1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microsemi Switchtec(tm) PCIe Management Driver 4 * Copyright (c) 2019, Logan Gunthorpe <logang@deltatee.com> 5 * Copyright (c) 2019, GigaIO Networks, Inc 6 */ 7 8 #include "dmaengine.h" 9 10 #include <linux/circ_buf.h> 11 #include <linux/dmaengine.h> 12 #include <linux/kref.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/pci.h> 16 17 MODULE_DESCRIPTION("PLX ExpressLane PEX PCI Switch DMA Engine"); 18 MODULE_VERSION("0.1"); 19 MODULE_LICENSE("GPL"); 20 MODULE_AUTHOR("Logan Gunthorpe"); 21 22 #define PLX_REG_DESC_RING_ADDR 0x214 23 #define PLX_REG_DESC_RING_ADDR_HI 0x218 24 #define PLX_REG_DESC_RING_NEXT_ADDR 0x21C 25 #define PLX_REG_DESC_RING_COUNT 0x220 26 #define PLX_REG_DESC_RING_LAST_ADDR 0x224 27 #define PLX_REG_DESC_RING_LAST_SIZE 0x228 28 #define PLX_REG_PREF_LIMIT 0x234 29 #define PLX_REG_CTRL 0x238 30 #define PLX_REG_CTRL2 0x23A 31 #define PLX_REG_INTR_CTRL 0x23C 32 #define PLX_REG_INTR_STATUS 0x23E 33 34 #define PLX_REG_PREF_LIMIT_PREF_FOUR 8 35 36 #define PLX_REG_CTRL_GRACEFUL_PAUSE BIT(0) 37 #define PLX_REG_CTRL_ABORT BIT(1) 38 #define PLX_REG_CTRL_WRITE_BACK_EN BIT(2) 39 #define PLX_REG_CTRL_START BIT(3) 40 #define PLX_REG_CTRL_RING_STOP_MODE BIT(4) 41 #define PLX_REG_CTRL_DESC_MODE_BLOCK (0 << 5) 42 #define PLX_REG_CTRL_DESC_MODE_ON_CHIP (1 << 5) 43 #define PLX_REG_CTRL_DESC_MODE_OFF_CHIP (2 << 5) 44 #define PLX_REG_CTRL_DESC_INVALID BIT(8) 45 #define PLX_REG_CTRL_GRACEFUL_PAUSE_DONE BIT(9) 46 #define PLX_REG_CTRL_ABORT_DONE BIT(10) 47 #define PLX_REG_CTRL_IMM_PAUSE_DONE BIT(12) 48 #define PLX_REG_CTRL_IN_PROGRESS BIT(30) 49 50 #define PLX_REG_CTRL_RESET_VAL (PLX_REG_CTRL_DESC_INVALID | \ 51 PLX_REG_CTRL_GRACEFUL_PAUSE_DONE | \ 52 PLX_REG_CTRL_ABORT_DONE | \ 53 PLX_REG_CTRL_IMM_PAUSE_DONE) 54 55 #define PLX_REG_CTRL_START_VAL (PLX_REG_CTRL_WRITE_BACK_EN | \ 56 PLX_REG_CTRL_DESC_MODE_OFF_CHIP | \ 57 PLX_REG_CTRL_START | \ 58 PLX_REG_CTRL_RESET_VAL) 59 60 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_64B 0 61 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_128B 1 62 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_256B 2 63 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_512B 3 64 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_1KB 4 65 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_2KB 5 66 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_4B 7 67 68 #define PLX_REG_INTR_CRTL_ERROR_EN BIT(0) 69 #define PLX_REG_INTR_CRTL_INV_DESC_EN BIT(1) 70 #define PLX_REG_INTR_CRTL_ABORT_DONE_EN BIT(3) 71 #define PLX_REG_INTR_CRTL_PAUSE_DONE_EN BIT(4) 72 #define PLX_REG_INTR_CRTL_IMM_PAUSE_DONE_EN BIT(5) 73 74 #define PLX_REG_INTR_STATUS_ERROR BIT(0) 75 #define PLX_REG_INTR_STATUS_INV_DESC BIT(1) 76 #define PLX_REG_INTR_STATUS_DESC_DONE BIT(2) 77 #define PLX_REG_INTR_CRTL_ABORT_DONE BIT(3) 78 79 struct plx_dma_hw_std_desc { 80 __le32 flags_and_size; 81 __le16 dst_addr_hi; 82 __le16 src_addr_hi; 83 __le32 dst_addr_lo; 84 __le32 src_addr_lo; 85 }; 86 87 #define PLX_DESC_SIZE_MASK 0x7ffffff 88 #define PLX_DESC_FLAG_VALID BIT(31) 89 #define PLX_DESC_FLAG_INT_WHEN_DONE BIT(30) 90 91 #define PLX_DESC_WB_SUCCESS BIT(30) 92 #define PLX_DESC_WB_RD_FAIL BIT(29) 93 #define PLX_DESC_WB_WR_FAIL BIT(28) 94 95 #define PLX_DMA_RING_COUNT 2048 96 97 struct plx_dma_desc { 98 struct dma_async_tx_descriptor txd; 99 struct plx_dma_hw_std_desc *hw; 100 u32 orig_size; 101 }; 102 103 struct plx_dma_dev { 104 struct dma_device dma_dev; 105 struct dma_chan dma_chan; 106 struct pci_dev __rcu *pdev; 107 void __iomem *bar; 108 struct tasklet_struct desc_task; 109 110 spinlock_t ring_lock; 111 bool ring_active; 112 int head; 113 int tail; 114 struct plx_dma_hw_std_desc *hw_ring; 115 dma_addr_t hw_ring_dma; 116 struct plx_dma_desc **desc_ring; 117 }; 118 119 static struct plx_dma_dev *chan_to_plx_dma_dev(struct dma_chan *c) 120 { 121 return container_of(c, struct plx_dma_dev, dma_chan); 122 } 123 124 static struct plx_dma_desc *to_plx_desc(struct dma_async_tx_descriptor *txd) 125 { 126 return container_of(txd, struct plx_dma_desc, txd); 127 } 128 129 static struct plx_dma_desc *plx_dma_get_desc(struct plx_dma_dev *plxdev, int i) 130 { 131 return plxdev->desc_ring[i & (PLX_DMA_RING_COUNT - 1)]; 132 } 133 134 static void plx_dma_process_desc(struct plx_dma_dev *plxdev) 135 { 136 struct dmaengine_result res; 137 struct plx_dma_desc *desc; 138 u32 flags; 139 140 spin_lock(&plxdev->ring_lock); 141 142 while (plxdev->tail != plxdev->head) { 143 desc = plx_dma_get_desc(plxdev, plxdev->tail); 144 145 flags = le32_to_cpu(READ_ONCE(desc->hw->flags_and_size)); 146 147 if (flags & PLX_DESC_FLAG_VALID) 148 break; 149 150 res.residue = desc->orig_size - (flags & PLX_DESC_SIZE_MASK); 151 152 if (flags & PLX_DESC_WB_SUCCESS) 153 res.result = DMA_TRANS_NOERROR; 154 else if (flags & PLX_DESC_WB_WR_FAIL) 155 res.result = DMA_TRANS_WRITE_FAILED; 156 else 157 res.result = DMA_TRANS_READ_FAILED; 158 159 dma_cookie_complete(&desc->txd); 160 dma_descriptor_unmap(&desc->txd); 161 dmaengine_desc_get_callback_invoke(&desc->txd, &res); 162 desc->txd.callback = NULL; 163 desc->txd.callback_result = NULL; 164 165 plxdev->tail++; 166 } 167 168 spin_unlock(&plxdev->ring_lock); 169 } 170 171 static void plx_dma_abort_desc(struct plx_dma_dev *plxdev) 172 { 173 struct dmaengine_result res; 174 struct plx_dma_desc *desc; 175 176 plx_dma_process_desc(plxdev); 177 178 spin_lock_bh(&plxdev->ring_lock); 179 180 while (plxdev->tail != plxdev->head) { 181 desc = plx_dma_get_desc(plxdev, plxdev->tail); 182 183 res.residue = desc->orig_size; 184 res.result = DMA_TRANS_ABORTED; 185 186 dma_cookie_complete(&desc->txd); 187 dma_descriptor_unmap(&desc->txd); 188 dmaengine_desc_get_callback_invoke(&desc->txd, &res); 189 desc->txd.callback = NULL; 190 desc->txd.callback_result = NULL; 191 192 plxdev->tail++; 193 } 194 195 spin_unlock_bh(&plxdev->ring_lock); 196 } 197 198 static void __plx_dma_stop(struct plx_dma_dev *plxdev) 199 { 200 unsigned long timeout = jiffies + msecs_to_jiffies(1000); 201 u32 val; 202 203 val = readl(plxdev->bar + PLX_REG_CTRL); 204 if (!