1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 7 * Jaswinder Singh <jassi.brar@samsung.com> 8 */ 9 10 #include <linux/debugfs.h> 11 #include <linux/kernel.h> 12 #include <linux/io.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/string.h> 17 #include <linux/delay.h> 18 #include <linux/interrupt.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dmaengine.h> 21 #include <linux/amba/bus.h> 22 #include <linux/scatterlist.h> 23 #include <linux/of.h> 24 #include <linux/of_dma.h> 25 #include <linux/err.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/bug.h> 28 #include <linux/reset.h> 29 30 #include "dmaengine.h" 31 #define PL330_MAX_CHAN 8 32 #define PL330_MAX_IRQS 32 33 #define PL330_MAX_PERI 32 34 #define PL330_MAX_BURST 16 35 36 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 37 #define PL330_QUIRK_PERIPH_BURST BIT(1) 38 39 enum pl330_cachectrl { 40 CCTRL0, /* Noncacheable and nonbufferable */ 41 CCTRL1, /* Bufferable only */ 42 CCTRL2, /* Cacheable, but do not allocate */ 43 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 44 INVALID1, /* AWCACHE = 0x1000 */ 45 INVALID2, 46 CCTRL6, /* Cacheable write-through, allocate on writes only */ 47 CCTRL7, /* Cacheable write-back, allocate on writes only */ 48 }; 49 50 enum pl330_byteswap { 51 SWAP_NO, 52 SWAP_2, 53 SWAP_4, 54 SWAP_8, 55 SWAP_16, 56 }; 57 58 /* Register and Bit field Definitions */ 59 #define DS 0x0 60 #define DS_ST_STOP 0x0 61 #define DS_ST_EXEC 0x1 62 #define DS_ST_CMISS 0x2 63 #define DS_ST_UPDTPC 0x3 64 #define DS_ST_WFE 0x4 65 #define DS_ST_ATBRR 0x5 66 #define DS_ST_QBUSY 0x6 67 #define DS_ST_WFP 0x7 68 #define DS_ST_KILL 0x8 69 #define DS_ST_CMPLT 0x9 70 #define DS_ST_FLTCMP 0xe 71 #define DS_ST_FAULT 0xf 72 73 #define DPC 0x4 74 #define INTEN 0x20 75 #define ES 0x24 76 #define INTSTATUS 0x28 77 #define INTCLR 0x2c 78 #define FSM 0x30 79 #define FSC 0x34 80 #define FTM 0x38 81 82 #define _FTC 0x40 83 #define FTC(n) (_FTC + (n)*0x4) 84 85 #define _CS 0x100 86 #define CS(n) (_CS + (n)*0x8) 87 #define CS_CNS (1 << 21) 88 89 #define _CPC 0x104 90 #define CPC(n) (_CPC + (n)*0x8) 91 92 #define _SA 0x400 93 #define SA(n) (_SA + (n)*0x20) 94 95 #define _DA 0x404 96 #define DA(n) (_DA + (n)*0x20) 97 98 #define _CC 0x408 99 #define CC(n) (_CC + (n)*0x20) 100 101 #define CC_SRCINC (1 << 0) 102 #define CC_DSTINC (1 << 14) 103 #define CC_SRCPRI (1 << 8) 104 #define CC_DSTPRI (1 << 22) 105 #define CC_SRCNS (1 << 9) 106 #define CC_DSTNS (1 << 23) 107 #define CC_SRCIA (1 << 10) 108 #define CC_DSTIA (1 << 24) 109 #define CC_SRCBRSTLEN_SHFT 4 110 #define CC_DSTBRSTLEN_SHFT 18 111 #define CC_SRCBRSTSIZE_SHFT 1 112 #define CC_DSTBRSTSIZE_SHFT 15 113 #define CC_SRCCCTRL_SHFT 11 114 #define CC_SRCCCTRL_MASK 0x7 115 #define CC_DSTCCTRL_SHFT 25 116 #define CC_DRCCCTRL_MASK 0x7 117 #define CC_SWAP_SHFT 28 118 119 #define _LC0 0x40c 120 #define LC0(n) (_LC0 + (n)*0x20) 121 122 #define _LC1 0x410 123 #define LC1(n) (_LC1 + (n)*0x20) 124 125 #define DBGSTATUS 0xd00 126 #define DBG_BUSY (1 << 0) 127 128 #define DBGCMD 0xd04 129 #define DBGINST0 0xd08 130 #define DBGINST1 0xd0c 131 132 #define CR0 0xe00 133 #define CR1 0xe04 134 #define CR2 0xe08 135 #define CR3 0xe0c 136 #define CR4 0xe10 137 #define CRD 0xe14 138 139 #define PERIPH_ID 0xfe0 140 #define PERIPH_REV_SHIFT 20 141 #define PERIPH_REV_MASK 0xf 142 #define PERIPH_REV_R0P0 0 143 #define PERIPH_REV_R1P0 1 144 #define PERIPH_REV_R1P1 2 145 146 #define CR0_PERIPH_REQ_SET (1 << 0) 147 #define CR0_BOOT_EN_SET (1 << 1) 148 #define CR0_BOOT_MAN_NS (1 << 2) 149 #define CR0_NUM_CHANS_SHIFT 4 150 #define CR0_NUM_CHANS_MASK 0x7 151 #define CR0_NUM_PERIPH_SHIFT 12 152 #define CR0_NUM_PERIPH_MASK 0x1f 153 #define CR0_NUM_EVENTS_SHIFT 17 154 #define CR0_NUM_EVENTS_MASK 0x1f 155 156 #define CR1_ICACHE_LEN_SHIFT 0 157 #define CR1_ICACHE_LEN_MASK 0x7 158 #define CR1_NUM_ICACHELINES_SHIFT 4 159 #define CR1_NUM_ICACHELINES_MASK 0xf 160 161 #define CRD_DATA_WIDTH_SHIFT 0 162 #define CRD_DATA_WIDTH_MASK 0x7 163 #define CRD_WR_CAP_SHIFT 4 164 #define CRD_WR_CAP_MASK 0x7 165 #define CRD_WR_Q_DEP_SHIFT 8 166 #define CRD_WR_Q_DEP_MASK 0xf 167 #define CRD_RD_CAP_SHIFT 12 168 #define CRD_RD_CAP_MASK 0x7 169 #define CRD_RD_Q_DEP_SHIFT 16 170 #define CRD_RD_Q_DEP_MASK 0xf 171 #define CRD_DATA_BUFF_SHIFT 20 172 #define CRD_DATA_BUFF_MASK 0x3ff 173 174 #define PART 0x330 175 #define DESIGNER 0x41 176 #define REVISION 0x0 177 #define INTEG_CFG 0x0 178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 179 180 #define PL330_STATE_STOPPED (1 << 0) 181 #define PL330_STATE_EXECUTING (1 << 1) 182 #define PL330_STATE_WFE (1 << 2) 183 #define PL330_STATE_FAULTING (1 << 3) 184 #define PL330_STATE_COMPLETING (1 << 4) 185 #define PL330_STATE_WFP (1 << 5) 186 #define PL330_STATE_KILLING (1 << 6) 187 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 188 #define PL330_STATE_CACHEMISS (1 << 8) 189 #define PL330_STATE_UPDTPC (1 << 9) 190 #define PL330_STATE_ATBARRIER (1 << 10) 191 #define PL330_STATE_QUEUEBUSY (1 << 11) 192 #define PL330_STATE_INVALID (1 << 15) 193 194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 195 | PL330_STATE_WFE | PL330_STATE_FAULTING) 196 197 #define CMD_DMAADDH 0x54 198 #define CMD_DMAEND 0x00 199 #define CMD_DMAFLUSHP 0x35 200 #define CMD_DMAGO 0xa0 201 #define CMD_DMALD 0x04 202 #define CMD_DMALDP 0x25 203 #define CMD_DMALP 0x20 204 #define CMD_DMALPEND 0x28 205 #define CMD_DMAKILL 0x01 206 #define CMD_DMAMOV 0xbc 207 #define CMD_DMANOP 0x18 208 #define CMD_DMARMB 0x12 209 #define CMD_DMASEV 0x34 210 #define CMD_DMAST 0x08 211 #define CMD_DMASTP 0x29 212 #define CMD_DMASTZ 0x0c 213 #define CMD_DMAWFE 0x36 214 #define CMD_DMAWFP 0x30 215 #define CMD_DMAWMB 0x13 216 217 #define SZ_DMAADDH 3 218 #define SZ_DMAEND 1 219 #define SZ_DMAFLUSHP 2 220 #define SZ_DMALD 1 221 #define SZ_DMALDP 2 222 #define SZ_DMALP 2 223 #define SZ_DMALPEND 2 224 #define SZ_DMAKILL 1 225 #define SZ_DMAMOV 6 226 #define SZ_DMANOP 1 227 #define SZ_DMARMB 1 228 #define SZ_DMASEV 2 229 #define SZ_DMAST 1 230 #define SZ_DMASTP 2 231 #define SZ_DMASTZ 1 232 #define SZ_DMAWFE 2 233 #define SZ_DMAWFP 2 234 #define SZ_DMAWMB 1 235 #define SZ_DMAGO 6 236 237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 239 240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 242 243 /* 244 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 245 * at 1byte/burst for P<->M and M<->M respectively. 246 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 247 * should be enough for P<->M and M<->M respectively. 248 */ 249 #define MCODE_BUFF_PER_REQ 256 250 251 /* Use this _only_ to wait on transient states */ 252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 253 254 #ifdef PL330_DEBUG_MCGEN 255 static unsigned cmd_line; 256 #define PL330_DBGCMD_DUMP(off, x...) do { \ 257 printk("%x:", cmd_line); \ 258 printk(x); \ 259 cmd_line += off; \ 260 } while (0) 261 #define PL330_DBGMC_START(addr) (cmd_line = addr) 262 #else 263 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 264 #define PL330_DBGMC_START(addr) do {} while (0) 265 #endif 266 267 /* The number of default descriptors */ 268 269 #define NR_DEFAULT_DESC 16 270 271 /* Delay for runtime PM autosuspend, ms */ 272 #define PL330_AUTOSUSPEND_DELAY 20 273 274 /* Populated by the PL330 core driver for DMA API driver's info */ 275 struct pl330_config { 276 u32 periph_id; 277 #define DMAC_MODE_NS (1 << 0) 278 unsigned int mode; 279 unsigned int data_bus_width:10; /* In number of bits */ 280 unsigned int data_buf_dep:11; 281 unsigned int num_chan:4; 282 unsigned int num_peri:6; 283 u32 peri_ns; 284 unsigned int num_events:6; 285 u32 irq_ns; 286 }; 287 288 /* 289 * Request Configuration. 290 * The PL330 core does not modify this and uses the last 291 * working configuration if the request doesn't provide any. 292 * 293 * The Client may want to provide this info only for the 294 * first request and a request with new settings. 295 */ 296 struct pl330_reqcfg { 297 /* Address Incrementing */ 298 unsigned dst_inc:1; 299 unsigned src_inc:1; 300 301 /* 302 * For now, the SRC & DST protection levels 303 * and burst size/length are assumed same. 304 */ 305 bool nonsecure; 306 bool privileged; 307 bool insnaccess; 308 unsigned brst_len:5; 309 unsigned brst_size:3; /* in power of 2 */ 310 311 enum pl330_cachectrl dcctl; 312 enum pl330_cachectrl scctl; 313 enum pl330_byteswap swap; 314 struct pl330_config *pcfg; 315 }; 316 317 /* 318 * One cycle of DMAC operation. 319 * There may be more than one xfer in a request. 320 */ 321 struct pl330_xfer { 322 u32 src_addr; 323 u32 dst_addr; 324 /* Size to xfer */ 325 u32 bytes; 326 }; 327 328 /* The xfer callbacks are made with one of these arguments. */ 329 enum pl330_op_err { 330 /* The all xfers in the request were success. */ 331 PL330_ERR_NONE, 332 /* If req aborted due to global error. */ 333 PL330_ERR_ABORT, 334 /* If req failed due to problem with Channel. */ 335 PL330_ERR_FAIL, 336 }; 337 338 enum dmamov_dst { 339 SAR = 0, 340 CCR, 341 DAR, 342 }; 343 344 enum pl330_dst { 345 SRC = 0, 346 DST, 347 }; 348 349 enum pl330_cond { 350 SINGLE, 351 BURST, 352 ALWAYS, 353 }; 354 355 struct dma_pl330_desc; 356 357 struct _pl330_req { 358 u32 mc_bus; 359 void *mc_cpu; 360 struct dma_pl330_desc *desc; 361 }; 362 363 /* ToBeDone for tasklet */ 364 struct _pl330_tbd { 365 bool reset_dmac; 366 bool reset_mngr; 367 u8 reset_chan; 368 }; 369 370 /* A DMAC Thread */ 371 struct pl330_thread { 372 u8 id; 373 int ev; 374 /* If the channel is not yet acquired by any client */ 375 bool free; 376 /* Parent DMAC */ 377 struct pl330_dmac *dmac; 378 /* Only two at a time */ 379 struct _pl330_req req[2]; 380 /* Index of the last enqueued request */ 381 unsigned lstenq; 382 /* Index of the last submitted request or -1 if the DMA is stopped */ 383 int req_running; 384 }; 385 386 enum pl330_dmac_state { 387 UNINIT, 388 INIT, 389 DYING, 390 }; 391 392 enum desc_status { 393 /* In the DMAC pool */ 394 FREE, 395 /* 396 * Allocated to some channel during prep_xxx 397 * Also may be sitting on the work_list. 398 */ 399 PREP, 400 /* 401 * Sitting on the work_list and already submitted 402 * to the PL330 core. Not more than two descriptors 403 * of a channel can be BUSY at any time. 404 */ 405 BUSY, 406 /* 407 * Sitting on the channel work_list but xfer done 408 * by PL330 core 409 */ 410 DONE, 411 }; 412 413 struct dma_pl330_chan { 414 /* Schedule desc completion */ 415 struct tasklet_struct task; 416 417 /* DMA-Engine Channel */ 418 struct dma_chan chan; 419 420 /* List of submitted descriptors */ 421 struct list_head submitted_list; 422 /* List of issued descriptors */ 423 struct list_head work_list; 424 /* List of completed descriptors */ 425 struct list_head completed_list; 426 427 /* Pointer to the DMAC that manages this channel, 428 * NULL if the channel is available to be acquired. 