1 /* 2 * Copyright (C) 2006-2009 DENX Software Engineering. 3 * 4 * Author: Yuri Tikhonov <yur@emcraft.com> 5 * 6 * Further porting to arch/powerpc by 7 * Anatolij Gustschin <agust@denx.de> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the Free 11 * Software Foundation; either version 2 of the License, or (at your option) 12 * any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 17 * more details. 18 * 19 * You should have received a copy of the GNU General Public License along with 20 * this program; if not, write to the Free Software Foundation, Inc., 59 21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 22 * 23 * The full GNU General Public License is included in this distribution in the 24 * file called COPYING. 25 */ 26 27 /* 28 * This driver supports the asynchrounous DMA copy and RAID engines available 29 * on the AMCC PPC440SPe Processors. 30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) 31 * ADMA driver written by D.Williams. 32 */ 33 34 #include <linux/init.h> 35 #include <linux/module.h> 36 #include <linux/async_tx.h> 37 #include <linux/delay.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/spinlock.h> 40 #include <linux/interrupt.h> 41 #include <linux/slab.h> 42 #include <linux/uaccess.h> 43 #include <linux/proc_fs.h> 44 #include <linux/of.h> 45 #include <linux/of_address.h> 46 #include <linux/of_irq.h> 47 #include <linux/of_platform.h> 48 #include <asm/dcr.h> 49 #include <asm/dcr-regs.h> 50 #include "adma.h" 51 #include "../dmaengine.h" 52 53 enum ppc_adma_init_code { 54 PPC_ADMA_INIT_OK = 0, 55 PPC_ADMA_INIT_MEMRES, 56 PPC_ADMA_INIT_MEMREG, 57 PPC_ADMA_INIT_ALLOC, 58 PPC_ADMA_INIT_COHERENT, 59 PPC_ADMA_INIT_CHANNEL, 60 PPC_ADMA_INIT_IRQ1, 61 PPC_ADMA_INIT_IRQ2, 62 PPC_ADMA_INIT_REGISTER 63 }; 64 65 static char *ppc_adma_errors[] = { 66 [PPC_ADMA_INIT_OK] = "ok", 67 [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource", 68 [PPC_ADMA_INIT_MEMREG] = "failed to request memory region", 69 [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev " 70 "structure", 71 [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for " 72 "hardware descriptors", 73 [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel", 74 [PPC_ADMA_INIT_IRQ1] = "failed to request first irq", 75 [PPC_ADMA_INIT_IRQ2] = "failed to request second irq", 76 [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device", 77 }; 78 79 static enum ppc_adma_init_code 80 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM]; 81 82 struct ppc_dma_chan_ref { 83 struct dma_chan *chan; 84 struct list_head node; 85 }; 86 87 /* The list of channels exported by ppc440spe ADMA */ 88 struct list_head 89 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list); 90 91 /* This flag is set when want to refetch the xor chain in the interrupt 92 * handler 93 */ 94 static u32 do_xor_refetch; 95 96 /* Pointer to DMA0, DMA1 CP/CS FIFO */ 97 static void *ppc440spe_dma_fifo_buf; 98 99 /* Pointers to last submitted to DMA0, DMA1 CDBs */ 100 static struct ppc440spe_adma_desc_slot *chan_last_sub[3]; 101 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3]; 102 103 /* Pointer to last linked and submitted xor CB */ 104 static struct ppc440spe_adma_desc_slot *xor_last_linked; 105 static struct ppc440spe_adma_desc_slot *xor_last_submit; 106 107 /* This array is used in data-check operations for storing a pattern */ 108 static char ppc440spe_qword[16]; 109 110 static atomic_t ppc440spe_adma_err_irq_ref; 111 static dcr_host_t ppc440spe_mq_dcr_host; 112 static unsigned int ppc440spe_mq_dcr_len; 113 114 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up 115 * the block size in transactions, then we do not allow to activate more than 116 * only one RXOR transactions simultaneously. So use this var to store 117 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is 118 * set) or not (PPC440SPE_RXOR_RUN is clear). 119 */ 120 static unsigned long ppc440spe_rxor_state; 121 122 /* These are used in enable & check routines 123 */ 124 static u32 ppc440spe_r6_enabled; 125 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan; 126 static struct completion ppc440spe_r6_test_comp; 127 128 static int ppc440spe_adma_dma2rxor_prep_src( 129 struct ppc440spe_adma_desc_slot *desc, 130 struct ppc440spe_rxor *cursor, int index, 131 int src_cnt, u32 addr); 132 static void ppc440spe_adma_dma2rxor_set_src( 133 struct ppc440spe_adma_desc_slot *desc, 134 int index, dma_addr_t addr); 135 static void ppc440spe_adma_dma2rxor_set_mult( 136 struct ppc440spe_adma_desc_slot *desc, 137 int index, u8 mult); 138 139 #ifdef ADMA_LL_DEBUG 140 #define ADMA_LL_DBG(x) ({ if (1) x; 0; }) 141 #else 142 #define ADMA_LL_DBG(x) ({ if (0) x; 0; }) 143 #endif 144 145 static void print_cb(struct ppc440spe_adma_chan *chan, void *block) 146 { 147 struct dma_cdb *cdb; 148 struct xor_cb *cb; 149 int i; 150 151 switch (chan->device->id) { 152 case 0: 153 case 1: 154 cdb = block; 155 156 pr_debug("CDB at %p [%d]:\n" 157 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n" 158 "\t sg1u 0x%08x sg1l 0x%08x\n" 159 "\t sg2u 0x%08x sg2l 0x%08x\n" 160 "\t sg3u 0x%08x sg3l 0x%08x\n", 161 cdb, chan->device->id, 162 cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt), 163 le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l), 164 le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l), 165 le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l) 166 ); 167 break; 168 case 2: 169 cb = block; 170 171 pr_debug("CB at %p [%d]:\n" 172 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n" 173 "\t cbtah 0x%08x cbtal 0x%08x\n" 174 "\t cblah 0x%08x cblal 0x%08x\n", 175 cb, chan->device->id, 176 cb->cbc, cb->cbbc, cb->cbs, 177 cb->cbtah, cb->cbtal, 178 cb->cblah, cb->cblal); 179 for (i = 0; i < 16; i++) { 180 if (i && !cb->ops[i].h && !cb->ops[i].l) 181 continue; 182 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n", 183 i, cb->ops[i].h, cb->ops[i].l); 184 } 185 break; 186 } 187 } 188 189 static void print_cb_list(struct ppc440spe_adma_chan *chan, 190 struct ppc440spe_adma_desc_slot *iter) 191 { 192 for (; iter; iter = iter->hw_next) 193 print_cb(chan, iter->hw_desc); 194 } 195 196 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src, 197 unsigned int src_cnt) 198 { 199 int i; 200 201 pr_debug("\n%s(%d):\nsrc: ", __func__, id); 202 for (i = 0; i < src_cnt; i++) 203 pr_debug("\t0x%016llx ", src[i]); 204 pr_debug("dst:\n\t0x%016llx\n", dst); 205 } 206 207 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src, 208 unsigned int src_cnt) 209 { 210 int i; 211 212 pr_debug("\n%s(%d):\nsrc: ", __func__, id); 213 for (i = 0; i < src_cnt; i++) 214 pr_debug("\t0x%016llx ", src[i]); 215 pr_debug("dst: "); 216 for (i = 0; i < 2; i++) 217 pr_debug("\t0x%016llx ", dst[i]); 218 } 219 220 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src, 221 unsigned int src_cnt, 222 const unsigned char *scf) 223 { 224 int i; 225 226 pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id); 227 if (scf) { 228 for (i = 0; i < src_cnt; i++) 229 pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]); 230 } else { 231 for (i = 0; i < src_cnt; i++) 232 pr_debug("\t0x%016llx(no) ", src[i]); 233 } 234 235 pr_debug("dst: "); 236 for (i = 0; i < 2; i++) 237 pr_debug("\t0x%016llx ", src[src_cnt + i]); 238 } 239 240 /****************************************************************************** 241 * Command (Descriptor) Blocks low-level routines 242 ******************************************************************************/ 243 /** 244 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT 245 * pseudo operation 246 */ 247 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc, 248 struct ppc440spe_adma_chan *chan) 249 { 250 struct xor_cb *p; 251 252 switch (chan->device->id) { 253 case PPC440SPE_XOR_ID: 254 p = desc->hw_desc; 255 memset(desc->hw_desc, 0, sizeof(struct xor_cb)); 256 /* NOP with Command Block Complete Enable */ 257 p->cbc = XOR_CBCR_CBCE_BIT; 258 break; 259 case PPC440SPE_DMA0_ID: 260 case PPC440SPE_DMA1_ID: 261 memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); 262 /* NOP with interrupt */ 263 set_bit(PPC440SPE_DESC_INT, &desc->flags); 264 break; 265 default: 266 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, 267 __func__); 268 break; 269 } 270 } 271 272 /** 273 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR 274 * pseudo operation 275 */ 276 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc) 277 { 278 memset(desc->hw_desc, 0, sizeof(struct xor_cb)); 279 desc->hw_next = NULL; 280 desc->src_cnt = 0; 281 desc->dst_cnt = 1; 282 } 283 284 /** 285 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation 286 */ 287 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc, 288 int src_cnt, unsigned long flags) 289 { 290 struct xor_cb *hw_desc = desc->hw_desc; 291 292 memset(desc->hw_desc, 0, sizeof(struct xor_cb)); 293 desc->hw_next = NULL; 294 desc->src_cnt = src_cnt; 295 desc->dst_cnt = 1; 296 297 hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt; 298 if (flags & DMA_PREP_INTERRUPT) 299 /* Enable interrupt on completion */ 300 hw_desc->cbc |= XOR_CBCR_CBCE_BIT; 301 } 302 303 /** 304 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ 305 * operation in DMA2 controller 306 */ 307 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc, 308 int dst_cnt, int src_cnt, unsigned long flags) 309 { 310 struct xor_cb *hw_desc = desc->hw_desc; 311 312 memset(desc->hw_desc, 0, sizeof(struct xor_cb)); 313 desc->hw_next = NULL; 314 desc->src_cnt = src_cnt; 315 desc->dst_cnt = dst_cnt; 316 memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags)); 317 desc->descs_per_op = 0; 318 319 hw_desc->cbc = XOR_CBCR_TGT_BIT; 320 if (flags & DMA_PREP_INTERRUPT) 321 /* Enable interrupt on completion */ 322 hw_desc->cbc |= XOR_CBCR_CBCE_BIT; 323 } 324 325 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE 326 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1) 327 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1) 328 329 /** 330 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation 331 * with DMA0/1 332 */ 333 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc, 334 int dst_cnt, int src_cnt, unsigned long flags, 335 unsigned long op) 336 { 337 struct dma_cdb *hw_desc; 338 struct ppc440spe_adma_desc_slot *iter; 339 u8 dopc; 340 341 /* Common initialization of a PQ descriptors chain */ 342 set_bits(op, &desc->flags); 343 desc->src_cnt = src_cnt; 344 desc->dst_cnt = dst_cnt; 345 346 /* WXOR MULTICAST if both P and Q are being computed 347 * MV_SG1_SG2 if Q only 348 */ 349 dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ? 350 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; 351 352 list_for_each_entry(iter, &desc->group_list, chain_node) { 353 hw_desc = iter->hw_desc; 354 memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); 355 356 if (likely(!list_is_last(&iter->chain_node, 357 &desc->group_list))) { 358 /* set 'next' pointer */ 359 iter->hw_next = list_entry(iter->chain_node.next, 360 struct ppc440spe_adma_desc_slot, chain_node); 361 clear_bit(PPC440SPE_DESC_INT, &iter->flags); 362 } else { 363 /* this is the last descriptor. 364 * this slot will be pasted from ADMA level 365 * each time it wants to configure parameters 366 * of the transaction (src, dst, ...) 367 */ 368 iter->hw_next = NULL; 369 if (flags & DMA_PREP_INTERRUPT) 370 set_bit(PPC440SPE_DESC_INT, &iter->flags); 371 else 372 clear_bit(PPC440SPE_DESC_INT, &iter->flags); 373 } 374 } 375 376 /* Set OPS depending on WXOR/RXOR type of operation */ 377 if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) { 378 /* This is a WXOR only chain: 379 * - first descriptors are for zeroing destinations 380 * if PPC440SPE_ZERO_P/Q set; 381 * - descriptors remained are for GF-XOR operations. 382 */ 383 iter = list_first_entry(&desc->group_list, 384 struct ppc440spe_adma_desc_slot, 385 chain_node); 386 387 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) { 388 hw_desc = iter->hw_desc; 389 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 390 iter = list_first_entry(&iter->chain_node, 391 struct ppc440spe_adma_desc_slot, 392 chain_node); 393 } 394 395 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) { 396 hw_desc = iter->hw_desc; 397 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 398 iter = list_first_entry(&iter->chain_node, 399 struct ppc440spe_adma_desc_slot, 400 chain_node); 401 } 402 403 list_for_each_entry_from(iter, &desc->group_list, chain_node) { 404 hw_desc = iter->hw_desc; 405 hw_desc->opc = dopc; 406 } 407 } else { 408 /* This is either RXOR-only or mixed RXOR/WXOR */ 409 410 /* The first 1 or 2 slots in chain are always RXOR, 411 * if need to calculate P & Q, then there are two 412 * RXOR slots; if only P or only Q, then there is one 413 */ 414 iter = list_first_entry(&desc->group_list, 415 struct ppc440spe_adma_desc_slot, 416 chain_node); 417 hw_desc = iter->hw_desc; 418 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 419 420 if (desc->dst_cnt == DMA_DEST_MAX_NUM) { 421 iter = list_first_entry(&iter->chain_node, 422 struct ppc440spe_adma_desc_slot, 423 chain_node); 424 hw_desc = iter->hw_desc; 425 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 426 } 427 428 /* The remaining descs (if any) are WXORs */ 429 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) { 430 iter = list_first_entry(&iter->chain_node, 431 struct ppc440spe_adma_desc_slot, 432 chain_node); 433 list_for_each_entry_from(iter, &desc->group_list, 434 chain_node) { 435 hw_desc = iter->hw_desc; 436 hw_desc->opc = dopc; 437 } 438 } 439 } 440 } 441 442 /** 443 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor 444 * for PQ_ZERO_SUM operation 445 */ 446 static void ppc440spe_desc_init_dma01pqzero_sum( 447 struct ppc440spe_adma_desc_slot *desc, 448 int dst_cnt, int src_cnt) 449 { 450 struct dma_cdb *hw_desc; 451 struct ppc440spe_adma_desc_slot *iter; 452 int i = 0; 453 u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST : 454 DMA_CDB_OPC_MV_SG1_SG2; 455 /* 456 * Initialize starting from 2nd or 3rd descriptor dependent 457 * on dst_cnt. First one or two slots are for cloning P 458 * and/or Q to chan->pdest and/or chan->qdest as we have 459 * to preserve original P/Q. 460 */ 461 iter = list_first_entry(&desc->group_list, 462 struct ppc440spe_adma_desc_slot, chain_node); 463 iter = list_entry(iter->chain_node.next, 464 struct ppc440spe_adma_desc_slot, chain_node); 465 466 if (dst_cnt > 1) { 467 iter = list_entry(iter->chain_node.next, 468 struct ppc440spe_adma_desc_slot, chain_node); 469 } 470 /* initialize each source descriptor in chain */ 471 list_for_each_entry_from(iter, &desc->group_list, chain_node) { 472 hw_desc = iter->hw_desc; 473 memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); 474 iter->src_cnt = 0; 475 iter->dst_cnt = 0; 476 477 /* This is a ZERO_SUM operation: 478 * - <src_cnt> descriptors starting from 2nd or 3rd 479 * descriptor are for GF-XOR operations; 480 * - remaining <dst_cnt> descriptors are for checking the result 481 */ 482 if (i++ < src_cnt) 483 /* MV_SG1_SG2 if only Q is being verified 484 * MULTICAST if both P and Q are being verified 485 */ 486 hw_desc->opc = dopc; 487 else 488 /* DMA_CDB_OPC_DCHECK128 operation */ 489 hw_desc->opc = DMA_CDB_OPC_DCHECK128; 490 491 if (likely(!list_is_last(&iter->chain_node, 492 &desc->group_list))) { 493 /* set 'next' pointer */ 494 iter->hw_next = list_entry(iter->chain_node.next, 495 struct ppc440spe_adma_desc_slot, 496 chain_node); 497 } else { 498 /* this is the last descriptor. 499 * this slot will be pasted from ADMA level 500 * each time it wants to configure parameters 501 * of the transaction (src, dst, ...) 