desc->dst_cnt = 1;
526 
527 	if (flags & DMA_PREP_INTERRUPT)
528 		set_bit(PPC440SPE_DESC_INT, &desc->flags);
529 	else
530 		clear_bit(PPC440SPE_DESC_INT, &desc->flags);
531 
532 	hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
533 }
534 
535 /**
536  * ppc440spe_desc_set_src_addr - set source address into the descriptor
537  */
538 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
539 					struct ppc440spe_adma_chan *chan,
540 					int src_idx, dma_addr_t addrh,
541 					dma_addr_t addrl)
542 {
543 	struct dma_cdb *dma_hw_desc;
544 	struct xor_cb *xor_hw_desc;
545 	phys_addr_t addr64, tmplow, tmphi;
546 
547 	switch (chan->device->id) {
548 	case PPC440SPE_DMA0_ID:
549 	case PPC440SPE_DMA1_ID:
550 		if (!addrh) {
551 			addr64 = addrl;
552 			tmphi = (addr64 >> 32);
553 			tmplow = (addr64 & 0xFFFFFFFF);
554 		} else {
555 			tmphi = addrh;
556 			tmplow = addrl;
557 		}
558 		dma_hw_desc = desc->hw_desc;
559 		dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
560 		dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
561 		break;
562 	case PPC440SPE_XOR_ID:
563 		xor_hw_desc = desc->hw_desc;
564 		xor_hw_desc->ops[src_idx].l = addrl;
565 		xor_hw_desc->ops[src_idx].h |= addrh;
566 		break;
567 	}
568 }
569 
570 /**
571  * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
572  */
573 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
574 			struct ppc440spe_adma_chan *chan, u32 mult_index,
575 			int sg_index, unsigned char mult_value)
576 {
577 	struct dma_cdb *dma_hw_desc;
578 	struct xor_cb *xor_hw_desc;
579 	u32 *psgu;
580 
581 	switch (chan->device->id) {
582 	case PPC440SPE_DMA0_ID:
583 	case PPC440SPE_DMA1_ID:
584 		dma_hw_desc = desc->hw_desc;
585 
586 		switch (sg_index) {
587 		/* for RXOR operations set multiplier
588 		 * into source cued address
589 		 */
590 		case DMA_CDB_SG_SRC:
591 			psgu = &dma_hw_desc->sg1u;
592 			break;
593 		/* for WXOR operations set multiplier
594 		 * into destination cued address(es)
595 		 */
596 		case DMA_CDB_SG_DST1:
597 			psgu = &dma_hw_desc->sg2u;
598 			break;
599 		case DMA_CDB_SG_DST2:
600 			psgu = &dma_hw_desc->sg3u;
601 			break;
602 		default:
603 			BUG();
604 		}
605 
606 		*psgu |= cpu_to_le32(mult_value << mult_index);
607 		break;
608 	case PPC440SPE_XOR_ID:
609 		xor_hw_desc = desc->hw_desc;
610 		break;
611 	default:
612 		BUG();
613 	}
614 }
615 
616 /**
617  * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
618  */
619 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
620 				struct ppc440spe_adma_chan *chan,
621 				dma_addr_t addrh, dma_addr_t addrl,
622 				u32 dst_idx)
623 {
624 	struct dma_cdb *dma_hw_desc;
625 	struct xor_cb *xor_hw_desc;
626 	phys_addr_t addr64, tmphi, tmplow;
627 	u32 *psgu, *psgl;
628 
629 	switch (chan->device->id) {
630 	case PPC440SPE_DMA0_ID:
631 	case PPC440SPE_DMA1_ID:
632 		if (!addrh) {
633 			addr64 = addrl;
634 			tmphi = (addr64 >> 32);
635 			tmplow = (addr64 & 0xFFFFFFFF);
636 		} else {
637 			tmphi = addrh;
638 			tmplow = addrl;
639 		}
640 		dma_hw_desc = desc->hw_desc;
641 
642 		psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
643 		psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
644 
645 		*psgl = cpu_to_le32((u32)tmplow);
646 		*psgu |= cpu_to_le32((u32)tmphi);
647 		break;
648 	case PPC440SPE_XOR_ID:
649 		xor_hw_desc = desc->hw_desc;
650 		xor_hw_desc->cbtal = addrl;
651 		xor_hw_desc->cbtah |= addrh;
652 		break;
653 	}
654 }
655 
656 /**
657  * ppc440spe_desc_set_byte_count - set number of data bytes involved
658  * into the operation
659  */
660 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
661 				struct ppc440spe_adma_chan *chan,
662 				u32 byte_count)
663 {
664 	struct dma_cdb *dma_hw_desc;
665 	struct xor_cb *xor_hw_desc;
666 
667 	switch (chan->device->id) {
668 	case PPC440SPE_DMA0_ID:
669 	case PPC440SPE_DMA1_ID:
670 		dma_hw_desc = desc->hw_desc;
671 		dma_hw_desc->cnt = cpu_to_le32(byte_count);
672 		break;
673 	case PPC440SPE_XOR_ID:
674 		xor_hw_desc = desc->hw_desc;
675 		xor_hw_desc->cbbc = byte_count;
676 		break;
677 	}
678 }
679 
680 /**
681  * ppc440spe_desc_set_rxor_block_size - set RXOR block size
682  */
683 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
684 {
685 	/* assume that byte_count is aligned on the 512-boundary;
686 	 * thus write it directly to the register (bits 23:31 are
687 	 * reserved there).
688 	 */
689 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
690 }
691 
692 /**
693  * ppc440spe_desc_set_dcheck - set CHECK pattern
694  */
695 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
696 				struct ppc440spe_adma_chan *chan, u8 *qword)
697 {
698 	struct dma_cdb *dma_hw_desc;
699 
700 	switch (chan->device->id) {
701 	case PPC440SPE_DMA0_ID:
702 	case PPC440SPE_DMA1_ID:
703 		dma_hw_desc = desc->hw_desc;
704 		iowrite32(qword[0], &dma_hw_desc->sg3l);
705 		iowrite32(qword[4], &dma_hw_desc->sg3u);
706 		iowrite32(qword[8], &dma_hw_desc->sg2l);
707 		iowrite32(qword[12], &dma_hw_desc->sg2u);
708 		break;
709 	default:
710 		BUG();
711 	}
712 }
713 
714 /**
715  * ppc440spe_xor_set_link - set link address in xor CB
716  */
717 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
718 				struct ppc440spe_adma_desc_slot *next_desc)
719 {
720 	struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
721 
722 	if (unlikely(!next_desc || !(next_desc->phys))) {
723 		printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
724 			__func__, next_desc,
725 			next_desc ? next_desc->phys : 0);
726 		BUG();
727 	}
728 
729 	xor_hw_desc->cbs = 0;
730 	xor_hw_desc->cblal = next_desc->phys;
731 	xor_hw_desc->cblah = 0;
732 	xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
733 }
734 
735 /**
736  * ppc440spe_desc_set_link - set the address of descriptor following this
737  * descriptor in chain
738  */
739 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
740 				struct ppc440spe_adma_desc_slot *prev_desc,
741 				struct ppc440spe_adma_desc_slot *next_desc)
742 {
743 	unsigned long flags;
744 	struct ppc440spe_adma_desc_slot *tail = next_desc;
745 
746 	if (unlikely(!prev_desc || !next_desc ||
747 		(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
748 		/* If previous next is overwritten something is wrong.
749 		 * though we may refetch from append to initiate list
750 		 * processing; in this case - it's ok.
751 		 */
752 		printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
753 			"prev->hw_next=0x%p\n", __func__, prev_desc,
754 			next_desc, prev_desc ? prev_desc->hw_next : 0);
755 		BUG();
756 	}
757 
758 	local_irq_save(flags);
759 
760 	/* do s/w chaining both for DMA and XOR descriptors */
761 	prev_desc->hw_next = next_desc;
762 
763 	switch (chan->device->id) {
764 	case PPC440SPE_DMA0_ID:
765 	case PPC440SPE_DMA1_ID:
766 		break;
767 	case PPC440SPE_XOR_ID:
768 		/* bind descriptor to the chain */
769 		while (tail->hw_next)
770 			tail = tail->hw_next;
771 		xor_last_linked = tail;
772 
773 		if (prev_desc == xor_last_submit)
774 			/* do not link to the last submitted CB */
775 			break;
776 		ppc440spe_xor_set_link(prev_desc, next_desc);
777 		break;
778 	}
779 
780 	local_irq_restore(flags);
781 }
782 
783 /**
784  * ppc440spe_desc_get_link - get the address of the descriptor that
785  * follows this one
786  */
787 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
788 					struct ppc440spe_adma_chan *chan)
789 {
790 	if (!desc->hw_next)
791 		return 0;
792 
793 	return desc->hw_next->phys;
794 }
795 
796 /**
797  * ppc440spe_desc_is_aligned - check alignment
798  */
799 static inline int ppc440spe_desc_is_aligned(
800 	struct ppc440spe_adma_desc_slot *desc, int num_slots)
801 {
802 	return (desc->idx & (num_slots - 1)) ? 0 : 1;
803 }
804 
805 /**
806  * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
807  * XOR operation
808  */
809 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
810 			int *slots_per_op)
811 {
812 	int slot_cnt;
813 
814 	/* each XOR descriptor provides up to 16 source operands */
815 	slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
816 
817 	if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
818 		return slot_cnt;
819 
820 	printk(KERN_ERR "%s: len %d > max %d !!\n",
821 		__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
822 	BUG();
823 	return slot_cnt;
824 }
825 
826 /**
827  * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
828  * DMA2 PQ operation
829  */
830 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
831 		int src_cnt, size_t len)
832 {
833 	signed long long order = 0;
834 	int state = 0;
835 	int addr_count = 0;
836 	int i;
837 	for (i = 1; i < src_cnt; i++) {
838 		dma_addr_t cur_addr = srcs[i];
839 		dma_addr_t old_addr = srcs[i-1];
840 		switch (state) {
841 		case 0:
842 			if (cur_addr == old_addr + len) {
843 				/* direct RXOR */
844 				order = 1;
845 				state = 1;
846 				if (i == src_cnt-1)
847 					addr_count++;
848 			} else if (old_addr == cur_addr + len) {
849 				/* reverse RXOR */
850 				order = -1;
851 				state = 1;
852 				if (i == src_cnt-1)
853 					addr_count++;
854 			} else {
855 				state = 3;
856 			}
857 			break;
858 		case 1:
859 			if (i == src_cnt-2 || (order == -1
860 				&& cur_addr != old_addr - len)) {
861 				order = 0;
862 				state = 0;
863 				addr_count++;
864 			} else if (cur_addr == old_addr + len*order) {
865 				state = 2;
866 				if (i == src_cnt-1)
867 					addr_count++;
868 			} else if (cur_addr == old_addr + 2*len) {
869 				state = 2;
870 				if (i == src_cnt-1)
871 					addr_count++;
872 			} else if (cur_addr == old_addr + 3*len) {
873 				state = 2;
874 				if (i == src_cnt-1)
875 					addr_count++;
876 			} else {
877 				order = 0;
878 				state = 0;
879 				addr_count++;
880 			}
881 			break;
882 		case 2:
883 			order = 0;
884 			state = 0;
885 			addr_count++;
886 				break;
887 		}
888 		if (state == 3)
889 			break;
890 	}
891 	if (src_cnt <= 1 || (state != 1 && state != 2)) {
892 		pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
893 			__func__, src_cnt, state, addr_count, order);
894 		for (i = 0; i < src_cnt; i++)
895 			pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
896 		BUG();
897 	}
898 
899 	return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
900 }
901 
902 
903 /******************************************************************************
904  * ADMA channel low-level routines
905  ******************************************************************************/
906 
907 static u32
908 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
909 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
910 
911 /**
912  * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
913  */
914 static void ppc440spe_adma_device_clear_eot_status(
915 					struct ppc440spe_adma_chan *chan)
916 {
917 	struct dma_regs *dma_reg;
918 	struct xor_regs *xor_reg;
919 	u8 *p = chan->device->dma_desc_pool_virt;
920 	struct dma_cdb *cdb;
921 	u32 rv, i;
922 
923 	switch (chan->device->id) {
924 	case PPC440SPE_DMA0_ID:
925 	case PPC440SPE_DMA1_ID:
926 		/* read FIFO to ack */
927 		dma_reg = chan->device->dma_reg;
928 		while ((rv = ioread32(&dma_reg->csfpl))) {
929 			i = rv & DMA_CDB_ADDR_MSK;
930 			cdb = (struct dma_cdb *)&p[i -
931 			    (u32)chan->device->dma_desc_pool];
932 
933 			/* Clear opcode to ack. This is necessary for
934 			 * ZeroSum operations only
935 			 */
936 			cdb->opc = 0;
937 
938 			if (test_bit(PPC440SPE_RXOR_RUN,
939 			    &ppc440spe_rxor_state)) {
940 				/* probably this is a completed RXOR op,
941 				 * get pointer to CDB using the fact that
942 				 * physical and virtual addresses of CDB
943 				 * in pools have the same offsets
944 				 */
945 				if (le32_to_cpu(cdb->sg1u) &
946 				    DMA_CUED_XOR_BASE) {
947 					/* this is a RXOR */
948 					clear_bit(PPC440SPE_RXOR_RUN,
949 						  &ppc440spe_rxor_state);
950 				}
951 			}
952 
953 			if (rv & DMA_CDB_STATUS_MSK) {
954 				/* ZeroSum check failed
955 				 */
956 				struct ppc440spe_adma_desc_slot *iter;
957 				dma_addr_t phys = rv & ~DMA_CDB_MSK;
958 
959 				/*
960 				 * Update the status of corresponding
961 				 * descriptor.
962 				 */
963 				list_for_each_entry(iter, &chan->chain,
964 				    chain_node) {
965 					if (iter->phys == phys)
966 						break;
967 				}
968 				/*
969 				 * if cannot find the corresponding
970 				 * slot it's a bug
971 				 */
972 				BUG_ON(&iter->chain_node == &chan->chain);
973 
974 				if (iter->xor_check_result) {
975 					if (test_bit(PPC440SPE_DESC_PCHECK,
976 						     &iter->flags)) {
977 						*iter->xor_check_result |=
978 							SUM_CHECK_P_RESULT;
979 					} else
980 					if (test_bit(PPC440SPE_DESC_QCHECK,
981 						     &iter->flags)) {
982 						*iter->xor_check_result |=
983 							SUM_CHECK_Q_RESULT;
984 					} else
985 						BUG();
986 				}
987 			}
988 		}
989 
990 		rv = ioread32(&dma_reg->dsts);
991 		if (rv) {
992 			pr_err("DMA%d err status: 0x%x\n",
993 			       chan->device->id, rv);
994 			/* write back to clear */
995 			iowrite32(rv, &dma_reg->dsts);
996 		}
997 		break;
998 	case PPC440SPE_XOR_ID:
999 		/* reset status bits to ack */
1000 		xor_reg = chan->device->xor_reg;
1001 		rv = ioread32be(&xor_reg->sr);
1002 		iowrite32be(rv, &xor_reg->sr);
1003 
1004 		if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1005 			if (rv & XOR_IE_RPTIE_BIT) {
1006 				/* Read PLB Timeout Error.