(val & ~PLX_REG_CTRL_GRACEFUL_PAUSE)) 205 return; 206 207 writel(PLX_REG_CTRL_RESET_VAL | PLX_REG_CTRL_GRACEFUL_PAUSE, 208 plxdev->bar + PLX_REG_CTRL); 209 210 while (!time_after(jiffies, timeout)) { 211 val = readl(plxdev->bar + PLX_REG_CTRL); 212 if (val & PLX_REG_CTRL_GRACEFUL_PAUSE_DONE) 213 break; 214 215 cpu_relax(); 216 } 217 218 if (!(val & PLX_REG_CTRL_GRACEFUL_PAUSE_DONE)) 219 dev_err(plxdev->dma_dev.dev, 220 "Timeout waiting for graceful pause!\n"); 221 222 writel(PLX_REG_CTRL_RESET_VAL | PLX_REG_CTRL_GRACEFUL_PAUSE, 223 plxdev->bar + PLX_REG_CTRL); 224 225 writel(0, plxdev->bar + PLX_REG_DESC_RING_COUNT); 226 writel(0, plxdev->bar + PLX_REG_DESC_RING_ADDR); 227 writel(0, plxdev->bar + PLX_REG_DESC_RING_ADDR_HI); 228 writel(0, plxdev->bar + PLX_REG_DESC_RING_NEXT_ADDR); 229 } 230 231 static void plx_dma_stop(struct plx_dma_dev *plxdev) 232 { 233 rcu_read_lock(); 234 if (!rcu_dereference(plxdev->pdev)) { 235 rcu_read_unlock(); 236 return; 237 } 238 239 __plx_dma_stop(plxdev); 240 241 rcu_read_unlock(); 242 } 243 244 static void plx_dma_desc_task(struct tasklet_struct *t) 245 { 246 struct plx_dma_dev *plxdev = from_tasklet(plxdev, t, desc_task); 247 248 plx_dma_process_desc(plxdev); 249 } 250 251 static struct dma_async_tx_descriptor *plx_dma_prep_memcpy(struct dma_chan *c, 252 dma_addr_t dma_dst, dma_addr_t dma_src, size_t len, 253 unsigned long flags) 254 __acquires(plxdev->ring_lock) 255 { 256 struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(c); 257 struct plx_dma_desc *plxdesc; 258 259 spin_lock_bh(&plxdev->ring_lock); 260 if (!plxdev->ring_active) 261 goto err_unlock; 262 263 if (!CIRC_SPACE(plxdev->head, plxdev->tail, PLX_DMA_RING_COUNT)) 264 goto err_unlock; 265 266 if (len > PLX_DESC_SIZE_MASK) 267 goto err_unlock; 268 269 plxdesc = plx_dma_get_desc(plxdev, plxdev->head); 270 plxdev->head++; 271 272 plxdesc->hw->dst_addr_lo = cpu_to_le32(lower_32_bits(dma_dst)); 273 plxdesc->hw->dst_addr_hi = cpu_to_le16(upper_32_bits(dma_dst)); 274 plxdesc->hw->src_addr_lo = cpu_to_le32(lower_32_bits(dma_src)); 275 plxdesc->hw->src_addr_hi = cpu_to_le16(upper_32_bits(dma_src)); 276 277 plxdesc->orig_size = len; 278 279 if (flags & DMA_PREP_INTERRUPT) 280 len |= PLX_DESC_FLAG_INT_WHEN_DONE; 281 282 plxdesc->hw->flags_and_size = cpu_to_le32(len); 283 plxdesc->txd.flags = flags; 284 285 /* return with the lock held, it will be released in tx_submit */ 286 287 return &plxdesc->txd; 288 289 err_unlock: 290 /* 291 * Keep sparse happy by restoring an even lock count on 292 * this lock. 293 */ 294 __acquire(plxdev->ring_lock); 295 296 spin_unlock_bh(&plxdev->ring_lock); 