1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2006-2009 DENX Software Engineering.
4 *
5 * Author: Yuri Tikhonov <yur@emcraft.com>
6 *
7 * Further porting to arch/powerpc by
8 * Anatolij Gustschin <agust@denx.de>
9 */
10
11 /*
12 * This driver supports the asynchrounous DMA copy and RAID engines available
13 * on the AMCC PPC440SPe Processors.
14 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
15 * ADMA driver written by D.Williams.
16 */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/async_tx.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/slab.h>
26 #include <linux/uaccess.h>
27 #include <linux/proc_fs.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <asm/dcr.h>
33 #include <asm/dcr-regs.h>
34 #include "adma.h"
35 #include "../dmaengine.h"
36
37 enum ppc_adma_init_code {
38 PPC_ADMA_INIT_OK = 0,
39 PPC_ADMA_INIT_MEMRES,
40 PPC_ADMA_INIT_MEMREG,
41 PPC_ADMA_INIT_ALLOC,
42 PPC_ADMA_INIT_COHERENT,
43 PPC_ADMA_INIT_CHANNEL,
44 PPC_ADMA_INIT_IRQ1,
45 PPC_ADMA_INIT_IRQ2,
46 PPC_ADMA_INIT_REGISTER
47 };
48
49 static char *ppc_adma_errors[] = {
50 [PPC_ADMA_INIT_OK] = "ok",
51 [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
52 [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
53 [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
54 "structure",
55 [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
56 "hardware descriptors",
57 [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
58 [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
59 [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
60 [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
61 };
62
63 static enum ppc_adma_init_code
64 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
65
66 struct ppc_dma_chan_ref {
67 struct dma_chan *chan;
68 struct list_head node;
69 };
70
71 /* The list of channels exported by ppc440spe ADMA */
72 static struct list_head
73 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
74
75 /* This flag is set when want to refetch the xor chain in the interrupt
76 * handler
77 */
78 static u32 do_xor_refetch;
79
80 /* Pointer to DMA0, DMA1 CP/CS FIFO */
81 static void *ppc440spe_dma_fifo_buf;
82
83 /* Pointers to last submitted to DMA0, DMA1 CDBs */
84 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
85 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
86
87 /* Pointer to last linked and submitted xor CB */
88 static struct ppc440spe_adma_desc_slot *xor_last_linked;
89 static struct ppc440spe_adma_desc_slot *xor_last_submit;
90
91 /* This array is used in data-check operations for storing a pattern */
92 static char ppc440spe_qword[16];
93
94 static atomic_t ppc440spe_adma_err_irq_ref;
95 static dcr_host_t ppc440spe_mq_dcr_host;
96 static unsigned int ppc440spe_mq_dcr_len;
97
98 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
99 * the block size in transactions, then we do not allow to activate more than
100 * only one RXOR transactions simultaneously. So use this var to store
101 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
102 * set) or not (PPC440SPE_RXOR_RUN is clear).
103 */
104 static unsigned long ppc440spe_rxor_state;
105
106 /* These are used in enable & check routines
107 */
108 static u32 ppc440spe_r6_enabled;
109 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
110 static struct completion ppc440spe_r6_test_comp;
111
112 static int ppc440spe_adma_dma2rxor_prep_src(
113 struct ppc440spe_adma_desc_slot *desc,
114 struct ppc440spe_rxor *cursor, int index,
115 int src_cnt, u32 addr);
116 static void ppc440spe_adma_dma2rxor_set_src(
117 struct ppc440spe_adma_desc_slot *desc,
118 int index, dma_addr_t addr);
119 static void ppc440spe_adma_dma2rxor_set_mult(
120 struct ppc440spe_adma_desc_slot *desc,
121 int index, u8 mult);
122
123 #ifdef ADMA_LL_DEBUG
124 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
125 #else
126 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
127 #endif
128
print_cb(struct ppc440spe_adma_chan * chan,void * block)129 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
130 {
131 struct dma_cdb *cdb;
132 struct xor_cb *cb;
133 int i;
134
135 switch (chan->device->id) {
136 case 0:
137 case 1:
138 cdb = block;
139
140 pr_debug("CDB at %p [%d]:\n"
141 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
142 "\t sg1u 0x%08x sg1l 0x%08x\n"
143 "\t sg2u 0x%08x sg2l 0x%08x\n"
144 "\t sg3u 0x%08x sg3l 0x%08x\n",
145 cdb, chan->device->id,
146 cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
147 le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
148 le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
149 le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
150 );
151 break;
152 case 2:
153 cb = block;
154
155 pr_debug("CB at %p [%d]:\n"
156 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
157 "\t cbtah 0x%08x cbtal 0x%08x\n"
158 "\t cblah 0x%08x cblal 0x%08x\n",
159 cb, chan->device->id,
160 cb->cbc, cb->cbbc, cb->cbs,
161 cb->cbtah, cb->cbtal,
162 cb->cblah, cb->cblal);
163 for (i = 0; i < 16; i++) {
164 if (i && !cb->ops[i].h && !cb->ops[i].l)
165 continue;
166 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
167 i, cb->ops[i].h, cb->ops[i].l);
168 }
169 break;
170 }
171 }
172
print_cb_list(struct ppc440spe_adma_chan * chan,struct ppc440spe_adma_desc_slot * iter)173 static void print_cb_list(struct ppc440spe_adma_chan *chan,
174 struct ppc440spe_adma_desc_slot *iter)
175 {
176 for (; iter; iter = iter->hw_next)
177 print_cb(chan, iter->hw_desc);
178 }
179
prep_dma_xor_dbg(int id,dma_addr_t dst,dma_addr_t * src,unsigned int src_cnt)180 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
181 unsigned int src_cnt)
182 {
183 int i;
184
185 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
186 for (i = 0; i < src_cnt; i++)
187 pr_debug("\t0x%016llx ", src[i]);
188 pr_debug("dst:\n\t0x%016llx\n", dst);
189 }
190
prep_dma_pq_dbg(int id,dma_addr_t * dst,dma_addr_t * src,unsigned int src_cnt)191 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
192 unsigned int src_cnt)
193 {
194 int i;
195
196 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
197 for (i = 0; i < src_cnt; i++)
198 pr_debug("\t0x%016llx ", src[i]);
199 pr_debug("dst: ");
200 for (i = 0; i < 2; i++)
201 pr_debug("\t0x%016llx ", dst[i]);
202 }
203
prep_dma_pqzero_sum_dbg(int id,dma_addr_t * src,unsigned int src_cnt,const unsigned char * scf)204 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
205 unsigned int src_cnt,
206 const unsigned char *scf)
207 {
208 int i;
209
210 pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
211 if (scf) {
212 for (i = 0; i < src_cnt; i++)
213 pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
214 } else {
215 for (i = 0; i < src_cnt; i++)
216 pr_debug("\t0x%016llx(no) ", src[i]);
217 }
218
219 pr_debug("dst: ");
220 for (i = 0; i < 2; i++)
221 pr_debug("\t0x%016llx ", src[src_cnt + i]);
222 }
223
224 /******************************************************************************
225 * Command (Descriptor) Blocks low-level routines
226 ******************************************************************************/
227 /**
228 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
229 * pseudo operation
230 */
ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_adma_chan * chan)231 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
232 struct ppc440spe_adma_chan *chan)
233 {
234 struct xor_cb *p;
235
236 switch (chan->device->id) {
237 case PPC440SPE_XOR_ID:
238 p = desc->hw_desc;
239 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
240 /* NOP with Command Block Complete Enable */
241 p->cbc = XOR_CBCR_CBCE_BIT;
242 break;
243 case PPC440SPE_DMA0_ID:
244 case PPC440SPE_DMA1_ID:
245 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
246 /* NOP with interrupt */
247 set_bit(PPC440SPE_DESC_INT, &desc->flags);
248 break;
249 default:
250 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
251 __func__);
252 break;
253 }
254 }
255
256 /**
257 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
258 * pseudo operation
259 */
ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot * desc)260 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
261 {
262 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
263 desc->hw_next = NULL;
264 desc->src_cnt = 0;
265 desc->dst_cnt = 1;
266 }
267
268 /**
269 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
270 */
ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot * desc,int src_cnt,unsigned long flags)271 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
272 int src_cnt, unsigned long flags)
273 {
274 struct xor_cb *hw_desc = desc->hw_desc;
275
276 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
277 desc->hw_next = NULL;
278 desc->src_cnt = src_cnt;
279 desc->dst_cnt = 1;
280
281 hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
282 if (flags & DMA_PREP_INTERRUPT)
283 /* Enable interrupt on completion */
284 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
285 }
286
287 /**
288 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
289 * operation in DMA2 controller
290 */
ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot * desc,int dst_cnt,int src_cnt,unsigned long flags)291 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
292 int dst_cnt, int src_cnt, unsigned long flags)
293 {
294 struct xor_cb *hw_desc = desc->hw_desc;
295
296 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
297 desc->hw_next = NULL;
298 desc->src_cnt = src_cnt;
299 desc->dst_cnt = dst_cnt;
300 memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
301 desc->descs_per_op = 0;
302
303 hw_desc->cbc = XOR_CBCR_TGT_BIT;
304 if (flags & DMA_PREP_INTERRUPT)
305 /* Enable interrupt on completion */
306 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
307 }
308
309 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
310 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
311 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
312
313 /**
314 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
315 * with DMA0/1
316 */
ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot * desc,int dst_cnt,int src_cnt,unsigned long flags,unsigned long op)317 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
318 int dst_cnt, int src_cnt, unsigned long flags,
319 unsigned long op)
320 {
321 struct dma_cdb *hw_desc;
322 struct ppc440spe_adma_desc_slot *iter;
323 u8 dopc;
324
325 /* Common initialization of a PQ descriptors chain */
326 set_bits(op, &desc->flags);
327 desc->src_cnt = src_cnt;
328 desc->dst_cnt = dst_cnt;
329
330 /* WXOR MULTICAST if both P and Q are being computed
331 * MV_SG1_SG2 if Q only
332 */
333 dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
334 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
335
336 list_for_each_entry(iter, &desc->group_list, chain_node) {
337 hw_desc = iter->hw_desc;
338 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
339
340 if (likely(!list_is_last(&iter->chain_node,
341 &desc->group_list))) {
342 /* set 'next' pointer */
343 iter->hw_next = list_entry(iter->chain_node.next,
344 struct ppc440spe_adma_desc_slot, chain_node);
345 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
346 } else {
347 /* this is the last descriptor.
348 * this slot will be pasted from ADMA level
349 * each time it wants to configure parameters
350 * of the transaction (src, dst, ...)
351 */
352 iter->hw_next = NULL;
353 if (flags & DMA_PREP_INTERRUPT)
354 set_bit(PPC440SPE_DESC_INT, &iter->flags);
355 else
356 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
357 }
358 }
359
360 /* Set OPS depending on WXOR/RXOR type of operation */
361 if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
362 /* This is a WXOR only chain:
363 * - first descriptors are for zeroing destinations
364 * if PPC440SPE_ZERO_P/Q set;
365 * - descriptors remained are for GF-XOR operations.
366 */
367 iter = list_first_entry(&desc->group_list,
368 struct ppc440spe_adma_desc_slot,
369 chain_node);
370
371 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
372 hw_desc = iter->hw_desc;
373 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
374 iter = list_first_entry(&iter->chain_node,
375 struct ppc440spe_adma_desc_slot,
376 chain_node);
377 }
378
379 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
380 hw_desc = iter->hw_desc;
381 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
382 iter = list_first_entry(&iter->chain_node,
383 struct ppc440spe_adma_desc_slot,
384 chain_node);
385 }
386
387 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
388 hw_desc = iter->hw_desc;
389 hw_desc->opc = dopc;
390 }
391 } else {
392 /* This is either RXOR-only or mixed RXOR/WXOR */
393
394 /* The first 1 or 2 slots in chain are always RXOR,
395 * if need to calculate P & Q, then there are two
396 * RXOR slots; if only P or only Q, then there is one
397 */
398 iter = list_first_entry(&desc->group_list,
399 struct ppc440spe_adma_desc_slot,
400 chain_node);
401 hw_desc = iter->hw_desc;
402 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
403
404 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
405 iter = list_first_entry(&iter->chain_node,
406 struct ppc440spe_adma_desc_slot,
407 chain_node);
408 hw_desc = iter->hw_desc;
409 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
410 }
411
412 /* The remaining descs (if any) are WXORs */
413 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
414 iter = list_first_entry(&iter->chain_node,
415 struct ppc440spe_adma_desc_slot,
416 chain_node);
417 list_for_each_entry_from(iter, &desc->group_list,
418 chain_node) {
419 hw_desc = iter->hw_desc;
420 hw_desc->opc = dopc;
421 }
422 }
423 }
424 }
425
426 /**
427 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
428 * for PQ_ZERO_SUM operation
429 */
ppc440spe_desc_init_dma01pqzero_sum(struct ppc440spe_adma_desc_slot * desc,int dst_cnt,int src_cnt)430 static void ppc440spe_desc_init_dma01pqzero_sum(
431 struct ppc440spe_adma_desc_slot *desc,
432 int dst_cnt, int src_cnt)
433 {
434 struct dma_cdb *hw_desc;
435 struct ppc440spe_adma_desc_slot *iter;
436 int i = 0;
437 u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
438 DMA_CDB_OPC_MV_SG1_SG2;
439 /*
440 * Initialize starting from 2nd or 3rd descriptor dependent
441 * on dst_cnt. First one or two slots are for cloning P
442 * and/or Q to chan->pdest and/or chan->qdest as we have
443 * to preserve original P/Q.
444 */
445 iter = list_first_entry(&desc->group_list,
446 struct ppc440spe_adma_desc_slot, chain_node);
447 iter = list_entry(iter->chain_node.next,
448 struct ppc440spe_adma_desc_slot, chain_node);
449
450 if (dst_cnt > 1) {
451 iter = list_entry(iter->chain_node.next,
452 struct ppc440spe_adma_desc_slot, chain_node);
453 }
454 /* initialize each source descriptor in chain */
455 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
456 hw_desc = iter->hw_desc;
457 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
458 iter->src_cnt = 0;
459 iter->dst_cnt = 0;
460
461 /* This is a ZERO_SUM operation:
462 * - <src_cnt> descriptors starting from 2nd or 3rd
463 * descriptor are for GF-XOR operations;
464 * - remaining <dst_cnt> descriptors are for checking the result
465 */
466 if (i++ < src_cnt)
467 /* MV_SG1_SG2 if only Q is being verified
468 * MULTICAST if both P and Q are being verified
469 */
470 hw_desc->opc = dopc;
471 else
472 /* DMA_CDB_OPC_DCHECK128 operation */
473 hw_desc->opc = DMA_CDB_OPC_DCHECK128;
474
475 if (likely(!list_is_last(&iter->chain_node,
476 &desc->group_list))) {
477 /* set 'next' pointer */
478 iter->hw_next = list_entry(iter->chain_node.next,
479 struct ppc440spe_adma_desc_slot,
480 chain_node);
481 } else {
482 /* this is the last descriptor.
483 * this slot will be pasted from ADMA level
484 * each time it wants to configure parameters
485 * of the transaction (src, dst, ...)
486 */
487 iter->hw_next = NULL;
488 /* always enable interrupt generation since we get
489 * the status of pqzero from the handler
490 */
491 set_bit(PPC440SPE_DESC_INT, &iter->flags);
492 }
493 }
494 desc->src_cnt = src_cnt;
495 desc->dst_cnt = dst_cnt;
496 }
497
498 /**
499 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
500 */
ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot * desc,unsigned long flags)501 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
502 unsigned long flags)
503 {
504 struct dma_cdb *hw_desc = desc->hw_desc;
505
506 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
507 desc->hw_next = NULL;
508 desc->src_cnt = 1;
509 desc->dst_cnt = 1;
510
511 if (flags & DMA_PREP_INTERRUPT)
512 set_bit(PPC440SPE_DESC_INT, &desc->flags);
513 else
514 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
515
516 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
517 }
518
519 /**
520 * ppc440spe_desc_set_src_addr - set source address into the descriptor
521 */
ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_adma_chan * chan,int src_idx,dma_addr_t addrh,dma_addr_t addrl)522 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
523 struct ppc440spe_adma_chan *chan,
524 int src_idx, dma_addr_t addrh,
525 dma_addr_t addrl)
526 {
527 struct dma_cdb *dma_hw_desc;
528 struct xor_cb *xor_hw_desc;
529 phys_addr_t addr64, tmplow, tmphi;
530
531 switch (chan->device->id) {
532 case PPC440SPE_DMA0_ID:
533 case PPC440SPE_DMA1_ID:
534 if (!addrh) {
535 addr64 = addrl;
536 tmphi = (addr64 >> 32);
537 tmplow = (addr64 & 0xFFFFFFFF);
538 } else {
539 tmphi = addrh;
540 tmplow = addrl;
541 }
542 dma_hw_desc = desc->hw_desc;
543 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
544 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
545 break;
546 case PPC440SPE_XOR_ID:
547 xor_hw_desc = desc->hw_desc;
548 xor_hw_desc->ops[src_idx].l = addrl;
549 xor_hw_desc->ops[src_idx].h |= addrh;
550 break;
551 }
552 }
553
554 /**
555 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
556 */
ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_adma_chan * chan,u32 mult_index,int sg_index,unsigned char mult_value)557 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
558 struct ppc440spe_adma_chan *chan, u32 mult_index,
559 int sg_index, unsigned char mult_value)
560 {
561 struct dma_cdb *dma_hw_desc;
562 u32 *psgu;
563
564 switch (chan->device->id) {
565 case PPC440SPE_DMA0_ID:
566 case PPC440SPE_DMA1_ID:
567 dma_hw_desc = desc->hw_desc;
568
569 switch (sg_index) {
570 /* for RXOR operations set multiplier
571 * into source cued address
572 */
573 case DMA_CDB_SG_SRC:
574 psgu = &dma_hw_desc->sg1u;
575 break;
576 /* for WXOR operations set multiplier
577 * into destination cued address(es)
578 */
579 case DMA_CDB_SG_DST1:
580 psgu = &dma_hw_desc->sg2u;
581 break;
582 case DMA_CDB_SG_DST2:
583 psgu = &dma_hw_desc->sg3u;
584 break;
585 default:
586 BUG();
587 }
588
589 *psgu |= cpu_to_le32(mult_value << mult_index);
590 break;
591 case PPC440SPE_XOR_ID:
592 break;
593 default:
594 BUG();
595 }
596 }
597
598 /**
599 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
600 */
ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_adma_chan * chan,dma_addr_t addrh,dma_addr_t addrl,u32 dst_idx)601 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
602 struct ppc440spe_adma_chan *chan,
603 dma_addr_t addrh, dma_addr_t addrl,
604 u32 dst_idx)
605 {
606 struct dma_cdb *dma_hw_desc;
607 struct xor_cb *xor_hw_desc;
608 phys_addr_t addr64, tmphi, tmplow;
609 u32 *psgu, *psgl;
610
611 switch (chan->device->id) {
612 case PPC440SPE_DMA0_ID:
613 case PPC440SPE_DMA1_ID:
614 if (!addrh) {
615 addr64 = addrl;
616 tmphi = (addr64 >> 32);
617 tmplow = (addr64 & 0xFFFFFFFF);
618 } else {
619 tmphi = addrh;
620 tmplow = addrl;
621 }
622 dma_hw_desc = desc->hw_desc;
623
624 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
625 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
626
627 *psgl = cpu_to_le32((u32)tmplow);
628 *psgu |= cpu_to_le32((u32)tmphi);
629 break;
630 case PPC440SPE_XOR_ID:
631 xor_hw_desc = desc->hw_desc;
632 xor_hw_desc->cbtal = addrl;
633 xor_hw_desc->cbtah |= addrh;
634 break;
635 }
636 }
637
638 /**
639 * ppc440spe_desc_set_byte_count - set number of data bytes involved
640 * into the operation
641 */
ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_adma_chan * chan,u32 byte_count)642 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
643 struct ppc440spe_adma_chan *chan,
644 u32 byte_count)
645 {
646 struct dma_cdb *dma_hw_desc;
647 struct xor_cb *xor_hw_desc;
648
649 switch (chan->device->id) {
650 case PPC440SPE_DMA0_ID:
651 case PPC440SPE_DMA1_ID:
652 dma_hw_desc = desc->hw_desc;
653 dma_hw_desc->cnt = cpu_to_le32(byte_count);
654 break;
655 case PPC440SPE_XOR_ID:
656 xor_hw_desc = desc->hw_desc;
657 xor_hw_desc->cbbc = byte_count;
658 break;
659 }
660 }
661
662 /**
663 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
664 */
ppc440spe_desc_set_rxor_block_size(u32 byte_count)665 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
666 {
667 /* assume that byte_count is aligned on the 512-boundary;
668 * thus write it directly to the register (bits 23:31 are
669 * reserved there).