1007 				 * Try to resubmit the CB
1008 				 */
1009 				u32 val = ioread32be(&xor_reg->ccbalr);
1010 
1011 				iowrite32be(val, &xor_reg->cblalr);
1012 
1013 				val = ioread32be(&xor_reg->crsr);
1014 				iowrite32be(val | XOR_CRSR_XAE_BIT,
1015 					    &xor_reg->crsr);
1016 			} else
1017 				pr_err("XOR ERR 0x%x status\n", rv);
1018 			break;
1019 		}
1020 
1021 		/*  if the XORcore is idle, but there are unprocessed CBs
1022 		 * then refetch the s/w chain here
1023 		 */
1024 		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1025 		    do_xor_refetch)
1026 			ppc440spe_chan_append(chan);
1027 		break;
1028 	}
1029 }
1030 
1031 /**
1032  * ppc440spe_chan_is_busy - get the channel status
1033  */
1034 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1035 {
1036 	struct dma_regs *dma_reg;
1037 	struct xor_regs *xor_reg;
1038 	int busy = 0;
1039 
1040 	switch (chan->device->id) {
1041 	case PPC440SPE_DMA0_ID:
1042 	case PPC440SPE_DMA1_ID:
1043 		dma_reg = chan->device->dma_reg;
1044 		/*  if command FIFO's head and tail pointers are equal and
1045 		 * status tail is the same as command, then channel is free
1046 		 */
1047 		if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1048 		    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1049 			busy = 1;
1050 		break;
1051 	case PPC440SPE_XOR_ID:
1052 		/* use the special status bit for the XORcore
1053 		 */
1054 		xor_reg = chan->device->xor_reg;
1055 		busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1056 		break;
1057 	}
1058 
1059 	return busy;
1060 }
1061 
1062 /**
1063  * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1064  */
1065 static void ppc440spe_chan_set_first_xor_descriptor(
1066 				struct ppc440spe_adma_chan *chan,
1067 				struct ppc440spe_adma_desc_slot *next_desc)
1068 {
1069 	struct xor_regs *xor_reg = chan->device->xor_reg;
1070 
1071 	if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1072 		printk(KERN_INFO "%s: Warn: XORcore is running "
1073 			"when try to set the first CDB!\n",
1074 			__func__);
1075 
1076 	xor_last_submit = xor_last_linked = next_desc;
1077 
1078 	iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1079 
1080 	iowrite32be(next_desc->phys, &xor_reg->cblalr);
1081 	iowrite32be(0, &xor_reg->cblahr);
1082 	iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1083 		    &xor_reg->cbcr);
1084 
1085 	chan->hw_chain_inited = 1;
1086 }
1087 
1088 /**
1089  * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1090  * called with irqs disabled
1091  */
1092 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1093 		struct ppc440spe_adma_desc_slot *desc)
1094 {
1095 	u32 pcdb;
1096 	struct dma_regs *dma_reg = chan->device->dma_reg;
1097 
1098 	pcdb = desc->phys;
1099 	if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1100 		pcdb |= DMA_CDB_NO_INT;
1101 
1102 	chan_last_sub[chan->device->id] = desc;
1103 
1104 	ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1105 
1106 	iowrite32(pcdb, &dma_reg->cpfpl);
1107 }
1108 
1109 /**
1110  * ppc440spe_chan_append - update the h/w chain in the channel
1111  */
1112 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1113 {
1114 	struct xor_regs *xor_reg;
1115 	struct ppc440spe_adma_desc_slot *iter;
1116 	struct xor_cb *xcb;
1117 	u32 cur_desc;
1118 	unsigned long flags;
1119 
1120 	local_irq_save(flags);
1121 
1122 	switch (chan->device->id) {
1123 	case PPC440SPE_DMA0_ID:
1124 	case PPC440SPE_DMA1_ID:
1125 		cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1126 
1127 		if (likely(cur_desc)) {
1128 			iter = chan_last_sub[chan->device->id];
1129 			BUG_ON(!iter);
1130 		} else {
1131 			/* first peer */
1132 			iter = chan_first_cdb[chan->device->id];
1133 			BUG_ON(!iter);
1134 			ppc440spe_dma_put_desc(chan, iter);
1135 			chan->hw_chain_inited = 1;
1136 		}
1137 
1138 		/* is there something new to append */
1139 		if (!iter->hw_next)
1140 			break;
1141 
1142 		/* flush descriptors from the s/w queue to fifo */
1143 		list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1144 			ppc440spe_dma_put_desc(chan, iter);
1145 			if (!iter->hw_next)
1146 				break;
1147 		}
1148 		break;
1149 	case PPC440SPE_XOR_ID:
1150 		/* update h/w links and refetch */
1151 		if (!xor_last_submit->hw_next)
1152 			break;
1153 
1154 		xor_reg = chan->device->xor_reg;
1155 		/* the last linked CDB has to generate an interrupt
1156 		 * that we'd be able to append the next lists to h/w
1157 		 * regardless of the XOR engine state at the moment of
1158 		 * appending of these next lists
1159 		 */
1160 		xcb = xor_last_linked->hw_desc;
1161 		xcb->cbc |= XOR_CBCR_CBCE_BIT;
1162 
1163 		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1164 			/* XORcore is idle. Refetch now */
1165 			do_xor_refetch = 0;
1166 			ppc440spe_xor_set_link(xor_last_submit,
1167 				xor_last_submit->hw_next);
1168 
1169 			ADMA_LL_DBG(print_cb_list(chan,
1170 				xor_last_submit->hw_next));
1171 
1172 			xor_last_submit = xor_last_linked;
1173 			iowrite32be(ioread32be(&xor_reg->crsr) |
1174 				    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1175 				    &xor_reg->crsr);
1176 		} else {
1177 			/* XORcore is running. Refetch later in the handler */
1178 			do_xor_refetch = 1;
1179 		}
1180 
1181 		break;
1182 	}
1183 
1184 	local_irq_restore(flags);
1185 }
1186 
1187 /**
1188  * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1189  */
1190 static u32
1191 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1192 {
1193 	struct dma_regs *dma_reg;
1194 	struct xor_regs *xor_reg;
1195 
1196 	if (unlikely(!chan->hw_chain_inited))
1197 		/* h/w descriptor chain is not initialized yet */
1198 		return 0;
1199 
1200 	switch (chan->device->id) {
1201 	case PPC440SPE_DMA0_ID:
1202 	case PPC440SPE_DMA1_ID:
1203 		dma_reg = chan->device->dma_reg;
1204 		return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1205 	case PPC440SPE_XOR_ID:
1206 		xor_reg = chan->device->xor_reg;
1207 		return ioread32be(&xor_reg->ccbalr);
1208 	}
1209 	return 0;
1210 }
1211 
1212 /**
1213  * ppc440spe_chan_run - enable the channel
1214  */
1215 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1216 {
1217 	struct xor_regs *xor_reg;
1218 
1219 	switch (chan->device->id) {
1220 	case PPC440SPE_DMA0_ID:
1221 	case PPC440SPE_DMA1_ID:
1222 		/* DMAs are always enabled, do nothing */
1223 		break;
1224 	case PPC440SPE_XOR_ID:
1225 		/* drain write buffer */
1226 		xor_reg = chan->device->xor_reg;
1227 
1228 		/* fetch descriptor pointed to in <link> */
1229 		iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1230 			    &xor_reg->crsr);
1231 		break;
1232 	}
1233 }
1234 
1235 /******************************************************************************
1236  * ADMA device level
1237  ******************************************************************************/
1238 
1239 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1240 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1241 
1242 static dma_cookie_t
1243 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1244 
1245 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1246 				    dma_addr_t addr, int index);
1247 static void
1248 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1249 				  dma_addr_t addr, int index);
1250 
1251 static void
1252 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1253 			   dma_addr_t *paddr, unsigned long flags);
1254 static void
1255 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1256 			  dma_addr_t addr, int index);
1257 static void
1258 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1259 			       unsigned char mult, int index, int dst_pos);
1260 static void
1261 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1262 				   dma_addr_t paddr, dma_addr_t qaddr);
1263 
1264 static struct page *ppc440spe_rxor_srcs[32];
1265 
1266 /**
1267  * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1268  */
1269 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1270 {
1271 	int i, order = 0, state = 0;
1272 	int idx = 0;
1273 
1274 	if (unlikely(!(src_cnt > 1)))
1275 		return 0;
1276 
1277 	BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1278 
1279 	/* Skip holes in the source list before checking */
1280 	for (i = 0; i < src_cnt; i++) {
1281 		if (!srcs[i])
1282 			continue;
1283 		ppc440spe_rxor_srcs[idx++] = srcs[i];
1284 	}
1285 	src_cnt = idx;
1286 
1287 	for (i = 1; i < src_cnt; i++) {
1288 		char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1289 		char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1290 
1291 		switch (state) {
1292 		case 0:
1293 			if (cur_addr == old_addr + len) {
1294 				/* direct RXOR */
1295 				order = 1;
1296 				state = 1;
1297 			} else if (old_addr == cur_addr + len) {
1298 				/* reverse RXOR */
1299 				order = -1;
1300 				state = 1;
1301 			} else
1302 				goto out;
1303 			break;
1304 		case 1:
1305 			if ((i == src_cnt - 2) ||
1306 			    (order == -1 && cur_addr != old_addr - len)) {
1307 				order = 0;
1308 				state = 0;
1309 			} else if ((cur_addr == old_addr + len * order) ||
1310 				   (cur_addr == old_addr + 2 * len) ||
1311 				   (cur_addr == old_addr + 3 * len)) {
1312 				state = 2;
1313 			} else {
1314 				order = 0;
1315 				state = 0;
1316 			}
1317 			break;
1318 		case 2:
1319 			order = 0;
1320 			state = 0;
1321 			break;
1322 		}
1323 	}
1324 
1325 out:
1326 	if (state == 1 || state == 2)
1327 		return 1;
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1334  *	the operation given on this channel. It's assumed that 'chan' is
1335  *	capable to process 'cap' type of operation.
1336  * @chan: channel to use
1337  * @cap: type of transaction
1338  * @dst_lst: array of destination pointers
1339  * @dst_cnt: number of destination operands
1340  * @src_lst: array of source pointers
1341  * @src_cnt: number of source operands
1342  * @src_sz: size of each source operand
1343  */
1344 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1345 	enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1346 	struct page **src_lst, int src_cnt, size_t src_sz)
1347 {
1348 	int ef = 1;
1349 
1350 	if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1351 		/* If RAID-6 capabilities were not activated don't try
1352 		 * to use them
1353 		 */
1354 		if (unlikely(!ppc440spe_r6_enabled))
1355 			return -1;
1356 	}
1357 	/*  In the current implementation of ppc440spe ADMA driver it
1358 	 * makes sense to pick out only pq case, because it may be
1359 	 * processed:
1360 	 * (1) either using Biskup method on DMA2;
1361 	 * (2) or on DMA0/1.
1362 	 *  Thus we give a favour to (1) if the sources are suitable;
1363 	 * else let it be processed on one of the DMA0/1 engines.
1364 	 *  In the sum_product case where destination is also the
1365 	 * source process it on DMA0/1 only.
1366 	 */
1367 	if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1368 
1369 		if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1370 			ef = 0; /* sum_product case, process on DMA0/1 */
1371 		else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1372 			ef = 3; /* override (DMA0/1 + idle) */
1373 		else
1374 			ef = 0; /* can't process on DMA2 if !rxor */
1375 	}
1376 
1377 	/* channel idleness increases the priority */
1378 	if (likely(ef) &&
1379 	    !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1380 		ef++;
1381 
1382 	return ef;
1383 }
1384 
1385 struct dma_chan *
1386 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1387 	struct page **dst_lst, int dst_cnt, struct page **src_lst,
1388 	int src_cnt, size_t src_sz)
1389 {
1390 	struct dma_chan *best_chan = NULL;
1391 	struct ppc_dma_chan_ref *ref;
1392 	int best_rank = -1;
1393 
1394 	if (unlikely(!src_sz))
1395 		return NULL;
1396 	if (src_sz > PAGE_SIZE) {
1397 		/*
1398 		 * should a user of the api ever pass > PAGE_SIZE requests
1399 		 * we sort out cases where temporary page-sized buffers
1400 		 * are used.
1401 		 */
1402 		switch (cap) {
1403 		case DMA_PQ:
1404 			if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1405 				return NULL;
1406 			if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1407 				return NULL;
1408 			break;
1409 		case DMA_PQ_VAL:
1410 		case DMA_XOR_VAL:
1411 			return NULL;
1412 		default:
1413 			break;
1414 		}
1415 	}
1416 
1417 	list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1418 		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1419 			int rank;
1420 
1421 			rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1422 					dst_cnt, src_lst, src_cnt, src_sz);
1423 			if (rank > best_rank) {
1424 				best_rank = rank;
1425 				best_chan = ref->chan;
1426 			}
1427 		}
1428 	}
1429 
1430 	return best_chan;
1431 }
1432 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1433 
1434 /**
1435  * ppc440spe_get_group_entry - get group entry with index idx
1436  * @tdesc: is the last allocated slot in the group.
1437  */
1438 static struct ppc440spe_adma_desc_slot *
1439 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1440 {
1441 	struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1442 	int i = 0;
1443 
1444 	if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1445 		printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1446 			__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1447 		BUG();
1448 	}
1449 
1450 	list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1451 		if (i++ == entry_idx)
1452 			break;
1453 	}
1454 	return iter;
1455 }
1456 
1457 /**
1458  * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1459  * @slot: Slot to free
1460  * Caller must hold &ppc440spe_chan->lock while calling this function
1461  */
1462 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1463 				      struct ppc440spe_adma_chan *chan)
1464 {
1465 	int stride = slot->slots_per_op;
1466 
1467 	while (stride--) {
1468 		slot->slots_per_op = 0;
1469 		slot = list_entry(slot->slot_node.next,
1470 				struct ppc440spe_adma_desc_slot,
1471 				slot_node);
1472 	}
1473 }
1474 
1475 /**
1476  * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1477  * upon completion
1478  */
1479 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1480 		struct ppc440spe_adma_desc_slot *desc,
1481 		struct ppc440spe_adma_chan *chan,
1482 		dma_cookie_t cookie)
1483 {
1484 	BUG_ON(desc->async_tx.cookie < 0);
1485 	if (desc->async_tx.cookie > 0) {
1486 		cookie = desc->async_tx.cookie;
1487 		desc->async_tx.cookie = 0;
1488 
1489 		/* call the callback (must not sleep or submit new
1490 		 * operations to this channel)
1491 		 */
1492 		if (desc->async_tx.callback)
1493 			desc->async_tx.callback(
1494 				desc->async_tx.callback_param);
1495 
1496 		dma_descriptor_unmap(&desc->async_tx);
1497 	}
1498 
1499 	/* run dependent operations */
1500 	dma_run_dependencies(&desc->async_tx);
1501 
1502 	return cookie;
1503 }
1504 
1505 /**
1506  * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1507  */
1508 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1509 		struct ppc440spe_adma_chan *chan)
1510 {
1511 	/* the client is allowed to attach dependent operations
1512 	 * until 'ack' is set
1513 	 */
1514 	if (!async_tx_test_ack(&desc->async_tx))
1515 		return 0;
1516 
1517 	/* leave the last descriptor in the chain
1518 	 * so we can append to it
1519 	 */
1520 	if (list_is_last(&desc->chain_node, &chan->chain) ||
1521 	    desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1522 		return 1;
1523 
1524 	if (chan->device->id != PPC440SPE_XOR_ID) {
1525 		/* our DMA interrupt handler clears opc field of
1526 		 * each processed descriptor. For all types of
1527 		 * operations except for ZeroSum we do not actually
1528 		 * need ack from the interrupt handler. ZeroSum is a
1529 		 * special case since the result of this operation
1530 		 * is available from the handler only, so if we see
1531 		 * such type of descriptor (which is unprocessed yet)
1532 		 * then leave it in chain.
1533 		 */
1534 		struct dma_cdb *cdb = desc->hw_desc;
1535 		if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1536 			return 1;
1537 	}
1538 
1539 	dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1540 		desc->phys, desc->idx, desc->slots_per_op);
1541 
1542 	list_del(&desc->chain_node);
1543 	ppc440spe_adma_free_slots(desc, chan);
1544 	return 0;
1545 }
1546 
1547 /**
1548  * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1549  *	which runs through the channel CDBs list until reach the descriptor
1550  *	currently processed. When routine determines that all CDBs of group
1551  *	are completed then corresponding callbacks (if any) are called and slots
1552  *	are freed.
1553  */
1554 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1555 {
1556 	struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1557 	dma_cookie_t cookie = 0;
1558 	u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1559 	int busy = ppc440spe_chan_is_busy(chan);
1560 	int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1561 
1562 	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1563 		chan->device->id, __func__);
1564 
1565 	if (!current_desc) {
1566 		/*  There were no transactions yet, so
1567 		 * nothing to clean
1568 		 */
1569 		return;
1570 	}
1571 
1572 	/* free completed slots from the chain starting with
1573 	 * the oldest descriptor
1574 	 */
1575 	list_for_each_entry_safe(iter, _iter, &chan->chain,
1576 					chain_node) {
1577 		dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1578 		    "busy: %d this_desc: %#llx next_desc: %#x "
1579 		    "cur: %#x ack: %d\n",
1580 		    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1581 		    ppc440spe_desc_get_link(iter, chan), current_desc,
1582 		    async_tx_test_ack(&iter->async_tx));
1583 		prefetch(_iter);
1584 		prefetch(&_iter->async_tx);
1585 
1586 		/* do not advance past the current descriptor loaded into the
1587 		 * hardware channel,subsequent descriptors are either in process
1588 		 * or have not been submitted
1589 		 */
1590 		if (seen_current)
1591 			break;
1592 
1593 		/* stop the search if we reach the current descriptor and the
1594 		 * channel is busy, or if it appears that the current descriptor
1595 		 * needs to be re-read (i.e. has been appended to)
1596 		 */
1597 		if (iter->phys == current_desc) {
1598 			BUG_ON(seen_current++);
1599 			if (busy || ppc440spe_desc_get_link(iter, chan)) {
1600 				/* not all descriptors of the group have
1601 				 * been completed; exit.