502 */ 503 iter->hw_next = NULL; 504 /* always enable interrupt generation since we get 505 * the status of pqzero from the handler 506 */ 507 set_bit(PPC440SPE_DESC_INT, &iter->flags); 508 } 509 } 510 desc->src_cnt = src_cnt; 511 desc->dst_cnt = dst_cnt; 512 } 513 514 /** 515 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation 516 */ 517 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc, 518 unsigned long flags) 519 { 520 struct dma_cdb *hw_desc = desc->hw_desc; 521 522 memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); 523 desc->hw_next = NULL; 524 desc->src_cnt = 1; 525 desc->dst_cnt = 1; 526 527 if (flags & DMA_PREP_INTERRUPT) 528 set_bit(PPC440SPE_DESC_INT, &desc->flags); 529 else 530 clear_bit(PPC440SPE_DESC_INT, &desc->flags); 531 532 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 533 } 534 535 /** 536 * ppc440spe_desc_set_src_addr - set source address into the descriptor 537 */ 538 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc, 539 struct ppc440spe_adma_chan *chan, 540 int src_idx, dma_addr_t addrh, 541 dma_addr_t addrl) 542 { 543 struct dma_cdb *dma_hw_desc; 544 struct xor_cb *xor_hw_desc; 545 phys_addr_t addr64, tmplow, tmphi; 546 547 switch (chan->device->id) { 548 case PPC440SPE_DMA0_ID: 549 case PPC440SPE_DMA1_ID: 550 if (!addrh) { 551 addr64 = addrl; 552 tmphi = (addr64 >> 32); 553 tmplow = (addr64 & 0xFFFFFFFF); 554 } else { 555 tmphi = addrh; 556 tmplow = addrl; 557 } 558 dma_hw_desc = desc->hw_desc; 559 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow); 560 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi); 561 break; 562 case PPC440SPE_XOR_ID: 563 xor_hw_desc = desc->hw_desc; 564 xor_hw_desc->ops[src_idx].l = addrl; 565 xor_hw_desc->ops[src_idx].h |= addrh; 566 break; 567 } 568 } 569 570 /** 571 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor 572 */ 573 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc, 574 struct ppc440spe_adma_chan *chan, u32 mult_index, 575 int sg_index, unsigned char mult_value) 576 { 577 struct dma_cdb *dma_hw_desc; 578 struct xor_cb *xor_hw_desc; 579 u32 *psgu; 580 581 switch (chan->device->id) { 582 case PPC440SPE_DMA0_ID: 583 case PPC440SPE_DMA1_ID: 584 dma_hw_desc = desc->hw_desc; 585 586 switch (sg_index) { 587 /* for RXOR operations set multiplier 588 * into source cued address 589 */ 590 case DMA_CDB_SG_SRC: 591 psgu = &dma_hw_desc->sg1u; 592 break; 593 /* for WXOR operations set multiplier 594 * into destination cued address(es) 595 */ 596 case DMA_CDB_SG_DST1: 597 psgu = &dma_hw_desc->sg2u; 598 break; 599 case DMA_CDB_SG_DST2: 600 psgu = &dma_hw_desc->sg3u; 601 break; 602 default: 603 BUG(); 604 } 605 606 *psgu |= cpu_to_le32(mult_value << mult_index); 607 break; 608 case PPC440SPE_XOR_ID: 609 xor_hw_desc = desc->hw_desc; 610 break; 611 default: 612 BUG(); 613 } 614 } 615 616 /** 617 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor 618 */ 619 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc, 620 struct ppc440spe_adma_chan *chan, 621 dma_addr_t addrh, dma_addr_t addrl, 622 u32 dst_idx) 623 { 624 struct dma_cdb *dma_hw_desc; 625 struct xor_cb *xor_hw_desc; 626 phys_addr_t addr64, tmphi, tmplow; 627 u32 *psgu, *psgl; 628 629 switch (chan->device->id) { 630 case PPC440SPE_DMA0_ID: 631 case PPC440SPE_DMA1_ID: 632 if (!addrh) { 633 addr64 = addrl; 634 tmphi = (addr64 >> 32); 635 tmplow = (addr64 & 0xFFFFFFFF); 636 } else { 637 tmphi = addrh; 638 tmplow = addrl; 639 } 640 dma_hw_desc = desc->hw_desc; 641 642 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u; 643 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l; 644 645 *psgl = cpu_to_le32((u32)tmplow); 646 *psgu |= cpu_to_le32((u32)tmphi); 647 break; 648 case PPC440SPE_XOR_ID: 649 xor_hw_desc = desc->hw_desc; 650 xor_hw_desc->cbtal = addrl; 651 xor_hw_desc->cbtah |= addrh; 652 break; 653 } 654 } 655 656 /** 657 * ppc440spe_desc_set_byte_count - set number of data bytes involved 658 * into the operation 659 */ 660 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc, 661 struct ppc440spe_adma_chan *chan, 662 u32 byte_count) 663 { 664 struct dma_cdb *dma_hw_desc; 665 struct xor_cb *xor_hw_desc; 666 667 switch (chan->device->id) { 668 case PPC440SPE_DMA0_ID: 669 case PPC440SPE_DMA1_ID: 670 dma_hw_desc = desc->hw_desc; 671 dma_hw_desc->cnt = cpu_to_le32(byte_count); 672 break; 673 case PPC440SPE_XOR_ID: 674 xor_hw_desc = desc->hw_desc; 675 xor_hw_desc->cbbc = byte_count; 676 break; 677 } 678 } 679 680 /** 681 * ppc440spe_desc_set_rxor_block_size - set RXOR block size 682 */ 683 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count) 684 { 685 /* assume that byte_count is aligned on the 512-boundary; 686 * thus write it directly to the register (bits 23:31 are 687 * reserved there). 688 */ 689 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count); 690 } 691 692 /** 693 * ppc440spe_desc_set_dcheck - set CHECK pattern 694 */ 695 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc, 696 struct ppc440spe_adma_chan *chan, u8 *qword) 697 { 698 struct dma_cdb *dma_hw_desc; 699 700 switch (chan->device->id) { 701 case PPC440SPE_DMA0_ID: 702 case PPC440SPE_DMA1_ID: 703 dma_hw_desc = desc->hw_desc; 704 iowrite32(qword[0], &dma_hw_desc->sg3l); 705 iowrite32(qword[4], &dma_hw_desc->sg3u); 706 iowrite32(qword[8], &dma_hw_desc->sg2l); 707 iowrite32(qword[12], &dma_hw_desc->sg2u); 708 break; 709 default: 710 BUG(); 711 } 712 } 713 714 /** 715 * ppc440spe_xor_set_link - set link address in xor CB 716 */ 717 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc, 718 struct ppc440spe_adma_desc_slot *next_desc) 719 { 720 struct xor_cb *xor_hw_desc = prev_desc->hw_desc; 721 722 if (unlikely(!next_desc || !(next_desc->phys))) { 723 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n", 724 __func__, next_desc, 725 next_desc ? next_desc->phys : 0); 726 BUG(); 727 } 728 729 xor_hw_desc->cbs = 0; 730 xor_hw_desc->cblal = next_desc->phys; 731 xor_hw_desc->cblah = 0; 732 xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT; 733 } 734 735 /** 736 * ppc440spe_desc_set_link - set the address of descriptor following this 737 * descriptor in chain 738 */ 739 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan, 740 struct ppc440spe_adma_desc_slot *prev_desc, 741 struct ppc440spe_adma_desc_slot *next_desc) 742 { 743 unsigned long flags; 744 struct ppc440spe_adma_desc_slot *tail = next_desc; 745 746 if (unlikely(!prev_desc || !next_desc || 747 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) { 748 /* If previous next is overwritten something is wrong. 749 * though we may refetch from append to initiate list 750 * processing; in this case - it's ok. 751 */ 752 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " 753 "prev->hw_next=0x%p\n", __func__, prev_desc, 754 next_desc, prev_desc ? prev_desc->hw_next : 0); 755 BUG(); 756 } 757 758 local_irq_save(flags); 759 760 /* do s/w chaining both for DMA and XOR descriptors */ 761 prev_desc->hw_next = next_desc; 762 763 switch (chan->device->id) { 764 case PPC440SPE_DMA0_ID: 765 case PPC440SPE_DMA1_ID: 766 break; 767 case PPC440SPE_XOR_ID: 768 /* bind descriptor to the chain */ 769 while (tail->hw_next) 770 tail = tail->hw_next; 771 xor_last_linked = tail; 772 773 if (prev_desc == xor_last_submit) 774 /* do not link to the last submitted CB */ 775 break; 776 ppc440spe_xor_set_link(prev_desc, next_desc); 777 break; 778 } 779 780 local_irq_restore(flags); 781 } 782 783 /** 784 * ppc440spe_desc_get_link - get the address of the descriptor that 785 * follows this one 786 */ 787 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc, 788 struct ppc440spe_adma_chan *chan) 789 { 790 if (!desc->hw_next) 791 return 0; 792 793 return desc->hw_next->phys; 794 } 795 796 /** 797 * ppc440spe_desc_is_aligned - check alignment 798 */ 799 static inline int ppc440spe_desc_is_aligned( 800 struct ppc440spe_adma_desc_slot *desc, int num_slots) 801 { 802 return (desc->idx & (num_slots - 1)) ? 0 : 1; 803 } 804 805 /** 806 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for 807 * XOR operation 808 */ 809 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt, 810 int *slots_per_op) 811 { 812 int slot_cnt; 813 814 /* each XOR descriptor provides up to 16 source operands */ 815 slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS; 816 817 if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)) 818 return slot_cnt; 819 820 printk(KERN_ERR "%s: len %d > max %d !!\n", 821 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); 822 BUG(); 823 return slot_cnt; 824 } 825 826 /** 827 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for 828 * DMA2 PQ operation 829 */ 830 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs, 831 int src_cnt, size_t len) 832 { 833 signed long long order = 0; 834 int state = 0; 835 int addr_count = 0; 836 int i; 837 for (i = 1; i < src_cnt; i++) { 838 dma_addr_t cur_addr = srcs[i]; 839 dma_addr_t old_addr = srcs[i-1]; 840 switch (state) { 841 case 0: 842 if (cur_addr == old_addr + len) { 843 /* direct RXOR */ 844 order = 1; 845 state = 1; 846 if (i == src_cnt-1) 847 addr_count++; 848 } else if (old_addr == cur_addr + len) { 849 /* reverse RXOR */ 850 order = -1; 851 state = 1; 852 if (i == src_cnt-1) 853 addr_count++; 854 } else { 855 state = 3; 856 } 857 break; 858 case 1: 859 if (i == src_cnt-2 || (order == -1 860 && cur_addr != old_addr - len)) { 861 order = 0; 862 state = 0; 863 addr_count++; 864 } else if (cur_addr == old_addr + len*order) { 865 state = 2; 866 if (i == src_cnt-1) 867 addr_count++; 868 } else if (cur_addr == old_addr + 2*len) { 869 state = 2; 870 if (i == src_cnt-1) 871 addr_count++; 872 } else if (cur_addr == old_addr + 3*len) { 873 state = 2; 874 if (i == src_cnt-1) 875 addr_count++; 876 } else { 877 order = 0; 878 state = 0; 879 addr_count++; 880 } 881 break; 882 case 2: 883 order = 0; 884 state = 0; 885 addr_count++; 886 break; 887 } 888 if (state == 3) 889 break; 890 } 891 if (src_cnt <= 1 || (state != 1 && state != 2)) { 892 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n", 893 __func__, src_cnt, state, addr_count, order); 894 for (i = 0; i < src_cnt; i++) 895 pr_err("\t[%d] 0x%llx \n", i, srcs[i]); 896 BUG(); 897 } 898 899 return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS; 900 } 901 902 903 /****************************************************************************** 904 * ADMA channel low-level routines 905 ******************************************************************************/ 906 907 static u32 908 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan); 909 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan); 910 911 /** 912 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine 913 */ 914 static void ppc440spe_adma_device_clear_eot_status( 915 struct ppc440spe_adma_chan *chan) 916 { 917 struct dma_regs *dma_reg; 918 struct xor_regs *xor_reg; 919 u8 *p = chan->device->dma_desc_pool_virt; 920 struct dma_cdb *cdb; 921 u32 rv, i; 922 923 switch (chan->device->id) { 924 case PPC440SPE_DMA0_ID: 925 case PPC440SPE_DMA1_ID: 926 /* read FIFO to ack */ 927 dma_reg = chan->device->dma_reg; 928 while ((rv = ioread32(&dma_reg->csfpl))) { 929 i = rv & DMA_CDB_ADDR_MSK; 930 cdb = (struct dma_cdb *)&p[i - 931 (u32)chan->device->dma_desc_pool]; 932 933 /* Clear opcode to ack. This is necessary for 934 * ZeroSum operations only 935 */ 936 cdb->opc = 0; 937 938 if (test_bit(PPC440SPE_RXOR_RUN, 939 &ppc440spe_rxor_state)) { 940 /* probably this is a completed RXOR op, 941 * get pointer to CDB using the fact that 942 * physical and virtual addresses of CDB 943 * in pools have the same offsets 944 */ 945 if (le32_to_cpu(cdb->sg1u) & 946 DMA_CUED_XOR_BASE) { 947 /* this is a RXOR */ 948 clear_bit(PPC440SPE_RXOR_RUN, 949 &ppc440spe_rxor_state); 950 } 951 } 952 953 if (rv & DMA_CDB_STATUS_MSK) { 954 /* ZeroSum check failed 955 */ 956 struct ppc440spe_adma_desc_slot *iter; 957 dma_addr_t phys = rv & ~DMA_CDB_MSK; 958 959 /* 960 * Update the status of corresponding 961 * descriptor. 962 */ 963 list_for_each_entry(iter, &chan->chain, 964 chain_node) { 965 if (iter->phys == phys) 966 break; 967 } 968 /* 969 * if cannot find the corresponding 970 * slot it's a bug 971 */ 972 BUG_ON(&iter->chain_node == &chan->chain); 973 974 if (iter->xor_check_result) { 975 if (test_bit(PPC440SPE_DESC_PCHECK, 976 &iter->flags)) { 977 *iter->xor_check_result |= 978 SUM_CHECK_P_RESULT; 979 } else 980 if (test_bit(PPC440SPE_DESC_QCHECK, 981 &iter->flags)) { 982 *iter->xor_check_result |= 983 SUM_CHECK_Q_RESULT; 984 } else 985 BUG(); 986 } 987 } 988 } 989 990 rv = ioread32(&dma_reg->dsts); 991 if (rv) { 992 pr_err("DMA%d err status: 0x%x\n", 993 chan->device->id, rv); 994 /* write back to clear */ 995 iowrite32(rv, &dma_reg->dsts); 996 } 997 break; 998 case PPC440SPE_XOR_ID: 999 /* reset status bits to ack */ 1000 xor_reg = chan->device->xor_reg; 1001 rv = ioread32be(&xor_reg->sr); 1002 iowrite32be(rv, &xor_reg->sr); 1003 1004 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) { 1005 if (rv & XOR_IE_RPTIE_BIT) { 1006 /* Read PLB Timeout Error. 1007 * Try to resubmit the CB 1008 */ 1009 u32 val = ioread32be(&xor_reg->ccbalr); 1010 1011 iowrite32be(val, &xor_reg->cblalr); 1012 1013 val = ioread32be(&xor_reg->crsr); 1014 iowrite32be(val | XOR_CRSR_XAE_BIT, 1015 &xor_reg->crsr); 1016 } else 1017 pr_err("XOR ERR 0x%x status\n", rv); 1018 break; 1019 } 1020 1021 /* if the XORcore is idle, but there are unprocessed CBs 1022 * then refetch the s/w chain here 1023 */ 1024 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) && 1025 do_xor_refetch) 1026 ppc440spe_chan_append(chan); 1027 break; 1028 } 1029 } 1030 1031 /** 1032 * ppc440spe_chan_is_busy - get the channel status 1033 */ 1034 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan) 1035 { 1036 struct dma_regs *dma_reg; 1037 struct xor_regs *xor_reg; 1038 int busy = 0; 1039 1040 switch (chan->device->id) { 1041 case PPC440SPE_DMA0_ID: 1042 case PPC440SPE_DMA1_ID: 1043 dma_reg = chan->device->dma_reg; 1044 /* if command FIFO's head and tail pointers are equal and 1045 * status tail is the same as command, then channel is free 1046 */ 1047 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) || 1048 ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp)) 1049 busy = 1; 1050 break; 1051 case PPC440SPE_XOR_ID: 1052 /* use the special status bit for the XORcore 1053 */ 1054 xor_reg = chan->device->xor_reg; 1055 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0; 1056 break; 1057 } 1058 1059 return busy; 1060 } 1061 1062 /** 1063 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain 1064 */ 1065 static void ppc440spe_chan_set_first_xor_descriptor( 1066 struct ppc440spe_adma_chan *chan, 1067 struct ppc440spe_adma_desc_slot *next_desc) 1068 { 1069 struct xor_regs *xor_reg = chan->device->xor_reg; 1070 1071 if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) 1072 printk(KERN_INFO "%s: Warn: XORcore is running " 1073 "when try to set the first CDB!\n", 1074 __func__); 1075 1076 xor_last_submit = xor_last_linked = next_desc; 1077 1078 iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr); 1079 1080 iowrite32be(next_desc->phys, &xor_reg->cblalr); 1081 iowrite32be(0, &xor_reg->cblahr); 1082 iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT, 1083 &xor_reg->cbcr); 1084 1085 chan->hw_chain_inited = 1; 1086 } 1087 1088 /** 1089 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO. 1090 * called with irqs disabled 1091 */ 1092 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan, 1093 struct ppc440spe_adma_desc_slot *desc) 1094 { 1095 u32 pcdb; 1096 struct dma_regs *dma_reg = chan->device->dma_reg; 1097 1098 pcdb = desc->phys; 1099 if (!test_bit(PPC440SPE_DESC_INT, &desc->flags)) 1100 pcdb |= DMA_CDB_NO_INT; 1101 1102 chan_last_sub[chan->device->id] = desc; 1103 1104 ADMA_LL_DBG(print_cb(chan, desc->hw_desc)); 1105 1106 iowrite32(pcdb, &dma_reg->cpfpl); 1107 } 1108 1109 /** 1110 * ppc440spe_chan_append - update the h/w chain in the channel 1111 */ 1112 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan) 1113 { 1114 struct xor_regs *xor_reg; 1115 struct ppc440spe_adma_desc_slot *iter; 1116 struct xor_cb *xcb; 1117 u32 cur_desc; 1118 unsigned long flags; 1119 1120 local_irq_save(flags); 1121 1122 switch (chan->device->id) { 1123 case PPC440SPE_DMA0_ID: 1124 case PPC440SPE_DMA1_ID: 1125 cur_desc = ppc440spe_chan_get_current_descriptor(chan); 1126 1127 if (likely(cur_desc)) { 1128 iter = chan_last_sub[chan->device->id]; 1129 BUG_ON(!iter); 1130 } else { 1131 /* first peer */ 1132 iter = chan_first_cdb[chan->device->id]; 1133 BUG_ON(!iter); 1134 ppc440spe_dma_put_desc(chan, iter); 1135 chan->hw_chain_inited = 1; 1136 } 1137 1138 /* is there something new to append */ 1139 if (!iter->hw_next) 1140 break; 1141 1142 /* flush descriptors from the s/w queue to fifo */ 1143 list_for_each_entry_continue(iter, &chan->chain, chain_node) { 1144 ppc440spe_dma_put_desc(chan, iter); 1145 if (!iter->hw_next) 1146 break; 1147 } 1148 break; 1149 case PPC440SPE_XOR_ID: 1150 /* update h/w links and refetch */ 1151 if (!xor_last_submit->hw_next) 1152 break; 1153 1154 xor_reg = chan->device->xor_reg; 1155 /* the last linked CDB has to generate an interrupt 1156 * that we'd be able to append the next lists to h/w 1157 * regardless of the XOR engine state at the moment of 1158 * appending of these next lists 1159 */ 1160 xcb = xor_last_linked->hw_desc; 1161 xcb->cbc |= XOR_CBCR_CBCE_BIT; 1162 1163 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) { 1164 /* XORcore is idle. Refetch now */ 1165 do_xor_refetch = 0; 1166 ppc440spe_xor_set_link(xor_last_submit, 1167 xor_last_submit->hw_next); 1168 1169 ADMA_LL_DBG(print_cb_list(chan, 1170 xor_last_submit->hw_next)); 1171 1172 xor_last_submit = xor_last_linked; 1173 iowrite32be(ioread32be(&xor_reg->crsr) | 1174 XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT, 1175 &xor_reg->crsr); 1176 } else { 1177 /* XORcore is running. Refetch later in the handler */ 1178 do_xor_refetch = 1; 1179 } 1180 1181 break; 1182 } 1183 1184 local_irq_restore(flags); 1185 } 1186 1187 /** 1188 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor 1189 */ 1190 static u32 1191 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan) 1192 { 1193 struct dma_regs *dma_reg; 1194 struct xor_regs *xor_reg; 1195 1196 if (unlikely(!chan->hw_chain_inited)) 1197 /* h/w descriptor chain is not initialized yet */ 1198 return 0; 1199 1200 switch (chan->device->id) { 1201 case PPC440SPE_DMA0_ID: 1202 case PPC440SPE_DMA1_ID: 1203 dma_reg = chan->device->dma_reg; 1204 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK); 1205 case PPC440SPE_XOR_ID: 1206 xor_reg = chan->device->xor_reg; 1207 return ioread32be(&xor_reg->ccbalr); 1208 } 1209 return 0; 1210 } 1211 1212 /** 1213 * ppc440spe_chan_run - enable the channel 1214 */ 1215 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan) 1216 { 1217 struct xor_regs *xor_reg; 1218 1219 switch (chan->device->id) { 1220 case PPC440SPE_DMA0_ID: 1221 case PPC440SPE_DMA1_ID: 1222 /* DMAs are always enabled, do nothing */ 1223 break; 1224 case PPC440SPE_XOR_ID: 1225 /* drain write buffer */ 1226 xor_reg = chan->device->xor_reg; 1227 1228 /* fetch descriptor pointed to in <link> */ 1229 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT, 1230 &xor_reg->crsr); 1231 break; 1232 } 1233 } 1234 1235 /****************************************************************************** 1236 * ADMA device level 1237 ******************************************************************************/ 1238 1239 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan); 1240 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan); 1241 1242 static dma_cookie_t 1243 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx); 1244 1245 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx, 1246 dma_addr_t addr, int index); 1247 static void 1248 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx, 1249 dma_addr_t addr, int index); 1250 1251 static void 1252 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx, 1253 dma_addr_t *paddr, unsigned long flags); 1254 static void 1255 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx, 1256 dma_addr_t addr, int index); 1257 static void 1258 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx, 1259 unsigned char mult, int index, int dst_pos); 1260 static void 1261 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx, 1262 dma_addr_t paddr, dma_addr_t qaddr); 1263 1264 static struct page *ppc440spe_rxor_srcs[32]; 1265 1266 /** 1267 * ppc440spe_can_rxor - check if the operands may be processed with RXOR 1268 */ 1269 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len) 1270 { 1271 int i, order = 0, state = 0; 1272 int idx = 0; 1273 1274 if (unlikely(!