xref: /openbmc/linux/drivers/dma/pl330.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
7  *	Jaswinder Singh <jassi.brar@samsung.com>
8  */
9 
10 #include <linux/debugfs.h>
11 #include <linux/kernel.h>
12 #include <linux/io.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dmaengine.h>
21 #include <linux/amba/bus.h>
22 #include <linux/scatterlist.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/err.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/bug.h>
28 #include <linux/reset.h>
29 
30 #include "dmaengine.h"
31 #define PL330_MAX_CHAN		8
32 #define PL330_MAX_IRQS		32
33 #define PL330_MAX_PERI		32
34 #define PL330_MAX_BURST         16
35 
36 #define PL330_QUIRK_BROKEN_NO_FLUSHP	BIT(0)
37 #define PL330_QUIRK_PERIPH_BURST	BIT(1)
38 
39 enum pl330_cachectrl {
40 	CCTRL0,		/* Noncacheable and nonbufferable */
41 	CCTRL1,		/* Bufferable only */
42 	CCTRL2,		/* Cacheable, but do not allocate */
43 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
44 	INVALID1,	/* AWCACHE = 0x1000 */
45 	INVALID2,
46 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
47 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
48 };
49 
50 enum pl330_byteswap {
51 	SWAP_NO,
52 	SWAP_2,
53 	SWAP_4,
54 	SWAP_8,
55 	SWAP_16,
56 };
57 
58 /* Register and Bit field Definitions */
59 #define DS			0x0
60 #define DS_ST_STOP		0x0
61 #define DS_ST_EXEC		0x1
62 #define DS_ST_CMISS		0x2
63 #define DS_ST_UPDTPC		0x3
64 #define DS_ST_WFE		0x4
65 #define DS_ST_ATBRR		0x5
66 #define DS_ST_QBUSY		0x6
67 #define DS_ST_WFP		0x7
68 #define DS_ST_KILL		0x8
69 #define DS_ST_CMPLT		0x9
70 #define DS_ST_FLTCMP		0xe
71 #define DS_ST_FAULT		0xf
72 
73 #define DPC			0x4
74 #define INTEN			0x20
75 #define ES			0x24
76 #define INTSTATUS		0x28
77 #define INTCLR			0x2c
78 #define FSM			0x30
79 #define FSC			0x34
80 #define FTM			0x38
81 
82 #define _FTC			0x40
83 #define FTC(n)			(_FTC + (n)*0x4)
84 
85 #define _CS			0x100
86 #define CS(n)			(_CS + (n)*0x8)
87 #define CS_CNS			(1 << 21)
88 
89 #define _CPC			0x104
90 #define CPC(n)			(_CPC + (n)*0x8)
91 
92 #define _SA			0x400
93 #define SA(n)			(_SA + (n)*0x20)
94 
95 #define _DA			0x404
96 #define DA(n)			(_DA + (n)*0x20)
97 
98 #define _CC			0x408
99 #define CC(n)			(_CC + (n)*0x20)
100 
101 #define CC_SRCINC		(1 << 0)
102 #define CC_DSTINC		(1 << 14)
103 #define CC_SRCPRI		(1 << 8)
104 #define CC_DSTPRI		(1 << 22)
105 #define CC_SRCNS		(1 << 9)
106 #define CC_DSTNS		(1 << 23)
107 #define CC_SRCIA		(1 << 10)
108 #define CC_DSTIA		(1 << 24)
109 #define CC_SRCBRSTLEN_SHFT	4
110 #define CC_DSTBRSTLEN_SHFT	18
111 #define CC_SRCBRSTSIZE_SHFT	1
112 #define CC_DSTBRSTSIZE_SHFT	15
113 #define CC_SRCCCTRL_SHFT	11
114 #define CC_SRCCCTRL_MASK	0x7
115 #define CC_DSTCCTRL_SHFT	25
116 #define CC_DRCCCTRL_MASK	0x7
117 #define CC_SWAP_SHFT		28
118 
119 #define _LC0			0x40c
120 #define LC0(n)			(_LC0 + (n)*0x20)
121 
122 #define _LC1			0x410
123 #define LC1(n)			(_LC1 + (n)*0x20)
124 
125 #define DBGSTATUS		0xd00
126 #define DBG_BUSY		(1 << 0)
127 
128 #define DBGCMD			0xd04
129 #define DBGINST0		0xd08
130 #define DBGINST1		0xd0c
131 
132 #define CR0			0xe00
133 #define CR1			0xe04
134 #define CR2			0xe08
135 #define CR3			0xe0c
136 #define CR4			0xe10
137 #define CRD			0xe14
138 
139 #define PERIPH_ID		0xfe0
140 #define PERIPH_REV_SHIFT	20
141 #define PERIPH_REV_MASK		0xf
142 #define PERIPH_REV_R0P0		0
143 #define PERIPH_REV_R1P0		1
144 #define PERIPH_REV_R1P1		2
145 
146 #define CR0_PERIPH_REQ_SET	(1 << 0)
147 #define CR0_BOOT_EN_SET		(1 << 1)
148 #define CR0_BOOT_MAN_NS		(1 << 2)
149 #define CR0_NUM_CHANS_SHIFT	4
150 #define CR0_NUM_CHANS_MASK	0x7
151 #define CR0_NUM_PERIPH_SHIFT	12
152 #define CR0_NUM_PERIPH_MASK	0x1f
153 #define CR0_NUM_EVENTS_SHIFT	17
154 #define CR0_NUM_EVENTS_MASK	0x1f
155 
156 #define CR1_ICACHE_LEN_SHIFT	0
157 #define CR1_ICACHE_LEN_MASK	0x7
158 #define CR1_NUM_ICACHELINES_SHIFT	4
159 #define CR1_NUM_ICACHELINES_MASK	0xf
160 
161 #define CRD_DATA_WIDTH_SHIFT	0
162 #define CRD_DATA_WIDTH_MASK	0x7
163 #define CRD_WR_CAP_SHIFT	4
164 #define CRD_WR_CAP_MASK		0x7
165 #define CRD_WR_Q_DEP_SHIFT	8
166 #define CRD_WR_Q_DEP_MASK	0xf
167 #define CRD_RD_CAP_SHIFT	12
168 #define CRD_RD_CAP_MASK		0x7
169 #define CRD_RD_Q_DEP_SHIFT	16
170 #define CRD_RD_Q_DEP_MASK	0xf
171 #define CRD_DATA_BUFF_SHIFT	20
172 #define CRD_DATA_BUFF_MASK	0x3ff
173 
174 #define PART			0x330
175 #define DESIGNER		0x41
176 #define REVISION		0x0
177 #define INTEG_CFG		0x0
178 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
179 
180 #define PL330_STATE_STOPPED		(1 << 0)
181 #define PL330_STATE_EXECUTING		(1 << 1)
182 #define PL330_STATE_WFE			(1 << 2)
183 #define PL330_STATE_FAULTING		(1 << 3)
184 #define PL330_STATE_COMPLETING		(1 << 4)
185 #define PL330_STATE_WFP			(1 << 5)
186 #define PL330_STATE_KILLING		(1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
188 #define PL330_STATE_CACHEMISS		(1 << 8)
189 #define PL330_STATE_UPDTPC		(1 << 9)
190 #define PL330_STATE_ATBARRIER		(1 << 10)
191 #define PL330_STATE_QUEUEBUSY		(1 << 11)
192 #define PL330_STATE_INVALID		(1 << 15)
193 
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
196 
197 #define CMD_DMAADDH		0x54
198 #define CMD_DMAEND		0x00
199 #define CMD_DMAFLUSHP		0x35
200 #define CMD_DMAGO		0xa0
201 #define CMD_DMALD		0x04
202 #define CMD_DMALDP		0x25
203 #define CMD_DMALP		0x20
204 #define CMD_DMALPEND		0x28
205 #define CMD_DMAKILL		0x01
206 #define CMD_DMAMOV		0xbc
207 #define CMD_DMANOP		0x18
208 #define CMD_DMARMB		0x12
209 #define CMD_DMASEV		0x34
210 #define CMD_DMAST		0x08
211 #define CMD_DMASTP		0x29
212 #define CMD_DMASTZ		0x0c
213 #define CMD_DMAWFE		0x36
214 #define CMD_DMAWFP		0x30
215 #define CMD_DMAWMB		0x13
216 
217 #define SZ_DMAADDH		3
218 #define SZ_DMAEND		1
219 #define SZ_DMAFLUSHP		2
220 #define SZ_DMALD		1
221 #define SZ_DMALDP		2
222 #define SZ_DMALP		2
223 #define SZ_DMALPEND		2
224 #define SZ_DMAKILL		1
225 #define SZ_DMAMOV		6
226 #define SZ_DMANOP		1
227 #define SZ_DMARMB		1
228 #define SZ_DMASEV		2
229 #define SZ_DMAST		1
230 #define SZ_DMASTP		2
231 #define SZ_DMASTZ		1
232 #define SZ_DMAWFE		2
233 #define SZ_DMAWFP		2
234 #define SZ_DMAWMB		1
235 #define SZ_DMAGO		6
236 
237 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239 
240 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242 
243 /*
244  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
245  * at 1byte/burst for P<->M and M<->M respectively.
246  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
247  * should be enough for P<->M and M<->M respectively.
248  */
249 #define MCODE_BUFF_PER_REQ	256
250 
251 /* Use this _only_ to wait on transient states */
252 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
253 
254 #ifdef PL330_DEBUG_MCGEN
255 static unsigned cmd_line;
256 #define PL330_DBGCMD_DUMP(off, x...)	do { \
257 						printk("%x:", cmd_line); \
258 						printk(x); \
259 						cmd_line += off; \
260 					} while (0)
261 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
262 #else
263 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
264 #define PL330_DBGMC_START(addr)		do {} while (0)
265 #endif
266 
267 /* The number of default descriptors */
268 
269 #define NR_DEFAULT_DESC	16
270 
271 /* Delay for runtime PM autosuspend, ms */
272 #define PL330_AUTOSUSPEND_DELAY 20
273 
274 /* Populated by the PL330 core driver for DMA API driver's info */
275 struct pl330_config {
276 	u32	periph_id;
277 #define DMAC_MODE_NS	(1 << 0)
278 	unsigned int	mode;
279 	unsigned int	data_bus_width:10; /* In number of bits */
280 	unsigned int	data_buf_dep:11;
281 	unsigned int	num_chan:4;
282 	unsigned int	num_peri:6;
283 	u32		peri_ns;
284 	unsigned int	num_events:6;
285 	u32		irq_ns;
286 };
287 
288 /*
289  * Request Configuration.
290  * The PL330 core does not modify this and uses the last
291  * working configuration if the request doesn't provide any.
292  *
293  * The Client may want to provide this info only for the
294  * first request and a request with new settings.
295  */
296 struct pl330_reqcfg {
297 	/* Address Incrementing */
298 	unsigned dst_inc:1;
299 	unsigned src_inc:1;
300 
301 	/*
302 	 * For now, the SRC & DST protection levels
303 	 * and burst size/length are assumed same.
304 	 */
305 	bool nonsecure;
306 	bool privileged;
307 	bool insnaccess;
308 	unsigned brst_len:5;
309 	unsigned brst_size:3; /* in power of 2 */
310 
311 	enum pl330_cachectrl dcctl;
312 	enum pl330_cachectrl scctl;
313 	enum pl330_byteswap swap;
314 	struct pl330_config *pcfg;
315 };
316 
317 /*
318  * One cycle of DMAC operation.
319  * There may be more than one xfer in a request.
320  */
321 struct pl330_xfer {
322 	u32 src_addr;
323 	u32 dst_addr;
324 	/* Size to xfer */
325 	u32 bytes;
326 };
327 
328 /* The xfer callbacks are made with one of these arguments. */
329 enum pl330_op_err {
330 	/* The all xfers in the request were success. */
331 	PL330_ERR_NONE,
332 	/* If req aborted due to global error. */
333 	PL330_ERR_ABORT,
334 	/* If req failed due to problem with Channel. */
335 	PL330_ERR_FAIL,
336 };
337 
338 enum dmamov_dst {
339 	SAR = 0,
340 	CCR,
341 	DAR,
342 };
343 
344 enum pl330_dst {
345 	SRC = 0,
346 	DST,
347 };
348 
349 enum pl330_cond {
350 	SINGLE,
351 	BURST,
352 	ALWAYS,
353 };
354 
355 struct dma_pl330_desc;
356 
357 struct _pl330_req {
358 	u32 mc_bus;
359 	void *mc_cpu;
360 	struct dma_pl330_desc *desc;
361 };
362 
363 /* ToBeDone for tasklet */
364 struct _pl330_tbd {
365 	bool reset_dmac;
366 	bool reset_mngr;
367 	u8 reset_chan;
368 };
369 
370 /* A DMAC Thread */
371 struct pl330_thread {
372 	u8 id;
373 	int ev;
374 	/* If the channel is not yet acquired by any client */
375 	bool free;
376 	/* Parent DMAC */
377 	struct pl330_dmac *dmac;
378 	/* Only two at a time */
379 	struct _pl330_req req[2];
380 	/* Index of the last enqueued request */
381 	unsigned lstenq;
382 	/* Index of the last submitted request or -1 if the DMA is stopped */
383 	int req_running;
384 };
385 
386 enum pl330_dmac_state {
387 	UNINIT,
388 	INIT,
389 	DYING,
390 };
391 
392 enum desc_status {
393 	/* In the DMAC pool */
394 	FREE,
395 	/*
396 	 * Allocated to some channel during prep_xxx
397 	 * Also may be sitting on the work_list.