1602 				 */
1603 				break;
1604 			}
1605 		}
1606 
1607 		/* detect the start of a group transaction */
1608 		if (!slot_cnt && !slots_per_op) {
1609 			slot_cnt = iter->slot_cnt;
1610 			slots_per_op = iter->slots_per_op;
1611 			if (slot_cnt <= slots_per_op) {
1612 				slot_cnt = 0;
1613 				slots_per_op = 0;
1614 			}
1615 		}
1616 
1617 		if (slot_cnt) {
1618 			if (!group_start)
1619 				group_start = iter;
1620 			slot_cnt -= slots_per_op;
1621 		}
1622 
1623 		/* all the members of a group are complete */
1624 		if (slots_per_op != 0 && slot_cnt == 0) {
1625 			struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1626 			int end_of_chain = 0;
1627 
1628 			/* clean up the group */
1629 			slot_cnt = group_start->slot_cnt;
1630 			grp_iter = group_start;
1631 			list_for_each_entry_safe_from(grp_iter, _grp_iter,
1632 				&chan->chain, chain_node) {
1633 
1634 				cookie = ppc440spe_adma_run_tx_complete_actions(
1635 					grp_iter, chan, cookie);
1636 
1637 				slot_cnt -= slots_per_op;
1638 				end_of_chain = ppc440spe_adma_clean_slot(
1639 				    grp_iter, chan);
1640 				if (end_of_chain && slot_cnt) {
1641 					/* Should wait for ZeroSum completion */
1642 					if (cookie > 0)
1643 						chan->common.completed_cookie = cookie;
1644 					return;
1645 				}
1646 
1647 				if (slot_cnt == 0 || end_of_chain)
1648 					break;
1649 			}
1650 
1651 			/* the group should be complete at this point */
1652 			BUG_ON(slot_cnt);
1653 
1654 			slots_per_op = 0;
1655 			group_start = NULL;
1656 			if (end_of_chain)
1657 				break;
1658 			else
1659 				continue;
1660 		} else if (slots_per_op) /* wait for group completion */
1661 			continue;
1662 
1663 		cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1664 		    cookie);
1665 
1666 		if (ppc440spe_adma_clean_slot(iter, chan))
1667 			break;
1668 	}
1669 
1670 	BUG_ON(!seen_current);
1671 
1672 	if (cookie > 0) {
1673 		chan->common.completed_cookie = cookie;
1674 		pr_debug("\tcompleted cookie %d\n", cookie);
1675 	}
1676 
1677 }
1678 
1679 /**
1680  * ppc440spe_adma_tasklet - clean up watch-dog initiator
1681  */
1682 static void ppc440spe_adma_tasklet(unsigned long data)
1683 {
1684 	struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1685 
1686 	spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1687 	__ppc440spe_adma_slot_cleanup(chan);
1688 	spin_unlock(&chan->lock);
1689 }
1690 
1691 /**
1692  * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1693  */
1694 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1695 {
1696 	spin_lock_bh(&chan->lock);
1697 	__ppc440spe_adma_slot_cleanup(chan);
1698 	spin_unlock_bh(&chan->lock);
1699 }
1700 
1701 /**
1702  * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1703  */
1704 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1705 		struct ppc440spe_adma_chan *chan, int num_slots,
1706 		int slots_per_op)
1707 {
1708 	struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1709 	struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1710 	struct list_head chain = LIST_HEAD_INIT(chain);
1711 	int slots_found, retry = 0;
1712 
1713 
1714 	BUG_ON(!num_slots || !slots_per_op);
1715 	/* start search from the last allocated descrtiptor
1716 	 * if a contiguous allocation can not be found start searching
1717 	 * from the beginning of the list
1718 	 */
1719 retry:
1720 	slots_found = 0;
1721 	if (retry == 0)
1722 		iter = chan->last_used;
1723 	else
1724 		iter = list_entry(&chan->all_slots,
1725 				  struct ppc440spe_adma_desc_slot,
1726 				  slot_node);
1727 	list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1728 	    slot_node) {
1729 		prefetch(_iter);
1730 		prefetch(&_iter->async_tx);
1731 		if (iter->slots_per_op) {
1732 			slots_found = 0;
1733 			continue;
1734 		}
1735 
1736 		/* start the allocation if the slot is correctly aligned */
1737 		if (!slots_found++)
1738 			alloc_start = iter;
1739 
1740 		if (slots_found == num_slots) {
1741 			struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1742 			struct ppc440spe_adma_desc_slot *last_used = NULL;
1743 
1744 			iter = alloc_start;
1745 			while (num_slots) {
1746 				int i;
1747 				/* pre-ack all but the last descriptor */
1748 				if (num_slots != slots_per_op)
1749 					async_tx_ack(&iter->async_tx);
1750 
1751 				list_add_tail(&iter->chain_node, &chain);
1752 				alloc_tail = iter;
1753 				iter->async_tx.cookie = 0;
1754 				iter->hw_next = NULL;
1755 				iter->flags = 0;
1756 				iter->slot_cnt = num_slots;
1757 				iter->xor_check_result = NULL;
1758 				for (i = 0; i < slots_per_op; i++) {
1759 					iter->slots_per_op = slots_per_op - i;
1760 					last_used = iter;
1761 					iter = list_entry(iter->slot_node.next,
1762 						struct ppc440spe_adma_desc_slot,
1763 						slot_node);
1764 				}
1765 				num_slots -= slots_per_op;
1766 			}
1767 			alloc_tail->group_head = alloc_start;
1768 			alloc_tail->async_tx.cookie = -EBUSY;
1769 			list_splice(&chain, &alloc_tail->group_list);
1770 			chan->last_used = last_used;
1771 			return alloc_tail;
1772 		}
1773 	}
1774 	if (!retry++)
1775 		goto retry;
1776 
1777 	/* try to free some slots if the allocation fails */
1778 	tasklet_schedule(&chan->irq_tasklet);
1779 	return NULL;
1780 }
1781 
1782 /**
1783  * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
1784  */
1785 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1786 {
1787 	struct ppc440spe_adma_chan *ppc440spe_chan;
1788 	struct ppc440spe_adma_desc_slot *slot = NULL;
1789 	char *hw_desc;
1790 	int i, db_sz;
1791 	int init;
1792 
1793 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1794 	init = ppc440spe_chan->slots_allocated ? 0 : 1;
1795 	chan->chan_id = ppc440spe_chan->device->id;
1796 
1797 	/* Allocate descriptor slots */
1798 	i = ppc440spe_chan->slots_allocated;
1799 	if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1800 		db_sz = sizeof(struct dma_cdb);
1801 	else
1802 		db_sz = sizeof(struct xor_cb);
1803 
1804 	for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1805 		slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1806 			       GFP_KERNEL);
1807 		if (!slot) {
1808 			printk(KERN_INFO "SPE ADMA Channel only initialized"
1809 				" %d descriptor slots", i--);
1810 			break;
1811 		}
1812 
1813 		hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1814 		slot->hw_desc = (void *) &hw_desc[i * db_sz];
1815 		dma_async_tx_descriptor_init(&slot->async_tx, chan);
1816 		slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1817 		INIT_LIST_HEAD(&slot->chain_node);
1818 		INIT_LIST_HEAD(&slot->slot_node);
1819 		INIT_LIST_HEAD(&slot->group_list);
1820 		slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1821 		slot->idx = i;
1822 
1823 		spin_lock_bh(&ppc440spe_chan->lock);
1824 		ppc440spe_chan->slots_allocated++;
1825 		list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1826 		spin_unlock_bh(&ppc440spe_chan->lock);
1827 	}
1828 
1829 	if (i && !ppc440spe_chan->last_used) {
1830 		ppc440spe_chan->last_used =
1831 			list_entry(ppc440spe_chan->all_slots.next,
1832 				struct ppc440spe_adma_desc_slot,
1833 				slot_node);
1834 	}
1835 
1836 	dev_dbg(ppc440spe_chan->device->common.dev,
1837 		"ppc440spe adma%d: allocated %d descriptor slots\n",
1838 		ppc440spe_chan->device->id, i);
1839 
1840 	/* initialize the channel and the chain with a null operation */
1841 	if (init) {
1842 		switch (ppc440spe_chan->device->id) {
1843 		case PPC440SPE_DMA0_ID:
1844 		case PPC440SPE_DMA1_ID:
1845 			ppc440spe_chan->hw_chain_inited = 0;
1846 			/* Use WXOR for self-testing */
1847 			if (!ppc440spe_r6_tchan)
1848 				ppc440spe_r6_tchan = ppc440spe_chan;
1849 			break;
1850 		case PPC440SPE_XOR_ID:
1851 			ppc440spe_chan_start_null_xor(ppc440spe_chan);
1852 			break;
1853 		default:
1854 			BUG();
1855 		}
1856 		ppc440spe_chan->needs_unmap = 1;
1857 	}
1858 
1859 	return (i > 0) ? i : -ENOMEM;
1860 }
1861 
1862 /**
1863  * ppc440spe_rxor_set_region_data -
1864  */
1865 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1866 	u8 xor_arg_no, u32 mask)
1867 {
1868 	struct xor_cb *xcb = desc->hw_desc;
1869 
1870 	xcb->ops[xor_arg_no].h |= mask;
1871 }
1872 
1873 /**
1874  * ppc440spe_rxor_set_src -
1875  */
1876 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1877 	u8 xor_arg_no, dma_addr_t addr)
1878 {
1879 	struct xor_cb *xcb = desc->hw_desc;
1880 
1881 	xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1882 	xcb->ops[xor_arg_no].l = addr;
1883 }
1884 
1885 /**
1886  * ppc440spe_rxor_set_mult -
1887  */
1888 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1889 	u8 xor_arg_no, u8 idx, u8 mult)
1890 {
1891 	struct xor_cb *xcb = desc->hw_desc;
1892 
1893 	xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1894 }
1895 
1896 /**
1897  * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1898  *	has been achieved
1899  */
1900 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1901 {
1902 	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1903 		chan->device->id, chan->pending);
1904 
1905 	if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1906 		chan->pending = 0;
1907 		ppc440spe_chan_append(chan);
1908 	}
1909 }
1910 
1911 /**
1912  * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1913  *	(it's not necessary that descriptors will be submitted to the h/w
1914  *	chains too right now)
1915  */
1916 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1917 {
1918 	struct ppc440spe_adma_desc_slot *sw_desc;
1919 	struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1920 	struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1921 	int slot_cnt;
1922 	int slots_per_op;
1923 	dma_cookie_t cookie;
1924 
1925 	sw_desc = tx_to_ppc440spe_adma_slot(tx);
1926 
1927 	group_start = sw_desc->group_head;
1928 	slot_cnt = group_start->slot_cnt;
1929 	slots_per_op = group_start->slots_per_op;
1930 
1931 	spin_lock_bh(&chan->lock);
1932 	cookie = dma_cookie_assign(tx);
1933 
1934 	if (unlikely(list_empty(&chan->chain))) {
1935 		/* first peer */
1936 		list_splice_init(&sw_desc->group_list, &chan->chain);
1937 		chan_first_cdb[chan->device->id] = group_start;
1938 	} else {
1939 		/* isn't first peer, bind CDBs to chain */
1940 		old_chain_tail = list_entry(chan->chain.prev,
1941 					struct ppc440spe_adma_desc_slot,
1942 					chain_node);
1943 		list_splice_init(&sw_desc->group_list,
1944 		    &old_chain_tail->chain_node);
1945 		/* fix up the hardware chain */
1946 		ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1947 	}
1948 
1949 	/* increment the pending count by the number of operations */
1950 	chan->pending += slot_cnt / slots_per_op;
1951 	ppc440spe_adma_check_threshold(chan);
1952 	spin_unlock_bh(&chan->lock);
1953 
1954 	dev_dbg(chan->device->common.dev,
1955 		"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1956 		chan->device->id, __func__,
1957 		sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1958 
1959 	return cookie;
1960 }
1961 
1962 /**
1963  * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1964  */
1965 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1966 		struct dma_chan *chan, unsigned long flags)
1967 {
1968 	struct ppc440spe_adma_chan *ppc440spe_chan;
1969 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1970 	int slot_cnt, slots_per_op;
1971 
1972 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1973 
1974 	dev_dbg(ppc440spe_chan->device->common.dev,
1975 		"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1976 		__func__);
1977 
1978 	spin_lock_bh(&ppc440spe_chan->lock);
1979 	slot_cnt = slots_per_op = 1;
1980 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1981 			slots_per_op);
1982 	if (sw_desc) {
1983 		group_start = sw_desc->group_head;
1984 		ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1985 		group_start->unmap_len = 0;
1986 		sw_desc->async_tx.flags = flags;
1987 	}
1988 	spin_unlock_bh(&ppc440spe_chan->lock);
1989 
1990 	return sw_desc ? &sw_desc->async_tx : NULL;
1991 }
1992 
1993 /**
1994  * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1995  */
1996 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1997 		struct dma_chan *chan, dma_addr_t dma_dest,
1998 		dma_addr_t dma_src, size_t len, unsigned long flags)
1999 {
2000 	struct ppc440spe_adma_chan *ppc440spe_chan;
2001 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2002 	int slot_cnt, slots_per_op;
2003 
2004 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2005 
2006 	if (unlikely(!len))
2007 		return NULL;
2008 
2009 	BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2010 
2011 	spin_lock_bh(&ppc440spe_chan->lock);
2012 
2013 	dev_dbg(ppc440spe_chan->device->common.dev,
2014 		"ppc440spe adma%d: %s len: %u int_en %d\n",
2015 		ppc440spe_chan->device->id, __func__, len,
2016 		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2017 	slot_cnt = slots_per_op = 1;
2018 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2019 		slots_per_op);
2020 	if (sw_desc) {
2021 		group_start = sw_desc->group_head;
2022 		ppc440spe_desc_init_memcpy(group_start, flags);
2023 		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2024 		ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2025 		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2026 		sw_desc->unmap_len = len;
2027 		sw_desc->async_tx.flags = flags;
2028 	}
2029 	spin_unlock_bh(&ppc440spe_chan->lock);
2030 
2031 	return sw_desc ? &sw_desc->async_tx : NULL;
2032 }
2033 
2034 /**
2035  * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2036  */
2037 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2038 		struct dma_chan *chan, dma_addr_t dma_dest,
2039 		dma_addr_t *dma_src, u32 src_cnt, size_t len,
2040 		unsigned long flags)
2041 {
2042 	struct ppc440spe_adma_chan *ppc440spe_chan;
2043 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2044 	int slot_cnt, slots_per_op;
2045 
2046 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2047 
2048 	ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2049 				     dma_dest, dma_src, src_cnt));
2050 	if (unlikely(!len))
2051 		return NULL;
2052 	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2053 
2054 	dev_dbg(ppc440spe_chan->device->common.dev,
2055 		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2056 		ppc440spe_chan->device->id, __func__, src_cnt, len,
2057 		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2058 
2059 	spin_lock_bh(&ppc440spe_chan->lock);
2060 	slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2061 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2062 			slots_per_op);
2063 	if (sw_desc) {
2064 		group_start = sw_desc->group_head;
2065 		ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2066 		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2067 		while (src_cnt--)
2068 			ppc440spe_adma_memcpy_xor_set_src(group_start,
2069 				dma_src[src_cnt], src_cnt);
2070 		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2071 		sw_desc->unmap_len = len;
2072 		sw_desc->async_tx.flags = flags;
2073 	}
2074 	spin_unlock_bh(&ppc440spe_chan->lock);
2075 
2076 	return sw_desc ? &sw_desc->async_tx : NULL;
2077 }
2078 
2079 static inline void
2080 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2081 				int src_cnt);
2082 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2083 
2084 /**
2085  * ppc440spe_adma_init_dma2rxor_slot -
2086  */
2087 static void ppc440spe_adma_init_dma2rxor_slot(
2088 		struct ppc440spe_adma_desc_slot *desc,
2089 		dma_addr_t *src, int src_cnt)
2090 {
2091 	int i;
2092 
2093 	/* initialize CDB */
2094 	for (i = 0; i < src_cnt; i++) {
2095 		ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2096 						 desc->src_cnt, (u32)src[i]);
2097 	}
2098 }
2099 
2100 /**
2101  * ppc440spe_dma01_prep_mult -
2102  * for Q operation where destination is also the source
2103  */
2104 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2105 		struct ppc440spe_adma_chan *ppc440spe_chan,
2106 		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2107 		const unsigned char *scf, size_t len, unsigned long flags)
2108 {
2109 	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2110 	unsigned long op = 0;
2111 	int slot_cnt;
2112 
2113 	set_bit(PPC440SPE_DESC_WXOR, &op);
2114 	slot_cnt = 2;
2115 
2116 	spin_lock_bh(&ppc440spe_chan->lock);
2117 
2118 	/* use WXOR, each descriptor occupies one slot */
2119 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2120 	if (sw_desc) {
2121 		struct ppc440spe_adma_chan *chan;
2122 		struct ppc440spe_adma_desc_slot *iter;
2123 		struct dma_cdb *hw_desc;
2124 
2125 		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2126 		set_bits(op, &sw_desc->flags);
2127 		sw_desc->src_cnt = src_cnt;
2128 		sw_desc->dst_cnt = dst_cnt;
2129 		/* First descriptor, zero data in the destination and copy it
2130 		 * to q page using MULTICAST transfer.
2131 		 */
2132 		iter = list_first_entry(&sw_desc->group_list,
2133 					struct ppc440spe_adma_desc_slot,
2134 					chain_node);
2135 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2136 		/* set 'next' pointer */
2137 		iter->hw_next = list_entry(iter->chain_node.next,
2138 					   struct ppc440spe_adma_desc_slot,
2139 					   chain_node);
2140 		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2141 		hw_desc = iter->hw_desc;
2142 		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2143 
2144 		ppc440spe_desc_set_dest_addr(iter, chan,
2145 					     DMA_CUED_XOR_BASE, dst[0], 0);
2146 		ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2147 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2148 					    src[0]);
2149 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2150 		iter->unmap_len = len;
2151 
2152 		/*
2153 		 * Second descriptor, multiply data from the q page
2154 		 * and store the result in real destination.