(src_cnt > 1))) 1275 return 0; 1276 1277 BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs)); 1278 1279 /* Skip holes in the source list before checking */ 1280 for (i = 0; i < src_cnt; i++) { 1281 if (!srcs[i]) 1282 continue; 1283 ppc440spe_rxor_srcs[idx++] = srcs[i]; 1284 } 1285 src_cnt = idx; 1286 1287 for (i = 1; i < src_cnt; i++) { 1288 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]); 1289 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]); 1290 1291 switch (state) { 1292 case 0: 1293 if (cur_addr == old_addr + len) { 1294 /* direct RXOR */ 1295 order = 1; 1296 state = 1; 1297 } else if (old_addr == cur_addr + len) { 1298 /* reverse RXOR */ 1299 order = -1; 1300 state = 1; 1301 } else 1302 goto out; 1303 break; 1304 case 1: 1305 if ((i == src_cnt - 2) || 1306 (order == -1 && cur_addr != old_addr - len)) { 1307 order = 0; 1308 state = 0; 1309 } else if ((cur_addr == old_addr + len * order) || 1310 (cur_addr == old_addr + 2 * len) || 1311 (cur_addr == old_addr + 3 * len)) { 1312 state = 2; 1313 } else { 1314 order = 0; 1315 state = 0; 1316 } 1317 break; 1318 case 2: 1319 order = 0; 1320 state = 0; 1321 break; 1322 } 1323 } 1324 1325 out: 1326 if (state == 1 || state == 2) 1327 return 1; 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * ppc440spe_adma_device_estimate - estimate the efficiency of processing 1334 * the operation given on this channel. It's assumed that 'chan' is 1335 * capable to process 'cap' type of operation. 1336 * @chan: channel to use 1337 * @cap: type of transaction 1338 * @dst_lst: array of destination pointers 1339 * @dst_cnt: number of destination operands 1340 * @src_lst: array of source pointers 1341 * @src_cnt: number of source operands 1342 * @src_sz: size of each source operand 1343 */ 1344 static int ppc440spe_adma_estimate(struct dma_chan *chan, 1345 enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt, 1346 struct page **src_lst, int src_cnt, size_t src_sz) 1347 { 1348 int ef = 1; 1349 1350 if (cap == DMA_PQ || cap == DMA_PQ_VAL) { 1351 /* If RAID-6 capabilities were not activated don't try 1352 * to use them 1353 */ 1354 if (unlikely(!ppc440spe_r6_enabled)) 1355 return -1; 1356 } 1357 /* In the current implementation of ppc440spe ADMA driver it 1358 * makes sense to pick out only pq case, because it may be 1359 * processed: 1360 * (1) either using Biskup method on DMA2; 1361 * (2) or on DMA0/1. 1362 * Thus we give a favour to (1) if the sources are suitable; 1363 * else let it be processed on one of the DMA0/1 engines. 1364 * In the sum_product case where destination is also the 1365 * source process it on DMA0/1 only. 1366 */ 1367 if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) { 1368 1369 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1]) 1370 ef = 0; /* sum_product case, process on DMA0/1 */ 1371 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz)) 1372 ef = 3; /* override (DMA0/1 + idle) */ 1373 else 1374 ef = 0; /* can't process on DMA2 if !rxor */ 1375 } 1376 1377 /* channel idleness increases the priority */ 1378 if (likely(ef) && 1379 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan))) 1380 ef++; 1381 1382 return ef; 1383 } 1384 1385 struct dma_chan * 1386 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap, 1387 struct page **dst_lst, int dst_cnt, struct page **src_lst, 1388 int src_cnt, size_t src_sz) 1389 { 1390 struct dma_chan *best_chan = NULL; 1391 struct ppc_dma_chan_ref *ref; 1392 int best_rank = -1; 1393 1394 if (unlikely(!src_sz)) 1395 return NULL; 1396 if (src_sz > PAGE_SIZE) { 1397 /* 1398 * should a user of the api ever pass > PAGE_SIZE requests 1399 * we sort out cases where temporary page-sized buffers 1400 * are used. 1401 */ 1402 switch (cap) { 1403 case DMA_PQ: 1404 if (src_cnt == 1 && dst_lst[1] == src_lst[0]) 1405 return NULL; 1406 if (src_cnt == 2 && dst_lst[1] == src_lst[1]) 1407 return NULL; 1408 break; 1409 case DMA_PQ_VAL: 1410 case DMA_XOR_VAL: 1411 return NULL; 1412 default: 1413 break; 1414 } 1415 } 1416 1417 list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) { 1418 if (dma_has_cap(cap, ref->chan->device->cap_mask)) { 1419 int rank; 1420 1421 rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst, 1422 dst_cnt, src_lst, src_cnt, src_sz); 1423 if (rank > best_rank) { 1424 best_rank = rank; 1425 best_chan = ref->chan; 1426 } 1427 } 1428 } 1429 1430 return best_chan; 1431 } 1432 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel); 1433 1434 /** 1435 * ppc440spe_get_group_entry - get group entry with index idx 1436 * @tdesc: is the last allocated slot in the group. 1437 */ 1438 static struct ppc440spe_adma_desc_slot * 1439 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx) 1440 { 1441 struct ppc440spe_adma_desc_slot *iter = tdesc->group_head; 1442 int i = 0; 1443 1444 if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { 1445 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", 1446 __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); 1447 BUG(); 1448 } 1449 1450 list_for_each_entry(iter, &tdesc->group_list, chain_node) { 1451 if (i++ == entry_idx) 1452 break; 1453 } 1454 return iter; 1455 } 1456 1457 /** 1458 * ppc440spe_adma_free_slots - flags descriptor slots for reuse 1459 * @slot: Slot to free 1460 * Caller must hold &ppc440spe_chan->lock while calling this function 1461 */ 1462 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot, 1463 struct ppc440spe_adma_chan *chan) 1464 { 1465 int stride = slot->slots_per_op; 1466 1467 while (stride--) { 1468 slot->slots_per_op = 0; 1469 slot = list_entry(slot->slot_node.next, 1470 struct ppc440spe_adma_desc_slot, 1471 slot_node); 1472 } 1473 } 1474 1475 /** 1476 * ppc440spe_adma_run_tx_complete_actions - call functions to be called 1477 * upon completion 1478 */ 1479 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions( 1480 struct ppc440spe_adma_desc_slot *desc, 1481 struct ppc440spe_adma_chan *chan, 1482 dma_cookie_t cookie) 1483 { 1484 BUG_ON(desc->async_tx.cookie < 0); 1485 if (desc->async_tx.cookie > 0) { 1486 cookie = desc->async_tx.cookie; 1487 desc->async_tx.cookie = 0; 1488 1489 /* call the callback (must not sleep or submit new 1490 * operations to this channel) 1491 */ 1492 if (desc->async_tx.callback) 1493 desc->async_tx.callback( 1494 desc->async_tx.callback_param); 1495 1496 dma_descriptor_unmap(&desc->async_tx); 1497 } 1498 1499 /* run dependent operations */ 1500 dma_run_dependencies(&desc->async_tx); 1501 1502 return cookie; 1503 } 1504 1505 /** 1506 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set) 1507 */ 1508 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc, 1509 struct ppc440spe_adma_chan *chan) 1510 { 1511 /* the client is allowed to attach dependent operations 1512 * until 'ack' is set 1513 */ 1514 if (!async_tx_test_ack(&desc->async_tx)) 1515 return 0; 1516 1517 /* leave the last descriptor in the chain 1518 * so we can append to it 1519 */ 1520 if (list_is_last(&desc->chain_node, &chan->chain) || 1521 desc->phys == ppc440spe_chan_get_current_descriptor(chan)) 1522 return 1; 1523 1524 if (chan->device->id != PPC440SPE_XOR_ID) { 1525 /* our DMA interrupt handler clears opc field of 1526 * each processed descriptor. For all types of 1527 * operations except for ZeroSum we do not actually 1528 * need ack from the interrupt handler. ZeroSum is a 1529 * special case since the result of this operation 1530 * is available from the handler only, so if we see 1531 * such type of descriptor (which is unprocessed yet) 1532 * then leave it in chain. 1533 */ 1534 struct dma_cdb *cdb = desc->hw_desc; 1535 if (cdb->opc == DMA_CDB_OPC_DCHECK128) 1536 return 1; 1537 } 1538 1539 dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n", 1540 desc->phys, desc->idx, desc->slots_per_op); 1541 1542 list_del(&desc->chain_node); 1543 ppc440spe_adma_free_slots(desc, chan); 1544 return 0; 1545 } 1546 1547 /** 1548 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine 1549 * which runs through the channel CDBs list until reach the descriptor 1550 * currently processed. When routine determines that all CDBs of group 1551 * are completed then corresponding callbacks (if any) are called and slots 1552 * are freed. 1553 */ 1554 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) 1555 { 1556 struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL; 1557 dma_cookie_t cookie = 0; 1558 u32 current_desc = ppc440spe_chan_get_current_descriptor(chan); 1559 int busy = ppc440spe_chan_is_busy(chan); 1560 int seen_current = 0, slot_cnt = 0, slots_per_op = 0; 1561 1562 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", 1563 chan->device->id, __func__); 1564 1565 if (!current_desc) { 1566 /* There were no transactions yet, so 1567 * nothing to clean 1568 */ 1569 return; 1570 } 1571 1572 /* free completed slots from the chain starting with 1573 * the oldest descriptor 1574 */ 1575 list_for_each_entry_safe(iter, _iter, &chan->chain, 1576 chain_node) { 1577 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d " 1578 "busy: %d this_desc: %#llx next_desc: %#x " 1579 "cur: %#x ack: %d\n", 1580 iter->async_tx.cookie, iter->idx, busy, iter->phys, 1581 ppc440spe_desc_get_link(iter, chan), current_desc, 1582 async_tx_test_ack(&iter->async_tx)); 1583 prefetch(_iter); 1584 prefetch(&_iter->async_tx); 1585 1586 /* do not advance past the current descriptor loaded into the 1587 * hardware channel,subsequent descriptors are either in process 1588 * or have not been submitted 1589 */ 1590 if (seen_current) 1591 break; 1592 1593 /* stop the search if we reach the current descriptor and the 1594 * channel is busy, or if it appears that the current descriptor 1595 * needs to be re-read (i.e. has been appended to) 1596 */ 1597 if (iter->phys == current_desc) { 1598 BUG_ON(seen_current++); 1599 if (busy || ppc440spe_desc_get_link(iter, chan)) { 1600 /* not all descriptors of the group have 1601 * been completed; exit. 1602 */ 1603 break; 1604 } 1605 } 1606 1607 /* detect the start of a group transaction */ 1608 if (!slot_cnt && !slots_per_op) { 1609 slot_cnt = iter->slot_cnt; 1610 slots_per_op = iter->slots_per_op; 1611 if (slot_cnt <= slots_per_op) { 1612 slot_cnt = 0; 1613 slots_per_op = 0; 1614 } 1615 } 1616 1617 if (slot_cnt) { 1618 if (!group_start) 1619 group_start = iter; 1620 slot_cnt -= slots_per_op; 1621 } 1622 1623 /* all the members of a group are complete */ 1624 if (slots_per_op != 0 && slot_cnt == 0) { 1625 struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter; 1626 int end_of_chain = 0; 1627 1628 /* clean up the group */ 1629 slot_cnt = group_start->slot_cnt; 1630 grp_iter = group_start; 1631 list_for_each_entry_safe_from(grp_iter, _grp_iter, 1632 &chan->chain, chain_node) { 1633 1634 cookie = ppc440spe_adma_run_tx_complete_actions( 1635 grp_iter, chan, cookie); 1636 1637 slot_cnt -= slots_per_op; 1638 end_of_chain = ppc440spe_adma_clean_slot( 1639 grp_iter, chan); 1640 if (end_of_chain && slot_cnt) { 1641 /* Should wait for ZeroSum completion */ 1642 if (cookie > 0) 1643 chan->common.completed_cookie = cookie; 1644 return; 1645 } 1646 1647 if (slot_cnt == 0 || end_of_chain) 1648 break; 1649 } 1650 1651 /* the group should be complete at this point */ 1652 BUG_ON(slot_cnt); 1653 1654 slots_per_op = 0; 1655 group_start = NULL; 1656 if (end_of_chain) 1657 break; 1658 else 1659 continue; 1660 } else if (slots_per_op) /* wait for group completion */ 1661 continue; 1662 1663 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan, 1664 cookie); 1665 1666 if (ppc440spe_adma_clean_slot(iter, chan)) 1667 break; 1668 } 1669 1670 BUG_ON(!seen_current); 1671 1672 if (cookie > 0) { 1673 chan->common.completed_cookie = cookie; 1674 pr_debug("\tcompleted cookie %d\n", cookie); 1675 } 1676 1677 } 1678 1679 /** 1680 * ppc440spe_adma_tasklet - clean up watch-dog initiator 1681 */ 1682 static void ppc440spe_adma_tasklet(unsigned long data) 1683 { 1684 struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data; 1685 1686 spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING); 1687 __ppc440spe_adma_slot_cleanup(chan); 1688 spin_unlock(&chan->lock); 1689 } 1690 1691 /** 1692 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator 1693 */ 1694 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) 1695 { 1696 spin_lock_bh(&chan->lock); 1697 __ppc440spe_adma_slot_cleanup(chan); 1698 spin_unlock_bh(&chan->lock); 1699 } 1700 1701 /** 1702 * ppc440spe_adma_alloc_slots - allocate free slots (if any) 1703 */ 1704 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots( 1705 struct ppc440spe_adma_chan *chan, int num_slots, 1706 int slots_per_op) 1707 { 1708 struct ppc440spe_adma_desc_slot *iter = NULL, *_iter; 1709 struct ppc440spe_adma_desc_slot *alloc_start = NULL; 1710 struct list_head chain = LIST_HEAD_INIT(chain); 1711 int slots_found, retry = 0; 1712 1713 1714 BUG_ON(!num_slots || !slots_per_op); 1715 /* start search from the last allocated descrtiptor 1716 * if a contiguous allocation can not be found start searching 1717 * from the beginning of the list 1718 */ 1719 retry: 1720 slots_found = 0; 1721 if (retry == 0) 1722 iter = chan->last_used; 1723 else 1724 iter = list_entry(&chan->all_slots, 1725 struct ppc440spe_adma_desc_slot, 1726 slot_node); 1727 list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, 1728 slot_node) { 1729 prefetch(_iter); 1730 prefetch(&_iter->async_tx); 1731 if (iter->slots_per_op) { 1732 slots_found = 0; 1733 continue; 1734 } 1735 1736 /* start the allocation if the slot is correctly aligned */ 1737 if (!slots_found++) 1738 alloc_start = iter; 1739 1740 if (slots_found == num_slots) { 1741 struct ppc440spe_adma_desc_slot *alloc_tail = NULL; 1742 struct ppc440spe_adma_desc_slot *last_used = NULL; 1743 1744 iter = alloc_start; 1745 while (num_slots) { 1746 int i; 1747 /* pre-ack all but the last descriptor */ 1748 if (num_slots != slots_per_op) 1749 async_tx_ack(&iter->async_tx); 1750 1751 list_add_tail(&iter->chain_node, &chain); 1752 alloc_tail = iter; 1753 iter->async_tx.cookie = 0; 1754 iter->hw_next = NULL; 1755 iter->flags = 0; 1756 iter->slot_cnt = num_slots; 1757 iter->xor_check_result = NULL; 1758 for (i = 0; i < slots_per_op; i++) { 1759 iter->slots_per_op = slots_per_op - i; 1760 last_used = iter; 1761 iter = list_entry(iter->slot_node.next, 1762 struct ppc440spe_adma_desc_slot, 1763 slot_node); 1764 } 1765 num_slots -= slots_per_op; 1766 } 1767 alloc_tail->group_head = alloc_start; 1768 alloc_tail->async_tx.cookie = -EBUSY; 1769 list_splice(&chain, &alloc_tail->group_list); 1770 chan->last_used = last_used; 1771 return alloc_tail; 1772 } 1773 } 1774 if (!retry++) 1775 goto retry; 1776 1777 /* try to free some slots if the allocation fails */ 1778 tasklet_schedule(&chan->irq_tasklet); 1779 return NULL; 1780 } 1781 1782 /** 1783 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots 1784 */ 1785 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan) 1786 { 1787 struct ppc440spe_adma_chan *ppc440spe_chan; 1788 struct ppc440spe_adma_desc_slot *slot = NULL; 1789 char *hw_desc; 1790 int i, db_sz; 1791 int init; 1792 1793 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 1794 init = ppc440spe_chan->slots_allocated ? 