398 	 */
399 	PREP,
400 	/*
401 	 * Sitting on the work_list and already submitted
402 	 * to the PL330 core. Not more than two descriptors
403 	 * of a channel can be BUSY at any time.
404 	 */
405 	BUSY,
406 	/*
407 	 * Sitting on the channel work_list but xfer done
408 	 * by PL330 core
409 	 */
410 	DONE,
411 };
412 
413 struct dma_pl330_chan {
414 	/* Schedule desc completion */
415 	struct tasklet_struct task;
416 
417 	/* DMA-Engine Channel */
418 	struct dma_chan chan;
419 
420 	/* List of submitted descriptors */
421 	struct list_head submitted_list;
422 	/* List of issued descriptors */
423 	struct list_head work_list;
424 	/* List of completed descriptors */
425 	struct list_head completed_list;
426 
427 	/* Pointer to the DMAC that manages this channel,
428 	 * NULL if the channel is available to be acquired.
429 	 * As the parent, this DMAC also provides descriptors
430 	 * to the channel.
431 	 */
432 	struct pl330_dmac *dmac;
433 
434 	/* To protect channel manipulation */
435 	spinlock_t lock;
436 
437 	/*
438 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
439 	 * available.
440 	 */
441 	struct pl330_thread *thread;
442 
443 	/* For D-to-M and M-to-D channels */
444 	int burst_sz; /* the peripheral fifo width */
445 	int burst_len; /* the number of burst */
446 	phys_addr_t fifo_addr;
447 	/* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
448 	dma_addr_t fifo_dma;
449 	enum dma_data_direction dir;
450 	struct dma_slave_config slave_config;
451 
452 	/* for cyclic capability */
453 	bool cyclic;
454 
455 	/* for runtime pm tracking */
456 	bool active;
457 };
458 
459 struct pl330_dmac {
460 	/* DMA-Engine Device */
461 	struct dma_device ddma;
462 
463 	/* Holds info about sg limitations */
464 	struct device_dma_parameters dma_parms;
465 
466 	/* Pool of descriptors available for the DMAC's channels */
467 	struct list_head desc_pool;
468 	/* To protect desc_pool manipulation */
469 	spinlock_t pool_lock;
470 
471 	/* Size of MicroCode buffers for each channel. */
472 	unsigned mcbufsz;
473 	/* ioremap'ed address of PL330 registers. */
474 	void __iomem	*base;
475 	/* Populated by the PL330 core driver during pl330_add */
476 	struct pl330_config	pcfg;
477 
478 	spinlock_t		lock;
479 	/* Maximum possible events/irqs */
480 	int			events[32];
481 	/* BUS address of MicroCode buffer */
482 	dma_addr_t		mcode_bus;
483 	/* CPU address of MicroCode buffer */
484 	void			*mcode_cpu;
485 	/* List of all Channel threads */
486 	struct pl330_thread	*channels;
487 	/* Pointer to the MANAGER thread */
488 	struct pl330_thread	*manager;
489 	/* To handle bad news in interrupt */
490 	struct tasklet_struct	tasks;
491 	struct _pl330_tbd	dmac_tbd;
492 	/* State of DMAC operation */
493 	enum pl330_dmac_state	state;
494 	/* Holds list of reqs with due callbacks */
495 	struct list_head        req_done;
496 
497 	/* Peripheral channels connected to this DMAC */
498 	unsigned int num_peripherals;
499 	struct dma_pl330_chan *peripherals; /* keep at end */
500 	int quirks;
501 
502 	struct reset_control	*rstc;
503 	struct reset_control	*rstc_ocp;
504 };
505 
506 static struct pl330_of_quirks {
507 	char *quirk;
508 	int id;
509 } of_quirks[] = {
510 	{
511 		.quirk = "arm,pl330-broken-no-flushp",
512 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
513 	},
514 	{
515 		.quirk = "arm,pl330-periph-burst",
516 		.id = PL330_QUIRK_PERIPH_BURST,
517 	}
518 };
519 
520 struct dma_pl330_desc {
521 	/* To attach to a queue as child */
522 	struct list_head node;
523 
524 	/* Descriptor for the DMA Engine API */
525 	struct dma_async_tx_descriptor txd;
526 
527 	/* Xfer for PL330 core */
528 	struct pl330_xfer px;
529 
530 	struct pl330_reqcfg rqcfg;
531 
532 	enum desc_status status;
533 
534 	int bytes_requested;
535 	bool last;
536 
537 	/* The channel which currently holds this desc */
538 	struct dma_pl330_chan *pchan;
539 
540 	enum dma_transfer_direction rqtype;
541 	/* Index of peripheral for the xfer. */
542 	unsigned peri:5;
543 	/* Hook to attach to DMAC's list of reqs with due callback */
544 	struct list_head rqd;
545 };
546 
547 struct _xfer_spec {
548 	u32 ccr;
549 	struct dma_pl330_desc *desc;
550 };
551 
552 static int pl330_config_write(struct dma_chan *chan,
553 			struct dma_slave_config *slave_config,
554 			enum dma_transfer_direction direction);
555 
556 static inline bool _queue_full(struct pl330_thread *thrd)
557 {
558 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
559 }
560 
561 static inline bool is_manager(struct pl330_thread *thrd)
562 {
563 	return thrd->dmac->manager == thrd;
564 }
565 
566 /* If manager of the thread is in Non-Secure mode */
567 static inline bool _manager_ns(struct pl330_thread *thrd)
568 {
569 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
570 }
571 
572 static inline u32 get_revision(u32 periph_id)
573 {
574 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
575 }
576 
577 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
578 {
579 	if (dry_run)
580 		return SZ_DMAEND;
581 
582 	buf[0] = CMD_DMAEND;
583 
584 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
585 
586 	return SZ_DMAEND;
587 }
588 
589 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
590 {
591 	if (dry_run)
592 		return SZ_DMAFLUSHP;
593 
594 	buf[0] = CMD_DMAFLUSHP;
595 
596 	peri &= 0x1f;
597 	peri <<= 3;
598 	buf[1] = peri;
599 
600 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
601 
602 	return SZ_DMAFLUSHP;
603 }
604 
605 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
606 {
607 	if (dry_run)
608 		return SZ_DMALD;
609 
610 	buf[0] = CMD_DMALD;
611 
612 	if (cond == SINGLE)
613 		buf[0] |= (0 << 1) | (1 << 0);
614 	else if (cond == BURST)
615 		buf[0] |= (1 << 1) | (1 << 0);
616 
617 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
618 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
619 
620 	return SZ_DMALD;
621 }
622 
623 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
624 		enum pl330_cond cond, u8 peri)
625 {
626 	if (dry_run)
627 		return SZ_DMALDP;
628 
629 	buf[0] = CMD_DMALDP;
630 
631 	if (cond == BURST)
632 		buf[0] |= (1 << 1);
633 
634 	peri &= 0x1f;
635 	peri <<= 3;
636 	buf[1] = peri;
637 
638 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
639 		cond == SINGLE ? 'S' : 'B', peri >> 3);
640 
641 	return SZ_DMALDP;
642 }
643 
644 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
645 		unsigned loop, u8 cnt)
646 {
647 	if (dry_run)
648 		return SZ_DMALP;
649 
650 	buf[0] = CMD_DMALP;
651 
652 	if (loop)
653 		buf[0] |= (1 << 1);
654 
655 	cnt--; /* DMAC increments by 1 internally */
656 	buf[1] = cnt;
657 
658 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
659 
660 	return SZ_DMALP;
661 }
662 
663 struct _arg_LPEND {
664 	enum pl330_cond cond;
665 	bool forever;
666 	unsigned loop;
667 	u8 bjump;
668 };
669 
670 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
671 		const struct _arg_LPEND *arg)
672 {
673 	enum pl330_cond cond = arg->cond;
674 	bool forever = arg->forever;
675 	unsigned loop = arg->loop;
676 	u8 bjump = arg->bjump;
677 
678 	if (dry_run)
679 		return SZ_DMALPEND;
680 
681 	buf[0] = CMD_DMALPEND;
682 
683 	if (loop)
684 		buf[0] |= (1 << 2);
685 
686 	if (!forever)
687 		buf[0] |= (1 << 4);
688 
689 	if (cond == SINGLE)
690 		buf[0] |= (0 << 1) | (1 << 0);
691 	else if (cond == BURST)
692 		buf[0] |= (1 << 1) | (1 << 0);
693 
694 	buf[1] = bjump;
695 
696 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
697 			forever ? "FE" : "END",
698 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
699 			loop ? '1' : '0',
700 			bjump);
701 
702 	return SZ_DMALPEND;
703 }
704 
705 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
706 {
707 	if (dry_run)
708 		return SZ_DMAKILL;
709 
710 	buf[0] = CMD_DMAKILL;
711 
712 	return SZ_DMAKILL;
713 }
714 
715 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
716 		enum dmamov_dst dst, u32 val)
717 {
718 	if (dry_run)
719 		return SZ_DMAMOV;
720 
721 	buf[0] = CMD_DMAMOV;
722 	buf[1] = dst;
723 	buf[2] = val;
724 	buf[3] = val >> 8;
725 	buf[4] = val >> 16;
726 	buf[5] = val >> 24;
727 
728 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
729 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
730 
731 	return SZ_DMAMOV;
732 }
733 
734 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
735 {
736 	if (dry_run)
737 		return SZ_DMARMB;
738 
739 	buf[0] = CMD_DMARMB;
740 
741 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
742 
743 	return SZ_DMARMB;
744 }
745 
746 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
747 {
748 	if (dry_run)
749 		return SZ_DMASEV;
750 
751 	buf[0] = CMD_DMASEV;
752 
753 	ev &= 0x1f;
754 	ev <<= 3;
755 	buf[1] = ev;
756 
757 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
758 
759 	return SZ_DMASEV;
760 }
761 
762 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
763 {
764 	if (dry_run)
765 		return SZ_DMAST;
766 
767 	buf[0] = CMD_DMAST;
768 
769 	if (cond == SINGLE)
770 		buf[0] |= (0 << 1) | (1 << 0);
771 	else if (cond == BURST)
772 		buf[0] |= (1 << 1) | (1 << 0);
773 
774 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
775 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
776 
777 	return SZ_DMAST;
778 }
779 
780 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
781 		enum pl330_cond cond, u8 peri)
782 {
783 	if (dry_run)
784 		return SZ_DMASTP;
785 
786 	buf[0] = CMD_DMASTP;
787 
788 	if (cond == BURST)
789 		buf[0] |= (1 << 1);
790 
791 	peri &= 0x1f;
792 	peri <<= 3;
793 	buf[1] = peri;
794 
795 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
796 		cond == SINGLE ? 'S' : 'B', peri >> 3);
797 
798 	return SZ_DMASTP;
799 }
800 
801 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
802 		enum pl330_cond cond, u8 peri)
803 {
804 	if (dry_run)
805 		return SZ_DMAWFP;
806 
807 	buf[0] = CMD_DMAWFP;
808 
809 	if (cond == SINGLE)
810 		buf[0] |= (0 << 1) | (0 << 0);
811 	else if (cond == BURST)
812 		buf[0] |= (1 << 1) | (0 << 0);
813 	else
814 		buf[0] |= (0 << 1) | (1 << 0);
815 
816 	peri &= 0x1f;
817 	peri <<= 3;
818 	buf[1] = peri;
819 
820 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
821 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
822 
823 	return SZ_DMAWFP;
824 }
825 
826 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
827 {
828 	if (dry_run)
829 		return SZ_DMAWMB;
830 
831 	buf[0] = CMD_DMAWMB;
832 
833 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
834 
835 	return SZ_DMAWMB;
836 }
837 
838 struct _arg_GO {
839 	u8 chan;
840 	u32 addr;
841 	unsigned ns;
842 };
843 
844 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
845 		const struct _arg_GO *arg)
846 {
847 	u8 chan = arg->chan;