429 * As the parent, this DMAC also provides descriptors 430 * to the channel. 431 */ 432 struct pl330_dmac *dmac; 433 434 /* To protect channel manipulation */ 435 spinlock_t lock; 436 437 /* 438 * Hardware channel thread of PL330 DMAC. NULL if the channel is 439 * available. 440 */ 441 struct pl330_thread *thread; 442 443 /* For D-to-M and M-to-D channels */ 444 int burst_sz; /* the peripheral fifo width */ 445 int burst_len; /* the number of burst */ 446 phys_addr_t fifo_addr; 447 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ 448 dma_addr_t fifo_dma; 449 enum dma_data_direction dir; 450 struct dma_slave_config slave_config; 451 452 /* for cyclic capability */ 453 bool cyclic; 454 455 /* for runtime pm tracking */ 456 bool active; 457 }; 458 459 struct pl330_dmac { 460 /* DMA-Engine Device */ 461 struct dma_device ddma; 462 463 /* Holds info about sg limitations */ 464 struct device_dma_parameters dma_parms; 465 466 /* Pool of descriptors available for the DMAC's channels */ 467 struct list_head desc_pool; 468 /* To protect desc_pool manipulation */ 469 spinlock_t pool_lock; 470 471 /* Size of MicroCode buffers for each channel. */ 472 unsigned mcbufsz; 473 /* ioremap'ed address of PL330 registers. */ 474 void __iomem *base; 475 /* Populated by the PL330 core driver during pl330_add */ 476 struct pl330_config pcfg; 477 478 spinlock_t lock; 479 /* Maximum possible events/irqs */ 480 int events[32]; 481 /* BUS address of MicroCode buffer */ 482 dma_addr_t mcode_bus; 483 /* CPU address of MicroCode buffer */ 484 void *mcode_cpu; 485 /* List of all Channel threads */ 486 struct pl330_thread *channels; 487 /* Pointer to the MANAGER thread */ 488 struct pl330_thread *manager; 489 /* To handle bad news in interrupt */ 490 struct tasklet_struct tasks; 491 struct _pl330_tbd dmac_tbd; 492 /* State of DMAC operation */ 493 enum pl330_dmac_state state; 494 /* Holds list of reqs with due callbacks */ 495 struct list_head req_done; 496 497 /* Peripheral channels connected to this DMAC */ 498 unsigned int num_peripherals; 499 struct dma_pl330_chan *peripherals; /* keep at end */ 500 int quirks; 501 502 struct reset_control *rstc; 503 struct reset_control *rstc_ocp; 504 }; 505 506 static struct pl330_of_quirks { 507 char *quirk; 508 int id; 509 } of_quirks[] = { 510 { 511 .quirk = "arm,pl330-broken-no-flushp", 512 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 513 }, 514 { 515 .quirk = "arm,pl330-periph-burst", 516 .id = PL330_QUIRK_PERIPH_BURST, 517 } 518 }; 519 520 struct dma_pl330_desc { 521 /* To attach to a queue as child */ 522 struct list_head node; 523 524 /* Descriptor for the DMA Engine API */ 525 struct dma_async_tx_descriptor txd; 526 527 /* Xfer for PL330 core */ 528 struct pl330_xfer px; 529 530 struct pl330_reqcfg rqcfg; 531 532 enum desc_status status; 533 534 int bytes_requested; 535 bool last; 536 537 /* The channel which currently holds this desc */ 538 struct dma_pl330_chan *pchan; 539 540 enum dma_transfer_direction rqtype; 541 /* Index of peripheral for the xfer. */ 542 unsigned peri:5; 543 /* Hook to attach to DMAC's list of reqs with due callback */ 544 struct list_head rqd; 545 }; 546 547 struct _xfer_spec { 548 u32 ccr; 549 struct dma_pl330_desc *desc; 550 }; 551 552 static int pl330_config_write(struct dma_chan *chan, 553 struct dma_slave_config *slave_config, 554 enum dma_transfer_direction direction); 555 556 static inline bool _queue_full(struct pl330_thread *thrd) 557 { 558 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 559 } 560 561 static inline bool is_manager(struct pl330_thread *thrd) 562 { 563 return thrd->dmac->manager == thrd; 564 } 565 566 /* If manager of the thread is in Non-Secure mode */ 567 static inline bool _manager_ns(struct pl330_thread *thrd) 568 { 569 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 570 } 571 572 static inline u32 get_revision(u32 periph_id) 573 { 574 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 575 } 576 577 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 578 { 579 if (dry_run) 580 return SZ_DMAEND; 581 582 buf[0] = CMD_DMAEND; 583 584 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 585 586 return SZ_DMAEND; 587 } 588 589 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 590 { 591 if (dry_run) 592 return SZ_DMAFLUSHP; 593 594 buf[0] = CMD_DMAFLUSHP; 595 596 peri &= 0x1f; 597 peri <<= 3; 598 buf[1] = peri; 599 600 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 601 602 return SZ_DMAFLUSHP; 603 } 604 605 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 606 { 607 if (dry_run) 608 return SZ_DMALD; 609 610 buf[0] = CMD_DMALD; 611 612 if (cond == SINGLE) 613 buf[0] |= (0 << 1) | (1 << 0); 614 else if (cond == BURST) 615 buf[0] |= (1 << 1) | (1 << 0); 616 617 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 618 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 619 620 return SZ_DMALD; 621 } 622 623 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 624 enum pl330_cond cond, u8 peri) 625 { 626 if (dry_run) 627 return SZ_DMALDP; 628 629 buf[0] = CMD_DMALDP; 630 631 if (cond == BURST) 632 buf[0] |= (1 << 1); 633 634 peri &= 0x1f; 635 peri <<= 3; 636 buf[1] = peri; 637 638 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 639 cond == SINGLE ? 'S' : 'B', peri >> 3); 640 641 return SZ_DMALDP; 642 } 643 644 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 645 unsigned loop, u8 cnt) 646 { 647 if (dry_run) 648 return SZ_DMALP; 649 650 buf[0] = CMD_DMALP; 651 652 if (loop) 653 buf[0] |= (1 << 1); 654 655 cnt--; /* DMAC increments by 1 internally */ 656 buf[1] = cnt; 657 658 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 659 660 return SZ_DMALP; 661 } 662 663 struct _arg_LPEND { 664 enum pl330_cond cond; 665 bool forever; 666 unsigned loop; 667 u8 bjump; 668 }; 669 670 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 671 const struct _arg_LPEND *arg) 672 { 673 enum pl330_cond cond = arg->cond; 674 bool forever = arg->forever; 675 unsigned loop = arg->loop; 676 u8 bjump = arg->bjump; 677 678 if (dry_run) 679 return SZ_DMALPEND; 680 681 buf[0] = CMD_DMALPEND; 682 683 if (loop) 684 buf[0] |= (1 << 2); 685 686 if (!forever) 687 buf[0] |= (1 << 4); 688 689 if (cond == SINGLE) 690 buf[0] |= (0 << 1) | (1 << 0); 691 else if (cond == BURST) 692 buf[0] |= (1 << 1) | (1 << 0); 693 694 buf[1] = bjump; 695 696 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 697 forever ? "FE" : "END", 698 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 699 loop ? '1' : '0', 700 bjump); 701 702 return SZ_DMALPEND; 703 } 704 705 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 706 { 707 if (dry_run) 708 return SZ_DMAKILL; 709 710 buf[0] = CMD_DMAKILL; 711 712 return SZ_DMAKILL; 713 } 714 715 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 716 enum dmamov_dst dst, u32 val) 717 { 718 if (dry_run) 719 return SZ_DMAMOV; 720 721 buf[0] = CMD_DMAMOV; 722 buf[1] = dst; 723 buf[2] = val; 724 buf[3] = val >> 8; 725 buf[4] = val >> 16; 726 buf[5] = val >> 24; 727 728 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 729 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 730 731 return SZ_DMAMOV; 732 } 733 734 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 735 { 736 if (dry_run) 737 return SZ_DMARMB; 738 739 buf[0] = CMD_DMARMB; 740 741 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 742 743 return SZ_DMARMB; 744 } 745 746 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 747 { 748 if (dry_run) 749 return SZ_DMASEV; 750 751 buf[0] = CMD_DMASEV; 752 753 ev &= 0x1f; 754 ev <<= 3; 755 buf[1] = ev; 756 757 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 758 759 return SZ_DMASEV; 760 } 761 762 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 763 { 764 if (dry_run) 765 return SZ_DMAST; 766 767 buf[0] = CMD_DMAST; 768 769 if (cond == SINGLE) 770 buf[0] |= (0 << 1) | (1 << 0); 771 else if (cond == BURST) 772 buf[0] |= (1 << 1) | (1 << 0); 773 774 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 775 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 776 777 return SZ_DMAST; 778 } 779 780 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 781 enum pl330_cond cond, u8 peri) 782 { 783 if (dry_run) 784 return SZ_DMASTP; 785 786 buf[0] = CMD_DMASTP; 787 788 if (cond == BURST) 789 buf[0] |= (1 << 1); 790 791 peri &= 0x1f; 792 peri <<= 3; 793 buf[1] = peri; 794 795 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 796 cond == SINGLE ? 'S' : 'B', peri >> 3); 797 798 return SZ_DMASTP; 799 } 800 801 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 802 enum pl330_cond cond, u8 peri) 803 { 804 if (dry_run) 805 return SZ_DMAWFP; 806 807 buf[0] = CMD_DMAWFP; 808 809 if (cond == SINGLE) 810 buf[0] |= (0 << 1) | (0 << 0); 811 else if (cond == BURST) 812 buf[0] |= (1 << 1) | (0 << 0); 813 else 814 buf[0] |= (0 << 1) | (1 << 0); 815 816 peri &= 0x1f; 817 peri <<= 3; 818 buf[1] = peri; 819 820 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 821 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 822 823 return SZ_DMAWFP; 824 } 825 826 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 827 { 828 if (dry_run) 829 return SZ_DMAWMB; 830 831 buf[0] = CMD_DMAWMB; 832 833 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 834 835 return SZ_DMAWMB; 836 } 837 838 struct _arg_GO { 839 u8 chan; 840 u32 addr; 841 unsigned ns; 842 }; 843 844 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 845 const struct _arg_GO *arg) 846 { 847 u8 chan = arg->chan; 848 u32 addr = arg->addr; 849 unsigned ns = arg->ns; 850 851 if (dry_run) 852 return SZ_DMAGO; 853 854 buf[0] = CMD_DMAGO; 855 buf[0] |= (ns << 1); 856 buf[1] = chan & 0x7; 857 buf[2] = addr; 858 buf[3] = addr >> 8; 859 buf[4] = addr >> 16; 860 buf[5] = addr >> 24; 861 862 return SZ_DMAGO; 863 } 864 865 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 866 867 /* Returns Time-Out */ 868 static bool _until_dmac_idle(struct pl330_thread *thrd) 869 { 870 void __iomem *regs = thrd->dmac->base; 871 unsigned long loops = msecs_to_loops(5); 872 873 do { 874 /* Until Manager is Idle */ 875 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 876 break; 877 878 cpu_relax(); 879 } while (--loops); 880 881 if (!loops) 882 return true; 883 884 return false; 885 } 886 887 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 888 u8 insn[], bool as_manager) 889 { 890 void __iomem *regs = thrd->dmac->base; 891 u32 val; 892 893 /* If