2155 		 */
2156 		iter = list_first_entry(&iter->chain_node,
2157 					struct ppc440spe_adma_desc_slot,
2158 					chain_node);
2159 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2160 		iter->hw_next = NULL;
2161 		if (flags & DMA_PREP_INTERRUPT)
2162 			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2163 		else
2164 			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2165 
2166 		hw_desc = iter->hw_desc;
2167 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2168 		ppc440spe_desc_set_src_addr(iter, chan, 0,
2169 					    DMA_CUED_XOR_HB, dst[1]);
2170 		ppc440spe_desc_set_dest_addr(iter, chan,
2171 					     DMA_CUED_XOR_BASE, dst[0], 0);
2172 
2173 		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2174 					    DMA_CDB_SG_DST1, scf[0]);
2175 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2176 		iter->unmap_len = len;
2177 		sw_desc->async_tx.flags = flags;
2178 	}
2179 
2180 	spin_unlock_bh(&ppc440spe_chan->lock);
2181 
2182 	return sw_desc;
2183 }
2184 
2185 /**
2186  * ppc440spe_dma01_prep_sum_product -
2187  * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2188  * the source.
2189  */
2190 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2191 		struct ppc440spe_adma_chan *ppc440spe_chan,
2192 		dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2193 		const unsigned char *scf, size_t len, unsigned long flags)
2194 {
2195 	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2196 	unsigned long op = 0;
2197 	int slot_cnt;
2198 
2199 	set_bit(PPC440SPE_DESC_WXOR, &op);
2200 	slot_cnt = 3;
2201 
2202 	spin_lock_bh(&ppc440spe_chan->lock);
2203 
2204 	/* WXOR, each descriptor occupies one slot */
2205 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2206 	if (sw_desc) {
2207 		struct ppc440spe_adma_chan *chan;
2208 		struct ppc440spe_adma_desc_slot *iter;
2209 		struct dma_cdb *hw_desc;
2210 
2211 		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2212 		set_bits(op, &sw_desc->flags);
2213 		sw_desc->src_cnt = src_cnt;
2214 		sw_desc->dst_cnt = 1;
2215 		/* 1st descriptor, src[1] data to q page and zero destination */
2216 		iter = list_first_entry(&sw_desc->group_list,
2217 					struct ppc440spe_adma_desc_slot,
2218 					chain_node);
2219 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2220 		iter->hw_next = list_entry(iter->chain_node.next,
2221 					   struct ppc440spe_adma_desc_slot,
2222 					   chain_node);
2223 		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2224 		hw_desc = iter->hw_desc;
2225 		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2226 
2227 		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2228 					     *dst, 0);
2229 		ppc440spe_desc_set_dest_addr(iter, chan, 0,
2230 					     ppc440spe_chan->qdest, 1);
2231 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2232 					    src[1]);
2233 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2234 		iter->unmap_len = len;
2235 
2236 		/* 2nd descriptor, multiply src[1] data and store the
2237 		 * result in destination */
2238 		iter = list_first_entry(&iter->chain_node,
2239 					struct ppc440spe_adma_desc_slot,
2240 					chain_node);
2241 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2242 		/* set 'next' pointer */
2243 		iter->hw_next = list_entry(iter->chain_node.next,
2244 					   struct ppc440spe_adma_desc_slot,
2245 					   chain_node);
2246 		if (flags & DMA_PREP_INTERRUPT)
2247 			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2248 		else
2249 			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2250 
2251 		hw_desc = iter->hw_desc;
2252 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2253 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2254 					    ppc440spe_chan->qdest);
2255 		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2256 					     *dst, 0);
2257 		ppc440spe_desc_set_src_mult(iter, chan,	DMA_CUED_MULT1_OFF,
2258 					    DMA_CDB_SG_DST1, scf[1]);
2259 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2260 		iter->unmap_len = len;
2261 
2262 		/*
2263 		 * 3rd descriptor, multiply src[0] data and xor it
2264 		 * with destination
2265 		 */
2266 		iter = list_first_entry(&iter->chain_node,
2267 					struct ppc440spe_adma_desc_slot,
2268 					chain_node);
2269 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2270 		iter->hw_next = NULL;
2271 		if (flags & DMA_PREP_INTERRUPT)
2272 			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2273 		else
2274 			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2275 
2276 		hw_desc = iter->hw_desc;
2277 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2278 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2279 					    src[0]);
2280 		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2281 					     *dst, 0);
2282 		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2283 					    DMA_CDB_SG_DST1, scf[0]);
2284 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2285 		iter->unmap_len = len;
2286 		sw_desc->async_tx.flags = flags;
2287 	}
2288 
2289 	spin_unlock_bh(&ppc440spe_chan->lock);
2290 
2291 	return sw_desc;
2292 }
2293 
2294 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2295 		struct ppc440spe_adma_chan *ppc440spe_chan,
2296 		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2297 		const unsigned char *scf, size_t len, unsigned long flags)
2298 {
2299 	int slot_cnt;
2300 	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2301 	unsigned long op = 0;
2302 	unsigned char mult = 1;
2303 
2304 	pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2305 		 __func__, dst_cnt, src_cnt, len);
2306 	/*  select operations WXOR/RXOR depending on the
2307 	 * source addresses of operators and the number
2308 	 * of destinations (RXOR support only Q-parity calculations)
2309 	 */
2310 	set_bit(PPC440SPE_DESC_WXOR, &op);
2311 	if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2312 		/* no active RXOR;
2313 		 * do RXOR if:
2314 		 * - there are more than 1 source,
2315 		 * - len is aligned on 512-byte boundary,
2316 		 * - source addresses fit to one of 4 possible regions.
2317 		 */
2318 		if (src_cnt > 1 &&
2319 		    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2320 		    (src[0] + len) == src[1]) {
2321 			/* may do RXOR R1 R2 */
2322 			set_bit(PPC440SPE_DESC_RXOR, &op);
2323 			if (src_cnt != 2) {
2324 				/* may try to enhance region of RXOR */
2325 				if ((src[1] + len) == src[2]) {
2326 					/* do RXOR R1 R2 R3 */
2327 					set_bit(PPC440SPE_DESC_RXOR123,
2328 						&op);
2329 				} else if ((src[1] + len * 2) == src[2]) {
2330 					/* do RXOR R1 R2 R4 */
2331 					set_bit(PPC440SPE_DESC_RXOR124, &op);
2332 				} else if ((src[1] + len * 3) == src[2]) {
2333 					/* do RXOR R1 R2 R5 */
2334 					set_bit(PPC440SPE_DESC_RXOR125,
2335 						&op);
2336 				} else {
2337 					/* do RXOR R1 R2 */
2338 					set_bit(PPC440SPE_DESC_RXOR12,
2339 						&op);
2340 				}
2341 			} else {
2342 				/* do RXOR R1 R2 */
2343 				set_bit(PPC440SPE_DESC_RXOR12, &op);
2344 			}
2345 		}
2346 
2347 		if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2348 			/* can not do this operation with RXOR */
2349 			clear_bit(PPC440SPE_RXOR_RUN,
2350 				&ppc440spe_rxor_state);
2351 		} else {
2352 			/* can do; set block size right now */
2353 			ppc440spe_desc_set_rxor_block_size(len);
2354 		}
2355 	}
2356 
2357 	/* Number of necessary slots depends on operation type selected */
2358 	if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2359 		/*  This is a WXOR only chain. Need descriptors for each
2360 		 * source to GF-XOR them with WXOR, and need descriptors
2361 		 * for each destination to zero them with WXOR
2362 		 */
2363 		slot_cnt = src_cnt;
2364 
2365 		if (flags & DMA_PREP_ZERO_P) {
2366 			slot_cnt++;
2367 			set_bit(PPC440SPE_ZERO_P, &op);
2368 		}
2369 		if (flags & DMA_PREP_ZERO_Q) {
2370 			slot_cnt++;
2371 			set_bit(PPC440SPE_ZERO_Q, &op);
2372 		}
2373 	} else {
2374 		/*  Need 1/2 descriptor for RXOR operation, and
2375 		 * need (src_cnt - (2 or 3)) for WXOR of sources
2376 		 * remained (if any)
2377 		 */
2378 		slot_cnt = dst_cnt;
2379 
2380 		if (flags & DMA_PREP_ZERO_P)
2381 			set_bit(PPC440SPE_ZERO_P, &op);
2382 		if (flags & DMA_PREP_ZERO_Q)
2383 			set_bit(PPC440SPE_ZERO_Q, &op);
2384 
2385 		if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2386 			slot_cnt += src_cnt - 2;
2387 		else
2388 			slot_cnt += src_cnt - 3;
2389 
2390 		/*  Thus we have either RXOR only chain or
2391 		 * mixed RXOR/WXOR
2392 		 */
2393 		if (slot_cnt == dst_cnt)
2394 			/* RXOR only chain */
2395 			clear_bit(PPC440SPE_DESC_WXOR, &op);
2396 	}
2397 
2398 	spin_lock_bh(&ppc440spe_chan->lock);
2399 	/* for both RXOR/WXOR each descriptor occupies one slot */
2400 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2401 	if (sw_desc) {
2402 		ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2403 				flags, op);
2404 
2405 		/* setup dst/src/mult */
2406 		pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2407 			 __func__, dst[0], dst[1]);
2408 		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2409 		while (src_cnt--) {
2410 			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2411 						  src_cnt);
2412 
2413 			/* NOTE: "Multi = 0 is equivalent to = 1" as it
2414 			 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2415 			 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2416 			 * leads to zeroing source data after RXOR.
2417 			 * So, for P case set-up mult=1 explicitly.
2418 			 */
2419 			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2420 				mult = scf[src_cnt];
2421 			ppc440spe_adma_pq_set_src_mult(sw_desc,
2422 				mult, src_cnt,  dst_cnt - 1);
2423 		}
2424 
2425 		/* Setup byte count foreach slot just allocated */
2426 		sw_desc->async_tx.flags = flags;
2427 		list_for_each_entry(iter, &sw_desc->group_list,
2428 				chain_node) {
2429 			ppc440spe_desc_set_byte_count(iter,
2430 				ppc440spe_chan, len);
2431 			iter->unmap_len = len;
2432 		}
2433 	}
2434 	spin_unlock_bh(&ppc440spe_chan->lock);
2435 
2436 	return sw_desc;
2437 }
2438 
2439 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2440 		struct ppc440spe_adma_chan *ppc440spe_chan,
2441 		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2442 		const unsigned char *scf, size_t len, unsigned long flags)
2443 {
2444 	int slot_cnt, descs_per_op;
2445 	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2446 	unsigned long op = 0;
2447 	unsigned char mult = 1;
2448 
2449 	BUG_ON(!dst_cnt);
2450 	/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2451 		 __func__, dst_cnt, src_cnt, len);*/
2452 
2453 	spin_lock_bh(&ppc440spe_chan->lock);
2454 	descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2455 	if (descs_per_op < 0) {
2456 		spin_unlock_bh(&ppc440spe_chan->lock);
2457 		return NULL;
2458 	}
2459 
2460 	/* depending on number of sources we have 1 or 2 RXOR chains */
2461 	slot_cnt = descs_per_op * dst_cnt;
2462 
2463 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2464 	if (sw_desc) {
2465 		op = slot_cnt;
2466 		sw_desc->async_tx.flags = flags;
2467 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2468 			ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2469 				--op ? 0 : flags);
2470 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2471 				len);
2472 			iter->unmap_len = len;
2473 
2474 			ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2475 			iter->rxor_cursor.len = len;
2476 			iter->descs_per_op = descs_per_op;
2477 		}
2478 		op = 0;
2479 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2480 			op++;
2481 			if (op % descs_per_op == 0)
2482 				ppc440spe_adma_init_dma2rxor_slot(iter, src,
2483 								  src_cnt);
2484 			if (likely(!list_is_last(&iter->chain_node,
2485 						 &sw_desc->group_list))) {
2486 				/* set 'next' pointer */
2487 				iter->hw_next =
2488 					list_entry(iter->chain_node.next,
2489 						struct ppc440spe_adma_desc_slot,
2490 						chain_node);
2491 				ppc440spe_xor_set_link(iter, iter->hw_next);
2492 			} else {
2493 				/* this is the last descriptor. */
2494 				iter->hw_next = NULL;
2495 			}
2496 		}
2497 
2498 		/* fixup head descriptor */
2499 		sw_desc->dst_cnt = dst_cnt;
2500 		if (flags & DMA_PREP_ZERO_P)
2501 			set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2502 		if (flags & DMA_PREP_ZERO_Q)
2503 			set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2504 
2505 		/* setup dst/src/mult */
2506 		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2507 
2508 		while (src_cnt--) {
2509 			/* handle descriptors (if dst_cnt == 2) inside
2510 			 * the ppc440spe_adma_pq_set_srcxxx() functions
2511 			 */
2512 			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2513 						  src_cnt);
2514 			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2515 				mult = scf[src_cnt];
2516 			ppc440spe_adma_pq_set_src_mult(sw_desc,
2517 					mult, src_cnt, dst_cnt - 1);
2518 		}
2519 	}
2520 	spin_unlock_bh(&ppc440spe_chan->lock);
2521 	ppc440spe_desc_set_rxor_block_size(len);
2522 	return sw_desc;
2523 }
2524 
2525 /**
2526  * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2527  */
2528 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2529 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2530 		unsigned int src_cnt, const unsigned char *scf,
2531 		size_t len, unsigned long flags)
2532 {
2533 	struct ppc440spe_adma_chan *ppc440spe_chan;
2534 	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2535 	int dst_cnt = 0;
2536 
2537 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2538 
2539 	ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2540 				    dst, src, src_cnt));
2541 	BUG_ON(!len);
2542 	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2543 	BUG_ON(!src_cnt);
2544 
2545 	if (src_cnt == 1 && dst[1] == src[0]) {
2546 		dma_addr_t dest[2];
2547 
2548 		/* dst[1] is real destination (Q) */
2549 		dest[0] = dst[1];
2550 		/* this is the page to multicast source data to */
2551 		dest[1] = ppc440spe_chan->qdest;
2552 		sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2553 				dest, 2, src, src_cnt, scf, len, flags);
2554 		return sw_desc ? &sw_desc->async_tx : NULL;
2555 	}
2556 
2557 	if (src_cnt == 2 && dst[1] == src[1]) {
2558 		sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2559 					&dst[1], src, 2, scf, len, flags);
2560 		return sw_desc ? &sw_desc->async_tx : NULL;
2561 	}
2562 
2563 	if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2564 		BUG_ON(!dst[0]);
2565 		dst_cnt++;
2566 		flags |= DMA_PREP_ZERO_P;
2567 	}
2568 
2569 	if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2570 		BUG_ON(!dst[1]);
2571 		dst_cnt++;
2572 		flags |= DMA_PREP_ZERO_Q;
2573 	}
2574 
2575 	BUG_ON(!dst_cnt);
2576 
2577 	dev_dbg(ppc440spe_chan->device->common.dev,
2578 		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2579 		ppc440spe_chan->device->id, __func__, src_cnt, len,
2580 		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2581 
2582 	switch (ppc440spe_chan->device->id) {
2583 	case PPC440SPE_DMA0_ID:
2584 	case PPC440SPE_DMA1_ID:
2585 		sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2586 				dst, dst_cnt, src, src_cnt, scf,
2587 				len, flags);
2588 		break;
2589 
2590 	case PPC440SPE_XOR_ID:
2591 		sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2592 				dst, dst_cnt, src, src_cnt, scf,
2593 				len, flags);
2594 		break;
2595 	}
2596 
2597 	return sw_desc ? &sw_desc->async_tx : NULL;
2598 }
2599 
2600 /**
2601  * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2602  * a PQ_ZERO_SUM operation
2603  */
2604 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2605 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2606 		unsigned int src_cnt, const unsigned char *scf, size_t len,
2607 		enum sum_check_flags *pqres, unsigned long flags)
2608 {
2609 	struct ppc440spe_adma_chan *ppc440spe_chan;
2610 	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2611 	dma_addr_t pdest, qdest;
2612 	int slot_cnt, slots_per_op, idst, dst_cnt;
2613 
2614 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2615 
2616 	if (flags & DMA_PREP_PQ_DISABLE_P)
2617 		pdest = 0;
2618 	else
2619 		pdest = pq[0];
2620 
2621 	if (flags & DMA_PREP_PQ_DISABLE_Q)
2622 		qdest = 0;
2623 	else
2624 		qdest = pq[1];
2625 
2626 	ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2627 					    src, src_cnt, scf));
2628 
2629 	/* Always use WXOR for P/Q calculations (two destinations).
2630 	 * Need 1 or 2 extra slots to verify results are zero.
2631 	 */
2632 	idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2633 
2634 	/* One additional slot per destination to clone P/Q
2635 	 * before calculation (we have to preserve destinations).