848 	u32 addr = arg->addr;
849 	unsigned ns = arg->ns;
850 
851 	if (dry_run)
852 		return SZ_DMAGO;
853 
854 	buf[0] = CMD_DMAGO;
855 	buf[0] |= (ns << 1);
856 	buf[1] = chan & 0x7;
857 	buf[2] = addr;
858 	buf[3] = addr >> 8;
859 	buf[4] = addr >> 16;
860 	buf[5] = addr >> 24;
861 
862 	return SZ_DMAGO;
863 }
864 
865 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
866 
867 /* Returns Time-Out */
868 static bool _until_dmac_idle(struct pl330_thread *thrd)
869 {
870 	void __iomem *regs = thrd->dmac->base;
871 	unsigned long loops = msecs_to_loops(5);
872 
873 	do {
874 		/* Until Manager is Idle */
875 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
876 			break;
877 
878 		cpu_relax();
879 	} while (--loops);
880 
881 	if (!loops)
882 		return true;
883 
884 	return false;
885 }
886 
887 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
888 		u8 insn[], bool as_manager)
889 {
890 	void __iomem *regs = thrd->dmac->base;
891 	u32 val;
892 
893 	/* If timed out due to halted state-machine */
894 	if (_until_dmac_idle(thrd)) {
895 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
896 		return;
897 	}
898 
899 	val = (insn[0] << 16) | (insn[1] << 24);
900 	if (!as_manager) {
901 		val |= (1 << 0);
902 		val |= (thrd->id << 8); /* Channel Number */
903 	}
904 	writel(val, regs + DBGINST0);
905 
906 	val = le32_to_cpu(*((__le32 *)&insn[2]));
907 	writel(val, regs + DBGINST1);
908 
909 	/* Get going */
910 	writel(0, regs + DBGCMD);
911 }
912 
913 static inline u32 _state(struct pl330_thread *thrd)
914 {
915 	void __iomem *regs = thrd->dmac->base;
916 	u32 val;
917 
918 	if (is_manager(thrd))
919 		val = readl(regs + DS) & 0xf;
920 	else
921 		val = readl(regs + CS(thrd->id)) & 0xf;
922 
923 	switch (val) {
924 	case DS_ST_STOP:
925 		return PL330_STATE_STOPPED;
926 	case DS_ST_EXEC:
927 		return PL330_STATE_EXECUTING;
928 	case DS_ST_CMISS:
929 		return PL330_STATE_CACHEMISS;
930 	case DS_ST_UPDTPC:
931 		return PL330_STATE_UPDTPC;
932 	case DS_ST_WFE:
933 		return PL330_STATE_WFE;
934 	case DS_ST_FAULT:
935 		return PL330_STATE_FAULTING;
936 	case DS_ST_ATBRR:
937 		if (is_manager(thrd))
938 			return PL330_STATE_INVALID;
939 		else
940 			return PL330_STATE_ATBARRIER;
941 	case DS_ST_QBUSY:
942 		if (is_manager(thrd))
943 			return PL330_STATE_INVALID;
944 		else
945 			return PL330_STATE_QUEUEBUSY;
946 	case DS_ST_WFP:
947 		if (is_manager(thrd))
948 			return PL330_STATE_INVALID;
949 		else
950 			return PL330_STATE_WFP;
951 	case DS_ST_KILL:
952 		if (is_manager(thrd))
953 			return PL330_STATE_INVALID;
954 		else
955 			return PL330_STATE_KILLING;
956 	case DS_ST_CMPLT:
957 		if (is_manager(thrd))
958 			return PL330_STATE_INVALID;
959 		else
960 			return PL330_STATE_COMPLETING;
961 	case DS_ST_FLTCMP:
962 		if (is_manager(thrd))
963 			return PL330_STATE_INVALID;
964 		else
965 			return PL330_STATE_FAULT_COMPLETING;
966 	default:
967 		return PL330_STATE_INVALID;
968 	}
969 }
970 
971 static void _stop(struct pl330_thread *thrd)
972 {
973 	void __iomem *regs = thrd->dmac->base;
974 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
975 	u32 inten = readl(regs + INTEN);
976 
977 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
978 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
979 
980 	/* Return if nothing needs to be done */
981 	if (_state(thrd) == PL330_STATE_COMPLETING
982 		  || _state(thrd) == PL330_STATE_KILLING
983 		  || _state(thrd) == PL330_STATE_STOPPED)
984 		return;
985 
986 	_emit_KILL(0, insn);
987 
988 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
989 
990 	/* clear the event */
991 	if (inten & (1 << thrd->ev))
992 		writel(1 << thrd->ev, regs + INTCLR);
993 	/* Stop generating interrupts for SEV */
994 	writel(inten & ~(1 << thrd->ev), regs + INTEN);
995 }
996 
997 /* Start doing req 'idx' of thread 'thrd' */
998 static bool _trigger(struct pl330_thread *thrd)
999 {
1000 	void __iomem *regs = thrd->dmac->base;
1001 	struct _pl330_req *req;
1002 	struct dma_pl330_desc *desc;
1003 	struct _arg_GO go;
1004 	unsigned ns;
1005 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1006 	int idx;
1007 
1008 	/* Return if already ACTIVE */
1009 	if (_state(thrd) != PL330_STATE_STOPPED)
1010 		return true;
1011 
1012 	idx = 1 - thrd->lstenq;
1013 	if (thrd->req[idx].desc != NULL) {
1014 		req = &thrd->req[idx];
1015 	} else {
1016 		idx = thrd->lstenq;
1017 		if (thrd->req[idx].desc != NULL)
1018 			req = &thrd->req[idx];
1019 		else
1020 			req = NULL;
1021 	}
1022 
1023 	/* Return if no request */
1024 	if (!req)
1025 		return true;
1026 
1027 	/* Return if req is running */
1028 	if (idx == thrd->req_running)
1029 		return true;
1030 
1031 	desc = req->desc;
1032 
1033 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1034 
1035 	/* See 'Abort Sources' point-4 at Page 2-25 */
1036 	if (_manager_ns(thrd) && !ns)
1037 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1038 			__func__, __LINE__);
1039 
1040 	go.chan = thrd->id;
1041 	go.addr = req->mc_bus;
1042 	go.ns = ns;
1043 	_emit_GO(0, insn, &go);
1044 
1045 	/* Set to generate interrupts for SEV */
1046 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1047 
1048 	/* Only manager can execute GO */
1049 	_execute_DBGINSN(thrd, insn, true);
1050 
1051 	thrd->req_running = idx;
1052 
1053 	return true;
1054 }
1055 
1056 static bool _start(struct pl330_thread *thrd)
1057 {
1058 	switch (_state(thrd)) {
1059 	case PL330_STATE_FAULT_COMPLETING:
1060 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1061 
1062 		if (_state(thrd) == PL330_STATE_KILLING)
1063 			UNTIL(thrd, PL330_STATE_STOPPED)
1064 		fallthrough;
1065 
1066 	case PL330_STATE_FAULTING:
1067 		_stop(thrd);
1068 		fallthrough;
1069 
1070 	case PL330_STATE_KILLING:
1071 	case PL330_STATE_COMPLETING:
1072 		UNTIL(thrd, PL330_STATE_STOPPED)
1073 		fallthrough;
1074 
1075 	case PL330_STATE_STOPPED:
1076 		return _trigger(thrd);
1077 
1078 	case PL330_STATE_WFP:
1079 	case PL330_STATE_QUEUEBUSY:
1080 	case PL330_STATE_ATBARRIER:
1081 	case PL330_STATE_UPDTPC:
1082 	case PL330_STATE_CACHEMISS:
1083 	case PL330_STATE_EXECUTING:
1084 		return true;
1085 
1086 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1087 	default:
1088 		return false;
1089 	}
1090 }
1091 
1092 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1093 		const struct _xfer_spec *pxs, int cyc)
1094 {
1095 	int off = 0;
1096 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1097 
1098 	/* check lock-up free version */
1099 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1100 		while (cyc--) {
1101 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1102 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1103 		}
1104 	} else {
1105 		while (cyc--) {
1106 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1107 			off += _emit_RMB(dry_run, &buf[off]);
1108 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1109 			off += _emit_WMB(dry_run, &buf[off]);
1110 		}
1111 	}
1112 
1113 	return off;
1114 }
1115 
1116 static u32 _emit_load(unsigned int dry_run, u8 buf[],
1117 	enum pl330_cond cond, enum dma_transfer_direction direction,
1118 	u8 peri)
1119 {
1120 	int off = 0;
1121 
1122 	switch (direction) {
1123 	case DMA_MEM_TO_MEM:
1124 	case DMA_MEM_TO_DEV:
1125 		off += _emit_LD(dry_run, &buf[off], cond);
1126 		break;
1127 
1128 	case DMA_DEV_TO_MEM:
1129 		if (cond == ALWAYS) {
1130 			off += _emit_LDP(dry_run, &buf[off], SINGLE,
1131 				peri);
1132 			off += _emit_LDP(dry_run, &buf[off], BURST,
1133 				peri);
1134 		} else {
1135 			off += _emit_LDP(dry_run, &buf[off], cond,
1136 				peri);
1137 		}
1138 		break;
1139 
1140 	default:
1141 		/* this code should be unreachable */
1142 		WARN_ON(1);
1143 		break;
1144 	}
1145 
1146 	return off;
1147 }
1148 
1149 static inline u32 _emit_store(unsigned int dry_run, u8 buf[],
1150 	enum pl330_cond cond, enum dma_transfer_direction direction,
1151 	u8 peri)
1152 {
1153 	int off = 0;
1154 
1155 	switch (direction) {
1156 	case DMA_MEM_TO_MEM:
1157 	case DMA_DEV_TO_MEM:
1158 		off += _emit_ST(dry_run, &buf[off], cond);
1159 		break;
1160 
1161 	case DMA_MEM_TO_DEV:
1162 		if (cond == ALWAYS) {
1163 			off += _emit_STP(dry_run, &buf[off], SINGLE,
1164 				peri);
1165 			off += _emit_STP(dry_run, &buf[off], BURST,
1166 				peri);
1167 		} else {
1168 			off += _emit_STP(dry_run, &buf[off], cond,
1169 				peri);
1170 		}
1171 		break;
1172 
1173 	default:
1174 		/* this code should be unreachable */
1175 		WARN_ON(1);
1176 		break;
1177 	}
1178 
1179 	return off;
1180 }
1181 
1182 static inline int _ldst_peripheral(struct pl330_dmac *pl330,
1183 				 unsigned dry_run, u8 buf[],
1184 				 const struct _xfer_spec *pxs, int cyc,
1185 				 enum pl330_cond cond)
1186 {
1187 	int off = 0;
1188 
1189 	/*
1190 	 * do FLUSHP at beginning to clear any stale dma requests before the
1191 	 * first WFP.
1192 	 */
1193 	if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1194 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1195 	while (cyc--) {
1196 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1197 		off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype,
1198 			pxs->desc->peri);
1199 		off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype,
1200 			pxs->desc->peri);
1201 	}
1202 
1203 	return off;
1204 }
1205 
1206 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1207 		const struct _xfer_spec *pxs, int cyc)
1208 {
1209 	int off = 0;
1210 	enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE;
1211 
1212 	if (pl330->quirks & PL330_QUIRK_PERIPH_BURST)
1213 		cond = BURST;
1214 
1215 	switch (pxs->desc->rqtype) {
1216 	case DMA_MEM_TO_DEV:
1217 	case DMA_DEV_TO_MEM:
1218 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc,
1219 			cond);
1220 		break;
1221 
1222 	case DMA_MEM_TO_MEM:
1223 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1224 		break;
1225 
1226 	default:
1227 		/* this code should be unreachable */
1228 		WARN_ON(1);
1229 		break;
1230 	}
1231 
1232 	return off;
1233 }
1234 
1235 /*
1236  * only the unaligned burst transfers have the dregs.
1237  * so, still transfer dregs with a reduced size burst
1238  * for mem-to-mem, mem-to-dev or dev-to-mem.
1239  */
1240 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1241 		const struct _xfer_spec *pxs, int transfer_length)
1242 {
1243 	int off = 0;
1244 	int dregs_ccr;
1245 
1246 	if (transfer_length == 0)
1247 		return off;
1248 
1249 	/*
1250 	 * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) /
1251 	 *             BRST_SIZE(ccr)
1252 	 * the dregs len must be smaller than burst len,
1253 	 * so, for higher efficiency, we can modify CCR
1254 	 * to use a reduced size burst len for the dregs.