timed out due to halted state-machine */ 894 if (_until_dmac_idle(thrd)) { 895 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 896 return; 897 } 898 899 val = (insn[0] << 16) | (insn[1] << 24); 900 if (!as_manager) { 901 val |= (1 << 0); 902 val |= (thrd->id << 8); /* Channel Number */ 903 } 904 writel(val, regs + DBGINST0); 905 906 val = le32_to_cpu(*((__le32 *)&insn[2])); 907 writel(val, regs + DBGINST1); 908 909 /* Get going */ 910 writel(0, regs + DBGCMD); 911 } 912 913 static inline u32 _state(struct pl330_thread *thrd) 914 { 915 void __iomem *regs = thrd->dmac->base; 916 u32 val; 917 918 if (is_manager(thrd)) 919 val = readl(regs + DS) & 0xf; 920 else 921 val = readl(regs + CS(thrd->id)) & 0xf; 922 923 switch (val) { 924 case DS_ST_STOP: 925 return PL330_STATE_STOPPED; 926 case DS_ST_EXEC: 927 return PL330_STATE_EXECUTING; 928 case DS_ST_CMISS: 929 return PL330_STATE_CACHEMISS; 930 case DS_ST_UPDTPC: 931 return PL330_STATE_UPDTPC; 932 case DS_ST_WFE: 933 return PL330_STATE_WFE; 934 case DS_ST_FAULT: 935 return PL330_STATE_FAULTING; 936 case DS_ST_ATBRR: 937 if (is_manager(thrd)) 938 return PL330_STATE_INVALID; 939 else 940 return PL330_STATE_ATBARRIER; 941 case DS_ST_QBUSY: 942 if (is_manager(thrd)) 943 return PL330_STATE_INVALID; 944 else 945 return PL330_STATE_QUEUEBUSY; 946 case DS_ST_WFP: 947 if (is_manager(thrd)) 948 return PL330_STATE_INVALID; 949 else 950 return PL330_STATE_WFP; 951 case DS_ST_KILL: 952 if (is_manager(thrd)) 953 return PL330_STATE_INVALID; 954 else 955 return PL330_STATE_KILLING; 956 case DS_ST_CMPLT: 957 if (is_manager(thrd)) 958 return PL330_STATE_INVALID; 959 else 960 return PL330_STATE_COMPLETING; 961 case DS_ST_FLTCMP: 962 if (is_manager(thrd)) 963 return PL330_STATE_INVALID; 964 else 965 return PL330_STATE_FAULT_COMPLETING; 966 default: 967 return PL330_STATE_INVALID; 968 } 969 } 970 971 static void _stop(struct pl330_thread *thrd) 972 { 973 void __iomem *regs = thrd->dmac->base; 974 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 975 u32 inten = readl(regs + INTEN); 976 977 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 978 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 979 980 /* Return if nothing needs to be done */ 981 if (_state(thrd) == PL330_STATE_COMPLETING 982 || _state(thrd) == PL330_STATE_KILLING 983 || _state(thrd) == PL330_STATE_STOPPED) 984 return; 985 986 _emit_KILL(0, insn); 987 988 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 989 990 /* clear the event */ 991 if (inten & (1 << thrd->ev)) 992 writel(1 << thrd->ev, regs + INTCLR); 993 /* Stop generating interrupts for SEV */ 994 writel(inten & ~(1 << thrd->ev), regs + INTEN); 995 } 996 997 /* Start doing req 'idx' of thread 'thrd' */ 998 static bool _trigger(struct pl330_thread *thrd) 999 { 1000 void __iomem *regs = thrd->dmac->base; 1001 struct _pl330_req *req; 1002 struct dma_pl330_desc *desc; 1003 struct _arg_GO go; 1004 unsigned ns; 1005 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1006 int idx; 1007 1008 /* Return if already ACTIVE */ 1009 if (_state(thrd) != PL330_STATE_STOPPED) 1010 return true; 1011 1012 idx = 1 - thrd->lstenq; 1013 if (thrd->req[idx].desc != NULL) { 1014 req = &thrd->req[idx]; 1015 } else { 1016 idx = thrd->lstenq; 1017 if (thrd->req[idx].desc != NULL) 1018 req = &thrd->req[idx]; 1019 else 1020 req = NULL; 1021 } 1022 1023 /* Return if no request */ 1024 if (!req) 1025 return true; 1026 1027 /* Return if req is running */ 1028 if (idx == thrd->req_running) 1029 return true; 1030 1031 desc = req->desc; 1032 1033 ns = desc->rqcfg.nonsecure ? 1 : 0; 1034 1035 /* See 'Abort Sources' point-4 at Page 2-25 */ 1036 if (_manager_ns(thrd) && !ns) 1037 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1038 __func__, __LINE__); 1039 1040 go.chan = thrd->id; 1041 go.addr = req->mc_bus; 1042 go.ns = ns; 1043 _emit_GO(0, insn, &go); 1044 1045 /* Set to generate interrupts for SEV */ 1046 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1047 1048 /* Only manager can execute GO */ 1049 _execute_DBGINSN(thrd, insn, true); 1050 1051 thrd->req_running = idx; 1052 1053 return true; 1054 } 1055 1056 static bool _start(struct pl330_thread *thrd) 1057 { 1058 switch (_state(thrd)) { 1059 case PL330_STATE_FAULT_COMPLETING: 1060 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1061 1062 if (_state(thrd) == PL330_STATE_KILLING) 1063 UNTIL(thrd, PL330_STATE_STOPPED) 1064 fallthrough; 1065 1066 case PL330_STATE_FAULTING: 1067 _stop(thrd); 1068 fallthrough; 1069 1070 case PL330_STATE_KILLING: 1071 case PL330_STATE_COMPLETING: 1072 UNTIL(thrd, PL330_STATE_STOPPED) 1073 fallthrough; 1074 1075 case PL330_STATE_STOPPED: 1076 return _trigger(thrd); 1077 1078 case PL330_STATE_WFP: 1079 case PL330_STATE_QUEUEBUSY: 1080 case PL330_STATE_ATBARRIER: 1081 case PL330_STATE_UPDTPC: 1082 case PL330_STATE_CACHEMISS: 1083 case PL330_STATE_EXECUTING: 1084 return true; 1085 1086 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1087 default: 1088 return false; 1089 } 1090 } 1091 1092 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1093 const struct _xfer_spec *pxs, int cyc) 1094 { 1095 int off = 0; 1096 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1097 1098 /* check lock-up free version */ 1099 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1100 while (cyc--) { 1101 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1102 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1103 } 1104 } else { 1105 while (cyc--) { 1106 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1107 off += _emit_RMB(dry_run, &buf[off]); 1108 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1109 off += _emit_WMB(dry_run, &buf[off]); 1110 } 1111 } 1112 1113 return off; 1114 } 1115 1116 static u32 _emit_load(unsigned int dry_run, u8 buf[], 1117 enum pl330_cond cond, enum dma_transfer_direction direction, 1118 u8 peri) 1119 { 1120 int off = 0; 1121 1122 switch (direction) { 1123 case DMA_MEM_TO_MEM: 1124 case DMA_MEM_TO_DEV: 1125 off += _emit_LD(dry_run, &buf[off], cond); 1126 break; 1127 1128 case DMA_DEV_TO_MEM: 1129 if (cond == ALWAYS) { 1130 off += _emit_LDP(dry_run, &buf[off], SINGLE, 1131 peri); 1132 off += _emit_LDP(dry_run, &buf[off], BURST, 1133 peri); 1134 } else { 1135 off += _emit_LDP(dry_run, &buf[off], cond, 1136 peri); 1137 } 1138 break; 1139 1140 default: 1141 /* this code should be unreachable */ 1142 WARN_ON(1); 1143 break; 1144 } 1145 1146 return off; 1147 } 1148 1149 static inline u32 _emit_store(unsigned int dry_run, u8 buf[], 1150 enum pl330_cond cond, enum dma_transfer_direction direction, 1151 u8 peri) 1152 { 1153 int off = 0; 1154 1155 switch (direction) { 1156 case DMA_MEM_TO_MEM: 1157 case DMA_DEV_TO_MEM: 1158 off += _emit_ST(dry_run, &buf[off], cond); 1159 break; 1160 1161 case DMA_MEM_TO_DEV: 1162 if (cond == ALWAYS) { 1163 off += _emit_STP(dry_run, &buf[off], SINGLE, 1164 peri); 1165 off += _emit_STP(dry_run, &buf[off], BURST, 1166 peri); 1167 } else { 1168 off += _emit_STP(dry_run, &buf[off], cond, 1169 peri); 1170 } 1171 break; 1172 1173 default: 1174 /* this code should be unreachable */ 1175 WARN_ON(1); 1176 break; 1177 } 1178 1179 return off; 1180 } 1181 1182 static inline int _ldst_peripheral(struct pl330_dmac *pl330, 1183 unsigned dry_run, u8 buf[], 1184 const struct _xfer_spec *pxs, int cyc, 1185 enum pl330_cond cond) 1186 { 1187 int off = 0; 1188 1189 /* 1190 * do FLUSHP at beginning to clear any stale dma requests before the 1191 * first WFP. 1192 */ 1193 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1194 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1195 while (cyc--) { 1196 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1197 off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype, 1198 pxs->desc->peri); 1199 off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype, 1200 pxs->desc->peri); 1201 } 1202 1203 return off; 1204 } 1205 1206 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1207 const struct _xfer_spec *pxs, int cyc) 1208 { 1209 int off = 0; 1210 enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE; 1211 1212 if (pl330->quirks & PL330_QUIRK_PERIPH_BURST) 1213 cond = BURST; 1214 1215 switch (pxs->desc->rqtype) { 1216 case DMA_MEM_TO_DEV: 1217 case DMA_DEV_TO_MEM: 1218 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc, 1219 cond); 1220 break; 1221 1222 case DMA_MEM_TO_MEM: 1223 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1224 break; 1225 1226 default: 1227 /* this code should be unreachable */ 1228 WARN_ON(1); 1229 break; 1230 } 1231 1232 return off; 1233 } 1234 1235 /* 1236 * only the unaligned burst transfers have the dregs. 1237 * so, still transfer dregs with a reduced size burst 1238 * for mem-to-mem, mem-to-dev or dev-to-mem. 1239 */ 1240 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[], 1241 const struct _xfer_spec *pxs, int transfer_length) 1242 { 1243 int off = 0; 1244 int dregs_ccr; 1245 1246 if (transfer_length == 0) 1247 return off; 1248 1249 /* 1250 * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) / 1251 * BRST_SIZE(ccr) 1252 * the dregs len must be smaller than burst len, 1253 * so, for higher efficiency, we can modify CCR 1254 * to use a reduced size burst len for the dregs. 