2636 	 */
2637 	slot_cnt = src_cnt + dst_cnt * 2;
2638 	slots_per_op = 1;
2639 
2640 	spin_lock_bh(&ppc440spe_chan->lock);
2641 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2642 					     slots_per_op);
2643 	if (sw_desc) {
2644 		ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2645 
2646 		/* Setup byte count for each slot just allocated */
2647 		sw_desc->async_tx.flags = flags;
2648 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2649 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2650 						      len);
2651 			iter->unmap_len = len;
2652 		}
2653 
2654 		if (pdest) {
2655 			struct dma_cdb *hw_desc;
2656 			struct ppc440spe_adma_chan *chan;
2657 
2658 			iter = sw_desc->group_head;
2659 			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2660 			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2661 			iter->hw_next = list_entry(iter->chain_node.next,
2662 						struct ppc440spe_adma_desc_slot,
2663 						chain_node);
2664 			hw_desc = iter->hw_desc;
2665 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2666 			iter->src_cnt = 0;
2667 			iter->dst_cnt = 0;
2668 			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2669 						     ppc440spe_chan->pdest, 0);
2670 			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2671 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2672 						      len);
2673 			iter->unmap_len = 0;
2674 			/* override pdest to preserve original P */
2675 			pdest = ppc440spe_chan->pdest;
2676 		}
2677 		if (qdest) {
2678 			struct dma_cdb *hw_desc;
2679 			struct ppc440spe_adma_chan *chan;
2680 
2681 			iter = list_first_entry(&sw_desc->group_list,
2682 						struct ppc440spe_adma_desc_slot,
2683 						chain_node);
2684 			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2685 
2686 			if (pdest) {
2687 				iter = list_entry(iter->chain_node.next,
2688 						struct ppc440spe_adma_desc_slot,
2689 						chain_node);
2690 			}
2691 
2692 			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2693 			iter->hw_next = list_entry(iter->chain_node.next,
2694 						struct ppc440spe_adma_desc_slot,
2695 						chain_node);
2696 			hw_desc = iter->hw_desc;
2697 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2698 			iter->src_cnt = 0;
2699 			iter->dst_cnt = 0;
2700 			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2701 						     ppc440spe_chan->qdest, 0);
2702 			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2703 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2704 						      len);
2705 			iter->unmap_len = 0;
2706 			/* override qdest to preserve original Q */
2707 			qdest = ppc440spe_chan->qdest;
2708 		}
2709 
2710 		/* Setup destinations for P/Q ops */
2711 		ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2712 
2713 		/* Setup zero QWORDs into DCHECK CDBs */
2714 		idst = dst_cnt;
2715 		list_for_each_entry_reverse(iter, &sw_desc->group_list,
2716 					    chain_node) {
2717 			/*
2718 			 * The last CDB corresponds to Q-parity check,
2719 			 * the one before last CDB corresponds
2720 			 * P-parity check
2721 			 */
2722 			if (idst == DMA_DEST_MAX_NUM) {
2723 				if (idst == dst_cnt) {
2724 					set_bit(PPC440SPE_DESC_QCHECK,
2725 						&iter->flags);
2726 				} else {
2727 					set_bit(PPC440SPE_DESC_PCHECK,
2728 						&iter->flags);
2729 				}
2730 			} else {
2731 				if (qdest) {
2732 					set_bit(PPC440SPE_DESC_QCHECK,
2733 						&iter->flags);
2734 				} else {
2735 					set_bit(PPC440SPE_DESC_PCHECK,
2736 						&iter->flags);
2737 				}
2738 			}
2739 			iter->xor_check_result = pqres;
2740 
2741 			/*
2742 			 * set it to zero, if check fail then result will
2743 			 * be updated
2744 			 */
2745 			*iter->xor_check_result = 0;
2746 			ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2747 				ppc440spe_qword);
2748 
2749 			if (!(--dst_cnt))
2750 				break;
2751 		}
2752 
2753 		/* Setup sources and mults for P/Q ops */
2754 		list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2755 						     chain_node) {
2756 			struct ppc440spe_adma_chan *chan;
2757 			u32 mult_dst;
2758 
2759 			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2760 			ppc440spe_desc_set_src_addr(iter, chan, 0,
2761 						    DMA_CUED_XOR_HB,
2762 						    src[src_cnt - 1]);
2763 			if (qdest) {
2764 				mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2765 							   DMA_CDB_SG_DST1;
2766 				ppc440spe_desc_set_src_mult(iter, chan,
2767 							    DMA_CUED_MULT1_OFF,
2768 							    mult_dst,
2769 							    scf[src_cnt - 1]);
2770 			}
2771 			if (!(--src_cnt))
2772 				break;
2773 		}
2774 	}
2775 	spin_unlock_bh(&ppc440spe_chan->lock);
2776 	return sw_desc ? &sw_desc->async_tx : NULL;
2777 }
2778 
2779 /**
2780  * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2781  * XOR ZERO_SUM operation
2782  */
2783 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2784 		struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2785 		size_t len, enum sum_check_flags *result, unsigned long flags)
2786 {
2787 	struct dma_async_tx_descriptor *tx;
2788 	dma_addr_t pq[2];
2789 
2790 	/* validate P, disable Q */
2791 	pq[0] = src[0];
2792 	pq[1] = 0;
2793 	flags |= DMA_PREP_PQ_DISABLE_Q;
2794 
2795 	tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2796 						src_cnt - 1, 0, len,
2797 						result, flags);
2798 	return tx;
2799 }
2800 
2801 /**
2802  * ppc440spe_adma_set_dest - set destination address into descriptor
2803  */
2804 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2805 		dma_addr_t addr, int index)
2806 {
2807 	struct ppc440spe_adma_chan *chan;
2808 
2809 	BUG_ON(index >= sw_desc->dst_cnt);
2810 
2811 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2812 
2813 	switch (chan->device->id) {
2814 	case PPC440SPE_DMA0_ID:
2815 	case PPC440SPE_DMA1_ID:
2816 		/* to do: support transfers lengths >
2817 		 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2818 		 */
2819 		ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2820 			chan, 0, addr, index);
2821 		break;
2822 	case PPC440SPE_XOR_ID:
2823 		sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2824 		ppc440spe_desc_set_dest_addr(sw_desc,
2825 			chan, 0, addr, index);
2826 		break;
2827 	}
2828 }
2829 
2830 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2831 		struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2832 {
2833 	/*  To clear destinations update the descriptor
2834 	 * (P or Q depending on index) as follows:
2835 	 * addr is destination (0 corresponds to SG2):
2836 	 */
2837 	ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2838 
2839 	/* ... and the addr is source: */
2840 	ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2841 
2842 	/* addr is always SG2 then the mult is always DST1 */
2843 	ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2844 				    DMA_CDB_SG_DST1, 1);
2845 }
2846 
2847 /**
2848  * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2849  * for the PQXOR operation
2850  */
2851 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2852 		dma_addr_t *addrs, unsigned long flags)
2853 {
2854 	struct ppc440spe_adma_desc_slot *iter;
2855 	struct ppc440spe_adma_chan *chan;
2856 	dma_addr_t paddr, qaddr;
2857 	dma_addr_t addr = 0, ppath, qpath;
2858 	int index = 0, i;
2859 
2860 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2861 
2862 	if (flags & DMA_PREP_PQ_DISABLE_P)
2863 		paddr = 0;
2864 	else
2865 		paddr = addrs[0];
2866 
2867 	if (flags & DMA_PREP_PQ_DISABLE_Q)
2868 		qaddr = 0;
2869 	else
2870 		qaddr = addrs[1];
2871 
2872 	if (!paddr || !qaddr)
2873 		addr = paddr ? paddr : qaddr;
2874 
2875 	switch (chan->device->id) {
2876 	case PPC440SPE_DMA0_ID:
2877 	case PPC440SPE_DMA1_ID:
2878 		/* walk through the WXOR source list and set P/Q-destinations
2879 		 * for each slot:
2880 		 */
2881 		if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2882 			/* This is WXOR-only chain; may have 1/2 zero descs */
2883 			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2884 				index++;
2885 			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2886 				index++;
2887 
2888 			iter = ppc440spe_get_group_entry(sw_desc, index);
2889 			if (addr) {
2890 				/* one destination */
2891 				list_for_each_entry_from(iter,
2892 					&sw_desc->group_list, chain_node)
2893 					ppc440spe_desc_set_dest_addr(iter, chan,
2894 						DMA_CUED_XOR_BASE, addr, 0);
2895 			} else {
2896 				/* two destinations */
2897 				list_for_each_entry_from(iter,
2898 					&sw_desc->group_list, chain_node) {
2899 					ppc440spe_desc_set_dest_addr(iter, chan,
2900 						DMA_CUED_XOR_BASE, paddr, 0);
2901 					ppc440spe_desc_set_dest_addr(iter, chan,
2902 						DMA_CUED_XOR_BASE, qaddr, 1);
2903 				}
2904 			}
2905 
2906 			if (index) {
2907 				/*  To clear destinations update the descriptor
2908 				 * (1st,2nd, or both depending on flags)
2909 				 */
2910 				index = 0;
2911 				if (test_bit(PPC440SPE_ZERO_P,
2912 						&sw_desc->flags)) {
2913 					iter = ppc440spe_get_group_entry(
2914 							sw_desc, index++);
2915 					ppc440spe_adma_pq_zero_op(iter, chan,
2916 							paddr);
2917 				}
2918 
2919 				if (test_bit(PPC440SPE_ZERO_Q,
2920 						&sw_desc->flags)) {
2921 					iter = ppc440spe_get_group_entry(
2922 							sw_desc, index++);
2923 					ppc440spe_adma_pq_zero_op(iter, chan,
2924 							qaddr);
2925 				}
2926 
2927 				return;
2928 			}
2929 		} else {
2930 			/* This is RXOR-only or RXOR/WXOR mixed chain */
2931 
2932 			/* If we want to include destination into calculations,
2933 			 * then make dest addresses cued with mult=1 (XOR).
2934 			 */
2935 			ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2936 					DMA_CUED_XOR_HB :
2937 					DMA_CUED_XOR_BASE |
2938 						(1 << DMA_CUED_MULT1_OFF);
2939 			qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2940 					DMA_CUED_XOR_HB :
2941 					DMA_CUED_XOR_BASE |
2942 						(1 << DMA_CUED_MULT1_OFF);
2943 
2944 			/* Setup destination(s) in RXOR slot(s) */
2945 			iter = ppc440spe_get_group_entry(sw_desc, index++);
2946 			ppc440spe_desc_set_dest_addr(iter, chan,
2947 						paddr ? ppath : qpath,
2948 						paddr ? paddr : qaddr, 0);
2949 			if (!addr) {
2950 				/* two destinations */
2951 				iter = ppc440spe_get_group_entry(sw_desc,
2952 								 index++);
2953 				ppc440spe_desc_set_dest_addr(iter, chan,
2954 						qpath, qaddr, 0);
2955 			}
2956 
2957 			if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2958 				/* Setup destination(s) in remaining WXOR
2959 				 * slots
2960 				 */
2961 				iter = ppc440spe_get_group_entry(sw_desc,
2962 								 index);
2963 				if (addr) {
2964 					/* one destination */
2965 					list_for_each_entry_from(iter,
2966 					    &sw_desc->group_list,
2967 					    chain_node)
2968 						ppc440spe_desc_set_dest_addr(
2969 							iter, chan,
2970 							DMA_CUED_XOR_BASE,
2971 							addr, 0);
2972 
2973 				} else {
2974 					/* two destinations */
2975 					list_for_each_entry_from(iter,
2976 					    &sw_desc->group_list,
2977 					    chain_node) {
2978 						ppc440spe_desc_set_dest_addr(
2979 							iter, chan,
2980 							DMA_CUED_XOR_BASE,
2981 							paddr, 0);
2982 						ppc440spe_desc_set_dest_addr(
2983 							iter, chan,
2984 							DMA_CUED_XOR_BASE,
2985 							qaddr, 1);
2986 					}
2987 				}
2988 			}
2989 
2990 		}
2991 		break;
2992 
2993 	case PPC440SPE_XOR_ID:
2994 		/* DMA2 descriptors have only 1 destination, so there are
2995 		 * two chains - one for each dest.
2996 		 * If we want to include destination into calculations,
2997 		 * then make dest addresses cued with mult=1 (XOR).
2998 		 */
2999 		ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3000 				DMA_CUED_XOR_HB :
3001 				DMA_CUED_XOR_BASE |
3002 					(1 << DMA_CUED_MULT1_OFF);
3003 
3004 		qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3005 				DMA_CUED_XOR_HB :
3006 				DMA_CUED_XOR_BASE |
3007 					(1 << DMA_CUED_MULT1_OFF);
3008 
3009 		iter = ppc440spe_get_group_entry(sw_desc, 0);
3010 		for (i = 0; i < sw_desc->descs_per_op; i++) {
3011 			ppc440spe_desc_set_dest_addr(iter, chan,
3012 				paddr ? ppath : qpath,
3013 				paddr ? paddr : qaddr, 0);
3014 			iter = list_entry(iter->chain_node.next,
3015 					  struct ppc440spe_adma_desc_slot,
3016 					  chain_node);
3017 		}
3018 
3019 		if (!addr) {
3020 			/* Two destinations; setup Q here */
3021 			iter = ppc440spe_get_group_entry(sw_desc,
3022 				sw_desc->descs_per_op);
3023 			for (i = 0; i < sw_desc->descs_per_op; i++) {
3024 				ppc440spe_desc_set_dest_addr(iter,
3025 					chan, qpath, qaddr, 0);
3026 				iter = list_entry(iter->chain_node.next,
3027 						struct ppc440spe_adma_desc_slot,
3028 						chain_node);
3029 			}
3030 		}
3031 
3032 		break;
3033 	}
3034 }
3035 
3036 /**
3037  * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3038  * for the PQ_ZERO_SUM operation
3039  */
3040 static void ppc440spe_adma_pqzero_sum_set_dest(
3041 		struct ppc440spe_adma_desc_slot *sw_desc,
3042 		dma_addr_t paddr, dma_addr_t qaddr)
3043 {
3044 	struct ppc440spe_adma_desc_slot *iter, *end;
3045 	struct ppc440spe_adma_chan *chan;
3046 	dma_addr_t addr = 0;
3047 	int idx;
3048 
3049 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3050 
3051 	/* walk through the WXOR source list and set P/Q-destinations
3052 	 * for each slot
3053 	 */
3054 	idx = (paddr && qaddr) ? 2 : 1;
3055 	/* set end */
3056 	list_for_each_entry_reverse(end, &sw_desc->group_list,
3057 				    chain_node) {
3058 		if (!(--idx))
3059 			break;
3060 	}
3061 	/* set start */
3062 	idx = (paddr && qaddr) ? 2 : 1;
3063 	iter = ppc440spe_get_group_entry(sw_desc, idx);
3064 
3065 	if (paddr && qaddr) {
3066 		/* two destinations */
3067 		list_for_each_entry_from(iter, &sw_desc->group_list,
3068 					 chain_node) {
3069 			if (unlikely(iter == end))
3070 				break;
3071 			ppc440spe_desc_set_dest_addr(iter, chan,
3072 						DMA_CUED_XOR_BASE, paddr, 0);
3073 			ppc440spe_desc_set_dest_addr(iter, chan,
3074 						DMA_CUED_XOR_BASE, qaddr, 1);
3075 		}
3076 	} else {
3077 		/* one destination */
3078 		addr = paddr ? paddr : qaddr;
3079 		list_for_each_entry_from(iter, &sw_desc->group_list,
3080 					 chain_node) {
3081 			if (unlikely(iter == end))
3082 				break;
3083 			ppc440spe_desc_set_dest_addr(iter, chan,
3084 						DMA_CUED_XOR_BASE, addr, 0);
3085 		}
3086 	}
3087 
3088 	/*  The remaining descriptors are DATACHECK. These have no need in
3089 	 * destination. Actually, these destinations are used there
3090 	 * as sources for check operation. So, set addr as source.
