xref: /openbmc/linux/drivers/dma/pl330.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/interrupt.h>
25 #include <linux/amba/bus.h>
26 #include <linux/amba/pl330.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/scatterlist.h>
29 #include <linux/of.h>
30 
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN		8
33 #define PL330_MAX_IRQS		32
34 #define PL330_MAX_PERI		32
35 
36 enum pl330_srccachectrl {
37 	SCCTRL0,	/* Noncacheable and nonbufferable */
38 	SCCTRL1,	/* Bufferable only */
39 	SCCTRL2,	/* Cacheable, but do not allocate */
40 	SCCTRL3,	/* Cacheable and bufferable, but do not allocate */
41 	SINVALID1,
42 	SINVALID2,
43 	SCCTRL6,	/* Cacheable write-through, allocate on reads only */
44 	SCCTRL7,	/* Cacheable write-back, allocate on reads only */
45 };
46 
47 enum pl330_dstcachectrl {
48 	DCCTRL0,	/* Noncacheable and nonbufferable */
49 	DCCTRL1,	/* Bufferable only */
50 	DCCTRL2,	/* Cacheable, but do not allocate */
51 	DCCTRL3,	/* Cacheable and bufferable, but do not allocate */
52 	DINVALID1,	/* AWCACHE = 0x1000 */
53 	DINVALID2,
54 	DCCTRL6,	/* Cacheable write-through, allocate on writes only */
55 	DCCTRL7,	/* Cacheable write-back, allocate on writes only */
56 };
57 
58 enum pl330_byteswap {
59 	SWAP_NO,
60 	SWAP_2,
61 	SWAP_4,
62 	SWAP_8,
63 	SWAP_16,
64 };
65 
66 enum pl330_reqtype {
67 	MEMTOMEM,
68 	MEMTODEV,
69 	DEVTOMEM,
70 	DEVTODEV,
71 };
72 
73 /* Register and Bit field Definitions */
74 #define DS			0x0
75 #define DS_ST_STOP		0x0
76 #define DS_ST_EXEC		0x1
77 #define DS_ST_CMISS		0x2
78 #define DS_ST_UPDTPC		0x3
79 #define DS_ST_WFE		0x4
80 #define DS_ST_ATBRR		0x5
81 #define DS_ST_QBUSY		0x6
82 #define DS_ST_WFP		0x7
83 #define DS_ST_KILL		0x8
84 #define DS_ST_CMPLT		0x9
85 #define DS_ST_FLTCMP		0xe
86 #define DS_ST_FAULT		0xf
87 
88 #define DPC			0x4
89 #define INTEN			0x20
90 #define ES			0x24
91 #define INTSTATUS		0x28
92 #define INTCLR			0x2c
93 #define FSM			0x30
94 #define FSC			0x34
95 #define FTM			0x38
96 
97 #define _FTC			0x40
98 #define FTC(n)			(_FTC + (n)*0x4)
99 
100 #define _CS			0x100
101 #define CS(n)			(_CS + (n)*0x8)
102 #define CS_CNS			(1 << 21)
103 
104 #define _CPC			0x104
105 #define CPC(n)			(_CPC + (n)*0x8)
106 
107 #define _SA			0x400
108 #define SA(n)			(_SA + (n)*0x20)
109 
110 #define _DA			0x404
111 #define DA(n)			(_DA + (n)*0x20)
112 
113 #define _CC			0x408
114 #define CC(n)			(_CC + (n)*0x20)
115 
116 #define CC_SRCINC		(1 << 0)
117 #define CC_DSTINC		(1 << 14)
118 #define CC_SRCPRI		(1 << 8)
119 #define CC_DSTPRI		(1 << 22)
120 #define CC_SRCNS		(1 << 9)
121 #define CC_DSTNS		(1 << 23)
122 #define CC_SRCIA		(1 << 10)
123 #define CC_DSTIA		(1 << 24)
124 #define CC_SRCBRSTLEN_SHFT	4
125 #define CC_DSTBRSTLEN_SHFT	18
126 #define CC_SRCBRSTSIZE_SHFT	1
127 #define CC_DSTBRSTSIZE_SHFT	15
128 #define CC_SRCCCTRL_SHFT	11
129 #define CC_SRCCCTRL_MASK	0x7
130 #define CC_DSTCCTRL_SHFT	25
131 #define CC_DRCCCTRL_MASK	0x7
132 #define CC_SWAP_SHFT		28
133 
134 #define _LC0			0x40c
135 #define LC0(n)			(_LC0 + (n)*0x20)
136 
137 #define _LC1			0x410
138 #define LC1(n)			(_LC1 + (n)*0x20)
139 
140 #define DBGSTATUS		0xd00
141 #define DBG_BUSY		(1 << 0)
142 
143 #define DBGCMD			0xd04
144 #define DBGINST0		0xd08
145 #define DBGINST1		0xd0c