0 : 1; 1795 chan->chan_id = ppc440spe_chan->device->id; 1796 1797 /* Allocate descriptor slots */ 1798 i = ppc440spe_chan->slots_allocated; 1799 if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID) 1800 db_sz = sizeof(struct dma_cdb); 1801 else 1802 db_sz = sizeof(struct xor_cb); 1803 1804 for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) { 1805 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot), 1806 GFP_KERNEL); 1807 if (!slot) { 1808 printk(KERN_INFO "SPE ADMA Channel only initialized" 1809 " %d descriptor slots", i--); 1810 break; 1811 } 1812 1813 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt; 1814 slot->hw_desc = (void *) &hw_desc[i * db_sz]; 1815 dma_async_tx_descriptor_init(&slot->async_tx, chan); 1816 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit; 1817 INIT_LIST_HEAD(&slot->chain_node); 1818 INIT_LIST_HEAD(&slot->slot_node); 1819 INIT_LIST_HEAD(&slot->group_list); 1820 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz; 1821 slot->idx = i; 1822 1823 spin_lock_bh(&ppc440spe_chan->lock); 1824 ppc440spe_chan->slots_allocated++; 1825 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots); 1826 spin_unlock_bh(&ppc440spe_chan->lock); 1827 } 1828 1829 if (i && !ppc440spe_chan->last_used) { 1830 ppc440spe_chan->last_used = 1831 list_entry(ppc440spe_chan->all_slots.next, 1832 struct ppc440spe_adma_desc_slot, 1833 slot_node); 1834 } 1835 1836 dev_dbg(ppc440spe_chan->device->common.dev, 1837 "ppc440spe adma%d: allocated %d descriptor slots\n", 1838 ppc440spe_chan->device->id, i); 1839 1840 /* initialize the channel and the chain with a null operation */ 1841 if (init) { 1842 switch (ppc440spe_chan->device->id) { 1843 case PPC440SPE_DMA0_ID: 1844 case PPC440SPE_DMA1_ID: 1845 ppc440spe_chan->hw_chain_inited = 0; 1846 /* Use WXOR for self-testing */ 1847 if (!ppc440spe_r6_tchan) 1848 ppc440spe_r6_tchan = ppc440spe_chan; 1849 break; 1850 case PPC440SPE_XOR_ID: 1851 ppc440spe_chan_start_null_xor(ppc440spe_chan); 1852 break; 1853 default: 1854 BUG(); 1855 } 1856 ppc440spe_chan->needs_unmap = 1; 1857 } 1858 1859 return (i > 0) ? i : -ENOMEM; 1860 } 1861 1862 /** 1863 * ppc440spe_rxor_set_region_data - 1864 */ 1865 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc, 1866 u8 xor_arg_no, u32 mask) 1867 { 1868 struct xor_cb *xcb = desc->hw_desc; 1869 1870 xcb->ops[xor_arg_no].h |= mask; 1871 } 1872 1873 /** 1874 * ppc440spe_rxor_set_src - 1875 */ 1876 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc, 1877 u8 xor_arg_no, dma_addr_t addr) 1878 { 1879 struct xor_cb *xcb = desc->hw_desc; 1880 1881 xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE; 1882 xcb->ops[xor_arg_no].l = addr; 1883 } 1884 1885 /** 1886 * ppc440spe_rxor_set_mult - 1887 */ 1888 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc, 1889 u8 xor_arg_no, u8 idx, u8 mult) 1890 { 1891 struct xor_cb *xcb = desc->hw_desc; 1892 1893 xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8); 1894 } 1895 1896 /** 1897 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold 1898 * has been achieved 1899 */ 1900 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan) 1901 { 1902 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n", 1903 chan->device->id, chan->pending); 1904 1905 if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) { 1906 chan->pending = 0; 1907 ppc440spe_chan_append(chan); 1908 } 1909 } 1910 1911 /** 1912 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel 1913 * (it's not necessary that descriptors will be submitted to the h/w 1914 * chains too right now) 1915 */ 1916 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx) 1917 { 1918 struct ppc440spe_adma_desc_slot *sw_desc; 1919 struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan); 1920 struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail; 1921 int slot_cnt; 1922 int slots_per_op; 1923 dma_cookie_t cookie; 1924 1925 sw_desc = tx_to_ppc440spe_adma_slot(tx); 1926 1927 group_start = sw_desc->group_head; 1928 slot_cnt = group_start->slot_cnt; 1929 slots_per_op = group_start->slots_per_op; 1930 1931 spin_lock_bh(&chan->lock); 1932 cookie = dma_cookie_assign(tx); 1933 1934 if (unlikely(list_empty(&chan->chain))) { 1935 /* first peer */ 1936 list_splice_init(&sw_desc->group_list, &chan->chain); 1937 chan_first_cdb[chan->device->id] = group_start; 1938 } else { 1939 /* isn't first peer, bind CDBs to chain */ 1940 old_chain_tail = list_entry(chan->chain.prev, 1941 struct ppc440spe_adma_desc_slot, 1942 chain_node); 1943 list_splice_init(&sw_desc->group_list, 1944 &old_chain_tail->chain_node); 1945 /* fix up the hardware chain */ 1946 ppc440spe_desc_set_link(chan, old_chain_tail, group_start); 1947 } 1948 1949 /* increment the pending count by the number of operations */ 1950 chan->pending += slot_cnt / slots_per_op; 1951 ppc440spe_adma_check_threshold(chan); 1952 spin_unlock_bh(&chan->lock); 1953 1954 dev_dbg(chan->device->common.dev, 1955 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n", 1956 chan->device->id, __func__, 1957 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); 1958 1959 return cookie; 1960 } 1961 1962 /** 1963 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation 1964 */ 1965 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt( 1966 struct dma_chan *chan, unsigned long flags) 1967 { 1968 struct ppc440spe_adma_chan *ppc440spe_chan; 1969 struct ppc440spe_adma_desc_slot *sw_desc, *group_start; 1970 int slot_cnt, slots_per_op; 1971 1972 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 1973 1974 dev_dbg(ppc440spe_chan->device->common.dev, 1975 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id, 1976 __func__); 1977 1978 spin_lock_bh(&ppc440spe_chan->lock); 1979 slot_cnt = slots_per_op = 1; 1980 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1981 slots_per_op); 1982 if (sw_desc) { 1983 group_start = sw_desc->group_head; 1984 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan); 1985 group_start->unmap_len = 0; 1986 sw_desc->async_tx.flags = flags; 1987 } 1988 spin_unlock_bh(&ppc440spe_chan->lock); 1989 1990 return sw_desc ? &sw_desc->async_tx : NULL; 1991 } 1992 1993 /** 1994 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation 1995 */ 1996 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy( 1997 struct dma_chan *chan, dma_addr_t dma_dest, 1998 dma_addr_t dma_src, size_t len, unsigned long flags) 1999 { 2000 struct ppc440spe_adma_chan *ppc440spe_chan; 2001 struct ppc440spe_adma_desc_slot *sw_desc, *group_start; 2002 int slot_cnt, slots_per_op; 2003 2004 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 2005 2006 if (unlikely(!len)) 2007 return NULL; 2008 2009 BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT); 2010 2011 spin_lock_bh(&ppc440spe_chan->lock); 2012 2013 dev_dbg(ppc440spe_chan->device->common.dev, 2014 "ppc440spe adma%d: %s len: %u int_en %d\n", 2015 ppc440spe_chan->device->id, __func__, len, 2016 flags & DMA_PREP_INTERRUPT ? 1 : 0); 2017 slot_cnt = slots_per_op = 1; 2018 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 2019 slots_per_op); 2020 if (sw_desc) { 2021 group_start = sw_desc->group_head; 2022 ppc440spe_desc_init_memcpy(group_start, flags); 2023 ppc440spe_adma_set_dest(group_start, dma_dest, 0); 2024 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0); 2025 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); 2026 sw_desc->unmap_len = len; 2027 sw_desc->async_tx.flags = flags; 2028 } 2029 spin_unlock_bh(&ppc440spe_chan->lock); 2030 2031 return sw_desc ? &sw_desc->async_tx : NULL; 2032 } 2033 2034 /** 2035 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation 2036 */ 2037 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor( 2038 struct dma_chan *chan, dma_addr_t dma_dest, 2039 dma_addr_t *dma_src, u32 src_cnt, size_t len, 2040 unsigned long flags) 2041 { 2042 struct ppc440spe_adma_chan *ppc440spe_chan; 2043 struct ppc440spe_adma_desc_slot *sw_desc, *group_start; 2044 int slot_cnt, slots_per_op; 2045 2046 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 2047 2048 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id, 2049 dma_dest, dma_src, src_cnt)); 2050 if (unlikely(!len)) 2051 return NULL; 2052 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); 2053 2054 dev_dbg(ppc440spe_chan->device->common.dev, 2055 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", 2056 ppc440spe_chan->device->id, __func__, src_cnt, len, 2057 flags & DMA_PREP_INTERRUPT ? 1 : 0); 2058 2059 spin_lock_bh(&ppc440spe_chan->lock); 2060 slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op); 2061 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 2062 slots_per_op); 2063 if (sw_desc) { 2064 group_start = sw_desc->group_head; 2065 ppc440spe_desc_init_xor(group_start, src_cnt, flags); 2066 ppc440spe_adma_set_dest(group_start, dma_dest, 0); 2067 while (src_cnt--) 2068 ppc440spe_adma_memcpy_xor_set_src(group_start, 2069 dma_src[src_cnt], src_cnt); 2070 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); 2071 sw_desc->unmap_len = len; 2072 sw_desc->async_tx.flags = flags; 2073 } 2074 spin_unlock_bh(&ppc440spe_chan->lock); 2075 2076 return sw_desc ? &sw_desc->async_tx : NULL; 2077 } 2078 2079 static inline void 2080 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc, 2081 int src_cnt); 2082 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor); 2083 2084 /** 2085 * ppc440spe_adma_init_dma2rxor_slot - 2086 */ 2087 static void ppc440spe_adma_init_dma2rxor_slot( 2088 struct ppc440spe_adma_desc_slot *desc, 2089 dma_addr_t *src, int src_cnt) 2090 { 2091 int i; 2092 2093 /* initialize CDB */ 2094 for (i = 0; i < src_cnt; i++) { 2095 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i, 2096 desc->src_cnt, (u32)src[i]); 2097 } 2098 } 2099 2100 /** 2101 * ppc440spe_dma01_prep_mult - 2102 * for Q operation where destination is also the source 2103 */ 2104 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult( 2105 struct ppc440spe_adma_chan *ppc440spe_chan, 2106 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, 2107 const unsigned char *scf, size_t len, unsigned long flags) 2108 { 2109 struct ppc440spe_adma_desc_slot *sw_desc = NULL; 2110 unsigned long op = 0; 2111 int slot_cnt; 2112 2113 set_bit(PPC440SPE_DESC_WXOR, &op); 2114 slot_cnt = 2; 2115 2116 spin_lock_bh(&ppc440spe_chan->lock); 2117 2118 /* use WXOR, each descriptor occupies one slot */ 2119 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); 2120 if (sw_desc) { 2121 struct ppc440spe_adma_chan *chan; 2122 struct ppc440spe_adma_desc_slot *iter; 2123 struct dma_cdb *hw_desc; 2124 2125 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); 2126 set_bits(op, &sw_desc->flags); 2127 sw_desc->src_cnt = src_cnt; 2128 sw_desc->dst_cnt = dst_cnt; 2129 /* First descriptor, zero data in the destination and copy it 2130 * to q page using MULTICAST transfer. 2131 */ 2132 iter = list_first_entry(&sw_desc->group_list, 2133 struct ppc440spe_adma_desc_slot, 2134 chain_node); 2135 memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); 2136 /* set 'next' pointer */ 2137 iter->hw_next = list_entry(iter->chain_node.next, 2138 struct ppc440spe_adma_desc_slot, 2139 chain_node); 2140 clear_bit(PPC440SPE_DESC_INT, &iter->flags); 2141 hw_desc = iter->hw_desc; 2142 hw_desc->opc = DMA_CDB_OPC_MULTICAST; 2143 2144 ppc440spe_desc_set_dest_addr(iter, chan, 2145 DMA_CUED_XOR_BASE, dst[0], 0); 2146 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1); 2147 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, 2148 src[0]); 2149 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); 2150 iter->unmap_len = len; 2151 2152 /* 2153 * Second descriptor, multiply data from the q page 2154 * and store the result in real destination. 2155 */ 2156 iter = list_first_entry(&iter->chain_node, 2157 struct ppc440spe_adma_desc_slot, 2158 chain_node); 2159 memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); 2160 iter->hw_next = NULL; 2161 if (flags & DMA_PREP_INTERRUPT) 2162 set_bit(PPC440SPE_DESC_INT, &iter->flags); 2163 else 2164 clear_bit(PPC440SPE_DESC_INT, &iter->flags); 2165 2166 hw_desc = iter->hw_desc; 2167 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 2168 ppc440spe_desc_set_src_addr(iter, chan, 0, 2169 DMA_CUED_XOR_HB, dst[1]); 2170 ppc440spe_desc_set_dest_addr(iter, chan, 2171 DMA_CUED_XOR_BASE, dst[0], 0); 2172 2173 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, 2174 DMA_CDB_SG_DST1, scf[0]); 2175 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); 2176 iter->unmap_len = len; 2177 sw_desc->async_tx.flags = flags; 2178 } 2179 2180 spin_unlock_bh(&ppc440spe_chan->lock); 2181 2182 return sw_desc; 2183 } 2184 2185 /** 2186 * ppc440spe_dma01_prep_sum_product - 2187 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also 2188 * the source. 2189 */ 2190 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product( 2191 struct ppc440spe_adma_chan *ppc440spe_chan, 2192 dma_addr_t *dst, dma_addr_t *src, int src_cnt, 2193 const unsigned char *scf, size_t len, unsigned long flags) 2194 { 2195 struct ppc440spe_adma_desc_slot *sw_desc = NULL; 2196 unsigned long op = 0; 2197 int slot_cnt; 2198 2199 set_bit(PPC440SPE_DESC_WXOR, &op); 2200 slot_cnt = 3; 2201 2202 spin_lock_bh(&ppc440spe_chan->lock); 2203 2204 /* WXOR, each descriptor occupies one slot */ 2205 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); 2206 if (sw_desc) { 2207 struct ppc440spe_adma_chan *chan; 2208 struct ppc440spe_adma_desc_slot *iter; 2209 struct dma_cdb *hw_desc; 2210 2211 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); 2212 set_bits(op, &sw_desc->flags); 2213 sw_desc->src_cnt = src_cnt; 2214 sw_desc->dst_cnt = 1; 2215 /* 1st descriptor, src[1] data to q page and zero destination */ 2216 iter = list_first_entry(&sw_desc->group_list, 2217 struct ppc440spe_adma_desc_slot, 2218 chain_node); 2219 memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); 2220 iter->hw_next = list_entry(iter->chain_node.next, 2221 struct ppc440spe_adma_desc_slot, 2222 chain_node); 2223 clear_bit(PPC440SPE_DESC_INT, &iter->flags); 2224 hw_desc = iter->hw_desc; 2225 hw_desc->opc = DMA_CDB_OPC_MULTICAST; 2226 2227 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, 2228 *dst, 0); 2229 ppc440spe_desc_set_dest_addr(iter, chan, 0, 2230 ppc440spe_chan->qdest, 1); 2231 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, 2232 src[1]); 2233 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); 2234 iter->unmap_len = len; 2235 2236 /* 2nd descriptor, multiply src[1] data and store the 2237 * result in destination */ 2238 iter = list_first_entry(&iter->chain_node, 2239 struct ppc440spe_adma_desc_slot, 2240 chain_node); 2241 memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); 2242 /* set 'next' pointer */ 2243 iter->hw_next = list_entry(iter->chain_node.next, 2244 struct ppc440spe_adma_desc_slot, 2245 chain_node); 2246 if (flags & DMA_PREP_INTERRUPT) 2247 set_bit(PPC440SPE_DESC_INT, &iter->flags); 2248 else 2249 clear_bit(PPC440SPE_DESC_INT, &iter->flags); 2250 2251 hw_desc = iter->hw_desc; 2252 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 2253 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, 2254 ppc440spe_chan->qdest); 2255 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, 2256 *dst, 0); 2257 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, 2258 DMA_CDB_SG_DST1, scf[1]); 2259 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); 2260 iter->unmap_len = len; 2261 2262 /* 2263 * 3rd descriptor, multiply src[0] data and xor it 2264 * with destination 2265 */ 2266 iter = list_first_entry(&iter->chain_node, 2267 struct ppc440spe_adma_desc_slot, 2268 chain_node); 2269 memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); 2270 iter->hw_next = NULL; 2271 if (flags & DMA_PREP_INTERRUPT) 2272 set_bit(PPC440SPE_DESC_INT, &iter->flags); 2273 else 2274 clear_bit(PPC440SPE_DESC_INT, &iter->flags); 2275 2276 hw_desc = iter->hw_desc; 2277 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 2278 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, 2279 src[0]); 2280 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, 2281 *dst, 0); 2282 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, 2283 DMA_CDB_SG_DST1, scf[0]); 2284 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); 2285 iter->unmap_len = len; 2286 sw_desc->async_tx.flags = flags; 2287 } 2288 2289 spin_unlock_bh(&ppc440spe_chan->lock); 2290 2291 return sw_desc; 2292 } 2293 2294 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq( 2295 struct ppc440spe_adma_chan *ppc440spe_chan, 2296 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, 2297 const unsigned char *scf, size_t len, unsigned long flags) 2298 { 2299 int slot_cnt; 2300 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; 2301 unsigned long op = 0; 2302 unsigned char mult = 1; 2303 2304 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", 2305 __func__, dst_cnt, src_cnt, len); 2306 /* select operations WXOR/RXOR depending on the 2307 * source addresses of operators and the number 2308 * of destinations (RXOR support only Q-parity calculations) 2309 */ 2310 set_bit(PPC440SPE_DESC_WXOR, &op); 2311 if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) { 2312 /* no active RXOR; 2313 * do RXOR if: 2314 * - there are more than 1 source, 2315 * - len is aligned on 512-byte boundary, 2316 * - source addresses fit to one of 4 possible regions. 2317 */ 2318 if (src_cnt > 1 && 2319 !