xref: /openbmc/linux/drivers/dma/pl330.c (revision d0b73b48)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 
29 #include "dmaengine.h"
30 #define PL330_MAX_CHAN		8
31 #define PL330_MAX_IRQS		32
32 #define PL330_MAX_PERI		32
33 
34 enum pl330_srccachectrl {
35 	SCCTRL0,	/* Noncacheable and nonbufferable */
36 	SCCTRL1,	/* Bufferable only */
37 	SCCTRL2,	/* Cacheable, but do not allocate */
38 	SCCTRL3,	/* Cacheable and bufferable, but do not allocate */
39 	SINVALID1,
40 	SINVALID2,
41 	SCCTRL6,	/* Cacheable write-through, allocate on reads only */
42 	SCCTRL7,	/* Cacheable write-back, allocate on reads only */
43 };
44 
45 enum pl330_dstcachectrl {
46 	DCCTRL0,	/* Noncacheable and nonbufferable */
47 	DCCTRL1,	/* Bufferable only */
48 	DCCTRL2,	/* Cacheable, but do not allocate */
49 	DCCTRL3,	/* Cacheable and bufferable, but do not allocate */
50 	DINVALID1,	/* AWCACHE = 0x1000 */
51 	DINVALID2,
52 	DCCTRL6,	/* Cacheable write-through, allocate on writes only */
53 	DCCTRL7,	/* Cacheable write-back, allocate on writes only */
54 };
55 
56 enum pl330_byteswap {
57 	SWAP_NO,
58 	SWAP_2,
59 	SWAP_4,
60 	SWAP_8,
61 	SWAP_16,
62 };
63 
64 enum pl330_reqtype {
65 	MEMTOMEM,
66 	MEMTODEV,
67 	DEVTOMEM,
68 	DEVTODEV,
69 };
70 
71 /* Register and Bit field Definitions */
72 #define DS			0x0
73 #define DS_ST_STOP		0x0
74 #define DS_ST_EXEC		0x1
75 #define DS_ST_CMISS		0x2
76 #define DS_ST_UPDTPC		0x3
77 #define DS_ST_WFE		0x4
78 #define DS_ST_ATBRR		0x5
79 #define DS_ST_QBUSY		0x6
80 #define DS_ST_WFP		0x7
81 #define DS_ST_KILL		0x8
82 #define DS_ST_CMPLT		0x9
83 #define DS_ST_FLTCMP		0xe
84 #define DS_ST_FAULT		0xf
85 
86 #define DPC			0x4
87 #define INTEN			0x20
88 #define ES			0x24
89 #define INTSTATUS		0x28
90 #define INTCLR			0x2c
91 #define FSM			0x30
92 #define FSC			0x34
93 #define FTM			0x38
94 
95 #define _FTC			0x40
96 #define FTC(n)			(_FTC + (n)*0x4)
97 
98 #define _CS			0x100
99 #define CS(n)			(_CS + (n)*0x8)
100 #define CS_CNS			(1 << 21)
101 
102 #define _CPC			0x104
103 #define CPC(n)			(_CPC + (n)*0x8)
104 
105 #define _SA			0x400
106 #define SA(n)			(_SA + (n)*0x20)
107 
108 #define _DA			0x404
109 #define DA(n)			(_DA + (n)*0x20)
110 
111 #define _CC			0x408
112 #define CC(n)			(_CC + (n)*0x20)
113 
114 #define CC_SRCINC		(1 << 0)
115 #define CC_DSTINC		(1 << 14)
116 #define CC_SRCPRI		(1 << 8)
117 #define CC_DSTPRI		(1 << 22)
118 #define CC_SRCNS		(1 << 9)
119 #define CC_DSTNS		(1 << 23)
120 #define CC_SRCIA		(1 << 10)
121 #define CC_DSTIA		(1 << 24)
122 #define CC_SRCBRSTLEN_SHFT	4
123 #define CC_DSTBRSTLEN_SHFT	18
124 #define CC_SRCBRSTSIZE_SHFT	1
125 #define CC_DSTBRSTSIZE_SHFT	15
126 #define CC_SRCCCTRL_SHFT	11
127 #define CC_SRCCCTRL_MASK	0x7
128 #define CC_DSTCCTRL_SHFT	25
129 #define CC_DRCCCTRL_MASK	0x7
130 #define CC_SWAP_SHFT		28
131 
132 #define _LC0			0x40c
133 #define LC0(n)			(_LC0 + (n)*0x20)
134 
135 #define _LC1			0x410
136 #define LC1(n)			(_LC1 + (n)*0x20)
137 
138 #define DBGSTATUS		0xd00
139 #define DBG_BUSY		(1 << 0)
140 
141 #define DBGCMD			0xd04
142 #define DBGINST0		0xd08
143 #define DBGINST1		0xd0c
144 
145 #define CR0			0xe00
146 #define CR1			0xe04
147 #define CR2			0xe08
148 #define CR3			0xe0c
149 #define CR4			0xe10
150 #define CRD			0xe14
151 
152 #define PERIPH_ID		0xfe0
153 #define PERIPH_REV_SHIFT	20
154 #define PERIPH_REV_MASK		0xf
155 #define PERIPH_REV_R0P0		0
156 #define PERIPH_REV_R1P0		1
157 #define PERIPH_REV_R1P1		2
158 #define PCELL_ID		0xff0
159 
160 #define CR0_PERIPH_REQ_SET	(1 << 0)
161 #define CR0_BOOT_EN_SET		(1 << 1)
162 #define CR0_BOOT_MAN_NS		(1 << 2)
163 #define CR0_NUM_CHANS_SHIFT	4
164 #define CR0_NUM_CHANS_MASK	0x7
165 #define CR0_NUM_PERIPH_SHIFT	12
166 #define CR0_NUM_PERIPH_MASK	0x1f
167 #define CR0_NUM_EVENTS_SHIFT	17
168 #define CR0_NUM_EVENTS_MASK	0x1f
169 
170 #define CR1_ICACHE_LEN_SHIFT	0
171 #define CR1_ICACHE_LEN_MASK	0x7
172 #define CR1_NUM_ICACHELINES_SHIFT	4
173 #define CR1_NUM_ICACHELINES_MASK	0xf
174 
175 #define CRD_DATA_WIDTH_SHIFT	0
176 #define CRD_DATA_WIDTH_MASK	0x7
177 #define CRD_WR_CAP_SHIFT	4
178 #define CRD_WR_CAP_MASK		0x7
179 #define CRD_WR_Q_DEP_SHIFT	8
180 #define CRD_WR_Q_DEP_MASK	0xf
181 #define CRD_RD_CAP_SHIFT	12
182 #define CRD_RD_CAP_MASK		0x7
183 #define CRD_RD_Q_DEP_SHIFT	16
184 #define CRD_RD_Q_DEP_MASK	0xf
185 #define CRD_DATA_BUFF_SHIFT	20
186 #define CRD_DATA_BUFF_MASK	0x3ff
187 
188 #define PART			0x330
189 #define DESIGNER		0x41
190 #define REVISION		0x0
191 #define INTEG_CFG		0x0
192 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
193 
194 #define PCELL_ID_VAL		0xb105f00d
195 
196 #define PL330_STATE_STOPPED		(1 << 0)
197 #define PL330_STATE_EXECUTING		(1 << 1)
198 #define PL330_STATE_WFE			(1 << 2)
199 #define PL330_STATE_FAULTING		(1 << 3)
200 #define PL330_STATE_COMPLETING		(1 << 4)
201 #define PL330_STATE_WFP			(1 << 5)
202 #define PL330_STATE_KILLING		(1 << 6)
203 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
204 #define PL330_STATE_CACHEMISS		(1 << 8)
205 #define PL330_STATE_UPDTPC		(1 << 9)
206 #define PL330_STATE_ATBARRIER		(1 << 10)
207 #define PL330_STATE_QUEUEBUSY		(1 << 11)
208 #define PL330_STATE_INVALID		(1 << 15)
209 
210 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
211 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
212 
213 #define CMD_DMAADDH		0x54
214 #define CMD_DMAEND		0x00
215 #define CMD_DMAFLUSHP		0x35
216 #define CMD_DMAGO		0xa0
217 #define CMD_DMALD		0x04
218 #define CMD_DMALDP		0x25
219 #define CMD_DMALP		0x20
220 #define CMD_DMALPEND		0x28
221 #define CMD_DMAKILL		0x01
222 #define CMD_DMAMOV		0xbc
223 #define CMD_DMANOP		0x18
224 #define CMD_DMARMB		0x12
225 #define CMD_DMASEV		0x34
226 #define CMD_DMAST		0x08
227 #define CMD_DMASTP		0x29
228 #define CMD_DMASTZ		0x0c
229 #define CMD_DMAWFE		0x36
230 #define CMD_DMAWFP		0x30
231 #define CMD_DMAWMB		0x13
232 
233 #define SZ_DMAADDH		3
234 #define SZ_DMAEND		1
235 #define SZ_DMAFLUSHP		2
236 #define SZ_DMALD		1
237 #define SZ_DMALDP		2
238 #define SZ_DMALP		2
239 #define SZ_DMALPEND		2
240 #define SZ_DMAKILL		1
241 #define SZ_DMAMOV		6
242 #define SZ_DMANOP		1
243 #define SZ_DMARMB		1
244 #define SZ_DMASEV		2
245 #define SZ_DMAST		1
246 #define SZ_DMASTP		2
247 #define SZ_DMASTZ		1
248 #define SZ_DMAWFE		2
249 #define SZ_DMAWFP		2
250 #define SZ_DMAWMB		1
251 #define SZ_DMAGO		6
252 
253 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
254 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
255 
256 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
257 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
258 
259 /*
260  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
261  * at 1byte/burst for P<->M and M<->M respectively.
262  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
263  * should be enough for P<->M and M<->M respectively.
264  */
265 #define MCODE_BUFF_PER_REQ	256
266 
267 /* If the _pl330_req is available to the client */
268 #define IS_FREE(req)	(*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
269 
270 /* Use this _only_ to wait on transient states */
271 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
272 
273 #ifdef PL330_DEBUG_MCGEN
274 static unsigned cmd_line;
275 #define PL330_DBGCMD_DUMP(off, x...)	do { \
276 						printk("%x:", cmd_line); \
277 						printk(x); \
278 						cmd_line += off; \
279 					} while (0)
280 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
281 #else
282 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
283 #define PL330_DBGMC_START(addr)		do {} while (0)
284 #endif
285 
286 /* The number of default descriptors */
287 
288 #define NR_DEFAULT_DESC	16
289 
290 /* Populated by the PL330 core driver for DMA API driver's info */
291 struct pl330_config {
292 	u32	periph_id;
293 	u32	pcell_id;
294 #define DMAC_MODE_NS	(1 << 0)
295 	unsigned int	mode;
296 	unsigned int	data_bus_width:10; /* In number of bits */
297 	unsigned int	data_buf_dep:10;
298 	unsigned int	num_chan:4;
299 	unsigned int	num_peri:6;
300 	u32		peri_ns;
301 	unsigned int	num_events:6;
302 	u32		irq_ns;
303 };
304 
305 /* Handle to the DMAC provided to the PL330 core */
306 struct pl330_info {
307 	/* Owning device */
308 	struct device *dev;
309 	/* Size of MicroCode buffers for each channel. */
310 	unsigned mcbufsz;
311 	/* ioremap'ed address of PL330 registers. */
312 	void __iomem	*base;
313 	/* Client can freely use it. */
314 	void	*client_data;
315 	/* PL330 core data, Client must not touch it. */
316 	void	*pl330_data;
317 	/* Populated by the PL330 core driver during pl330_add */
318 	struct pl330_config	pcfg;
319 	/*
320 	 * If the DMAC has some reset mechanism, then the
321 	 * client may want to provide pointer to the method.
322 	 */
323 	void (*dmac_reset)(struct pl330_info *pi);
324 };
325 
326 /**
327  * Request Configuration.