1255 	 */
1256 	dregs_ccr = pxs->ccr;
1257 	dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1258 		(0xf << CC_DSTBRSTLEN_SHFT));
1259 	dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1260 		CC_SRCBRSTLEN_SHFT);
1261 	dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1262 		CC_DSTBRSTLEN_SHFT);
1263 
1264 	switch (pxs->desc->rqtype) {
1265 	case DMA_MEM_TO_DEV:
1266 	case DMA_DEV_TO_MEM:
1267 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1268 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1,
1269 					BURST);
1270 		break;
1271 
1272 	case DMA_MEM_TO_MEM:
1273 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1274 		off += _ldst_memtomem(dry_run, &buf[off], pxs, 1);
1275 		break;
1276 
1277 	default:
1278 		/* this code should be unreachable */
1279 		WARN_ON(1);
1280 		break;
1281 	}
1282 
1283 	return off;
1284 }
1285 
1286 /* Returns bytes consumed and updates bursts */
1287 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1288 		unsigned long *bursts, const struct _xfer_spec *pxs)
1289 {
1290 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1291 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1292 	struct _arg_LPEND lpend;
1293 
1294 	if (*bursts == 1)
1295 		return _bursts(pl330, dry_run, buf, pxs, 1);
1296 
1297 	/* Max iterations possible in DMALP is 256 */
1298 	if (*bursts >= 256*256) {
1299 		lcnt1 = 256;
1300 		lcnt0 = 256;
1301 		cyc = *bursts / lcnt1 / lcnt0;
1302 	} else if (*bursts > 256) {
1303 		lcnt1 = 256;
1304 		lcnt0 = *bursts / lcnt1;
1305 		cyc = 1;
1306 	} else {
1307 		lcnt1 = *bursts;
1308 		lcnt0 = 0;
1309 		cyc = 1;
1310 	}
1311 
1312 	szlp = _emit_LP(1, buf, 0, 0);
1313 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1314 
1315 	lpend.cond = ALWAYS;
1316 	lpend.forever = false;
1317 	lpend.loop = 0;
1318 	lpend.bjump = 0;
1319 	szlpend = _emit_LPEND(1, buf, &lpend);
1320 
1321 	if (lcnt0) {
1322 		szlp *= 2;
1323 		szlpend *= 2;
1324 	}
1325 
1326 	/*
1327 	 * Max bursts that we can unroll due to limit on the
1328 	 * size of backward jump that can be encoded in DMALPEND
1329 	 * which is 8-bits and hence 255
1330 	 */
1331 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1332 
1333 	cyc = (cycmax < cyc) ? cycmax : cyc;
1334 
1335 	off = 0;
1336 
1337 	if (lcnt0) {
1338 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1339 		ljmp0 = off;
1340 	}
1341 
1342 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1343 	ljmp1 = off;
1344 
1345 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1346 
1347 	lpend.cond = ALWAYS;
1348 	lpend.forever = false;
1349 	lpend.loop = 1;
1350 	lpend.bjump = off - ljmp1;
1351 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1352 
1353 	if (lcnt0) {
1354 		lpend.cond = ALWAYS;
1355 		lpend.forever = false;
1356 		lpend.loop = 0;
1357 		lpend.bjump = off - ljmp0;
1358 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1359 	}
1360 
1361 	*bursts = lcnt1 * cyc;
1362 	if (lcnt0)
1363 		*bursts *= lcnt0;
1364 
1365 	return off;
1366 }
1367 
1368 static inline int _setup_loops(struct pl330_dmac *pl330,
1369 			       unsigned dry_run, u8 buf[],
1370 			       const struct _xfer_spec *pxs)
1371 {
1372 	struct pl330_xfer *x = &pxs->desc->px;
1373 	u32 ccr = pxs->ccr;
1374 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1375 	int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) /
1376 		BRST_SIZE(ccr);
1377 	int off = 0;
1378 
1379 	while (bursts) {
1380 		c = bursts;
1381 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1382 		bursts -= c;
1383 	}
1384 	off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1385 
1386 	return off;
1387 }
1388 
1389 static inline int _setup_xfer(struct pl330_dmac *pl330,
1390 			      unsigned dry_run, u8 buf[],
1391 			      const struct _xfer_spec *pxs)
1392 {
1393 	struct pl330_xfer *x = &pxs->desc->px;
1394 	int off = 0;
1395 
1396 	/* DMAMOV SAR, x->src_addr */
1397 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1398 	/* DMAMOV DAR, x->dst_addr */
1399 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1400 
1401 	/* Setup Loop(s) */
1402 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1403 
1404 	return off;
1405 }
1406 
1407 /*
1408  * A req is a sequence of one or more xfer units.
1409  * Returns the number of bytes taken to setup the MC for the req.
1410  */
1411 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1412 		      struct pl330_thread *thrd, unsigned index,
1413 		      struct _xfer_spec *pxs)
1414 {
1415 	struct _pl330_req *req = &thrd->req[index];
1416 	u8 *buf = req->mc_cpu;
1417 	int off = 0;
1418 
1419 	PL330_DBGMC_START(req->mc_bus);
1420 
1421 	/* DMAMOV CCR, ccr */
1422 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1423 
1424 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1425 
1426 	/* DMASEV peripheral/event */
1427 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1428 	/* DMAEND */
1429 	off += _emit_END(dry_run, &buf[off]);
1430 
1431 	return off;
1432 }
1433 
1434 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1435 {
1436 	u32 ccr = 0;
1437 
1438 	if (rqc->src_inc)
1439 		ccr |= CC_SRCINC;
1440 
1441 	if (rqc->dst_inc)
1442 		ccr |= CC_DSTINC;
1443 
1444 	/* We set same protection levels for Src and DST for now */
1445 	if (rqc->privileged)
1446 		ccr |= CC_SRCPRI | CC_DSTPRI;
1447 	if (rqc->nonsecure)
1448 		ccr |= CC_SRCNS | CC_DSTNS;
1449 	if (rqc->insnaccess)
1450 		ccr |= CC_SRCIA | CC_DSTIA;
1451 
1452 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1453 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1454 
1455 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1456 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1457 
1458 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1459 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1460 
1461 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1462 
1463 	return ccr;
1464 }
1465 
1466 /*
1467  * Submit a list of xfers after which the client wants notification.
1468  * Client is not notified after each xfer unit, just once after all
1469  * xfer units are done or some error occurs.
1470  */
1471 static int pl330_submit_req(struct pl330_thread *thrd,
1472 	struct dma_pl330_desc *desc)
1473 {
1474 	struct pl330_dmac *pl330 = thrd->dmac;
1475 	struct _xfer_spec xs;
1476 	unsigned long flags;
1477 	unsigned idx;
1478 	u32 ccr;
1479 	int ret = 0;
1480 
1481 	switch (desc->rqtype) {
1482 	case DMA_MEM_TO_DEV:
1483 		break;
1484 
1485 	case DMA_DEV_TO_MEM:
1486 		break;
1487 
1488 	case DMA_MEM_TO_MEM:
1489 		break;
1490 
1491 	default:
1492 		return -ENOTSUPP;
1493 	}
1494 
1495 	if (pl330->state == DYING
1496 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1497 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1498 			__func__, __LINE__);
1499 		return -EAGAIN;
1500 	}
1501 
1502 	/* If request for non-existing peripheral */
1503 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1504 	    desc->peri >= pl330->pcfg.num_peri) {
1505 		dev_info(thrd->dmac->ddma.dev,
1506 				"%s:%d Invalid peripheral(%u)!\n",
1507 				__func__, __LINE__, desc->peri);
1508 		return -EINVAL;
1509 	}
1510 
1511 	spin_lock_irqsave(&pl330->lock, flags);
1512 
1513 	if (_queue_full(thrd)) {
1514 		ret = -EAGAIN;
1515 		goto xfer_exit;
1516 	}
1517 
1518 	/* Prefer Secure Channel */
1519 	if (!_manager_ns(thrd))
1520 		desc->rqcfg.nonsecure = 0;
1521 	else
1522 		desc->rqcfg.nonsecure = 1;
1523 
1524 	ccr = _prepare_ccr(&desc->rqcfg);
1525 
1526 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1527 
1528 	xs.ccr = ccr;
1529 	xs.desc = desc;
1530 
1531 	/* First dry run to check if req is acceptable */
1532 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1533 	if (ret < 0)
1534 		goto xfer_exit;
1535 
1536 	if (ret > pl330->mcbufsz / 2) {
1537 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1538 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1539 		ret = -ENOMEM;
1540 		goto xfer_exit;
1541 	}
1542 
1543 	/* Hook the request */
1544 	thrd->lstenq = idx;
1545 	thrd->req[idx].desc = desc;
1546 	_setup_req(pl330, 0, thrd, idx, &xs);
1547 
1548 	ret = 0;
1549 
1550 xfer_exit:
1551 	spin_unlock_irqrestore(&pl330->lock, flags);
1552 
1553 	return ret;
1554 }
1555 
1556 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1557 {
1558 	struct dma_pl330_chan *pch;
1559 	unsigned long flags;
1560 
1561 	if (!desc)
1562 		return;
1563 
1564 	pch = desc->pchan;
1565 
1566 	/* If desc aborted */
1567 	if (!pch)
1568 		return;
1569 
1570 	spin_lock_irqsave(&pch->lock, flags);
1571 
1572 	desc->status = DONE;
1573 
1574 	spin_unlock_irqrestore(&pch->lock, flags);
1575 
1576 	tasklet_schedule(&pch->task);
1577 }
1578 
1579 static void pl330_dotask(unsigned long data)
1580 {
1581 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1582 	unsigned long flags;
1583 	int i;
1584 
1585 	spin_lock_irqsave(&pl330->lock, flags);
1586 
1587 	/* The DMAC itself gone nuts */
1588 	if (pl330->dmac_tbd.reset_dmac) {
1589 		pl330->state = DYING;
1590 		/* Reset the manager too */
1591 		pl330->dmac_tbd.reset_mngr = true;
1592 		/* Clear the reset flag */
1593 		pl330->dmac_tbd.reset_dmac = false;
1594 	}
1595 
1596 	if (pl330->dmac_tbd.reset_mngr) {
1597 		_stop(pl330->manager);
1598 		/* Reset all channels */
1599 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1600 		/* Clear the reset flag */
1601 		pl330->dmac_tbd.reset_mngr = false;
1602 	}
1603 
1604 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1605 
1606 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1607 			struct pl330_thread *thrd = &pl330->channels[i];
1608 			void __iomem *regs = pl330->base;
1609 			enum pl330_op_err err;
1610 
1611 			_stop(thrd);
1612 
1613 			if (readl(regs + FSC) & (1 << thrd->id))
1614 				err = PL330_ERR_FAIL;
1615 			else
1616 				err = PL330_ERR_ABORT;
1617 
1618 			spin_unlock_irqrestore(&pl330->lock, flags);
1619 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1620 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1621 			spin_lock_irqsave(&pl330->lock, flags);
1622 
1623 			thrd->req[0].desc = NULL;
1624 			thrd->req[1].desc = NULL;
1625 			thrd->req_running = -1;
1626 
1627 			/* Clear the reset flag */
1628 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1629 		}
1630 	}
1631 
1632 	spin_unlock_irqrestore(&pl330->lock, flags);
1633 
1634 	return;
1635 }
1636 
1637 /* Returns 1 if state was updated, 0 otherwise */
1638 static int pl330_update(struct pl330_dmac *pl330)
1639 {
1640 	struct dma_pl330_desc *descdone;
1641 	unsigned long flags;
1642 	void __iomem *regs;
1643 	u32 val;
1644 	int id, ev, ret = 0;
1645 
1646 	regs = pl330->base;
1647 
1648 	spin_lock_irqsave(&pl330->lock, flags);
1649 
1650 	val = readl(regs + FSM) & 0x1;
1651 	if (val)
1652 		pl330->dmac_tbd.reset_mngr = true;
1653 	else
1654 		pl330->dmac_tbd.reset_mngr = false;
1655 
1656 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1657 	pl330->dmac_tbd.reset_chan |= val;
1658 	if (val) {
1659 		int i = 0;
1660 		while (i < pl330->pcfg.num_chan) {
1661 			if (val & (1 << i)) {
1662 				dev_info(pl330->ddma.dev,
1663 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1664 						i, readl(regs + CS(i)),
1665 						readl(regs + FTC(i)));
1666 				_stop(&pl330->channels[i]);
1667 			}
1668 			i++;
1669 		}
1670 	}
1671 
1672 	/* Check which event happened i.e, thread notified */
1673 	val = readl(regs + ES);
1674 	if (pl330->pcfg.num_events < 32
1675 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1676 		pl330->dmac_tbd.reset_dmac = true;
1677 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1678 			__LINE__);
1679 		ret = 1;
1680 		goto updt_exit;
1681 	}
1682 
1683 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1684 		if (val & (1 << ev)) { /* Event occurred */
1685 			struct pl330_thread *thrd;
1686 			u32 inten = readl(regs + INTEN);
1687 			int active;
1688 
1689 			/* Clear the event */
1690 			if (inten & (1 << ev))
1691 				writel(1 << ev, regs + INTCLR);
1692 
1693 			ret = 1;
1694 
1695 			id = pl330->events[ev];
1696 
1697 			thrd = &pl330->channels[id];
1698 
1699 			active = thrd->req_running;
1700 			if (active == -1) /* Aborted */
1701 				continue;
1702 
1703 			/* Detach the req */
1704 			descdone = thrd->req[active].desc;
1705 			thrd->req[active].desc = NULL;
1706 
1707 			thrd->req_running = -1;
1708 
1709 			/* Get going again ASAP */
1710 			_start(thrd);
1711 
1712 			/* For now, just make a list of callbacks to be done */
1713 			list_add_tail(&descdone->rqd, &pl330->req_done);
1714 		}
1715 	}
1716 
1717 	/* Now that we are in no hurry, do the callbacks */
1718 	while (!list_empty(&pl330->req_done)) {
1719 		descdone = list_first_entry(&pl330->req_done,
1720 					    struct dma_pl330_desc, rqd);
1721 		list_del(&descdone->rqd);
1722 		spin_unlock_irqrestore(&pl330->lock, flags);
1723 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1724 		spin_lock_irqsave(&pl330->lock, flags);
1725 	}
1726 
1727 updt_exit:
1728 	spin_unlock_irqrestore(&pl330->lock, flags);
1729 
1730 	if (pl330->dmac_tbd.reset_dmac
1731 			|| pl330->dmac_tbd.reset_mngr
1732 			|| pl330->dmac_tbd.reset_chan) {
1733 		ret = 1;
1734 		tasklet_schedule(&pl330->tasks);
1735 	}
1736 
1737 	return ret;
1738 }
1739 
1740 /* Reserve an event */
1741 static inline int _alloc_event(struct pl330_thread *thrd)
1742 {
1743 	struct pl330_dmac *pl330 = thrd->dmac;
1744 	int ev;
1745 
1746 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1747 		if (pl330->events[ev] == -1) {
1748 			pl330->events[ev] = thrd->id;
1749 			return ev;
1750 		}
1751 
1752 	return -1;
1753 }
1754 
1755 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1756 {
1757 	return pl330->pcfg.irq_ns & (1 << i);
1758 }
1759 
1760 /* Upon success, returns IdentityToken for the
1761  * allocated channel, NULL otherwise.