146 
147 #define CR0			0xe00
148 #define CR1			0xe04
149 #define CR2			0xe08
150 #define CR3			0xe0c
151 #define CR4			0xe10
152 #define CRD			0xe14
153 
154 #define PERIPH_ID		0xfe0
155 #define PERIPH_REV_SHIFT	20
156 #define PERIPH_REV_MASK		0xf
157 #define PERIPH_REV_R0P0		0
158 #define PERIPH_REV_R1P0		1
159 #define PERIPH_REV_R1P1		2
160 #define PCELL_ID		0xff0
161 
162 #define CR0_PERIPH_REQ_SET	(1 << 0)
163 #define CR0_BOOT_EN_SET		(1 << 1)
164 #define CR0_BOOT_MAN_NS		(1 << 2)
165 #define CR0_NUM_CHANS_SHIFT	4
166 #define CR0_NUM_CHANS_MASK	0x7
167 #define CR0_NUM_PERIPH_SHIFT	12
168 #define CR0_NUM_PERIPH_MASK	0x1f
169 #define CR0_NUM_EVENTS_SHIFT	17
170 #define CR0_NUM_EVENTS_MASK	0x1f
171 
172 #define CR1_ICACHE_LEN_SHIFT	0
173 #define CR1_ICACHE_LEN_MASK	0x7
174 #define CR1_NUM_ICACHELINES_SHIFT	4
175 #define CR1_NUM_ICACHELINES_MASK	0xf
176 
177 #define CRD_DATA_WIDTH_SHIFT	0
178 #define CRD_DATA_WIDTH_MASK	0x7
179 #define CRD_WR_CAP_SHIFT	4
180 #define CRD_WR_CAP_MASK		0x7
181 #define CRD_WR_Q_DEP_SHIFT	8
182 #define CRD_WR_Q_DEP_MASK	0xf
183 #define CRD_RD_CAP_SHIFT	12
184 #define CRD_RD_CAP_MASK		0x7
185 #define CRD_RD_Q_DEP_SHIFT	16
186 #define CRD_RD_Q_DEP_MASK	0xf
187 #define CRD_DATA_BUFF_SHIFT	20
188 #define CRD_DATA_BUFF_MASK	0x3ff
189 
190 #define PART			0x330
191 #define DESIGNER		0x41
192 #define REVISION		0x0
193 #define INTEG_CFG		0x0
194 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
195 
196 #define PCELL_ID_VAL		0xb105f00d
197 
198 #define PL330_STATE_STOPPED		(1 << 0)
199 #define PL330_STATE_EXECUTING		(1 << 1)
200 #define PL330_STATE_WFE			(1 << 2)
201 #define PL330_STATE_FAULTING		(1 << 3)
202 #define PL330_STATE_COMPLETING		(1 << 4)
203 #define PL330_STATE_WFP			(1 << 5)
204 #define PL330_STATE_KILLING		(1 << 6)
205 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
206 #define PL330_STATE_CACHEMISS		(1 << 8)
207 #define PL330_STATE_UPDTPC		(1 << 9)
208 #define PL330_STATE_ATBARRIER		(1 << 10)
209 #define PL330_STATE_QUEUEBUSY		(1 << 11)
210 #define PL330_STATE_INVALID		(1 << 15)
211 
212 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
213 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
214 
215 #define CMD_DMAADDH		0x54
216 #define CMD_DMAEND		0x00
217 #define CMD_DMAFLUSHP		0x35
218 #define CMD_DMAGO		0xa0
219 #define CMD_DMALD		0x04
220 #define CMD_DMALDP		0x25
221 #define CMD_DMALP		0x20
222 #define CMD_DMALPEND		0x28
223 #define CMD_DMAKILL		0x01
224 #define CMD_DMAMOV		0xbc
225 #define CMD_DMANOP		0x18
226 #define CMD_DMARMB		0x12
227 #define CMD_DMASEV		0x34
228 #define CMD_DMAST		0x08
229 #define CMD_DMASTP		0x29
230 #define CMD_DMASTZ		0x0c
231 #define CMD_DMAWFE		0x36
232 #define CMD_DMAWFP		0x30
233 #define CMD_DMAWMB		0x13
234 
235 #define SZ_DMAADDH		3
236 #define SZ_DMAEND		1
237 #define SZ_DMAFLUSHP		2
238 #define SZ_DMALD		1
239 #define SZ_DMALDP		2
240 #define SZ_DMALP		2
241 #define SZ_DMALPEND		2
242 #define SZ_DMAKILL		1
243 #define SZ_DMAMOV		6
244 #define SZ_DMANOP		1
245 #define SZ_DMARMB		1
246 #define SZ_DMASEV		2
247 #define SZ_DMAST		1
248 #define SZ_DMASTP		2
249 #define SZ_DMASTZ		1
250 #define SZ_DMAWFE		2
251 #define SZ_DMAWFP		2
252 #define SZ_DMAWMB		1
253 #define SZ_DMAGO		6
254 