(len & MQ0_CF2H_RXOR_BS_MASK) && 2320 (src[0] + len) == src[1]) { 2321 /* may do RXOR R1 R2 */ 2322 set_bit(PPC440SPE_DESC_RXOR, &op); 2323 if (src_cnt != 2) { 2324 /* may try to enhance region of RXOR */ 2325 if ((src[1] + len) == src[2]) { 2326 /* do RXOR R1 R2 R3 */ 2327 set_bit(PPC440SPE_DESC_RXOR123, 2328 &op); 2329 } else if ((src[1] + len * 2) == src[2]) { 2330 /* do RXOR R1 R2 R4 */ 2331 set_bit(PPC440SPE_DESC_RXOR124, &op); 2332 } else if ((src[1] + len * 3) == src[2]) { 2333 /* do RXOR R1 R2 R5 */ 2334 set_bit(PPC440SPE_DESC_RXOR125, 2335 &op); 2336 } else { 2337 /* do RXOR R1 R2 */ 2338 set_bit(PPC440SPE_DESC_RXOR12, 2339 &op); 2340 } 2341 } else { 2342 /* do RXOR R1 R2 */ 2343 set_bit(PPC440SPE_DESC_RXOR12, &op); 2344 } 2345 } 2346 2347 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { 2348 /* can not do this operation with RXOR */ 2349 clear_bit(PPC440SPE_RXOR_RUN, 2350 &ppc440spe_rxor_state); 2351 } else { 2352 /* can do; set block size right now */ 2353 ppc440spe_desc_set_rxor_block_size(len); 2354 } 2355 } 2356 2357 /* Number of necessary slots depends on operation type selected */ 2358 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { 2359 /* This is a WXOR only chain. Need descriptors for each 2360 * source to GF-XOR them with WXOR, and need descriptors 2361 * for each destination to zero them with WXOR 2362 */ 2363 slot_cnt = src_cnt; 2364 2365 if (flags & DMA_PREP_ZERO_P) { 2366 slot_cnt++; 2367 set_bit(PPC440SPE_ZERO_P, &op); 2368 } 2369 if (flags & DMA_PREP_ZERO_Q) { 2370 slot_cnt++; 2371 set_bit(PPC440SPE_ZERO_Q, &op); 2372 } 2373 } else { 2374 /* Need 1/2 descriptor for RXOR operation, and 2375 * need (src_cnt - (2 or 3)) for WXOR of sources 2376 * remained (if any) 2377 */ 2378 slot_cnt = dst_cnt; 2379 2380 if (flags & DMA_PREP_ZERO_P) 2381 set_bit(PPC440SPE_ZERO_P, &op); 2382 if (flags & DMA_PREP_ZERO_Q) 2383 set_bit(PPC440SPE_ZERO_Q, &op); 2384 2385 if (test_bit(PPC440SPE_DESC_RXOR12, &op)) 2386 slot_cnt += src_cnt - 2; 2387 else 2388 slot_cnt += src_cnt - 3; 2389 2390 /* Thus we have either RXOR only chain or 2391 * mixed RXOR/WXOR 2392 */ 2393 if (slot_cnt == dst_cnt) 2394 /* RXOR only chain */ 2395 clear_bit(PPC440SPE_DESC_WXOR, &op); 2396 } 2397 2398 spin_lock_bh(&ppc440spe_chan->lock); 2399 /* for both RXOR/WXOR each descriptor occupies one slot */ 2400 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); 2401 if (sw_desc) { 2402 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt, 2403 flags, op); 2404 2405 /* setup dst/src/mult */ 2406 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n", 2407 __func__, dst[0], dst[1]); 2408 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); 2409 while (src_cnt--) { 2410 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], 2411 src_cnt); 2412 2413 /* NOTE: "Multi = 0 is equivalent to = 1" as it 2414 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf 2415 * doesn't work for RXOR with DMA0/1! Instead, multi=0 2416 * leads to zeroing source data after RXOR. 2417 * So, for P case set-up mult=1 explicitly. 2418 */ 2419 if (!(flags & DMA_PREP_PQ_DISABLE_Q)) 2420 mult = scf[src_cnt]; 2421 ppc440spe_adma_pq_set_src_mult(sw_desc, 2422 mult, src_cnt, dst_cnt - 1); 2423 } 2424 2425 /* Setup byte count foreach slot just allocated */ 2426 sw_desc->async_tx.flags = flags; 2427 list_for_each_entry(iter, &sw_desc->group_list, 2428 chain_node) { 2429 ppc440spe_desc_set_byte_count(iter, 2430 ppc440spe_chan, len); 2431 iter->unmap_len = len; 2432 } 2433 } 2434 spin_unlock_bh(&ppc440spe_chan->lock); 2435 2436 return sw_desc; 2437 } 2438 2439 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq( 2440 struct ppc440spe_adma_chan *ppc440spe_chan, 2441 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, 2442 const unsigned char *scf, size_t len, unsigned long flags) 2443 { 2444 int slot_cnt, descs_per_op; 2445 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; 2446 unsigned long op = 0; 2447 unsigned char mult = 1; 2448 2449 BUG_ON(!dst_cnt); 2450 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", 2451 __func__, dst_cnt, src_cnt, len);*/ 2452 2453 spin_lock_bh(&ppc440spe_chan->lock); 2454 descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len); 2455 if (descs_per_op < 0) { 2456 spin_unlock_bh(&ppc440spe_chan->lock); 2457 return NULL; 2458 } 2459 2460 /* depending on number of sources we have 1 or 2 RXOR chains */ 2461 slot_cnt = descs_per_op * dst_cnt; 2462 2463 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); 2464 if (sw_desc) { 2465 op = slot_cnt; 2466 sw_desc->async_tx.flags = flags; 2467 list_for_each_entry(iter, &sw_desc->group_list, chain_node) { 2468 ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt, 2469 --op ? 0 : flags); 2470 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, 2471 len); 2472 iter->unmap_len = len; 2473 2474 ppc440spe_init_rxor_cursor(&(iter->rxor_cursor)); 2475 iter->rxor_cursor.len = len; 2476 iter->descs_per_op = descs_per_op; 2477 } 2478 op = 0; 2479 list_for_each_entry(iter, &sw_desc->group_list, chain_node) { 2480 op++; 2481 if (op % descs_per_op == 0) 2482 ppc440spe_adma_init_dma2rxor_slot(iter, src, 2483 src_cnt); 2484 if (likely(!list_is_last(&iter->chain_node, 2485 &sw_desc->group_list))) { 2486 /* set 'next' pointer */ 2487 iter->hw_next = 2488 list_entry(iter->chain_node.next, 2489 struct ppc440spe_adma_desc_slot, 2490 chain_node); 2491 ppc440spe_xor_set_link(iter, iter->hw_next); 2492 } else { 2493 /* this is the last descriptor. */ 2494 iter->hw_next = NULL; 2495 } 2496 } 2497 2498 /* fixup head descriptor */ 2499 sw_desc->dst_cnt = dst_cnt; 2500 if (flags & DMA_PREP_ZERO_P) 2501 set_bit(PPC440SPE_ZERO_P, &sw_desc->flags); 2502 if (flags & DMA_PREP_ZERO_Q) 2503 set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags); 2504 2505 /* setup dst/src/mult */ 2506 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); 2507 2508 while (src_cnt--) { 2509 /* handle descriptors (if dst_cnt == 2) inside 2510 * the ppc440spe_adma_pq_set_srcxxx() functions 2511 */ 2512 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], 2513 src_cnt); 2514 if (!(flags & DMA_PREP_PQ_DISABLE_Q)) 2515 mult = scf[src_cnt]; 2516 ppc440spe_adma_pq_set_src_mult(sw_desc, 2517 mult, src_cnt, dst_cnt - 1); 2518 } 2519 } 2520 spin_unlock_bh(&ppc440spe_chan->lock); 2521 ppc440spe_desc_set_rxor_block_size(len); 2522 return sw_desc; 2523 } 2524 2525 /** 2526 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation 2527 */ 2528 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq( 2529 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 2530 unsigned int src_cnt, const unsigned char *scf, 2531 size_t len, unsigned long flags) 2532 { 2533 struct ppc440spe_adma_chan *ppc440spe_chan; 2534 struct ppc440spe_adma_desc_slot *sw_desc = NULL; 2535 int dst_cnt = 0; 2536 2537 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 2538 2539 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id, 2540 dst, src, src_cnt)); 2541 BUG_ON(!len); 2542 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); 2543 BUG_ON(!src_cnt); 2544 2545 if (src_cnt == 1 && dst[1] == src[0]) { 2546 dma_addr_t dest[2]; 2547 2548 /* dst[1] is real destination (Q) */ 2549 dest[0] = dst[1]; 2550 /* this is the page to multicast source data to */ 2551 dest[1] = ppc440spe_chan->qdest; 2552 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan, 2553 dest, 2, src, src_cnt, scf, len, flags); 2554 return sw_desc ? &sw_desc->async_tx : NULL; 2555 } 2556 2557 if (src_cnt == 2 && dst[1] == src[1]) { 2558 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan, 2559 &dst[1], src, 2, scf, len, flags); 2560 return sw_desc ? &sw_desc->async_tx : NULL; 2561 } 2562 2563 if (!(flags & DMA_PREP_PQ_DISABLE_P)) { 2564 BUG_ON(!dst[0]); 2565 dst_cnt++; 2566 flags |= DMA_PREP_ZERO_P; 2567 } 2568 2569 if (!(flags & DMA_PREP_PQ_DISABLE_Q)) { 2570 BUG_ON(!dst[1]); 2571 dst_cnt++; 2572 flags |= DMA_PREP_ZERO_Q; 2573 } 2574 2575 BUG_ON(!dst_cnt); 2576 2577 dev_dbg(ppc440spe_chan->device->common.dev, 2578 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", 2579 ppc440spe_chan->device->id, __func__, src_cnt, len, 2580 flags & DMA_PREP_INTERRUPT ? 1 : 0); 2581 2582 switch (ppc440spe_chan->device->id) { 2583 case PPC440SPE_DMA0_ID: 2584 case PPC440SPE_DMA1_ID: 2585 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan, 2586 dst, dst_cnt, src, src_cnt, scf, 2587 len, flags); 2588 break; 2589 2590 case PPC440SPE_XOR_ID: 2591 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan, 2592 dst, dst_cnt, src, src_cnt, scf, 2593 len, flags); 2594 break; 2595 } 2596 2597 return sw_desc ? &sw_desc->async_tx : NULL; 2598 } 2599 2600 /** 2601 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for 2602 * a PQ_ZERO_SUM operation 2603 */ 2604 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum( 2605 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 2606 unsigned int src_cnt, const unsigned char *scf, size_t len, 2607 enum sum_check_flags *pqres, unsigned long flags) 2608 { 2609 struct ppc440spe_adma_chan *ppc440spe_chan; 2610 struct ppc440spe_adma_desc_slot *sw_desc, *iter; 2611 dma_addr_t pdest, qdest; 2612 int slot_cnt, slots_per_op, idst, dst_cnt; 2613 2614 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 2615 2616 if (flags & DMA_PREP_PQ_DISABLE_P) 2617 pdest = 0; 2618 else 2619 pdest = pq[0]; 2620 2621 if (flags & DMA_PREP_PQ_DISABLE_Q) 2622 qdest = 0; 2623 else 2624 qdest = pq[1]; 2625 2626 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id, 2627 src, src_cnt, scf)); 2628 2629 /* Always use WXOR for P/Q calculations (two destinations). 2630 * Need 1 or 2 extra slots to verify results are zero. 2631 */ 2632 idst = dst_cnt = (pdest && qdest) ? 2 : 1; 2633 2634 /* One additional slot per destination to clone P/Q 2635 * before calculation (we have to preserve destinations). 2636 */ 2637 slot_cnt = src_cnt + dst_cnt * 2; 2638 slots_per_op = 1; 2639 2640 spin_lock_bh(&ppc440spe_chan->lock); 2641 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 2642 slots_per_op); 2643 if (sw_desc) { 2644 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt); 2645 2646 /* Setup byte count for each slot just allocated */ 2647 sw_desc->async_tx.flags = flags; 2648 list_for_each_entry(iter, &sw_desc->group_list, chain_node) { 2649 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, 2650 len); 2651 iter->unmap_len = len; 2652 } 2653 2654 if (pdest) { 2655 struct dma_cdb *hw_desc; 2656 struct ppc440spe_adma_chan *chan; 2657 2658 iter = sw_desc->group_head; 2659 chan = to_ppc440spe_adma_chan(iter->async_tx.chan); 2660 memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); 2661 iter->hw_next = list_entry(iter->chain_node.next, 2662 struct ppc440spe_adma_desc_slot, 2663 chain_node); 2664 hw_desc = iter->hw_desc; 2665 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 2666 iter->src_cnt = 0; 2667 iter->dst_cnt = 0; 2668 ppc440spe_desc_set_dest_addr(iter, chan, 0, 2669 ppc440spe_chan->pdest, 0); 2670 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest); 2671 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, 2672 len); 2673 iter->unmap_len = 0; 2674 /* override pdest to preserve original P */ 2675 pdest = ppc440spe_chan->pdest; 2676 } 2677 if (qdest) { 2678 struct dma_cdb *hw_desc; 2679 struct ppc440spe_adma_chan *chan; 2680 2681 iter = list_first_entry(&sw_desc->group_list, 2682 struct ppc440spe_adma_desc_slot, 2683 chain_node); 2684 chan = to_ppc440spe_adma_chan(iter->async_tx.chan); 2685 2686 if (pdest) { 2687 iter = list_entry(iter->chain_node.next, 2688 struct ppc440spe_adma_desc_slot, 2689 chain_node); 2690 } 2691 2692 memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); 2693 iter->hw_next = list_entry(iter->chain_node.next, 2694 struct ppc440spe_adma_desc_slot, 2695 chain_node); 2696 hw_desc = iter->hw_desc; 2697 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; 2698 iter->src_cnt = 0; 2699 iter->dst_cnt = 0; 2700 ppc440spe_desc_set_dest_addr(iter, chan, 0, 2701 ppc440spe_chan->qdest, 0); 2702 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest); 2703 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, 2704 len); 2705 iter->unmap_len = 0; 2706 /* override qdest to preserve original Q */ 2707 qdest = ppc440spe_chan->qdest; 2708 } 2709 2710 /* Setup destinations for P/Q ops */ 2711 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest); 2712 2713 /* Setup zero QWORDs into DCHECK CDBs */ 2714 idst = dst_cnt; 2715 list_for_each_entry_reverse(iter, &sw_desc->group_list, 2716 chain_node) { 2717 /* 2718 * The last CDB corresponds to Q-parity check, 2719 * the one before last CDB corresponds 2720 * P-parity check 2721 */ 2722 if (idst == DMA_DEST_MAX_NUM) { 2723 if (idst == dst_cnt) { 2724 set_bit(PPC440SPE_DESC_QCHECK, 2725 &iter->flags); 2726 } else { 2727 set_bit(PPC440SPE_DESC_PCHECK, 2728 &iter->flags); 2729 } 2730 } else { 2731 if (qdest) { 2732 set_bit(PPC440SPE_DESC_QCHECK, 2733 &iter->flags); 2734 } else { 2735 set_bit(PPC440SPE_DESC_PCHECK, 2736 &iter->flags); 2737 } 2738 } 2739 iter->xor_check_result = pqres; 2740 2741 /* 2742 * set it to zero, if check fail then result will 2743 * be updated 2744 */ 2745 *iter->xor_check_result = 0; 2746 ppc440spe_desc_set_dcheck(iter, ppc440spe_chan, 2747 ppc440spe_qword); 2748 2749 if (!(--dst_cnt)) 2750 break; 2751 } 2752 2753 /* Setup sources and mults for P/Q ops */ 2754 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list, 2755 chain_node) { 2756 struct ppc440spe_adma_chan *chan; 2757 u32 mult_dst; 2758 2759 chan = to_ppc440spe_adma_chan(iter->async_tx.chan); 2760 ppc440spe_desc_set_src_addr(iter, chan, 0, 2761 DMA_CUED_XOR_HB, 2762 src[src_cnt - 1]); 2763 if (qdest) { 2764 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 : 2765 DMA_CDB_SG_DST1; 2766 ppc440spe_desc_set_src_mult(iter, chan, 2767 DMA_CUED_MULT1_OFF, 2768 mult_dst, 2769 scf[src_cnt - 1]); 2770 } 2771 if (!(--src_cnt)) 2772 break; 2773 } 2774 } 2775 spin_unlock_bh(&ppc440spe_chan->lock); 2776 return sw_desc ? &sw_desc->async_tx : NULL; 2777 } 2778 2779 /** 2780 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for 2781 * XOR ZERO_SUM operation 2782 */ 2783 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum( 2784 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 2785 size_t len, enum sum_check_flags *result, unsigned long flags) 2786 { 2787 struct dma_async_tx_descriptor *tx; 2788 dma_addr_t pq[2]; 2789 2790 /* validate P, disable Q */ 2791 pq[0] = src[0]; 2792 pq[1] = 0; 2793 flags |= DMA_PREP_PQ_DISABLE_Q; 2794 2795 tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1], 2796 src_cnt - 1, 0, len, 2797 result, flags); 2798 return tx; 2799 } 2800 2801 /** 2802 * ppc440spe_adma_set_dest - set destination address into descriptor 2803 */ 2804 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, 2805 dma_addr_t addr, int index) 2806 { 2807 struct ppc440spe_adma_chan *chan; 2808 2809 BUG_ON(index >= sw_desc->dst_cnt); 2810 2811 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); 2812 2813 switch (chan->device->id) { 2814 case PPC440SPE_DMA0_ID: 2815 case PPC440SPE_DMA1_ID: 2816 /* to do: support transfers lengths > 2817 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT 2818 */ 2819 ppc440spe_desc_set_dest_addr(sw_desc->group_head, 2820 chan, 0, addr, index); 2821 break; 2822 case PPC440SPE_XOR_ID: 2823 sw_desc = ppc440spe_get_group_entry(sw_desc, index); 2824 ppc440spe_desc_set_dest_addr(sw_desc, 2825 chan, 0, addr, index); 2826 break; 2827 } 2828 } 2829 2830 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter, 2831 struct ppc440spe_adma_chan *chan, dma_addr_t addr) 2832 { 2833 /* To clear destinations update the descriptor 2834 * (P or Q depending on index) as follows: 2835 * addr is destination (0 corresponds to SG2): 2836 */ 2837 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); 2838 2839 /* ... and the addr is source: */ 2840 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr); 2841 2842 /* addr is always SG2 then the mult is always DST1 */ 2843 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, 2844 DMA_CDB_SG_DST1, 1); 2845 } 2846 2847 /** 2848 * ppc440spe_adma_pq_set_dest - set destination address into descriptor 2849 * for the PQXOR operation 2850 */ 2851 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, 2852 dma_addr_t *addrs, unsigned long flags) 2853 { 2854 struct ppc440spe_adma_desc_slot *iter; 2855 struct ppc440spe_adma_chan *chan; 2856 dma_addr_t paddr, qaddr; 2857 dma_addr_t addr = 0, ppath, qpath; 2858 int index = 0, i; 2859 2860 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); 2861 2862 if (flags & DMA_PREP_PQ_DISABLE_P) 2863 paddr = 0; 2864 else 2865 paddr = addrs[0]; 2866 2867 if (flags & DMA_PREP_PQ_DISABLE_Q) 2868 qaddr = 0; 2869 else 2870 qaddr = addrs[1]; 2871 2872 if (!paddr || !qaddr) 2873 addr = paddr ? paddr : qaddr; 2874 2875 switch (chan->device->id) { 2876 case PPC440SPE_DMA0_ID: 2877 case PPC440SPE_DMA1_ID: 2878 /* walk through the WXOR source list and set P/Q-destinations 2879 * for each slot: 2880 */ 2881 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { 2882 /* This is WXOR-only chain; may have 1/2 zero descs */ 2883 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) 2884 index++; 2885 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) 2886 index++; 2887 2888 iter = ppc440spe_get_group_entry(sw_desc, index); 2889 if (addr) { 2890 /* one destination */ 2891 list_for_each_entry_from(iter, 2892 &sw_desc->group_list, chain_node) 2893 ppc440spe_desc_set_dest_addr(iter, chan, 2894 DMA_CUED_XOR_BASE, addr, 0); 2895 } else { 2896 /* two destinations */ 2897 list_for_each_entry_from(iter, 2898 &sw_desc->group_list, chain_node) { 2899 ppc440spe_desc_set_dest_addr(iter, chan, 2900 DMA_CUED_XOR_BASE, paddr, 0); 2901 ppc440spe_desc_set_dest_addr(iter, chan, 2902 DMA_CUED_XOR_BASE, qaddr, 1); 2903 } 2904 } 2905 2906 if (index) { 2907 /* To clear destinations update the descriptor 2908 * (1st,2nd, or both depending on flags) 2909 */ 2910 index = 0; 2911 if (test_bit(PPC440SPE_ZERO_P, 2912 &sw_desc->flags)) { 2913 iter = ppc440spe_get_group_entry( 2914 sw_desc, index++); 2915 ppc440spe_adma_pq_zero_op(iter, chan, 2916 paddr); 2917 } 2918 2919 if (test_bit(PPC440SPE_ZERO_Q, 2920 &sw_desc->flags)) { 2921 iter = ppc440spe_get_group_entry( 2922 sw_desc, index++); 2923 ppc440spe_adma_pq_zero_op(iter, chan, 2924 qaddr); 2925 } 2926 2927 return; 2928 } 2929 } else { 2930 /* This is RXOR-only or RXOR/WXOR mixed chain */ 2931 2932 /* If we want to include destination into calculations, 2933 * then make dest addresses cued with mult=1 (XOR). 