1255 */ 1256 dregs_ccr = pxs->ccr; 1257 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) | 1258 (0xf << CC_DSTBRSTLEN_SHFT)); 1259 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1260 CC_SRCBRSTLEN_SHFT); 1261 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1262 CC_DSTBRSTLEN_SHFT); 1263 1264 switch (pxs->desc->rqtype) { 1265 case DMA_MEM_TO_DEV: 1266 case DMA_DEV_TO_MEM: 1267 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1268 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1, 1269 BURST); 1270 break; 1271 1272 case DMA_MEM_TO_MEM: 1273 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1274 off += _ldst_memtomem(dry_run, &buf[off], pxs, 1); 1275 break; 1276 1277 default: 1278 /* this code should be unreachable */ 1279 WARN_ON(1); 1280 break; 1281 } 1282 1283 return off; 1284 } 1285 1286 /* Returns bytes consumed and updates bursts */ 1287 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1288 unsigned long *bursts, const struct _xfer_spec *pxs) 1289 { 1290 int cyc, cycmax, szlp, szlpend, szbrst, off; 1291 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1292 struct _arg_LPEND lpend; 1293 1294 if (*bursts == 1) 1295 return _bursts(pl330, dry_run, buf, pxs, 1); 1296 1297 /* Max iterations possible in DMALP is 256 */ 1298 if (*bursts >= 256*256) { 1299 lcnt1 = 256; 1300 lcnt0 = 256; 1301 cyc = *bursts / lcnt1 / lcnt0; 1302 } else if (*bursts > 256) { 1303 lcnt1 = 256; 1304 lcnt0 = *bursts / lcnt1; 1305 cyc = 1; 1306 } else { 1307 lcnt1 = *bursts; 1308 lcnt0 = 0; 1309 cyc = 1; 1310 } 1311 1312 szlp = _emit_LP(1, buf, 0, 0); 1313 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1314 1315 lpend.cond = ALWAYS; 1316 lpend.forever = false; 1317 lpend.loop = 0; 1318 lpend.bjump = 0; 1319 szlpend = _emit_LPEND(1, buf, &lpend); 1320 1321 if (lcnt0) { 1322 szlp *= 2; 1323 szlpend *= 2; 1324 } 1325 1326 /* 1327 * Max bursts that we can unroll due to limit on the 1328 * size of backward jump that can be encoded in DMALPEND 1329 * which is 8-bits and hence 255 1330 */ 1331 cycmax = (255 - (szlp + szlpend)) / szbrst; 1332 1333 cyc = (cycmax < cyc) ? cycmax : cyc; 1334 1335 off = 0; 1336 1337 if (lcnt0) { 1338 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1339 ljmp0 = off; 1340 } 1341 1342 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1343 ljmp1 = off; 1344 1345 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1346 1347 lpend.cond = ALWAYS; 1348 lpend.forever = false; 1349 lpend.loop = 1; 1350 lpend.bjump = off - ljmp1; 1351 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1352 1353 if (lcnt0) { 1354 lpend.cond = ALWAYS; 1355 lpend.forever = false; 1356 lpend.loop = 0; 1357 lpend.bjump = off - ljmp0; 1358 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1359 } 1360 1361 *bursts = lcnt1 * cyc; 1362 if (lcnt0) 1363 *bursts *= lcnt0; 1364 1365 return off; 1366 } 1367 1368 static inline int _setup_loops(struct pl330_dmac *pl330, 1369 unsigned dry_run, u8 buf[], 1370 const struct _xfer_spec *pxs) 1371 { 1372 struct pl330_xfer *x = &pxs->desc->px; 1373 u32 ccr = pxs->ccr; 1374 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1375 int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) / 1376 BRST_SIZE(ccr); 1377 int off = 0; 1378 1379 while (bursts) { 1380 c = bursts; 1381 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1382 bursts -= c; 1383 } 1384 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs); 1385 1386 return off; 1387 } 1388 1389 static inline int _setup_xfer(struct pl330_dmac *pl330, 1390 unsigned dry_run, u8 buf[], 1391 const struct _xfer_spec *pxs) 1392 { 1393 struct pl330_xfer *x = &pxs->desc->px; 1394 int off = 0; 1395 1396 /* DMAMOV SAR, x->src_addr */ 1397 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1398 /* DMAMOV DAR, x->dst_addr */ 1399 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1400 1401 /* Setup Loop(s) */ 1402 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1403 1404 return off; 1405 } 1406 1407 /* 1408 * A req is a sequence of one or more xfer units. 1409 * Returns the number of bytes taken to setup the MC for the req. 1410 */ 1411 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1412 struct pl330_thread *thrd, unsigned index, 1413 struct _xfer_spec *pxs) 1414 { 1415 struct _pl330_req *req = &thrd->req[index]; 1416 u8 *buf = req->mc_cpu; 1417 int off = 0; 1418 1419 PL330_DBGMC_START(req->mc_bus); 1420 1421 /* DMAMOV CCR, ccr */ 1422 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1423 1424 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1425 1426 /* DMASEV peripheral/event */ 1427 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1428 /* DMAEND */ 1429 off += _emit_END(dry_run, &buf[off]); 1430 1431 return off; 1432 } 1433 1434 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1435 { 1436 u32 ccr = 0; 1437 1438 if (rqc->src_inc) 1439 ccr |= CC_SRCINC; 1440 1441 if (rqc->dst_inc) 1442 ccr |= CC_DSTINC; 1443 1444 /* We set same protection levels for Src and DST for now */ 1445 if (rqc->privileged) 1446 ccr |= CC_SRCPRI | CC_DSTPRI; 1447 if (rqc->nonsecure) 1448 ccr |= CC_SRCNS | CC_DSTNS; 1449 if (rqc->insnaccess) 1450 ccr |= CC_SRCIA | CC_DSTIA; 1451 1452 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1453 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1454 1455 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1456 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1457 1458 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1459 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1460 1461 ccr |= (rqc->swap << CC_SWAP_SHFT); 1462 1463 return ccr; 1464 } 1465 1466 /* 1467 * Submit a list of xfers after which the client wants notification. 1468 * Client is not notified after each xfer unit, just once after all 1469 * xfer units are done or some error occurs. 1470 */ 1471 static int pl330_submit_req(struct pl330_thread *thrd, 1472 struct dma_pl330_desc *desc) 1473 { 1474 struct pl330_dmac *pl330 = thrd->dmac; 1475 struct _xfer_spec xs; 1476 unsigned long flags; 1477 unsigned idx; 1478 u32 ccr; 1479 int ret = 0; 1480 1481 switch (desc->rqtype) { 1482 case DMA_MEM_TO_DEV: 1483 break; 1484 1485 case DMA_DEV_TO_MEM: 1486 break; 1487 1488 case DMA_MEM_TO_MEM: 1489 break; 1490 1491 default: 1492 return -ENOTSUPP; 1493 } 1494 1495 if (pl330->state == DYING 1496 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1497 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1498 __func__, __LINE__); 1499 return -EAGAIN; 1500 } 1501 1502 /* If request for non-existing peripheral */ 1503 if (desc->rqtype != DMA_MEM_TO_MEM && 1504 desc->peri >= pl330->pcfg.num_peri) { 1505 dev_info(thrd->dmac->ddma.dev, 1506 "%s:%d Invalid peripheral(%u)!\n", 1507 __func__, __LINE__, desc->peri); 1508 return -EINVAL; 1509 } 1510 1511 spin_lock_irqsave(&pl330->lock, flags); 1512 1513 if (_queue_full(thrd)) { 1514 ret = -EAGAIN; 1515 goto xfer_exit; 1516 } 1517 1518 /* Prefer Secure Channel */ 1519 if (!_manager_ns(thrd)) 1520 desc->rqcfg.nonsecure = 0; 1521 else 1522 desc->rqcfg.nonsecure = 1; 1523 1524 ccr = _prepare_ccr(&desc->rqcfg); 1525 1526 idx = thrd->req[0].desc == NULL ? 0 : 1; 1527 1528 xs.ccr = ccr; 1529 xs.desc = desc; 1530 1531 /* First dry run to check if req is acceptable */ 1532 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1533 if (ret < 0) 1534 goto xfer_exit; 1535 1536 if (ret > pl330->mcbufsz / 2) { 1537 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1538 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1539 ret = -ENOMEM; 1540 goto xfer_exit; 1541 } 1542 1543 /* Hook the request */ 1544 thrd->lstenq = idx; 1545 thrd->req[idx].desc = desc; 1546 _setup_req(pl330, 0, thrd, idx, &xs); 1547 1548 ret = 0; 1549 1550 xfer_exit: 1551 spin_unlock_irqrestore(&pl330->lock, flags); 1552 1553 return ret; 1554 } 1555 1556 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1557 { 1558 struct dma_pl330_chan *pch; 1559 unsigned long flags; 1560 1561 if (!desc) 1562 return; 1563 1564 pch = desc->pchan; 1565 1566 /* If desc aborted */ 1567 if (!pch) 1568 return; 1569 1570 spin_lock_irqsave(&pch->lock, flags); 1571 1572 desc->status = DONE; 1573 1574 spin_unlock_irqrestore(&pch->lock, flags); 1575 1576 tasklet_schedule(&pch->task); 1577 } 1578 1579 static void pl330_dotask(unsigned long data) 1580 { 1581 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1582 unsigned long flags; 1583 int i; 1584 1585 spin_lock_irqsave(&pl330->lock, flags); 1586 1587 /* The DMAC itself gone nuts */ 1588 if (pl330->dmac_tbd.reset_dmac) { 1589 pl330->state = DYING; 1590 /* Reset the manager too */ 1591 pl330->dmac_tbd.reset_mngr = true; 1592 /* Clear the reset flag */ 1593 pl330->dmac_tbd.reset_dmac = false; 1594 } 1595 1596 if (pl330->dmac_tbd.reset_mngr) { 1597 _stop(pl330->manager); 1598 /* Reset all channels */ 1599 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1600 /* Clear the reset flag */ 1601 pl330->dmac_tbd.reset_mngr = false; 1602 } 1603 1604 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1605 1606 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1607 struct pl330_thread *thrd = &pl330->channels[i]; 1608 void __iomem *regs = pl330->base; 1609 enum pl330_op_err err; 1610 1611 _stop(thrd); 1612 1613 if (readl(regs + FSC) & (1 << thrd->id)) 1614 err = PL330_ERR_FAIL; 1615 else 1616 err = PL330_ERR_ABORT; 1617 1618 spin_unlock_irqrestore(&pl330->lock, flags); 1619 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1620 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1621 spin_lock_irqsave(&pl330->lock, flags); 1622 1623 thrd->req[0].desc = NULL; 1624 thrd->req[1].desc = NULL; 1625 thrd->req_running = -1; 1626 1627 /* Clear the reset flag */ 1628 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1629 } 1630 } 1631 1632 spin_unlock_irqrestore(&pl330->lock, flags); 1633 1634 return; 1635 } 1636 1637 /* Returns 1 if state was updated, 0 otherwise */ 1638 static int pl330_update(struct pl330_dmac *pl330) 1639 { 1640 struct dma_pl330_desc *descdone; 1641 unsigned long flags; 1642 void __iomem *regs; 1643 u32 val; 1644 int id, ev, ret = 0; 1645 1646 regs = pl330->base; 1647 1648 spin_lock_irqsave(&pl330->lock, flags); 1649 1650 val = readl(regs + FSM) & 0x1; 1651 if (val) 1652 pl330->dmac_tbd.reset_mngr = true; 1653 else 1654 pl330->dmac_tbd.reset_mngr = false; 1655 1656 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1657 pl330->dmac_tbd.reset_chan |= val; 1658 if (val) { 1659 int i = 0; 1660 while (i < pl330->pcfg.num_chan) { 1661 if (val & (1 << i)) { 1662 dev_info(pl330->ddma.dev, 1663 "Reset Channel-%d\t CS-%x FTC-%x\n", 1664 i, readl(regs + CS(i)), 1665 readl(regs + FTC(i))); 1666 _stop(&pl330->channels[i]); 1667 } 1668 i++; 1669 } 1670 } 1671 1672 /* Check which event happened i.e, thread notified */ 1673 val = readl(regs + ES); 1674 if (pl330->pcfg.num_events < 32 1675 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1676 pl330->dmac_tbd.reset_dmac = true; 1677 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1678 __LINE__); 1679 ret = 1; 1680 goto updt_exit; 1681 } 1682 1683 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1684 if (val & (1 << ev)) { /* Event occurred */ 1685 struct pl330_thread *thrd; 1686 u32 inten = readl(regs + INTEN); 1687 int active; 1688 1689 /* Clear the event */ 1690 if (inten & (1 << ev)) 1691 writel(1 << ev, regs + INTCLR); 1692 1693 ret = 1; 1694 1695 id = pl330->events[ev]; 1696 1697 thrd = &pl330->channels[id]; 1698 1699 active = thrd->req_running; 1700 if (active == -1) /* Aborted */ 1701 continue; 1702 1703 /* Detach the req */ 1704 descdone = thrd->req[active].desc; 1705 thrd->req[active].desc = NULL; 1706 1707 thrd->req_running = -1; 1708 1709 /* Get going again ASAP */ 1710 _start(thrd); 1711 1712 /* For now, just make a list of callbacks to be done */ 1713 list_add_tail(&descdone->rqd, &pl330->req_done); 1714 } 1715 } 1716 1717 /* Now that we are in no hurry, do the callbacks */ 1718 while (!list_empty(&pl330->req_done)) { 1719 descdone = list_first_entry(&pl330->req_done, 1720 struct dma_pl330_desc, rqd); 1721 list_del(&descdone->rqd); 1722 spin_unlock_irqrestore(&pl330->lock, flags); 1723 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1724 spin_lock_irqsave(&pl330->lock, flags); 1725 } 1726 1727 updt_exit: 1728 spin_unlock_irqrestore(&pl330->lock, flags); 1729 1730 if (pl330->dmac_tbd.reset_dmac 1731 || pl330->dmac_tbd.reset_mngr 1732 || pl330->dmac_tbd.reset_chan) { 1733 ret = 1; 1734 tasklet_schedule(&pl330->tasks); 1735 } 1736 1737 return ret; 1738 } 1739 1740 /* Reserve an event */ 1741 static inline int _alloc_event(struct pl330_thread *thrd) 1742 { 1743 struct pl330_dmac *pl330 = thrd->dmac; 1744 int ev; 1745 1746 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1747 if (pl330->events[ev] == -1) { 1748 pl330->events[ev] = thrd->id; 1749 return ev; 1750 } 1751 1752 return -1; 1753 } 1754 1755 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1756 { 1757 return pl330->pcfg.irq_ns & (1 << i); 1758 } 1759 1760 /* Upon success, returns IdentityToken for the 1761 * allocated channel, NULL otherwise. 