3091 	 */
3092 	ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3093 
3094 	if (!addr) {
3095 		end = list_entry(end->chain_node.next,
3096 				 struct ppc440spe_adma_desc_slot, chain_node);
3097 		ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3098 	}
3099 }
3100 
3101 /**
3102  * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3103  */
3104 static inline void ppc440spe_desc_set_xor_src_cnt(
3105 			struct ppc440spe_adma_desc_slot *desc,
3106 			int src_cnt)
3107 {
3108 	struct xor_cb *hw_desc = desc->hw_desc;
3109 
3110 	hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3111 	hw_desc->cbc |= src_cnt;
3112 }
3113 
3114 /**
3115  * ppc440spe_adma_pq_set_src - set source address into descriptor
3116  */
3117 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3118 		dma_addr_t addr, int index)
3119 {
3120 	struct ppc440spe_adma_chan *chan;
3121 	dma_addr_t haddr = 0;
3122 	struct ppc440spe_adma_desc_slot *iter = NULL;
3123 
3124 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3125 
3126 	switch (chan->device->id) {
3127 	case PPC440SPE_DMA0_ID:
3128 	case PPC440SPE_DMA1_ID:
3129 		/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3130 		 */
3131 		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3132 			/* RXOR-only or RXOR/WXOR operation */
3133 			int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3134 				&sw_desc->flags) ?  2 : 3;
3135 
3136 			if (index == 0) {
3137 				/* 1st slot (RXOR) */
3138 				/* setup sources region (R1-2-3, R1-2-4,
3139 				 * or R1-2-5)
3140 				 */
3141 				if (test_bit(PPC440SPE_DESC_RXOR12,
3142 						&sw_desc->flags))
3143 					haddr = DMA_RXOR12 <<
3144 						DMA_CUED_REGION_OFF;
3145 				else if (test_bit(PPC440SPE_DESC_RXOR123,
3146 				    &sw_desc->flags))
3147 					haddr = DMA_RXOR123 <<
3148 						DMA_CUED_REGION_OFF;
3149 				else if (test_bit(PPC440SPE_DESC_RXOR124,
3150 				    &sw_desc->flags))
3151 					haddr = DMA_RXOR124 <<
3152 						DMA_CUED_REGION_OFF;
3153 				else if (test_bit(PPC440SPE_DESC_RXOR125,
3154 				    &sw_desc->flags))
3155 					haddr = DMA_RXOR125 <<
3156 						DMA_CUED_REGION_OFF;
3157 				else
3158 					BUG();
3159 				haddr |= DMA_CUED_XOR_BASE;
3160 				iter = ppc440spe_get_group_entry(sw_desc, 0);
3161 			} else if (index < iskip) {
3162 				/* 1st slot (RXOR)
3163 				 * shall actually set source address only once
3164 				 * instead of first <iskip>
3165 				 */
3166 				iter = NULL;
3167 			} else {
3168 				/* 2nd/3d and next slots (WXOR);
3169 				 * skip first slot with RXOR
3170 				 */
3171 				haddr = DMA_CUED_XOR_HB;
3172 				iter = ppc440spe_get_group_entry(sw_desc,
3173 				    index - iskip + sw_desc->dst_cnt);
3174 			}
3175 		} else {
3176 			int znum = 0;
3177 
3178 			/* WXOR-only operation; skip first slots with
3179 			 * zeroing destinations
3180 			 */
3181 			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3182 				znum++;
3183 			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3184 				znum++;
3185 
3186 			haddr = DMA_CUED_XOR_HB;
3187 			iter = ppc440spe_get_group_entry(sw_desc,
3188 					index + znum);
3189 		}
3190 
3191 		if (likely(iter)) {
3192 			ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3193 
3194 			if (!index &&
3195 			    test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3196 			    sw_desc->dst_cnt == 2) {
3197 				/* if we have two destinations for RXOR, then
3198 				 * setup source in the second descr too
3199 				 */
3200 				iter = ppc440spe_get_group_entry(sw_desc, 1);
3201 				ppc440spe_desc_set_src_addr(iter, chan, 0,
3202 					haddr, addr);
3203 			}
3204 		}
3205 		break;
3206 
3207 	case PPC440SPE_XOR_ID:
3208 		/* DMA2 may do Biskup */
3209 		iter = sw_desc->group_head;
3210 		if (iter->dst_cnt == 2) {
3211 			/* both P & Q calculations required; set P src here */
3212 			ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3213 
3214 			/* this is for Q */
3215 			iter = ppc440spe_get_group_entry(sw_desc,
3216 				sw_desc->descs_per_op);
3217 		}
3218 		ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3219 		break;
3220 	}
3221 }
3222 
3223 /**
3224  * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3225  */
3226 static void ppc440spe_adma_memcpy_xor_set_src(
3227 		struct ppc440spe_adma_desc_slot *sw_desc,
3228 		dma_addr_t addr, int index)
3229 {
3230 	struct ppc440spe_adma_chan *chan;
3231 
3232 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3233 	sw_desc = sw_desc->group_head;
3234 
3235 	if (likely(sw_desc))
3236 		ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3237 }
3238 
3239 /**
3240  * ppc440spe_adma_dma2rxor_inc_addr  -
3241  */
3242 static void ppc440spe_adma_dma2rxor_inc_addr(
3243 		struct ppc440spe_adma_desc_slot *desc,
3244 		struct ppc440spe_rxor *cursor, int index, int src_cnt)
3245 {
3246 	cursor->addr_count++;
3247 	if (index == src_cnt - 1) {
3248 		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3249 	} else if (cursor->addr_count == XOR_MAX_OPS) {
3250 		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3251 		cursor->addr_count = 0;
3252 		cursor->desc_count++;
3253 	}
3254 }
3255 
3256 /**
3257  * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3258  */
3259 static int ppc440spe_adma_dma2rxor_prep_src(
3260 		struct ppc440spe_adma_desc_slot *hdesc,
3261 		struct ppc440spe_rxor *cursor, int index,
3262 		int src_cnt, u32 addr)
3263 {
3264 	int rval = 0;
3265 	u32 sign;
3266 	struct ppc440spe_adma_desc_slot *desc = hdesc;
3267 	int i;
3268 
3269 	for (i = 0; i < cursor->desc_count; i++) {
3270 		desc = list_entry(hdesc->chain_node.next,
3271 				  struct ppc440spe_adma_desc_slot,
3272 				  chain_node);
3273 	}
3274 
3275 	switch (cursor->state) {
3276 	case 0:
3277 		if (addr == cursor->addrl + cursor->len) {
3278 			/* direct RXOR */
3279 			cursor->state = 1;
3280 			cursor->xor_count++;
3281 			if (index == src_cnt-1) {
3282 				ppc440spe_rxor_set_region(desc,
3283 					cursor->addr_count,
3284 					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3285 				ppc440spe_adma_dma2rxor_inc_addr(
3286 					desc, cursor, index, src_cnt);
3287 			}
3288 		} else if (cursor->addrl == addr + cursor->len) {
3289 			/* reverse RXOR */
3290 			cursor->state = 1;
3291 			cursor->xor_count++;
3292 			set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3293 			if (index == src_cnt-1) {
3294 				ppc440spe_rxor_set_region(desc,
3295 					cursor->addr_count,
3296 					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3297 				ppc440spe_adma_dma2rxor_inc_addr(
3298 					desc, cursor, index, src_cnt);
3299 			}
3300 		} else {
3301 			printk(KERN_ERR "Cannot build "
3302 				"DMA2 RXOR command block.\n");
3303 			BUG();
3304 		}
3305 		break;
3306 	case 1:
3307 		sign = test_bit(cursor->addr_count,
3308 				desc->reverse_flags)
3309 			? -1 : 1;
3310 		if (index == src_cnt-2 || (sign == -1
3311 			&& addr != cursor->addrl - 2*cursor->len)) {
3312 			cursor->state = 0;
3313 			cursor->xor_count = 1;
3314 			cursor->addrl = addr;
3315 			ppc440spe_rxor_set_region(desc,
3316 				cursor->addr_count,
3317 				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3318 			ppc440spe_adma_dma2rxor_inc_addr(
3319 				desc, cursor, index, src_cnt);
3320 		} else if (addr == cursor->addrl + 2*sign*cursor->len) {
3321 			cursor->state = 2;
3322 			cursor->xor_count = 0;
3323 			ppc440spe_rxor_set_region(desc,
3324 				cursor->addr_count,
3325 				DMA_RXOR123 << DMA_CUED_REGION_OFF);
3326 			if (index == src_cnt-1) {
3327 				ppc440spe_adma_dma2rxor_inc_addr(
3328 					desc, cursor, index, src_cnt);
3329 			}
3330 		} else if (addr == cursor->addrl + 3*cursor->len) {
3331 			cursor->state = 2;
3332 			cursor->xor_count = 0;
3333 			ppc440spe_rxor_set_region(desc,
3334 				cursor->addr_count,
3335 				DMA_RXOR124 << DMA_CUED_REGION_OFF);
3336 			if (index == src_cnt-1) {
3337 				ppc440spe_adma_dma2rxor_inc_addr(
3338 					desc, cursor, index, src_cnt);
3339 			}
3340 		} else if (addr == cursor->addrl + 4*cursor->len) {
3341 			cursor->state = 2;
3342 			cursor->xor_count = 0;
3343 			ppc440spe_rxor_set_region(desc,
3344 				cursor->addr_count,
3345 				DMA_RXOR125 << DMA_CUED_REGION_OFF);
3346 			if (index == src_cnt-1) {
3347 				ppc440spe_adma_dma2rxor_inc_addr(
3348 					desc, cursor, index, src_cnt);
3349 			}
3350 		} else {
3351 			cursor->state = 0;
3352 			cursor->xor_count = 1;
3353 			cursor->addrl = addr;
3354 			ppc440spe_rxor_set_region(desc,
3355 				cursor->addr_count,
3356 				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3357 			ppc440spe_adma_dma2rxor_inc_addr(
3358 				desc, cursor, index, src_cnt);
3359 		}
3360 		break;
3361 	case 2:
3362 		cursor->state = 0;
3363 		cursor->addrl = addr;
3364 		cursor->xor_count++;
3365 		if (index) {
3366 			ppc440spe_adma_dma2rxor_inc_addr(
3367 				desc, cursor, index, src_cnt);
3368 		}
3369 		break;
3370 	}
3371 
3372 	return rval;
3373 }
3374 
3375 /**
3376  * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3377  *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3378  */
3379 static void ppc440spe_adma_dma2rxor_set_src(
3380 		struct ppc440spe_adma_desc_slot *desc,
3381 		int index, dma_addr_t addr)
3382 {
3383 	struct xor_cb *xcb = desc->hw_desc;
3384 	int k = 0, op = 0, lop = 0;
3385 
3386 	/* get the RXOR operand which corresponds to index addr */
3387 	while (op <= index) {
3388 		lop = op;
3389 		if (k == XOR_MAX_OPS) {
3390 			k = 0;
3391 			desc = list_entry(desc->chain_node.next,
3392 				struct ppc440spe_adma_desc_slot, chain_node);
3393 			xcb = desc->hw_desc;
3394 
3395 		}
3396 		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3397 		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3398 			op += 2;
3399 		else
3400 			op += 3;
3401 	}
3402 
3403 	BUG_ON(k < 1);
3404 
3405 	if (test_bit(k-1, desc->reverse_flags)) {
3406 		/* reverse operand order; put last op in RXOR group */
3407 		if (index == op - 1)
3408 			ppc440spe_rxor_set_src(desc, k - 1, addr);
3409 	} else {
3410 		/* direct operand order; put first op in RXOR group */
3411 		if (index == lop)
3412 			ppc440spe_rxor_set_src(desc, k - 1, addr);
3413 	}
3414 }
3415 
3416 /**
3417  * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3418  *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3419  */
3420 static void ppc440spe_adma_dma2rxor_set_mult(
3421 		struct ppc440spe_adma_desc_slot *desc,
3422 		int index, u8 mult)
3423 {
3424 	struct xor_cb *xcb = desc->hw_desc;
3425 	int k = 0, op = 0, lop = 0;
3426 
3427 	/* get the RXOR operand which corresponds to index mult */
3428 	while (op <= index) {
3429 		lop = op;
3430 		if (k == XOR_MAX_OPS) {
3431 			k = 0;
3432 			desc = list_entry(desc->chain_node.next,
3433 					  struct ppc440spe_adma_desc_slot,
3434 					  chain_node);
3435 			xcb = desc->hw_desc;
3436 
3437 		}
3438 		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3439 		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3440 			op += 2;
3441 		else
3442 			op += 3;
3443 	}
3444 
3445 	BUG_ON(k < 1);
3446 	if (test_bit(k-1, desc->reverse_flags)) {
3447 		/* reverse order */
3448 		ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3449 	} else {
3450 		/* direct order */
3451 		ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3452 	}
3453 }
3454 
3455 /**
3456  * ppc440spe_init_rxor_cursor -
3457  */
3458 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3459 {
3460 	memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3461 	cursor->state = 2;
3462 }
3463 
3464 /**
3465  * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3466  * descriptor for the PQXOR operation
3467  */
3468 static void ppc440spe_adma_pq_set_src_mult(
3469 		struct ppc440spe_adma_desc_slot *sw_desc,
3470 		unsigned char mult, int index, int dst_pos)
3471 {
3472 	struct ppc440spe_adma_chan *chan;
3473 	u32 mult_idx, mult_dst;
3474 	struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3475 
3476 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3477 
3478 	switch (chan->device->id) {
3479 	case PPC440SPE_DMA0_ID:
3480 	case PPC440SPE_DMA1_ID:
3481 		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3482 			int region = test_bit(PPC440SPE_DESC_RXOR12,
3483 					&sw_desc->flags) ? 2 : 3;
3484 
3485 			if (index < region) {
3486 				/* RXOR multipliers */
3487 				iter = ppc440spe_get_group_entry(sw_desc,
3488 					sw_desc->dst_cnt - 1);
3489 				if (sw_desc->dst_cnt == 2)
3490 					iter1 = ppc440spe_get_group_entry(
3491 							sw_desc, 0);
3492 
3493 				mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3494 				mult_dst = DMA_CDB_SG_SRC;
3495 			} else {
3496 				/* WXOR multiplier */
3497 				iter = ppc440spe_get_group_entry(sw_desc,
3498 							index - region +
3499 							sw_desc->dst_cnt);
3500 				mult_idx = DMA_CUED_MULT1_OFF;
3501 				mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3502 						     DMA_CDB_SG_DST1;
3503 			}
3504 		} else {
3505 			int znum = 0;
3506 
3507 			/* WXOR-only;
3508 			 * skip first slots with destinations (if ZERO_DST has
3509 			 * place)
3510 			 */
3511 			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3512 				znum++;
3513 			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3514 				znum++;
3515 
3516 			iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3517 			mult_idx = DMA_CUED_MULT1_OFF;
3518 			mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3519 		}
3520 
3521 		if (likely(iter)) {
3522 			ppc440spe_desc_set_src_mult(iter, chan,
3523 				mult_idx, mult_dst, mult);
3524 
3525 			if (unlikely(iter1)) {
3526 				/* if we have two destinations for RXOR, then
3527 				 * we've just set Q mult. Set-up P now.
3528 				 */
3529 				ppc440spe_desc_set_src_mult(iter1, chan,
3530 					mult_idx, mult_dst, 1);
3531 			}
3532 
3533 		}
3534 		break;
3535 
3536 	case PPC440SPE_XOR_ID:
3537 		iter = sw_desc->group_head;
3538 		if (sw_desc->dst_cnt == 2) {
3539 			/* both P & Q calculations required; set P mult here */
3540 			ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3541 
3542 			/* and then set Q mult */
3543 			iter = ppc440spe_get_group_entry(sw_desc,
3544 			       sw_desc->descs_per_op);
3545 		}
3546 		ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3547 		break;
3548 	}
3549 }
3550 
3551 /**
3552  * ppc440spe_adma_free_chan_resources - free the resources allocated
3553  */
3554 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3555 {
3556 	struct ppc440spe_adma_chan *ppc440spe_chan;
3557 	struct ppc440spe_adma_desc_slot *iter, *_iter;
3558 	int in_use_descs = 0;
3559 
3560 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3561 	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3562 
3563 	spin_lock_bh(&ppc440spe_chan->lock);
3564 	list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3565 					chain_node) {
3566 		in_use_descs++;
3567 		list_del(&iter->chain_node);
3568 	}
3569 	list_for_each_entry_safe_reverse(iter, _iter,
3570 			&ppc440spe_chan->all_slots, slot_node) {
3571 		list_del(&iter->slot_node);
3572 		kfree(iter);
3573 		ppc440spe_chan->slots_allocated--;
3574 	}
3575 	ppc440spe_chan->last_used = NULL;
3576 
3577 	dev_dbg(ppc440spe_chan->device->common.dev,
3578 		"ppc440spe adma%d %s slots_allocated %d\n",
3579 		ppc440spe_chan->device->id,
3580 		__func__, ppc440spe_chan->slots_allocated);
3581 	spin_unlock_bh(&ppc440spe_chan->lock);
3582 
3583 	/* one is ok since we left it on there on purpose */
3584 	if (in_use_descs > 1)
3585 		printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3586 			in_use_descs - 1);
3587 }
3588 
3589 /**
3590  * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3591  * @chan: ADMA channel handle
3592  * @cookie: ADMA transaction identifier
3593  * @txstate: a holder for the current state of the channel
3594  */
3595 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3596 			dma_cookie_t cookie, struct dma_tx_state *txstate)
3597 {
3598 	struct ppc440spe_adma_chan *ppc440spe_chan;
3599 	enum dma_status ret;
3600 
3601 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3602 	ret = dma_cookie_status(chan, cookie, txstate);
3603 	if (ret == DMA_COMPLETE)
3604 		return ret;
3605 
3606 	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3607 
3608 	return dma_cookie_status(chan, cookie, txstate);
3609 }
3610 
3611 /**
3612  * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3613  */
3614 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3615 {
3616 	struct ppc440spe_adma_chan *chan = data;
3617 
3618 	dev_dbg(chan->device->common.dev,
3619 		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3620 
3621 	tasklet_schedule(&chan->irq_tasklet);
3622 	ppc440spe_adma_device_clear_eot_status(chan);
3623 
3624 	return IRQ_HANDLED;
3625 }
3626 
3627 /**
3628  * ppc440spe_adma_err_handler - DMA error interrupt handler;
3629  *	do the same things as a eot handler
3630  */
3631 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3632 {
3633 	struct ppc440spe_adma_chan *chan = data;
3634 
3635 	dev_dbg(chan->device->common.dev,
3636 		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3637 
3638 	tasklet_schedule(&chan->irq_tasklet);
3639 	ppc440spe_adma_device_clear_eot_status(chan);
3640 
3641 	return IRQ_HANDLED;
3642 }
3643 
3644 /**
3645  * ppc440spe_test_callback - called when test operation has been done
3646  */
3647 static void ppc440spe_test_callback(void *unused)
3648 {
3649 	complete(&ppc440spe_r6_test_comp);
3650 }
3651 
3652 /**
3653  * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3654  */
3655 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3656 {
3657 	struct ppc440spe_adma_chan *ppc440spe_chan;
3658 
3659 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3660 	dev_dbg(ppc440spe_chan->device->common.dev,
3661 		"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3662 		__func__, ppc440spe_chan->pending);
3663 
3664 	if (ppc440spe_chan->pending) {
3665 		ppc440spe_chan->pending = 0;
3666 		ppc440spe_chan_append(ppc440spe_chan);
3667 	}
3668 }
3669 
3670 /**
3671  * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3672  *	use FIFOs (as opposite to chains used in XOR) so this is a XOR
3673  *	specific operation)
3674  */
3675 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3676 {
3677 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3678 	dma_cookie_t cookie;
3679 	int slot_cnt, slots_per_op;
3680 
3681 	dev_dbg(chan->device->common.dev,
3682 		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3683 
3684 	spin_lock_bh(&chan->lock);
3685 	slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3686 	sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3687 	if (sw_desc) {
3688 		group_start = sw_desc->group_head;
3689 		list_splice_init(&sw_desc->group_list, &chan->chain);
3690 		async_tx_ack(&sw_desc->async_tx);
3691 		ppc440spe_desc_init_null_xor(group_start);
3692 
3693 		cookie = dma_cookie_assign(&sw_desc->async_tx);
3694 
3695 		/* initialize the completed cookie to be less than
3696 		 * the most recently used cookie
3697 		 */
3698 		chan->common.completed_cookie = cookie - 1;
3699 
3700 		/* channel should not be busy */
3701 		BUG_ON(ppc440spe_chan_is_busy(chan));
3702 
3703 		/* set the descriptor address */
3704 		ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3705 
3706 		/* run the descriptor */
3707 		ppc440spe_chan_run(chan);
3708 	} else
3709 		printk(KERN_ERR "ppc440spe adma%d"
3710 			" failed to allocate null descriptor\n",
3711 			chan->device->id);
3712 	spin_unlock_bh(&chan->lock);
3713 }
3714 
3715 /**
3716  * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3717  *	For this we just perform one WXOR operation with the same source
3718  *	and destination addresses, the GF-multiplier is 1; so if RAID-6
3719  *	capabilities are enabled then we'll get src/dst filled with zero.