670 */
671 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
672 }
673
674 /**
675 * ppc440spe_desc_set_dcheck - set CHECK pattern
676 */
ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_adma_chan * chan,u8 * qword)677 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
678 struct ppc440spe_adma_chan *chan, u8 *qword)
679 {
680 struct dma_cdb *dma_hw_desc;
681
682 switch (chan->device->id) {
683 case PPC440SPE_DMA0_ID:
684 case PPC440SPE_DMA1_ID:
685 dma_hw_desc = desc->hw_desc;
686 iowrite32(qword[0], &dma_hw_desc->sg3l);
687 iowrite32(qword[4], &dma_hw_desc->sg3u);
688 iowrite32(qword[8], &dma_hw_desc->sg2l);
689 iowrite32(qword[12], &dma_hw_desc->sg2u);
690 break;
691 default:
692 BUG();
693 }
694 }
695
696 /**
697 * ppc440spe_xor_set_link - set link address in xor CB
698 */
ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot * prev_desc,struct ppc440spe_adma_desc_slot * next_desc)699 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
700 struct ppc440spe_adma_desc_slot *next_desc)
701 {
702 struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
703
704 if (unlikely(!next_desc || !(next_desc->phys))) {
705 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
706 __func__, next_desc,
707 next_desc ? next_desc->phys : 0);
708 BUG();
709 }
710
711 xor_hw_desc->cbs = 0;
712 xor_hw_desc->cblal = next_desc->phys;
713 xor_hw_desc->cblah = 0;
714 xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
715 }
716
717 /**
718 * ppc440spe_desc_set_link - set the address of descriptor following this
719 * descriptor in chain
720 */
ppc440spe_desc_set_link(struct ppc440spe_adma_chan * chan,struct ppc440spe_adma_desc_slot * prev_desc,struct ppc440spe_adma_desc_slot * next_desc)721 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
722 struct ppc440spe_adma_desc_slot *prev_desc,
723 struct ppc440spe_adma_desc_slot *next_desc)
724 {
725 unsigned long flags;
726 struct ppc440spe_adma_desc_slot *tail = next_desc;
727
728 if (unlikely(!prev_desc || !next_desc ||
729 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
730 /* If previous next is overwritten something is wrong.
731 * though we may refetch from append to initiate list
732 * processing; in this case - it's ok.
733 */
734 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
735 "prev->hw_next=0x%p\n", __func__, prev_desc,
736 next_desc, prev_desc ? prev_desc->hw_next : 0);
737 BUG();
738 }
739
740 local_irq_save(flags);
741
742 /* do s/w chaining both for DMA and XOR descriptors */
743 prev_desc->hw_next = next_desc;
744
745 switch (chan->device->id) {
746 case PPC440SPE_DMA0_ID:
747 case PPC440SPE_DMA1_ID:
748 break;
749 case PPC440SPE_XOR_ID:
750 /* bind descriptor to the chain */
751 while (tail->hw_next)
752 tail = tail->hw_next;
753 xor_last_linked = tail;
754
755 if (prev_desc == xor_last_submit)
756 /* do not link to the last submitted CB */
757 break;
758 ppc440spe_xor_set_link(prev_desc, next_desc);
759 break;
760 }
761
762 local_irq_restore(flags);
763 }
764
765 /**
766 * ppc440spe_desc_get_link - get the address of the descriptor that
767 * follows this one
768 */
ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_adma_chan * chan)769 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
770 struct ppc440spe_adma_chan *chan)
771 {
772 if (!desc->hw_next)
773 return 0;
774
775 return desc->hw_next->phys;
776 }
777
778 /**
779 * ppc440spe_desc_is_aligned - check alignment
780 */
ppc440spe_desc_is_aligned(struct ppc440spe_adma_desc_slot * desc,int num_slots)781 static inline int ppc440spe_desc_is_aligned(
782 struct ppc440spe_adma_desc_slot *desc, int num_slots)
783 {
784 return (desc->idx & (num_slots - 1)) ? 0 : 1;
785 }
786
787 /**
788 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
789 * XOR operation
790 */
ppc440spe_chan_xor_slot_count(size_t len,int src_cnt,int * slots_per_op)791 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
792 int *slots_per_op)
793 {
794 int slot_cnt;
795
796 /* each XOR descriptor provides up to 16 source operands */
797 slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
798
799 if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
800 return slot_cnt;
801
802 printk(KERN_ERR "%s: len %d > max %d !!\n",
803 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
804 BUG();
805 return slot_cnt;
806 }
807
808 /**
809 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
810 * DMA2 PQ operation
811 */
ppc440spe_dma2_pq_slot_count(dma_addr_t * srcs,int src_cnt,size_t len)812 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
813 int src_cnt, size_t len)
814 {
815 signed long long order = 0;
816 int state = 0;
817 int addr_count = 0;
818 int i;
819 for (i = 1; i < src_cnt; i++) {
820 dma_addr_t cur_addr = srcs[i];
821 dma_addr_t old_addr = srcs[i-1];
822 switch (state) {
823 case 0:
824 if (cur_addr == old_addr + len) {
825 /* direct RXOR */
826 order = 1;
827 state = 1;
828 if (i == src_cnt-1)
829 addr_count++;
830 } else if (old_addr == cur_addr + len) {
831 /* reverse RXOR */
832 order = -1;
833 state = 1;
834 if (i == src_cnt-1)
835 addr_count++;
836 } else {
837 state = 3;
838 }
839 break;
840 case 1:
841 if (i == src_cnt-2 || (order == -1
842 && cur_addr != old_addr - len)) {
843 order = 0;
844 state = 0;
845 addr_count++;
846 } else if (cur_addr == old_addr + len*order) {
847 state = 2;
848 if (i == src_cnt-1)
849 addr_count++;
850 } else if (cur_addr == old_addr + 2*len) {
851 state = 2;
852 if (i == src_cnt-1)
853 addr_count++;
854 } else if (cur_addr == old_addr + 3*len) {
855 state = 2;
856 if (i == src_cnt-1)
857 addr_count++;
858 } else {
859 order = 0;
860 state = 0;
861 addr_count++;
862 }
863 break;
864 case 2:
865 order = 0;
866 state = 0;
867 addr_count++;
868 break;
869 }
870 if (state == 3)
871 break;
872 }
873 if (src_cnt <= 1 || (state != 1 && state != 2)) {
874 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
875 __func__, src_cnt, state, addr_count, order);
876 for (i = 0; i < src_cnt; i++)
877 pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
878 BUG();
879 }
880
881 return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
882 }
883
884
885 /******************************************************************************
886 * ADMA channel low-level routines
887 ******************************************************************************/
888
889 static u32
890 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
891 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
892
893 /**
894 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
895 */
ppc440spe_adma_device_clear_eot_status(struct ppc440spe_adma_chan * chan)896 static void ppc440spe_adma_device_clear_eot_status(
897 struct ppc440spe_adma_chan *chan)
898 {
899 struct dma_regs *dma_reg;
900 struct xor_regs *xor_reg;
901 u8 *p = chan->device->dma_desc_pool_virt;
902 struct dma_cdb *cdb;
903 u32 rv, i;
904
905 switch (chan->device->id) {
906 case PPC440SPE_DMA0_ID:
907 case PPC440SPE_DMA1_ID:
908 /* read FIFO to ack */
909 dma_reg = chan->device->dma_reg;
910 while ((rv = ioread32(&dma_reg->csfpl))) {
911 i = rv & DMA_CDB_ADDR_MSK;
912 cdb = (struct dma_cdb *)&p[i -
913 (u32)chan->device->dma_desc_pool];
914
915 /* Clear opcode to ack. This is necessary for
916 * ZeroSum operations only
917 */
918 cdb->opc = 0;
919
920 if (test_bit(PPC440SPE_RXOR_RUN,
921 &ppc440spe_rxor_state)) {
922 /* probably this is a completed RXOR op,
923 * get pointer to CDB using the fact that
924 * physical and virtual addresses of CDB
925 * in pools have the same offsets
926 */
927 if (le32_to_cpu(cdb->sg1u) &
928 DMA_CUED_XOR_BASE) {
929 /* this is a RXOR */
930 clear_bit(PPC440SPE_RXOR_RUN,
931 &ppc440spe_rxor_state);
932 }
933 }
934
935 if (rv & DMA_CDB_STATUS_MSK) {
936 /* ZeroSum check failed
937 */
938 struct ppc440spe_adma_desc_slot *iter;
939 dma_addr_t phys = rv & ~DMA_CDB_MSK;
940
941 /*
942 * Update the status of corresponding
943 * descriptor.
944 */
945 list_for_each_entry(iter, &chan->chain,
946 chain_node) {
947 if (iter->phys == phys)
948 break;
949 }
950 /*
951 * if cannot find the corresponding
952 * slot it's a bug
953 */
954 BUG_ON(&iter->chain_node == &chan->chain);
955
956 if (iter->xor_check_result) {
957 if (test_bit(PPC440SPE_DESC_PCHECK,
958 &iter->flags)) {
959 *iter->xor_check_result |=
960 SUM_CHECK_P_RESULT;
961 } else
962 if (test_bit(PPC440SPE_DESC_QCHECK,
963 &iter->flags)) {
964 *iter->xor_check_result |=
965 SUM_CHECK_Q_RESULT;
966 } else
967 BUG();
968 }
969 }
970 }
971
972 rv = ioread32(&dma_reg->dsts);
973 if (rv) {
974 pr_err("DMA%d err status: 0x%x\n",
975 chan->device->id, rv);
976 /* write back to clear */
977 iowrite32(rv, &dma_reg->dsts);
978 }
979 break;
980 case PPC440SPE_XOR_ID:
981 /* reset status bits to ack */
982 xor_reg = chan->device->xor_reg;
983 rv = ioread32be(&xor_reg->sr);
984 iowrite32be(rv, &xor_reg->sr);
985
986 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
987 if (rv & XOR_IE_RPTIE_BIT) {
988 /* Read PLB Timeout Error.
989 * Try to resubmit the CB
990 */
991 u32 val = ioread32be(&xor_reg->ccbalr);
992
993 iowrite32be(val, &xor_reg->cblalr);
994
995 val = ioread32be(&xor_reg->crsr);
996 iowrite32be(val | XOR_CRSR_XAE_BIT,
997 &xor_reg->crsr);
998 } else
999 pr_err("XOR ERR 0x%x status\n", rv);
1000 break;
1001 }
1002
1003 /* if the XORcore is idle, but there are unprocessed CBs
1004 * then refetch the s/w chain here
1005 */
1006 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1007 do_xor_refetch)
1008 ppc440spe_chan_append(chan);
1009 break;
1010 }
1011 }
1012
1013 /**
1014 * ppc440spe_chan_is_busy - get the channel status
1015 */
ppc440spe_chan_is_busy(struct ppc440spe_adma_chan * chan)1016 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1017 {
1018 struct dma_regs *dma_reg;
1019 struct xor_regs *xor_reg;
1020 int busy = 0;
1021
1022 switch (chan->device->id) {
1023 case PPC440SPE_DMA0_ID:
1024 case PPC440SPE_DMA1_ID:
1025 dma_reg = chan->device->dma_reg;
1026 /* if command FIFO's head and tail pointers are equal and
1027 * status tail is the same as command, then channel is free
1028 */
1029 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1030 ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1031 busy = 1;
1032 break;
1033 case PPC440SPE_XOR_ID:
1034 /* use the special status bit for the XORcore
1035 */
1036 xor_reg = chan->device->xor_reg;
1037 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1038 break;
1039 }
1040
1041 return busy;
1042 }
1043
1044 /**
1045 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1046 */
ppc440spe_chan_set_first_xor_descriptor(struct ppc440spe_adma_chan * chan,struct ppc440spe_adma_desc_slot * next_desc)1047 static void ppc440spe_chan_set_first_xor_descriptor(
1048 struct ppc440spe_adma_chan *chan,
1049 struct ppc440spe_adma_desc_slot *next_desc)
1050 {
1051 struct xor_regs *xor_reg = chan->device->xor_reg;
1052
1053 if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1054 printk(KERN_INFO "%s: Warn: XORcore is running "
1055 "when try to set the first CDB!\n",
1056 __func__);
1057
1058 xor_last_submit = xor_last_linked = next_desc;
1059
1060 iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1061
1062 iowrite32be(next_desc->phys, &xor_reg->cblalr);
1063 iowrite32be(0, &xor_reg->cblahr);
1064 iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1065 &xor_reg->cbcr);
1066
1067 chan->hw_chain_inited = 1;
1068 }
1069
1070 /**
1071 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1072 * called with irqs disabled
1073 */
ppc440spe_dma_put_desc(struct ppc440spe_adma_chan * chan,struct ppc440spe_adma_desc_slot * desc)1074 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1075 struct ppc440spe_adma_desc_slot *desc)
1076 {
1077 u32 pcdb;
1078 struct dma_regs *dma_reg = chan->device->dma_reg;
1079
1080 pcdb = desc->phys;
1081 if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1082 pcdb |= DMA_CDB_NO_INT;
1083
1084 chan_last_sub[chan->device->id] = desc;
1085
1086 ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1087
1088 iowrite32(pcdb, &dma_reg->cpfpl);
1089 }
1090
1091 /**
1092 * ppc440spe_chan_append - update the h/w chain in the channel
1093 */
ppc440spe_chan_append(struct ppc440spe_adma_chan * chan)1094 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1095 {
1096 struct xor_regs *xor_reg;
1097 struct ppc440spe_adma_desc_slot *iter;
1098 struct xor_cb *xcb;
1099 u32 cur_desc;
1100 unsigned long flags;
1101
1102 local_irq_save(flags);
1103
1104 switch (chan->device->id) {
1105 case PPC440SPE_DMA0_ID:
1106 case PPC440SPE_DMA1_ID:
1107 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1108
1109 if (likely(cur_desc)) {
1110 iter = chan_last_sub[chan->device->id];
1111 BUG_ON(!iter);
1112 } else {
1113 /* first peer */
1114 iter = chan_first_cdb[chan->device->id];
1115 BUG_ON(!iter);
1116 ppc440spe_dma_put_desc(chan, iter);
1117 chan->hw_chain_inited = 1;
1118 }
1119
1120 /* is there something new to append */
1121 if (!iter->hw_next)
1122 break;
1123
1124 /* flush descriptors from the s/w queue to fifo */
1125 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1126 ppc440spe_dma_put_desc(chan, iter);
1127 if (!iter->hw_next)
1128 break;
1129 }
1130 break;
1131 case PPC440SPE_XOR_ID:
1132 /* update h/w links and refetch */
1133 if (!xor_last_submit->hw_next)
1134 break;
1135
1136 xor_reg = chan->device->xor_reg;
1137 /* the last linked CDB has to generate an interrupt
1138 * that we'd be able to append the next lists to h/w
1139 * regardless of the XOR engine state at the moment of
1140 * appending of these next lists
1141 */
1142 xcb = xor_last_linked->hw_desc;
1143 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1144
1145 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1146 /* XORcore is idle. Refetch now */
1147 do_xor_refetch = 0;
1148 ppc440spe_xor_set_link(xor_last_submit,
1149 xor_last_submit->hw_next);
1150
1151 ADMA_LL_DBG(print_cb_list(chan,
1152 xor_last_submit->hw_next));
1153
1154 xor_last_submit = xor_last_linked;
1155 iowrite32be(ioread32be(&xor_reg->crsr) |
1156 XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1157 &xor_reg->crsr);
1158 } else {
1159 /* XORcore is running. Refetch later in the handler */
1160 do_xor_refetch = 1;
1161 }
1162
1163 break;
1164 }
1165
1166 local_irq_restore(flags);
1167 }
1168
1169 /**
1170 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1171 */
1172 static u32
ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan * chan)1173 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1174 {
1175 struct dma_regs *dma_reg;
1176 struct xor_regs *xor_reg;
1177
1178 if (unlikely(!chan->hw_chain_inited))
1179 /* h/w descriptor chain is not initialized yet */
1180 return 0;
1181
1182 switch (chan->device->id) {
1183 case PPC440SPE_DMA0_ID:
1184 case PPC440SPE_DMA1_ID:
1185 dma_reg = chan->device->dma_reg;
1186 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1187 case PPC440SPE_XOR_ID:
1188 xor_reg = chan->device->xor_reg;
1189 return ioread32be(&xor_reg->ccbalr);
1190 }
1191 return 0;
1192 }
1193
1194 /**
1195 * ppc440spe_chan_run - enable the channel
1196 */
ppc440spe_chan_run(struct ppc440spe_adma_chan * chan)1197 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1198 {
1199 struct xor_regs *xor_reg;
1200
1201 switch (chan->device->id) {
1202 case PPC440SPE_DMA0_ID:
1203 case PPC440SPE_DMA1_ID:
1204 /* DMAs are always enabled, do nothing */
1205 break;
1206 case PPC440SPE_XOR_ID:
1207 /* drain write buffer */
1208 xor_reg = chan->device->xor_reg;
1209
1210 /* fetch descriptor pointed to in <link> */
1211 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1212 &xor_reg->crsr);
1213 break;
1214 }
1215 }
1216
1217 /******************************************************************************
1218 * ADMA device level
1219 ******************************************************************************/
1220
1221 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1222 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1223
1224 static dma_cookie_t
1225 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1226
1227 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1228 dma_addr_t addr, int index);
1229 static void
1230 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1231 dma_addr_t addr, int index);
1232
1233 static void
1234 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1235 dma_addr_t *paddr, unsigned long flags);
1236 static void
1237 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1238 dma_addr_t addr, int index);
1239 static void
1240 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1241 unsigned char mult, int index, int dst_pos);
1242 static void
1243 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1244 dma_addr_t paddr, dma_addr_t qaddr);
1245
1246 static struct page *ppc440spe_rxor_srcs[32];
1247
1248 /**
1249 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1250 */
ppc440spe_can_rxor(struct page ** srcs,int src_cnt,size_t len)1251 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1252 {
1253 int i, order = 0, state = 0;
1254 int idx = 0;
1255
1256 if (unlikely(!(src_cnt > 1)))
1257 return 0;
1258
1259 BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1260
1261 /* Skip holes in the source list before checking */
1262 for (i = 0; i < src_cnt; i++) {
1263 if (!srcs[i])
1264 continue;
1265 ppc440spe_rxor_srcs[idx++] = srcs[i];
1266 }
1267 src_cnt = idx;
1268
1269 for (i = 1; i < src_cnt; i++) {
1270 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1271 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1272
1273 switch (state) {
1274 case 0:
1275 if (cur_addr == old_addr + len) {
1276 /* direct RXOR */
1277 order = 1;
1278 state = 1;
1279 } else if (old_addr == cur_addr + len) {
1280 /* reverse RXOR */
1281 order = -1;
1282 state = 1;
1283 } else
1284 goto out;
1285 break;
1286 case 1:
1287 if ((i == src_cnt - 2) ||
1288 (order == -1 && cur_addr != old_addr - len)) {
1289 order = 0;
1290 state = 0;
1291 } else if ((cur_addr == old_addr + len * order) ||
1292 (cur_addr == old_addr + 2 * len) ||
1293 (cur_addr == old_addr + 3 * len)) {
1294 state = 2;
1295 } else {
1296 order = 0;
1297 state = 0;
1298 }
1299 break;
1300 case 2:
1301 order = 0;
1302 state = 0;
1303 break;
1304 }
1305 }
1306
1307 out:
1308 if (state == 1 || state == 2)
1309 return 1;
1310
1311 return 0;
1312 }
1313
1314 /**
1315 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1316 * the operation given on this channel. It's assumed that 'chan' is
1317 * capable to process 'cap' type of operation.