1762 */ 1763 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1764 { 1765 struct pl330_thread *thrd = NULL; 1766 int chans, i; 1767 1768 if (pl330->state == DYING) 1769 return NULL; 1770 1771 chans = pl330->pcfg.num_chan; 1772 1773 for (i = 0; i < chans; i++) { 1774 thrd = &pl330->channels[i]; 1775 if ((thrd->free) && (!_manager_ns(thrd) || 1776 _chan_ns(pl330, i))) { 1777 thrd->ev = _alloc_event(thrd); 1778 if (thrd->ev >= 0) { 1779 thrd->free = false; 1780 thrd->lstenq = 1; 1781 thrd->req[0].desc = NULL; 1782 thrd->req[1].desc = NULL; 1783 thrd->req_running = -1; 1784 break; 1785 } 1786 } 1787 thrd = NULL; 1788 } 1789 1790 return thrd; 1791 } 1792 1793 /* Release an event */ 1794 static inline void _free_event(struct pl330_thread *thrd, int ev) 1795 { 1796 struct pl330_dmac *pl330 = thrd->dmac; 1797 1798 /* If the event is valid and was held by the thread */ 1799 if (ev >= 0 && ev < pl330->pcfg.num_events 1800 && pl330->events[ev] == thrd->id) 1801 pl330->events[ev] = -1; 1802 } 1803 1804 static void pl330_release_channel(struct pl330_thread *thrd) 1805 { 1806 if (!thrd || thrd->free) 1807 return; 1808 1809 _stop(thrd); 1810 1811 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1812 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1813 1814 _free_event(thrd, thrd->ev); 1815 thrd->free = true; 1816 } 1817 1818 /* Initialize the structure for PL330 configuration, that can be used 1819 * by the client driver the make best use of the DMAC 1820 */ 1821 static void read_dmac_config(struct pl330_dmac *pl330) 1822 { 1823 void __iomem *regs = pl330->base; 1824 u32 val; 1825 1826 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1827 val &= CRD_DATA_WIDTH_MASK; 1828 pl330->pcfg.data_bus_width = 8 * (1 << val); 1829 1830 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1831 val &= CRD_DATA_BUFF_MASK; 1832 pl330->pcfg.data_buf_dep = val + 1; 1833 1834 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1835 val &= CR0_NUM_CHANS_MASK; 1836 val += 1; 1837 pl330->pcfg.num_chan = val; 1838 1839 val = readl(regs + CR0); 1840 if (val & CR0_PERIPH_REQ_SET) { 1841 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1842 val += 1; 1843 pl330->pcfg.num_peri = val; 1844 pl330->pcfg.peri_ns = readl(regs + CR4); 1845 } else { 1846 pl330->pcfg.num_peri = 0; 1847 } 1848 1849 val = readl(regs + CR0); 1850 if (val & CR0_BOOT_MAN_NS) 1851 pl330->pcfg.mode |= DMAC_MODE_NS; 1852 else 1853 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1854 1855 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1856 val &= CR0_NUM_EVENTS_MASK; 1857 val += 1; 1858 pl330->pcfg.num_events = val; 1859 1860 pl330->pcfg.irq_ns = readl(regs + CR3); 1861 } 1862 1863 static inline void _reset_thread(struct pl330_thread *thrd) 1864 { 1865 struct pl330_dmac *pl330 = thrd->dmac; 1866 1867 thrd->req[0].mc_cpu = pl330->mcode_cpu 1868 + (thrd->id * pl330->mcbufsz); 1869 thrd->req[0].mc_bus = pl330->mcode_bus 1870 + (thrd->id * pl330->mcbufsz); 1871 thrd->req[0].desc = NULL; 1872 1873 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1874 + pl330->mcbufsz / 2; 1875 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1876 + pl330->mcbufsz / 2; 1877 thrd->req[1].desc = NULL; 1878 1879 thrd->req_running = -1; 1880 } 1881 1882 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1883 { 1884 int chans = pl330->pcfg.num_chan; 1885 struct pl330_thread *thrd; 1886 int i; 1887 1888 /* Allocate 1 Manager and 'chans' Channel threads */ 1889 pl330->channels = kcalloc(1 + chans, sizeof(*thrd), 1890 GFP_KERNEL); 1891 if (!pl330->channels) 1892 return -ENOMEM; 1893 1894 /* Init Channel threads */ 1895 for (i = 0; i < chans; i++) { 1896 thrd = &pl330->channels[i]; 1897 thrd->id = i; 1898 thrd->dmac = pl330; 1899 _reset_thread(thrd); 1900 thrd->free = true; 1901 } 1902 1903 /* MANAGER is indexed at the end */ 1904 thrd = &pl330->channels[chans]; 1905 thrd->id = chans; 1906 thrd->dmac = pl330; 1907 thrd->free = false; 1908 pl330->manager = thrd; 1909 1910 return 0; 1911 } 1912 1913 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1914 { 1915 int chans = pl330->pcfg.num_chan; 1916 int ret; 1917 1918 /* 1919 * Alloc MicroCode buffer for 'chans' Channel threads. 1920 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1921 */ 1922 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, 1923 chans * pl330->mcbufsz, 1924 &pl330->mcode_bus, GFP_KERNEL, 1925 DMA_ATTR_PRIVILEGED); 1926 if (!pl330->mcode_cpu) { 1927 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1928 __func__, __LINE__); 1929 return -ENOMEM; 1930 } 1931 1932 ret = dmac_alloc_threads(pl330); 1933 if (ret) { 1934 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1935 __func__, __LINE__); 1936 dma_free_attrs(pl330->ddma.dev, 1937 chans * pl330->mcbufsz, 1938 pl330->mcode_cpu, pl330->mcode_bus, 1939 DMA_ATTR_PRIVILEGED); 1940 return ret; 1941 } 1942 1943 return 0; 1944 } 1945 1946 static int pl330_add(struct pl330_dmac *pl330) 1947 { 1948 int i, ret; 1949 1950 /* Check if we can handle this DMAC */ 1951 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1952 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1953 pl330->pcfg.periph_id); 1954 return -EINVAL; 1955 } 1956 1957 /* Read the configuration of the DMAC */ 1958 read_dmac_config(pl330); 1959 1960 if (pl330->pcfg.num_events == 0) { 1961 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1962 __func__, __LINE__); 1963 return -EINVAL; 1964 } 1965 1966 spin_lock_init(&pl330->lock); 1967 1968 INIT_LIST_HEAD(&pl330->req_done); 1969 1970 /* Use default MC buffer size if not provided */ 1971 if (!pl330->mcbufsz) 1972 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1973 1974 /* Mark all events as free */ 1975 for (i = 0; i < pl330->pcfg.num_events; i++) 1976 pl330->events[i] = -1; 1977 1978 /* Allocate resources needed by the DMAC */ 1979 ret = dmac_alloc_resources(pl330); 1980 if (ret) { 1981 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1982 return ret; 1983 } 1984 1985 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1986 1987 pl330->state = INIT; 1988 1989 return 0; 1990 } 1991 1992 static int dmac_free_threads(struct pl330_dmac *pl330) 1993 { 1994 struct pl330_thread *thrd; 1995 int i; 1996 1997 /* Release Channel threads */ 1998 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1999 thrd = &pl330->channels[i]; 2000 pl330_release_channel(thrd); 2001 } 2002 2003 /* Free memory */ 2004 kfree(pl330->channels); 2005 2006 return 0; 2007 } 2008 2009 static void pl330_del(struct pl330_dmac *pl330) 2010 { 2011 pl330->state = UNINIT; 2012 2013 tasklet_kill(&pl330->tasks); 2014 2015 /* Free DMAC resources */ 2016 dmac_free_threads(pl330); 2017 2018 dma_free_attrs(pl330->ddma.dev, 2019 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 2020 pl330->mcode_bus, DMA_ATTR_PRIVILEGED); 2021 } 2022 2023 /* forward declaration */ 2024 static struct amba_driver pl330_driver; 2025 2026 static inline struct dma_pl330_chan * 2027 to_pchan(struct dma_chan *ch) 2028 { 2029 if (!ch) 2030 return NULL; 2031 2032 return container_of(ch, struct dma_pl330_chan, chan); 2033 } 2034 2035 static inline struct dma_pl330_desc * 2036 to_desc(struct dma_async_tx_descriptor *tx) 2037 { 2038 return container_of(tx, struct dma_pl330_desc, txd); 2039 } 2040 2041 static inline void fill_queue(struct dma_pl330_chan *pch) 2042 { 2043 struct dma_pl330_desc *desc; 2044 int ret; 2045 2046 list_for_each_entry(desc, &pch->work_list, node) { 2047 2048 /* If already submitted */ 2049 if (desc->status == BUSY) 2050 continue; 2051 2052 ret = pl330_submit_req(pch->thread, desc); 2053 if (!ret) { 2054 desc->status = BUSY; 2055 } else if (ret == -EAGAIN) { 2056 /* QFull or DMAC Dying */ 2057 break; 2058 } else { 2059 /* Unacceptable request */ 2060 desc->status = DONE; 2061 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 2062 __func__, __LINE__, desc->txd.cookie); 2063 tasklet_schedule(&pch->task); 2064 } 2065 } 2066 } 2067 2068 static void pl330_tasklet(unsigned long data) 2069 { 2070 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2071 struct dma_pl330_desc *desc, *_dt; 2072 unsigned long flags; 2073 bool power_down = false; 2074 2075 spin_lock_irqsave(&pch->lock, flags); 2076 2077 /* Pick up ripe tomatoes */ 2078 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2079 if (desc->status == DONE) { 2080 if (!pch->cyclic) 2081 dma_cookie_complete(&desc->txd); 2082 list_move_tail(&desc->node, &pch->completed_list); 2083 } 2084 2085 /* Try to submit a req imm. next to the last completed cookie */ 2086 fill_queue(pch); 2087 2088 if (list_empty(&pch->work_list)) { 2089 spin_lock(&pch->thread->dmac->lock); 2090 _stop(pch->thread); 2091 spin_unlock(&pch->thread->dmac->lock); 2092 power_down = true; 2093 pch->active = false; 2094 } else { 2095 /* Make sure the PL330 Channel thread is active */ 2096 spin_lock(&pch->thread->dmac->lock); 2097 _start(pch->thread); 2098 spin_unlock(&pch->thread->dmac->lock); 2099 } 2100 2101 while (!list_empty(&pch->completed_list)) { 2102 struct dmaengine_desc_callback cb; 2103 2104 desc = list_first_entry(&pch->completed_list, 2105 struct dma_pl330_desc, node); 2106 2107 dmaengine_desc_get_callback(&desc->txd, &cb); 2108 2109 if (pch->cyclic) { 2110 desc->status = PREP; 2111 list_move_tail(&desc->node, &pch->work_list); 2112 if (power_down) { 2113 pch->active = true; 2114 spin_lock(&pch->thread->dmac->lock); 2115 _start(pch->thread); 2116 spin_unlock(&pch->thread->dmac->lock); 2117 power_down = false; 2118 } 2119 } else { 2120 desc->status = FREE; 2121 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2122 } 2123 2124 