3720  */
3721 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3722 {
3723 	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3724 	struct page *pg;
3725 	char *a;
3726 	dma_addr_t dma_addr, addrs[2];
3727 	unsigned long op = 0;
3728 	int rval = 0;
3729 
3730 	set_bit(PPC440SPE_DESC_WXOR, &op);
3731 
3732 	pg = alloc_page(GFP_KERNEL);
3733 	if (!pg)
3734 		return -ENOMEM;
3735 
3736 	spin_lock_bh(&chan->lock);
3737 	sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3738 	if (sw_desc) {
3739 		/* 1 src, 1 dsr, int_ena, WXOR */
3740 		ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3741 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3742 			ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3743 			iter->unmap_len = PAGE_SIZE;
3744 		}
3745 	} else {
3746 		rval = -EFAULT;
3747 		spin_unlock_bh(&chan->lock);
3748 		goto exit;
3749 	}
3750 	spin_unlock_bh(&chan->lock);
3751 
3752 	/* Fill the test page with ones */
3753 	memset(page_address(pg), 0xFF, PAGE_SIZE);
3754 	dma_addr = dma_map_page(chan->device->dev, pg, 0,
3755 				PAGE_SIZE, DMA_BIDIRECTIONAL);
3756 
3757 	/* Setup addresses */
3758 	ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3759 	ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3760 	addrs[0] = dma_addr;
3761 	addrs[1] = 0;
3762 	ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3763 
3764 	async_tx_ack(&sw_desc->async_tx);
3765 	sw_desc->async_tx.callback = ppc440spe_test_callback;
3766 	sw_desc->async_tx.callback_param = NULL;
3767 
3768 	init_completion(&ppc440spe_r6_test_comp);
3769 
3770 	ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3771 	ppc440spe_adma_issue_pending(&chan->common);
3772 
3773 	wait_for_completion(&ppc440spe_r6_test_comp);
3774 
3775 	/* Now check if the test page is zeroed */
3776 	a = page_address(pg);
3777 	if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3778 		/* page is zero - RAID-6 enabled */
3779 		rval = 0;
3780 	} else {
3781 		/* RAID-6 was not enabled */
3782 		rval = -EINVAL;
3783 	}
3784 exit:
3785 	__free_page(pg);
3786 	return rval;
3787 }
3788 
3789 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3790 {
3791 	switch (adev->id) {
3792 	case PPC440SPE_DMA0_ID:
3793 	case PPC440SPE_DMA1_ID:
3794 		dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3795 		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3796 		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3797 		dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3798 		dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3799 		break;
3800 	case PPC440SPE_XOR_ID:
3801 		dma_cap_set(DMA_XOR, adev->common.cap_mask);
3802 		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3803 		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3804 		adev->common.cap_mask = adev->common.cap_mask;
3805 		break;
3806 	}
3807 
3808 	/* Set base routines */
3809 	adev->common.device_alloc_chan_resources =
3810 				ppc440spe_adma_alloc_chan_resources;
3811 	adev->common.device_free_chan_resources =
3812 				ppc440spe_adma_free_chan_resources;
3813 	adev->common.device_tx_status = ppc440spe_adma_tx_status;
3814 	adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3815 
3816 	/* Set prep routines based on capability */
3817 	if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3818 		adev->common.device_prep_dma_memcpy =
3819 			ppc440spe_adma_prep_dma_memcpy;
3820 	}
3821 	if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3822 		adev->common.max_xor = XOR_MAX_OPS;
3823 		adev->common.device_prep_dma_xor =
3824 			ppc440spe_adma_prep_dma_xor;
3825 	}
3826 	if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3827 		switch (adev->id) {
3828 		case PPC440SPE_DMA0_ID:
3829 			dma_set_maxpq(&adev->common,
3830 				DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3831 			break;
3832 		case PPC440SPE_DMA1_ID:
3833 			dma_set_maxpq(&adev->common,
3834 				DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3835 			break;
3836 		case PPC440SPE_XOR_ID:
3837 			adev->common.max_pq = XOR_MAX_OPS * 3;
3838 			break;
3839 		}
3840 		adev->common.device_prep_dma_pq =
3841 			ppc440spe_adma_prep_dma_pq;
3842 	}
3843 	if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3844 		switch (adev->id) {
3845 		case PPC440SPE_DMA0_ID:
3846 			adev->common.max_pq = DMA0_FIFO_SIZE /
3847 						sizeof(struct dma_cdb);
3848 			break;
3849 		case PPC440SPE_DMA1_ID:
3850 			adev->common.max_pq = DMA1_FIFO_SIZE /
3851 						sizeof(struct dma_cdb);
3852 			break;
3853 		}
3854 		adev->common.device_prep_dma_pq_val =
3855 			ppc440spe_adma_prep_dma_pqzero_sum;
3856 	}
3857 	if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3858 		switch (adev->id) {
3859 		case PPC440SPE_DMA0_ID:
3860 			adev->common.max_xor = DMA0_FIFO_SIZE /
3861 						sizeof(struct dma_cdb);
3862 			break;
3863 		case PPC440SPE_DMA1_ID:
3864 			adev->common.max_xor = DMA1_FIFO_SIZE /
3865 						sizeof(struct dma_cdb);
3866 			break;
3867 		}
3868 		adev->common.device_prep_dma_xor_val =
3869 			ppc440spe_adma_prep_dma_xor_zero_sum;
3870 	}
3871 	if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3872 		adev->common.device_prep_dma_interrupt =
3873 			ppc440spe_adma_prep_dma_interrupt;
3874 	}
3875 	pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3876 	  "( %s%s%s%s%s%s)\n",
3877 	  dev_name(adev->dev),
3878 	  dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3879 	  dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3880 	  dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3881 	  dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3882 	  dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3883 	  dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3884 }
3885 
3886 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3887 				     struct ppc440spe_adma_chan *chan,
3888 				     int *initcode)
3889 {
3890 	struct platform_device *ofdev;
3891 	struct device_node *np;
3892 	int ret;
3893 
3894 	ofdev = container_of(adev->dev, struct platform_device, dev);
3895 	np = ofdev->dev.of_node;
3896 	if (adev->id != PPC440SPE_XOR_ID) {
3897 		adev->err_irq = irq_of_parse_and_map(np, 1);
3898 		if (adev->err_irq == NO_IRQ) {
3899 			dev_warn(adev->dev, "no err irq resource?\n");
3900 			*initcode = PPC_ADMA_INIT_IRQ2;
3901 			adev->err_irq = -ENXIO;
3902 		} else
3903 			atomic_inc(&ppc440spe_adma_err_irq_ref);
3904 	} else {
3905 		adev->err_irq = -ENXIO;
3906 	}
3907 
3908 	adev->irq = irq_of_parse_and_map(np, 0);
3909 	if (adev->irq == NO_IRQ) {
3910 		dev_err(adev->dev, "no irq resource\n");
3911 		*initcode = PPC_ADMA_INIT_IRQ1;
3912 		ret = -ENXIO;
3913 		goto err_irq_map;
3914 	}
3915 	dev_dbg(adev->dev, "irq %d, err irq %d\n",
3916 		adev->irq, adev->err_irq);
3917 
3918 	ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3919 			  0, dev_driver_string(adev->dev), chan);
3920 	if (ret) {
3921 		dev_err(adev->dev, "can't request irq %d\n",
3922 			adev->irq);
3923 		*initcode = PPC_ADMA_INIT_IRQ1;
3924 		ret = -EIO;
3925 		goto err_req1;
3926 	}
3927 
3928 	/* only DMA engines have a separate error IRQ
3929 	 * so it's Ok if err_irq < 0 in XOR engine case.
3930 	 */
3931 	if (adev->err_irq > 0) {
3932 		/* both DMA engines share common error IRQ */
3933 		ret = request_irq(adev->err_irq,
3934 				  ppc440spe_adma_err_handler,
3935 				  IRQF_SHARED,
3936 				  dev_driver_string(adev->dev),
3937 				  chan);
3938 		if (ret) {
3939 			dev_err(adev->dev, "can't request irq %d\n",
3940 				adev->err_irq);
3941 			*initcode = PPC_ADMA_INIT_IRQ2;
3942 			ret = -EIO;
3943 			goto err_req2;
3944 		}
3945 	}
3946 
3947 	if (adev->id == PPC440SPE_XOR_ID) {
3948 		/* enable XOR engine interrupts */
3949 		iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3950 			    XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3951 			    &adev->xor_reg->ier);
3952 	} else {
3953 		u32 mask, enable;
3954 
3955 		np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3956 		if (!np) {
3957 			pr_err("%s: can't find I2O device tree node\n",
3958 				__func__);
3959 			ret = -ENODEV;
3960 			goto err_req2;
3961 		}
3962 		adev->i2o_reg = of_iomap(np, 0);
3963 		if (!adev->i2o_reg) {
3964 			pr_err("%s: failed to map I2O registers\n", __func__);
3965 			of_node_put(np);
3966 			ret = -EINVAL;
3967 			goto err_req2;
3968 		}
3969 		of_node_put(np);
3970 		/* Unmask 'CS FIFO Attention' interrupts and
3971 		 * enable generating interrupts on errors
3972 		 */
3973 		enable = (adev->id == PPC440SPE_DMA0_ID) ?
3974 			 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3975 			 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3976 		mask = ioread32(&adev->i2o_reg->iopim) & enable;
3977 		iowrite32(mask, &adev->i2o_reg->iopim);
3978 	}
3979 	return 0;
3980 
3981 err_req2:
3982 	free_irq(adev->irq, chan);
3983 err_req1:
3984 	irq_dispose_mapping(adev->irq);
3985 err_irq_map:
3986 	if (adev->err_irq > 0) {
3987 		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3988 			irq_dispose_mapping(adev->err_irq);
3989 	}
3990 	return ret;
3991 }
3992 
3993 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3994 					struct ppc440spe_adma_chan *chan)
3995 {
3996 	u32 mask, disable;
3997 
3998 	if (adev->id == PPC440SPE_XOR_ID) {
3999 		/* disable XOR engine interrupts */
4000 		mask = ioread32be(&adev->xor_reg->ier);
4001 		mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4002 			  XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4003 		iowrite32be(mask, &adev->xor_reg->ier);
4004 	} else {
4005 		/* disable DMAx engine interrupts */
4006 		disable = (adev->id == PPC440SPE_DMA0_ID) ?
4007 			  (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4008 			  (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4009 		mask = ioread32(&adev->i2o_reg->iopim) | disable;
4010 		iowrite32(mask, &adev->i2o_reg->iopim);
4011 	}
4012 	free_irq(adev->irq, chan);
4013 	irq_dispose_mapping(adev->irq);
4014 	if (adev->err_irq > 0) {
4015 		free_irq(adev->err_irq, chan);
4016 		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4017 			irq_dispose_mapping(adev->err_irq);
4018 			iounmap(adev->i2o_reg);
4019 		}
4020 	}
4021 }
4022 
4023 /**
4024  * ppc440spe_adma_probe - probe the asynch device
4025  */
4026 static int ppc440spe_adma_probe(struct platform_device *ofdev)
4027 {
4028 	struct device_node *np = ofdev->dev.of_node;
4029 	struct resource res;
4030 	struct ppc440spe_adma_device *adev;
4031 	struct ppc440spe_adma_chan *chan;
4032 	struct ppc_dma_chan_ref *ref, *_ref;
4033 	int ret = 0, initcode = PPC_ADMA_INIT_OK;
4034 	const u32 *idx;
4035 	int len;
4036 	void *regs;
4037 	u32 id, pool_size;
4038 
4039 	if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4040 		id = PPC440SPE_XOR_ID;
4041 		/* As far as the XOR engine is concerned, it does not
4042 		 * use FIFOs but uses linked list. So there is no dependency
4043 		 * between pool size to allocate and the engine configuration.
4044 		 */
4045 		pool_size = PAGE_SIZE << 1;
4046 	} else {
4047 		/* it is DMA0 or DMA1 */
4048 		idx = of_get_property(np, "cell-index", &len);
4049 		if (!idx || (len != sizeof(u32))) {
4050 			dev_err(&ofdev->dev, "Device node %s has missing "
4051 				"or invalid cell-index property\n",
4052 				np->full_name);
4053 			return -EINVAL;
4054 		}
4055 		id = *idx;
4056 		/* DMA0,1 engines use FIFO to maintain CDBs, so we
4057 		 * should allocate the pool accordingly to size of this
4058 		 * FIFO. Thus, the pool size depends on the FIFO depth:
4059 		 * how much CDBs pointers the FIFO may contain then so
4060 		 * much CDBs we should provide in the pool.
4061 		 * That is
4062 		 *   CDB size = 32B;
4063 		 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4064 		 *   Pool size = CDBs number * CDB size =
4065 		 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4066 		 */
4067 		pool_size = (id == PPC440SPE_DMA0_ID) ?
4068 			    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4069 		pool_size <<= 2;
4070 	}
4071 
4072 	if (of_address_to_resource(np, 0, &res)) {
4073 		dev_err(&ofdev->dev, "failed to get memory resource\n");
4074 		initcode = PPC_ADMA_INIT_MEMRES;
4075 		ret = -ENODEV;
4076 		goto out;
4077 	}
4078 
4079 	if (!request_mem_region(res.start, resource_size(&res),
4080 				dev_driver_string(&ofdev->dev))) {
4081 		dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4082 			&res);
4083 		initcode = PPC_ADMA_INIT_MEMREG;
4084 		ret = -EBUSY;
4085 		goto out;
4086 	}
4087 
4088 	/* create a device */
4089 	adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4090 	if (!adev) {
4091 		dev_err(&ofdev->dev, "failed to allocate device\n");
4092 		initcode = PPC_ADMA_INIT_ALLOC;
4093 		ret = -ENOMEM;
4094 		goto err_adev_alloc;
4095 	}
4096 
4097 	adev->id = id;
4098 	adev->pool_size = pool_size;
4099 	/* allocate coherent memory for hardware descriptors */
4100 	adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4101 					adev->pool_size, &adev->dma_desc_pool,
4102 					GFP_KERNEL);
4103 	if (adev->dma_desc_pool_virt == NULL) {
4104 		dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4105 			"memory for hardware descriptors\n",
4106 			adev->pool_size);
4107 		initcode = PPC_ADMA_INIT_COHERENT;
4108 		ret = -ENOMEM;
4109 		goto err_dma_alloc;
4110 	}
4111 	dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4112 		adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4113 
4114 	regs = ioremap(res.start, resource_size(&res));
4115 	if (!regs) {
4116 		dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4117 		ret = -ENOMEM;
4118 		goto err_regs_alloc;
4119 	}
4120 
4121 	if (adev->id == PPC440SPE_XOR_ID) {
4122 		adev->xor_reg = regs;
4123 		/* Reset XOR */
4124 		iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4125 		iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4126 	} else {
4127 		size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4128 				   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4129 		adev->dma_reg = regs;
4130 		/* DMAx_FIFO_SIZE is defined in bytes,
4131 		 * <fsiz> - is defined in number of CDB pointers (8byte).
4132 		 * DMA FIFO Length = CSlength + CPlength, where
4133 		 * CSlength = CPlength = (fsiz + 1) * 8.