2934 */ 2935 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? 2936 DMA_CUED_XOR_HB : 2937 DMA_CUED_XOR_BASE | 2938 (1 << DMA_CUED_MULT1_OFF); 2939 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? 2940 DMA_CUED_XOR_HB : 2941 DMA_CUED_XOR_BASE | 2942 (1 << DMA_CUED_MULT1_OFF); 2943 2944 /* Setup destination(s) in RXOR slot(s) */ 2945 iter = ppc440spe_get_group_entry(sw_desc, index++); 2946 ppc440spe_desc_set_dest_addr(iter, chan, 2947 paddr ? ppath : qpath, 2948 paddr ? paddr : qaddr, 0); 2949 if (!addr) { 2950 /* two destinations */ 2951 iter = ppc440spe_get_group_entry(sw_desc, 2952 index++); 2953 ppc440spe_desc_set_dest_addr(iter, chan, 2954 qpath, qaddr, 0); 2955 } 2956 2957 if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) { 2958 /* Setup destination(s) in remaining WXOR 2959 * slots 2960 */ 2961 iter = ppc440spe_get_group_entry(sw_desc, 2962 index); 2963 if (addr) { 2964 /* one destination */ 2965 list_for_each_entry_from(iter, 2966 &sw_desc->group_list, 2967 chain_node) 2968 ppc440spe_desc_set_dest_addr( 2969 iter, chan, 2970 DMA_CUED_XOR_BASE, 2971 addr, 0); 2972 2973 } else { 2974 /* two destinations */ 2975 list_for_each_entry_from(iter, 2976 &sw_desc->group_list, 2977 chain_node) { 2978 ppc440spe_desc_set_dest_addr( 2979 iter, chan, 2980 DMA_CUED_XOR_BASE, 2981 paddr, 0); 2982 ppc440spe_desc_set_dest_addr( 2983 iter, chan, 2984 DMA_CUED_XOR_BASE, 2985 qaddr, 1); 2986 } 2987 } 2988 } 2989 2990 } 2991 break; 2992 2993 case PPC440SPE_XOR_ID: 2994 /* DMA2 descriptors have only 1 destination, so there are 2995 * two chains - one for each dest. 2996 * If we want to include destination into calculations, 2997 * then make dest addresses cued with mult=1 (XOR). 2998 */ 2999 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? 3000 DMA_CUED_XOR_HB : 3001 DMA_CUED_XOR_BASE | 3002 (1 << DMA_CUED_MULT1_OFF); 3003 3004 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? 3005 DMA_CUED_XOR_HB : 3006 DMA_CUED_XOR_BASE | 3007 (1 << DMA_CUED_MULT1_OFF); 3008 3009 iter = ppc440spe_get_group_entry(sw_desc, 0); 3010 for (i = 0; i < sw_desc->descs_per_op; i++) { 3011 ppc440spe_desc_set_dest_addr(iter, chan, 3012 paddr ? ppath : qpath, 3013 paddr ? paddr : qaddr, 0); 3014 iter = list_entry(iter->chain_node.next, 3015 struct ppc440spe_adma_desc_slot, 3016 chain_node); 3017 } 3018 3019 if (!addr) { 3020 /* Two destinations; setup Q here */ 3021 iter = ppc440spe_get_group_entry(sw_desc, 3022 sw_desc->descs_per_op); 3023 for (i = 0; i < sw_desc->descs_per_op; i++) { 3024 ppc440spe_desc_set_dest_addr(iter, 3025 chan, qpath, qaddr, 0); 3026 iter = list_entry(iter->chain_node.next, 3027 struct ppc440spe_adma_desc_slot, 3028 chain_node); 3029 } 3030 } 3031 3032 break; 3033 } 3034 } 3035 3036 /** 3037 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor 3038 * for the PQ_ZERO_SUM operation 3039 */ 3040 static void ppc440spe_adma_pqzero_sum_set_dest( 3041 struct ppc440spe_adma_desc_slot *sw_desc, 3042 dma_addr_t paddr, dma_addr_t qaddr) 3043 { 3044 struct ppc440spe_adma_desc_slot *iter, *end; 3045 struct ppc440spe_adma_chan *chan; 3046 dma_addr_t addr = 0; 3047 int idx; 3048 3049 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); 3050 3051 /* walk through the WXOR source list and set P/Q-destinations 3052 * for each slot 3053 */ 3054 idx = (paddr && qaddr) ? 2 : 1; 3055 /* set end */ 3056 list_for_each_entry_reverse(end, &sw_desc->group_list, 3057 chain_node) { 3058 if (!(--idx)) 3059 break; 3060 } 3061 /* set start */ 3062 idx = (paddr && qaddr) ? 2 : 1; 3063 iter = ppc440spe_get_group_entry(sw_desc, idx); 3064 3065 if (paddr && qaddr) { 3066 /* two destinations */ 3067 list_for_each_entry_from(iter, &sw_desc->group_list, 3068 chain_node) { 3069 if (unlikely(iter == end)) 3070 break; 3071 ppc440spe_desc_set_dest_addr(iter, chan, 3072 DMA_CUED_XOR_BASE, paddr, 0); 3073 ppc440spe_desc_set_dest_addr(iter, chan, 3074 DMA_CUED_XOR_BASE, qaddr, 1); 3075 } 3076 } else { 3077 /* one destination */ 3078 addr = paddr ? paddr : qaddr; 3079 list_for_each_entry_from(iter, &sw_desc->group_list, 3080 chain_node) { 3081 if (unlikely(iter == end)) 3082 break; 3083 ppc440spe_desc_set_dest_addr(iter, chan, 3084 DMA_CUED_XOR_BASE, addr, 0); 3085 } 3086 } 3087 3088 /* The remaining descriptors are DATACHECK. These have no need in 3089 * destination. Actually, these destinations are used there 3090 * as sources for check operation. So, set addr as source. 3091 */ 3092 ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr); 3093 3094 if (!addr) { 3095 end = list_entry(end->chain_node.next, 3096 struct ppc440spe_adma_desc_slot, chain_node); 3097 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr); 3098 } 3099 } 3100 3101 /** 3102 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor 3103 */ 3104 static inline void ppc440spe_desc_set_xor_src_cnt( 3105 struct ppc440spe_adma_desc_slot *desc, 3106 int src_cnt) 3107 { 3108 struct xor_cb *hw_desc = desc->hw_desc; 3109 3110 hw_desc->cbc &= ~XOR_CDCR_OAC_MSK; 3111 hw_desc->cbc |= src_cnt; 3112 } 3113 3114 /** 3115 * ppc440spe_adma_pq_set_src - set source address into descriptor 3116 */ 3117 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc, 3118 dma_addr_t addr, int index) 3119 { 3120 struct ppc440spe_adma_chan *chan; 3121 dma_addr_t haddr = 0; 3122 struct ppc440spe_adma_desc_slot *iter = NULL; 3123 3124 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); 3125 3126 switch (chan->device->id) { 3127 case PPC440SPE_DMA0_ID: 3128 case PPC440SPE_DMA1_ID: 3129 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain 3130 */ 3131 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { 3132 /* RXOR-only or RXOR/WXOR operation */ 3133 int iskip = test_bit(PPC440SPE_DESC_RXOR12, 3134 &sw_desc->flags) ? 2 : 3; 3135 3136 if (index == 0) { 3137 /* 1st slot (RXOR) */ 3138 /* setup sources region (R1-2-3, R1-2-4, 3139 * or R1-2-5) 3140 */ 3141 if (test_bit(PPC440SPE_DESC_RXOR12, 3142 &sw_desc->flags)) 3143 haddr = DMA_RXOR12 << 3144 DMA_CUED_REGION_OFF; 3145 else if (test_bit(PPC440SPE_DESC_RXOR123, 3146 &sw_desc->flags)) 3147 haddr = DMA_RXOR123 << 3148 DMA_CUED_REGION_OFF; 3149 else if (test_bit(PPC440SPE_DESC_RXOR124, 3150 &sw_desc->flags)) 3151 haddr = DMA_RXOR124 << 3152 DMA_CUED_REGION_OFF; 3153 else if (test_bit(PPC440SPE_DESC_RXOR125, 3154 &sw_desc->flags)) 3155 haddr = DMA_RXOR125 << 3156 DMA_CUED_REGION_OFF; 3157 else 3158 BUG(); 3159 haddr |= DMA_CUED_XOR_BASE; 3160 iter = ppc440spe_get_group_entry(sw_desc, 0); 3161 } else if (index < iskip) { 3162 /* 1st slot (RXOR) 3163 * shall actually set source address only once 3164 * instead of first <iskip> 3165 */ 3166 iter = NULL; 3167 } else { 3168 /* 2nd/3d and next slots (WXOR); 3169 * skip first slot with RXOR 3170 */ 3171 haddr = DMA_CUED_XOR_HB; 3172 iter = ppc440spe_get_group_entry(sw_desc, 3173 index - iskip + sw_desc->dst_cnt); 3174 } 3175 } else { 3176 int znum = 0; 3177 3178 /* WXOR-only operation; skip first slots with 3179 * zeroing destinations 3180 */ 3181 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) 3182 znum++; 3183 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) 3184 znum++; 3185 3186 haddr = DMA_CUED_XOR_HB; 3187 iter = ppc440spe_get_group_entry(sw_desc, 3188 index + znum); 3189 } 3190 3191 if (likely(iter)) { 3192 ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr); 3193 3194 if (!index && 3195 test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) && 3196 sw_desc->dst_cnt == 2) { 3197 /* if we have two destinations for RXOR, then 3198 * setup source in the second descr too 3199 */ 3200 iter = ppc440spe_get_group_entry(sw_desc, 1); 3201 ppc440spe_desc_set_src_addr(iter, chan, 0, 3202 haddr, addr); 3203 } 3204 } 3205 break; 3206 3207 case PPC440SPE_XOR_ID: 3208 /* DMA2 may do Biskup */ 3209 iter = sw_desc->group_head; 3210 if (iter->dst_cnt == 2) { 3211 /* both P & Q calculations required; set P src here */ 3212 ppc440spe_adma_dma2rxor_set_src(iter, index, addr); 3213 3214 /* this is for Q */ 3215 iter = ppc440spe_get_group_entry(sw_desc, 3216 sw_desc->descs_per_op); 3217 } 3218 ppc440spe_adma_dma2rxor_set_src(iter, index, addr); 3219 break; 3220 } 3221 } 3222 3223 /** 3224 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor 3225 */ 3226 static void ppc440spe_adma_memcpy_xor_set_src( 3227 struct ppc440spe_adma_desc_slot *sw_desc, 3228 dma_addr_t addr, int index) 3229 { 3230 struct ppc440spe_adma_chan *chan; 3231 3232 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); 3233 sw_desc = sw_desc->group_head; 3234 3235 if (likely(sw_desc)) 3236 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr); 3237 } 3238 3239 /** 3240 * ppc440spe_adma_dma2rxor_inc_addr - 3241 */ 3242 static void ppc440spe_adma_dma2rxor_inc_addr( 3243 struct ppc440spe_adma_desc_slot *desc, 3244 struct ppc440spe_rxor *cursor, int index, int src_cnt) 3245 { 3246 cursor->addr_count++; 3247 if (index == src_cnt - 1) { 3248 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); 3249 } else if (cursor->addr_count == XOR_MAX_OPS) { 3250 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); 3251 cursor->addr_count = 0; 3252 cursor->desc_count++; 3253 } 3254 } 3255 3256 /** 3257 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB 3258 */ 3259 static int ppc440spe_adma_dma2rxor_prep_src( 3260 struct ppc440spe_adma_desc_slot *hdesc, 3261 struct ppc440spe_rxor *cursor, int index, 3262 int src_cnt, u32 addr) 3263 { 3264 int rval = 0; 3265 u32 sign; 3266 struct ppc440spe_adma_desc_slot *desc = hdesc; 3267 int i; 3268 3269 for (i = 0; i < cursor->desc_count; i++) { 3270 desc = list_entry(hdesc->chain_node.next, 3271 struct ppc440spe_adma_desc_slot, 3272 chain_node); 3273 } 3274 3275 switch (cursor->state) { 3276 case 0: 3277 if (addr == cursor->addrl + cursor->len) { 3278 /* direct RXOR */ 3279 cursor->state = 1; 3280 cursor->xor_count++; 3281 if (index == src_cnt-1) { 3282 ppc440spe_rxor_set_region(desc, 3283 cursor->addr_count, 3284 DMA_RXOR12 << DMA_CUED_REGION_OFF); 3285 ppc440spe_adma_dma2rxor_inc_addr( 3286 desc, cursor, index, src_cnt); 3287 } 3288 } else if (cursor->addrl == addr + cursor->len) { 3289 /* reverse RXOR */ 3290 cursor->state = 1; 3291 cursor->xor_count++; 3292 set_bit(cursor->addr_count, &desc->reverse_flags[0]); 3293 if (index == src_cnt-1) { 3294 ppc440spe_rxor_set_region(desc, 3295 cursor->addr_count, 3296 DMA_RXOR12 << DMA_CUED_REGION_OFF); 3297 ppc440spe_adma_dma2rxor_inc_addr( 3298 desc, cursor, index, src_cnt); 3299 } 3300 } else { 3301 printk(KERN_ERR "Cannot build " 3302 "DMA2 RXOR command block.\n"); 3303 BUG(); 3304 } 3305 break; 3306 case 1: 3307 sign = test_bit(cursor->addr_count, 3308 desc->reverse_flags) 3309 ? -1 : 1; 3310 if (index == src_cnt-2 || (sign == -1 3311 && addr != cursor->addrl - 2*cursor->len)) { 3312 cursor->state = 0; 3313 cursor->xor_count = 1; 3314 cursor->addrl = addr; 3315 ppc440spe_rxor_set_region(desc, 3316 cursor->addr_count, 3317 DMA_RXOR12 << DMA_CUED_REGION_OFF); 3318 ppc440spe_adma_dma2rxor_inc_addr( 3319 desc, cursor, index, src_cnt); 3320 } else if (addr == cursor->addrl + 2*sign*cursor->len) { 3321 cursor->state = 2; 3322 cursor->xor_count = 0; 3323 ppc440spe_rxor_set_region(desc, 3324 cursor->addr_count, 3325 DMA_RXOR123 << DMA_CUED_REGION_OFF); 3326 if (index == src_cnt-1) { 3327 ppc440spe_adma_dma2rxor_inc_addr( 3328 desc, cursor, index, src_cnt); 3329 } 3330 } else if (addr == cursor->addrl + 3*cursor->len) { 3331 cursor->state = 2; 3332 cursor->xor_count = 0; 3333 ppc440spe_rxor_set_region(desc, 3334 cursor->addr_count, 3335 DMA_RXOR124 << DMA_CUED_REGION_OFF); 3336 if (index == src_cnt-1) { 3337 ppc440spe_adma_dma2rxor_inc_addr( 3338 desc, cursor, index, src_cnt); 3339 } 3340 } else if (addr == cursor->addrl + 4*cursor->len) { 3341 cursor->state = 2; 3342 cursor->xor_count = 0; 3343 ppc440spe_rxor_set_region(desc, 3344 cursor->addr_count, 3345 DMA_RXOR125 << DMA_CUED_REGION_OFF); 3346 if (index == src_cnt-1) { 3347 ppc440spe_adma_dma2rxor_inc_addr( 3348 desc, cursor, index, src_cnt); 3349 } 3350 } else { 3351 cursor->state = 0; 3352 cursor->xor_count = 1; 3353 cursor->addrl = addr; 3354 ppc440spe_rxor_set_region(desc, 3355 cursor->addr_count, 3356 DMA_RXOR12 << DMA_CUED_REGION_OFF); 3357 ppc440spe_adma_dma2rxor_inc_addr( 3358 desc, cursor, index, src_cnt); 3359 } 3360 break; 3361 case 2: 3362 cursor->state = 0; 3363 cursor->addrl = addr; 3364 cursor->xor_count++; 3365 if (index) { 3366 ppc440spe_adma_dma2rxor_inc_addr( 3367 desc, cursor, index, src_cnt); 3368 } 3369 break; 3370 } 3371 3372 return rval; 3373 } 3374 3375 /** 3376 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that 3377 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call 3378 */ 3379 static void ppc440spe_adma_dma2rxor_set_src( 3380 struct ppc440spe_adma_desc_slot *desc, 3381 int index, dma_addr_t addr) 3382 { 3383 struct xor_cb *xcb = desc->hw_desc; 3384 int k = 0, op = 0, lop = 0; 3385 3386 /* get the RXOR operand which corresponds to index addr */ 3387 while (op <= index) { 3388 lop = op; 3389 if (k == XOR_MAX_OPS) { 3390 k = 0; 3391 desc = list_entry(desc->chain_node.next, 3392 struct ppc440spe_adma_desc_slot, chain_node); 3393 xcb = desc->hw_desc; 3394 3395 } 3396 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == 3397 (DMA_RXOR12 << DMA_CUED_REGION_OFF)) 3398 op += 2; 3399 else 3400 op += 3; 3401 } 3402 3403 BUG_ON(k < 1); 3404 3405 if (test_bit(k-1, desc->reverse_flags)) { 3406 /* reverse operand order; put last op in RXOR group */ 3407 if (index == op - 1) 3408 ppc440spe_rxor_set_src(desc, k - 1, addr); 3409 } else { 3410 /* direct operand order; put first op in RXOR group */ 3411 if (index == lop) 3412 ppc440spe_rxor_set_src(desc, k - 1, addr); 3413 } 3414 } 3415 3416 /** 3417 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that 3418 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call 3419 */ 3420 static void ppc440spe_adma_dma2rxor_set_mult( 3421 struct ppc440spe_adma_desc_slot *desc, 3422 int index, u8 mult) 3423 { 3424 struct xor_cb *xcb = desc->hw_desc; 3425 int k = 0, op = 0, lop = 0; 3426 3427 /* get the RXOR operand which corresponds to index mult */ 3428 while (op <= index) { 3429 lop = op; 3430 if (k == XOR_MAX_OPS) { 3431 k = 0; 3432 desc = list_entry(desc->chain_node.next, 3433 struct ppc440spe_adma_desc_slot, 3434 chain_node); 3435 xcb = desc->hw_desc; 3436 3437 } 3438 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == 3439 (DMA_RXOR12 << DMA_CUED_REGION_OFF)) 3440 op += 2; 3441 else 3442 op += 3; 3443 } 3444 3445 BUG_ON(k < 1); 3446 if (test_bit(k-1, desc->reverse_flags)) { 3447 /* reverse order */ 3448 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult); 3449 } else { 3450 /* direct order */ 3451 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult); 3452 } 3453 } 3454 3455 /** 3456 * ppc440spe_init_rxor_cursor - 3457 */ 3458 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor) 3459 { 3460 memset(cursor, 0, sizeof(struct ppc440spe_rxor)); 3461 cursor->state = 2; 3462 } 3463 3464 /** 3465 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into 3466 * descriptor for the PQXOR operation 3467 */ 3468 static void ppc440spe_adma_pq_set_src_mult( 3469 struct ppc440spe_adma_desc_slot *sw_desc, 3470 unsigned char mult, int index, int dst_pos) 3471 { 3472 struct ppc440spe_adma_chan *chan; 3473 u32 mult_idx, mult_dst; 3474 struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL; 3475 3476 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); 3477 3478 switch (chan->device->id) { 3479 case PPC440SPE_DMA0_ID: 3480 case PPC440SPE_DMA1_ID: 3481 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { 3482 int region = test_bit(PPC440SPE_DESC_RXOR12, 3483 &sw_desc->flags) ? 