297 return NULL; 298 } 299 300 static dma_cookie_t plx_dma_tx_submit(struct dma_async_tx_descriptor *desc) 301 __releases(plxdev->ring_lock) 302 { 303 struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(desc->chan); 304 struct plx_dma_desc *plxdesc = to_plx_desc(desc); 305 dma_cookie_t cookie; 306 307 cookie = dma_cookie_assign(desc); 308 309 /* 310 * Ensure the descriptor updates are visible to the dma device 311 * before setting the valid bit. 312 */ 313 wmb(); 314 315 plxdesc->hw->flags_and_size |= cpu_to_le32(PLX_DESC_FLAG_VALID); 316 317 spin_unlock_bh(&plxdev->ring_lock); 318 319 return cookie; 320 } 321 322 static enum dma_status plx_dma_tx_status(struct dma_chan *chan, 323 dma_cookie_t cookie, struct dma_tx_state *txstate) 324 { 325 struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan); 326 enum dma_status ret; 327 328 ret = dma_cookie_status(chan, cookie, txstate); 329 if (ret == DMA_COMPLETE) 330 return ret; 331 332 plx_dma_process_desc(plxdev); 333 334 return dma_cookie_status(chan, cookie, txstate); 335 } 336 337 static void plx_dma_issue_pending(struct dma_chan *chan) 338 { 339 struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan); 340 341 rcu_read_lock(); 342 if (!rcu_dereference(plxdev->pdev)) { 343 rcu_read_unlock(); 344 return; 345 } 346 347 /* 348 * Ensure the valid bits are visible before starting the 349 * DMA engine. 350 */ 351 wmb(); 352 353 writew(PLX_REG_CTRL_START_VAL, plxdev->bar + PLX_REG_CTRL); 354 355 rcu_read_unlock(); 356 } 357 358 static irqreturn_t plx_dma_isr(int irq, void *devid) 359 { 360 struct plx_dma_dev *plxdev = devid; 361 u32 status; 362 363 status = readw(plxdev->bar + PLX_REG_INTR_STATUS); 364 365 if (!status) 366 return IRQ_NONE; 367 368 if (status & PLX_REG_INTR_STATUS_DESC_DONE && plxdev->ring_active) 369 tasklet_schedule(&plxdev->desc_task); 370 371 writew(status, plxdev->bar + PLX_REG_INTR_STATUS); 372 373 return IRQ_HANDLED; 374 } 375 376 static int plx_dma_alloc_desc(struct plx_dma_dev *plxdev) 377 { 378 struct plx_dma_desc *desc; 379 int i; 380 381 plxdev->desc_ring = kcalloc(PLX_DMA_RING_COUNT, 382 sizeof(*plxdev->desc_ring), GFP_KERNEL); 383 if (!plxdev->desc_ring) 384 return -ENOMEM; 385 386 for (i = 0; i < PLX_DMA_RING_COUNT; i++) { 387 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 388 if (!desc) 389 goto free_and_exit; 390 391 dma_async_tx_descriptor_init(&desc->txd, &plxdev->dma_chan); 392 desc->txd.tx_submit = plx_dma_tx_submit; 393 desc->hw = &plxdev->hw_ring[i]; 394 395 plxdev->desc_ring[i] = desc; 396 } 397 398 return 0; 399 400 free_and_exit: 401 for (i = 0; i < PLX_DMA_RING_COUNT; i++) 402 kfree(plxdev->desc_ring[i]); 403 kfree(plxdev->desc_ring); 404 return -ENOMEM; 405 } 406 407 static int plx_dma_alloc_chan_resources(struct dma_chan *chan) 408 { 409 struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan); 410 size_t ring_sz = PLX_DMA_RING_COUNT * sizeof(*plxdev->hw_ring); 411 int rc; 412 413 plxdev->head = plxdev->tail = 0; 414 plxdev->hw_ring = dma_alloc_coherent(plxdev->dma_dev.dev, ring_sz, 415 &plxdev->hw_ring_dma, GFP_KERNEL); 416 if (!plxdev->hw_ring) 417 return -ENOMEM; 418 419 rc = plx_dma_alloc_desc(plxdev); 420 if (rc) 421 goto out_free_hw_ring; 422 423 rcu_read_lock(); 424 if (!rcu_dereference(plxdev->pdev)) { 425 rcu_read_unlock(); 426 rc = -ENODEV; 427 goto out_free_hw_ring; 428 } 429 430 writel(PLX_REG_CTRL_RESET_VAL, plxdev->bar + PLX_REG_CTRL); 431 writel(lower_32_bits(plxdev->hw_ring_dma), 432 plxdev->bar + PLX_REG_DESC_RING_ADDR); 433 writel(upper_32_bits(plxdev->hw_ring_dma), 434 plxdev->bar + PLX_REG_DESC_RING_ADDR_HI); 435 writel(lower_32_bits(plxdev->hw_ring_dma), 436 plxdev->bar + PLX_REG_DESC_RING_NEXT_ADDR); 437 writel(PLX_DMA_RING_COUNT, plxdev->bar + PLX_REG_DESC_RING_COUNT); 438 writel(PLX_REG_PREF_LIMIT_PREF_FOUR, plxdev->bar + PLX_REG_PREF_LIMIT); 439 440 plxdev->ring_active = true; 441 442 rcu_read_unlock(); 443 444 return PLX_DMA_RING_COUNT; 445 446 out_free_hw_ring: 447 dma_free_coherent(plxdev->dma_dev.dev, ring_sz, plxdev->hw_ring, 448 plxdev->hw_ring_dma); 449 return rc; 450 } 451 452 static void plx_dma_free_chan_resources(struct dma_chan *chan) 453 { 454 struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan); 455 size_t ring_sz = PLX_DMA_RING_COUNT * sizeof(*plxdev->hw_ring); 456 struct pci_dev *pdev; 457 int irq = -1; 458 int i; 459 460 spin_lock_bh(&plxdev->ring_lock); 461 plxdev->ring_active = false; 462 spin_unlock_bh(&plxdev->ring_lock); 463 464 plx_dma_stop(plxdev); 465 466 rcu_read_lock(); 467 pdev = rcu_dereference(plxdev->pdev); 468 if (pdev) 469 irq = pci_irq_vector(pdev, 0); 470 rcu_read_unlock(); 471 472 if (irq > 0) 473 synchronize_irq(irq); 474 475 tasklet_kill(&plxdev->desc_task); 476 477 plx_dma_abort_desc(plxdev); 478 479 for (i = 0; i < PLX_DMA_RING_COUNT; i++) 480 kfree(plxdev->desc_ring[i]); 481 482 kfree(plxdev->desc_ring); 483 dma_free_coherent(plxdev->dma_dev.dev, ring_sz, plxdev->hw_ring, 484 plxdev->hw_ring_dma); 485 486 } 487 488 static void plx_dma_release(struct dma_device *dma_dev) 489 { 490 struct plx_dma_dev *plxdev = 491 container_of(dma_dev, struct plx_dma_dev, dma_dev); 492 493 put_device(dma_dev->dev); 494 kfree(plxdev); 495 } 496 497 static int plx_dma_create(struct pci_dev *pdev) 498 { 499 struct plx_dma_dev *plxdev; 500 struct dma_device *dma; 501 struct dma_chan *chan; 502 int rc; 503 504 plxdev = kzalloc(sizeof(*plxdev), GFP_KERNEL); 505 if (!plxdev) 506 return -ENOMEM; 507 508 rc = request_irq(pci_irq_vector(pdev, 0), plx_dma_isr, 0, 509 KBUILD_MODNAME, plxdev); 510 if (rc) 511 goto free_plx; 512 513 spin_lock_init(&plxdev->ring_lock); 514 tasklet_setup(&plxdev->desc_task, plx_dma_desc_task); 515 516 RCU_INIT_POINTER(plxdev->pdev, pdev); 517 plxdev->bar = pcim_iomap_table(pdev)[0]; 518 519 dma = &plxdev->dma_dev; 