1762  */
1763 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1764 {
1765 	struct pl330_thread *thrd = NULL;
1766 	int chans, i;
1767 
1768 	if (pl330->state == DYING)
1769 		return NULL;
1770 
1771 	chans = pl330->pcfg.num_chan;
1772 
1773 	for (i = 0; i < chans; i++) {
1774 		thrd = &pl330->channels[i];
1775 		if ((thrd->free) && (!_manager_ns(thrd) ||
1776 					_chan_ns(pl330, i))) {
1777 			thrd->ev = _alloc_event(thrd);
1778 			if (thrd->ev >= 0) {
1779 				thrd->free = false;
1780 				thrd->lstenq = 1;
1781 				thrd->req[0].desc = NULL;
1782 				thrd->req[1].desc = NULL;
1783 				thrd->req_running = -1;
1784 				break;
1785 			}
1786 		}
1787 		thrd = NULL;
1788 	}
1789 
1790 	return thrd;
1791 }
1792 
1793 /* Release an event */
1794 static inline void _free_event(struct pl330_thread *thrd, int ev)
1795 {
1796 	struct pl330_dmac *pl330 = thrd->dmac;
1797 
1798 	/* If the event is valid and was held by the thread */
1799 	if (ev >= 0 && ev < pl330->pcfg.num_events
1800 			&& pl330->events[ev] == thrd->id)
1801 		pl330->events[ev] = -1;
1802 }
1803 
1804 static void pl330_release_channel(struct pl330_thread *thrd)
1805 {
1806 	if (!thrd || thrd->free)
1807 		return;
1808 
1809 	_stop(thrd);
1810 
1811 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1812 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1813 
1814 	_free_event(thrd, thrd->ev);
1815 	thrd->free = true;
1816 }
1817 
1818 /* Initialize the structure for PL330 configuration, that can be used
1819  * by the client driver the make best use of the DMAC
1820  */
1821 static void read_dmac_config(struct pl330_dmac *pl330)
1822 {
1823 	void __iomem *regs = pl330->base;
1824 	u32 val;
1825 
1826 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1827 	val &= CRD_DATA_WIDTH_MASK;
1828 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1829 
1830 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1831 	val &= CRD_DATA_BUFF_MASK;
1832 	pl330->pcfg.data_buf_dep = val + 1;
1833 
1834 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1835 	val &= CR0_NUM_CHANS_MASK;
1836 	val += 1;
1837 	pl330->pcfg.num_chan = val;
1838 
1839 	val = readl(regs + CR0);
1840 	if (val & CR0_PERIPH_REQ_SET) {
1841 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1842 		val += 1;
1843 		pl330->pcfg.num_peri = val;
1844 		pl330->pcfg.peri_ns = readl(regs + CR4);
1845 	} else {
1846 		pl330->pcfg.num_peri = 0;
1847 	}
1848 
1849 	val = readl(regs + CR0);
1850 	if (val & CR0_BOOT_MAN_NS)
1851 		pl330->pcfg.mode |= DMAC_MODE_NS;
1852 	else
1853 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1854 
1855 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1856 	val &= CR0_NUM_EVENTS_MASK;
1857 	val += 1;
1858 	pl330->pcfg.num_events = val;
1859 
1860 	pl330->pcfg.irq_ns = readl(regs + CR3);
1861 }
1862 
1863 static inline void _reset_thread(struct pl330_thread *thrd)
1864 {
1865 	struct pl330_dmac *pl330 = thrd->dmac;
1866 
1867 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1868 				+ (thrd->id * pl330->mcbufsz);
1869 	thrd->req[0].mc_bus = pl330->mcode_bus
1870 				+ (thrd->id * pl330->mcbufsz);
1871 	thrd->req[0].desc = NULL;
1872 
1873 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1874 				+ pl330->mcbufsz / 2;
1875 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1876 				+ pl330->mcbufsz / 2;
1877 	thrd->req[1].desc = NULL;
1878 
1879 	thrd->req_running = -1;
1880 }
1881 
1882 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1883 {
1884 	int chans = pl330->pcfg.num_chan;
1885 	struct pl330_thread *thrd;
1886 	int i;
1887 
1888 	/* Allocate 1 Manager and 'chans' Channel threads */
1889 	pl330->channels = kcalloc(1 + chans, sizeof(*thrd),
1890 					GFP_KERNEL);
1891 	if (!pl330->channels)
1892 		return -ENOMEM;
1893 
1894 	/* Init Channel threads */
1895 	for (i = 0; i < chans; i++) {
1896 		thrd = &pl330->channels[i];
1897 		thrd->id = i;
1898 		thrd->dmac = pl330;
1899 		_reset_thread(thrd);
1900 		thrd->free = true;
1901 	}
1902 
1903 	/* MANAGER is indexed at the end */
1904 	thrd = &pl330->channels[chans];
1905 	thrd->id = chans;
1906 	thrd->dmac = pl330;
1907 	thrd->free = false;
1908 	pl330->manager = thrd;
1909 
1910 	return 0;
1911 }
1912 
1913 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1914 {
1915 	int chans = pl330->pcfg.num_chan;
1916 	int ret;
1917 
1918 	/*
1919 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1920 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1921 	 */
1922 	pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1923 				chans * pl330->mcbufsz,
1924 				&pl330->mcode_bus, GFP_KERNEL,
1925 				DMA_ATTR_PRIVILEGED);
1926 	if (!pl330->mcode_cpu) {
1927 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1928 			__func__, __LINE__);
1929 		return -ENOMEM;
1930 	}
1931 
1932 	ret = dmac_alloc_threads(pl330);
1933 	if (ret) {
1934 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1935 			__func__, __LINE__);
1936 		dma_free_attrs(pl330->ddma.dev,
1937 				chans * pl330->mcbufsz,
1938 				pl330->mcode_cpu, pl330->mcode_bus,
1939 				DMA_ATTR_PRIVILEGED);
1940 		return ret;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static int pl330_add(struct pl330_dmac *pl330)
1947 {
1948 	int i, ret;
1949 
1950 	/* Check if we can handle this DMAC */
1951 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1952 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1953 			pl330->pcfg.periph_id);
1954 		return -EINVAL;
1955 	}
1956 
1957 	/* Read the configuration of the DMAC */
1958 	read_dmac_config(pl330);
1959 
1960 	if (pl330->pcfg.num_events == 0) {
1961 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1962 			__func__, __LINE__);
1963 		return -EINVAL;
1964 	}
1965 
1966 	spin_lock_init(&pl330->lock);
1967 
1968 	INIT_LIST_HEAD(&pl330->req_done);
1969 
1970 	/* Use default MC buffer size if not provided */
1971 	if (!pl330->mcbufsz)
1972 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1973 
1974 	/* Mark all events as free */
1975 	for (i = 0; i < pl330->pcfg.num_events; i++)
1976 		pl330->events[i] = -1;
1977 
1978 	/* Allocate resources needed by the DMAC */
1979 	ret = dmac_alloc_resources(pl330);
1980 	if (ret) {
1981 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1982 		return ret;
1983 	}
1984 
1985 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1986 
1987 	pl330->state = INIT;
1988 
1989 	return 0;
1990 }
1991 
1992 static int dmac_free_threads(struct pl330_dmac *pl330)
1993 {
1994 	struct pl330_thread *thrd;
1995 	int i;
1996 
1997 	/* Release Channel threads */
1998 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1999 		thrd = &pl330->channels[i];
2000 		pl330_release_channel(thrd);
2001 	}
2002 
2003 	/* Free memory */
2004 	kfree(pl330->channels);
2005 
2006 	return 0;
2007 }
2008 
2009 static void pl330_del(struct pl330_dmac *pl330)
2010 {
2011 	pl330->state = UNINIT;
2012 
2013 	tasklet_kill(&pl330->tasks);
2014 
2015 	/* Free DMAC resources */
2016 	dmac_free_threads(pl330);
2017 
2018 	dma_free_attrs(pl330->ddma.dev,
2019 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
2020 		pl330->mcode_bus, DMA_ATTR_PRIVILEGED);
2021 }
2022 
2023 /* forward declaration */
2024 static struct amba_driver pl330_driver;
2025 
2026 static inline struct dma_pl330_chan *
2027 to_pchan(struct dma_chan *ch)
2028 {
2029 	if (!ch)
2030 		return NULL;
2031 
2032 	return container_of(ch, struct dma_pl330_chan, chan);
2033 }
2034 
2035 static inline struct dma_pl330_desc *
2036 to_desc(struct dma_async_tx_descriptor *tx)
2037 {
2038 	return container_of(tx, struct dma_pl330_desc, txd);
2039 }
2040 
2041 static inline void fill_queue(struct dma_pl330_chan *pch)
2042 {
2043 	struct dma_pl330_desc *desc;
2044 	int ret;
2045 
2046 	list_for_each_entry(desc, &pch->work_list, node) {
2047 
2048 		/* If already submitted */
2049 		if (desc->status == BUSY)
2050 			continue;
2051 
2052 		ret = pl330_submit_req(pch->thread, desc);
2053 		if (!ret) {
2054 			desc->status = BUSY;
2055 		} else if (ret == -EAGAIN) {
2056 			/* QFull or DMAC Dying */
2057 			break;
2058 		} else {
2059 			/* Unacceptable request */
2060 			desc->status = DONE;
2061 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2062 					__func__, __LINE__, desc->txd.cookie);
2063 			tasklet_schedule(&pch->task);
2064 		}
2065 	}
2066 }
2067 
2068 static void pl330_tasklet(unsigned long data)
2069 {
2070 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2071 	struct dma_pl330_desc *desc, *_dt;
2072 	unsigned long flags;
2073 	bool power_down = false;
2074 
2075 	spin_lock_irqsave(&pch->lock, flags);
2076 
2077 	/* Pick up ripe tomatoes */
2078 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2079 		if (desc->status == DONE) {
2080 			if (!pch->cyclic)
2081 				dma_cookie_complete(&desc->txd);
2082 			list_move_tail(&desc->node, &pch->completed_list);
2083 		}
2084 
2085 	/* Try to submit a req imm. next to the last completed cookie */
2086 	fill_queue(pch);
2087 
2088 	if (list_empty(&pch->work_list)) {
2089 		spin_lock(&pch->thread->dmac->lock);
2090 		_stop(pch->thread);
2091 		spin_unlock(&pch->thread->dmac->lock);
2092 		power_down = true;
2093 		pch->active = false;
2094 	} else {
2095 		/* Make sure the PL330 Channel thread is active */
2096 		spin_lock(&pch->thread->dmac->lock);
2097 		_start(pch->thread);
2098 		spin_unlock(&pch->thread->dmac->lock);
2099 	}
2100 
2101 	while (!list_empty(&pch->completed_list)) {
2102 		struct dmaengine_desc_callback cb;
2103 
2104 		desc = list_first_entry(&pch->completed_list,
2105 					struct dma_pl330_desc, node);
2106 
2107 		dmaengine_desc_get_callback(&desc->txd, &cb);
2108 
2109 		if (pch->cyclic) {
2110 			desc->status = PREP;
2111 			list_move_tail(&desc->node, &pch->work_list);
2112 			if (power_down) {
2113 				pch->active = true;
2114 				spin_lock(&pch->thread->dmac->lock);
2115 				_start(pch->thread);
2116 				spin_unlock(&pch->thread->dmac->lock);
2117 				power_down = false;
2118 			}
2119 		} else {
2120 			desc->status = FREE;
2121 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2122 		}
2123 
2124 		dma_descriptor_unmap(&desc->txd);
2125 
2126 		if (dmaengine_desc_callback_valid(&cb)) {
2127 			spin_unlock_irqrestore(&pch->lock, flags);
2128 			dmaengine_desc_callback_invoke(&cb, NULL);
2129 			spin_lock_irqsave(&pch->lock, flags);
2130 		}
2131 	}
2132 	spin_unlock_irqrestore(&pch->lock, flags);
2133 