2 : 3; 3484 3485 if (index < region) { 3486 /* RXOR multipliers */ 3487 iter = ppc440spe_get_group_entry(sw_desc, 3488 sw_desc->dst_cnt - 1); 3489 if (sw_desc->dst_cnt == 2) 3490 iter1 = ppc440spe_get_group_entry( 3491 sw_desc, 0); 3492 3493 mult_idx = DMA_CUED_MULT1_OFF + (index << 3); 3494 mult_dst = DMA_CDB_SG_SRC; 3495 } else { 3496 /* WXOR multiplier */ 3497 iter = ppc440spe_get_group_entry(sw_desc, 3498 index - region + 3499 sw_desc->dst_cnt); 3500 mult_idx = DMA_CUED_MULT1_OFF; 3501 mult_dst = dst_pos ? DMA_CDB_SG_DST2 : 3502 DMA_CDB_SG_DST1; 3503 } 3504 } else { 3505 int znum = 0; 3506 3507 /* WXOR-only; 3508 * skip first slots with destinations (if ZERO_DST has 3509 * place) 3510 */ 3511 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) 3512 znum++; 3513 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) 3514 znum++; 3515 3516 iter = ppc440spe_get_group_entry(sw_desc, index + znum); 3517 mult_idx = DMA_CUED_MULT1_OFF; 3518 mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; 3519 } 3520 3521 if (likely(iter)) { 3522 ppc440spe_desc_set_src_mult(iter, chan, 3523 mult_idx, mult_dst, mult); 3524 3525 if (unlikely(iter1)) { 3526 /* if we have two destinations for RXOR, then 3527 * we've just set Q mult. Set-up P now. 3528 */ 3529 ppc440spe_desc_set_src_mult(iter1, chan, 3530 mult_idx, mult_dst, 1); 3531 } 3532 3533 } 3534 break; 3535 3536 case PPC440SPE_XOR_ID: 3537 iter = sw_desc->group_head; 3538 if (sw_desc->dst_cnt == 2) { 3539 /* both P & Q calculations required; set P mult here */ 3540 ppc440spe_adma_dma2rxor_set_mult(iter, index, 1); 3541 3542 /* and then set Q mult */ 3543 iter = ppc440spe_get_group_entry(sw_desc, 3544 sw_desc->descs_per_op); 3545 } 3546 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult); 3547 break; 3548 } 3549 } 3550 3551 /** 3552 * ppc440spe_adma_free_chan_resources - free the resources allocated 3553 */ 3554 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan) 3555 { 3556 struct ppc440spe_adma_chan *ppc440spe_chan; 3557 struct ppc440spe_adma_desc_slot *iter, *_iter; 3558 int in_use_descs = 0; 3559 3560 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 3561 ppc440spe_adma_slot_cleanup(ppc440spe_chan); 3562 3563 spin_lock_bh(&ppc440spe_chan->lock); 3564 list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain, 3565 chain_node) { 3566 in_use_descs++; 3567 list_del(&iter->chain_node); 3568 } 3569 list_for_each_entry_safe_reverse(iter, _iter, 3570 &ppc440spe_chan->all_slots, slot_node) { 3571 list_del(&iter->slot_node); 3572 kfree(iter); 3573 ppc440spe_chan->slots_allocated--; 3574 } 3575 ppc440spe_chan->last_used = NULL; 3576 3577 dev_dbg(ppc440spe_chan->device->common.dev, 3578 "ppc440spe adma%d %s slots_allocated %d\n", 3579 ppc440spe_chan->device->id, 3580 __func__, ppc440spe_chan->slots_allocated); 3581 spin_unlock_bh(&ppc440spe_chan->lock); 3582 3583 /* one is ok since we left it on there on purpose */ 3584 if (in_use_descs > 1) 3585 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n", 3586 in_use_descs - 1); 3587 } 3588 3589 /** 3590 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction 3591 * @chan: ADMA channel handle 3592 * @cookie: ADMA transaction identifier 3593 * @txstate: a holder for the current state of the channel 3594 */ 3595 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan, 3596 dma_cookie_t cookie, struct dma_tx_state *txstate) 3597 { 3598 struct ppc440spe_adma_chan *ppc440spe_chan; 3599 enum dma_status ret; 3600 3601 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 3602 ret = dma_cookie_status(chan, cookie, txstate); 3603 if (ret == DMA_COMPLETE) 3604 return ret; 3605 3606 ppc440spe_adma_slot_cleanup(ppc440spe_chan); 3607 3608 return dma_cookie_status(chan, cookie, txstate); 3609 } 3610 3611 /** 3612 * ppc440spe_adma_eot_handler - end of transfer interrupt handler 3613 */ 3614 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data) 3615 { 3616 struct ppc440spe_adma_chan *chan = data; 3617 3618 dev_dbg(chan->device->common.dev, 3619 "ppc440spe adma%d: %s\n", chan->device->id, __func__); 3620 3621 tasklet_schedule(&chan->irq_tasklet); 3622 ppc440spe_adma_device_clear_eot_status(chan); 3623 3624 return IRQ_HANDLED; 3625 } 3626 3627 /** 3628 * ppc440spe_adma_err_handler - DMA error interrupt handler; 3629 * do the same things as a eot handler 3630 */ 3631 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data) 3632 { 3633 struct ppc440spe_adma_chan *chan = data; 3634 3635 dev_dbg(chan->device->common.dev, 3636 "ppc440spe adma%d: %s\n", chan->device->id, __func__); 3637 3638 tasklet_schedule(&chan->irq_tasklet); 3639 ppc440spe_adma_device_clear_eot_status(chan); 3640 3641 return IRQ_HANDLED; 3642 } 3643 3644 /** 3645 * ppc440spe_test_callback - called when test operation has been done 3646 */ 3647 static void ppc440spe_test_callback(void *unused) 3648 { 3649 complete(&ppc440spe_r6_test_comp); 3650 } 3651 3652 /** 3653 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w 3654 */ 3655 static void ppc440spe_adma_issue_pending(struct dma_chan *chan) 3656 { 3657 struct ppc440spe_adma_chan *ppc440spe_chan; 3658 3659 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 3660 dev_dbg(ppc440spe_chan->device->common.dev, 3661 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id, 3662 __func__, ppc440spe_chan->pending); 3663 3664 if (ppc440spe_chan->pending) { 3665 ppc440spe_chan->pending = 0; 3666 ppc440spe_chan_append(ppc440spe_chan); 3667 } 3668 } 3669 3670 /** 3671 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines 3672 * use FIFOs (as opposite to chains used in XOR) so this is a XOR 3673 * specific operation) 3674 */ 3675 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan) 3676 { 3677 struct ppc440spe_adma_desc_slot *sw_desc, *group_start; 3678 dma_cookie_t cookie; 3679 int slot_cnt, slots_per_op; 3680 3681 dev_dbg(chan->device->common.dev, 3682 "ppc440spe adma%d: %s\n", chan->device->id, __func__); 3683 3684 spin_lock_bh(&chan->lock); 3685 slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op); 3686 sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op); 3687 if (sw_desc) { 3688 group_start = sw_desc->group_head; 3689 list_splice_init(&sw_desc->group_list, &chan->chain); 3690 async_tx_ack(&sw_desc->async_tx); 3691 ppc440spe_desc_init_null_xor(group_start); 3692 3693 cookie = dma_cookie_assign(&sw_desc->async_tx); 3694 3695 /* initialize the completed cookie to be less than 3696 * the most recently used cookie 3697 */ 3698 chan->common.completed_cookie = cookie - 1; 3699 3700 /* channel should not be busy */ 3701 BUG_ON(ppc440spe_chan_is_busy(chan)); 3702 3703 /* set the descriptor address */ 3704 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc); 3705 3706 /* run the descriptor */ 3707 ppc440spe_chan_run(chan); 3708 } else 3709 printk(KERN_ERR "ppc440spe adma%d" 3710 " failed to allocate null descriptor\n", 3711 chan->device->id); 3712 spin_unlock_bh(&chan->lock); 3713 } 3714 3715 /** 3716 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully. 3717 * For this we just perform one WXOR operation with the same source 3718 * and destination addresses, the GF-multiplier is 1; so if RAID-6 3719 * capabilities are enabled then we'll get src/dst filled with zero. 3720 */ 3721 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan) 3722 { 3723 struct ppc440spe_adma_desc_slot *sw_desc, *iter; 3724 struct page *pg; 3725 char *a; 3726 dma_addr_t dma_addr, addrs[2]; 3727 unsigned long op = 0; 3728 int rval = 0; 3729 3730 set_bit(PPC440SPE_DESC_WXOR, &op); 3731 3732 pg = alloc_page(GFP_KERNEL); 3733 if (!pg) 3734 return -ENOMEM; 3735 3736 spin_lock_bh(&chan->lock); 3737 sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1); 3738 if (sw_desc) { 3739 /* 1 src, 1 dsr, int_ena, WXOR */ 3740 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op); 3741 list_for_each_entry(iter, &sw_desc->group_list, chain_node) { 3742 ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE); 3743 iter->unmap_len = PAGE_SIZE; 3744 } 3745 } else { 3746 rval = -EFAULT; 3747 spin_unlock_bh(&chan->lock); 3748 goto exit; 3749 } 3750 spin_unlock_bh(&chan->lock); 3751 3752 /* Fill the test page with ones */ 3753 memset(page_address(pg), 0xFF, PAGE_SIZE); 3754 dma_addr = dma_map_page(chan->device->dev, pg, 0, 3755 PAGE_SIZE, DMA_BIDIRECTIONAL); 3756 3757 /* Setup addresses */ 3758 ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0); 3759 ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0); 3760 addrs[0] = dma_addr; 3761 addrs[1] = 0; 3762 ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q); 3763 3764 async_tx_ack(&sw_desc->async_tx); 3765 sw_desc->async_tx.callback = ppc440spe_test_callback; 3766 sw_desc->async_tx.callback_param = NULL; 3767 3768 init_completion(&ppc440spe_r6_test_comp); 3769 3770 ppc440spe_adma_tx_submit(&sw_desc->async_tx); 3771 ppc440spe_adma_issue_pending(&chan->common); 3772 3773 wait_for_completion(&ppc440spe_r6_test_comp); 3774 3775 /* Now check if the test page is zeroed */ 3776 a = page_address(pg); 3777 if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) { 3778 /* page is zero - RAID-6 enabled */ 3779 rval = 0; 3780 } else { 3781 /* RAID-6 was not enabled */ 3782 rval = -EINVAL; 3783 } 3784 exit: 3785 __free_page(pg); 3786 return rval; 3787 } 3788 3789 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev) 3790 { 3791 switch (adev->id) { 3792 case PPC440SPE_DMA0_ID: 3793 case PPC440SPE_DMA1_ID: 3794 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask); 3795 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); 3796 dma_cap_set(DMA_PQ, adev->common.cap_mask); 3797 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask); 3798 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask); 3799 break; 3800 case PPC440SPE_XOR_ID: 3801 dma_cap_set(DMA_XOR, adev->common.cap_mask); 3802 dma_cap_set(DMA_PQ, adev->common.cap_mask); 3803 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); 3804 adev->common.cap_mask = adev->common.cap_mask; 3805 break; 3806 } 3807 3808 /* Set base routines */ 3809 adev->common.device_alloc_chan_resources = 3810 ppc440spe_adma_alloc_chan_resources; 3811 adev->common.device_free_chan_resources = 3812 ppc440spe_adma_free_chan_resources; 3813 adev->common.device_tx_status = ppc440spe_adma_tx_status; 3814 adev->common.device_issue_pending = ppc440spe_adma_issue_pending; 3815 3816 /* Set prep routines based on capability */ 3817 if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { 3818 adev->common.device_prep_dma_memcpy = 3819 ppc440spe_adma_prep_dma_memcpy; 3820 } 3821 if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) { 3822 adev->common.max_xor = XOR_MAX_OPS; 3823 adev->common.device_prep_dma_xor = 3824 ppc440spe_adma_prep_dma_xor; 3825 } 3826 if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) { 3827 switch (adev->id) { 3828 case PPC440SPE_DMA0_ID: 3829 dma_set_maxpq(&adev->common, 3830 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0); 3831 break; 3832 case PPC440SPE_DMA1_ID: 3833 dma_set_maxpq(&adev->common, 3834 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0); 3835 break; 3836 case PPC440SPE_XOR_ID: 3837 adev->common.max_pq = XOR_MAX_OPS * 3; 3838 break; 3839 } 3840 adev->common.device_prep_dma_pq = 3841 ppc440spe_adma_prep_dma_pq; 3842 } 3843 if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) { 3844 switch (adev->id) { 3845 case PPC440SPE_DMA0_ID: 3846 adev->common.max_pq = DMA0_FIFO_SIZE / 3847 sizeof(struct dma_cdb); 3848 break; 3849 case PPC440SPE_DMA1_ID: 3850 adev->common.max_pq = DMA1_FIFO_SIZE / 3851 sizeof(struct dma_cdb); 3852 break; 3853 } 3854 adev->common.device_prep_dma_pq_val = 3855 ppc440spe_adma_prep_dma_pqzero_sum; 3856 } 3857 if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) { 3858 switch (adev->id) { 3859 case PPC440SPE_DMA0_ID: 3860 adev->common.max_xor = DMA0_FIFO_SIZE / 3861 sizeof(struct dma_cdb); 3862 break; 3863 case PPC440SPE_DMA1_ID: 3864 adev->common.max_xor = DMA1_FIFO_SIZE / 3865 sizeof(struct dma_cdb); 3866 break; 3867 } 3868 adev->common.device_prep_dma_xor_val = 3869 ppc440spe_adma_prep_dma_xor_zero_sum; 3870 } 3871 if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { 3872 adev->common.device_prep_dma_interrupt = 3873 ppc440spe_adma_prep_dma_interrupt; 3874 } 3875 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: " 3876 "( %s%s%s%s%s%s)\n", 3877 dev_name(adev->dev), 3878 dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "", 3879 dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "", 3880 dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", 3881 dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "", 3882 dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", 3883 dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : ""); 3884 } 3885 3886 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev, 3887 struct ppc440spe_adma_chan *chan, 3888 int *initcode) 3889 { 3890 struct platform_device *ofdev; 3891 struct device_node *np; 3892 int ret; 3893 3894 ofdev = container_of(adev->dev, struct platform_device, dev); 3895 np = ofdev->dev.of_node; 3896 if (adev->id != PPC440SPE_XOR_ID) { 3897 adev->err_irq = irq_of_parse_and_map(np, 1); 3898 if (adev->err_irq == NO_IRQ) { 3899 dev_warn(adev->dev, "no err irq resource?\n"); 3900 *initcode = PPC_ADMA_INIT_IRQ2; 3901 adev->err_irq = -ENXIO; 3902 } else 3903 atomic_inc(&ppc440spe_adma_err_irq_ref); 3904 } else { 3905 adev->err_irq = -ENXIO; 3906 } 3907 3908 adev->irq = irq_of_parse_and_map(np, 0); 3909 if (adev->irq == NO_IRQ) { 3910 dev_err(adev->dev, "no irq resource\n"); 3911 *initcode = PPC_ADMA_INIT_IRQ1; 3912 ret = -ENXIO; 3913 goto err_irq_map; 3914 } 3915 dev_dbg(adev->dev, "irq %d, err irq %d\n", 3916 adev->irq, adev->err_irq); 3917 3918 ret = request_irq(adev->irq, ppc440spe_adma_eot_handler, 3919 0, dev_driver_string(adev->dev), chan); 3920 if (ret) { 3921 dev_err(adev->dev, "can't request irq %d\n", 3922 adev->irq); 3923 *initcode = PPC_ADMA_INIT_IRQ1; 3924 ret = -EIO; 3925 goto err_req1; 3926 } 3927 3928 /* only DMA engines have a separate error IRQ 3929 * so it's Ok if err_irq < 0 in XOR engine case. 3930 */ 3931 if (adev->err_irq > 0) { 3932 /* both DMA engines share common error IRQ */ 3933 ret = request_irq(adev->err_irq, 3934 ppc440spe_adma_err_handler, 3935 IRQF_SHARED, 3936 dev_driver_string(adev->dev), 3937 chan); 3938 if (ret) { 3939 dev_err(adev->dev, "can't request irq %d\n", 3940 adev->err_irq); 3941 *initcode = PPC_ADMA_INIT_IRQ2; 3942 ret = -EIO; 3943 goto err_req2; 3944 } 3945 } 3946 3947 if (adev->id == PPC440SPE_XOR_ID) { 3948 /* enable XOR engine interrupts */ 3949 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | 3950 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT, 3951 &adev->xor_reg->ier); 3952 } else { 3953 u32 mask, enable; 3954 3955 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); 3956 if (!np) { 3957 pr_err("%s: can't find I2O device tree node\n", 3958 __func__); 3959 ret = -ENODEV; 3960 goto err_req2; 3961 } 3962 adev->i2o_reg = of_iomap(np, 0); 3963 if (!adev->i2o_reg) { 3964 pr_err("%s: failed to map I2O registers\n", __func__); 3965 of_node_put(np); 3966 ret = -EINVAL; 3967 goto err_req2; 3968 } 3969 of_node_put(np); 3970 /* Unmask 'CS FIFO Attention' interrupts and 3971 * enable generating interrupts on errors 3972 */ 3973 enable = (adev->id == PPC440SPE_DMA0_ID) ? 3974 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : 3975 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); 3976 mask = ioread32(&adev->i2o_reg->iopim) & enable; 3977 iowrite32(mask, &adev->i2o_reg->iopim); 3978 } 3979 return 0; 3980 3981 err_req2: 3982 free_irq(adev->irq, chan); 3983 err_req1: 3984 irq_dispose_mapping(adev->irq); 3985 err_irq_map: 3986 if (adev->err_irq > 0) { 3987 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) 3988 irq_dispose_mapping(adev->err_irq); 3989 } 3990 return ret; 3991 } 3992 3993 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev, 3994 struct ppc440spe_adma_chan *chan) 3995 { 3996 u32 mask, disable; 3997 3998 if (adev->id == PPC440SPE_XOR_ID) { 3999 /* disable XOR engine interrupts */ 4000 mask = ioread32be(&adev->xor_reg->ier); 4001 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | 4002 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT); 4003 iowrite32be(mask, &adev->xor_reg->ier); 4004 } else { 4005 /* disable DMAx engine interrupts */ 4006 disable = (adev->id == PPC440SPE_DMA0_ID) ? 4007 (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : 4008 (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); 4009 mask = ioread32(&adev->i2o_reg->iopim) | disable; 4010 iowrite32(mask, &adev->i2o_reg->iopim); 4011 } 4012 free_irq(adev->irq, chan); 4013 irq_dispose_mapping(adev->irq); 4014 if (adev->err_irq > 0) { 4015 free_irq(adev->err_irq, chan); 4016 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) { 4017 irq_dispose_mapping(adev->err_irq); 4018 iounmap(adev->i2o_reg); 4019 } 4020 } 4021 } 4022 4023 /** 4024 * ppc440spe_adma_probe - probe the asynch device 4025 */ 4026 static int ppc440spe_adma_probe(struct platform_device *ofdev) 4027 { 4028 struct device_node *np = ofdev->dev.of_node; 4029 struct resource res; 4030 struct ppc440spe_adma_device *adev; 4031 struct ppc440spe_adma_chan *chan; 4032 struct ppc_dma_chan_ref *ref, *_ref; 4033 int ret = 0, initcode = PPC_ADMA_INIT_OK; 4034 const u32 *idx; 4035 int len; 4036 void *regs; 4037 u32 id, pool_size; 4038 4039 if (of_device_is_compatible(np, "amcc,xor-accelerator")) { 4040 id = PPC440SPE_XOR_ID; 4041 /* As far as the XOR engine is concerned, it does not 4042 * use FIFOs but uses linked list. So there is no dependency 4043 * between pool size to allocate and the engine configuration. 4044 */ 4045 pool_size = PAGE_SIZE << 1; 4046 } else { 4047 /* it is DMA0 or DMA1 */ 4048 idx = of_get_property(np, "cell-index", &len); 4049 if (!idx || (len != sizeof(u32))) { 4050 dev_err(&ofdev->dev, "Device node %s has missing " 4051 "or invalid cell-index property\n", 4052 np->full_name); 4053 return -EINVAL; 4054 } 4055 id = *idx; 4056 /* DMA0,1 engines use FIFO to maintain CDBs, so we 4057 * should allocate the pool accordingly to size of this 4058 * FIFO. Thus, the pool size depends on the FIFO depth: 4059 * how much CDBs pointers the FIFO may contain then so 4060 * much CDBs we should provide in the pool. 4061 * That is 4062 * CDB size = 32B; 4063 * CDBs number = (DMA0_FIFO_SIZE >> 3); 4064 * Pool size = CDBs number * CDB size = 4065 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2. 4066 */ 4067 pool_size = (id == PPC440SPE_DMA0_ID) ? 