1318 * @chan: channel to use
1319 * @cap: type of transaction
1320 * @dst_lst: array of destination pointers
1321 * @dst_cnt: number of destination operands
1322 * @src_lst: array of source pointers
1323 * @src_cnt: number of source operands
1324 * @src_sz: size of each source operand
1325 */
ppc440spe_adma_estimate(struct dma_chan * chan,enum dma_transaction_type cap,struct page ** dst_lst,int dst_cnt,struct page ** src_lst,int src_cnt,size_t src_sz)1326 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1327 enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1328 struct page **src_lst, int src_cnt, size_t src_sz)
1329 {
1330 int ef = 1;
1331
1332 if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1333 /* If RAID-6 capabilities were not activated don't try
1334 * to use them
1335 */
1336 if (unlikely(!ppc440spe_r6_enabled))
1337 return -1;
1338 }
1339 /* In the current implementation of ppc440spe ADMA driver it
1340 * makes sense to pick out only pq case, because it may be
1341 * processed:
1342 * (1) either using Biskup method on DMA2;
1343 * (2) or on DMA0/1.
1344 * Thus we give a favour to (1) if the sources are suitable;
1345 * else let it be processed on one of the DMA0/1 engines.
1346 * In the sum_product case where destination is also the
1347 * source process it on DMA0/1 only.
1348 */
1349 if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1350
1351 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1352 ef = 0; /* sum_product case, process on DMA0/1 */
1353 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1354 ef = 3; /* override (DMA0/1 + idle) */
1355 else
1356 ef = 0; /* can't process on DMA2 if !rxor */
1357 }
1358
1359 /* channel idleness increases the priority */
1360 if (likely(ef) &&
1361 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1362 ef++;
1363
1364 return ef;
1365 }
1366
1367 struct dma_chan *
ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,struct page ** dst_lst,int dst_cnt,struct page ** src_lst,int src_cnt,size_t src_sz)1368 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1369 struct page **dst_lst, int dst_cnt, struct page **src_lst,
1370 int src_cnt, size_t src_sz)
1371 {
1372 struct dma_chan *best_chan = NULL;
1373 struct ppc_dma_chan_ref *ref;
1374 int best_rank = -1;
1375
1376 if (unlikely(!src_sz))
1377 return NULL;
1378 if (src_sz > PAGE_SIZE) {
1379 /*
1380 * should a user of the api ever pass > PAGE_SIZE requests
1381 * we sort out cases where temporary page-sized buffers
1382 * are used.
1383 */
1384 switch (cap) {
1385 case DMA_PQ:
1386 if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1387 return NULL;
1388 if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1389 return NULL;
1390 break;
1391 case DMA_PQ_VAL:
1392 case DMA_XOR_VAL:
1393 return NULL;
1394 default:
1395 break;
1396 }
1397 }
1398
1399 list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1400 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1401 int rank;
1402
1403 rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1404 dst_cnt, src_lst, src_cnt, src_sz);
1405 if (rank > best_rank) {
1406 best_rank = rank;
1407 best_chan = ref->chan;
1408 }
1409 }
1410 }
1411
1412 return best_chan;
1413 }
1414 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1415
1416 /**
1417 * ppc440spe_get_group_entry - get group entry with index idx
1418 * @tdesc: is the last allocated slot in the group.
1419 */
1420 static struct ppc440spe_adma_desc_slot *
ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot * tdesc,u32 entry_idx)1421 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1422 {
1423 struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1424 int i = 0;
1425
1426 if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1427 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1428 __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1429 BUG();
1430 }
1431
1432 list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1433 if (i++ == entry_idx)
1434 break;
1435 }
1436 return iter;
1437 }
1438
1439 /**
1440 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1441 * @slot: Slot to free
1442 * Caller must hold &ppc440spe_chan->lock while calling this function
1443 */
ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot * slot,struct ppc440spe_adma_chan * chan)1444 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1445 struct ppc440spe_adma_chan *chan)
1446 {
1447 int stride = slot->slots_per_op;
1448
1449 while (stride--) {
1450 slot->slots_per_op = 0;
1451 slot = list_entry(slot->slot_node.next,
1452 struct ppc440spe_adma_desc_slot,
1453 slot_node);
1454 }
1455 }
1456
1457 /**
1458 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1459 * upon completion
1460 */
ppc440spe_adma_run_tx_complete_actions(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_adma_chan * chan,dma_cookie_t cookie)1461 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1462 struct ppc440spe_adma_desc_slot *desc,
1463 struct ppc440spe_adma_chan *chan,
1464 dma_cookie_t cookie)
1465 {
1466 BUG_ON(desc->async_tx.cookie < 0);
1467 if (desc->async_tx.cookie > 0) {
1468 cookie = desc->async_tx.cookie;
1469 desc->async_tx.cookie = 0;
1470
1471 dma_descriptor_unmap(&desc->async_tx);
1472 /* call the callback (must not sleep or submit new
1473 * operations to this channel)
1474 */
1475 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
1476 }
1477
1478 /* run dependent operations */
1479 dma_run_dependencies(&desc->async_tx);
1480
1481 return cookie;
1482 }
1483
1484 /**
1485 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1486 */
ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_adma_chan * chan)1487 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1488 struct ppc440spe_adma_chan *chan)
1489 {
1490 /* the client is allowed to attach dependent operations
1491 * until 'ack' is set
1492 */
1493 if (!async_tx_test_ack(&desc->async_tx))
1494 return 0;
1495
1496 /* leave the last descriptor in the chain
1497 * so we can append to it
1498 */
1499 if (list_is_last(&desc->chain_node, &chan->chain) ||
1500 desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1501 return 1;
1502
1503 if (chan->device->id != PPC440SPE_XOR_ID) {
1504 /* our DMA interrupt handler clears opc field of
1505 * each processed descriptor. For all types of
1506 * operations except for ZeroSum we do not actually
1507 * need ack from the interrupt handler. ZeroSum is a
1508 * special case since the result of this operation
1509 * is available from the handler only, so if we see
1510 * such type of descriptor (which is unprocessed yet)
1511 * then leave it in chain.
1512 */
1513 struct dma_cdb *cdb = desc->hw_desc;
1514 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1515 return 1;
1516 }
1517
1518 dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1519 desc->phys, desc->idx, desc->slots_per_op);
1520
1521 list_del(&desc->chain_node);
1522 ppc440spe_adma_free_slots(desc, chan);
1523 return 0;
1524 }
1525
1526 /**
1527 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1528 * which runs through the channel CDBs list until reach the descriptor
1529 * currently processed. When routine determines that all CDBs of group
1530 * are completed then corresponding callbacks (if any) are called and slots
1531 * are freed.
1532 */
__ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan * chan)1533 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1534 {
1535 struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1536 dma_cookie_t cookie = 0;
1537 u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1538 int busy = ppc440spe_chan_is_busy(chan);
1539 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1540
1541 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1542 chan->device->id, __func__);
1543
1544 if (!current_desc) {
1545 /* There were no transactions yet, so
1546 * nothing to clean
1547 */
1548 return;
1549 }
1550
1551 /* free completed slots from the chain starting with
1552 * the oldest descriptor
1553 */
1554 list_for_each_entry_safe(iter, _iter, &chan->chain,
1555 chain_node) {
1556 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1557 "busy: %d this_desc: %#llx next_desc: %#x "
1558 "cur: %#x ack: %d\n",
1559 iter->async_tx.cookie, iter->idx, busy, iter->phys,
1560 ppc440spe_desc_get_link(iter, chan), current_desc,
1561 async_tx_test_ack(&iter->async_tx));
1562 prefetch(_iter);
1563 prefetch(&_iter->async_tx);
1564
1565 /* do not advance past the current descriptor loaded into the
1566 * hardware channel,subsequent descriptors are either in process
1567 * or have not been submitted
1568 */
1569 if (seen_current)
1570 break;
1571
1572 /* stop the search if we reach the current descriptor and the
1573 * channel is busy, or if it appears that the current descriptor
1574 * needs to be re-read (i.e. has been appended to)
1575 */
1576 if (iter->phys == current_desc) {
1577 BUG_ON(seen_current++);
1578 if (busy || ppc440spe_desc_get_link(iter, chan)) {
1579 /* not all descriptors of the group have
1580 * been completed; exit.
1581 */
1582 break;
1583 }
1584 }
1585
1586 /* detect the start of a group transaction */
1587 if (!slot_cnt && !slots_per_op) {
1588 slot_cnt = iter->slot_cnt;
1589 slots_per_op = iter->slots_per_op;
1590 if (slot_cnt <= slots_per_op) {
1591 slot_cnt = 0;
1592 slots_per_op = 0;
1593 }
1594 }
1595
1596 if (slot_cnt) {
1597 if (!group_start)
1598 group_start = iter;
1599 slot_cnt -= slots_per_op;
1600 }
1601
1602 /* all the members of a group are complete */
1603 if (slots_per_op != 0 && slot_cnt == 0) {
1604 struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1605 int end_of_chain = 0;
1606
1607 /* clean up the group */
1608 slot_cnt = group_start->slot_cnt;
1609 grp_iter = group_start;
1610 list_for_each_entry_safe_from(grp_iter, _grp_iter,
1611 &chan->chain, chain_node) {
1612
1613 cookie = ppc440spe_adma_run_tx_complete_actions(
1614 grp_iter, chan, cookie);
1615
1616 slot_cnt -= slots_per_op;
1617 end_of_chain = ppc440spe_adma_clean_slot(
1618 grp_iter, chan);
1619 if (end_of_chain && slot_cnt) {
1620 /* Should wait for ZeroSum completion */
1621 if (cookie > 0)
1622 chan->common.completed_cookie = cookie;
1623 return;
1624 }
1625
1626 if (slot_cnt == 0 || end_of_chain)
1627 break;
1628 }
1629
1630 /* the group should be complete at this point */
1631 BUG_ON(slot_cnt);
1632
1633 slots_per_op = 0;
1634 group_start = NULL;
1635 if (end_of_chain)
1636 break;
1637 else
1638 continue;
1639 } else if (slots_per_op) /* wait for group completion */
1640 continue;
1641
1642 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1643 cookie);
1644
1645 if (ppc440spe_adma_clean_slot(iter, chan))
1646 break;
1647 }
1648
1649 BUG_ON(!seen_current);
1650
1651 if (cookie > 0) {
1652 chan->common.completed_cookie = cookie;
1653 pr_debug("\tcompleted cookie %d\n", cookie);
1654 }
1655
1656 }
1657
1658 /**
1659 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1660 */
ppc440spe_adma_tasklet(struct tasklet_struct * t)1661 static void ppc440spe_adma_tasklet(struct tasklet_struct *t)
1662 {
1663 struct ppc440spe_adma_chan *chan = from_tasklet(chan, t, irq_tasklet);
1664
1665 spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1666 __ppc440spe_adma_slot_cleanup(chan);
1667 spin_unlock(&chan->lock);
1668 }
1669
1670 /**
1671 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1672 */
ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan * chan)1673 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1674 {
1675 spin_lock_bh(&chan->lock);
1676 __ppc440spe_adma_slot_cleanup(chan);
1677 spin_unlock_bh(&chan->lock);
1678 }
1679
1680 /**
1681 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1682 */
ppc440spe_adma_alloc_slots(struct ppc440spe_adma_chan * chan,int num_slots,int slots_per_op)1683 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1684 struct ppc440spe_adma_chan *chan, int num_slots,
1685 int slots_per_op)
1686 {
1687 struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1688 struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1689 int slots_found, retry = 0;
1690 LIST_HEAD(chain);
1691
1692
1693 BUG_ON(!num_slots || !slots_per_op);
1694 /* start search from the last allocated descrtiptor
1695 * if a contiguous allocation can not be found start searching
1696 * from the beginning of the list
1697 */
1698 retry:
1699 slots_found = 0;
1700 if (retry == 0)
1701 iter = chan->last_used;
1702 else
1703 iter = list_entry(&chan->all_slots,
1704 struct ppc440spe_adma_desc_slot,
1705 slot_node);
1706 list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1707 slot_node) {
1708 prefetch(_iter);
1709 prefetch(&_iter->async_tx);
1710 if (iter->slots_per_op) {
1711 slots_found = 0;
1712 continue;
1713 }
1714
1715 /* start the allocation if the slot is correctly aligned */
1716 if (!slots_found++)
1717 alloc_start = iter;
1718
1719 if (slots_found == num_slots) {
1720 struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1721 struct ppc440spe_adma_desc_slot *last_used = NULL;
1722
1723 iter = alloc_start;
1724 while (num_slots) {
1725 int i;
1726 /* pre-ack all but the last descriptor */
1727 if (num_slots != slots_per_op)
1728 async_tx_ack(&iter->async_tx);
1729
1730 list_add_tail(&iter->chain_node, &chain);
1731 alloc_tail = iter;
1732 iter->async_tx.cookie = 0;
1733 iter->hw_next = NULL;
1734 iter->flags = 0;
1735 iter->slot_cnt = num_slots;
1736 iter->xor_check_result = NULL;
1737 for (i = 0; i < slots_per_op; i++) {
1738 iter->slots_per_op = slots_per_op - i;
1739 last_used = iter;
1740 iter = list_entry(iter->slot_node.next,
1741 struct ppc440spe_adma_desc_slot,
1742 slot_node);
1743 }
1744 num_slots -= slots_per_op;
1745 }
1746 alloc_tail->group_head = alloc_start;
1747 alloc_tail->async_tx.cookie = -EBUSY;
1748 list_splice(&chain, &alloc_tail->group_list);
1749 chan->last_used = last_used;
1750 return alloc_tail;
1751 }
1752 }
1753 if (!retry++)
1754 goto retry;
1755
1756 /* try to free some slots if the allocation fails */
1757 tasklet_schedule(&chan->irq_tasklet);
1758 return NULL;
1759 }
1760
1761 /**
1762 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
1763 */
ppc440spe_adma_alloc_chan_resources(struct dma_chan * chan)1764 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1765 {
1766 struct ppc440spe_adma_chan *ppc440spe_chan;
1767 struct ppc440spe_adma_desc_slot *slot = NULL;
1768 char *hw_desc;
1769 int i, db_sz;
1770 int init;
1771
1772 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1773 init = ppc440spe_chan->slots_allocated ? 0 : 1;
1774 chan->chan_id = ppc440spe_chan->device->id;
1775
1776 /* Allocate descriptor slots */
1777 i = ppc440spe_chan->slots_allocated;
1778 if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1779 db_sz = sizeof(struct dma_cdb);
1780 else
1781 db_sz = sizeof(struct xor_cb);
1782
1783 for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1784 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1785 GFP_KERNEL);
1786 if (!slot) {
1787 printk(KERN_INFO "SPE ADMA Channel only initialized"
1788 " %d descriptor slots", i--);
1789 break;
1790 }
1791
1792 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1793 slot->hw_desc = (void *) &hw_desc[i * db_sz];
1794 dma_async_tx_descriptor_init(&slot->async_tx, chan);
1795 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1796 INIT_LIST_HEAD(&slot->chain_node);
1797 INIT_LIST_HEAD(&slot->slot_node);
1798 INIT_LIST_HEAD(&slot->group_list);
1799 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1800 slot->idx = i;
1801
1802 spin_lock_bh(&ppc440spe_chan->lock);
1803 ppc440spe_chan->slots_allocated++;
1804 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1805 spin_unlock_bh(&ppc440spe_chan->lock);
1806 }
1807
1808 if (i && !ppc440spe_chan->last_used) {
1809 ppc440spe_chan->last_used =
1810 list_entry(ppc440spe_chan->all_slots.next,
1811 struct ppc440spe_adma_desc_slot,
1812 slot_node);
1813 }
1814
1815 dev_dbg(ppc440spe_chan->device->common.dev,
1816 "ppc440spe adma%d: allocated %d descriptor slots\n",
1817 ppc440spe_chan->device->id, i);
1818
1819 /* initialize the channel and the chain with a null operation */
1820 if (init) {
1821 switch (ppc440spe_chan->device->id) {
1822 case PPC440SPE_DMA0_ID:
1823 case PPC440SPE_DMA1_ID:
1824 ppc440spe_chan->hw_chain_inited = 0;
1825 /* Use WXOR for self-testing */
1826 if (!ppc440spe_r6_tchan)
1827 ppc440spe_r6_tchan = ppc440spe_chan;
1828 break;
1829 case PPC440SPE_XOR_ID:
1830 ppc440spe_chan_start_null_xor(ppc440spe_chan);
1831 break;
1832 default:
1833 BUG();
1834 }
1835 ppc440spe_chan->needs_unmap = 1;
1836 }
1837
1838 return (i > 0) ? i : -ENOMEM;
1839 }
1840
1841 /**
1842 * ppc440spe_rxor_set_region_data -
1843 */
ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot * desc,u8 xor_arg_no,u32 mask)1844 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1845 u8 xor_arg_no, u32 mask)
1846 {
1847 struct xor_cb *xcb = desc->hw_desc;
1848
1849 xcb->ops[xor_arg_no].h |= mask;
1850 }
1851
1852 /**
1853 * ppc440spe_rxor_set_src -
1854 */
ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot * desc,u8 xor_arg_no,dma_addr_t addr)1855 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1856 u8 xor_arg_no, dma_addr_t addr)
1857 {
1858 struct xor_cb *xcb = desc->hw_desc;
1859
1860 xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1861 xcb->ops[xor_arg_no].l = addr;
1862 }
1863
1864 /**
1865 * ppc440spe_rxor_set_mult -
1866 */
ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot * desc,u8 xor_arg_no,u8 idx,u8 mult)1867 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1868 u8 xor_arg_no, u8 idx, u8 mult)
1869 {
1870 struct xor_cb *xcb = desc->hw_desc;
1871
1872 xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1873 }
1874
1875 /**
1876 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1877 * has been achieved
1878 */
ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan * chan)1879 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1880 {
1881 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1882 chan->device->id, chan->pending);
1883
1884 if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1885 chan->pending = 0;