dma_descriptor_unmap(&desc->txd); 2125 2126 if (dmaengine_desc_callback_valid(&cb)) { 2127 spin_unlock_irqrestore(&pch->lock, flags); 2128 dmaengine_desc_callback_invoke(&cb, NULL); 2129 spin_lock_irqsave(&pch->lock, flags); 2130 } 2131 } 2132 spin_unlock_irqrestore(&pch->lock, flags); 2133 2134 /* If work list empty, power down */ 2135 if (power_down) { 2136 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2137 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2138 } 2139 } 2140 2141 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2142 struct of_dma *ofdma) 2143 { 2144 int count = dma_spec->args_count; 2145 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2146 unsigned int chan_id; 2147 2148 if (!pl330) 2149 return NULL; 2150 2151 if (count != 1) 2152 return NULL; 2153 2154 chan_id = dma_spec->args[0]; 2155 if (chan_id >= pl330->num_peripherals) 2156 return NULL; 2157 2158 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2159 } 2160 2161 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2162 { 2163 struct dma_pl330_chan *pch = to_pchan(chan); 2164 struct pl330_dmac *pl330 = pch->dmac; 2165 unsigned long flags; 2166 2167 spin_lock_irqsave(&pl330->lock, flags); 2168 2169 dma_cookie_init(chan); 2170 pch->cyclic = false; 2171 2172 pch->thread = pl330_request_channel(pl330); 2173 if (!pch->thread) { 2174 spin_unlock_irqrestore(&pl330->lock, flags); 2175 return -ENOMEM; 2176 } 2177 2178 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2179 2180 spin_unlock_irqrestore(&pl330->lock, flags); 2181 2182 return 1; 2183 } 2184 2185 /* 2186 * We need the data direction between the DMAC (the dma-mapping "device") and 2187 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! 2188 */ 2189 static enum dma_data_direction 2190 pl330_dma_slave_map_dir(enum dma_transfer_direction dir) 2191 { 2192 switch (dir) { 2193 case DMA_MEM_TO_DEV: 2194 return DMA_FROM_DEVICE; 2195 case DMA_DEV_TO_MEM: 2196 return DMA_TO_DEVICE; 2197 case DMA_DEV_TO_DEV: 2198 return DMA_BIDIRECTIONAL; 2199 default: 2200 return DMA_NONE; 2201 } 2202 } 2203 2204 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) 2205 { 2206 if (pch->dir != DMA_NONE) 2207 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 2208 1 << pch->burst_sz, pch->dir, 0); 2209 pch->dir = DMA_NONE; 2210 } 2211 2212 2213 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, 2214 enum dma_transfer_direction dir) 2215 { 2216 struct device *dev = pch->chan.device->dev; 2217 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); 2218 2219 /* Already mapped for this config? */ 2220 if (pch->dir == dma_dir) 2221 return true; 2222 2223 pl330_unprep_slave_fifo(pch); 2224 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 2225 1 << pch->burst_sz, dma_dir, 0); 2226 if (dma_mapping_error(dev, pch->fifo_dma)) 2227 return false; 2228 2229 pch->dir = dma_dir; 2230 return true; 2231 } 2232 2233 static int fixup_burst_len(int max_burst_len, int quirks) 2234 { 2235 if (max_burst_len > PL330_MAX_BURST) 2236 return PL330_MAX_BURST; 2237 else if (max_burst_len < 1) 2238 return 1; 2239 else 2240 return max_burst_len; 2241 } 2242 2243 static int pl330_config_write(struct dma_chan *chan, 2244 struct dma_slave_config *slave_config, 2245 enum dma_transfer_direction direction) 2246 { 2247 struct dma_pl330_chan *pch = to_pchan(chan); 2248 2249 pl330_unprep_slave_fifo(pch); 2250 if (direction == DMA_MEM_TO_DEV) { 2251 if (slave_config->dst_addr) 2252 pch->fifo_addr = slave_config->dst_addr; 2253 if (slave_config->dst_addr_width) 2254 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2255 pch->burst_len = fixup_burst_len(slave_config->dst_maxburst, 2256 pch->dmac->quirks); 2257 } else if (direction == DMA_DEV_TO_MEM) { 2258 if (slave_config->src_addr) 2259 pch->fifo_addr = slave_config->src_addr; 2260 if (slave_config->src_addr_width) 2261 pch->burst_sz = __ffs(slave_config->src_addr_width); 2262 pch->burst_len = fixup_burst_len(slave_config->src_maxburst, 2263 pch->dmac->quirks); 2264 } 2265 2266 return 0; 2267 } 2268 2269 static int pl330_config(struct dma_chan *chan, 2270 struct dma_slave_config *slave_config) 2271 { 2272 struct dma_pl330_chan *pch = to_pchan(chan); 2273 2274 memcpy(&pch->slave_config, slave_config, sizeof(*slave_config)); 2275 2276 return 0; 2277 } 2278 2279 static int pl330_terminate_all(struct dma_chan *chan) 2280 { 2281 struct dma_pl330_chan *pch = to_pchan(chan); 2282 struct dma_pl330_desc *desc; 2283 unsigned long flags; 2284 struct pl330_dmac *pl330 = pch->dmac; 2285 bool power_down = false; 2286 2287 pm_runtime_get_sync(pl330->ddma.dev); 2288 spin_lock_irqsave(&pch->lock, flags); 2289 2290 spin_lock(&pl330->lock); 2291 _stop(pch->thread); 2292 pch->thread->req[0].desc = NULL; 2293 pch->thread->req[1].desc = NULL; 2294 pch->thread->req_running = -1; 2295 spin_unlock(&pl330->lock); 2296 2297 power_down = pch->active; 2298 pch->active = false; 2299 2300 /* Mark all desc done */ 2301 list_for_each_entry(desc, &pch->submitted_list, node) { 2302 desc->status = FREE; 2303 dma_cookie_complete(&desc->txd); 2304 } 2305 2306 list_for_each_entry(desc, &pch->work_list , node) { 2307 desc->status = FREE; 2308 dma_cookie_complete(&desc->txd); 2309 } 2310 2311 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2312 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2313 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2314 spin_unlock_irqrestore(&pch->lock, flags); 2315 pm_runtime_mark_last_busy(pl330->ddma.dev); 2316 if (power_down) 2317 pm_runtime_put_autosuspend(pl330->ddma.dev); 2318 pm_runtime_put_autosuspend(pl330->ddma.dev); 2319 2320 return 0; 2321 } 2322 2323 /* 2324 * We don't support DMA_RESUME command because of hardware 2325 * limitations, so after pausing the channel we cannot restore 2326 * it to active state. We have to terminate channel and setup 2327 * DMA transfer again. This pause feature was implemented to 2328 * allow safely read residue before channel termination. 2329 */ 2330 static int pl330_pause(struct dma_chan *chan) 2331 { 2332 struct dma_pl330_chan *pch = to_pchan(chan); 2333 struct pl330_dmac *pl330 = pch->dmac; 2334 unsigned long flags; 2335 2336 pm_runtime_get_sync(pl330->ddma.dev); 2337 spin_lock_irqsave(&pch->lock, flags); 2338 2339 spin_lock(&pl330->lock); 2340 _stop(pch->thread); 2341 spin_unlock(&pl330->lock); 2342 2343 spin_unlock_irqrestore(&pch->lock, flags); 2344 pm_runtime_mark_last_busy(pl330->ddma.dev); 2345 pm_runtime_put_autosuspend(pl330->ddma.dev); 2346 2347 return 0; 2348 } 2349 2350 static void pl330_free_chan_resources(struct dma_chan *chan) 2351 { 2352 struct dma_pl330_chan *pch = to_pchan(chan); 2353 struct pl330_dmac *pl330 = pch->dmac; 2354 unsigned long flags; 2355 2356 tasklet_kill(&pch->task); 2357 2358 pm_runtime_get_sync(pch->dmac->ddma.dev); 2359 spin_lock_irqsave(&pl330->lock, flags); 2360 2361 pl330_release_channel(pch->thread); 2362 pch->thread = NULL; 2363 2364 if (pch->cyclic) 2365 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2366 2367 spin_unlock_irqrestore(&pl330->lock, flags); 2368 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2369 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2370 pl330_unprep_slave_fifo(pch); 2371 } 2372 2373 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2374 struct dma_pl330_desc *desc) 2375 { 2376 struct pl330_thread *thrd = pch->thread; 2377 struct pl330_dmac *pl330 = pch->dmac; 2378 void __iomem *regs = thrd->dmac->base; 2379 u32 val, addr; 2380 2381 pm_runtime_get_sync(pl330->ddma.dev); 2382 val = addr = 0; 2383 if (desc->rqcfg.src_inc) { 2384 val = readl(regs + SA(thrd->id)); 2385 addr = desc->px.src_addr; 2386 } else { 2387 val = readl(regs + DA(thrd->id)); 2388 addr = desc->px.dst_addr; 2389 } 2390 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2391 pm_runtime_put_autosuspend(pl330->ddma.dev); 2392 2393 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ 2394 if (!val) 2395 return 0; 2396 2397 return val - addr; 2398 } 2399 2400 static enum dma_status 2401 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2402 struct dma_tx_state *txstate) 2403 { 2404 enum dma_status ret; 2405 unsigned long flags; 2406 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; 2407 struct dma_pl330_chan *pch = to_pchan(chan); 2408 unsigned int transferred, residual = 0; 2409 2410 ret = dma_cookie_status(chan, cookie, txstate); 2411 2412 if (!txstate) 2413 return ret; 2414 2415 if (ret == DMA_COMPLETE) 2416 goto out; 2417 2418 spin_lock_irqsave(&pch->lock, flags); 2419 spin_lock(&pch->thread->dmac->lock); 2420 2421 if (pch->thread->req_running != -1) 2422 running = pch->thread->req[pch->thread->req_running].desc; 2423 2424 last_enq = pch->thread->req[pch->thread->lstenq].desc; 2425 2426 /* Check in pending list */ 2427 list_for_each_entry(desc, &pch->work_list, node) { 2428 if (desc->status == DONE) 2429 transferred = desc->bytes_requested; 2430 else if (running && desc == running) 2431 transferred = 2432 pl330_get_current_xferred_count(pch, desc); 2433 else if (desc->status == BUSY) 2434 /* 2435 * Busy but not running means either just enqueued, 2436 * or finished and not yet marked done 2437 */ 2438 if (desc == last_enq) 2439 transferred = 0; 2440 else 2441 transferred = desc->bytes_requested; 2442 else 2443 transferred = 0; 2444 residual += desc->bytes_requested - transferred; 2445 if (desc->txd.cookie == cookie) { 2446 switch (desc->status) { 2447 case DONE: 2448 ret = DMA_COMPLETE; 2449 break; 2450 case PREP: 2451 case BUSY: 2452 ret = DMA_IN_PROGRESS; 2453 break; 2454 default: 2455 WARN_ON(1); 2456 } 2457 break; 2458 } 2459 if (desc->last) 2460 residual = 0; 2461 } 2462 spin_unlock(&pch->thread->dmac->lock); 2463 spin_unlock_irqrestore(&pch->lock, flags); 2464 2465 out: 2466 dma_set_residue(txstate, residual); 2467 2468 return ret; 2469 } 2470 2471 static void pl330_issue_pending(struct dma_chan *chan) 2472 { 2473 struct dma_pl330_chan *pch = to_pchan(chan); 2474 unsigned long flags; 2475 2476 spin_lock_irqsave(&pch->lock, flags); 2477 if (list_empty(&pch->work_list)) { 2478 /* 2479 * Warn on nothing pending. Empty submitted_list may 2480 * break our pm_runtime usage counter as it is 2481 * updated on work_list emptiness status. 