4068 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; 4069 pool_size <<= 2; 4070 } 4071 4072 if (of_address_to_resource(np, 0, &res)) { 4073 dev_err(&ofdev->dev, "failed to get memory resource\n"); 4074 initcode = PPC_ADMA_INIT_MEMRES; 4075 ret = -ENODEV; 4076 goto out; 4077 } 4078 4079 if (!request_mem_region(res.start, resource_size(&res), 4080 dev_driver_string(&ofdev->dev))) { 4081 dev_err(&ofdev->dev, "failed to request memory region %pR\n", 4082 &res); 4083 initcode = PPC_ADMA_INIT_MEMREG; 4084 ret = -EBUSY; 4085 goto out; 4086 } 4087 4088 /* create a device */ 4089 adev = kzalloc(sizeof(*adev), GFP_KERNEL); 4090 if (!adev) { 4091 dev_err(&ofdev->dev, "failed to allocate device\n"); 4092 initcode = PPC_ADMA_INIT_ALLOC; 4093 ret = -ENOMEM; 4094 goto err_adev_alloc; 4095 } 4096 4097 adev->id = id; 4098 adev->pool_size = pool_size; 4099 /* allocate coherent memory for hardware descriptors */ 4100 adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, 4101 adev->pool_size, &adev->dma_desc_pool, 4102 GFP_KERNEL); 4103 if (adev->dma_desc_pool_virt == NULL) { 4104 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent " 4105 "memory for hardware descriptors\n", 4106 adev->pool_size); 4107 initcode = PPC_ADMA_INIT_COHERENT; 4108 ret = -ENOMEM; 4109 goto err_dma_alloc; 4110 } 4111 dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n", 4112 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool); 4113 4114 regs = ioremap(res.start, resource_size(&res)); 4115 if (!regs) { 4116 dev_err(&ofdev->dev, "failed to ioremap regs!\n"); 4117 ret = -ENOMEM; 4118 goto err_regs_alloc; 4119 } 4120 4121 if (adev->id == PPC440SPE_XOR_ID) { 4122 adev->xor_reg = regs; 4123 /* Reset XOR */ 4124 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr); 4125 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr); 4126 } else { 4127 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ? 4128 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; 4129 adev->dma_reg = regs; 4130 /* DMAx_FIFO_SIZE is defined in bytes, 4131 * <fsiz> - is defined in number of CDB pointers (8byte). 4132 * DMA FIFO Length = CSlength + CPlength, where 4133 * CSlength = CPlength = (fsiz + 1) * 8. 4134 */ 4135 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2), 4136 &adev->dma_reg->fsiz); 4137 /* Configure DMA engine */ 4138 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN, 4139 &adev->dma_reg->cfg); 4140 /* Clear Status */ 4141 iowrite32(~0, &adev->dma_reg->dsts); 4142 } 4143 4144 adev->dev = &ofdev->dev; 4145 adev->common.dev = &ofdev->dev; 4146 INIT_LIST_HEAD(&adev->common.channels); 4147 platform_set_drvdata(ofdev, adev); 4148 4149 /* create a channel */ 4150 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 4151 if (!chan) { 4152 dev_err(&ofdev->dev, "can't allocate channel structure\n"); 4153 initcode = PPC_ADMA_INIT_CHANNEL; 4154 ret = -ENOMEM; 4155 goto err_chan_alloc; 4156 } 4157 4158 spin_lock_init(&chan->lock); 4159 INIT_LIST_HEAD(&chan->chain); 4160 INIT_LIST_HEAD(&chan->all_slots); 4161 chan->device = adev; 4162 chan->common.device = &adev->common; 4163 dma_cookie_init(&chan->common); 4164 list_add_tail(&chan->common.device_node, &adev->common.channels); 4165 tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet, 4166 (unsigned long)chan); 4167 4168 /* allocate and map helper pages for async validation or 4169 * async_mult/async_sum_product operations on DMA0/1. 4170 */ 4171 if (adev->id != PPC440SPE_XOR_ID) { 4172 chan->pdest_page = alloc_page(GFP_KERNEL); 4173 chan->qdest_page = alloc_page(GFP_KERNEL); 4174 if (!chan->pdest_page || 4175 !chan->qdest_page) { 4176 if (chan->pdest_page) 4177 __free_page(chan->pdest_page); 4178 if (chan->qdest_page) 4179 __free_page(chan->qdest_page); 4180 ret = -ENOMEM; 4181 goto err_page_alloc; 4182 } 4183 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0, 4184 PAGE_SIZE, DMA_BIDIRECTIONAL); 4185 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0, 4186 PAGE_SIZE, DMA_BIDIRECTIONAL); 4187 } 4188 4189 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 4190 if (ref) { 4191 ref->chan = &chan->common; 4192 INIT_LIST_HEAD(&ref->node); 4193 list_add_tail(&ref->node, &ppc440spe_adma_chan_list); 4194 } else { 4195 dev_err(&ofdev->dev, "failed to allocate channel reference!\n"); 4196 ret = -ENOMEM; 4197 goto err_ref_alloc; 4198 } 4199 4200 ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode); 4201 if (ret) 4202 goto err_irq; 4203 4204 ppc440spe_adma_init_capabilities(adev); 4205 4206 ret = dma_async_device_register(&adev->common); 4207 if (ret) { 4208 initcode = PPC_ADMA_INIT_REGISTER; 4209 dev_err(&ofdev->dev, "failed to register dma device\n"); 4210 goto err_dev_reg; 4211 } 4212 4213 goto out; 4214 4215 err_dev_reg: 4216 ppc440spe_adma_release_irqs(adev, chan); 4217 err_irq: 4218 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) { 4219 if (chan == to_ppc440spe_adma_chan(ref->chan)) { 4220 list_del(&ref->node); 4221 kfree(ref); 4222 } 4223 } 4224 err_ref_alloc: 4225 if (adev->id != PPC440SPE_XOR_ID) { 4226 dma_unmap_page(&ofdev->dev, chan->pdest, 4227 PAGE_SIZE, DMA_BIDIRECTIONAL); 4228 dma_unmap_page(&ofdev->dev, chan->qdest, 4229 PAGE_SIZE, DMA_BIDIRECTIONAL); 4230 __free_page(chan->pdest_page); 4231 __free_page(chan->qdest_page); 4232 } 4233 err_page_alloc: 4234 kfree(chan); 4235 err_chan_alloc: 4236 if (adev->id == PPC440SPE_XOR_ID) 4237 iounmap(adev->xor_reg); 4238 else 4239 iounmap(adev->dma_reg); 4240 err_regs_alloc: 4241 dma_free_coherent(adev->dev, adev->pool_size, 4242 adev->dma_desc_pool_virt, 4243 adev->dma_desc_pool); 4244 err_dma_alloc: 4245 kfree(adev); 4246 err_adev_alloc: 4247 release_mem_region(res.start, resource_size(&res)); 4248 out: 4249 if (id < PPC440SPE_ADMA_ENGINES_NUM) 4250 ppc440spe_adma_devices[id] = initcode; 4251 4252 return ret; 4253 } 4254 4255 /** 4256 * ppc440spe_adma_remove - remove the asynch device 4257 */ 4258 static int ppc440spe_adma_remove(struct platform_device *ofdev) 4259 { 4260 struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev); 4261 struct device_node *np = ofdev->dev.of_node; 4262 struct resource res; 4263 struct dma_chan *chan, *_chan; 4264 struct ppc_dma_chan_ref *ref, *_ref; 4265 struct ppc440spe_adma_chan *ppc440spe_chan; 4266 4267 if (adev->id < PPC440SPE_ADMA_ENGINES_NUM) 4268 ppc440spe_adma_devices[adev->id] = -1; 4269 4270 dma_async_device_unregister(&adev->common); 4271 4272 list_for_each_entry_safe(chan, _chan, &adev->common.channels, 4273 device_node) { 4274 ppc440spe_chan = to_ppc440spe_adma_chan(chan); 4275 ppc440spe_adma_release_irqs(adev, ppc440spe_chan); 4276 tasklet_kill(&ppc440spe_chan->irq_tasklet); 4277 if (adev->id != PPC440SPE_XOR_ID) { 4278 dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest, 4279 PAGE_SIZE, DMA_BIDIRECTIONAL); 4280 dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest, 4281 PAGE_SIZE, DMA_BIDIRECTIONAL); 4282 __free_page(ppc440spe_chan->pdest_page); 4283 __free_page(ppc440spe_chan->qdest_page); 4284 } 4285 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, 4286 node) { 4287 if (ppc440spe_chan == 4288 to_ppc440spe_adma_chan(ref->chan)) { 4289 list_del(&ref->node); 4290 kfree(ref); 4291 } 4292 } 4293 list_del(&chan->device_node); 4294 kfree(ppc440spe_chan); 4295 } 4296 4297 dma_free_coherent(adev->dev, adev->pool_size, 4298 adev->dma_desc_pool_virt, adev->dma_desc_pool); 4299 if (adev->id == PPC440SPE_XOR_ID) 4300 iounmap(adev->xor_reg); 4301 else 4302 iounmap(adev->dma_reg); 4303 of_address_to_resource(np, 0, &res); 4304 release_mem_region(res.start, resource_size(&res)); 4305 kfree(adev); 4306 return 0; 4307 } 4308 4309 /* 4310 * /sys driver interface to enable h/w RAID-6 capabilities 4311 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/ 4312 * directory are "devices", "enable" and "poly". 4313 * "devices" shows available engines. 4314 * "enable" is used to enable RAID-6 capabilities or to check 4315 * whether these has been activated. 4316 * "poly" allows setting/checking used polynomial (for PPC440SPe only). 4317 */ 4318 4319 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf) 4320 { 4321 ssize_t size = 0; 4322 int i; 4323 4324 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) { 4325 if (ppc440spe_adma_devices[i] == -1) 4326 continue; 4327 size += snprintf(buf + size, PAGE_SIZE - size, 4328 "PPC440SP(E)-ADMA.%d: %s\n", i, 4329 ppc_adma_errors[ppc440spe_adma_devices[i]]); 4330 } 4331 return size; 4332 } 4333 4334 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf) 4335 { 4336 return snprintf(buf, PAGE_SIZE, 4337 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n", 4338 ppc440spe_r6_enabled ? "EN" : "DIS"); 4339 } 4340 4341 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev, 4342 const char *buf, size_t count) 4343 { 4344 unsigned long val; 4345 4346 if (!count || count > 11) 4347 return -EINVAL; 4348 4349 if (!ppc440spe_r6_tchan) 4350 return -EFAULT; 4351 4352 /* Write a key */ 4353 sscanf(buf, "%lx", &val); 4354 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val); 4355 isync(); 4356 4357 /* Verify whether it really works now */ 4358 if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) { 4359 pr_info("PPC440SP(e) RAID-6 has been activated " 4360 "successfully\n"); 4361 ppc440spe_r6_enabled = 1; 4362 } else { 4363 pr_info("PPC440SP(e) RAID-6 hasn't been activated!" 4364 " Error key ?\n"); 4365 ppc440spe_r6_enabled = 0; 4366 } 4367 return count; 4368 } 4369 4370 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf) 4371 { 4372 ssize_t size = 0; 4373 u32 reg; 4374 4375 #ifdef CONFIG_440SP 4376 /* 440SP has fixed polynomial */ 4377 reg = 0x4d; 4378 #else 4379 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); 4380 reg >>= MQ0_CFBHL_POLY; 4381 reg &= 0xFF; 4382 #endif 4383 4384 size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver " 4385 "uses 0x1%02x polynomial.\n", reg); 4386 return size; 4387 } 4388 4389 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev, 4390 const char *buf, size_t count) 4391 { 4392 unsigned long reg, val; 4393 4394 #ifdef CONFIG_440SP 4395 /* 440SP uses default 0x14D polynomial only */ 4396 return -EINVAL; 4397 #endif 4398 4399 if (!count || count > 6) 4400 return -EINVAL; 4401 4402 /* e.g., 0x14D or 0x11D */ 4403 sscanf(buf, "%lx", &val); 4404 4405 if (val & ~0x1FF) 4406 return -EINVAL; 4407 4408 val &= 0xFF; 4409 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); 4410 reg &= ~(0xFF << MQ0_CFBHL_POLY); 4411 reg |= val << MQ0_CFBHL_POLY; 4412 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg); 4413 4414 return count; 4415 } 4416 4417 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL); 4418 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable, 4419 store_ppc440spe_r6enable); 4420 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly, 4421 store_ppc440spe_r6poly); 4422 4423 /* 4424 * Common initialisation for RAID engines; allocate memory for 4425 * DMAx FIFOs, perform configuration common for all DMA engines. 4426 * Further DMA engine specific configuration is done at probe time. 4427 */ 4428 static int ppc440spe_configure_raid_devices(void) 4429 { 4430 struct device_node *np; 4431 struct resource i2o_res; 4432 struct i2o_regs __iomem *i2o_reg; 4433 dcr_host_t i2o_dcr_host; 4434 unsigned int dcr_base, dcr_len; 4435 int i, ret; 4436 4437 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); 4438 if (!np) { 4439 pr_err("%s: can't find I2O device tree node\n", 4440 __func__); 4441 return -ENODEV; 4442 } 4443 4444 if (of_address_to_resource(np, 0, &i2o_res)) { 4445 of_node_put(np); 4446 return -EINVAL; 4447 } 4448 4449 i2o_reg = of_iomap(np, 0); 4450 if (!i2o_reg) { 4451 pr_err("%s: failed to map I2O registers\n", __func__); 4452 of_node_put(np); 4453 return -EINVAL; 4454 } 4455 4456 /* Get I2O DCRs base */ 4457 dcr_base = dcr_resource_start(np, 0); 4458 dcr_len = dcr_resource_len(np, 0); 4459 if (!dcr_base && !dcr_len) { 4460 pr_err("%s: can't get DCR registers base/len!\n", 4461 np->full_name); 4462 of_node_put(np); 4463 iounmap(i2o_reg); 4464 return -ENODEV; 4465 } 4466 4467 i2o_dcr_host = dcr_map(np, dcr_base, dcr_len); 4468 if (!DCR_MAP_OK(i2o_dcr_host)) { 4469 pr_err("%s: failed to map DCRs!\n", np->full_name); 4470 of_node_put(np); 4471 iounmap(i2o_reg); 4472 return -ENODEV; 4473 } 4474 of_node_put(np); 4475 4476 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share 4477 * the base address of FIFO memory space. 4478 * Actually we need twice more physical memory than programmed in the 4479 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS) 4480 */ 4481 ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1, 4482 GFP_KERNEL); 4483 if (!ppc440spe_dma_fifo_buf) { 4484 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__); 4485 iounmap(i2o_reg); 4486 dcr_unmap(i2o_dcr_host, dcr_len); 4487 return -ENOMEM; 4488 } 4489 4490 /* 4491 * Configure h/w 4492 */ 4493 /* Reset I2O/DMA */ 4494 mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA); 4495 mtdcri(SDR0, DCRN_SDR0_SRST, 0); 4496 4497 /* Setup the base address of mmaped registers */ 4498 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32)); 4499 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) | 4500 I2O_REG_ENABLE); 4501 dcr_unmap(i2o_dcr_host, dcr_len); 4502 4503 /* Setup FIFO memory space base address */ 4504 iowrite32(0, &i2o_reg->ifbah); 4505 iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal); 4506 4507 /* set zero FIFO size for I2O, so the whole 4508 * ppc440spe_dma_fifo_buf is used by DMAs. 4509 * DMAx_FIFOs will be configured while probe. 4510 */ 4511 iowrite32(0, &i2o_reg->ifsiz); 4512 iounmap(i2o_reg); 4513 4514 /* To prepare WXOR/RXOR functionality we need access to 4515 * Memory Queue Module DCRs (finally it will be enabled 4516 * via /sys interface of the ppc440spe ADMA driver). 4517 */ 4518 np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe"); 4519 if (!np) { 4520 pr_err("%s: can't find MQ device tree node\n", 4521 __func__); 4522 ret = -ENODEV; 4523 goto out_free; 4524 } 4525 4526 /* Get MQ DCRs base */ 4527 dcr_base = dcr_resource_start(np, 0); 4528 dcr_len = dcr_resource_len(np, 0); 4529 if (!dcr_base && !dcr_len) { 4530 pr_err("%s: can't get DCR registers base/len!\n", 4531 np->full_name); 4532 ret = -ENODEV; 4533 goto out_mq; 4534 } 4535 4536 ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len); 4537 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) { 4538 pr_err("%s: failed to map DCRs!\n", np->full_name); 4539 ret = -ENODEV; 4540 goto out_mq; 4541 } 4542 of_node_put(np); 4543 ppc440spe_mq_dcr_len = dcr_len; 4544 4545 /* Set HB alias */ 4546 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB); 4547 4548 /* Set: 4549 * - LL transaction passing limit to 1; 4550 * - Memory controller cycle limit to 1; 4551 * - Galois Polynomial to 0x14d (default) 4552 */ 4553 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, 4554 (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) | 4555 (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY)); 4556 4557 atomic_set(&ppc440spe_adma_err_irq_ref, 0); 4558 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) 4559 ppc440spe_adma_devices[i] = -1; 4560 4561 return 0; 4562 4563 out_mq: 4564 of_node_put(np); 4565 out_free: 4566 kfree(ppc440spe_dma_fifo_buf); 4567 return ret; 4568 } 4569 4570 static const struct of_device_id ppc440spe_adma_of_match[] = { 4571 { .compatible = "ibm,dma-440spe", }, 4572 { .compatible = "amcc,xor-accelerator", }, 4573 {}, 4574 }; 4575 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match); 4576 4577 static struct platform_driver ppc440spe_adma_driver = { 4578 .probe = ppc440spe_adma_probe, 4579 .remove = ppc440spe_adma_remove, 4580 .driver = { 4581 .name = "PPC440SP(E)-ADMA", 4582 .owner = THIS_MODULE, 4583 .of_match_table = ppc440spe_adma_of_match, 4584 }, 4585 }; 4586 4587 static __init int ppc440spe_adma_init(void) 4588 { 4589 int ret; 4590 4591 ret = ppc440spe_configure_raid_devices(); 4592 if (ret) 4593 return ret; 4594 4595 ret = platform_driver_register(&ppc440spe_adma_driver); 4596 if (ret) { 4597 pr_err("%s: failed to register platform driver\n", 4598 __func__); 4599 goto out_reg; 4600 } 4601 4602 /* Initialization status */ 4603 ret = driver_create_file(&ppc440spe_adma_driver.driver, 4604 &driver_attr_devices); 4605 if (ret) 4606 goto out_dev; 4607 4608 /* RAID-6 h/w enable entry */ 4609 ret = driver_create_file(&ppc440spe_adma_driver.driver, 4610 &driver_attr_enable); 4611 if (ret) 4612 goto out_en; 4613 4614 /* GF polynomial to use */ 4615 ret = driver_create_file(&ppc440spe_adma_driver.driver, 4616 &driver_attr_poly); 4617 if (!ret) 4618 return ret; 4619 4620 driver_remove_file(&ppc440spe_adma_driver.driver, 4621 &driver_attr_enable); 4622 out_en: 4623 driver_remove_file(&ppc440spe_adma_driver.driver, 4624 &driver_attr_devices); 4625 out_dev: 4626 /* User will not be able to enable h/w RAID-6 */ 4627 pr_err("%s: failed to create RAID-6 driver interface\n", 4628 __func__); 4629 platform_driver_unregister(&ppc440spe_adma_driver); 4630 out_reg: 4631 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); 4632 kfree(ppc440spe_dma_fifo_buf); 4633 return ret; 4634 } 4635 4636 static void __exit ppc440spe_adma_exit(void) 4637 { 4638 driver_remove_file(&ppc440spe_adma_driver.driver, 4639 &driver_attr_poly); 4640 driver_remove_file(&ppc440spe_adma_driver.driver, 4641 &driver_attr_enable); 4642 driver_remove_file(&ppc440spe_adma_driver.driver, 4643 &driver_attr_devices); 4644 platform_driver_unregister(&ppc440spe_adma_driver); 4645 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); 4646 kfree(ppc440spe_dma_fifo_buf); 4647 } 4648 4649 arch_initcall(ppc440spe_adma_init); 4650 module_exit(ppc440spe_adma_exit); 4651 4652 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>"); 4653 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver"); 4654 MODULE_LICENSE("GPL"); 4655