1886 ppc440spe_chan_append(chan);
1887 }
1888 }
1889
1890 /**
1891 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1892 * (it's not necessary that descriptors will be submitted to the h/w
1893 * chains too right now)
1894 */
ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor * tx)1895 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1896 {
1897 struct ppc440spe_adma_desc_slot *sw_desc;
1898 struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1899 struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1900 int slot_cnt;
1901 int slots_per_op;
1902 dma_cookie_t cookie;
1903
1904 sw_desc = tx_to_ppc440spe_adma_slot(tx);
1905
1906 group_start = sw_desc->group_head;
1907 slot_cnt = group_start->slot_cnt;
1908 slots_per_op = group_start->slots_per_op;
1909
1910 spin_lock_bh(&chan->lock);
1911 cookie = dma_cookie_assign(tx);
1912
1913 if (unlikely(list_empty(&chan->chain))) {
1914 /* first peer */
1915 list_splice_init(&sw_desc->group_list, &chan->chain);
1916 chan_first_cdb[chan->device->id] = group_start;
1917 } else {
1918 /* isn't first peer, bind CDBs to chain */
1919 old_chain_tail = list_entry(chan->chain.prev,
1920 struct ppc440spe_adma_desc_slot,
1921 chain_node);
1922 list_splice_init(&sw_desc->group_list,
1923 &old_chain_tail->chain_node);
1924 /* fix up the hardware chain */
1925 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1926 }
1927
1928 /* increment the pending count by the number of operations */
1929 chan->pending += slot_cnt / slots_per_op;
1930 ppc440spe_adma_check_threshold(chan);
1931 spin_unlock_bh(&chan->lock);
1932
1933 dev_dbg(chan->device->common.dev,
1934 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1935 chan->device->id, __func__,
1936 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1937
1938 return cookie;
1939 }
1940
1941 /**
1942 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1943 */
ppc440spe_adma_prep_dma_interrupt(struct dma_chan * chan,unsigned long flags)1944 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1945 struct dma_chan *chan, unsigned long flags)
1946 {
1947 struct ppc440spe_adma_chan *ppc440spe_chan;
1948 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1949 int slot_cnt, slots_per_op;
1950
1951 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1952
1953 dev_dbg(ppc440spe_chan->device->common.dev,
1954 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1955 __func__);
1956
1957 spin_lock_bh(&ppc440spe_chan->lock);
1958 slot_cnt = slots_per_op = 1;
1959 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1960 slots_per_op);
1961 if (sw_desc) {
1962 group_start = sw_desc->group_head;
1963 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1964 group_start->unmap_len = 0;
1965 sw_desc->async_tx.flags = flags;
1966 }
1967 spin_unlock_bh(&ppc440spe_chan->lock);
1968
1969 return sw_desc ? &sw_desc->async_tx : NULL;
1970 }
1971
1972 /**
1973 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1974 */
ppc440spe_adma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dma_dest,dma_addr_t dma_src,size_t len,unsigned long flags)1975 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1976 struct dma_chan *chan, dma_addr_t dma_dest,
1977 dma_addr_t dma_src, size_t len, unsigned long flags)
1978 {
1979 struct ppc440spe_adma_chan *ppc440spe_chan;
1980 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1981 int slot_cnt, slots_per_op;
1982
1983 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1984
1985 if (unlikely(!len))
1986 return NULL;
1987
1988 BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
1989
1990 spin_lock_bh(&ppc440spe_chan->lock);
1991
1992 dev_dbg(ppc440spe_chan->device->common.dev,
1993 "ppc440spe adma%d: %s len: %u int_en %d\n",
1994 ppc440spe_chan->device->id, __func__, len,
1995 flags & DMA_PREP_INTERRUPT ? 1 : 0);
1996 slot_cnt = slots_per_op = 1;
1997 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1998 slots_per_op);
1999 if (sw_desc) {
2000 group_start = sw_desc->group_head;
2001 ppc440spe_desc_init_memcpy(group_start, flags);
2002 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2003 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2004 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2005 sw_desc->unmap_len = len;
2006 sw_desc->async_tx.flags = flags;
2007 }
2008 spin_unlock_bh(&ppc440spe_chan->lock);
2009
2010 return sw_desc ? &sw_desc->async_tx : NULL;
2011 }
2012
2013 /**
2014 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2015 */
ppc440spe_adma_prep_dma_xor(struct dma_chan * chan,dma_addr_t dma_dest,dma_addr_t * dma_src,u32 src_cnt,size_t len,unsigned long flags)2016 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2017 struct dma_chan *chan, dma_addr_t dma_dest,
2018 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2019 unsigned long flags)
2020 {
2021 struct ppc440spe_adma_chan *ppc440spe_chan;
2022 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2023 int slot_cnt, slots_per_op;
2024
2025 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2026
2027 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2028 dma_dest, dma_src, src_cnt));
2029 if (unlikely(!len))
2030 return NULL;
2031 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2032
2033 dev_dbg(ppc440spe_chan->device->common.dev,
2034 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2035 ppc440spe_chan->device->id, __func__, src_cnt, len,
2036 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2037
2038 spin_lock_bh(&ppc440spe_chan->lock);
2039 slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2040 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2041 slots_per_op);
2042 if (sw_desc) {
2043 group_start = sw_desc->group_head;
2044 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2045 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2046 while (src_cnt--)
2047 ppc440spe_adma_memcpy_xor_set_src(group_start,
2048 dma_src[src_cnt], src_cnt);
2049 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2050 sw_desc->unmap_len = len;
2051 sw_desc->async_tx.flags = flags;
2052 }
2053 spin_unlock_bh(&ppc440spe_chan->lock);
2054
2055 return sw_desc ? &sw_desc->async_tx : NULL;
2056 }
2057
2058 static inline void
2059 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2060 int src_cnt);
2061 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2062
2063 /**
2064 * ppc440spe_adma_init_dma2rxor_slot -
2065 */
ppc440spe_adma_init_dma2rxor_slot(struct ppc440spe_adma_desc_slot * desc,dma_addr_t * src,int src_cnt)2066 static void ppc440spe_adma_init_dma2rxor_slot(
2067 struct ppc440spe_adma_desc_slot *desc,
2068 dma_addr_t *src, int src_cnt)
2069 {
2070 int i;
2071
2072 /* initialize CDB */
2073 for (i = 0; i < src_cnt; i++) {
2074 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2075 desc->src_cnt, (u32)src[i]);
2076 }
2077 }
2078
2079 /**
2080 * ppc440spe_dma01_prep_mult -
2081 * for Q operation where destination is also the source
2082 */
ppc440spe_dma01_prep_mult(struct ppc440spe_adma_chan * ppc440spe_chan,dma_addr_t * dst,int dst_cnt,dma_addr_t * src,int src_cnt,const unsigned char * scf,size_t len,unsigned long flags)2083 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2084 struct ppc440spe_adma_chan *ppc440spe_chan,
2085 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2086 const unsigned char *scf, size_t len, unsigned long flags)
2087 {
2088 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2089 unsigned long op = 0;
2090 int slot_cnt;
2091
2092 set_bit(PPC440SPE_DESC_WXOR, &op);
2093 slot_cnt = 2;
2094
2095 spin_lock_bh(&ppc440spe_chan->lock);
2096
2097 /* use WXOR, each descriptor occupies one slot */
2098 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2099 if (sw_desc) {
2100 struct ppc440spe_adma_chan *chan;
2101 struct ppc440spe_adma_desc_slot *iter;
2102 struct dma_cdb *hw_desc;
2103
2104 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2105 set_bits(op, &sw_desc->flags);
2106 sw_desc->src_cnt = src_cnt;
2107 sw_desc->dst_cnt = dst_cnt;
2108 /* First descriptor, zero data in the destination and copy it
2109 * to q page using MULTICAST transfer.
2110 */
2111 iter = list_first_entry(&sw_desc->group_list,
2112 struct ppc440spe_adma_desc_slot,
2113 chain_node);
2114 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2115 /* set 'next' pointer */
2116 iter->hw_next = list_entry(iter->chain_node.next,
2117 struct ppc440spe_adma_desc_slot,
2118 chain_node);
2119 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2120 hw_desc = iter->hw_desc;
2121 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2122
2123 ppc440spe_desc_set_dest_addr(iter, chan,
2124 DMA_CUED_XOR_BASE, dst[0], 0);
2125 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2126 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2127 src[0]);
2128 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2129 iter->unmap_len = len;
2130
2131 /*
2132 * Second descriptor, multiply data from the q page
2133 * and store the result in real destination.
2134 */
2135 iter = list_first_entry(&iter->chain_node,
2136 struct ppc440spe_adma_desc_slot,
2137 chain_node);
2138 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2139 iter->hw_next = NULL;
2140 if (flags & DMA_PREP_INTERRUPT)
2141 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2142 else
2143 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2144
2145 hw_desc = iter->hw_desc;
2146 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2147 ppc440spe_desc_set_src_addr(iter, chan, 0,
2148 DMA_CUED_XOR_HB, dst[1]);
2149 ppc440spe_desc_set_dest_addr(iter, chan,
2150 DMA_CUED_XOR_BASE, dst[0], 0);
2151
2152 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2153 DMA_CDB_SG_DST1, scf[0]);
2154 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2155 iter->unmap_len = len;
2156 sw_desc->async_tx.flags = flags;
2157 }
2158
2159 spin_unlock_bh(&ppc440spe_chan->lock);
2160
2161 return sw_desc;
2162 }
2163
2164 /**
2165 * ppc440spe_dma01_prep_sum_product -
2166 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2167 * the source.
2168 */
ppc440spe_dma01_prep_sum_product(struct ppc440spe_adma_chan * ppc440spe_chan,dma_addr_t * dst,dma_addr_t * src,int src_cnt,const unsigned char * scf,size_t len,unsigned long flags)2169 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2170 struct ppc440spe_adma_chan *ppc440spe_chan,
2171 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2172 const unsigned char *scf, size_t len, unsigned long flags)
2173 {
2174 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2175 unsigned long op = 0;
2176 int slot_cnt;
2177
2178 set_bit(PPC440SPE_DESC_WXOR, &op);
2179 slot_cnt = 3;
2180
2181 spin_lock_bh(&ppc440spe_chan->lock);
2182
2183 /* WXOR, each descriptor occupies one slot */
2184 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2185 if (sw_desc) {
2186 struct ppc440spe_adma_chan *chan;
2187 struct ppc440spe_adma_desc_slot *iter;
2188 struct dma_cdb *hw_desc;
2189
2190 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2191 set_bits(op, &sw_desc->flags);
2192 sw_desc->src_cnt = src_cnt;
2193 sw_desc->dst_cnt = 1;
2194 /* 1st descriptor, src[1] data to q page and zero destination */
2195 iter = list_first_entry(&sw_desc->group_list,
2196 struct ppc440spe_adma_desc_slot,
2197 chain_node);
2198 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2199 iter->hw_next = list_entry(iter->chain_node.next,
2200 struct ppc440spe_adma_desc_slot,
2201 chain_node);
2202 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2203 hw_desc = iter->hw_desc;
2204 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2205
2206 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2207 *dst, 0);
2208 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2209 ppc440spe_chan->qdest, 1);
2210 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2211 src[1]);
2212 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2213 iter->unmap_len = len;
2214
2215 /* 2nd descriptor, multiply src[1] data and store the
2216 * result in destination */
2217 iter = list_first_entry(&iter->chain_node,
2218 struct ppc440spe_adma_desc_slot,
2219 chain_node);
2220 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2221 /* set 'next' pointer */
2222 iter->hw_next = list_entry(iter->chain_node.next,
2223 struct ppc440spe_adma_desc_slot,
2224 chain_node);
2225 if (flags & DMA_PREP_INTERRUPT)
2226 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2227 else
2228 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2229
2230 hw_desc = iter->hw_desc;
2231 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2232 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2233 ppc440spe_chan->qdest);
2234 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2235 *dst, 0);
2236 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2237 DMA_CDB_SG_DST1, scf[1]);
2238 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2239 iter->unmap_len = len;
2240
2241 /*
2242 * 3rd descriptor, multiply src[0] data and xor it
2243 * with destination
2244 */
2245 iter = list_first_entry(&iter->chain_node,
2246 struct ppc440spe_adma_desc_slot,
2247 chain_node);
2248 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2249 iter->hw_next = NULL;
2250 if (flags & DMA_PREP_INTERRUPT)
2251 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2252 else
2253 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2254
2255 hw_desc = iter->hw_desc;
2256 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2257 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2258 src[0]);
2259 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2260 *dst, 0);
2261 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2262 DMA_CDB_SG_DST1, scf[0]);
2263 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2264 iter->unmap_len = len;
2265 sw_desc->async_tx.flags = flags;
2266 }
2267
2268 spin_unlock_bh(&ppc440spe_chan->lock);
2269
2270 return sw_desc;
2271 }
2272
ppc440spe_dma01_prep_pq(struct ppc440spe_adma_chan * ppc440spe_chan,dma_addr_t * dst,int dst_cnt,dma_addr_t * src,int src_cnt,const unsigned char * scf,size_t len,unsigned long flags)2273 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2274 struct ppc440spe_adma_chan *ppc440spe_chan,
2275 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2276 const unsigned char *scf, size_t len, unsigned long flags)
2277 {
2278 int slot_cnt;
2279 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2280 unsigned long op = 0;
2281 unsigned char mult = 1;
2282
2283 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2284 __func__, dst_cnt, src_cnt, len);
2285 /* select operations WXOR/RXOR depending on the
2286 * source addresses of operators and the number
2287 * of destinations (RXOR support only Q-parity calculations)
2288 */
2289 set_bit(PPC440SPE_DESC_WXOR, &op);
2290 if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2291 /* no active RXOR;
2292 * do RXOR if:
2293 * - there are more than 1 source,
2294 * - len is aligned on 512-byte boundary,
2295 * - source addresses fit to one of 4 possible regions.
2296 */
2297 if (src_cnt > 1 &&
2298 !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2299 (src[0] + len) == src[1]) {
2300 /* may do RXOR R1 R2 */
2301 set_bit(PPC440SPE_DESC_RXOR, &op);
2302 if (src_cnt != 2) {
2303 /* may try to enhance region of RXOR */
2304 if ((src[1] + len) == src[2]) {
2305 /* do RXOR R1 R2 R3 */
2306 set_bit(PPC440SPE_DESC_RXOR123,
2307 &op);
2308 } else if ((src[1] + len * 2) == src[2]) {
2309 /* do RXOR R1 R2 R4 */
2310 set_bit(PPC440SPE_DESC_RXOR124, &op);
2311 } else if ((src[1] + len * 3) == src[2]) {
2312 /* do RXOR R1 R2 R5 */
2313 set_bit(PPC440SPE_DESC_RXOR125,
2314 &op);
2315 } else {
2316 /* do RXOR R1 R2 */
2317 set_bit(PPC440SPE_DESC_RXOR12,
2318 &op);
2319 }
2320 } else {
2321 /* do RXOR R1 R2 */
2322 set_bit(PPC440SPE_DESC_RXOR12, &op);
2323 }
2324 }
2325
2326 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2327 /* can not do this operation with RXOR */
2328 clear_bit(PPC440SPE_RXOR_RUN,
2329 &ppc440spe_rxor_state);
2330 } else {
2331 /* can do; set block size right now */
2332 ppc440spe_desc_set_rxor_block_size(len);
2333 }
2334 }
2335
2336 /* Number of necessary slots depends on operation type selected */
2337 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2338 /* This is a WXOR only chain. Need descriptors for each
2339 * source to GF-XOR them with WXOR, and need descriptors
2340 * for each destination to zero them with WXOR
2341 */
2342 slot_cnt = src_cnt;
2343
2344 if (flags & DMA_PREP_ZERO_P) {
2345 slot_cnt++;
2346 set_bit(PPC440SPE_ZERO_P, &op);
2347 }
2348 if (flags & DMA_PREP_ZERO_Q) {
2349 slot_cnt++;
2350 set_bit(PPC440SPE_ZERO_Q, &op);
2351 }
2352 } else {
2353 /* Need 1/2 descriptor for RXOR operation, and
2354 * need (src_cnt - (2 or 3)) for WXOR of sources
2355 * remained (if any)
2356 */
2357 slot_cnt = dst_cnt;
2358
2359 if (flags & DMA_PREP_ZERO_P)
2360 set_bit(PPC440SPE_ZERO_P, &op);
2361 if (flags & DMA_PREP_ZERO_Q)
2362 set_bit(PPC440SPE_ZERO_Q, &op);
2363
2364 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2365 slot_cnt += src_cnt - 2;
2366 else
2367 slot_cnt += src_cnt - 3;
2368
2369 /* Thus we have either RXOR only chain or
2370 * mixed RXOR/WXOR
2371 */
2372 if (slot_cnt == dst_cnt)
2373 /* RXOR only chain */
2374 clear_bit(PPC440SPE_DESC_WXOR, &op);
2375 }
2376
2377 spin_lock_bh(&ppc440spe_chan->lock);
2378 /* for both RXOR/WXOR each descriptor occupies one slot */
2379 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2380 if (sw_desc) {
2381 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2382 flags, op);
2383
2384 /* setup dst/src/mult */
2385 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2386 __func__, dst[0], dst[1]);
2387 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2388 while (src_cnt--) {
2389 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2390 src_cnt);
2391
2392 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2393 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2394 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2395 * leads to zeroing source data after RXOR.