4134 		 */
4135 		iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4136 			  &adev->dma_reg->fsiz);
4137 		/* Configure DMA engine */
4138 		iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4139 			  &adev->dma_reg->cfg);
4140 		/* Clear Status */
4141 		iowrite32(~0, &adev->dma_reg->dsts);
4142 	}
4143 
4144 	adev->dev = &ofdev->dev;
4145 	adev->common.dev = &ofdev->dev;
4146 	INIT_LIST_HEAD(&adev->common.channels);
4147 	platform_set_drvdata(ofdev, adev);
4148 
4149 	/* create a channel */
4150 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4151 	if (!chan) {
4152 		dev_err(&ofdev->dev, "can't allocate channel structure\n");
4153 		initcode = PPC_ADMA_INIT_CHANNEL;
4154 		ret = -ENOMEM;
4155 		goto err_chan_alloc;
4156 	}
4157 
4158 	spin_lock_init(&chan->lock);
4159 	INIT_LIST_HEAD(&chan->chain);
4160 	INIT_LIST_HEAD(&chan->all_slots);
4161 	chan->device = adev;
4162 	chan->common.device = &adev->common;
4163 	dma_cookie_init(&chan->common);
4164 	list_add_tail(&chan->common.device_node, &adev->common.channels);
4165 	tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4166 		     (unsigned long)chan);
4167 
4168 	/* allocate and map helper pages for async validation or
4169 	 * async_mult/async_sum_product operations on DMA0/1.
4170 	 */
4171 	if (adev->id != PPC440SPE_XOR_ID) {
4172 		chan->pdest_page = alloc_page(GFP_KERNEL);
4173 		chan->qdest_page = alloc_page(GFP_KERNEL);
4174 		if (!chan->pdest_page ||
4175 		    !chan->qdest_page) {
4176 			if (chan->pdest_page)
4177 				__free_page(chan->pdest_page);
4178 			if (chan->qdest_page)
4179 				__free_page(chan->qdest_page);
4180 			ret = -ENOMEM;
4181 			goto err_page_alloc;
4182 		}
4183 		chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4184 					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4185 		chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4186 					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4187 	}
4188 
4189 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4190 	if (ref) {
4191 		ref->chan = &chan->common;
4192 		INIT_LIST_HEAD(&ref->node);
4193 		list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4194 	} else {
4195 		dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4196 		ret = -ENOMEM;
4197 		goto err_ref_alloc;
4198 	}
4199 
4200 	ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4201 	if (ret)
4202 		goto err_irq;
4203 
4204 	ppc440spe_adma_init_capabilities(adev);
4205 
4206 	ret = dma_async_device_register(&adev->common);
4207 	if (ret) {
4208 		initcode = PPC_ADMA_INIT_REGISTER;
4209 		dev_err(&ofdev->dev, "failed to register dma device\n");
4210 		goto err_dev_reg;
4211 	}
4212 
4213 	goto out;
4214 
4215 err_dev_reg:
4216 	ppc440spe_adma_release_irqs(adev, chan);
4217 err_irq:
4218 	list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4219 		if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4220 			list_del(&ref->node);
4221 			kfree(ref);
4222 		}
4223 	}
4224 err_ref_alloc:
4225 	if (adev->id != PPC440SPE_XOR_ID) {
4226 		dma_unmap_page(&ofdev->dev, chan->pdest,
4227 			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4228 		dma_unmap_page(&ofdev->dev, chan->qdest,
4229 			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4230 		__free_page(chan->pdest_page);
4231 		__free_page(chan->qdest_page);
4232 	}
4233 err_page_alloc:
4234 	kfree(chan);
4235 err_chan_alloc:
4236 	if (adev->id == PPC440SPE_XOR_ID)
4237 		iounmap(adev->xor_reg);
4238 	else
4239 		iounmap(adev->dma_reg);
4240 err_regs_alloc:
4241 	dma_free_coherent(adev->dev, adev->pool_size,
4242 			  adev->dma_desc_pool_virt,
4243 			  adev->dma_desc_pool);
4244 err_dma_alloc:
4245 	kfree(adev);
4246 err_adev_alloc:
4247 	release_mem_region(res.start, resource_size(&res));
4248 out:
4249 	if (id < PPC440SPE_ADMA_ENGINES_NUM)
4250 		ppc440spe_adma_devices[id] = initcode;
4251 
4252 	return ret;
4253 }
4254 
4255 /**
4256  * ppc440spe_adma_remove - remove the asynch device
4257  */
4258 static int ppc440spe_adma_remove(struct platform_device *ofdev)
4259 {
4260 	struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4261 	struct device_node *np = ofdev->dev.of_node;
4262 	struct resource res;
4263 	struct dma_chan *chan, *_chan;
4264 	struct ppc_dma_chan_ref *ref, *_ref;
4265 	struct ppc440spe_adma_chan *ppc440spe_chan;
4266 
4267 	if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4268 		ppc440spe_adma_devices[adev->id] = -1;
4269 
4270 	dma_async_device_unregister(&adev->common);
4271 
4272 	list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4273 				 device_node) {
4274 		ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4275 		ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4276 		tasklet_kill(&ppc440spe_chan->irq_tasklet);
4277 		if (adev->id != PPC440SPE_XOR_ID) {
4278 			dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4279 					PAGE_SIZE, DMA_BIDIRECTIONAL);
4280 			dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4281 					PAGE_SIZE, DMA_BIDIRECTIONAL);
4282 			__free_page(ppc440spe_chan->pdest_page);
4283 			__free_page(ppc440spe_chan->qdest_page);
4284 		}
4285 		list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4286 					 node) {
4287 			if (ppc440spe_chan ==
4288 			    to_ppc440spe_adma_chan(ref->chan)) {
4289 				list_del(&ref->node);
4290 				kfree(ref);
4291 			}
4292 		}
4293 		list_del(&chan->device_node);
4294 		kfree(ppc440spe_chan);
4295 	}
4296 
4297 	dma_free_coherent(adev->dev, adev->pool_size,
4298 			  adev->dma_desc_pool_virt, adev->dma_desc_pool);
4299 	if (adev->id == PPC440SPE_XOR_ID)
4300 		iounmap(adev->xor_reg);
4301 	else
4302 		iounmap(adev->dma_reg);
4303 	of_address_to_resource(np, 0, &res);
4304 	release_mem_region(res.start, resource_size(&res));
4305 	kfree(adev);
4306 	return 0;
4307 }
4308 
4309 /*
4310  * /sys driver interface to enable h/w RAID-6 capabilities
4311  * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4312  * directory are "devices", "enable" and "poly".
4313  * "devices" shows available engines.
4314  * "enable" is used to enable RAID-6 capabilities or to check
4315  * whether these has been activated.
4316  * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4317  */
4318 
4319 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4320 {
4321 	ssize_t size = 0;
4322 	int i;
4323 
4324 	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4325 		if (ppc440spe_adma_devices[i] == -1)
4326 			continue;
4327 		size += snprintf(buf + size, PAGE_SIZE - size,
4328 				 "PPC440SP(E)-ADMA.%d: %s\n", i,
4329 				 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4330 	}
4331 	return size;
4332 }
4333 
4334 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4335 {
4336 	return snprintf(buf, PAGE_SIZE,
4337 			"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4338 			ppc440spe_r6_enabled ? "EN" : "DIS");
4339 }
4340 
4341 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4342 					const char *buf, size_t count)
4343 {
4344 	unsigned long val;
4345 
4346 	if (!count || count > 11)
4347 		return -EINVAL;
4348 
4349 	if (!ppc440spe_r6_tchan)
4350 		return -EFAULT;
4351 
4352 	/* Write a key */
4353 	sscanf(buf, "%lx", &val);
4354 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4355 	isync();
4356 
4357 	/* Verify whether it really works now */
4358 	if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4359 		pr_info("PPC440SP(e) RAID-6 has been activated "
4360 			"successfully\n");
4361 		ppc440spe_r6_enabled = 1;
4362 	} else {
4363 		pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4364 			" Error key ?\n");
4365 		ppc440spe_r6_enabled = 0;
4366 	}
4367 	return count;
4368 }
4369 
4370 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4371 {
4372 	ssize_t size = 0;
4373 	u32 reg;
4374 
4375 #ifdef CONFIG_440SP
4376 	/* 440SP has fixed polynomial */
4377 	reg = 0x4d;
4378 #else
4379 	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4380 	reg >>= MQ0_CFBHL_POLY;
4381 	reg &= 0xFF;
4382 #endif
4383 
4384 	size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4385 			"uses 0x1%02x polynomial.\n", reg);
4386 	return size;
4387 }
4388 
4389 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4390 				      const char *buf, size_t count)
4391 {
4392 	unsigned long reg, val;
4393 
4394 #ifdef CONFIG_440SP
4395 	/* 440SP uses default 0x14D polynomial only */
4396 	return -EINVAL;
4397 #endif
4398 
4399 	if (!count || count > 6)
4400 		return -EINVAL;
4401 
4402 	/* e.g., 0x14D or 0x11D */
4403 	sscanf(buf, "%lx", &val);
4404 
4405 	if (val & ~0x1FF)
4406 		return -EINVAL;
4407 
4408 	val &= 0xFF;
4409 	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4410 	reg &= ~(0xFF << MQ0_CFBHL_POLY);
4411 	reg |= val << MQ0_CFBHL_POLY;
4412 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4413 
4414 	return count;
4415 }
4416 
4417 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4418 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4419 		   store_ppc440spe_r6enable);
4420 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4421 		   store_ppc440spe_r6poly);
4422 
4423 /*
4424  * Common initialisation for RAID engines; allocate memory for
4425  * DMAx FIFOs, perform configuration common for all DMA engines.
4426  * Further DMA engine specific configuration is done at probe time.
4427  */
4428 static int ppc440spe_configure_raid_devices(void)
4429 {
4430 	struct device_node *np;
4431 	struct resource i2o_res;
4432 	struct i2o_regs __iomem *i2o_reg;
4433 	dcr_host_t i2o_dcr_host;
4434 	unsigned int dcr_base, dcr_len;
4435 	int i, ret;
4436 
4437 	np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4438 	if (!np) {
4439 		pr_err("%s: can't find I2O device tree node\n",
4440 			__func__);
4441 		return -ENODEV;
4442 	}
4443 
4444 	if (of_address_to_resource(np, 0, &i2o_res)) {
4445 		of_node_put(np);
4446 		return -EINVAL;
4447 	}
4448 
4449 	i2o_reg = of_iomap(np, 0);
4450 	if (!i2o_reg) {
4451 		pr_err("%s: failed to map I2O registers\n", __func__);
4452 		of_node_put(np);
4453 		return -EINVAL;
4454 	}
4455 
4456 	/* Get I2O DCRs base */
4457 	dcr_base = dcr_resource_start(np, 0);
4458 	dcr_len = dcr_resource_len(np, 0);
4459 	if (!dcr_base && !dcr_len) {
4460 		pr_err("%s: can't get DCR registers base/len!\n",
4461 			np->full_name);
4462 		of_node_put(np);
4463 		iounmap(i2o_reg);
4464 		return -ENODEV;
4465 	}
4466 
4467 	i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4468 	if (!DCR_MAP_OK(i2o_dcr_host)) {
4469 		pr_err("%s: failed to map DCRs!\n", np->full_name);
4470 		of_node_put(np);
4471 		iounmap(i2o_reg);
4472 		return -ENODEV;
4473 	}
4474 	of_node_put(np);
4475 
4476 	/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4477 	 * the base address of FIFO memory space.
4478 	 * Actually we need twice more physical memory than programmed in the
4479 	 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4480 	 */
4481 	ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4482 					 GFP_KERNEL);
4483 	if (!ppc440spe_dma_fifo_buf) {
4484 		pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4485 		iounmap(i2o_reg);
4486 		dcr_unmap(i2o_dcr_host, dcr_len);
4487 		return -ENOMEM;
4488 	}
4489 
4490 	/*
4491 	 * Configure h/w
4492 	 */
4493 	/* Reset I2O/DMA */
4494 	mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4495 	mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4496 
4497 	/* Setup the base address of mmaped registers */
4498 	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4499 	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4500 						I2O_REG_ENABLE);
4501 	dcr_unmap(i2o_dcr_host, dcr_len);
4502 
4503 	/* Setup FIFO memory space base address */
4504 	iowrite32(0, &i2o_reg->ifbah);
4505 	iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4506 
4507 	/* set zero FIFO size for I2O, so the whole
4508 	 * ppc440spe_dma_fifo_buf is used by DMAs.
4509 	 * DMAx_FIFOs will be configured while probe.
4510 	 */
4511 	iowrite32(0, &i2o_reg->ifsiz);
4512 	iounmap(i2o_reg);
4513 
4514 	/* To prepare WXOR/RXOR functionality we need access to
4515 	 * Memory Queue Module DCRs (finally it will be enabled
4516 	 * via /sys interface of the ppc440spe ADMA driver).
4517 	 */
4518 	np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4519 	if (!np) {
4520 		pr_err("%s: can't find MQ device tree node\n",
4521 			__func__);
4522 		ret = -ENODEV;
4523 		goto out_free;
4524 	}
4525 
4526 	/* Get MQ DCRs base */
4527 	dcr_base = dcr_resource_start(np, 0);
4528 	dcr_len = dcr_resource_len(np, 0);
4529 	if (!dcr_base && !dcr_len) {
4530 		pr_err("%s: can't get DCR registers base/len!\n",
4531 			np->full_name);
4532 		ret = -ENODEV;
4533 		goto out_mq;
4534 	}
4535 
4536 	ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4537 	if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4538 		pr_err("%s: failed to map DCRs!\n", np->full_name);
4539 		ret = -ENODEV;
4540 		goto out_mq;
4541 	}
4542 	of_node_put(np);
4543 	ppc440spe_mq_dcr_len = dcr_len;
4544 
4545 	/* Set HB alias */
4546 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4547 
4548 	/* Set:
4549 	 * - LL transaction passing limit to 1;
4550 	 * - Memory controller cycle limit to 1;
4551 	 * - Galois Polynomial to 0x14d (default)
4552 	 */
4553 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4554 		  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4555 		  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4556 
4557 	atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4558 	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4559 		ppc440spe_adma_devices[i] = -1;
4560 
4561 	return 0;
4562 
4563 out_mq:
4564 	of_node_put(np);
4565 out_free:
4566 	kfree(ppc440spe_dma_fifo_buf);
4567 	return ret;
4568 }
4569 
4570 static const struct of_device_id ppc440spe_adma_of_match[] = {
4571 	{ .compatible	= "ibm,dma-440spe", },
4572 	{ .compatible	= "amcc,xor-accelerator", },
4573 	{},
4574 };
4575 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4576 
4577 static struct platform_driver ppc440spe_adma_driver = {
4578 	.probe = ppc440spe_adma_probe,
4579 	.remove = ppc440spe_adma_remove,
4580 	.driver = {
4581 		.name = "PPC440SP(E)-ADMA",
4582 		.of_match_table = ppc440spe_adma_of_match,
4583 	},
4584 };
4585 
4586 static __init int ppc440spe_adma_init(void)
4587 {
4588 	int ret;
4589 
4590 	ret = ppc440spe_configure_raid_devices();
4591 	if (ret)
4592 		return ret;
4593 
4594 	ret = platform_driver_register(&ppc440spe_adma_driver);
4595 	if (ret) {
4596 		pr_err("%s: failed to register platform driver\n",
4597 			__func__);
4598 		goto out_reg;
4599 	}
4600 
4601 	/* Initialization status */
4602 	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4603 				 &driver_attr_devices);
4604 	if (ret)
4605 		goto out_dev;
4606 
4607 	/* RAID-6 h/w enable entry */
4608 	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4609 				 &driver_attr_enable);
4610 	if (ret)
4611 		goto out_en;
4612 
4613 	/* GF polynomial to use */
4614 	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4615 				 &driver_attr_poly);
4616 	if (!ret)
4617 		return ret;
4618 
4619 	driver_remove_file(&ppc440spe_adma_driver.driver,
4620 			   &driver_attr_enable);
4621 out_en:
4622 	driver_remove_file(&ppc440spe_adma_driver.driver,
4623 			   &driver_attr_devices);
4624 out_dev:
4625 	/* User will not be able to enable h/w RAID-6 */
4626 	pr_err("%s: failed to create RAID-6 driver interface\n",
4627 		__func__);
4628 	platform_driver_unregister(&ppc440spe_adma_driver);
4629 out_reg:
4630 	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4631 	kfree(ppc440spe_dma_fifo_buf);
4632 	return ret;
4633 }
4634 
4635 static void __exit ppc440spe_adma_exit(void)
4636 {
4637 	driver_remove_file(&ppc440spe_adma_driver.driver,
4638 			   &driver_attr_poly);
4639 	driver_remove_file(&ppc440spe_adma_driver.driver,
4640 			   &driver_attr_enable);
4641 	driver_remove_file(&ppc440spe_adma_driver.driver,
4642 			   &driver_attr_devices);
4643 	platform_driver_unregister(&ppc440spe_adma_driver);
4644 	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4645 	kfree(ppc440spe_dma_fifo_buf);
4646 }
4647 
4648 arch_initcall(ppc440spe_adma_init);
4649 module_exit(ppc440spe_adma_exit);
4650 
4651 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4652 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4653 MODULE_LICENSE("GPL");
4654