328  * The PL330 core does not modify this and uses the last
329  * working configuration if the request doesn't provide any.
330  *
331  * The Client may want to provide this info only for the
332  * first request and a request with new settings.
333  */
334 struct pl330_reqcfg {
335 	/* Address Incrementing */
336 	unsigned dst_inc:1;
337 	unsigned src_inc:1;
338 
339 	/*
340 	 * For now, the SRC & DST protection levels
341 	 * and burst size/length are assumed same.
342 	 */
343 	bool nonsecure;
344 	bool privileged;
345 	bool insnaccess;
346 	unsigned brst_len:5;
347 	unsigned brst_size:3; /* in power of 2 */
348 
349 	enum pl330_dstcachectrl dcctl;
350 	enum pl330_srccachectrl scctl;
351 	enum pl330_byteswap swap;
352 	struct pl330_config *pcfg;
353 };
354 
355 /*
356  * One cycle of DMAC operation.
357  * There may be more than one xfer in a request.
358  */
359 struct pl330_xfer {
360 	u32 src_addr;
361 	u32 dst_addr;
362 	/* Size to xfer */
363 	u32 bytes;
364 	/*
365 	 * Pointer to next xfer in the list.
366 	 * The last xfer in the req must point to NULL.
367 	 */
368 	struct pl330_xfer *next;
369 };
370 
371 /* The xfer callbacks are made with one of these arguments. */
372 enum pl330_op_err {
373 	/* The all xfers in the request were success. */
374 	PL330_ERR_NONE,
375 	/* If req aborted due to global error. */
376 	PL330_ERR_ABORT,
377 	/* If req failed due to problem with Channel. */
378 	PL330_ERR_FAIL,
379 };
380 
381 /* A request defining Scatter-Gather List ending with NULL xfer. */
382 struct pl330_req {
383 	enum pl330_reqtype rqtype;
384 	/* Index of peripheral for the xfer. */
385 	unsigned peri:5;
386 	/* Unique token for this xfer, set by the client. */
387 	void *token;
388 	/* Callback to be called after xfer. */
389 	void (*xfer_cb)(void *token, enum pl330_op_err err);
390 	/* If NULL, req will be done at last set parameters. */
391 	struct pl330_reqcfg *cfg;
392 	/* Pointer to first xfer in the request. */
393 	struct pl330_xfer *x;
394 	/* Hook to attach to DMAC's list of reqs with due callback */
395 	struct list_head rqd;
396 };
397 
398 /*
399  * To know the status of the channel and DMAC, the client
400  * provides a pointer to this structure. The PL330 core
401  * fills it with current information.
402  */
403 struct pl330_chanstatus {
404 	/*
405 	 * If the DMAC engine halted due to some error,
406 	 * the client should remove-add DMAC.
407 	 */
408 	bool dmac_halted;
409 	/*
410 	 * If channel is halted due to some error,
411 	 * the client should ABORT/FLUSH and START the channel.
412 	 */
413 	bool faulting;
414 	/* Location of last load */
415 	u32 src_addr;
416 	/* Location of last store */
417 	u32 dst_addr;
418 	/*
419 	 * Pointer to the currently active req, NULL if channel is
420 	 * inactive, even though the requests may be present.
421 	 */
422 	struct pl330_req *top_req;
423 	/* Pointer to req waiting second in the queue if any. */
424 	struct pl330_req *wait_req;
425 };
426 
427 enum pl330_chan_op {
428 	/* Start the channel */
429 	PL330_OP_START,
430 	/* Abort the active xfer */
431 	PL330_OP_ABORT,
432 	/* Stop xfer and flush queue */
433 	PL330_OP_FLUSH,
434 };
435 
436 struct _xfer_spec {
437 	u32 ccr;
438 	struct pl330_req *r;
439 	struct pl330_xfer *x;
440 };
441 
442 enum dmamov_dst {
443 	SAR = 0,
444 	CCR,
445 	DAR,
446 };
447 
448 enum pl330_dst {
449 	SRC = 0,
450 	DST,
451 };
452 
453 enum pl330_cond {
454 	SINGLE,
455 	BURST,
456 	ALWAYS,
457 };
458 
459 struct _pl330_req {
460 	u32 mc_bus;
461 	void *mc_cpu;
462 	/* Number of bytes taken to setup MC for the req */
463 	u32 mc_len;
464 	struct pl330_req *r;
465 };
466 
467 /* ToBeDone for tasklet */
468 struct _pl330_tbd {
469 	bool reset_dmac;
470 	bool reset_mngr;
471 	u8 reset_chan;
472 };
473 
474 /* A DMAC Thread */
475 struct pl330_thread {
476 	u8 id;
477 	int ev;
478 	/* If the channel is not yet acquired by any client */
479 	bool free;
480 	/* Parent DMAC */
481 	struct pl330_dmac *dmac;
482 	/* Only two at a time */
483 	struct _pl330_req req[2];
484 	/* Index of the last enqueued request */
485 	unsigned lstenq;
486 	/* Index of the last submitted request or -1 if the DMA is stopped */
487 	int req_running;
488 };
489 
490 enum pl330_dmac_state {
491 	UNINIT,
492 	INIT,
493 	DYING,
494 };
495 
496 /* A DMAC */
497 struct pl330_dmac {
498 	spinlock_t		lock;
499 	/* Holds list of reqs with due callbacks */
500 	struct list_head	req_done;
501 	/* Pointer to platform specific stuff */
502 	struct pl330_info	*pinfo;
503 	/* Maximum possible events/irqs */
504 	int			events[32];
505 	/* BUS address of MicroCode buffer */
506 	u32			mcode_bus;
507 	/* CPU address of MicroCode buffer */
508 	void			*mcode_cpu;
509 	/* List of all Channel threads */
510 	struct pl330_thread	*channels;
511 	/* Pointer to the MANAGER thread */
512 	struct pl330_thread	*manager;
513 	/* To handle bad news in interrupt */
514 	struct tasklet_struct	tasks;
515 	struct _pl330_tbd	dmac_tbd;
516 	/* State of DMAC operation */
517 	enum pl330_dmac_state	state;
518 };
519 
520 enum desc_status {
521 	/* In the DMAC pool */
522 	FREE,
523 	/*
524 	 * Allocated to some channel during prep_xxx
525 	 * Also may be sitting on the work_list.
526 	 */
527 	PREP,
528 	/*
529 	 * Sitting on the work_list and already submitted
530 	 * to the PL330 core. Not more than two descriptors
531 	 * of a channel can be BUSY at any time.
532 	 */
533 	BUSY,
534 	/*
535 	 * Sitting on the channel work_list but xfer done
536 	 * by PL330 core
537 	 */
538 	DONE,
539 };
540 
541 struct dma_pl330_chan {
542 	/* Schedule desc completion */
543 	struct tasklet_struct task;
544 
545 	/* DMA-Engine Channel */
546 	struct dma_chan chan;
547 
548 	/* List of to be xfered descriptors */
549 	struct list_head work_list;
550 
551 	/* Pointer to the DMAC that manages this channel,
552 	 * NULL if the channel is available to be acquired.
553 	 * As the parent, this DMAC also provides descriptors
554 	 * to the channel.
555 	 */
556 	struct dma_pl330_dmac *dmac;
557 
558 	/* To protect channel manipulation */
559 	spinlock_t lock;
560 
561 	/* Token of a hardware channel thread of PL330 DMAC
562 	 * NULL if the channel is available to be acquired.
563 	 */
564 	void *pl330_chid;
565 
566 	/* For D-to-M and M-to-D channels */
567 	int burst_sz; /* the peripheral fifo width */
568 	int burst_len; /* the number of burst */
569 	dma_addr_t fifo_addr;
570 
571 	/* for cyclic capability */
572 	bool cyclic;
573 };
574 
575 struct dma_pl330_dmac {
576 	struct pl330_info pif;
577 
578 	/* DMA-Engine Device */
579 	struct dma_device ddma;
580 
581 	/* Pool of descriptors available for the DMAC's channels */
582 	struct list_head desc_pool;
583 	/* To protect desc_pool manipulation */
584 	spinlock_t pool_lock;
585 
586 	/* Peripheral channels connected to this DMAC */
587 	struct dma_pl330_chan *peripherals; /* keep at end */
588 };
589 
590 struct dma_pl330_desc {
591 	/* To attach to a queue as child */
592 	struct list_head node;
593 
594 	/* Descriptor for the DMA Engine API */
595 	struct dma_async_tx_descriptor txd;
596 
597 	/* Xfer for PL330 core */
598 	struct pl330_xfer px;
599 
600 	struct pl330_reqcfg rqcfg;
601 	struct pl330_req req;
602 
603 	enum desc_status status;
604 
605 	/* The channel which currently holds this desc */
606 	struct dma_pl330_chan *pchan;
607 };
608 
609 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
610 {
611 	if (r && r->xfer_cb)
612 		r->xfer_cb(r->token, err);
613 }
614 
615 static inline bool _queue_empty(struct pl330_thread *thrd)
616 {
617 	return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
618 		? true : false;
619 }
620 
621 static inline bool _queue_full(struct pl330_thread *thrd)
622 {
623 	return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
624 		? false : true;
625 }
626 
627 static inline bool is_manager(struct pl330_thread *thrd)
628 {
629 	struct pl330_dmac *pl330 = thrd->dmac;
630 
631 	/* MANAGER is indexed at the end */
632 	if (thrd->id == pl330->pinfo->pcfg.num_chan)
633 		return true;
634 	else
635 		return false;
636 }
637 
638 /* If manager of the thread is in Non-Secure mode */
639 static inline bool _manager_ns(struct pl330_thread *thrd)
640 {
641 	struct pl330_dmac *pl330 = thrd->dmac;
642 
643 	return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
644 }
645 
646 static inline u32 get_id(struct pl330_info *pi, u32 off)
647 {
648 	void __iomem *regs = pi->base;
649 	u32 id = 0;
650 
651 	id |= (readb(regs + off + 0x0) << 0);
652 	id |= (readb(regs + off + 0x4) << 8);
653 	id |= (readb(regs + off + 0x8) << 16);
654 	id |= (readb(regs + off + 0xc) << 24);
655 
656 	return id;
657 }
658 
659 static inline u32 get_revision(u32 periph_id)
660 {
661 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
662 }
663 
664 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
665 		enum pl330_dst da, u16 val)
666 {
667 	if (dry_run)
668 		return SZ_DMAADDH;
669 
670 	buf[0] = CMD_DMAADDH;
671 	buf[0] |= (da << 1);
672 	*((u16 *)&buf[1]) = val;
673 
674 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
675 		da == 1 ? "DA" : "SA", val);
676 
677 	return SZ_DMAADDH;
678 }
679 
680 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
681 {
682 	if (dry_run)
683 		return SZ_DMAEND;
684 
685 	buf[0] = CMD_DMAEND;
686 
687 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
688 
689 	return SZ_DMAEND;
690 }
691 
692 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
693 {
694 	if (dry_run)
695 		return SZ_DMAFLUSHP;
696 
697 	buf[0] = CMD_DMAFLUSHP;
698 
699 	peri &= 0x1f;
700 	peri <<= 3;
701 	buf[1] = peri;
702 
703 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
704 
705 	return SZ_DMAFLUSHP;
706 }
707 
708 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
709 {
710 	if (dry_run)
711 		return SZ_DMALD;
712 
713 	buf[0] = CMD_DMALD;
714 
715 	if (cond == SINGLE)
716 		buf[0] |= (0 << 1) | (1 << 0);
717 	else if (cond == BURST)
718 		buf[0] |= (1 << 1) | (1 << 0);
719 