2134 	/* If work list empty, power down */
2135 	if (power_down) {
2136 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2137 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2138 	}
2139 }
2140 
2141 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2142 						struct of_dma *ofdma)
2143 {
2144 	int count = dma_spec->args_count;
2145 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2146 	unsigned int chan_id;
2147 
2148 	if (!pl330)
2149 		return NULL;
2150 
2151 	if (count != 1)
2152 		return NULL;
2153 
2154 	chan_id = dma_spec->args[0];
2155 	if (chan_id >= pl330->num_peripherals)
2156 		return NULL;
2157 
2158 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2159 }
2160 
2161 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2162 {
2163 	struct dma_pl330_chan *pch = to_pchan(chan);
2164 	struct pl330_dmac *pl330 = pch->dmac;
2165 	unsigned long flags;
2166 
2167 	spin_lock_irqsave(&pl330->lock, flags);
2168 
2169 	dma_cookie_init(chan);
2170 	pch->cyclic = false;
2171 
2172 	pch->thread = pl330_request_channel(pl330);
2173 	if (!pch->thread) {
2174 		spin_unlock_irqrestore(&pl330->lock, flags);
2175 		return -ENOMEM;
2176 	}
2177 
2178 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2179 
2180 	spin_unlock_irqrestore(&pl330->lock, flags);
2181 
2182 	return 1;
2183 }
2184 
2185 /*
2186  * We need the data direction between the DMAC (the dma-mapping "device") and
2187  * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2188  */
2189 static enum dma_data_direction
2190 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2191 {
2192 	switch (dir) {
2193 	case DMA_MEM_TO_DEV:
2194 		return DMA_FROM_DEVICE;
2195 	case DMA_DEV_TO_MEM:
2196 		return DMA_TO_DEVICE;
2197 	case DMA_DEV_TO_DEV:
2198 		return DMA_BIDIRECTIONAL;
2199 	default:
2200 		return DMA_NONE;
2201 	}
2202 }
2203 
2204 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2205 {
2206 	if (pch->dir != DMA_NONE)
2207 		dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2208 				   1 << pch->burst_sz, pch->dir, 0);
2209 	pch->dir = DMA_NONE;
2210 }
2211 
2212 
2213 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2214 				  enum dma_transfer_direction dir)
2215 {
2216 	struct device *dev = pch->chan.device->dev;
2217 	enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2218 
2219 	/* Already mapped for this config? */
2220 	if (pch->dir == dma_dir)
2221 		return true;
2222 
2223 	pl330_unprep_slave_fifo(pch);
2224 	pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2225 					 1 << pch->burst_sz, dma_dir, 0);
2226 	if (dma_mapping_error(dev, pch->fifo_dma))
2227 		return false;
2228 
2229 	pch->dir = dma_dir;
2230 	return true;
2231 }
2232 
2233 static int fixup_burst_len(int max_burst_len, int quirks)
2234 {
2235 	if (max_burst_len > PL330_MAX_BURST)
2236 		return PL330_MAX_BURST;
2237 	else if (max_burst_len < 1)
2238 		return 1;
2239 	else
2240 		return max_burst_len;
2241 }
2242 
2243 static int pl330_config_write(struct dma_chan *chan,
2244 			struct dma_slave_config *slave_config,
2245 			enum dma_transfer_direction direction)
2246 {
2247 	struct dma_pl330_chan *pch = to_pchan(chan);
2248 
2249 	pl330_unprep_slave_fifo(pch);
2250 	if (direction == DMA_MEM_TO_DEV) {
2251 		if (slave_config->dst_addr)
2252 			pch->fifo_addr = slave_config->dst_addr;
2253 		if (slave_config->dst_addr_width)
2254 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2255 		pch->burst_len = fixup_burst_len(slave_config->dst_maxburst,
2256 			pch->dmac->quirks);
2257 	} else if (direction == DMA_DEV_TO_MEM) {
2258 		if (slave_config->src_addr)
2259 			pch->fifo_addr = slave_config->src_addr;
2260 		if (slave_config->src_addr_width)
2261 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2262 		pch->burst_len = fixup_burst_len(slave_config->src_maxburst,
2263 			pch->dmac->quirks);
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 static int pl330_config(struct dma_chan *chan,
2270 			struct dma_slave_config *slave_config)
2271 {
2272 	struct dma_pl330_chan *pch = to_pchan(chan);
2273 
2274 	memcpy(&pch->slave_config, slave_config, sizeof(*slave_config));
2275 
2276 	return 0;
2277 }
2278 
2279 static int pl330_terminate_all(struct dma_chan *chan)
2280 {
2281 	struct dma_pl330_chan *pch = to_pchan(chan);
2282 	struct dma_pl330_desc *desc;
2283 	unsigned long flags;
2284 	struct pl330_dmac *pl330 = pch->dmac;
2285 	bool power_down = false;
2286 
2287 	pm_runtime_get_sync(pl330->ddma.dev);
2288 	spin_lock_irqsave(&pch->lock, flags);
2289 
2290 	spin_lock(&pl330->lock);
2291 	_stop(pch->thread);
2292 	pch->thread->req[0].desc = NULL;
2293 	pch->thread->req[1].desc = NULL;
2294 	pch->thread->req_running = -1;
2295 	spin_unlock(&pl330->lock);
2296 
2297 	power_down = pch->active;
2298 	pch->active = false;
2299 
2300 	/* Mark all desc done */
2301 	list_for_each_entry(desc, &pch->submitted_list, node) {
2302 		desc->status = FREE;
2303 		dma_cookie_complete(&desc->txd);
2304 	}
2305 
2306 	list_for_each_entry(desc, &pch->work_list , node) {
2307 		desc->status = FREE;
2308 		dma_cookie_complete(&desc->txd);
2309 	}
2310 
2311 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2312 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2313 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2314 	spin_unlock_irqrestore(&pch->lock, flags);
2315 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2316 	if (power_down)
2317 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2318 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2319 
2320 	return 0;
2321 }
2322 
2323 /*
2324  * We don't support DMA_RESUME command because of hardware
2325  * limitations, so after pausing the channel we cannot restore
2326  * it to active state. We have to terminate channel and setup
2327  * DMA transfer again. This pause feature was implemented to
2328  * allow safely read residue before channel termination.
2329  */
2330 static int pl330_pause(struct dma_chan *chan)
2331 {
2332 	struct dma_pl330_chan *pch = to_pchan(chan);
2333 	struct pl330_dmac *pl330 = pch->dmac;
2334 	unsigned long flags;
2335 
2336 	pm_runtime_get_sync(pl330->ddma.dev);
2337 	spin_lock_irqsave(&pch->lock, flags);
2338 
2339 	spin_lock(&pl330->lock);
2340 	_stop(pch->thread);
2341 	spin_unlock(&pl330->lock);
2342 
2343 	spin_unlock_irqrestore(&pch->lock, flags);
2344 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2345 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2346 
2347 	return 0;
2348 }
2349 
2350 static void pl330_free_chan_resources(struct dma_chan *chan)
2351 {
2352 	struct dma_pl330_chan *pch = to_pchan(chan);
2353 	struct pl330_dmac *pl330 = pch->dmac;
2354 	unsigned long flags;
2355 
2356 	tasklet_kill(&pch->task);
2357 
2358 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2359 	spin_lock_irqsave(&pl330->lock, flags);
2360 
2361 	pl330_release_channel(pch->thread);
2362 	pch->thread = NULL;
2363 
2364 	if (pch->cyclic)
2365 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2366 
2367 	spin_unlock_irqrestore(&pl330->lock, flags);
2368 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2369 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2370 	pl330_unprep_slave_fifo(pch);
2371 }
2372 
2373 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2374 					   struct dma_pl330_desc *desc)
2375 {
2376 	struct pl330_thread *thrd = pch->thread;
2377 	struct pl330_dmac *pl330 = pch->dmac;
2378 	void __iomem *regs = thrd->dmac->base;
2379 	u32 val, addr;
2380 
2381 	pm_runtime_get_sync(pl330->ddma.dev);
2382 	val = addr = 0;
2383 	if (desc->rqcfg.src_inc) {
2384 		val = readl(regs + SA(thrd->id));
2385 		addr = desc->px.src_addr;
2386 	} else {
2387 		val = readl(regs + DA(thrd->id));
2388 		addr = desc->px.dst_addr;
2389 	}
2390 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2391 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2392 
2393 	/* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2394 	if (!val)
2395 		return 0;
2396 
2397 	return val - addr;
2398 }
2399 
2400 static enum dma_status
2401 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2402 		 struct dma_tx_state *txstate)
2403 {
2404 	enum dma_status ret;
2405 	unsigned long flags;
2406 	struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2407 	struct dma_pl330_chan *pch = to_pchan(chan);
2408 	unsigned int transferred, residual = 0;
2409 
2410 	ret = dma_cookie_status(chan, cookie, txstate);
2411 
2412 	if (!txstate)
2413 		return ret;
2414 
2415 	if (ret == DMA_COMPLETE)
2416 		goto out;
2417 
2418 	spin_lock_irqsave(&pch->lock, flags);
2419 	spin_lock(&pch->thread->dmac->lock);
2420 
2421 	if (pch->thread->req_running != -1)
2422 		running = pch->thread->req[pch->thread->req_running].desc;
2423 
2424 	last_enq = pch->thread->req[pch->thread->lstenq].desc;
2425 
2426 	/* Check in pending list */
2427 	list_for_each_entry(desc, &pch->work_list, node) {
2428 		if (desc->status == DONE)
2429 			transferred = desc->bytes_requested;
2430 		else if (running && desc == running)
2431 			transferred =
2432 				pl330_get_current_xferred_count(pch, desc);
2433 		else if (desc->status == BUSY)
2434 			/*
2435 			 * Busy but not running means either just enqueued,
2436 			 * or finished and not yet marked done
2437 			 */
2438 			if (desc == last_enq)
2439 				transferred = 0;
2440 			else
2441 				transferred = desc->bytes_requested;
2442 		else
2443 			transferred = 0;
2444 		residual += desc->bytes_requested - transferred;
2445 		if (desc->txd.cookie == cookie) {
2446 			switch (desc->status) {
2447 			case DONE:
2448 				ret = DMA_COMPLETE;
2449 				break;
2450 			case PREP:
2451 			case BUSY:
2452 				ret = DMA_IN_PROGRESS;
2453 				break;
2454 			default:
2455 				WARN_ON(1);
2456 			}
2457 			break;
2458 		}
2459 		if (desc->last)
2460 			residual = 0;
2461 	}
2462 	spin_unlock(&pch->thread->dmac->lock);
2463 	spin_unlock_irqrestore(&pch->lock, flags);
2464 
2465 out:
2466 	dma_set_residue(txstate, residual);
2467 
2468 	return ret;
2469 }
2470 
2471 static void pl330_issue_pending(struct dma_chan *chan)
2472 {
2473 	struct dma_pl330_chan *pch = to_pchan(chan);
2474 	unsigned long flags;
2475 
2476 	spin_lock_irqsave(&pch->lock, flags);
2477 	if (list_empty(&pch->work_list)) {
2478 		/*
2479 		 * Warn on nothing pending. Empty submitted_list may
2480 		 * break our pm_runtime usage counter as it is
2481 		 * updated on work_list emptiness status.