2396 * So, for P case set-up mult=1 explicitly.
2397 */
2398 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2399 mult = scf[src_cnt];
2400 ppc440spe_adma_pq_set_src_mult(sw_desc,
2401 mult, src_cnt, dst_cnt - 1);
2402 }
2403
2404 /* Setup byte count foreach slot just allocated */
2405 sw_desc->async_tx.flags = flags;
2406 list_for_each_entry(iter, &sw_desc->group_list,
2407 chain_node) {
2408 ppc440spe_desc_set_byte_count(iter,
2409 ppc440spe_chan, len);
2410 iter->unmap_len = len;
2411 }
2412 }
2413 spin_unlock_bh(&ppc440spe_chan->lock);
2414
2415 return sw_desc;
2416 }
2417
ppc440spe_dma2_prep_pq(struct ppc440spe_adma_chan * ppc440spe_chan,dma_addr_t * dst,int dst_cnt,dma_addr_t * src,int src_cnt,const unsigned char * scf,size_t len,unsigned long flags)2418 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2419 struct ppc440spe_adma_chan *ppc440spe_chan,
2420 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2421 const unsigned char *scf, size_t len, unsigned long flags)
2422 {
2423 int slot_cnt, descs_per_op;
2424 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2425 unsigned long op = 0;
2426 unsigned char mult = 1;
2427
2428 BUG_ON(!dst_cnt);
2429 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2430 __func__, dst_cnt, src_cnt, len);*/
2431
2432 spin_lock_bh(&ppc440spe_chan->lock);
2433 descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2434 if (descs_per_op < 0) {
2435 spin_unlock_bh(&ppc440spe_chan->lock);
2436 return NULL;
2437 }
2438
2439 /* depending on number of sources we have 1 or 2 RXOR chains */
2440 slot_cnt = descs_per_op * dst_cnt;
2441
2442 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2443 if (sw_desc) {
2444 op = slot_cnt;
2445 sw_desc->async_tx.flags = flags;
2446 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2447 ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2448 --op ? 0 : flags);
2449 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2450 len);
2451 iter->unmap_len = len;
2452
2453 ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2454 iter->rxor_cursor.len = len;
2455 iter->descs_per_op = descs_per_op;
2456 }
2457 op = 0;
2458 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2459 op++;
2460 if (op % descs_per_op == 0)
2461 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2462 src_cnt);
2463 if (likely(!list_is_last(&iter->chain_node,
2464 &sw_desc->group_list))) {
2465 /* set 'next' pointer */
2466 iter->hw_next =
2467 list_entry(iter->chain_node.next,
2468 struct ppc440spe_adma_desc_slot,
2469 chain_node);
2470 ppc440spe_xor_set_link(iter, iter->hw_next);
2471 } else {
2472 /* this is the last descriptor. */
2473 iter->hw_next = NULL;
2474 }
2475 }
2476
2477 /* fixup head descriptor */
2478 sw_desc->dst_cnt = dst_cnt;
2479 if (flags & DMA_PREP_ZERO_P)
2480 set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2481 if (flags & DMA_PREP_ZERO_Q)
2482 set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2483
2484 /* setup dst/src/mult */
2485 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2486
2487 while (src_cnt--) {
2488 /* handle descriptors (if dst_cnt == 2) inside
2489 * the ppc440spe_adma_pq_set_srcxxx() functions
2490 */
2491 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2492 src_cnt);
2493 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2494 mult = scf[src_cnt];
2495 ppc440spe_adma_pq_set_src_mult(sw_desc,
2496 mult, src_cnt, dst_cnt - 1);
2497 }
2498 }
2499 spin_unlock_bh(&ppc440spe_chan->lock);
2500 ppc440spe_desc_set_rxor_block_size(len);
2501 return sw_desc;
2502 }
2503
2504 /**
2505 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2506 */
ppc440spe_adma_prep_dma_pq(struct dma_chan * chan,dma_addr_t * dst,dma_addr_t * src,unsigned int src_cnt,const unsigned char * scf,size_t len,unsigned long flags)2507 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2508 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2509 unsigned int src_cnt, const unsigned char *scf,
2510 size_t len, unsigned long flags)
2511 {
2512 struct ppc440spe_adma_chan *ppc440spe_chan;
2513 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2514 int dst_cnt = 0;
2515
2516 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2517
2518 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2519 dst, src, src_cnt));
2520 BUG_ON(!len);
2521 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2522 BUG_ON(!src_cnt);
2523
2524 if (src_cnt == 1 && dst[1] == src[0]) {
2525 dma_addr_t dest[2];
2526
2527 /* dst[1] is real destination (Q) */
2528 dest[0] = dst[1];
2529 /* this is the page to multicast source data to */
2530 dest[1] = ppc440spe_chan->qdest;
2531 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2532 dest, 2, src, src_cnt, scf, len, flags);
2533 return sw_desc ? &sw_desc->async_tx : NULL;
2534 }
2535
2536 if (src_cnt == 2 && dst[1] == src[1]) {
2537 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2538 &dst[1], src, 2, scf, len, flags);
2539 return sw_desc ? &sw_desc->async_tx : NULL;
2540 }
2541
2542 if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2543 BUG_ON(!dst[0]);
2544 dst_cnt++;
2545 flags |= DMA_PREP_ZERO_P;
2546 }
2547
2548 if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2549 BUG_ON(!dst[1]);
2550 dst_cnt++;
2551 flags |= DMA_PREP_ZERO_Q;
2552 }
2553
2554 BUG_ON(!dst_cnt);
2555
2556 dev_dbg(ppc440spe_chan->device->common.dev,
2557 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2558 ppc440spe_chan->device->id, __func__, src_cnt, len,
2559 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2560
2561 switch (ppc440spe_chan->device->id) {
2562 case PPC440SPE_DMA0_ID:
2563 case PPC440SPE_DMA1_ID:
2564 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2565 dst, dst_cnt, src, src_cnt, scf,
2566 len, flags);
2567 break;
2568
2569 case PPC440SPE_XOR_ID:
2570 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2571 dst, dst_cnt, src, src_cnt, scf,
2572 len, flags);
2573 break;
2574 }
2575
2576 return sw_desc ? &sw_desc->async_tx : NULL;
2577 }
2578
2579 /**
2580 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2581 * a PQ_ZERO_SUM operation
2582 */
ppc440spe_adma_prep_dma_pqzero_sum(struct dma_chan * chan,dma_addr_t * pq,dma_addr_t * src,unsigned int src_cnt,const unsigned char * scf,size_t len,enum sum_check_flags * pqres,unsigned long flags)2583 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2584 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2585 unsigned int src_cnt, const unsigned char *scf, size_t len,
2586 enum sum_check_flags *pqres, unsigned long flags)
2587 {
2588 struct ppc440spe_adma_chan *ppc440spe_chan;
2589 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2590 dma_addr_t pdest, qdest;
2591 int slot_cnt, slots_per_op, idst, dst_cnt;
2592
2593 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2594
2595 if (flags & DMA_PREP_PQ_DISABLE_P)
2596 pdest = 0;
2597 else
2598 pdest = pq[0];
2599
2600 if (flags & DMA_PREP_PQ_DISABLE_Q)
2601 qdest = 0;
2602 else
2603 qdest = pq[1];
2604
2605 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2606 src, src_cnt, scf));
2607
2608 /* Always use WXOR for P/Q calculations (two destinations).
2609 * Need 1 or 2 extra slots to verify results are zero.
2610 */
2611 idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2612
2613 /* One additional slot per destination to clone P/Q
2614 * before calculation (we have to preserve destinations).
2615 */
2616 slot_cnt = src_cnt + dst_cnt * 2;
2617 slots_per_op = 1;
2618
2619 spin_lock_bh(&ppc440spe_chan->lock);
2620 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2621 slots_per_op);
2622 if (sw_desc) {
2623 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2624
2625 /* Setup byte count for each slot just allocated */
2626 sw_desc->async_tx.flags = flags;
2627 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2628 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2629 len);
2630 iter->unmap_len = len;
2631 }
2632
2633 if (pdest) {
2634 struct dma_cdb *hw_desc;
2635 struct ppc440spe_adma_chan *chan;
2636
2637 iter = sw_desc->group_head;
2638 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2639 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2640 iter->hw_next = list_entry(iter->chain_node.next,
2641 struct ppc440spe_adma_desc_slot,
2642 chain_node);
2643 hw_desc = iter->hw_desc;
2644 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2645 iter->src_cnt = 0;
2646 iter->dst_cnt = 0;
2647 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2648 ppc440spe_chan->pdest, 0);
2649 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2650 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2651 len);
2652 iter->unmap_len = 0;
2653 /* override pdest to preserve original P */
2654 pdest = ppc440spe_chan->pdest;
2655 }
2656 if (qdest) {
2657 struct dma_cdb *hw_desc;
2658 struct ppc440spe_adma_chan *chan;
2659
2660 iter = list_first_entry(&sw_desc->group_list,
2661 struct ppc440spe_adma_desc_slot,
2662 chain_node);
2663 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2664
2665 if (pdest) {
2666 iter = list_entry(iter->chain_node.next,
2667 struct ppc440spe_adma_desc_slot,
2668 chain_node);
2669 }
2670
2671 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2672 iter->hw_next = list_entry(iter->chain_node.next,
2673 struct ppc440spe_adma_desc_slot,
2674 chain_node);
2675 hw_desc = iter->hw_desc;
2676 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2677 iter->src_cnt = 0;
2678 iter->dst_cnt = 0;
2679 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2680 ppc440spe_chan->qdest, 0);
2681 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2682 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2683 len);
2684 iter->unmap_len = 0;
2685 /* override qdest to preserve original Q */
2686 qdest = ppc440spe_chan->qdest;
2687 }
2688
2689 /* Setup destinations for P/Q ops */
2690 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2691
2692 /* Setup zero QWORDs into DCHECK CDBs */
2693 idst = dst_cnt;
2694 list_for_each_entry_reverse(iter, &sw_desc->group_list,
2695 chain_node) {
2696 /*
2697 * The last CDB corresponds to Q-parity check,
2698 * the one before last CDB corresponds
2699 * P-parity check
2700 */
2701 if (idst == DMA_DEST_MAX_NUM) {
2702 if (idst == dst_cnt) {
2703 set_bit(PPC440SPE_DESC_QCHECK,
2704 &iter->flags);
2705 } else {
2706 set_bit(PPC440SPE_DESC_PCHECK,
2707 &iter->flags);
2708 }
2709 } else {
2710 if (qdest) {
2711 set_bit(PPC440SPE_DESC_QCHECK,
2712 &iter->flags);
2713 } else {
2714 set_bit(PPC440SPE_DESC_PCHECK,
2715 &iter->flags);
2716 }
2717 }
2718 iter->xor_check_result = pqres;
2719
2720 /*
2721 * set it to zero, if check fail then result will
2722 * be updated
2723 */
2724 *iter->xor_check_result = 0;
2725 ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2726 ppc440spe_qword);
2727
2728 if (!(--dst_cnt))
2729 break;
2730 }
2731
2732 /* Setup sources and mults for P/Q ops */
2733 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2734 chain_node) {
2735 struct ppc440spe_adma_chan *chan;
2736 u32 mult_dst;
2737
2738 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2739 ppc440spe_desc_set_src_addr(iter, chan, 0,
2740 DMA_CUED_XOR_HB,
2741 src[src_cnt - 1]);
2742 if (qdest) {
2743 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2744 DMA_CDB_SG_DST1;
2745 ppc440spe_desc_set_src_mult(iter, chan,
2746 DMA_CUED_MULT1_OFF,
2747 mult_dst,
2748 scf[src_cnt - 1]);
2749 }
2750 if (!(--src_cnt))
2751 break;
2752 }
2753 }
2754 spin_unlock_bh(&ppc440spe_chan->lock);
2755 return sw_desc ? &sw_desc->async_tx : NULL;
2756 }
2757
2758 /**
2759 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2760 * XOR ZERO_SUM operation
2761 */
ppc440spe_adma_prep_dma_xor_zero_sum(struct dma_chan * chan,dma_addr_t * src,unsigned int src_cnt,size_t len,enum sum_check_flags * result,unsigned long flags)2762 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2763 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2764 size_t len, enum sum_check_flags *result, unsigned long flags)
2765 {
2766 struct dma_async_tx_descriptor *tx;
2767 dma_addr_t pq[2];
2768
2769 /* validate P, disable Q */
2770 pq[0] = src[0];
2771 pq[1] = 0;
2772 flags |= DMA_PREP_PQ_DISABLE_Q;
2773
2774 tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2775 src_cnt - 1, 0, len,
2776 result, flags);
2777 return tx;
2778 }
2779
2780 /**
2781 * ppc440spe_adma_set_dest - set destination address into descriptor
2782 */
ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot * sw_desc,dma_addr_t addr,int index)2783 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2784 dma_addr_t addr, int index)
2785 {
2786 struct ppc440spe_adma_chan *chan;
2787
2788 BUG_ON(index >= sw_desc->dst_cnt);
2789
2790 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2791
2792 switch (chan->device->id) {
2793 case PPC440SPE_DMA0_ID:
2794 case PPC440SPE_DMA1_ID:
2795 /* to do: support transfers lengths >
2796 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2797 */
2798 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2799 chan, 0, addr, index);
2800 break;
2801 case PPC440SPE_XOR_ID:
2802 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2803 ppc440spe_desc_set_dest_addr(sw_desc,
2804 chan, 0, addr, index);
2805 break;
2806 }
2807 }
2808
ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot * iter,struct ppc440spe_adma_chan * chan,dma_addr_t addr)2809 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2810 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2811 {
2812 /* To clear destinations update the descriptor
2813 * (P or Q depending on index) as follows:
2814 * addr is destination (0 corresponds to SG2):
2815 */
2816 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2817
2818 /* ... and the addr is source: */
2819 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2820
2821 /* addr is always SG2 then the mult is always DST1 */
2822 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2823 DMA_CDB_SG_DST1, 1);
2824 }
2825
2826 /**
2827 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2828 * for the PQXOR operation
2829 */
ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot * sw_desc,dma_addr_t * addrs,unsigned long flags)2830 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2831 dma_addr_t *addrs, unsigned long flags)
2832 {
2833 struct ppc440spe_adma_desc_slot *iter;
2834 struct ppc440spe_adma_chan *chan;
2835 dma_addr_t paddr, qaddr;
2836 dma_addr_t addr = 0, ppath, qpath;
2837 int index = 0, i;
2838
2839 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2840
2841 if (flags & DMA_PREP_PQ_DISABLE_P)
2842 paddr = 0;
2843 else
2844 paddr = addrs[0];
2845
2846 if (flags & DMA_PREP_PQ_DISABLE_Q)
2847 qaddr = 0;
2848 else
2849 qaddr = addrs[1];
2850
2851 if (!paddr || !qaddr)
2852 addr = paddr ? paddr : qaddr;
2853
2854 switch (chan->device->id) {
2855 case PPC440SPE_DMA0_ID:
2856 case PPC440SPE_DMA1_ID:
2857 /* walk through the WXOR source list and set P/Q-destinations
2858 * for each slot:
2859 */
2860 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2861 /* This is WXOR-only chain; may have 1/2 zero descs */
2862 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2863 index++;
2864 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2865 index++;
2866
2867 iter = ppc440spe_get_group_entry(sw_desc, index);
2868 if (addr) {
2869 /* one destination */
2870 list_for_each_entry_from(iter,
2871 &sw_desc->group_list, chain_node)
2872 ppc440spe_desc_set_dest_addr(iter, chan,
2873 DMA_CUED_XOR_BASE, addr, 0);
2874 } else {
2875 /* two destinations */
2876 list_for_each_entry_from(iter,
2877 &sw_desc->group_list, chain_node) {
2878 ppc440spe_desc_set_dest_addr(iter, chan,
2879 DMA_CUED_XOR_BASE, paddr, 0);
2880 ppc440spe_desc_set_dest_addr(iter, chan,
2881 DMA_CUED_XOR_BASE, qaddr, 1);
2882 }
2883 }
2884
2885 if (index) {
2886 /* To clear destinations update the descriptor
2887 * (1st,2nd, or both depending on flags)
2888 */
2889 index = 0;
2890 if (test_bit(PPC440SPE_ZERO_P,
2891 &sw_desc->flags)) {
2892 iter = ppc440spe_get_group_entry(
2893 sw_desc, index++);
2894 ppc440spe_adma_pq_zero_op(iter, chan,
2895 paddr);
2896 }
2897
2898 if (test_bit(PPC440SPE_ZERO_Q,
2899 &sw_desc->flags)) {
2900 iter = ppc440spe_get_group_entry(
2901 sw_desc, index++);
2902 ppc440spe_adma_pq_zero_op(iter, chan,
2903 qaddr);
2904 }
2905
2906 return;
2907 }
2908 } else {
2909 /* This is RXOR-only or RXOR/WXOR mixed chain */
2910
2911 /* If we want to include destination into calculations,
2912 * then make dest addresses cued with mult=1 (XOR).
2913 */
2914 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2915 DMA_CUED_XOR_HB :
2916 DMA_CUED_XOR_BASE |
2917 (1 << DMA_CUED_MULT1_OFF);
2918 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2919 DMA_CUED_XOR_HB :
2920 DMA_CUED_XOR_BASE |
2921 (1 << DMA_CUED_MULT1_OFF);
2922
2923 /* Setup destination(s) in RXOR slot(s) */
2924 iter = ppc440spe_get_group_entry(sw_desc, index++);
2925 ppc440spe_desc_set_dest_addr(iter, chan,
2926 paddr ? ppath : qpath,
2927 paddr ? paddr : qaddr, 0);
2928 if (!addr) {
2929 /* two destinations */
2930 iter = ppc440spe_get_group_entry(sw_desc,
2931 index++);
2932 ppc440spe_desc_set_dest_addr(iter, chan,
2933 qpath, qaddr, 0);
2934 }
2935
2936 if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2937 /* Setup destination(s) in remaining WXOR
2938 * slots
2939 */
2940 iter = ppc440spe_get_group_entry(sw_desc,
2941 index);
2942 if (addr) {
2943 /* one destination */
2944 list_for_each_entry_from(iter,
2945 &sw_desc->group_list,
2946 chain_node)
2947 ppc440spe_desc_set_dest_addr(
2948 iter, chan,
2949 DMA_CUED_XOR_BASE,
2950 addr, 0);
2951
2952 } else {
2953 /* two destinations */
2954 list_for_each_entry_from(iter,
2955 &sw_desc->group_list,
2956 chain_node) {
2957 ppc440spe_desc_set_dest_addr(
2958 iter, chan,
2959 DMA_CUED_XOR_BASE,
2960 paddr, 0);
2961 ppc440spe_desc_set_dest_addr(
2962 iter, chan,
2963 DMA_CUED_XOR_BASE,
2964 qaddr, 1);
2965 }
2966 }
2967 }
2968
2969 }
2970 break;
2971
2972 case PPC440SPE_XOR_ID:
2973 /* DMA2 descriptors have only 1 destination, so there are
2974 * two chains - one for each dest.