720 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
721 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
722 
723 	return SZ_DMALD;
724 }
725 
726 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
727 		enum pl330_cond cond, u8 peri)
728 {
729 	if (dry_run)
730 		return SZ_DMALDP;
731 
732 	buf[0] = CMD_DMALDP;
733 
734 	if (cond == BURST)
735 		buf[0] |= (1 << 1);
736 
737 	peri &= 0x1f;
738 	peri <<= 3;
739 	buf[1] = peri;
740 
741 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
742 		cond == SINGLE ? 'S' : 'B', peri >> 3);
743 
744 	return SZ_DMALDP;
745 }
746 
747 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
748 		unsigned loop, u8 cnt)
749 {
750 	if (dry_run)
751 		return SZ_DMALP;
752 
753 	buf[0] = CMD_DMALP;
754 
755 	if (loop)
756 		buf[0] |= (1 << 1);
757 
758 	cnt--; /* DMAC increments by 1 internally */
759 	buf[1] = cnt;
760 
761 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
762 
763 	return SZ_DMALP;
764 }
765 
766 struct _arg_LPEND {
767 	enum pl330_cond cond;
768 	bool forever;
769 	unsigned loop;
770 	u8 bjump;
771 };
772 
773 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
774 		const struct _arg_LPEND *arg)
775 {
776 	enum pl330_cond cond = arg->cond;
777 	bool forever = arg->forever;
778 	unsigned loop = arg->loop;
779 	u8 bjump = arg->bjump;
780 
781 	if (dry_run)
782 		return SZ_DMALPEND;
783 
784 	buf[0] = CMD_DMALPEND;
785 
786 	if (loop)
787 		buf[0] |= (1 << 2);
788 
789 	if (!forever)
790 		buf[0] |= (1 << 4);
791 
792 	if (cond == SINGLE)
793 		buf[0] |= (0 << 1) | (1 << 0);
794 	else if (cond == BURST)
795 		buf[0] |= (1 << 1) | (1 << 0);
796 
797 	buf[1] = bjump;
798 
799 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
800 			forever ? "FE" : "END",
801 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
802 			loop ? '1' : '0',
803 			bjump);
804 
805 	return SZ_DMALPEND;
806 }
807 
808 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
809 {
810 	if (dry_run)
811 		return SZ_DMAKILL;
812 
813 	buf[0] = CMD_DMAKILL;
814 
815 	return SZ_DMAKILL;
816 }
817 
818 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
819 		enum dmamov_dst dst, u32 val)
820 {
821 	if (dry_run)
822 		return SZ_DMAMOV;
823 
824 	buf[0] = CMD_DMAMOV;
825 	buf[1] = dst;
826 	*((u32 *)&buf[2]) = val;
827 
828 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
829 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
830 
831 	return SZ_DMAMOV;
832 }
833 
834 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
835 {
836 	if (dry_run)
837 		return SZ_DMANOP;
838 
839 	buf[0] = CMD_DMANOP;
840 
841 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
842 
843 	return SZ_DMANOP;
844 }
845 
846 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
847 {
848 	if (dry_run)
849 		return SZ_DMARMB;
850 
851 	buf[0] = CMD_DMARMB;
852 
853 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
854 
855 	return SZ_DMARMB;
856 }
857 
858 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
859 {
860 	if (dry_run)
861 		return SZ_DMASEV;
862 
863 	buf[0] = CMD_DMASEV;
864 
865 	ev &= 0x1f;
866 	ev <<= 3;
867 	buf[1] = ev;
868 
869 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
870 
871 	return SZ_DMASEV;
872 }
873 
874 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
875 {
876 	if (dry_run)
877 		return SZ_DMAST;
878 
879 	buf[0] = CMD_DMAST;
880 
881 	if (cond == SINGLE)
882 		buf[0] |= (0 << 1) | (1 << 0);
883 	else if (cond == BURST)
884 		buf[0] |= (1 << 1) | (1 << 0);
885 
886 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
887 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
888 
889 	return SZ_DMAST;
890 }
891 
892 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
893 		enum pl330_cond cond, u8 peri)
894 {
895 	if (dry_run)
896 		return SZ_DMASTP;
897 
898 	buf[0] = CMD_DMASTP;
899 
900 	if (cond == BURST)
901 		buf[0] |= (1 << 1);
902 
903 	peri &= 0x1f;
904 	peri <<= 3;
905 	buf[1] = peri;
906 
907 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
908 		cond == SINGLE ? 'S' : 'B', peri >> 3);
909 
910 	return SZ_DMASTP;
911 }
912 
913 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
914 {
915 	if (dry_run)
916 		return SZ_DMASTZ;
917 
918 	buf[0] = CMD_DMASTZ;
919 
920 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
921 
922 	return SZ_DMASTZ;
923 }
924 
925 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
926 		unsigned invalidate)
927 {
928 	if (dry_run)
929 		return SZ_DMAWFE;
930 
931 	buf[0] = CMD_DMAWFE;
932 
933 	ev &= 0x1f;
934 	ev <<= 3;
935 	buf[1] = ev;
936 
937 	if (invalidate)
938 		buf[1] |= (1 << 1);
939 
940 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
941 		ev >> 3, invalidate ? ", I" : "");
942 
943 	return SZ_DMAWFE;
944 }
945 
946 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
947 		enum pl330_cond cond, u8 peri)
948 {
949 	if (dry_run)
950 		return SZ_DMAWFP;
951 
952 	buf[0] = CMD_DMAWFP;
953 
954 	if (cond == SINGLE)
955 		buf[0] |= (0 << 1) | (0 << 0);
956 	else if (cond == BURST)
957 		buf[0] |= (1 << 1) | (0 << 0);
958 	else
959 		buf[0] |= (0 << 1) | (1 << 0);
960 
961 	peri &= 0x1f;
962 	peri <<= 3;
963 	buf[1] = peri;
964 
965 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
966 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
967 
968 	return SZ_DMAWFP;
969 }
970 
971 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
972 {
973 	if (dry_run)
974 		return SZ_DMAWMB;
975 
976 	buf[0] = CMD_DMAWMB;
977 
978 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
979 
980 	return SZ_DMAWMB;
981 }
982 
983 struct _arg_GO {
984 	u8 chan;
985 	u32 addr;
986 	unsigned ns;
987 };
988 
989 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
990 		const struct _arg_GO *arg)
991 {
992 	u8 chan = arg->chan;
993 	u32 addr = arg->addr;
994 	unsigned ns = arg->ns;
995 
996 	if (dry_run)
997 		return SZ_DMAGO;
998 
999 	buf[0] = CMD_DMAGO;
1000 	buf[0] |= (ns << 1);
1001 
1002 	buf[1] = chan & 0x7;
1003 
1004 	*((u32 *)&buf[2]) = addr;
1005 
1006 	return SZ_DMAGO;
1007 }
1008 
1009 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1010 
1011 /* Returns Time-Out */
1012 static bool _until_dmac_idle(struct pl330_thread *thrd)
1013 {
1014 	void __iomem *regs = thrd->dmac->pinfo->base;
1015 	unsigned long loops = msecs_to_loops(5);
1016 
1017 	do {
1018 		/* Until Manager is Idle */
1019 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1020 			break;
1021 
1022 		cpu_relax();
1023 	} while (--loops);
1024 
1025 	if (!loops)
1026 		return true;
1027 
1028 	return false;
1029 }
1030 
1031 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1032 		u8 insn[], bool as_manager)
1033 {
1034 	void __iomem *regs = thrd->dmac->pinfo->base;
1035 	u32 val;
1036 
1037 	val = (insn[0] << 16) | (insn[1] << 24);
1038 	if (!as_manager) {
1039 		val |= (1 << 0);
1040 		val |= (thrd->id << 8); /* Channel Number */
1041 	}
1042 	writel(val, regs + DBGINST0);
1043 
1044 	val = *((u32 *)&insn[2]);
1045 	writel(val, regs + DBGINST1);
1046 
1047 	/* If timed out due to halted state-machine */
1048 	if (_until_dmac_idle(thrd)) {
1049 		dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1050 		return;
1051 	}
1052 
1053 	/* Get going */
1054 	writel(0, regs + DBGCMD);
1055 }
1056 
1057 /*
1058  * Mark a _pl330_req as free.
1059  * We do it by writing DMAEND as the first instruction
1060  * because no valid request is going to have DMAEND as
1061  * its first instruction to execute.
1062  */
1063 static void mark_free(struct pl330_thread *thrd, int idx)
1064 {
1065 	struct _pl330_req *req = &thrd->req[idx];
1066 
1067 	_emit_END(0, req->mc_cpu);
1068 	req->mc_len = 0;
1069 
1070 	thrd->req_running = -1;
1071 }
1072 
1073 static inline u32 _state(struct pl330_thread *thrd)
1074 {
1075 	void __iomem *regs = thrd->dmac->pinfo->base;
1076 	u32 val;
1077 
1078 	if (is_manager(thrd))
1079 		val = readl(regs + DS) & 0xf;
1080 	else
1081 		val = readl(regs + CS(thrd->id)) & 0xf;
1082 
1083 	switch (val) {
1084 	case DS_ST_STOP:
1085 		return PL330_STATE_STOPPED;
1086 	case DS_ST_EXEC:
1087 		return PL330_STATE_EXECUTING;
1088 	case DS_ST_CMISS:
1089 		return PL330_STATE_CACHEMISS;
1090 	case DS_ST_UPDTPC:
1091 		return PL330_STATE_UPDTPC;
1092 	case DS_ST_WFE:
1093 		return PL330_STATE_WFE;
1094 	case DS_ST_FAULT:
1095 		return PL330_STATE_FAULTING;
1096 	case DS_ST_ATBRR:
1097 		if (is_manager(thrd))
1098 			return PL330_STATE_INVALID;
1099 		else
1100 			return PL330_STATE_ATBARRIER;
1101 	case DS_ST_QBUSY:
1102 		if (is_manager(thrd))
1103 			return PL330_STATE_INVALID;
1104 		else
1105 			return PL330_STATE_QUEUEBUSY;
1106 	case DS_ST_WFP:
1107 		if (is_manager(thrd))
1108 			return PL330_STATE_INVALID;
1109 		else
1110 			return PL330_STATE_WFP;
1111 	case DS_ST_KILL:
1112 		if (is_manager(thrd))
1113 			return PL330_STATE_INVALID;
1114 		else
1115 			return PL330_STATE_KILLING;
1116 	case DS_ST_CMPLT:
1117 		if (is_manager(thrd))
1118 			return PL330_STATE_INVALID;
1119 		else
1120 			return PL330_STATE_COMPLETING;
1121 	case DS_ST_FLTCMP:
1122 		if (is_manager(thrd))
1123 			return PL330_STATE_INVALID;
1124 		else
1125 			return PL330_STATE_FAULT_COMPLETING;
1126 	default:
1127 		return PL330_STATE_INVALID;
1128 	}
1129 }
1130 
1131 static void _stop(struct pl330_thread *thrd)
1132 {
1133 	void __iomem *regs = thrd->dmac->pinfo->base;
1134 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1135 
1136 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1137 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1138 
1139 	/* Return if nothing needs to be done */
1140 	if (_state(thrd) == PL330_STATE_COMPLETING
1141 		  || _state(thrd) == PL330_STATE_KILLING
1142 		  || _state(thrd) == PL330_STATE_STOPPED)
1143 		return;
1144 
1145 	_emit_KILL(0, insn);
1146 
1147 	/* Stop generating interrupts for SEV */
1148 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1149 
1150 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1151 }
1152 
1153 /* Start doing req 'idx' of thread 'thrd' */
1154 static bool _trigger(struct pl330_thread *thrd)