2482 		 */
2483 		WARN_ON(list_empty(&pch->submitted_list));
2484 		pch->active = true;
2485 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2486 	}
2487 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2488 	spin_unlock_irqrestore(&pch->lock, flags);
2489 
2490 	pl330_tasklet((unsigned long)pch);
2491 }
2492 
2493 /*
2494  * We returned the last one of the circular list of descriptor(s)
2495  * from prep_xxx, so the argument to submit corresponds to the last
2496  * descriptor of the list.
2497  */
2498 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2499 {
2500 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2501 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2502 	dma_cookie_t cookie;
2503 	unsigned long flags;
2504 
2505 	spin_lock_irqsave(&pch->lock, flags);
2506 
2507 	/* Assign cookies to all nodes */
2508 	while (!list_empty(&last->node)) {
2509 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2510 		if (pch->cyclic) {
2511 			desc->txd.callback = last->txd.callback;
2512 			desc->txd.callback_param = last->txd.callback_param;
2513 		}
2514 		desc->last = false;
2515 
2516 		dma_cookie_assign(&desc->txd);
2517 
2518 		list_move_tail(&desc->node, &pch->submitted_list);
2519 	}
2520 
2521 	last->last = true;
2522 	cookie = dma_cookie_assign(&last->txd);
2523 	list_add_tail(&last->node, &pch->submitted_list);
2524 	spin_unlock_irqrestore(&pch->lock, flags);
2525 
2526 	return cookie;
2527 }
2528 
2529 static inline void _init_desc(struct dma_pl330_desc *desc)
2530 {
2531 	desc->rqcfg.swap = SWAP_NO;
2532 	desc->rqcfg.scctl = CCTRL0;
2533 	desc->rqcfg.dcctl = CCTRL0;
2534 	desc->txd.tx_submit = pl330_tx_submit;
2535 
2536 	INIT_LIST_HEAD(&desc->node);
2537 }
2538 
2539 /* Returns the number of descriptors added to the DMAC pool */
2540 static int add_desc(struct list_head *pool, spinlock_t *lock,
2541 		    gfp_t flg, int count)
2542 {
2543 	struct dma_pl330_desc *desc;
2544 	unsigned long flags;
2545 	int i;
2546 
2547 	desc = kcalloc(count, sizeof(*desc), flg);
2548 	if (!desc)
2549 		return 0;
2550 
2551 	spin_lock_irqsave(lock, flags);
2552 
2553 	for (i = 0; i < count; i++) {
2554 		_init_desc(&desc[i]);
2555 		list_add_tail(&desc[i].node, pool);
2556 	}
2557 
2558 	spin_unlock_irqrestore(lock, flags);
2559 
2560 	return count;
2561 }
2562 
2563 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2564 					 spinlock_t *lock)
2565 {
2566 	struct dma_pl330_desc *desc = NULL;
2567 	unsigned long flags;
2568 
2569 	spin_lock_irqsave(lock, flags);
2570 
2571 	if (!list_empty(pool)) {
2572 		desc = list_entry(pool->next,
2573 				struct dma_pl330_desc, node);
2574 
2575 		list_del_init(&desc->node);
2576 
2577 		desc->status = PREP;
2578 		desc->txd.callback = NULL;
2579 	}
2580 
2581 	spin_unlock_irqrestore(lock, flags);
2582 
2583 	return desc;
2584 }
2585 
2586 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2587 {
2588 	struct pl330_dmac *pl330 = pch->dmac;
2589 	u8 *peri_id = pch->chan.private;
2590 	struct dma_pl330_desc *desc;
2591 
2592 	/* Pluck one desc from the pool of DMAC */
2593 	desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2594 
2595 	/* If the DMAC pool is empty, alloc new */
2596 	if (!desc) {
2597 		DEFINE_SPINLOCK(lock);
2598 		LIST_HEAD(pool);
2599 
2600 		if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2601 			return NULL;
2602 
2603 		desc = pluck_desc(&pool, &lock);
2604 		WARN_ON(!desc || !list_empty(&pool));
2605 	}
2606 
2607 	/* Initialize the descriptor */
2608 	desc->pchan = pch;
2609 	desc->txd.cookie = 0;
2610 	async_tx_ack(&desc->txd);
2611 
2612 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2613 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2614 
2615 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2616 
2617 	return desc;
2618 }
2619 
2620 static inline void fill_px(struct pl330_xfer *px,
2621 		dma_addr_t dst, dma_addr_t src, size_t len)
2622 {
2623 	px->bytes = len;
2624 	px->dst_addr = dst;
2625 	px->src_addr = src;
2626 }
2627 
2628 static struct dma_pl330_desc *
2629 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2630 		dma_addr_t src, size_t len)
2631 {
2632 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2633 
2634 	if (!desc) {
2635 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2636 			__func__, __LINE__);
2637 		return NULL;
2638 	}
2639 
2640 	/*
2641 	 * Ideally we should lookout for reqs bigger than
2642 	 * those that can be programmed with 256 bytes of
2643 	 * MC buffer, but considering a req size is seldom
2644 	 * going to be word-unaligned and more than 200MB,
2645 	 * we take it easy.
2646 	 * Also, should the limit is reached we'd rather
2647 	 * have the platform increase MC buffer size than
2648 	 * complicating this API driver.
2649 	 */
2650 	fill_px(&desc->px, dst, src, len);
2651 
2652 	return desc;
2653 }
2654 
2655 /* Call after fixing burst size */
2656 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2657 {
2658 	struct dma_pl330_chan *pch = desc->pchan;
2659 	struct pl330_dmac *pl330 = pch->dmac;
2660 	int burst_len;
2661 
2662 	burst_len = pl330->pcfg.data_bus_width / 8;
2663 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2664 	burst_len >>= desc->rqcfg.brst_size;
2665 
2666 	/* src/dst_burst_len can't be more than 16 */
2667 	if (burst_len > PL330_MAX_BURST)
2668 		burst_len = PL330_MAX_BURST;
2669 
2670 	return burst_len;
2671 }
2672 
2673 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2674 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2675 		size_t period_len, enum dma_transfer_direction direction,
2676 		unsigned long flags)
2677 {
2678 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2679 	struct dma_pl330_chan *pch = to_pchan(chan);
2680 	struct pl330_dmac *pl330 = pch->dmac;
2681 	unsigned int i;
2682 	dma_addr_t dst;
2683 	dma_addr_t src;
2684 
2685 	if (len % period_len != 0)
2686 		return NULL;
2687 
2688 	if (!is_slave_direction(direction)) {
2689 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2690 		__func__, __LINE__);
2691 		return NULL;
2692 	}
2693 
2694 	pl330_config_write(chan, &pch->slave_config, direction);
2695 
2696 	if (!pl330_prep_slave_fifo(pch, direction))
2697 		return NULL;
2698 
2699 	for (i = 0; i < len / period_len; i++) {
2700 		desc = pl330_get_desc(pch);
2701 		if (!desc) {
2702 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2703 				__func__, __LINE__);
2704 
2705 			if (!first)
2706 				return NULL;
2707 
2708 			spin_lock_irqsave(&pl330->pool_lock, flags);
2709 
2710 			while (!list_empty(&first->node)) {
2711 				desc = list_entry(first->node.next,
2712 						struct dma_pl330_desc, node);
2713 				list_move_tail(&desc->node, &pl330->desc_pool);
2714 			}
2715 
2716 			list_move_tail(&first->node, &pl330->desc_pool);
2717 
2718 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2719 
2720 			return NULL;
2721 		}
2722 
2723 		switch (direction) {
2724 		case DMA_MEM_TO_DEV:
2725 			desc->rqcfg.src_inc = 1;
2726 			desc->rqcfg.dst_inc = 0;
2727 			src = dma_addr;
2728 			dst = pch->fifo_dma;
2729 			break;
2730 		case DMA_DEV_TO_MEM:
2731 			desc->rqcfg.src_inc = 0;
2732 			desc->rqcfg.dst_inc = 1;
2733 			src = pch->fifo_dma;
2734 			dst = dma_addr;
2735 			break;
2736 		default:
2737 			break;
2738 		}
2739 
2740 		desc->rqtype = direction;
2741 		desc->rqcfg.brst_size = pch->burst_sz;
2742 		desc->rqcfg.brst_len = pch->burst_len;
2743 		desc->bytes_requested = period_len;
2744 		fill_px(&desc->px, dst, src, period_len);
2745 
2746 		if (!first)
2747 			first = desc;
2748 		else
2749 			list_add_tail(&desc->node, &first->node);
2750 
2751 		dma_addr += period_len;
2752 	}
2753 
2754 	if (!desc)
2755 		return NULL;
2756 
2757 	pch->cyclic = true;
2758 	desc->txd.flags = flags;
2759 
2760 	return &desc->txd;
2761 }
2762 
2763 static struct dma_async_tx_descriptor *
2764 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2765 		dma_addr_t src, size_t len, unsigned long flags)
2766 {
2767 	struct dma_pl330_desc *desc;
2768 	struct dma_pl330_chan *pch = to_pchan(chan);
2769 	struct pl330_dmac *pl330;
2770 	int burst;
2771 
2772 	if (unlikely(!pch || !len))
2773 		return NULL;
2774 
2775 	pl330 = pch->dmac;
2776 
2777 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2778 	if (!desc)
2779 		return NULL;
2780 
2781 	desc->rqcfg.src_inc = 1;
2782 	desc->rqcfg.dst_inc = 1;
2783 	desc->rqtype = DMA_MEM_TO_MEM;
2784 
2785 	/* Select max possible burst size */
2786 	burst = pl330->pcfg.data_bus_width / 8;
2787 
2788 	/*
2789 	 * Make sure we use a burst size that aligns with all the memcpy
2790 	 * parameters because our DMA programming algorithm doesn't cope with
2791 	 * transfers which straddle an entry in the DMA device's MFIFO.
2792 	 */
2793 	while ((src | dst | len) & (burst - 1))
2794 		burst /= 2;
2795 
2796 	desc->rqcfg.brst_size = 0;
2797 	while (burst != (1 << desc->rqcfg.brst_size))
2798 		desc->rqcfg.brst_size++;
2799 
2800 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2801 	/*
2802 	 * If burst size is smaller than bus width then make sure we only
2803 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2804 	 */
2805 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2806 		desc->rqcfg.brst_len = 1;
2807 
2808 	desc->bytes_requested = len;
2809 
2810 	desc->txd.flags = flags;
2811 
2812 	return &desc->txd;
2813 }
2814 
2815 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2816 				  struct dma_pl330_desc *first)
2817 {
2818 	unsigned long flags;
2819 	struct dma_pl330_desc *desc;
2820 
2821 	if (!first)
2822 		return;
2823 
2824 	spin_lock_irqsave(&pl330->pool_lock, flags);
2825 
2826 	while (!list_empty(&first->node)) {
2827 		desc = list_entry(first->node.next,
2828 				struct dma_pl330_desc, node);
2829 		list_move_tail(&desc->node, &pl330->desc_pool);
2830 	}
2831 
2832 	list_move_tail(&first->node, &pl330->desc_pool);
2833 
2834 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2835 }
2836 
2837 static struct dma_async_tx_descriptor *
2838 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2839 		unsigned int sg_len, enum dma_transfer_direction direction,
2840 		unsigned long flg, void *context)
2841 {
2842 	struct dma_pl330_desc *first, *desc = NULL;
2843 	struct dma_pl330_chan *pch = to_pchan(chan);
2844 	struct scatterlist *sg;
2845 	int i;
2846 
2847 	if (unlikely(!pch || !sgl || !sg_len))
2848 		return NULL;
2849 
2850 	pl330_config_write(chan, &pch->slave_config, direction);
2851 
2852 	if (!pl330_prep_slave_fifo(pch, direction))
2853 		return NULL;
2854 
2855 	first = NULL;
2856 
2857 	for_each_sg(sgl, sg, sg_len, i) {
2858 
2859 		desc = pl330_get_desc(pch);
2860 		if (!desc) {
2861 			struct pl330_dmac *pl330 = pch->dmac;
2862 
2863 			dev_err(pch->dmac->ddma.dev,
2864 				"%s:%d Unable to fetch desc\n",
2865 				__func__, __LINE__);
2866 			__pl330_giveback_desc(pl330, first);
2867 
2868 			return NULL;
2869 		}
2870 
2871 		if (!first)
2872 			first = desc;
2873 		else
2874 			list_add_tail(&desc->node, &first->node);
2875 
2876 		if (direction == DMA_MEM_TO_DEV) {
2877 			desc->rqcfg.src_inc = 1;
2878 			desc->rqcfg.dst_inc = 0;
2879 			fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2880 				sg_dma_len(sg));
2881 		} else {
2882 			desc->rqcfg.src_inc = 0;
2883 			desc->rqcfg.dst_inc = 1;
2884 			fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2885 				sg_dma_len(sg));
2886 		}
2887 
2888 		desc->rqcfg.brst_size = pch->burst_sz;
2889 		desc->rqcfg.brst_len = pch->burst_len;
2890 		desc->rqtype = direction;
2891 		desc->bytes_requested = sg_dma_len(sg);
2892 	}
2893 
2894 	/* Return the last desc in the chain */
2895 	desc->txd.flags = flg;
2896 	return &desc->txd;
2897 }
2898 
2899 static irqreturn_t pl330_irq_handler(int irq, void *data)
2900 {
2901 	if (pl330_update(data))
2902 		return IRQ_HANDLED;
2903 	else
2904 		return IRQ_NONE;
2905 }
2906 
2907 #define PL330_DMA_BUSWIDTHS \
2908 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2909 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2910 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2911 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2912 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2913 
2914 #ifdef CONFIG_DEBUG_FS
2915 static int pl330_debugfs_show(struct seq_file *s, void *data)
2916 {
2917 	struct pl330_dmac *pl330 = s->private;
2918 	int chans, pchs, ch, pr;
2919 
2920 	chans = pl330->pcfg.num_chan;
2921 	pchs = pl330->num_peripherals;
2922 
2923 	seq_puts(s, "PL330 physical channels:\n");
2924 	seq_puts(s, "THREAD:\t\tCHANNEL:\n");
2925 	seq_puts(s, "--------\t-----\n");
2926 	for (ch = 0; ch < chans; ch++) {
2927 		struct pl330_thread *thrd = &pl330->channels[ch];
2928 		int found = -1;
2929 
2930 		for (pr = 0; pr < pchs; pr++) {
2931 			struct dma_pl330_chan *pch = &pl330->peripherals[pr];
2932 
2933 			if (!pch->thread || thrd->id != pch->thread->id)
2934 				continue;
2935 
2936 			found = pr;
2937 		}
2938 
2939 		seq_printf(s, "%d\t\t", thrd->id);
2940 		if (found == -1)
2941 			seq_puts(s, "--\n");
2942 		else
2943 			seq_printf(s, "%d\n", found);
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs);
2950 
2951 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2952 {
2953 	debugfs_create_file(dev_name(pl330->ddma.dev),
2954 			    S_IFREG | 0444, NULL, pl330,
2955 			    &pl330_debugfs_fops);
2956 }
2957 #else
2958 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2959 {
2960 }
2961 #endif
2962 
2963 /*
2964  * Runtime PM callbacks are provided by amba/bus.c driver.