255 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
256 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
257 
258 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
259 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
260 
261 /*
262  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
263  * at 1byte/burst for P<->M and M<->M respectively.
264  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
265  * should be enough for P<->M and M<->M respectively.
266  */
267 #define MCODE_BUFF_PER_REQ	256
268 
269 /* If the _pl330_req is available to the client */
270 #define IS_FREE(req)	(*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
271 
272 /* Use this _only_ to wait on transient states */
273 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
274 
275 #ifdef PL330_DEBUG_MCGEN
276 static unsigned cmd_line;
277 #define PL330_DBGCMD_DUMP(off, x...)	do { \
278 						printk("%x:", cmd_line); \
279 						printk(x); \
280 						cmd_line += off; \
281 					} while (0)
282 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
283 #else
284 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
285 #define PL330_DBGMC_START(addr)		do {} while (0)
286 #endif
287 
288 /* The number of default descriptors */
289 
290 #define NR_DEFAULT_DESC	16
291 
292 /* Populated by the PL330 core driver for DMA API driver's info */
293 struct pl330_config {
294 	u32	periph_id;
295 	u32	pcell_id;
296 #define DMAC_MODE_NS	(1 << 0)
297 	unsigned int	mode;
298 	unsigned int	data_bus_width:10; /* In number of bits */
299 	unsigned int	data_buf_dep:10;
300 	unsigned int	num_chan:4;
301 	unsigned int	num_peri:6;
302 	u32		peri_ns;
303 	unsigned int	num_events:6;
304 	u32		irq_ns;
305 };
306 
307 /* Handle to the DMAC provided to the PL330 core */
308 struct pl330_info {
309 	/* Owning device */
310 	struct device *dev;
311 	/* Size of MicroCode buffers for each channel. */
312 	unsigned mcbufsz;
313 	/* ioremap'ed address of PL330 registers. */
314 	void __iomem	*base;
315 	/* Client can freely use it. */
316 	void	*client_data;
317 	/* PL330 core data, Client must not touch it. */
318 	void	*pl330_data;
319 	/* Populated by the PL330 core driver during pl330_add */
320 	struct pl330_config	pcfg;
321 	/*
322 	 * If the DMAC has some reset mechanism, then the
323 	 * client may want to provide pointer to the method.
324 	 */
325 	void (*dmac_reset)(struct pl330_info *pi);
326 };
327 
328 /**
329  * Request Configuration.
330  * The PL330 core does not modify this and uses the last
331  * working configuration if the request doesn't provide any.
332  *
333  * The Client may want to provide this info only for the
334  * first request and a request with new settings.
335  */
336 struct pl330_reqcfg {
337 	/* Address Incrementing */
338 	unsigned dst_inc:1;
339 	unsigned src_inc:1;
340 
341 	/*
342 	 * For now, the SRC & DST protection levels
343 	 * and burst size/length are assumed same.
344 	 */
345 	bool nonsecure;
346 	bool privileged;
347 	bool insnaccess;
348 	unsigned brst_len:5;
349 	unsigned brst_size:3; /* in power of 2 */
350 
351 	enum pl330_dstcachectrl dcctl;
352 	enum pl330_srccachectrl scctl;
353 	enum pl330_byteswap swap;
354 	struct pl330_config *pcfg;
355 };
356 
357 /*
358  * One cycle of DMAC operation.