2975 * If we want to include destination into calculations,
2976 * then make dest addresses cued with mult=1 (XOR).
2977 */
2978 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2979 DMA_CUED_XOR_HB :
2980 DMA_CUED_XOR_BASE |
2981 (1 << DMA_CUED_MULT1_OFF);
2982
2983 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2984 DMA_CUED_XOR_HB :
2985 DMA_CUED_XOR_BASE |
2986 (1 << DMA_CUED_MULT1_OFF);
2987
2988 iter = ppc440spe_get_group_entry(sw_desc, 0);
2989 for (i = 0; i < sw_desc->descs_per_op; i++) {
2990 ppc440spe_desc_set_dest_addr(iter, chan,
2991 paddr ? ppath : qpath,
2992 paddr ? paddr : qaddr, 0);
2993 iter = list_entry(iter->chain_node.next,
2994 struct ppc440spe_adma_desc_slot,
2995 chain_node);
2996 }
2997
2998 if (!addr) {
2999 /* Two destinations; setup Q here */
3000 iter = ppc440spe_get_group_entry(sw_desc,
3001 sw_desc->descs_per_op);
3002 for (i = 0; i < sw_desc->descs_per_op; i++) {
3003 ppc440spe_desc_set_dest_addr(iter,
3004 chan, qpath, qaddr, 0);
3005 iter = list_entry(iter->chain_node.next,
3006 struct ppc440spe_adma_desc_slot,
3007 chain_node);
3008 }
3009 }
3010
3011 break;
3012 }
3013 }
3014
3015 /**
3016 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3017 * for the PQ_ZERO_SUM operation
3018 */
ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot * sw_desc,dma_addr_t paddr,dma_addr_t qaddr)3019 static void ppc440spe_adma_pqzero_sum_set_dest(
3020 struct ppc440spe_adma_desc_slot *sw_desc,
3021 dma_addr_t paddr, dma_addr_t qaddr)
3022 {
3023 struct ppc440spe_adma_desc_slot *iter, *end;
3024 struct ppc440spe_adma_chan *chan;
3025 dma_addr_t addr = 0;
3026 int idx;
3027
3028 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3029
3030 /* walk through the WXOR source list and set P/Q-destinations
3031 * for each slot
3032 */
3033 idx = (paddr && qaddr) ? 2 : 1;
3034 /* set end */
3035 list_for_each_entry_reverse(end, &sw_desc->group_list,
3036 chain_node) {
3037 if (!(--idx))
3038 break;
3039 }
3040 /* set start */
3041 idx = (paddr && qaddr) ? 2 : 1;
3042 iter = ppc440spe_get_group_entry(sw_desc, idx);
3043
3044 if (paddr && qaddr) {
3045 /* two destinations */
3046 list_for_each_entry_from(iter, &sw_desc->group_list,
3047 chain_node) {
3048 if (unlikely(iter == end))
3049 break;
3050 ppc440spe_desc_set_dest_addr(iter, chan,
3051 DMA_CUED_XOR_BASE, paddr, 0);
3052 ppc440spe_desc_set_dest_addr(iter, chan,
3053 DMA_CUED_XOR_BASE, qaddr, 1);
3054 }
3055 } else {
3056 /* one destination */
3057 addr = paddr ? paddr : qaddr;
3058 list_for_each_entry_from(iter, &sw_desc->group_list,
3059 chain_node) {
3060 if (unlikely(iter == end))
3061 break;
3062 ppc440spe_desc_set_dest_addr(iter, chan,
3063 DMA_CUED_XOR_BASE, addr, 0);
3064 }
3065 }
3066
3067 /* The remaining descriptors are DATACHECK. These have no need in
3068 * destination. Actually, these destinations are used there
3069 * as sources for check operation. So, set addr as source.
3070 */
3071 ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3072
3073 if (!addr) {
3074 end = list_entry(end->chain_node.next,
3075 struct ppc440spe_adma_desc_slot, chain_node);
3076 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3077 }
3078 }
3079
3080 /**
3081 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3082 */
ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot * desc,int src_cnt)3083 static inline void ppc440spe_desc_set_xor_src_cnt(
3084 struct ppc440spe_adma_desc_slot *desc,
3085 int src_cnt)
3086 {
3087 struct xor_cb *hw_desc = desc->hw_desc;
3088
3089 hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3090 hw_desc->cbc |= src_cnt;
3091 }
3092
3093 /**
3094 * ppc440spe_adma_pq_set_src - set source address into descriptor
3095 */
ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot * sw_desc,dma_addr_t addr,int index)3096 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3097 dma_addr_t addr, int index)
3098 {
3099 struct ppc440spe_adma_chan *chan;
3100 dma_addr_t haddr = 0;
3101 struct ppc440spe_adma_desc_slot *iter = NULL;
3102
3103 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3104
3105 switch (chan->device->id) {
3106 case PPC440SPE_DMA0_ID:
3107 case PPC440SPE_DMA1_ID:
3108 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3109 */
3110 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3111 /* RXOR-only or RXOR/WXOR operation */
3112 int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3113 &sw_desc->flags) ? 2 : 3;
3114
3115 if (index == 0) {
3116 /* 1st slot (RXOR) */
3117 /* setup sources region (R1-2-3, R1-2-4,
3118 * or R1-2-5)
3119 */
3120 if (test_bit(PPC440SPE_DESC_RXOR12,
3121 &sw_desc->flags))
3122 haddr = DMA_RXOR12 <<
3123 DMA_CUED_REGION_OFF;
3124 else if (test_bit(PPC440SPE_DESC_RXOR123,
3125 &sw_desc->flags))
3126 haddr = DMA_RXOR123 <<
3127 DMA_CUED_REGION_OFF;
3128 else if (test_bit(PPC440SPE_DESC_RXOR124,
3129 &sw_desc->flags))
3130 haddr = DMA_RXOR124 <<
3131 DMA_CUED_REGION_OFF;
3132 else if (test_bit(PPC440SPE_DESC_RXOR125,
3133 &sw_desc->flags))
3134 haddr = DMA_RXOR125 <<
3135 DMA_CUED_REGION_OFF;
3136 else
3137 BUG();
3138 haddr |= DMA_CUED_XOR_BASE;
3139 iter = ppc440spe_get_group_entry(sw_desc, 0);
3140 } else if (index < iskip) {
3141 /* 1st slot (RXOR)
3142 * shall actually set source address only once
3143 * instead of first <iskip>
3144 */
3145 iter = NULL;
3146 } else {
3147 /* 2nd/3d and next slots (WXOR);
3148 * skip first slot with RXOR
3149 */
3150 haddr = DMA_CUED_XOR_HB;
3151 iter = ppc440spe_get_group_entry(sw_desc,
3152 index - iskip + sw_desc->dst_cnt);
3153 }
3154 } else {
3155 int znum = 0;
3156
3157 /* WXOR-only operation; skip first slots with
3158 * zeroing destinations
3159 */
3160 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3161 znum++;
3162 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3163 znum++;
3164
3165 haddr = DMA_CUED_XOR_HB;
3166 iter = ppc440spe_get_group_entry(sw_desc,
3167 index + znum);
3168 }
3169
3170 if (likely(iter)) {
3171 ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3172
3173 if (!index &&
3174 test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3175 sw_desc->dst_cnt == 2) {
3176 /* if we have two destinations for RXOR, then
3177 * setup source in the second descr too
3178 */
3179 iter = ppc440spe_get_group_entry(sw_desc, 1);
3180 ppc440spe_desc_set_src_addr(iter, chan, 0,
3181 haddr, addr);
3182 }
3183 }
3184 break;
3185
3186 case PPC440SPE_XOR_ID:
3187 /* DMA2 may do Biskup */
3188 iter = sw_desc->group_head;
3189 if (iter->dst_cnt == 2) {
3190 /* both P & Q calculations required; set P src here */
3191 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3192
3193 /* this is for Q */
3194 iter = ppc440spe_get_group_entry(sw_desc,
3195 sw_desc->descs_per_op);
3196 }
3197 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3198 break;
3199 }
3200 }
3201
3202 /**
3203 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3204 */
ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot * sw_desc,dma_addr_t addr,int index)3205 static void ppc440spe_adma_memcpy_xor_set_src(
3206 struct ppc440spe_adma_desc_slot *sw_desc,
3207 dma_addr_t addr, int index)
3208 {
3209 struct ppc440spe_adma_chan *chan;
3210
3211 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3212 sw_desc = sw_desc->group_head;
3213
3214 if (likely(sw_desc))
3215 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3216 }
3217
3218 /**
3219 * ppc440spe_adma_dma2rxor_inc_addr -
3220 */
ppc440spe_adma_dma2rxor_inc_addr(struct ppc440spe_adma_desc_slot * desc,struct ppc440spe_rxor * cursor,int index,int src_cnt)3221 static void ppc440spe_adma_dma2rxor_inc_addr(
3222 struct ppc440spe_adma_desc_slot *desc,
3223 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3224 {
3225 cursor->addr_count++;
3226 if (index == src_cnt - 1) {
3227 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3228 } else if (cursor->addr_count == XOR_MAX_OPS) {
3229 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3230 cursor->addr_count = 0;
3231 cursor->desc_count++;
3232 }
3233 }
3234
3235 /**
3236 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3237 */
ppc440spe_adma_dma2rxor_prep_src(struct ppc440spe_adma_desc_slot * hdesc,struct ppc440spe_rxor * cursor,int index,int src_cnt,u32 addr)3238 static int ppc440spe_adma_dma2rxor_prep_src(
3239 struct ppc440spe_adma_desc_slot *hdesc,
3240 struct ppc440spe_rxor *cursor, int index,
3241 int src_cnt, u32 addr)
3242 {
3243 u32 sign;
3244 struct ppc440spe_adma_desc_slot *desc = hdesc;
3245 int i;
3246
3247 for (i = 0; i < cursor->desc_count; i++) {
3248 desc = list_entry(hdesc->chain_node.next,
3249 struct ppc440spe_adma_desc_slot,
3250 chain_node);
3251 }
3252
3253 switch (cursor->state) {
3254 case 0:
3255 if (addr == cursor->addrl + cursor->len) {
3256 /* direct RXOR */
3257 cursor->state = 1;
3258 cursor->xor_count++;
3259 if (index == src_cnt-1) {
3260 ppc440spe_rxor_set_region(desc,
3261 cursor->addr_count,
3262 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3263 ppc440spe_adma_dma2rxor_inc_addr(
3264 desc, cursor, index, src_cnt);
3265 }
3266 } else if (cursor->addrl == addr + cursor->len) {
3267 /* reverse RXOR */
3268 cursor->state = 1;
3269 cursor->xor_count++;
3270 set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3271 if (index == src_cnt-1) {
3272 ppc440spe_rxor_set_region(desc,
3273 cursor->addr_count,
3274 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3275 ppc440spe_adma_dma2rxor_inc_addr(
3276 desc, cursor, index, src_cnt);
3277 }
3278 } else {
3279 printk(KERN_ERR "Cannot build "
3280 "DMA2 RXOR command block.\n");
3281 BUG();
3282 }
3283 break;
3284 case 1:
3285 sign = test_bit(cursor->addr_count,
3286 desc->reverse_flags)
3287 ? -1 : 1;
3288 if (index == src_cnt-2 || (sign == -1
3289 && addr != cursor->addrl - 2*cursor->len)) {
3290 cursor->state = 0;
3291 cursor->xor_count = 1;
3292 cursor->addrl = addr;
3293 ppc440spe_rxor_set_region(desc,
3294 cursor->addr_count,
3295 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3296 ppc440spe_adma_dma2rxor_inc_addr(
3297 desc, cursor, index, src_cnt);
3298 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3299 cursor->state = 2;
3300 cursor->xor_count = 0;
3301 ppc440spe_rxor_set_region(desc,
3302 cursor->addr_count,
3303 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3304 if (index == src_cnt-1) {
3305 ppc440spe_adma_dma2rxor_inc_addr(
3306 desc, cursor, index, src_cnt);
3307 }
3308 } else if (addr == cursor->addrl + 3*cursor->len) {
3309 cursor->state = 2;
3310 cursor->xor_count = 0;
3311 ppc440spe_rxor_set_region(desc,
3312 cursor->addr_count,
3313 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3314 if (index == src_cnt-1) {
3315 ppc440spe_adma_dma2rxor_inc_addr(
3316 desc, cursor, index, src_cnt);
3317 }
3318 } else if (addr == cursor->addrl + 4*cursor->len) {
3319 cursor->state = 2;
3320 cursor->xor_count = 0;
3321 ppc440spe_rxor_set_region(desc,
3322 cursor->addr_count,
3323 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3324 if (index == src_cnt-1) {
3325 ppc440spe_adma_dma2rxor_inc_addr(
3326 desc, cursor, index, src_cnt);
3327 }
3328 } else {
3329 cursor->state = 0;
3330 cursor->xor_count = 1;
3331 cursor->addrl = addr;
3332 ppc440spe_rxor_set_region(desc,
3333 cursor->addr_count,
3334 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3335 ppc440spe_adma_dma2rxor_inc_addr(
3336 desc, cursor, index, src_cnt);
3337 }
3338 break;
3339 case 2:
3340 cursor->state = 0;
3341 cursor->addrl = addr;
3342 cursor->xor_count++;
3343 if (index) {
3344 ppc440spe_adma_dma2rxor_inc_addr(
3345 desc, cursor, index, src_cnt);
3346 }
3347 break;
3348 }
3349
3350 return 0;
3351 }
3352
3353 /**
3354 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3355 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3356 */
ppc440spe_adma_dma2rxor_set_src(struct ppc440spe_adma_desc_slot * desc,int index,dma_addr_t addr)3357 static void ppc440spe_adma_dma2rxor_set_src(
3358 struct ppc440spe_adma_desc_slot *desc,
3359 int index, dma_addr_t addr)
3360 {
3361 struct xor_cb *xcb = desc->hw_desc;
3362 int k = 0, op = 0, lop = 0;
3363
3364 /* get the RXOR operand which corresponds to index addr */
3365 while (op <= index) {
3366 lop = op;
3367 if (k == XOR_MAX_OPS) {
3368 k = 0;
3369 desc = list_entry(desc->chain_node.next,
3370 struct ppc440spe_adma_desc_slot, chain_node);
3371 xcb = desc->hw_desc;
3372
3373 }
3374 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3375 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3376 op += 2;
3377 else
3378 op += 3;
3379 }
3380
3381 BUG_ON(k < 1);
3382
3383 if (test_bit(k-1, desc->reverse_flags)) {
3384 /* reverse operand order; put last op in RXOR group */
3385 if (index == op - 1)
3386 ppc440spe_rxor_set_src(desc, k - 1, addr);
3387 } else {
3388 /* direct operand order; put first op in RXOR group */
3389 if (index == lop)
3390 ppc440spe_rxor_set_src(desc, k - 1, addr);
3391 }
3392 }
3393
3394 /**
3395 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3396 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3397 */
ppc440spe_adma_dma2rxor_set_mult(struct ppc440spe_adma_desc_slot * desc,int index,u8 mult)3398 static void ppc440spe_adma_dma2rxor_set_mult(
3399 struct ppc440spe_adma_desc_slot *desc,
3400 int index, u8 mult)
3401 {
3402 struct xor_cb *xcb = desc->hw_desc;
3403 int k = 0, op = 0, lop = 0;
3404
3405 /* get the RXOR operand which corresponds to index mult */
3406 while (op <= index) {
3407 lop = op;
3408 if (k == XOR_MAX_OPS) {
3409 k = 0;
3410 desc = list_entry(desc->chain_node.next,
3411 struct ppc440spe_adma_desc_slot,
3412 chain_node);
3413 xcb = desc->hw_desc;
3414
3415 }
3416 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3417 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3418 op += 2;
3419 else
3420 op += 3;
3421 }
3422
3423 BUG_ON(k < 1);
3424 if (test_bit(k-1, desc->reverse_flags)) {
3425 /* reverse order */
3426 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3427 } else {
3428 /* direct order */
3429 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3430 }
3431 }
3432
3433 /**
3434 * ppc440spe_init_rxor_cursor -
3435 */
ppc440spe_init_rxor_cursor(struct ppc440spe_rxor * cursor)3436 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3437 {
3438 memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3439 cursor->state = 2;
3440 }
3441
3442 /**
3443 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3444 * descriptor for the PQXOR operation
3445 */
ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot * sw_desc,unsigned char mult,int index,int dst_pos)3446 static void ppc440spe_adma_pq_set_src_mult(
3447 struct ppc440spe_adma_desc_slot *sw_desc,
3448 unsigned char mult, int index, int dst_pos)
3449 {
3450 struct ppc440spe_adma_chan *chan;
3451 u32 mult_idx, mult_dst;
3452 struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3453
3454 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3455
3456 switch (chan->device->id) {
3457 case PPC440SPE_DMA0_ID:
3458 case PPC440SPE_DMA1_ID:
3459 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3460 int region = test_bit(PPC440SPE_DESC_RXOR12,
3461 &sw_desc->flags) ? 2 : 3;
3462
3463 if (index < region) {
3464 /* RXOR multipliers */
3465 iter = ppc440spe_get_group_entry(sw_desc,
3466 sw_desc->dst_cnt - 1);
3467 if (sw_desc->dst_cnt == 2)
3468 iter1 = ppc440spe_get_group_entry(
3469 sw_desc, 0);
3470
3471 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3472 mult_dst = DMA_CDB_SG_SRC;
3473 } else {
3474 /* WXOR multiplier */
3475 iter = ppc440spe_get_group_entry(sw_desc,
3476 index - region +
3477 sw_desc->dst_cnt);
3478 mult_idx = DMA_CUED_MULT1_OFF;
3479 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3480 DMA_CDB_SG_DST1;
3481 }
3482 } else {
3483 int znum = 0;
3484
3485 /* WXOR-only;
3486 * skip first slots with destinations (if ZERO_DST has
3487 * place)
3488 */
3489 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3490 znum++;
3491 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3492 znum++;
3493
3494 iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3495 mult_idx = DMA_CUED_MULT1_OFF;
3496 mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3497 }
3498
3499 if (likely(iter)) {
3500 ppc440spe_desc_set_src_mult(iter, chan,
3501 mult_idx, mult_dst, mult);
3502
3503 if (unlikely(iter1)) {
3504 /* if we have two destinations for RXOR, then
3505 * we've just set Q mult. Set-up P now.