520 dma->chancnt = 1; 521 INIT_LIST_HEAD(&dma->channels); 522 dma_cap_set(DMA_MEMCPY, dma->cap_mask); 523 dma->copy_align = DMAENGINE_ALIGN_1_BYTE; 524 dma->dev = get_device(&pdev->dev); 525 526 dma->device_alloc_chan_resources = plx_dma_alloc_chan_resources; 527 dma->device_free_chan_resources = plx_dma_free_chan_resources; 528 dma->device_prep_dma_memcpy = plx_dma_prep_memcpy; 529 dma->device_issue_pending = plx_dma_issue_pending; 530 dma->device_tx_status = plx_dma_tx_status; 531 dma->device_release = plx_dma_release; 532 533 chan = &plxdev->dma_chan; 534 chan->device = dma; 535 dma_cookie_init(chan); 536 list_add_tail(&chan->device_node, &dma->channels); 537 538 rc = dma_async_device_register(dma); 539 if (rc) { 540 pci_err(pdev, "Failed to register dma device: %d\n", rc); 541 goto put_device; 542 } 543 544 pci_set_drvdata(pdev, plxdev); 545 546 return 0; 547 548 put_device: 549 put_device(&pdev->dev); 550 free_irq(pci_irq_vector(pdev, 0), plxdev); 551 free_plx: 552 kfree(plxdev); 553 554 return rc; 555 } 556 557 static int plx_dma_probe(struct pci_dev *pdev, 558 const struct pci_device_id *id) 559 { 560 int rc; 561 562 rc = pcim_enable_device(pdev); 563 if (rc) 564 return rc; 565 566 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 567 if (rc) 568 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 569 if (rc) 570 return rc; 571 572 rc = pcim_iomap_regions(pdev, 1, KBUILD_MODNAME); 573 if (rc) 574 return rc; 575 576 rc = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 577 if (rc <= 0) 578 return rc; 579 580 pci_set_master(pdev); 581 582 rc = plx_dma_create(pdev); 583 if (rc) 584 goto err_free_irq_vectors; 585 586 pci_info(pdev, "PLX DMA Channel Registered\n"); 587 588 return 0; 589 590 err_free_irq_vectors: 591 pci_free_irq_vectors(pdev); 592 return rc; 593 } 594 595 static void plx_dma_remove(struct pci_dev *pdev) 596 { 597 struct plx_dma_dev *plxdev = pci_get_drvdata(pdev); 598 599 free_irq(pci_irq_vector(pdev, 0), plxdev); 600 601 rcu_assign_pointer(plxdev->pdev, NULL); 602 synchronize_rcu(); 603 604 spin_lock_bh(&plxdev->ring_lock); 605 plxdev->ring_active = false; 606 spin_unlock_bh(&plxdev->ring_lock); 607 608 __plx_dma_stop(plxdev); 609 plx_dma_abort_desc(plxdev); 610 611 plxdev->bar = NULL; 612 dma_async_device_unregister(&plxdev->dma_dev); 613 614 pci_free_irq_vectors(pdev); 615 } 616 617 static const struct pci_device_id plx_dma_pci_tbl[] = { 618 { 619 .vendor = PCI_VENDOR_ID_PLX, 620 .device = 0x87D0, 621 .subvendor = PCI_ANY_ID, 622 .subdevice = PCI_ANY_ID, 623 .class = PCI_CLASS_SYSTEM_OTHER << 8, 624 .class_mask = 0xFFFFFFFF, 625 }, 626 {0} 627 }; 628 MODULE_DEVICE_TABLE(pci, plx_dma_pci_tbl); 629 630 static struct pci_driver plx_dma_pci_driver = { 631 .name = KBUILD_MODNAME, 632 .id_table = plx_dma_pci_tbl, 633 .probe = plx_dma_probe, 634 .remove = plx_dma_remove, 635 }; 636 module_pci_driver(plx_dma_pci_driver); 637