1155 {
1156 	void __iomem *regs = thrd->dmac->pinfo->base;
1157 	struct _pl330_req *req;
1158 	struct pl330_req *r;
1159 	struct _arg_GO go;
1160 	unsigned ns;
1161 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1162 	int idx;
1163 
1164 	/* Return if already ACTIVE */
1165 	if (_state(thrd) != PL330_STATE_STOPPED)
1166 		return true;
1167 
1168 	idx = 1 - thrd->lstenq;
1169 	if (!IS_FREE(&thrd->req[idx]))
1170 		req = &thrd->req[idx];
1171 	else {
1172 		idx = thrd->lstenq;
1173 		if (!IS_FREE(&thrd->req[idx]))
1174 			req = &thrd->req[idx];
1175 		else
1176 			req = NULL;
1177 	}
1178 
1179 	/* Return if no request */
1180 	if (!req || !req->r)
1181 		return true;
1182 
1183 	r = req->r;
1184 
1185 	if (r->cfg)
1186 		ns = r->cfg->nonsecure ? 1 : 0;
1187 	else if (readl(regs + CS(thrd->id)) & CS_CNS)
1188 		ns = 1;
1189 	else
1190 		ns = 0;
1191 
1192 	/* See 'Abort Sources' point-4 at Page 2-25 */
1193 	if (_manager_ns(thrd) && !ns)
1194 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1195 			__func__, __LINE__);
1196 
1197 	go.chan = thrd->id;
1198 	go.addr = req->mc_bus;
1199 	go.ns = ns;
1200 	_emit_GO(0, insn, &go);
1201 
1202 	/* Set to generate interrupts for SEV */
1203 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1204 
1205 	/* Only manager can execute GO */
1206 	_execute_DBGINSN(thrd, insn, true);
1207 
1208 	thrd->req_running = idx;
1209 
1210 	return true;
1211 }
1212 
1213 static bool _start(struct pl330_thread *thrd)
1214 {
1215 	switch (_state(thrd)) {
1216 	case PL330_STATE_FAULT_COMPLETING:
1217 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1218 
1219 		if (_state(thrd) == PL330_STATE_KILLING)
1220 			UNTIL(thrd, PL330_STATE_STOPPED)
1221 
1222 	case PL330_STATE_FAULTING:
1223 		_stop(thrd);
1224 
1225 	case PL330_STATE_KILLING:
1226 	case PL330_STATE_COMPLETING:
1227 		UNTIL(thrd, PL330_STATE_STOPPED)
1228 
1229 	case PL330_STATE_STOPPED:
1230 		return _trigger(thrd);
1231 
1232 	case PL330_STATE_WFP:
1233 	case PL330_STATE_QUEUEBUSY:
1234 	case PL330_STATE_ATBARRIER:
1235 	case PL330_STATE_UPDTPC:
1236 	case PL330_STATE_CACHEMISS:
1237 	case PL330_STATE_EXECUTING:
1238 		return true;
1239 
1240 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1241 	default:
1242 		return false;
1243 	}
1244 }
1245 
1246 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1247 		const struct _xfer_spec *pxs, int cyc)
1248 {
1249 	int off = 0;
1250 	struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1251 
1252 	/* check lock-up free version */
1253 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1254 		while (cyc--) {
1255 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1256 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1257 		}
1258 	} else {
1259 		while (cyc--) {
1260 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1261 			off += _emit_RMB(dry_run, &buf[off]);
1262 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1263 			off += _emit_WMB(dry_run, &buf[off]);
1264 		}
1265 	}
1266 
1267 	return off;
1268 }
1269 
1270 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1271 		const struct _xfer_spec *pxs, int cyc)
1272 {
1273 	int off = 0;
1274 
1275 	while (cyc--) {
1276 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1277 		off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1278 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1279 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1280 	}
1281 
1282 	return off;
1283 }
1284 
1285 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1286 		const struct _xfer_spec *pxs, int cyc)
1287 {
1288 	int off = 0;
1289 
1290 	while (cyc--) {
1291 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1292 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1293 		off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1294 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1295 	}
1296 
1297 	return off;
1298 }
1299 
1300 static int _bursts(unsigned dry_run, u8 buf[],
1301 		const struct _xfer_spec *pxs, int cyc)
1302 {
1303 	int off = 0;
1304 
1305 	switch (pxs->r->rqtype) {
1306 	case MEMTODEV:
1307 		off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1308 		break;
1309 	case DEVTOMEM:
1310 		off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1311 		break;
1312 	case MEMTOMEM:
1313 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1314 		break;
1315 	default:
1316 		off += 0x40000000; /* Scare off the Client */
1317 		break;
1318 	}
1319 
1320 	return off;
1321 }
1322 
1323 /* Returns bytes consumed and updates bursts */
1324 static inline int _loop(unsigned dry_run, u8 buf[],
1325 		unsigned long *bursts, const struct _xfer_spec *pxs)
1326 {
1327 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1328 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1329 	struct _arg_LPEND lpend;
1330 
1331 	/* Max iterations possible in DMALP is 256 */
1332 	if (*bursts >= 256*256) {
1333 		lcnt1 = 256;
1334 		lcnt0 = 256;
1335 		cyc = *bursts / lcnt1 / lcnt0;
1336 	} else if (*bursts > 256) {
1337 		lcnt1 = 256;
1338 		lcnt0 = *bursts / lcnt1;
1339 		cyc = 1;
1340 	} else {
1341 		lcnt1 = *bursts;
1342 		lcnt0 = 0;
1343 		cyc = 1;
1344 	}
1345 
1346 	szlp = _emit_LP(1, buf, 0, 0);
1347 	szbrst = _bursts(1, buf, pxs, 1);
1348 
1349 	lpend.cond = ALWAYS;
1350 	lpend.forever = false;
1351 	lpend.loop = 0;
1352 	lpend.bjump = 0;
1353 	szlpend = _emit_LPEND(1, buf, &lpend);
1354 
1355 	if (lcnt0) {
1356 		szlp *= 2;
1357 		szlpend *= 2;
1358 	}
1359 
1360 	/*
1361 	 * Max bursts that we can unroll due to limit on the
1362 	 * size of backward jump that can be encoded in DMALPEND
1363 	 * which is 8-bits and hence 255
1364 	 */
1365 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1366 
1367 	cyc = (cycmax < cyc) ? cycmax : cyc;
1368 
1369 	off = 0;
1370 
1371 	if (lcnt0) {
1372 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1373 		ljmp0 = off;
1374 	}
1375 
1376 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1377 	ljmp1 = off;
1378 
1379 	off += _bursts(dry_run, &buf[off], pxs, cyc);
1380 
1381 	lpend.cond = ALWAYS;
1382 	lpend.forever = false;
1383 	lpend.loop = 1;
1384 	lpend.bjump = off - ljmp1;
1385 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1386 
1387 	if (lcnt0) {
1388 		lpend.cond = ALWAYS;
1389 		lpend.forever = false;
1390 		lpend.loop = 0;
1391 		lpend.bjump = off - ljmp0;
1392 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1393 	}
1394 
1395 	*bursts = lcnt1 * cyc;
1396 	if (lcnt0)
1397 		*bursts *= lcnt0;
1398 
1399 	return off;
1400 }
1401 
1402 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1403 		const struct _xfer_spec *pxs)
1404 {
1405 	struct pl330_xfer *x = pxs->x;
1406 	u32 ccr = pxs->ccr;
1407 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1408 	int off = 0;
1409 
1410 	while (bursts) {
1411 		c = bursts;
1412 		off += _loop(dry_run, &buf[off], &c, pxs);
1413 		bursts -= c;
1414 	}
1415 
1416 	return off;
1417 }
1418 
1419 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1420 		const struct _xfer_spec *pxs)
1421 {
1422 	struct pl330_xfer *x = pxs->x;
1423 	int off = 0;
1424 
1425 	/* DMAMOV SAR, x->src_addr */
1426 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1427 	/* DMAMOV DAR, x->dst_addr */
1428 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1429 
1430 	/* Setup Loop(s) */
1431 	off += _setup_loops(dry_run, &buf[off], pxs);
1432 
1433 	return off;
1434 }
1435 
1436 /*
1437  * A req is a sequence of one or more xfer units.
1438  * Returns the number of bytes taken to setup the MC for the req.
1439  */
1440 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1441 		unsigned index, struct _xfer_spec *pxs)
1442 {
1443 	struct _pl330_req *req = &thrd->req[index];
1444 	struct pl330_xfer *x;
1445 	u8 *buf = req->mc_cpu;
1446 	int off = 0;
1447 
1448 	PL330_DBGMC_START(req->mc_bus);
1449 
1450 	/* DMAMOV CCR, ccr */
1451 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1452 
1453 	x = pxs->r->x;
1454 	do {
1455 		/* Error if xfer length is not aligned at burst size */
1456 		if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1457 			return -EINVAL;
1458 
1459 		pxs->x = x;
1460 		off += _setup_xfer(dry_run, &buf[off], pxs);
1461 
1462 		x = x->next;
1463 	} while (x);
1464 
1465 	/* DMASEV peripheral/event */
1466 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1467 	/* DMAEND */
1468 	off += _emit_END(dry_run, &buf[off]);
1469 
1470 	return off;
1471 }
1472 
1473 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1474 {
1475 	u32 ccr = 0;
1476 
1477 	if (rqc->src_inc)
1478 		ccr |= CC_SRCINC;
1479 
1480 	if (rqc->dst_inc)
1481 		ccr |= CC_DSTINC;
1482 
1483 	/* We set same protection levels for Src and DST for now */
1484 	if (rqc->privileged)
1485 		ccr |= CC_SRCPRI | CC_DSTPRI;
1486 	if (rqc->nonsecure)
1487 		ccr |= CC_SRCNS | CC_DSTNS;
1488 	if (rqc->insnaccess)
1489 		ccr |= CC_SRCIA | CC_DSTIA;
1490 
1491 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1492 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1493 
1494 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1495 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1496 
1497 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1498 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1499 
1500 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1501 
1502 	return ccr;
1503 }
1504 
1505 static inline bool _is_valid(u32 ccr)
1506 {
1507 	enum pl330_dstcachectrl dcctl;
1508 	enum pl330_srccachectrl scctl;
1509 
1510 	dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1511 	scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1512 
1513 	if (dcctl == DINVALID1 || dcctl == DINVALID2
1514 			|| scctl == SINVALID1 || scctl == SINVALID2)
1515 		return false;
1516 	else
1517 		return true;
1518 }
1519 
1520 /*
1521  * Submit a list of xfers after which the client wants notification.
1522  * Client is not notified after each xfer unit, just once after all
1523  * xfer units are done or some error occurs.