3506 */
3507 ppc440spe_desc_set_src_mult(iter1, chan,
3508 mult_idx, mult_dst, 1);
3509 }
3510
3511 }
3512 break;
3513
3514 case PPC440SPE_XOR_ID:
3515 iter = sw_desc->group_head;
3516 if (sw_desc->dst_cnt == 2) {
3517 /* both P & Q calculations required; set P mult here */
3518 ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3519
3520 /* and then set Q mult */
3521 iter = ppc440spe_get_group_entry(sw_desc,
3522 sw_desc->descs_per_op);
3523 }
3524 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3525 break;
3526 }
3527 }
3528
3529 /**
3530 * ppc440spe_adma_free_chan_resources - free the resources allocated
3531 */
ppc440spe_adma_free_chan_resources(struct dma_chan * chan)3532 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3533 {
3534 struct ppc440spe_adma_chan *ppc440spe_chan;
3535 struct ppc440spe_adma_desc_slot *iter, *_iter;
3536 int in_use_descs = 0;
3537
3538 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3539 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3540
3541 spin_lock_bh(&ppc440spe_chan->lock);
3542 list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3543 chain_node) {
3544 in_use_descs++;
3545 list_del(&iter->chain_node);
3546 }
3547 list_for_each_entry_safe_reverse(iter, _iter,
3548 &ppc440spe_chan->all_slots, slot_node) {
3549 list_del(&iter->slot_node);
3550 kfree(iter);
3551 ppc440spe_chan->slots_allocated--;
3552 }
3553 ppc440spe_chan->last_used = NULL;
3554
3555 dev_dbg(ppc440spe_chan->device->common.dev,
3556 "ppc440spe adma%d %s slots_allocated %d\n",
3557 ppc440spe_chan->device->id,
3558 __func__, ppc440spe_chan->slots_allocated);
3559 spin_unlock_bh(&ppc440spe_chan->lock);
3560
3561 /* one is ok since we left it on there on purpose */
3562 if (in_use_descs > 1)
3563 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3564 in_use_descs - 1);
3565 }
3566
3567 /**
3568 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3569 * @chan: ADMA channel handle
3570 * @cookie: ADMA transaction identifier
3571 * @txstate: a holder for the current state of the channel
3572 */
ppc440spe_adma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)3573 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3574 dma_cookie_t cookie, struct dma_tx_state *txstate)
3575 {
3576 struct ppc440spe_adma_chan *ppc440spe_chan;
3577 enum dma_status ret;
3578
3579 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3580 ret = dma_cookie_status(chan, cookie, txstate);
3581 if (ret == DMA_COMPLETE)
3582 return ret;
3583
3584 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3585
3586 return dma_cookie_status(chan, cookie, txstate);
3587 }
3588
3589 /**
3590 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3591 */
ppc440spe_adma_eot_handler(int irq,void * data)3592 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3593 {
3594 struct ppc440spe_adma_chan *chan = data;
3595
3596 dev_dbg(chan->device->common.dev,
3597 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3598
3599 tasklet_schedule(&chan->irq_tasklet);
3600 ppc440spe_adma_device_clear_eot_status(chan);
3601
3602 return IRQ_HANDLED;
3603 }
3604
3605 /**
3606 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3607 * do the same things as a eot handler
3608 */
ppc440spe_adma_err_handler(int irq,void * data)3609 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3610 {
3611 struct ppc440spe_adma_chan *chan = data;
3612
3613 dev_dbg(chan->device->common.dev,
3614 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3615
3616 tasklet_schedule(&chan->irq_tasklet);
3617 ppc440spe_adma_device_clear_eot_status(chan);
3618
3619 return IRQ_HANDLED;
3620 }
3621
3622 /**
3623 * ppc440spe_test_callback - called when test operation has been done
3624 */
ppc440spe_test_callback(void * unused)3625 static void ppc440spe_test_callback(void *unused)
3626 {
3627 complete(&ppc440spe_r6_test_comp);
3628 }
3629
3630 /**
3631 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3632 */
ppc440spe_adma_issue_pending(struct dma_chan * chan)3633 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3634 {
3635 struct ppc440spe_adma_chan *ppc440spe_chan;
3636
3637 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3638 dev_dbg(ppc440spe_chan->device->common.dev,
3639 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3640 __func__, ppc440spe_chan->pending);
3641
3642 if (ppc440spe_chan->pending) {
3643 ppc440spe_chan->pending = 0;
3644 ppc440spe_chan_append(ppc440spe_chan);
3645 }
3646 }
3647
3648 /**
3649 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3650 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
3651 * specific operation)
3652 */
ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan * chan)3653 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3654 {
3655 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3656 dma_cookie_t cookie;
3657 int slot_cnt, slots_per_op;
3658
3659 dev_dbg(chan->device->common.dev,
3660 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3661
3662 spin_lock_bh(&chan->lock);
3663 slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3664 sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3665 if (sw_desc) {
3666 group_start = sw_desc->group_head;
3667 list_splice_init(&sw_desc->group_list, &chan->chain);
3668 async_tx_ack(&sw_desc->async_tx);
3669 ppc440spe_desc_init_null_xor(group_start);
3670
3671 cookie = dma_cookie_assign(&sw_desc->async_tx);
3672
3673 /* initialize the completed cookie to be less than
3674 * the most recently used cookie
3675 */
3676 chan->common.completed_cookie = cookie - 1;
3677
3678 /* channel should not be busy */
3679 BUG_ON(ppc440spe_chan_is_busy(chan));
3680
3681 /* set the descriptor address */
3682 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3683
3684 /* run the descriptor */
3685 ppc440spe_chan_run(chan);
3686 } else
3687 printk(KERN_ERR "ppc440spe adma%d"
3688 " failed to allocate null descriptor\n",
3689 chan->device->id);
3690 spin_unlock_bh(&chan->lock);
3691 }
3692
3693 /**
3694 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3695 * For this we just perform one WXOR operation with the same source
3696 * and destination addresses, the GF-multiplier is 1; so if RAID-6
3697 * capabilities are enabled then we'll get src/dst filled with zero.
3698 */
ppc440spe_test_raid6(struct ppc440spe_adma_chan * chan)3699 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3700 {
3701 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3702 struct page *pg;
3703 char *a;
3704 dma_addr_t dma_addr, addrs[2];
3705 unsigned long op = 0;
3706 int rval = 0;
3707
3708 set_bit(PPC440SPE_DESC_WXOR, &op);
3709
3710 pg = alloc_page(GFP_KERNEL);
3711 if (!pg)
3712 return -ENOMEM;
3713
3714 spin_lock_bh(&chan->lock);
3715 sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3716 if (sw_desc) {
3717 /* 1 src, 1 dsr, int_ena, WXOR */
3718 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3719 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3720 ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3721 iter->unmap_len = PAGE_SIZE;
3722 }
3723 } else {
3724 rval = -EFAULT;
3725 spin_unlock_bh(&chan->lock);
3726 goto exit;
3727 }
3728 spin_unlock_bh(&chan->lock);
3729
3730 /* Fill the test page with ones */
3731 memset(page_address(pg), 0xFF, PAGE_SIZE);
3732 dma_addr = dma_map_page(chan->device->dev, pg, 0,
3733 PAGE_SIZE, DMA_BIDIRECTIONAL);
3734
3735 /* Setup addresses */
3736 ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3737 ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3738 addrs[0] = dma_addr;
3739 addrs[1] = 0;
3740 ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3741
3742 async_tx_ack(&sw_desc->async_tx);
3743 sw_desc->async_tx.callback = ppc440spe_test_callback;
3744 sw_desc->async_tx.callback_param = NULL;
3745
3746 init_completion(&ppc440spe_r6_test_comp);
3747
3748 ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3749 ppc440spe_adma_issue_pending(&chan->common);
3750
3751 wait_for_completion(&ppc440spe_r6_test_comp);
3752
3753 /* Now check if the test page is zeroed */
3754 a = page_address(pg);
3755 if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3756 /* page is zero - RAID-6 enabled */
3757 rval = 0;
3758 } else {
3759 /* RAID-6 was not enabled */
3760 rval = -EINVAL;
3761 }
3762 exit:
3763 __free_page(pg);
3764 return rval;
3765 }
3766
ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device * adev)3767 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3768 {
3769 switch (adev->id) {
3770 case PPC440SPE_DMA0_ID:
3771 case PPC440SPE_DMA1_ID:
3772 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3773 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3774 dma_cap_set(DMA_PQ, adev->common.cap_mask);
3775 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3776 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3777 break;
3778 case PPC440SPE_XOR_ID:
3779 dma_cap_set(DMA_XOR, adev->common.cap_mask);
3780 dma_cap_set(DMA_PQ, adev->common.cap_mask);
3781 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3782 adev->common.cap_mask = adev->common.cap_mask;
3783 break;
3784 }
3785
3786 /* Set base routines */
3787 adev->common.device_alloc_chan_resources =
3788 ppc440spe_adma_alloc_chan_resources;
3789 adev->common.device_free_chan_resources =
3790 ppc440spe_adma_free_chan_resources;
3791 adev->common.device_tx_status = ppc440spe_adma_tx_status;
3792 adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3793
3794 /* Set prep routines based on capability */
3795 if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3796 adev->common.device_prep_dma_memcpy =
3797 ppc440spe_adma_prep_dma_memcpy;
3798 }
3799 if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3800 adev->common.max_xor = XOR_MAX_OPS;
3801 adev->common.device_prep_dma_xor =
3802 ppc440spe_adma_prep_dma_xor;
3803 }
3804 if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3805 switch (adev->id) {
3806 case PPC440SPE_DMA0_ID:
3807 dma_set_maxpq(&adev->common,
3808 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3809 break;
3810 case PPC440SPE_DMA1_ID:
3811 dma_set_maxpq(&adev->common,
3812 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3813 break;
3814 case PPC440SPE_XOR_ID:
3815 adev->common.max_pq = XOR_MAX_OPS * 3;
3816 break;
3817 }
3818 adev->common.device_prep_dma_pq =
3819 ppc440spe_adma_prep_dma_pq;
3820 }
3821 if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3822 switch (adev->id) {
3823 case PPC440SPE_DMA0_ID:
3824 adev->common.max_pq = DMA0_FIFO_SIZE /
3825 sizeof(struct dma_cdb);
3826 break;
3827 case PPC440SPE_DMA1_ID:
3828 adev->common.max_pq = DMA1_FIFO_SIZE /
3829 sizeof(struct dma_cdb);
3830 break;
3831 }
3832 adev->common.device_prep_dma_pq_val =
3833 ppc440spe_adma_prep_dma_pqzero_sum;
3834 }
3835 if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3836 switch (adev->id) {
3837 case PPC440SPE_DMA0_ID:
3838 adev->common.max_xor = DMA0_FIFO_SIZE /
3839 sizeof(struct dma_cdb);
3840 break;
3841 case PPC440SPE_DMA1_ID:
3842 adev->common.max_xor = DMA1_FIFO_SIZE /
3843 sizeof(struct dma_cdb);
3844 break;
3845 }
3846 adev->common.device_prep_dma_xor_val =
3847 ppc440spe_adma_prep_dma_xor_zero_sum;
3848 }
3849 if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3850 adev->common.device_prep_dma_interrupt =
3851 ppc440spe_adma_prep_dma_interrupt;
3852 }
3853 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3854 "( %s%s%s%s%s%s)\n",
3855 dev_name(adev->dev),
3856 dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3857 dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3858 dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3859 dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3860 dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3861 dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3862 }
3863
ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device * adev,struct ppc440spe_adma_chan * chan,int * initcode)3864 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3865 struct ppc440spe_adma_chan *chan,
3866 int *initcode)
3867 {
3868 struct platform_device *ofdev;
3869 struct device_node *np;
3870 int ret;
3871
3872 ofdev = container_of(adev->dev, struct platform_device, dev);
3873 np = ofdev->dev.of_node;
3874 if (adev->id != PPC440SPE_XOR_ID) {
3875 adev->err_irq = irq_of_parse_and_map(np, 1);
3876 if (!adev->err_irq) {
3877 dev_warn(adev->dev, "no err irq resource?\n");
3878 *initcode = PPC_ADMA_INIT_IRQ2;
3879 adev->err_irq = -ENXIO;
3880 } else
3881 atomic_inc(&ppc440spe_adma_err_irq_ref);
3882 } else {
3883 adev->err_irq = -ENXIO;
3884 }
3885
3886 adev->irq = irq_of_parse_and_map(np, 0);
3887 if (!adev->irq) {
3888 dev_err(adev->dev, "no irq resource\n");
3889 *initcode = PPC_ADMA_INIT_IRQ1;
3890 ret = -ENXIO;
3891 goto err_irq_map;
3892 }
3893 dev_dbg(adev->dev, "irq %d, err irq %d\n",
3894 adev->irq, adev->err_irq);
3895
3896 ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3897 0, dev_driver_string(adev->dev), chan);
3898 if (ret) {
3899 dev_err(adev->dev, "can't request irq %d\n",
3900 adev->irq);
3901 *initcode = PPC_ADMA_INIT_IRQ1;
3902 ret = -EIO;
3903 goto err_req1;
3904 }
3905
3906 /* only DMA engines have a separate error IRQ
3907 * so it's Ok if err_irq < 0 in XOR engine case.
3908 */
3909 if (adev->err_irq > 0) {
3910 /* both DMA engines share common error IRQ */
3911 ret = request_irq(adev->err_irq,
3912 ppc440spe_adma_err_handler,
3913 IRQF_SHARED,
3914 dev_driver_string(adev->dev),
3915 chan);
3916 if (ret) {
3917 dev_err(adev->dev, "can't request irq %d\n",
3918 adev->err_irq);
3919 *initcode = PPC_ADMA_INIT_IRQ2;
3920 ret = -EIO;
3921 goto err_req2;
3922 }
3923 }
3924
3925 if (adev->id == PPC440SPE_XOR_ID) {
3926 /* enable XOR engine interrupts */
3927 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3928 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3929 &adev->xor_reg->ier);
3930 } else {
3931 u32 mask, enable;
3932
3933 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3934 if (!np) {
3935 pr_err("%s: can't find I2O device tree node\n",
3936 __func__);
3937 ret = -ENODEV;
3938 goto err_req2;
3939 }
3940 adev->i2o_reg = of_iomap(np, 0);
3941 if (!adev->i2o_reg) {
3942 pr_err("%s: failed to map I2O registers\n", __func__);
3943 of_node_put(np);
3944 ret = -EINVAL;
3945 goto err_req2;
3946 }
3947 of_node_put(np);
3948 /* Unmask 'CS FIFO Attention' interrupts and
3949 * enable generating interrupts on errors
3950 */
3951 enable = (adev->id == PPC440SPE_DMA0_ID) ?
3952 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3953 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3954 mask = ioread32(&adev->i2o_reg->iopim) & enable;
3955 iowrite32(mask, &adev->i2o_reg->iopim);
3956 }
3957 return 0;
3958
3959 err_req2:
3960 free_irq(adev->irq, chan);
3961 err_req1:
3962 irq_dispose_mapping(adev->irq);
3963 err_irq_map:
3964 if (adev->err_irq > 0) {
3965 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3966 irq_dispose_mapping(adev->err_irq);
3967 }
3968 return ret;
3969 }
3970
ppc440spe_adma_release_irqs(struct ppc440spe_adma_device * adev,struct ppc440spe_adma_chan * chan)3971 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3972 struct ppc440spe_adma_chan *chan)
3973 {
3974 u32 mask, disable;
3975
3976 if (adev->id == PPC440SPE_XOR_ID) {
3977 /* disable XOR engine interrupts */
3978 mask = ioread32be(&adev->xor_reg->ier);
3979 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3980 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
3981 iowrite32be(mask, &adev->xor_reg->ier);
3982 } else {
3983 /* disable DMAx engine interrupts */
3984 disable = (adev->id == PPC440SPE_DMA0_ID) ?
3985 (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3986 (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3987 mask = ioread32(&adev->i2o_reg->iopim) | disable;
3988 iowrite32(mask, &adev->i2o_reg->iopim);
3989 }
3990 free_irq(adev->irq, chan);
3991 irq_dispose_mapping(adev->irq);
3992 if (adev->err_irq > 0) {
3993 free_irq(adev->err_irq, chan);
3994 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
3995 irq_dispose_mapping(adev->err_irq);
3996 iounmap(adev->i2o_reg);
3997 }
3998 }
3999 }
4000
4001 /**
4002 * ppc440spe_adma_probe - probe the asynch device
4003 */
ppc440spe_adma_probe(struct platform_device * ofdev)4004 static int ppc440spe_adma_probe(struct platform_device *ofdev)
4005 {
4006 struct device_node *np = ofdev->dev.of_node;
4007 struct resource res;
4008 struct ppc440spe_adma_device *adev;
4009 struct ppc440spe_adma_chan *chan;
4010 struct ppc_dma_chan_ref *ref, *_ref;
4011 int ret = 0, initcode = PPC_ADMA_INIT_OK;
4012 const u32 *idx;
4013 int len;
4014 void *regs;
4015 u32 id, pool_size;
4016
4017 if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4018 id = PPC440SPE_XOR_ID;
4019 /* As far as the XOR engine is concerned, it does not
4020 * use FIFOs but uses linked list. So there is no dependency
4021 * between pool size to allocate and the engine configuration.
4022 */
4023 pool_size = PAGE_SIZE << 1;
4024 } else {
4025 /* it is DMA0 or DMA1 */
4026 idx = of_get_property(np, "cell-index", &len);
4027 if (!idx || (len != sizeof(u32))) {
4028 dev_err(&ofdev->dev, "Device node %pOF has missing "
4029 "or invalid cell-index property\n",
4030 np);
4031 return -EINVAL;
4032 }
4033 id = *idx;
4034 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4035 * should allocate the pool accordingly to size of this
4036 * FIFO. Thus, the pool size depends on the FIFO depth:
4037 * how much CDBs pointers the FIFO may contain then so
4038 * much CDBs we should provide in the pool.
4039 * That is
4040 * CDB size = 32B;
4041 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4042 * Pool size = CDBs number * CDB size =
4043 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4044 */
4045 pool_size = (id == PPC440SPE_DMA0_ID) ?