2965  *
2966  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2967  * bus driver will only disable/enable the clock in runtime PM callbacks.
2968  */
2969 static int __maybe_unused pl330_suspend(struct device *dev)
2970 {
2971 	struct amba_device *pcdev = to_amba_device(dev);
2972 
2973 	pm_runtime_force_suspend(dev);
2974 	amba_pclk_unprepare(pcdev);
2975 
2976 	return 0;
2977 }
2978 
2979 static int __maybe_unused pl330_resume(struct device *dev)
2980 {
2981 	struct amba_device *pcdev = to_amba_device(dev);
2982 	int ret;
2983 
2984 	ret = amba_pclk_prepare(pcdev);
2985 	if (ret)
2986 		return ret;
2987 
2988 	pm_runtime_force_resume(dev);
2989 
2990 	return ret;
2991 }
2992 
2993 static const struct dev_pm_ops pl330_pm = {
2994 	SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume)
2995 };
2996 
2997 static int
2998 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2999 {
3000 	struct pl330_config *pcfg;
3001 	struct pl330_dmac *pl330;
3002 	struct dma_pl330_chan *pch, *_p;
3003 	struct dma_device *pd;
3004 	struct resource *res;
3005 	int i, ret, irq;
3006 	int num_chan;
3007 	struct device_node *np = adev->dev.of_node;
3008 
3009 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
3010 	if (ret)
3011 		return ret;
3012 
3013 	/* Allocate a new DMAC and its Channels */
3014 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
3015 	if (!pl330)
3016 		return -ENOMEM;
3017 
3018 	pd = &pl330->ddma;
3019 	pd->dev = &adev->dev;
3020 
3021 	pl330->mcbufsz = 0;
3022 
3023 	/* get quirk */
3024 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
3025 		if (of_property_read_bool(np, of_quirks[i].quirk))
3026 			pl330->quirks |= of_quirks[i].id;
3027 
3028 	res = &adev->res;
3029 	pl330->base = devm_ioremap_resource(&adev->dev, res);
3030 	if (IS_ERR(pl330->base))
3031 		return PTR_ERR(pl330->base);
3032 
3033 	amba_set_drvdata(adev, pl330);
3034 
3035 	pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma");
3036 	if (IS_ERR(pl330->rstc)) {
3037 		if (PTR_ERR(pl330->rstc) != -EPROBE_DEFER)
3038 			dev_err(&adev->dev, "Failed to get reset!\n");
3039 		return PTR_ERR(pl330->rstc);
3040 	} else {
3041 		ret = reset_control_deassert(pl330->rstc);
3042 		if (ret) {
3043 			dev_err(&adev->dev, "Couldn't deassert the device from reset!\n");
3044 			return ret;
3045 		}
3046 	}
3047 
3048 	pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp");
3049 	if (IS_ERR(pl330->rstc_ocp)) {
3050 		if (PTR_ERR(pl330->rstc_ocp) != -EPROBE_DEFER)
3051 			dev_err(&adev->dev, "Failed to get OCP reset!\n");
3052 		return PTR_ERR(pl330->rstc_ocp);
3053 	} else {
3054 		ret = reset_control_deassert(pl330->rstc_ocp);
3055 		if (ret) {
3056 			dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n");
3057 			return ret;
3058 		}
3059 	}
3060 
3061 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3062 		irq = adev->irq[i];
3063 		if (irq) {
3064 			ret = devm_request_irq(&adev->dev, irq,
3065 					       pl330_irq_handler, 0,
3066 					       dev_name(&adev->dev), pl330);
3067 			if (ret)
3068 				return ret;
3069 		} else {
3070 			break;
3071 		}
3072 	}
3073 
3074 	pcfg = &pl330->pcfg;
3075 
3076 	pcfg->periph_id = adev->periphid;
3077 	ret = pl330_add(pl330);
3078 	if (ret)
3079 		return ret;
3080 
3081 	INIT_LIST_HEAD(&pl330->desc_pool);
3082 	spin_lock_init(&pl330->pool_lock);
3083 
3084 	/* Create a descriptor pool of default size */
3085 	if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
3086 		      GFP_KERNEL, NR_DEFAULT_DESC))
3087 		dev_warn(&adev->dev, "unable to allocate desc\n");
3088 
3089 	INIT_LIST_HEAD(&pd->channels);
3090 
3091 	/* Initialize channel parameters */
3092 	num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
3093 
3094 	pl330->num_peripherals = num_chan;
3095 
3096 	pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL);
3097 	if (!pl330->peripherals) {
3098 		ret = -ENOMEM;
3099 		goto probe_err2;
3100 	}
3101 
3102 	for (i = 0; i < num_chan; i++) {
3103 		pch = &pl330->peripherals[i];
3104 
3105 		pch->chan.private = adev->dev.of_node;
3106 		INIT_LIST_HEAD(&pch->submitted_list);
3107 		INIT_LIST_HEAD(&pch->work_list);
3108 		INIT_LIST_HEAD(&pch->completed_list);
3109 		spin_lock_init(&pch->lock);
3110 		pch->thread = NULL;
3111 		pch->chan.device = pd;
3112 		pch->dmac = pl330;
3113 		pch->dir = DMA_NONE;
3114 
3115 		/* Add the channel to the DMAC list */
3116 		list_add_tail(&pch->chan.device_node, &pd->channels);
3117 	}
3118 
3119 	dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3120 	if (pcfg->num_peri) {
3121 		dma_cap_set(DMA_SLAVE, pd->cap_mask);
3122 		dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3123 		dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3124 	}
3125 
3126 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3127 	pd->device_free_chan_resources = pl330_free_chan_resources;
3128 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3129 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3130 	pd->device_tx_status = pl330_tx_status;
3131 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
3132 	pd->device_config = pl330_config;
3133 	pd->device_pause = pl330_pause;
3134 	pd->device_terminate_all = pl330_terminate_all;
3135 	pd->device_issue_pending = pl330_issue_pending;
3136 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
3137 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
3138 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3139 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3140 	pd->max_burst = PL330_MAX_BURST;
3141 
3142 	ret = dma_async_device_register(pd);
3143 	if (ret) {
3144 		dev_err(&adev->dev, "unable to register DMAC\n");
3145 		goto probe_err3;
3146 	}
3147 
3148 	if (adev->dev.of_node) {
3149 		ret = of_dma_controller_register(adev->dev.of_node,
3150 					 of_dma_pl330_xlate, pl330);
3151 		if (ret) {
3152 			dev_err(&adev->dev,
3153 			"unable to register DMA to the generic DT DMA helpers\n");
3154 		}
3155 	}
3156 
3157 	adev->dev.dma_parms = &pl330->dma_parms;
3158 
3159 	/*
3160 	 * This is the limit for transfers with a buswidth of 1, larger
3161 	 * buswidths will have larger limits.
3162 	 */
3163 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
3164 	if (ret)
3165 		dev_err(&adev->dev, "unable to set the seg size\n");
3166 
3167 
3168 	init_pl330_debugfs(pl330);
3169 	dev_info(&adev->dev,
3170 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
3171 	dev_info(&adev->dev,
3172 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3173 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
3174 		pcfg->num_peri, pcfg->num_events);
3175 
3176 	pm_runtime_irq_safe(&adev->dev);
3177 	pm_runtime_use_autosuspend(&adev->dev);
3178 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
3179 	pm_runtime_mark_last_busy(&adev->dev);
3180 	pm_runtime_put_autosuspend(&adev->dev);
3181 
3182 	return 0;
3183 probe_err3:
3184 	/* Idle the DMAC */
3185 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3186 			chan.device_node) {
3187 
3188 		/* Remove the channel */
3189 		list_del(&pch->chan.device_node);
3190 
3191 		/* Flush the channel */
3192 		if (pch->thread) {
3193 			pl330_terminate_all(&pch->chan);
3194 			pl330_free_chan_resources(&pch->chan);
3195 		}
3196 	}
3197 probe_err2:
3198 	pl330_del(pl330);
3199 
3200 	if (pl330->rstc_ocp)
3201 		reset_control_assert(pl330->rstc_ocp);
3202 
3203 	if (pl330->rstc)
3204 		reset_control_assert(pl330->rstc);
3205 	return ret;
3206 }
3207 
3208 static int pl330_remove(struct amba_device *adev)
3209 {
3210 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3211 	struct dma_pl330_chan *pch, *_p;
3212 	int i, irq;
3213 
3214 	pm_runtime_get_noresume(pl330->ddma.dev);
3215 
3216 	if (adev->dev.of_node)
3217 		of_dma_controller_free(adev->dev.of_node);
3218 
3219 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3220 		irq = adev->irq[i];
3221 		if (irq)
3222 			devm_free_irq(&adev->dev, irq, pl330);
3223 	}
3224 
3225 	dma_async_device_unregister(&pl330->ddma);
3226 
3227 	/* Idle the DMAC */
3228 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3229 			chan.device_node) {
3230 
3231 		/* Remove the channel */
3232 		list_del(&pch->chan.device_node);
3233 
3234 		/* Flush the channel */
3235 		if (pch->thread) {
3236 			pl330_terminate_all(&pch->chan);
3237 			pl330_free_chan_resources(&pch->chan);
3238 		}
3239 	}
3240 
3241 	pl330_del(pl330);
3242 
3243 	if (pl330->rstc_ocp)
3244 		reset_control_assert(pl330->rstc_ocp);
3245 
3246 	if (pl330->rstc)
3247 		reset_control_assert(pl330->rstc);
3248 	return 0;
3249 }
3250 
3251 static const struct amba_id pl330_ids[] = {
3252 	{
3253 		.id	= 0x00041330,
3254 		.mask	= 0x000fffff,
3255 	},
3256 	{ 0, 0 },
3257 };
3258 
3259 MODULE_DEVICE_TABLE(amba, pl330_ids);
3260 
3261 static struct amba_driver pl330_driver = {
3262 	.drv = {
3263 		.owner = THIS_MODULE,
3264 		.name = "dma-pl330",
3265 		.pm = &pl330_pm,
3266 	},
3267 	.id_table = pl330_ids,
3268 	.probe = pl330_probe,
3269 	.remove = pl330_remove,
3270 };
3271 
3272 module_amba_driver(pl330_driver);
3273 
3274 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3275 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3276 MODULE_LICENSE("GPL");
3277