1524  */
1525 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1526 {
1527 	struct pl330_thread *thrd = ch_id;
1528 	struct pl330_dmac *pl330;
1529 	struct pl330_info *pi;
1530 	struct _xfer_spec xs;
1531 	unsigned long flags;
1532 	void __iomem *regs;
1533 	unsigned idx;
1534 	u32 ccr;
1535 	int ret = 0;
1536 
1537 	/* No Req or Unacquired Channel or DMAC */
1538 	if (!r || !thrd || thrd->free)
1539 		return -EINVAL;
1540 
1541 	pl330 = thrd->dmac;
1542 	pi = pl330->pinfo;
1543 	regs = pi->base;
1544 
1545 	if (pl330->state == DYING
1546 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1547 		dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1548 			__func__, __LINE__);
1549 		return -EAGAIN;
1550 	}
1551 
1552 	/* If request for non-existing peripheral */
1553 	if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1554 		dev_info(thrd->dmac->pinfo->dev,
1555 				"%s:%d Invalid peripheral(%u)!\n",
1556 				__func__, __LINE__, r->peri);
1557 		return -EINVAL;
1558 	}
1559 
1560 	spin_lock_irqsave(&pl330->lock, flags);
1561 
1562 	if (_queue_full(thrd)) {
1563 		ret = -EAGAIN;
1564 		goto xfer_exit;
1565 	}
1566 
1567 
1568 	/* Use last settings, if not provided */
1569 	if (r->cfg) {
1570 		/* Prefer Secure Channel */
1571 		if (!_manager_ns(thrd))
1572 			r->cfg->nonsecure = 0;
1573 		else
1574 			r->cfg->nonsecure = 1;
1575 
1576 		ccr = _prepare_ccr(r->cfg);
1577 	} else {
1578 		ccr = readl(regs + CC(thrd->id));
1579 	}
1580 
1581 	/* If this req doesn't have valid xfer settings */
1582 	if (!_is_valid(ccr)) {
1583 		ret = -EINVAL;
1584 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1585 			__func__, __LINE__, ccr);
1586 		goto xfer_exit;
1587 	}
1588 
1589 	idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1590 
1591 	xs.ccr = ccr;
1592 	xs.r = r;
1593 
1594 	/* First dry run to check if req is acceptable */
1595 	ret = _setup_req(1, thrd, idx, &xs);
1596 	if (ret < 0)
1597 		goto xfer_exit;
1598 
1599 	if (ret > pi->mcbufsz / 2) {
1600 		dev_info(thrd->dmac->pinfo->dev,
1601 			"%s:%d Trying increasing mcbufsz\n",
1602 				__func__, __LINE__);
1603 		ret = -ENOMEM;
1604 		goto xfer_exit;
1605 	}
1606 
1607 	/* Hook the request */
1608 	thrd->lstenq = idx;
1609 	thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1610 	thrd->req[idx].r = r;
1611 
1612 	ret = 0;
1613 
1614 xfer_exit:
1615 	spin_unlock_irqrestore(&pl330->lock, flags);
1616 
1617 	return ret;
1618 }
1619 
1620 static void pl330_dotask(unsigned long data)
1621 {
1622 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1623 	struct pl330_info *pi = pl330->pinfo;
1624 	unsigned long flags;
1625 	int i;
1626 
1627 	spin_lock_irqsave(&pl330->lock, flags);
1628 
1629 	/* The DMAC itself gone nuts */
1630 	if (pl330->dmac_tbd.reset_dmac) {
1631 		pl330->state = DYING;
1632 		/* Reset the manager too */
1633 		pl330->dmac_tbd.reset_mngr = true;
1634 		/* Clear the reset flag */
1635 		pl330->dmac_tbd.reset_dmac = false;
1636 	}
1637 
1638 	if (pl330->dmac_tbd.reset_mngr) {
1639 		_stop(pl330->manager);
1640 		/* Reset all channels */
1641 		pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1642 		/* Clear the reset flag */
1643 		pl330->dmac_tbd.reset_mngr = false;
1644 	}
1645 
1646 	for (i = 0; i < pi->pcfg.num_chan; i++) {
1647 
1648 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1649 			struct pl330_thread *thrd = &pl330->channels[i];
1650 			void __iomem *regs = pi->base;
1651 			enum pl330_op_err err;
1652 
1653 			_stop(thrd);
1654 
1655 			if (readl(regs + FSC) & (1 << thrd->id))
1656 				err = PL330_ERR_FAIL;
1657 			else
1658 				err = PL330_ERR_ABORT;
1659 
1660 			spin_unlock_irqrestore(&pl330->lock, flags);
1661 
1662 			_callback(thrd->req[1 - thrd->lstenq].r, err);
1663 			_callback(thrd->req[thrd->lstenq].r, err);
1664 
1665 			spin_lock_irqsave(&pl330->lock, flags);
1666 
1667 			thrd->req[0].r = NULL;
1668 			thrd->req[1].r = NULL;
1669 			mark_free(thrd, 0);
1670 			mark_free(thrd, 1);
1671 
1672 			/* Clear the reset flag */
1673 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1674 		}
1675 	}
1676 
1677 	spin_unlock_irqrestore(&pl330->lock, flags);
1678 
1679 	return;
1680 }
1681 
1682 /* Returns 1 if state was updated, 0 otherwise */
1683 static int pl330_update(const struct pl330_info *pi)
1684 {
1685 	struct pl330_req *rqdone, *tmp;
1686 	struct pl330_dmac *pl330;
1687 	unsigned long flags;
1688 	void __iomem *regs;
1689 	u32 val;
1690 	int id, ev, ret = 0;
1691 
1692 	if (!pi || !pi->pl330_data)
1693 		return 0;
1694 
1695 	regs = pi->base;
1696 	pl330 = pi->pl330_data;
1697 
1698 	spin_lock_irqsave(&pl330->lock, flags);
1699 
1700 	val = readl(regs + FSM) & 0x1;
1701 	if (val)
1702 		pl330->dmac_tbd.reset_mngr = true;
1703 	else
1704 		pl330->dmac_tbd.reset_mngr = false;
1705 
1706 	val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1707 	pl330->dmac_tbd.reset_chan |= val;
1708 	if (val) {
1709 		int i = 0;
1710 		while (i < pi->pcfg.num_chan) {
1711 			if (val & (1 << i)) {
1712 				dev_info(pi->dev,
1713 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1714 						i, readl(regs + CS(i)),
1715 						readl(regs + FTC(i)));
1716 				_stop(&pl330->channels[i]);
1717 			}
1718 			i++;
1719 		}
1720 	}
1721 
1722 	/* Check which event happened i.e, thread notified */
1723 	val = readl(regs + ES);
1724 	if (pi->pcfg.num_events < 32
1725 			&& val & ~((1 << pi->pcfg.num_events) - 1)) {
1726 		pl330->dmac_tbd.reset_dmac = true;
1727 		dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1728 		ret = 1;
1729 		goto updt_exit;
1730 	}
1731 
1732 	for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1733 		if (val & (1 << ev)) { /* Event occurred */
1734 			struct pl330_thread *thrd;
1735 			u32 inten = readl(regs + INTEN);
1736 			int active;
1737 
1738 			/* Clear the event */
1739 			if (inten & (1 << ev))
1740 				writel(1 << ev, regs + INTCLR);
1741 
1742 			ret = 1;
1743 
1744 			id = pl330->events[ev];
1745 
1746 			thrd = &pl330->channels[id];
1747 
1748 			active = thrd->req_running;
1749 			if (active == -1) /* Aborted */
1750 				continue;
1751 
1752 			/* Detach the req */
1753 			rqdone = thrd->req[active].r;
1754 			thrd->req[active].r = NULL;
1755 
1756 			mark_free(thrd, active);
1757 
1758 			/* Get going again ASAP */
1759 			_start(thrd);
1760 
1761 			/* For now, just make a list of callbacks to be done */
1762 			list_add_tail(&rqdone->rqd, &pl330->req_done);
1763 		}
1764 	}
1765 
1766 	/* Now that we are in no hurry, do the callbacks */
1767 	list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) {
1768 		list_del(&rqdone->rqd);
1769 
1770 		spin_unlock_irqrestore(&pl330->lock, flags);
1771 		_callback(rqdone, PL330_ERR_NONE);
1772 		spin_lock_irqsave(&pl330->lock, flags);
1773 	}
1774 
1775 updt_exit:
1776 	spin_unlock_irqrestore(&pl330->lock, flags);
1777 
1778 	if (pl330->dmac_tbd.reset_dmac
1779 			|| pl330->dmac_tbd.reset_mngr
1780 			|| pl330->dmac_tbd.reset_chan) {
1781 		ret = 1;
1782 		tasklet_schedule(&pl330->tasks);
1783 	}
1784 
1785 	return ret;
1786 }
1787 
1788 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1789 {
1790 	struct pl330_thread *thrd = ch_id;
1791 	struct pl330_dmac *pl330;
1792 	unsigned long flags;
1793 	int ret = 0, active;
1794 
1795 	if (!thrd || thrd->free || thrd->dmac->state == DYING)
1796 		return -EINVAL;
1797 
1798 	pl330 = thrd->dmac;
1799 	active = thrd->req_running;
1800 
1801 	spin_lock_irqsave(&pl330->lock, flags);
1802 
1803 	switch (op) {
1804 	case PL330_OP_FLUSH:
1805 		/* Make sure the channel is stopped */
1806 		_stop(thrd);
1807 
1808 		thrd->req[0].r = NULL;
1809 		thrd->req[1].r = NULL;
1810 		mark_free(thrd, 0);
1811 		mark_free(thrd, 1);
1812 		break;
1813 
1814 	case PL330_OP_ABORT:
1815 		/* Make sure the channel is stopped */
1816 		_stop(thrd);
1817 
1818 		/* ABORT is only for the active req */
1819 		if (active == -1)
1820 			break;
1821 
1822 		thrd->req[active].r = NULL;
1823 		mark_free(thrd, active);
1824 
1825 		/* Start the next */
1826 	case PL330_OP_START:
1827 		if ((active == -1) && !_start(thrd))
1828 			ret = -EIO;
1829 		break;
1830 
1831 	default:
1832 		ret = -EINVAL;
1833 	}
1834 
1835 	spin_unlock_irqrestore(&pl330->lock, flags);
1836 	return ret;
1837 }
1838 
1839 /* Reserve an event */
1840 static inline int _alloc_event(struct pl330_thread *thrd)
1841 {
1842 	struct pl330_dmac *pl330 = thrd->dmac;
1843 	struct pl330_info *pi = pl330->pinfo;
1844 	int ev;
1845 
1846 	for (ev = 0; ev < pi->pcfg.num_events; ev++)
1847 		if (pl330->events[ev] == -1) {
1848 			pl330->events[ev] = thrd->id;
1849 			return ev;
1850 		}
1851 
1852 	return -1;
1853 }
1854 
1855 static bool _chan_ns(const struct pl330_info *pi, int i)
1856 {
1857 	return pi->pcfg.irq_ns & (1 << i);
1858 }
1859 
1860 /* Upon success, returns IdentityToken for the
1861  * allocated channel, NULL otherwise.