2482 */ 2483 WARN_ON(list_empty(&pch->submitted_list)); 2484 pch->active = true; 2485 pm_runtime_get_sync(pch->dmac->ddma.dev); 2486 } 2487 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2488 spin_unlock_irqrestore(&pch->lock, flags); 2489 2490 pl330_tasklet((unsigned long)pch); 2491 } 2492 2493 /* 2494 * We returned the last one of the circular list of descriptor(s) 2495 * from prep_xxx, so the argument to submit corresponds to the last 2496 * descriptor of the list. 2497 */ 2498 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2499 { 2500 struct dma_pl330_desc *desc, *last = to_desc(tx); 2501 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2502 dma_cookie_t cookie; 2503 unsigned long flags; 2504 2505 spin_lock_irqsave(&pch->lock, flags); 2506 2507 /* Assign cookies to all nodes */ 2508 while (!list_empty(&last->node)) { 2509 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2510 if (pch->cyclic) { 2511 desc->txd.callback = last->txd.callback; 2512 desc->txd.callback_param = last->txd.callback_param; 2513 } 2514 desc->last = false; 2515 2516 dma_cookie_assign(&desc->txd); 2517 2518 list_move_tail(&desc->node, &pch->submitted_list); 2519 } 2520 2521 last->last = true; 2522 cookie = dma_cookie_assign(&last->txd); 2523 list_add_tail(&last->node, &pch->submitted_list); 2524 spin_unlock_irqrestore(&pch->lock, flags); 2525 2526 return cookie; 2527 } 2528 2529 static inline void _init_desc(struct dma_pl330_desc *desc) 2530 { 2531 desc->rqcfg.swap = SWAP_NO; 2532 desc->rqcfg.scctl = CCTRL0; 2533 desc->rqcfg.dcctl = CCTRL0; 2534 desc->txd.tx_submit = pl330_tx_submit; 2535 2536 INIT_LIST_HEAD(&desc->node); 2537 } 2538 2539 /* Returns the number of descriptors added to the DMAC pool */ 2540 static int add_desc(struct list_head *pool, spinlock_t *lock, 2541 gfp_t flg, int count) 2542 { 2543 struct dma_pl330_desc *desc; 2544 unsigned long flags; 2545 int i; 2546 2547 desc = kcalloc(count, sizeof(*desc), flg); 2548 if (!desc) 2549 return 0; 2550 2551 spin_lock_irqsave(lock, flags); 2552 2553 for (i = 0; i < count; i++) { 2554 _init_desc(&desc[i]); 2555 list_add_tail(&desc[i].node, pool); 2556 } 2557 2558 spin_unlock_irqrestore(lock, flags); 2559 2560 return count; 2561 } 2562 2563 static struct dma_pl330_desc *pluck_desc(struct list_head *pool, 2564 spinlock_t *lock) 2565 { 2566 struct dma_pl330_desc *desc = NULL; 2567 unsigned long flags; 2568 2569 spin_lock_irqsave(lock, flags); 2570 2571 if (!list_empty(pool)) { 2572 desc = list_entry(pool->next, 2573 struct dma_pl330_desc, node); 2574 2575 list_del_init(&desc->node); 2576 2577 desc->status = PREP; 2578 desc->txd.callback = NULL; 2579 } 2580 2581 spin_unlock_irqrestore(lock, flags); 2582 2583 return desc; 2584 } 2585 2586 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2587 { 2588 struct pl330_dmac *pl330 = pch->dmac; 2589 u8 *peri_id = pch->chan.private; 2590 struct dma_pl330_desc *desc; 2591 2592 /* Pluck one desc from the pool of DMAC */ 2593 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock); 2594 2595 /* If the DMAC pool is empty, alloc new */ 2596 if (!desc) { 2597 DEFINE_SPINLOCK(lock); 2598 LIST_HEAD(pool); 2599 2600 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1)) 2601 return NULL; 2602 2603 desc = pluck_desc(&pool, &lock); 2604 WARN_ON(!desc || !list_empty(&pool)); 2605 } 2606 2607 /* Initialize the descriptor */ 2608 desc->pchan = pch; 2609 desc->txd.cookie = 0; 2610 async_tx_ack(&desc->txd); 2611 2612 desc->peri = peri_id ? pch->chan.chan_id : 0; 2613 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2614 2615 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2616 2617 return desc; 2618 } 2619 2620 static inline void fill_px(struct pl330_xfer *px, 2621 dma_addr_t dst, dma_addr_t src, size_t len) 2622 { 2623 px->bytes = len; 2624 px->dst_addr = dst; 2625 px->src_addr = src; 2626 } 2627 2628 static struct dma_pl330_desc * 2629 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2630 dma_addr_t src, size_t len) 2631 { 2632 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2633 2634 if (!desc) { 2635 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2636 __func__, __LINE__); 2637 return NULL; 2638 } 2639 2640 /* 2641 * Ideally we should lookout for reqs bigger than 2642 * those that can be programmed with 256 bytes of 2643 * MC buffer, but considering a req size is seldom 2644 * going to be word-unaligned and more than 200MB, 2645 * we take it easy. 2646 * Also, should the limit is reached we'd rather 2647 * have the platform increase MC buffer size than 2648 * complicating this API driver. 2649 */ 2650 fill_px(&desc->px, dst, src, len); 2651 2652 return desc; 2653 } 2654 2655 /* Call after fixing burst size */ 2656 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2657 { 2658 struct dma_pl330_chan *pch = desc->pchan; 2659 struct pl330_dmac *pl330 = pch->dmac; 2660 int burst_len; 2661 2662 burst_len = pl330->pcfg.data_bus_width / 8; 2663 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2664 burst_len >>= desc->rqcfg.brst_size; 2665 2666 /* src/dst_burst_len can't be more than 16 */ 2667 if (burst_len > PL330_MAX_BURST) 2668 burst_len = PL330_MAX_BURST; 2669 2670 return burst_len; 2671 } 2672 2673 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2674 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2675 size_t period_len, enum dma_transfer_direction direction, 2676 unsigned long flags) 2677 { 2678 struct dma_pl330_desc *desc = NULL, *first = NULL; 2679 struct dma_pl330_chan *pch = to_pchan(chan); 2680 struct pl330_dmac *pl330 = pch->dmac; 2681 unsigned int i; 2682 dma_addr_t dst; 2683 dma_addr_t src; 2684 2685 if (len % period_len != 0) 2686 return NULL; 2687 2688 if (!is_slave_direction(direction)) { 2689 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2690 __func__, __LINE__); 2691 return NULL; 2692 } 2693 2694 pl330_config_write(chan, &pch->slave_config, direction); 2695 2696 if (!pl330_prep_slave_fifo(pch, direction)) 2697 return NULL; 2698 2699 for (i = 0; i < len / period_len; i++) { 2700 desc = pl330_get_desc(pch); 2701 if (!desc) { 2702 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2703 __func__, __LINE__); 2704 2705 if (!first) 2706 return NULL; 2707 2708 spin_lock_irqsave(&pl330->pool_lock, flags); 2709 2710 while (!list_empty(&first->node)) { 2711 desc = list_entry(first->node.next, 2712 struct dma_pl330_desc, node); 2713 list_move_tail(&desc->node, &pl330->desc_pool); 2714 } 2715 2716 list_move_tail(&first->node, &pl330->desc_pool); 2717 2718 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2719 2720 return NULL; 2721 } 2722 2723 switch (direction) { 2724 case DMA_MEM_TO_DEV: 2725 desc->rqcfg.src_inc = 1; 2726 desc->rqcfg.dst_inc = 0; 2727 src = dma_addr; 2728 dst = pch->fifo_dma; 2729 break; 2730 case DMA_DEV_TO_MEM: 2731 desc->rqcfg.src_inc = 0; 2732 desc->rqcfg.dst_inc = 1; 2733 src = pch->fifo_dma; 2734 dst = dma_addr; 2735 break; 2736 default: 2737 break; 2738 } 2739 2740 desc->rqtype = direction; 2741 desc->rqcfg.brst_size = pch->burst_sz; 2742 desc->rqcfg.brst_len = pch->burst_len; 2743 desc->bytes_requested = period_len; 2744 fill_px(&desc->px, dst, src, period_len); 2745 2746 if (!first) 2747 first = desc; 2748 else 2749 list_add_tail(&desc->node, &first->node); 2750 2751 dma_addr += period_len; 2752 } 2753 2754 if (!desc) 2755 return NULL; 2756 2757 pch->cyclic = true; 2758 desc->txd.flags = flags; 2759 2760 return &desc->txd; 2761 } 2762 2763 static struct dma_async_tx_descriptor * 2764 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2765 dma_addr_t src, size_t len, unsigned long flags) 2766 { 2767 struct dma_pl330_desc *desc; 2768 struct dma_pl330_chan *pch = to_pchan(chan); 2769 struct pl330_dmac *pl330; 2770 int burst; 2771 2772 if (unlikely(!pch || !len)) 2773 return NULL; 2774 2775 pl330 = pch->dmac; 2776 2777 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2778 if (!desc) 2779 return NULL; 2780 2781 desc->rqcfg.src_inc = 1; 2782 desc->rqcfg.dst_inc = 1; 2783 desc->rqtype = DMA_MEM_TO_MEM; 2784 2785 /* Select max possible burst size */ 2786 burst = pl330->pcfg.data_bus_width / 8; 2787 2788 /* 2789 * Make sure we use a burst size that aligns with all the memcpy 2790 * parameters because our DMA programming algorithm doesn't cope with 2791 * transfers which straddle an entry in the DMA device's MFIFO. 2792 */ 2793 while ((src | dst | len) & (burst - 1)) 2794 burst /= 2; 2795 2796 desc->rqcfg.brst_size = 0; 2797 while (burst != (1 << desc->rqcfg.brst_size)) 2798 desc->rqcfg.brst_size++; 2799 2800 desc->rqcfg.brst_len = get_burst_len(desc, len); 2801 /* 2802 * If burst size is smaller than bus width then make sure we only 2803 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2804 */ 2805 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2806 desc->rqcfg.brst_len = 1; 2807 2808 desc->bytes_requested = len; 2809 2810 desc->txd.flags = flags; 2811 2812 return &desc->txd; 2813 } 2814 2815 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2816 struct dma_pl330_desc *first) 2817 { 2818 unsigned long flags; 2819 struct dma_pl330_desc *desc; 2820 2821 if (!first) 2822 return; 2823 2824 spin_lock_irqsave(&pl330->pool_lock, flags); 2825 2826 while (!list_empty(&first->node)) { 2827 desc = list_entry(first->node.next, 2828 struct dma_pl330_desc, node); 2829 list_move_tail(&desc->node, &pl330->desc_pool); 2830 } 2831 2832 list_move_tail(&first->node, &pl330->desc_pool); 2833 2834 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2835 } 2836 2837 static struct dma_async_tx_descriptor * 2838 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2839 unsigned int sg_len, enum dma_transfer_direction direction, 2840 unsigned long flg, void *context) 2841 { 2842 struct dma_pl330_desc *first, *desc = NULL; 2843 struct dma_pl330_chan *pch = to_pchan(chan); 2844 struct scatterlist *sg; 2845 int i; 2846 2847 if (unlikely(!pch || !sgl || !sg_len)) 2848 return NULL; 2849 2850 pl330_config_write(chan, &pch->slave_config, direction); 2851 2852 if (!pl330_prep_slave_fifo(pch, direction)) 2853 return NULL; 2854 2855 first = NULL; 2856 2857 for_each_sg(sgl, sg, sg_len, i) { 2858 2859 desc = pl330_get_desc(pch); 2860 if (!desc) { 2861 struct pl330_dmac *pl330 = pch->dmac; 2862 2863 dev_err(pch->dmac->ddma.dev, 2864 "%s:%d Unable to fetch desc\n", 2865 __func__, __LINE__); 2866 __pl330_giveback_desc(pl330, first); 2867 2868 return NULL; 2869 } 2870 2871 if (!first) 2872 first = desc; 2873 else 2874 list_add_tail(&desc->node, &first->node); 2875 2876 if (direction == DMA_MEM_TO_DEV) { 2877 desc->rqcfg.src_inc = 1; 2878 desc->rqcfg.dst_inc = 0; 2879 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), 2880 sg_dma_len(sg)); 2881 } else { 2882 desc->rqcfg.src_inc = 0; 2883 desc->rqcfg.dst_inc = 1; 2884 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, 2885 sg_dma_len(sg)); 2886 } 2887 2888 desc->rqcfg.brst_size = pch->burst_sz; 2889 desc->rqcfg.brst_len = pch->burst_len; 2890 desc->rqtype = direction; 2891 desc->bytes_requested = sg_dma_len(sg); 2892 } 2893 2894 /* Return the last desc in the chain */ 