4046 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4047 pool_size <<= 2;
4048 }
4049
4050 if (of_address_to_resource(np, 0, &res)) {
4051 dev_err(&ofdev->dev, "failed to get memory resource\n");
4052 initcode = PPC_ADMA_INIT_MEMRES;
4053 ret = -ENODEV;
4054 goto out;
4055 }
4056
4057 if (!request_mem_region(res.start, resource_size(&res),
4058 dev_driver_string(&ofdev->dev))) {
4059 dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4060 &res);
4061 initcode = PPC_ADMA_INIT_MEMREG;
4062 ret = -EBUSY;
4063 goto out;
4064 }
4065
4066 /* create a device */
4067 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4068 if (!adev) {
4069 initcode = PPC_ADMA_INIT_ALLOC;
4070 ret = -ENOMEM;
4071 goto err_adev_alloc;
4072 }
4073
4074 adev->id = id;
4075 adev->pool_size = pool_size;
4076 /* allocate coherent memory for hardware descriptors */
4077 adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4078 adev->pool_size, &adev->dma_desc_pool,
4079 GFP_KERNEL);
4080 if (adev->dma_desc_pool_virt == NULL) {
4081 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4082 "memory for hardware descriptors\n",
4083 adev->pool_size);
4084 initcode = PPC_ADMA_INIT_COHERENT;
4085 ret = -ENOMEM;
4086 goto err_dma_alloc;
4087 }
4088 dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4089 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4090
4091 regs = ioremap(res.start, resource_size(&res));
4092 if (!regs) {
4093 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4094 ret = -ENOMEM;
4095 goto err_regs_alloc;
4096 }
4097
4098 if (adev->id == PPC440SPE_XOR_ID) {
4099 adev->xor_reg = regs;
4100 /* Reset XOR */
4101 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4102 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4103 } else {
4104 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4105 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4106 adev->dma_reg = regs;
4107 /* DMAx_FIFO_SIZE is defined in bytes,
4108 * <fsiz> - is defined in number of CDB pointers (8byte).
4109 * DMA FIFO Length = CSlength + CPlength, where
4110 * CSlength = CPlength = (fsiz + 1) * 8.
4111 */
4112 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4113 &adev->dma_reg->fsiz);
4114 /* Configure DMA engine */
4115 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4116 &adev->dma_reg->cfg);
4117 /* Clear Status */
4118 iowrite32(~0, &adev->dma_reg->dsts);
4119 }
4120
4121 adev->dev = &ofdev->dev;
4122 adev->common.dev = &ofdev->dev;
4123 INIT_LIST_HEAD(&adev->common.channels);
4124 platform_set_drvdata(ofdev, adev);
4125
4126 /* create a channel */
4127 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4128 if (!chan) {
4129 initcode = PPC_ADMA_INIT_CHANNEL;
4130 ret = -ENOMEM;
4131 goto err_chan_alloc;
4132 }
4133
4134 spin_lock_init(&chan->lock);
4135 INIT_LIST_HEAD(&chan->chain);
4136 INIT_LIST_HEAD(&chan->all_slots);
4137 chan->device = adev;
4138 chan->common.device = &adev->common;
4139 dma_cookie_init(&chan->common);
4140 list_add_tail(&chan->common.device_node, &adev->common.channels);
4141 tasklet_setup(&chan->irq_tasklet, ppc440spe_adma_tasklet);
4142
4143 /* allocate and map helper pages for async validation or
4144 * async_mult/async_sum_product operations on DMA0/1.
4145 */
4146 if (adev->id != PPC440SPE_XOR_ID) {
4147 chan->pdest_page = alloc_page(GFP_KERNEL);
4148 chan->qdest_page = alloc_page(GFP_KERNEL);
4149 if (!chan->pdest_page ||
4150 !chan->qdest_page) {
4151 if (chan->pdest_page)
4152 __free_page(chan->pdest_page);
4153 if (chan->qdest_page)
4154 __free_page(chan->qdest_page);
4155 ret = -ENOMEM;
4156 goto err_page_alloc;
4157 }
4158 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4159 PAGE_SIZE, DMA_BIDIRECTIONAL);
4160 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4161 PAGE_SIZE, DMA_BIDIRECTIONAL);
4162 }
4163
4164 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4165 if (ref) {
4166 ref->chan = &chan->common;
4167 INIT_LIST_HEAD(&ref->node);
4168 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4169 } else {
4170 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4171 ret = -ENOMEM;
4172 goto err_ref_alloc;
4173 }
4174
4175 ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4176 if (ret)
4177 goto err_irq;
4178
4179 ppc440spe_adma_init_capabilities(adev);
4180
4181 ret = dma_async_device_register(&adev->common);
4182 if (ret) {
4183 initcode = PPC_ADMA_INIT_REGISTER;
4184 dev_err(&ofdev->dev, "failed to register dma device\n");
4185 goto err_dev_reg;
4186 }
4187
4188 goto out;
4189
4190 err_dev_reg:
4191 ppc440spe_adma_release_irqs(adev, chan);
4192 err_irq:
4193 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4194 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4195 list_del(&ref->node);
4196 kfree(ref);
4197 }
4198 }
4199 err_ref_alloc:
4200 if (adev->id != PPC440SPE_XOR_ID) {
4201 dma_unmap_page(&ofdev->dev, chan->pdest,
4202 PAGE_SIZE, DMA_BIDIRECTIONAL);
4203 dma_unmap_page(&ofdev->dev, chan->qdest,
4204 PAGE_SIZE, DMA_BIDIRECTIONAL);
4205 __free_page(chan->pdest_page);
4206 __free_page(chan->qdest_page);
4207 }
4208 err_page_alloc:
4209 kfree(chan);
4210 err_chan_alloc:
4211 if (adev->id == PPC440SPE_XOR_ID)
4212 iounmap(adev->xor_reg);
4213 else
4214 iounmap(adev->dma_reg);
4215 err_regs_alloc:
4216 dma_free_coherent(adev->dev, adev->pool_size,
4217 adev->dma_desc_pool_virt,
4218 adev->dma_desc_pool);
4219 err_dma_alloc:
4220 kfree(adev);
4221 err_adev_alloc:
4222 release_mem_region(res.start, resource_size(&res));
4223 out:
4224 if (id < PPC440SPE_ADMA_ENGINES_NUM)
4225 ppc440spe_adma_devices[id] = initcode;
4226
4227 return ret;
4228 }
4229
4230 /**
4231 * ppc440spe_adma_remove - remove the asynch device
4232 */
ppc440spe_adma_remove(struct platform_device * ofdev)4233 static int ppc440spe_adma_remove(struct platform_device *ofdev)
4234 {
4235 struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4236 struct device_node *np = ofdev->dev.of_node;
4237 struct resource res;
4238 struct dma_chan *chan, *_chan;
4239 struct ppc_dma_chan_ref *ref, *_ref;
4240 struct ppc440spe_adma_chan *ppc440spe_chan;
4241
4242 if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4243 ppc440spe_adma_devices[adev->id] = -1;
4244
4245 dma_async_device_unregister(&adev->common);
4246
4247 list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4248 device_node) {
4249 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4250 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4251 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4252 if (adev->id != PPC440SPE_XOR_ID) {
4253 dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4254 PAGE_SIZE, DMA_BIDIRECTIONAL);
4255 dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4256 PAGE_SIZE, DMA_BIDIRECTIONAL);
4257 __free_page(ppc440spe_chan->pdest_page);
4258 __free_page(ppc440spe_chan->qdest_page);
4259 }
4260 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4261 node) {
4262 if (ppc440spe_chan ==
4263 to_ppc440spe_adma_chan(ref->chan)) {
4264 list_del(&ref->node);
4265 kfree(ref);
4266 }
4267 }
4268 list_del(&chan->device_node);
4269 kfree(ppc440spe_chan);
4270 }
4271
4272 dma_free_coherent(adev->dev, adev->pool_size,
4273 adev->dma_desc_pool_virt, adev->dma_desc_pool);
4274 if (adev->id == PPC440SPE_XOR_ID)
4275 iounmap(adev->xor_reg);
4276 else
4277 iounmap(adev->dma_reg);
4278 of_address_to_resource(np, 0, &res);
4279 release_mem_region(res.start, resource_size(&res));
4280 kfree(adev);
4281 return 0;
4282 }
4283
4284 /*
4285 * /sys driver interface to enable h/w RAID-6 capabilities
4286 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4287 * directory are "devices", "enable" and "poly".
4288 * "devices" shows available engines.
4289 * "enable" is used to enable RAID-6 capabilities or to check
4290 * whether these has been activated.
4291 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4292 */
4293
devices_show(struct device_driver * dev,char * buf)4294 static ssize_t devices_show(struct device_driver *dev, char *buf)
4295 {
4296 ssize_t size = 0;
4297 int i;
4298
4299 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4300 if (ppc440spe_adma_devices[i] == -1)
4301 continue;
4302 size += sysfs_emit_at(buf, size, "PPC440SP(E)-ADMA.%d: %s\n",
4303 i, ppc_adma_errors[ppc440spe_adma_devices[i]]);
4304 }
4305 return size;
4306 }
4307 static DRIVER_ATTR_RO(devices);
4308
enable_show(struct device_driver * dev,char * buf)4309 static ssize_t enable_show(struct device_driver *dev, char *buf)
4310 {
4311 return sysfs_emit(buf, "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4312 ppc440spe_r6_enabled ? "EN" : "DIS");
4313 }
4314
enable_store(struct device_driver * dev,const char * buf,size_t count)4315 static ssize_t enable_store(struct device_driver *dev, const char *buf,
4316 size_t count)
4317 {
4318 unsigned long val;
4319 int err;
4320
4321 if (!count || count > 11)
4322 return -EINVAL;
4323
4324 if (!ppc440spe_r6_tchan)
4325 return -EFAULT;
4326
4327 /* Write a key */
4328 err = kstrtoul(buf, 16, &val);
4329 if (err)
4330 return err;
4331
4332 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4333 isync();
4334
4335 /* Verify whether it really works now */
4336 if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4337 pr_info("PPC440SP(e) RAID-6 has been activated "
4338 "successfully\n");
4339 ppc440spe_r6_enabled = 1;
4340 } else {
4341 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4342 " Error key ?\n");
4343 ppc440spe_r6_enabled = 0;
4344 }
4345 return count;
4346 }
4347 static DRIVER_ATTR_RW(enable);
4348
poly_show(struct device_driver * dev,char * buf)4349 static ssize_t poly_show(struct device_driver *dev, char *buf)
4350 {
4351 ssize_t size = 0;
4352 u32 reg;
4353
4354 #ifdef CONFIG_440SP
4355 /* 440SP has fixed polynomial */
4356 reg = 0x4d;
4357 #else
4358 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4359 reg >>= MQ0_CFBHL_POLY;
4360 reg &= 0xFF;
4361 #endif
4362
4363 size = sysfs_emit(buf, "PPC440SP(e) RAID-6 driver "
4364 "uses 0x1%02x polynomial.\n", reg);
4365 return size;
4366 }
4367
poly_store(struct device_driver * dev,const char * buf,size_t count)4368 static ssize_t poly_store(struct device_driver *dev, const char *buf,
4369 size_t count)
4370 {
4371 unsigned long reg, val;
4372 int err;
4373 #ifdef CONFIG_440SP
4374 /* 440SP uses default 0x14D polynomial only */
4375 return -EINVAL;
4376 #endif
4377
4378 if (!count || count > 6)
4379 return -EINVAL;
4380
4381 /* e.g., 0x14D or 0x11D */
4382 err = kstrtoul(buf, 16, &val);
4383 if (err)
4384 return err;
4385
4386 if (val & ~0x1FF)
4387 return -EINVAL;
4388
4389 val &= 0xFF;
4390 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4391 reg &= ~(0xFF << MQ0_CFBHL_POLY);
4392 reg |= val << MQ0_CFBHL_POLY;
4393 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4394
4395 return count;
4396 }
4397 static DRIVER_ATTR_RW(poly);
4398
4399 /*
4400 * Common initialisation for RAID engines; allocate memory for
4401 * DMAx FIFOs, perform configuration common for all DMA engines.
4402 * Further DMA engine specific configuration is done at probe time.
4403 */
ppc440spe_configure_raid_devices(void)4404 static int ppc440spe_configure_raid_devices(void)
4405 {
4406 struct device_node *np;
4407 struct resource i2o_res;
4408 struct i2o_regs __iomem *i2o_reg;
4409 dcr_host_t i2o_dcr_host;
4410 unsigned int dcr_base, dcr_len;
4411 int i, ret;
4412
4413 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4414 if (!np) {
4415 pr_err("%s: can't find I2O device tree node\n",
4416 __func__);
4417 return -ENODEV;
4418 }
4419
4420 if (of_address_to_resource(np, 0, &i2o_res)) {
4421 of_node_put(np);
4422 return -EINVAL;
4423 }
4424
4425 i2o_reg = of_iomap(np, 0);
4426 if (!i2o_reg) {
4427 pr_err("%s: failed to map I2O registers\n", __func__);
4428 of_node_put(np);
4429 return -EINVAL;
4430 }
4431
4432 /* Get I2O DCRs base */
4433 dcr_base = dcr_resource_start(np, 0);
4434 dcr_len = dcr_resource_len(np, 0);
4435 if (!dcr_base && !dcr_len) {
4436 pr_err("%pOF: can't get DCR registers base/len!\n", np);
4437 of_node_put(np);
4438 iounmap(i2o_reg);
4439 return -ENODEV;
4440 }
4441
4442 i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4443 if (!DCR_MAP_OK(i2o_dcr_host)) {
4444 pr_err("%pOF: failed to map DCRs!\n", np);
4445 of_node_put(np);
4446 iounmap(i2o_reg);
4447 return -ENODEV;
4448 }
4449 of_node_put(np);
4450
4451 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4452 * the base address of FIFO memory space.
4453 * Actually we need twice more physical memory than programmed in the
4454 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4455 */
4456 ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4457 GFP_KERNEL);
4458 if (!ppc440spe_dma_fifo_buf) {
4459 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4460 iounmap(i2o_reg);
4461 dcr_unmap(i2o_dcr_host, dcr_len);
4462 return -ENOMEM;
4463 }
4464
4465 /*
4466 * Configure h/w
4467 */
4468 /* Reset I2O/DMA */
4469 mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4470 mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4471
4472 /* Setup the base address of mmaped registers */
4473 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4474 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4475 I2O_REG_ENABLE);
4476 dcr_unmap(i2o_dcr_host, dcr_len);
4477
4478 /* Setup FIFO memory space base address */
4479 iowrite32(0, &i2o_reg->ifbah);
4480 iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4481
4482 /* set zero FIFO size for I2O, so the whole
4483 * ppc440spe_dma_fifo_buf is used by DMAs.
4484 * DMAx_FIFOs will be configured while probe.
4485 */
4486 iowrite32(0, &i2o_reg->ifsiz);
4487 iounmap(i2o_reg);
4488
4489 /* To prepare WXOR/RXOR functionality we need access to
4490 * Memory Queue Module DCRs (finally it will be enabled
4491 * via /sys interface of the ppc440spe ADMA driver).
4492 */
4493 np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4494 if (!np) {
4495 pr_err("%s: can't find MQ device tree node\n",
4496 __func__);
4497 ret = -ENODEV;
4498 goto out_free;
4499 }
4500
4501 /* Get MQ DCRs base */
4502 dcr_base = dcr_resource_start(np, 0);
4503 dcr_len = dcr_resource_len(np, 0);
4504 if (!dcr_base && !dcr_len) {
4505 pr_err("%pOF: can't get DCR registers base/len!\n", np);
4506 ret = -ENODEV;
4507 goto out_mq;
4508 }
4509
4510 ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4511 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4512 pr_err("%pOF: failed to map DCRs!\n", np);
4513 ret = -ENODEV;
4514 goto out_mq;
4515 }
4516 of_node_put(np);
4517 ppc440spe_mq_dcr_len = dcr_len;
4518
4519 /* Set HB alias */
4520 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4521
4522 /* Set:
4523 * - LL transaction passing limit to 1;
4524 * - Memory controller cycle limit to 1;
4525 * - Galois Polynomial to 0x14d (default)
4526 */
4527 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4528 (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4529 (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4530
4531 atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4532 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4533 ppc440spe_adma_devices[i] = -1;
4534
4535 return 0;
4536
4537 out_mq:
4538 of_node_put(np);
4539 out_free:
4540 kfree(ppc440spe_dma_fifo_buf);
4541 return ret;
4542 }
4543
4544 static const struct of_device_id ppc440spe_adma_of_match[] = {
4545 { .compatible = "ibm,dma-440spe", },
4546 { .compatible = "amcc,xor-accelerator", },
4547 {},
4548 };
4549 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4550
4551 static struct platform_driver ppc440spe_adma_driver = {
4552 .probe = ppc440spe_adma_probe,
4553 .remove = ppc440spe_adma_remove,
4554 .driver = {
4555 .name = "PPC440SP(E)-ADMA",
4556 .of_match_table = ppc440spe_adma_of_match,
4557 },
4558 };
4559
ppc440spe_adma_init(void)4560 static __init int ppc440spe_adma_init(void)
4561 {
4562 int ret;
4563
4564 ret = ppc440spe_configure_raid_devices();
4565 if (ret)
4566 return ret;
4567
4568 ret = platform_driver_register(&ppc440spe_adma_driver);
4569 if (ret) {
4570 pr_err("%s: failed to register platform driver\n",
4571 __func__);
4572 goto out_reg;
4573 }
4574
4575 /* Initialization status */
4576 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4577 &driver_attr_devices);
4578 if (ret)
4579 goto out_dev;
4580
4581 /* RAID-6 h/w enable entry */
4582 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4583 &driver_attr_enable);
4584 if (ret)
4585 goto out_en;
4586
4587 /* GF polynomial to use */
4588 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4589 &driver_attr_poly);
4590 if (!ret)
4591 return ret;
4592
4593 driver_remove_file(&ppc440spe_adma_driver.driver,
4594 &driver_attr_enable);
4595 out_en:
4596 driver_remove_file(&ppc440spe_adma_driver.driver,
4597 &driver_attr_devices);
4598 out_dev:
4599 /* User will not be able to enable h/w RAID-6 */
4600 pr_err("%s: failed to create RAID-6 driver interface\n",
4601 __func__);
4602 platform_driver_unregister(&ppc440spe_adma_driver);
4603 out_reg:
4604 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4605 kfree(ppc440spe_dma_fifo_buf);
4606 return ret;
4607 }
4608
ppc440spe_adma_exit(void)4609 static void __exit ppc440spe_adma_exit(void)
4610 {
4611 driver_remove_file(&ppc440spe_adma_driver.driver,
4612 &driver_attr_poly);
4613 driver_remove_file(&ppc440spe_adma_driver.driver,
4614 &driver_attr_enable);
4615 driver_remove_file(&ppc440spe_adma_driver.driver,
4616 &driver_attr_devices);
4617 platform_driver_unregister(&ppc440spe_adma_driver);
4618 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4619 kfree(ppc440spe_dma_fifo_buf);
4620 }
4621
4622 arch_initcall(ppc440spe_adma_init);
4623 module_exit(ppc440spe_adma_exit);
4624
4625 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4626 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4627 MODULE_LICENSE("GPL");
4628