1862  */
1863 static void *pl330_request_channel(const struct pl330_info *pi)
1864 {
1865 	struct pl330_thread *thrd = NULL;
1866 	struct pl330_dmac *pl330;
1867 	unsigned long flags;
1868 	int chans, i;
1869 
1870 	if (!pi || !pi->pl330_data)
1871 		return NULL;
1872 
1873 	pl330 = pi->pl330_data;
1874 
1875 	if (pl330->state == DYING)
1876 		return NULL;
1877 
1878 	chans = pi->pcfg.num_chan;
1879 
1880 	spin_lock_irqsave(&pl330->lock, flags);
1881 
1882 	for (i = 0; i < chans; i++) {
1883 		thrd = &pl330->channels[i];
1884 		if ((thrd->free) && (!_manager_ns(thrd) ||
1885 					_chan_ns(pi, i))) {
1886 			thrd->ev = _alloc_event(thrd);
1887 			if (thrd->ev >= 0) {
1888 				thrd->free = false;
1889 				thrd->lstenq = 1;
1890 				thrd->req[0].r = NULL;
1891 				mark_free(thrd, 0);
1892 				thrd->req[1].r = NULL;
1893 				mark_free(thrd, 1);
1894 				break;
1895 			}
1896 		}
1897 		thrd = NULL;
1898 	}
1899 
1900 	spin_unlock_irqrestore(&pl330->lock, flags);
1901 
1902 	return thrd;
1903 }
1904 
1905 /* Release an event */
1906 static inline void _free_event(struct pl330_thread *thrd, int ev)
1907 {
1908 	struct pl330_dmac *pl330 = thrd->dmac;
1909 	struct pl330_info *pi = pl330->pinfo;
1910 
1911 	/* If the event is valid and was held by the thread */
1912 	if (ev >= 0 && ev < pi->pcfg.num_events
1913 			&& pl330->events[ev] == thrd->id)
1914 		pl330->events[ev] = -1;
1915 }
1916 
1917 static void pl330_release_channel(void *ch_id)
1918 {
1919 	struct pl330_thread *thrd = ch_id;
1920 	struct pl330_dmac *pl330;
1921 	unsigned long flags;
1922 
1923 	if (!thrd || thrd->free)
1924 		return;
1925 
1926 	_stop(thrd);
1927 
1928 	_callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1929 	_callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1930 
1931 	pl330 = thrd->dmac;
1932 
1933 	spin_lock_irqsave(&pl330->lock, flags);
1934 	_free_event(thrd, thrd->ev);
1935 	thrd->free = true;
1936 	spin_unlock_irqrestore(&pl330->lock, flags);
1937 }
1938 
1939 /* Initialize the structure for PL330 configuration, that can be used
1940  * by the client driver the make best use of the DMAC
1941  */
1942 static void read_dmac_config(struct pl330_info *pi)
1943 {
1944 	void __iomem *regs = pi->base;
1945 	u32 val;
1946 
1947 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1948 	val &= CRD_DATA_WIDTH_MASK;
1949 	pi->pcfg.data_bus_width = 8 * (1 << val);
1950 
1951 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1952 	val &= CRD_DATA_BUFF_MASK;
1953 	pi->pcfg.data_buf_dep = val + 1;
1954 
1955 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1956 	val &= CR0_NUM_CHANS_MASK;
1957 	val += 1;
1958 	pi->pcfg.num_chan = val;
1959 
1960 	val = readl(regs + CR0);
1961 	if (val & CR0_PERIPH_REQ_SET) {
1962 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1963 		val += 1;
1964 		pi->pcfg.num_peri = val;
1965 		pi->pcfg.peri_ns = readl(regs + CR4);
1966 	} else {
1967 		pi->pcfg.num_peri = 0;
1968 	}
1969 
1970 	val = readl(regs + CR0);
1971 	if (val & CR0_BOOT_MAN_NS)
1972 		pi->pcfg.mode |= DMAC_MODE_NS;
1973 	else
1974 		pi->pcfg.mode &= ~DMAC_MODE_NS;
1975 
1976 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1977 	val &= CR0_NUM_EVENTS_MASK;
1978 	val += 1;
1979 	pi->pcfg.num_events = val;
1980 
1981 	pi->pcfg.irq_ns = readl(regs + CR3);
1982 
1983 	pi->pcfg.periph_id = get_id(pi, PERIPH_ID);
1984 	pi->pcfg.pcell_id = get_id(pi, PCELL_ID);
1985 }
1986 
1987 static inline void _reset_thread(struct pl330_thread *thrd)
1988 {
1989 	struct pl330_dmac *pl330 = thrd->dmac;
1990 	struct pl330_info *pi = pl330->pinfo;
1991 
1992 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1993 				+ (thrd->id * pi->mcbufsz);
1994 	thrd->req[0].mc_bus = pl330->mcode_bus
1995 				+ (thrd->id * pi->mcbufsz);
1996 	thrd->req[0].r = NULL;
1997 	mark_free(thrd, 0);
1998 
1999 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
2000 				+ pi->mcbufsz / 2;
2001 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
2002 				+ pi->mcbufsz / 2;
2003 	thrd->req[1].r = NULL;
2004 	mark_free(thrd, 1);
2005 }
2006 
2007 static int dmac_alloc_threads(struct pl330_dmac *pl330)
2008 {
2009 	struct pl330_info *pi = pl330->pinfo;
2010 	int chans = pi->pcfg.num_chan;
2011 	struct pl330_thread *thrd;
2012 	int i;
2013 
2014 	/* Allocate 1 Manager and 'chans' Channel threads */
2015 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2016 					GFP_KERNEL);
2017 	if (!pl330->channels)
2018 		return -ENOMEM;
2019 
2020 	/* Init Channel threads */
2021 	for (i = 0; i < chans; i++) {
2022 		thrd = &pl330->channels[i];
2023 		thrd->id = i;
2024 		thrd->dmac = pl330;
2025 		_reset_thread(thrd);
2026 		thrd->free = true;
2027 	}
2028 
2029 	/* MANAGER is indexed at the end */
2030 	thrd = &pl330->channels[chans];
2031 	thrd->id = chans;
2032 	thrd->dmac = pl330;
2033 	thrd->free = false;
2034 	pl330->manager = thrd;
2035 
2036 	return 0;
2037 }
2038 
2039 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2040 {
2041 	struct pl330_info *pi = pl330->pinfo;
2042 	int chans = pi->pcfg.num_chan;
2043 	int ret;
2044 
2045 	/*
2046 	 * Alloc MicroCode buffer for 'chans' Channel threads.
2047 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2048 	 */
2049 	pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2050 				chans * pi->mcbufsz,
2051 				&pl330->mcode_bus, GFP_KERNEL);
2052 	if (!pl330->mcode_cpu) {
2053 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2054 			__func__, __LINE__);
2055 		return -ENOMEM;
2056 	}
2057 
2058 	ret = dmac_alloc_threads(pl330);
2059 	if (ret) {
2060 		dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2061 			__func__, __LINE__);
2062 		dma_free_coherent(pi->dev,
2063 				chans * pi->mcbufsz,
2064 				pl330->mcode_cpu, pl330->mcode_bus);
2065 		return ret;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 static int pl330_add(struct pl330_info *pi)
2072 {
2073 	struct pl330_dmac *pl330;
2074 	void __iomem *regs;
2075 	int i, ret;
2076 
2077 	if (!pi || !pi->dev)
2078 		return -EINVAL;
2079 
2080 	/* If already added */
2081 	if (pi->pl330_data)
2082 		return -EINVAL;
2083 
2084 	/*
2085 	 * If the SoC can perform reset on the DMAC, then do it
2086 	 * before reading its configuration.
2087 	 */
2088 	if (pi->dmac_reset)
2089 		pi->dmac_reset(pi);
2090 
2091 	regs = pi->base;
2092 
2093 	/* Check if we can handle this DMAC */
2094 	if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL
2095 	   || get_id(pi, PCELL_ID) != PCELL_ID_VAL) {
2096 		dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n",
2097 			get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID));
2098 		return -EINVAL;
2099 	}
2100 
2101 	/* Read the configuration of the DMAC */
2102 	read_dmac_config(pi);
2103 
2104 	if (pi->pcfg.num_events == 0) {
2105 		dev_err(pi->dev, "%s:%d Can't work without events!\n",
2106 			__func__, __LINE__);
2107 		return -EINVAL;
2108 	}
2109 
2110 	pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2111 	if (!pl330) {
2112 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2113 			__func__, __LINE__);
2114 		return -ENOMEM;
2115 	}
2116 
2117 	/* Assign the info structure and private data */
2118 	pl330->pinfo = pi;
2119 	pi->pl330_data = pl330;
2120 
2121 	spin_lock_init(&pl330->lock);
2122 
2123 	INIT_LIST_HEAD(&pl330->req_done);
2124 
2125 	/* Use default MC buffer size if not provided */
2126 	if (!pi->mcbufsz)
2127 		pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2128 
2129 	/* Mark all events as free */
2130 	for (i = 0; i < pi->pcfg.num_events; i++)
2131 		pl330->events[i] = -1;
2132 
2133 	/* Allocate resources needed by the DMAC */
2134 	ret = dmac_alloc_resources(pl330);
2135 	if (ret) {
2136 		dev_err(pi->dev, "Unable to create channels for DMAC\n");
2137 		kfree(pl330);
2138 		return ret;
2139 	}
2140 
2141 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2142 
2143 	pl330->state = INIT;
2144 
2145 	return 0;
2146 }
2147 
2148 static int dmac_free_threads(struct pl330_dmac *pl330)
2149 {
2150 	struct pl330_info *pi = pl330->pinfo;
2151 	int chans = pi->pcfg.num_chan;
2152 	struct pl330_thread *thrd;
2153 	int i;
2154 
2155 	/* Release Channel threads */
2156 	for (i = 0; i < chans; i++) {
2157 		thrd = &pl330->channels[i];
2158 		pl330_release_channel((void *)thrd);
2159 	}
2160 
2161 	/* Free memory */
2162 	kfree(pl330->channels);
2163 
2164 	return 0;
2165 }
2166 
2167 static void dmac_free_resources(struct pl330_dmac *pl330)
2168 {
2169 	struct pl330_info *pi = pl330->pinfo;
2170 	int chans = pi->pcfg.num_chan;
2171 
2172 	dmac_free_threads(pl330);
2173 
2174 	dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2175 				pl330->mcode_cpu, pl330->mcode_bus);
2176 }
2177 
2178 static void pl330_del(struct pl330_info *pi)
2179 {
2180 	struct pl330_dmac *pl330;
2181 
2182 	if (!pi || !pi->pl330_data)
2183 		return;
2184 
2185 	pl330 = pi->pl330_data;
2186 
2187 	pl330->state = UNINIT;
2188 
2189 	tasklet_kill(&pl330->tasks);
2190 
2191 	/* Free DMAC resources */
2192 	dmac_free_resources(pl330);
2193 
2194 	kfree(pl330);
2195 	pi->pl330_data = NULL;
2196 }
2197 
2198 /* forward declaration */
2199 static struct amba_driver pl330_driver;
2200 
2201 static inline struct dma_pl330_chan *
2202 to_pchan(struct dma_chan *ch)
2203 {
2204 	if (!ch)
2205 		return NULL;
2206 
2207 	return container_of(ch, struct dma_pl330_chan, chan);
2208 }
2209 
2210 static inline struct dma_pl330_desc *
2211 to_desc(struct dma_async_tx_descriptor *tx)
2212 {
2213 	return container_of(tx, struct dma_pl330_desc, txd);
2214 }
2215 
2216 static inline void free_desc_list(struct list_head *list)
2217 {
2218 	struct dma_pl330_dmac *pdmac;
2219 	struct dma_pl330_desc *desc;
2220 	struct dma_pl330_chan *pch = NULL;
2221 	unsigned long flags;
2222 
2223 	/* Finish off the work list */
2224 	list_for_each_entry(desc, list, node) {
2225 		dma_async_tx_callback callback;
2226 		void *param;
2227 
2228 		/* All desc in a list belong to same channel */
2229 		pch = desc->pchan;
2230 		callback = desc->txd.callback;
2231 		param = desc->txd.callback_param;
2232 
2233 		if (callback)
2234 			callback(param);
2235 
2236 		desc->pchan = NULL;
2237 	}
2238 
2239 	/* pch will be unset if list was empty */
2240 	if (!pch)
2241 		return;
2242 
2243 	pdmac = pch->dmac;
2244 
2245 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2246 	list_splice_tail_init(list, &pdmac->desc_pool);
2247 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2248 }
2249 
2250 static inline void handle_cyclic_desc_list(struct list_head *list)
2251 {
2252 	struct dma_pl330_desc *desc;
2253 	struct dma_pl330_chan *pch = NULL;
2254 	unsigned long flags;
2255 
2256 	list_for_each_entry(desc, list, node) {
2257 		dma_async_tx_callback callback;
2258 
2259 		/* Change status to reload it */
2260 		desc->status = PREP;
2261 		pch = desc->pchan;
2262 		callback = desc->txd.callback;
2263 		if (callback)
2264 			callback(desc->txd.callback_param);
2265 	}
2266 