2895 desc->txd.flags = flg; 2896 return &desc->txd; 2897 } 2898 2899 static irqreturn_t pl330_irq_handler(int irq, void *data) 2900 { 2901 if (pl330_update(data)) 2902 return IRQ_HANDLED; 2903 else 2904 return IRQ_NONE; 2905 } 2906 2907 #define PL330_DMA_BUSWIDTHS \ 2908 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2909 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2910 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2911 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2912 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2913 2914 #ifdef CONFIG_DEBUG_FS 2915 static int pl330_debugfs_show(struct seq_file *s, void *data) 2916 { 2917 struct pl330_dmac *pl330 = s->private; 2918 int chans, pchs, ch, pr; 2919 2920 chans = pl330->pcfg.num_chan; 2921 pchs = pl330->num_peripherals; 2922 2923 seq_puts(s, "PL330 physical channels:\n"); 2924 seq_puts(s, "THREAD:\t\tCHANNEL:\n"); 2925 seq_puts(s, "--------\t-----\n"); 2926 for (ch = 0; ch < chans; ch++) { 2927 struct pl330_thread *thrd = &pl330->channels[ch]; 2928 int found = -1; 2929 2930 for (pr = 0; pr < pchs; pr++) { 2931 struct dma_pl330_chan *pch = &pl330->peripherals[pr]; 2932 2933 if (!pch->thread || thrd->id != pch->thread->id) 2934 continue; 2935 2936 found = pr; 2937 } 2938 2939 seq_printf(s, "%d\t\t", thrd->id); 2940 if (found == -1) 2941 seq_puts(s, "--\n"); 2942 else 2943 seq_printf(s, "%d\n", found); 2944 } 2945 2946 return 0; 2947 } 2948 2949 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs); 2950 2951 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2952 { 2953 debugfs_create_file(dev_name(pl330->ddma.dev), 2954 S_IFREG | 0444, NULL, pl330, 2955 &pl330_debugfs_fops); 2956 } 2957 #else 2958 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2959 { 2960 } 2961 #endif 2962 2963 /* 2964 * Runtime PM callbacks are provided by amba/bus.c driver. 2965 * 2966 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2967 * bus driver will only disable/enable the clock in runtime PM callbacks. 2968 */ 2969 static int __maybe_unused pl330_suspend(struct device *dev) 2970 { 2971 struct amba_device *pcdev = to_amba_device(dev); 2972 2973 pm_runtime_force_suspend(dev); 2974 amba_pclk_unprepare(pcdev); 2975 2976 return 0; 2977 } 2978 2979 static int __maybe_unused pl330_resume(struct device *dev) 2980 { 2981 struct amba_device *pcdev = to_amba_device(dev); 2982 int ret; 2983 2984 ret = amba_pclk_prepare(pcdev); 2985 if (ret) 2986 return ret; 2987 2988 pm_runtime_force_resume(dev); 2989 2990 return ret; 2991 } 2992 2993 static const struct dev_pm_ops pl330_pm = { 2994 SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume) 2995 }; 2996 2997 static int 2998 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2999 { 3000 struct pl330_config *pcfg; 3001 struct pl330_dmac *pl330; 3002 struct dma_pl330_chan *pch, *_p; 3003 struct dma_device *pd; 3004 struct resource *res; 3005 int i, ret, irq; 3006 int num_chan; 3007 struct device_node *np = adev->dev.of_node; 3008 3009 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 3010 if (ret) 3011 return ret; 3012 3013 /* Allocate a new DMAC and its Channels */ 3014 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 3015 if (!pl330) 3016 return -ENOMEM; 3017 3018 pd = &pl330->ddma; 3019 pd->dev = &adev->dev; 3020 3021 pl330->mcbufsz = 0; 3022 3023 /* get quirk */ 3024 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 3025 if (of_property_read_bool(np, of_quirks[i].quirk)) 3026 pl330->quirks |= of_quirks[i].id; 3027 3028 res = &adev->res; 3029 pl330->base = devm_ioremap_resource(&adev->dev, res); 3030 if (IS_ERR(pl330->base)) 3031 return PTR_ERR(pl330->base); 3032 3033 amba_set_drvdata(adev, pl330); 3034 3035 pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma"); 3036 if (IS_ERR(pl330->rstc)) { 3037 if (PTR_ERR(pl330->rstc) != -EPROBE_DEFER) 3038 dev_err(&adev->dev, "Failed to get reset!\n"); 3039 return PTR_ERR(pl330->rstc); 3040 } else { 3041 ret = reset_control_deassert(pl330->rstc); 3042 if (ret) { 3043 dev_err(&adev->dev, "Couldn't deassert the device from reset!\n"); 3044 return ret; 3045 } 3046 } 3047 3048 pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp"); 3049 if (IS_ERR(pl330->rstc_ocp)) { 3050 if (PTR_ERR(pl330->rstc_ocp) != -EPROBE_DEFER) 3051 dev_err(&adev->dev, "Failed to get OCP reset!\n"); 3052 return PTR_ERR(pl330->rstc_ocp); 3053 } else { 3054 ret = reset_control_deassert(pl330->rstc_ocp); 3055 if (ret) { 3056 dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n"); 3057 return ret; 3058 } 3059 } 3060 3061 for (i = 0; i < AMBA_NR_IRQS; i++) { 3062 irq = adev->irq[i]; 3063 if (irq) { 3064 ret = devm_request_irq(&adev->dev, irq, 3065 pl330_irq_handler, 0, 3066 dev_name(&adev->dev), pl330); 3067 if (ret) 3068 return ret; 3069 } else { 3070 break; 3071 } 3072 } 3073 3074 pcfg = &pl330->pcfg; 3075 3076 pcfg->periph_id = adev->periphid; 3077 ret = pl330_add(pl330); 3078 if (ret) 3079 return ret; 3080 3081 INIT_LIST_HEAD(&pl330->desc_pool); 3082 spin_lock_init(&pl330->pool_lock); 3083 3084 /* Create a descriptor pool of default size */ 3085 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock, 3086 GFP_KERNEL, NR_DEFAULT_DESC)) 3087 dev_warn(&adev->dev, "unable to allocate desc\n"); 3088 3089 INIT_LIST_HEAD(&pd->channels); 3090 3091 /* Initialize channel parameters */ 3092 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 3093 3094 pl330->num_peripherals = num_chan; 3095 3096 pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL); 3097 if (!pl330->peripherals) { 3098 ret = -ENOMEM; 3099 goto probe_err2; 3100 } 3101 3102 for (i = 0; i < num_chan; i++) { 3103 pch = &pl330->peripherals[i]; 3104 3105 pch->chan.private = adev->dev.of_node; 3106 INIT_LIST_HEAD(&pch->submitted_list); 3107 INIT_LIST_HEAD(&pch->work_list); 3108 INIT_LIST_HEAD(&pch->completed_list); 3109 spin_lock_init(&pch->lock); 3110 pch->thread = NULL; 3111 pch->chan.device = pd; 3112 pch->dmac = pl330; 3113 pch->dir = DMA_NONE; 3114 3115 /* Add the channel to the DMAC list */ 3116 list_add_tail(&pch->chan.device_node, &pd->channels); 3117 } 3118 3119 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 3120 if (pcfg->num_peri) { 3121 dma_cap_set(DMA_SLAVE, pd->cap_mask); 3122 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 3123 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 3124 } 3125 3126 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 3127 pd->device_free_chan_resources = pl330_free_chan_resources; 3128 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 3129 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 3130 pd->device_tx_status = pl330_tx_status; 3131 pd->device_prep_slave_sg = pl330_prep_slave_sg; 3132 pd->device_config = pl330_config; 3133 pd->device_pause = pl330_pause; 3134 pd->device_terminate_all = pl330_terminate_all; 3135 pd->device_issue_pending = pl330_issue_pending; 3136 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 3137 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 3138 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 3139 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 3140 pd->max_burst = PL330_MAX_BURST; 3141 3142 ret = dma_async_device_register(pd); 3143 if (ret) { 3144 dev_err(&adev->dev, "unable to register DMAC\n"); 3145 goto probe_err3; 3146 } 3147 3148 if (adev->dev.of_node) { 3149 ret = of_dma_controller_register(adev->dev.of_node, 3150 of_dma_pl330_xlate, pl330); 3151 if (ret) { 3152 dev_err(&adev->dev, 3153 "unable to register DMA to the generic DT DMA helpers\n"); 3154 } 3155 } 3156 3157 adev->dev.dma_parms = &pl330->dma_parms; 3158 3159 /* 3160 * This is the limit for transfers with a buswidth of 1, larger 3161 * buswidths will have larger limits. 3162 */ 3163 ret = dma_set_max_seg_size(&adev->dev, 1900800); 3164 if (ret) 3165 dev_err(&adev->dev, "unable to set the seg size\n"); 3166 3167 3168 init_pl330_debugfs(pl330); 3169 dev_info(&adev->dev, 3170 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 3171 dev_info(&adev->dev, 3172 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3173 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 3174 pcfg->num_peri, pcfg->num_events); 3175 3176 pm_runtime_irq_safe(&adev->dev); 3177 pm_runtime_use_autosuspend(&adev->dev); 3178 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 3179 pm_runtime_mark_last_busy(&adev->dev); 3180 pm_runtime_put_autosuspend(&adev->dev); 3181 3182 return 0; 3183 probe_err3: 3184 /* Idle the DMAC */ 3185 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3186 chan.device_node) { 3187 3188 /* Remove the channel */ 3189 list_del(&pch->chan.device_node); 3190 3191 /* Flush the channel */ 3192 if (pch->thread) { 3193 pl330_terminate_all(&pch->chan); 3194 pl330_free_chan_resources(&pch->chan); 3195 } 3196 } 3197 probe_err2: 3198 pl330_del(pl330); 3199 3200 if (pl330->rstc_ocp) 3201 reset_control_assert(pl330->rstc_ocp); 3202 3203 if (pl330->rstc) 3204 reset_control_assert(pl330->rstc); 3205 return ret; 3206 } 3207 3208 static int pl330_remove(struct amba_device *adev) 3209 { 3210 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 3211 struct dma_pl330_chan *pch, *_p; 3212 int i, irq; 3213 3214 pm_runtime_get_noresume(pl330->ddma.dev); 3215 3216 if (adev->dev.of_node) 3217 of_dma_controller_free(adev->dev.of_node); 3218 3219 for (i = 0; i < AMBA_NR_IRQS; i++) { 3220 irq = adev->irq[i]; 3221 if (irq) 3222 devm_free_irq(&adev->dev, irq, pl330); 3223 } 3224 3225 dma_async_device_unregister(&pl330->ddma); 3226 3227 /* Idle the DMAC */ 3228 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3229 chan.device_node) { 3230 3231 /* Remove the channel */ 3232 list_del(&pch->chan.device_node); 3233 3234 /* Flush the channel */ 3235 if (pch->thread) { 3236 pl330_terminate_all(&pch->chan); 3237 pl330_free_chan_resources(&pch->chan); 3238 } 3239 } 3240 3241 pl330_del(pl330); 3242 3243 if (pl330->rstc_ocp) 3244 reset_control_assert(pl330->rstc_ocp); 3245 3246 if (pl330->rstc) 3247 reset_control_assert(pl330->rstc); 3248 return 0; 3249 } 3250 3251 static const struct amba_id pl330_ids[] = { 3252 { 3253 .id = 0x00041330, 3254 .mask = 0x000fffff, 3255 }, 3256 { 0, 0 }, 3257 }; 3258 3259 MODULE_DEVICE_TABLE(amba, pl330_ids); 3260 3261 static struct amba_driver pl330_driver = { 3262 .drv = { 3263 .owner = THIS_MODULE, 3264 .name = "dma-pl330", 3265 .pm = &pl330_pm, 3266 }, 3267 .id_table = pl330_ids, 3268 .probe = pl330_probe, 3269 .remove = pl330_remove, 3270 }; 3271 3272 module_amba_driver(pl330_driver); 3273 3274 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3275 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3276 MODULE_LICENSE("GPL"); 3277