2267 	/* pch will be unset if list was empty */
2268 	if (!pch)
2269 		return;
2270 
2271 	spin_lock_irqsave(&pch->lock, flags);
2272 	list_splice_tail_init(list, &pch->work_list);
2273 	spin_unlock_irqrestore(&pch->lock, flags);
2274 }
2275 
2276 static inline void fill_queue(struct dma_pl330_chan *pch)
2277 {
2278 	struct dma_pl330_desc *desc;
2279 	int ret;
2280 
2281 	list_for_each_entry(desc, &pch->work_list, node) {
2282 
2283 		/* If already submitted */
2284 		if (desc->status == BUSY)
2285 			break;
2286 
2287 		ret = pl330_submit_req(pch->pl330_chid,
2288 						&desc->req);
2289 		if (!ret) {
2290 			desc->status = BUSY;
2291 			break;
2292 		} else if (ret == -EAGAIN) {
2293 			/* QFull or DMAC Dying */
2294 			break;
2295 		} else {
2296 			/* Unacceptable request */
2297 			desc->status = DONE;
2298 			dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2299 					__func__, __LINE__, desc->txd.cookie);
2300 			tasklet_schedule(&pch->task);
2301 		}
2302 	}
2303 }
2304 
2305 static void pl330_tasklet(unsigned long data)
2306 {
2307 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2308 	struct dma_pl330_desc *desc, *_dt;
2309 	unsigned long flags;
2310 	LIST_HEAD(list);
2311 
2312 	spin_lock_irqsave(&pch->lock, flags);
2313 
2314 	/* Pick up ripe tomatoes */
2315 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2316 		if (desc->status == DONE) {
2317 			if (!pch->cyclic)
2318 				dma_cookie_complete(&desc->txd);
2319 			list_move_tail(&desc->node, &list);
2320 		}
2321 
2322 	/* Try to submit a req imm. next to the last completed cookie */
2323 	fill_queue(pch);
2324 
2325 	/* Make sure the PL330 Channel thread is active */
2326 	pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2327 
2328 	spin_unlock_irqrestore(&pch->lock, flags);
2329 
2330 	if (pch->cyclic)
2331 		handle_cyclic_desc_list(&list);
2332 	else
2333 		free_desc_list(&list);
2334 }
2335 
2336 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2337 {
2338 	struct dma_pl330_desc *desc = token;
2339 	struct dma_pl330_chan *pch = desc->pchan;
2340 	unsigned long flags;
2341 
2342 	/* If desc aborted */
2343 	if (!pch)
2344 		return;
2345 
2346 	spin_lock_irqsave(&pch->lock, flags);
2347 
2348 	desc->status = DONE;
2349 
2350 	spin_unlock_irqrestore(&pch->lock, flags);
2351 
2352 	tasklet_schedule(&pch->task);
2353 }
2354 
2355 bool pl330_filter(struct dma_chan *chan, void *param)
2356 {
2357 	u8 *peri_id;
2358 
2359 	if (chan->device->dev->driver != &pl330_driver.drv)
2360 		return false;
2361 
2362 #ifdef CONFIG_OF
2363 	if (chan->device->dev->of_node) {
2364 		const __be32 *prop_value;
2365 		phandle phandle;
2366 		struct device_node *node;
2367 
2368 		prop_value = ((struct property *)param)->value;
2369 		phandle = be32_to_cpup(prop_value++);
2370 		node = of_find_node_by_phandle(phandle);
2371 		return ((chan->private == node) &&
2372 				(chan->chan_id == be32_to_cpup(prop_value)));
2373 	}
2374 #endif
2375 
2376 	peri_id = chan->private;
2377 	return *peri_id == (unsigned)param;
2378 }
2379 EXPORT_SYMBOL(pl330_filter);
2380 
2381 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2382 {
2383 	struct dma_pl330_chan *pch = to_pchan(chan);
2384 	struct dma_pl330_dmac *pdmac = pch->dmac;
2385 	unsigned long flags;
2386 
2387 	spin_lock_irqsave(&pch->lock, flags);
2388 
2389 	dma_cookie_init(chan);
2390 	pch->cyclic = false;
2391 
2392 	pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2393 	if (!pch->pl330_chid) {
2394 		spin_unlock_irqrestore(&pch->lock, flags);
2395 		return -ENOMEM;
2396 	}
2397 
2398 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2399 
2400 	spin_unlock_irqrestore(&pch->lock, flags);
2401 
2402 	return 1;
2403 }
2404 
2405 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2406 {
2407 	struct dma_pl330_chan *pch = to_pchan(chan);
2408 	struct dma_pl330_desc *desc, *_dt;
2409 	unsigned long flags;
2410 	struct dma_pl330_dmac *pdmac = pch->dmac;
2411 	struct dma_slave_config *slave_config;
2412 	LIST_HEAD(list);
2413 
2414 	switch (cmd) {
2415 	case DMA_TERMINATE_ALL:
2416 		spin_lock_irqsave(&pch->lock, flags);
2417 
2418 		/* FLUSH the PL330 Channel thread */
2419 		pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2420 
2421 		/* Mark all desc done */
2422 		list_for_each_entry_safe(desc, _dt, &pch->work_list , node) {
2423 			desc->status = DONE;
2424 			list_move_tail(&desc->node, &list);
2425 		}
2426 
2427 		list_splice_tail_init(&list, &pdmac->desc_pool);
2428 		spin_unlock_irqrestore(&pch->lock, flags);
2429 		break;
2430 	case DMA_SLAVE_CONFIG:
2431 		slave_config = (struct dma_slave_config *)arg;
2432 
2433 		if (slave_config->direction == DMA_MEM_TO_DEV) {
2434 			if (slave_config->dst_addr)
2435 				pch->fifo_addr = slave_config->dst_addr;
2436 			if (slave_config->dst_addr_width)
2437 				pch->burst_sz = __ffs(slave_config->dst_addr_width);
2438 			if (slave_config->dst_maxburst)
2439 				pch->burst_len = slave_config->dst_maxburst;
2440 		} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2441 			if (slave_config->src_addr)
2442 				pch->fifo_addr = slave_config->src_addr;
2443 			if (slave_config->src_addr_width)
2444 				pch->burst_sz = __ffs(slave_config->src_addr_width);
2445 			if (slave_config->src_maxburst)
2446 				pch->burst_len = slave_config->src_maxburst;
2447 		}
2448 		break;
2449 	default:
2450 		dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2451 		return -ENXIO;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static void pl330_free_chan_resources(struct dma_chan *chan)
2458 {
2459 	struct dma_pl330_chan *pch = to_pchan(chan);
2460 	unsigned long flags;
2461 
2462 	spin_lock_irqsave(&pch->lock, flags);
2463 
2464 	tasklet_kill(&pch->task);
2465 
2466 	pl330_release_channel(pch->pl330_chid);
2467 	pch->pl330_chid = NULL;
2468 
2469 	if (pch->cyclic)
2470 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2471 
2472 	spin_unlock_irqrestore(&pch->lock, flags);
2473 }
2474 
2475 static enum dma_status
2476 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2477 		 struct dma_tx_state *txstate)
2478 {
2479 	return dma_cookie_status(chan, cookie, txstate);
2480 }
2481 
2482 static void pl330_issue_pending(struct dma_chan *chan)
2483 {
2484 	pl330_tasklet((unsigned long) to_pchan(chan));
2485 }
2486 
2487 /*
2488  * We returned the last one of the circular list of descriptor(s)
2489  * from prep_xxx, so the argument to submit corresponds to the last
2490  * descriptor of the list.
2491  */
2492 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2493 {
2494 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2495 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2496 	dma_cookie_t cookie;
2497 	unsigned long flags;
2498 
2499 	spin_lock_irqsave(&pch->lock, flags);
2500 
2501 	/* Assign cookies to all nodes */
2502 	while (!list_empty(&last->node)) {
2503 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2504 
2505 		dma_cookie_assign(&desc->txd);
2506 
2507 		list_move_tail(&desc->node, &pch->work_list);
2508 	}
2509 
2510 	cookie = dma_cookie_assign(&last->txd);
2511 	list_add_tail(&last->node, &pch->work_list);
2512 	spin_unlock_irqrestore(&pch->lock, flags);
2513 
2514 	return cookie;
2515 }
2516 
2517 static inline void _init_desc(struct dma_pl330_desc *desc)
2518 {
2519 	desc->pchan = NULL;
2520 	desc->req.x = &desc->px;
2521 	desc->req.token = desc;
2522 	desc->rqcfg.swap = SWAP_NO;
2523 	desc->rqcfg.privileged = 0;
2524 	desc->rqcfg.insnaccess = 0;
2525 	desc->rqcfg.scctl = SCCTRL0;
2526 	desc->rqcfg.dcctl = DCCTRL0;
2527 	desc->req.cfg = &desc->rqcfg;
2528 	desc->req.xfer_cb = dma_pl330_rqcb;
2529 	desc->txd.tx_submit = pl330_tx_submit;
2530 
2531 	INIT_LIST_HEAD(&desc->node);
2532 }
2533 
2534 /* Returns the number of descriptors added to the DMAC pool */
2535 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2536 {
2537 	struct dma_pl330_desc *desc;
2538 	unsigned long flags;
2539 	int i;
2540 
2541 	if (!pdmac)
2542 		return 0;
2543 
2544 	desc = kmalloc(count * sizeof(*desc), flg);
2545 	if (!desc)
2546 		return 0;
2547 
2548 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2549 
2550 	for (i = 0; i < count; i++) {
2551 		_init_desc(&desc[i]);
2552 		list_add_tail(&desc[i].node, &pdmac->desc_pool);
2553 	}
2554 
2555 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2556 
2557 	return count;
2558 }
2559 
2560 static struct dma_pl330_desc *
2561 pluck_desc(struct dma_pl330_dmac *pdmac)
2562 {
2563 	struct dma_pl330_desc *desc = NULL;
2564 	unsigned long flags;
2565 
2566 	if (!pdmac)
2567 		return NULL;
2568 
2569 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2570 
2571 	if (!list_empty(&pdmac->desc_pool)) {
2572 		desc = list_entry(pdmac->desc_pool.next,
2573 				struct dma_pl330_desc, node);
2574 
2575 		list_del_init(&desc->node);
2576 
2577 		desc->status = PREP;
2578 		desc->txd.callback = NULL;
2579 	}
2580 
2581 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2582 
2583 	return desc;
2584 }
2585 
2586 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2587 {
2588 	struct dma_pl330_dmac *pdmac = pch->dmac;
2589 	u8 *peri_id = pch->chan.private;
2590 	struct dma_pl330_desc *desc;
2591 
2592 	/* Pluck one desc from the pool of DMAC */
2593 	desc = pluck_desc(pdmac);
2594 
2595 	/* If the DMAC pool is empty, alloc new */
2596 	if (!desc) {
2597 		if (!add_desc(pdmac, GFP_ATOMIC, 1))
2598 			return NULL;
2599 
2600 		/* Try again */
2601 		desc = pluck_desc(pdmac);
2602 		if (!desc) {
2603 			dev_err(pch->dmac->pif.dev,
2604 				"%s:%d ALERT!\n", __func__, __LINE__);
2605 			return NULL;
2606 		}
2607 	}
2608 
2609 	/* Initialize the descriptor */
2610 	desc->pchan = pch;
2611 	desc->txd.cookie = 0;
2612 	async_tx_ack(&desc->txd);
2613 
2614 	desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2615 	desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2616 
2617 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2618 
2619 	return desc;
2620 }
2621 
2622 static inline void fill_px(struct pl330_xfer *px,
2623 		dma_addr_t dst, dma_addr_t src, size_t len)
2624 {
2625 	px->next = NULL;
2626 	px->bytes = len;
2627 	px->dst_addr = dst;
2628 	px->src_addr = src;
2629 }
2630 
2631 static struct dma_pl330_desc *
2632 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2633 		dma_addr_t src, size_t len)
2634 {
2635 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2636 
2637 	if (!desc) {
2638 		dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2639 			__func__, __LINE__);
2640 		return NULL;
2641 	}
2642 
2643 	/*
2644 	 * Ideally we should lookout for reqs bigger than
2645 	 * those that can be programmed with 256 bytes of
2646 	 * MC buffer, but considering a req size is seldom
2647 	 * going to be word-unaligned and more than 200MB,
2648 	 * we take it easy.
2649 	 * Also, should the limit is reached we'd rather
2650 	 * have the platform increase MC buffer size than
2651 	 * complicating this API driver.
2652 	 */
2653 	fill_px(&desc->px, dst, src, len);
2654 
2655 	return desc;
2656 }
2657 
2658 /* Call after fixing burst size */
2659 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2660 {
2661 	struct dma_pl330_chan *pch = desc->pchan;
2662 	struct pl330_info *pi = &pch->dmac->pif;
2663 	int burst_len;
2664 
2665 	burst_len = pi->pcfg.data_bus_width / 8;
2666 	burst_len *= pi->pcfg.data_buf_dep;
2667 	burst_len >>= desc->rqcfg.brst_size;
2668 
2669 	/* src/dst_burst_len can't be more than 16 */
2670 	if (burst_len > 16)
2671 		burst_len = 16;
2672 
2673 	while (burst_len > 1) {
2674 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2675 			break;
2676 		burst_len--;
2677 	}
2678 
2679 	return burst_len;
2680 }
2681 
2682 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2683 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2684 		size_t period_len, enum dma_transfer_direction direction,
2685 		unsigned long flags, void *context)
2686 {
2687 	struct dma_pl330_desc *desc;
2688 	struct dma_pl330_chan *pch = to_pchan(chan);
2689 	dma_addr_t dst;
2690 	dma_addr_t src;
2691 
2692 	desc = pl330_get_desc(pch);
2693 	if (!desc) {
2694 		dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2695 			__func__, __LINE__);
2696 		return NULL;
2697 	}
2698 
2699 	switch (direction) {
2700 	case DMA_MEM_TO_DEV:
2701 		desc->rqcfg.src_inc = 1;
2702 		desc->rqcfg.dst_inc = 0;
2703 		desc->req.rqtype = MEMTODEV;
2704 		src = dma_addr;
2705 		dst = pch->fifo_addr;
2706 		break;
2707 	case DMA_DEV_TO_MEM:
2708 		desc->rqcfg.src_inc = 0;
2709 		desc->rqcfg.dst_inc = 1;
2710 		desc->req.rqtype = DEVTOMEM;
2711 		src = pch->fifo_addr;
2712 		dst = dma_addr;
2713 		break;
2714 	default:
2715 		dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2716 		__func__, __LINE__);
2717 		return NULL;
2718 	}
2719 
2720 	desc->rqcfg.brst_size = pch->burst_sz;
2721 	desc->rqcfg.brst_len = 1;
2722 
2723 	pch->cyclic = true;
2724 
2725 	fill_px(&desc->px, dst, src, period_len);
2726 
2727 	return &desc->txd;
2728 }
2729 
2730 static struct dma_async_tx_descriptor *
2731 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2732 		dma_addr_t src, size_t len, unsigned long flags)
2733 {
2734 	struct dma_pl330_desc *desc;
2735 	struct dma_pl330_chan *pch = to_pchan(chan);
2736 	struct pl330_info *pi;
2737 	int burst;
2738 
2739 	if (unlikely(!pch || !len))
2740 		return NULL;
2741 
2742 	pi = &pch->dmac->pif;
2743 
2744 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2745 	if (!desc)
2746 		return NULL;
2747 
2748 	desc->rqcfg.src_inc = 1;
2749 	desc->rqcfg.dst_inc = 1;
2750 	desc->req.rqtype = MEMTOMEM;
2751 
2752 	/* Select max possible burst size */
2753 	burst = pi->pcfg.data_bus_width / 8;
2754 
2755 	while (burst > 1) {
2756 		if (!(len % burst))
2757 			break;
2758 		burst /= 2;
2759 	}
2760 
2761 	desc->rqcfg.brst_size = 0;
2762 	while (burst != (1 << desc->rqcfg.brst_size))
2763 		desc->rqcfg.brst_size++;
2764 
2765 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2766 
2767 	desc->txd.flags = flags;
2768 
2769 	return &desc->txd;
2770 }
2771 
2772 static struct dma_async_tx_descriptor *
2773 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2774 		unsigned int sg_len, enum dma_transfer_direction direction,
2775 		unsigned long flg, void *context)
2776 {
2777 	struct dma_pl330_desc *first, *desc = NULL;
2778 	struct dma_pl330_chan *pch = to_pchan(chan);
2779 	struct scatterlist *sg;
2780 	unsigned long flags;
2781 	int i;
2782 	dma_addr_t addr;
2783 
2784 	if (unlikely(!pch || !sgl || !sg_len))
2785 		return NULL;
2786 
2787 	addr = pch->fifo_addr;
2788 
2789 	first = NULL;
2790 
2791 	for_each_sg(sgl, sg, sg_len, i) {
2792 
2793 		desc = pl330_get_desc(pch);
2794 		if (!desc) {
2795 			struct dma_pl330_dmac *pdmac = pch->dmac;
2796 
2797 			dev_err(pch->dmac->pif.dev,
2798 				"%s:%d Unable to fetch desc\n",
2799 				__func__, __LINE__);
2800 			if (!first)
2801 				return NULL;
2802 
2803 			spin_lock_irqsave(&pdmac->pool_lock, flags);
2804 
2805 			while (!list_empty(&first->node)) {
2806 				desc = list_entry(first->node.next,
2807 						struct dma_pl330_desc, node);
2808 				list_move_tail(&desc->node, &pdmac->desc_pool);
2809 			}
2810 
2811 			list_move_tail(&first->node, &pdmac->desc_pool);
2812 
2813 			spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2814 
2815 			return NULL;
2816 		}
2817 
2818 		if (!first)
2819 			first = desc;
2820 		else
2821 			list_add_tail(&desc->node, &first->node);
2822 
2823 		if (direction == DMA_MEM_TO_DEV) {
2824 			desc->rqcfg.src_inc = 1;
2825 			desc->rqcfg.dst_inc = 0;
2826 			desc->req.rqtype = MEMTODEV;
2827 			fill_px(&desc->px,
2828 				addr, sg_dma_address(sg), sg_dma_len(sg));
2829 		} else {
2830 			desc->rqcfg.src_inc = 0;
2831 			desc->rqcfg.dst_inc = 1;
2832 			desc->req.rqtype = DEVTOMEM;
2833 			fill_px(&desc->px,
2834 				sg_dma_address(sg), addr, sg_dma_len(sg));
2835 		}
2836 
2837 		desc->rqcfg.brst_size = pch->burst_sz;
2838 		desc->rqcfg.brst_len = 1;
2839 	}
2840 
2841 	/* Return the last desc in the chain */
2842 	desc->txd.flags = flg;
2843 	return &desc->txd;
2844 }
2845 
2846 static irqreturn_t pl330_irq_handler(int irq, void *data)
2847 {
2848 	if (pl330_update(data))
2849 		return IRQ_HANDLED;
2850 	else
2851 		return IRQ_NONE;
2852 }
2853 
2854 static int
2855 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2856 {
2857 	struct dma_pl330_platdata *pdat;
2858 	struct dma_pl330_dmac *pdmac;
2859 	struct dma_pl330_chan *pch;
2860 	struct pl330_info *pi;
2861 	struct dma_device *pd;
2862 	struct resource *res;
2863 	int i, ret, irq;
2864 	int num_chan;
2865 
2866 	pdat = adev->dev.platform_data;
2867 
2868 	/* Allocate a new DMAC and its Channels */
2869 	pdmac = kzalloc(sizeof(*pdmac), GFP_KERNEL);
2870 	if (!pdmac) {
2871 		dev_err(&adev->dev, "unable to allocate mem\n");
2872 		return -ENOMEM;
2873 	}
2874 
2875 	pi = &pdmac->pif;
2876 	pi->dev = &adev->dev;
2877 	pi->pl330_data = NULL;
2878 	pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2879 
2880 	res = &adev->res;
2881 	request_mem_region(res->start, resource_size(res), "dma-pl330");
2882 
2883 	pi->base = ioremap(res->start, resource_size(res));
2884 	if (!pi->base) {
2885 		ret = -ENXIO;
2886 		goto probe_err1;
2887 	}
2888 
2889 	amba_set_drvdata(adev, pdmac);
2890 
2891 	irq = adev->irq[0];
2892 	ret = request_irq(irq, pl330_irq_handler, 0,
2893 			dev_name(&adev->dev), pi);
2894 	if (ret)
2895 		goto probe_err2;
2896 
2897 	ret = pl330_add(pi);
2898 	if (ret)
2899 		goto probe_err3;
2900 
2901 	INIT_LIST_HEAD(&pdmac->desc_pool);
2902 	spin_lock_init(&pdmac->pool_lock);
2903 
2904 	/* Create a descriptor pool of default size */
2905 	if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2906 		dev_warn(&adev->dev, "unable to allocate desc\n");
2907 
2908 	pd = &pdmac->ddma;
2909 	INIT_LIST_HEAD(&pd->channels);
2910 
2911 	/* Initialize channel parameters */
2912 	if (pdat)
2913 		num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan);
2914 	else
2915 		num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan);
2916 
2917 	pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2918 	if (!pdmac->peripherals) {
2919 		ret = -ENOMEM;
2920 		dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n");
2921 		goto probe_err4;
2922 	}
2923 
2924 	for (i = 0; i < num_chan; i++) {
2925 		pch = &pdmac->peripherals[i];
2926 		if (!adev->dev.of_node)
2927 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2928 		else
2929 			pch->chan.private = adev->dev.of_node;
2930 
2931 		INIT_LIST_HEAD(&pch->work_list);
2932 		spin_lock_init(&pch->lock);
2933 		pch->pl330_chid = NULL;
2934 		pch->chan.device = pd;
2935 		pch->dmac = pdmac;
2936 
2937 		/* Add the channel to the DMAC list */
2938 		list_add_tail(&pch->chan.device_node, &pd->channels);
2939 	}
2940 
2941 	pd->dev = &adev->dev;
2942 	if (pdat) {
2943 		pd->cap_mask = pdat->cap_mask;
2944 	} else {
2945 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2946 		if (pi->pcfg.num_peri) {
2947 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2948 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2949 			dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2950 		}
2951 	}
2952 
2953 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2954 	pd->device_free_chan_resources = pl330_free_chan_resources;
2955 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2956 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2957 	pd->device_tx_status = pl330_tx_status;
2958 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2959 	pd->device_control = pl330_control;
2960 	pd->device_issue_pending = pl330_issue_pending;
2961 
2962 	ret = dma_async_device_register(pd);
2963 	if (ret) {
2964 		dev_err(&adev->dev, "unable to register DMAC\n");
2965 		goto probe_err4;
2966 	}
2967 
2968 	dev_info(&adev->dev,
2969 		"Loaded driver for PL330 DMAC-%d\n", adev->periphid);
2970 	dev_info(&adev->dev,
2971 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2972 		pi->pcfg.data_buf_dep,
2973 		pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
2974 		pi->pcfg.num_peri, pi->pcfg.num_events);
2975 
2976 	return 0;
2977 
2978 probe_err4:
2979 	pl330_del(pi);
2980 probe_err3:
2981 	free_irq(irq, pi);
2982 probe_err2:
2983 	iounmap(pi->base);
2984 probe_err1:
2985 	release_mem_region(res->start, resource_size(res));
2986 	kfree(pdmac);
2987 
2988 	return ret;
2989 }
2990 
2991 static int pl330_remove(struct amba_device *adev)
2992 {
2993 	struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
2994 	struct dma_pl330_chan *pch, *_p;
2995 	struct pl330_info *pi;
2996 	struct resource *res;
2997 	int irq;
2998 
2999 	if (!pdmac)
3000 		return 0;
3001 
3002 	amba_set_drvdata(adev, NULL);
3003 
3004 	/* Idle the DMAC */
3005 	list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3006 			chan.device_node) {
3007 
3008 		/* Remove the channel */
3009 		list_del(&pch->chan.device_node);
3010 
3011 		/* Flush the channel */
3012 		pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3013 		pl330_free_chan_resources(&pch->chan);
3014 	}
3015 
3016 	pi = &pdmac->pif;
3017 
3018 	pl330_del(pi);
3019 
3020 	irq = adev->irq[0];
3021 	free_irq(irq, pi);
3022 
3023 	iounmap(pi->base);
3024 
3025 	res = &adev->res;
3026 	release_mem_region(res->start, resource_size(res));
3027 
3028 	kfree(pdmac);
3029 
3030 	return 0;
3031 }
3032 
3033 static struct amba_id pl330_ids[] = {
3034 	{
3035 		.id	= 0x00041330,
3036 		.mask	= 0x000fffff,
3037 	},
3038 	{ 0, 0 },
3039 };
3040 
3041 MODULE_DEVICE_TABLE(amba, pl330_ids);
3042 
3043 static struct amba_driver pl330_driver = {
3044 	.drv = {
3045 		.owner = THIS_MODULE,
3046 		.name = "dma-pl330",
3047 	},
3048 	.id_table = pl330_ids,
3049 	.probe = pl330_probe,
3050 	.remove = pl330_remove,
3051 };
3052 
3053 module_amba_driver(pl330_driver);
3054 
3055 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3056 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3057 MODULE_LICENSE("GPL");
3058