359  * There may be more than one xfer in a request.
360  */
361 struct pl330_xfer {
362 	u32 src_addr;
363 	u32 dst_addr;
364 	/* Size to xfer */
365 	u32 bytes;
366 	/*
367 	 * Pointer to next xfer in the list.
368 	 * The last xfer in the req must point to NULL.
369 	 */
370 	struct pl330_xfer *next;
371 };
372 
373 /* The xfer callbacks are made with one of these arguments. */
374 enum pl330_op_err {
375 	/* The all xfers in the request were success. */
376 	PL330_ERR_NONE,
377 	/* If req aborted due to global error. */
378 	PL330_ERR_ABORT,
379 	/* If req failed due to problem with Channel. */
380 	PL330_ERR_FAIL,
381 };
382 
383 /* A request defining Scatter-Gather List ending with NULL xfer. */
384 struct pl330_req {
385 	enum pl330_reqtype rqtype;
386 	/* Index of peripheral for the xfer. */
387 	unsigned peri:5;
388 	/* Unique token for this xfer, set by the client. */
389 	void *token;
390 	/* Callback to be called after xfer. */
391 	void (*xfer_cb)(void *token, enum pl330_op_err err);
392 	/* If NULL, req will be done at last set parameters. */
393 	struct pl330_reqcfg *cfg;
394 	/* Pointer to first xfer in the request. */
395 	struct pl330_xfer *x;
396 };
397 
398 /*
399  * To know the status of the channel and DMAC, the client
400  * provides a pointer to this structure. The PL330 core
401  * fills it with current information.
402  */
403 struct pl330_chanstatus {
404 	/*
405 	 * If the DMAC engine halted due to some error,
406 	 * the client should remove-add DMAC.
407 	 */
408 	bool dmac_halted;
409 	/*
410 	 * If channel is halted due to some error,
411 	 * the client should ABORT/FLUSH and START the channel.
412 	 */
413 	bool faulting;
414 	/* Location of last load */
415 	u32 src_addr;
416 	/* Location of last store */
417 	u32 dst_addr;
418 	/*
419 	 * Pointer to the currently active req, NULL if channel is
420 	 * inactive, even though the requests may be present.
421 	 */
422 	struct pl330_req *top_req;
423 	/* Pointer to req waiting second in the queue if any. */
424 	struct pl330_req *wait_req;
425 };
426 
427 enum pl330_chan_op {
428 	/* Start the channel */
429 	PL330_OP_START,
430 	/* Abort the active xfer */
431 	PL330_OP_ABORT,
432 	/* Stop xfer and flush queue */
433 	PL330_OP_FLUSH,
434 };
435 
436 struct _xfer_spec {
437 	u32 ccr;
438 	struct pl330_req *r;
439 	struct pl330_xfer *x;
440 };
441 
442 enum dmamov_dst {
443 	SAR = 0,
444 	CCR,
445 	DAR,
446 };
447 
448 enum pl330_dst {
449 	SRC = 0,
450 	DST,
451 };
452 
453 enum pl330_cond {
454 	SINGLE,
455 	BURST,
456 	ALWAYS,
457 };
458 
459 struct _pl330_req {
460 	u32 mc_bus;
461 	void *mc_cpu;
462 	/* Number of bytes taken to setup MC for the req */
463 	u32 mc_len;
464 	struct pl330_req *r;
465 	/* Hook to attach to DMAC's list of reqs with due callback */
466 	struct list_head rqd;
467 };
468 
469 /* ToBeDone for tasklet */
470 struct _pl330_tbd {
471 	bool reset_dmac;
472 	bool reset_mngr;
473 	u8 reset_chan;
474 };
475 
476 /* A DMAC Thread */
477 struct pl330_thread {
478 	u8 id;
479 	int ev;
480 	/* If the channel is not yet acquired by any client */
481 	bool free;
482 	/* Parent DMAC */
483 	struct pl330_dmac *dmac;
484 	/* Only two at a time */
485 	struct _pl330_req req[2];
486 	/* Index of the last enqueued request */
487 	unsigned lstenq;
488 	/* Index of the last submitted request or -1 if the DMA is stopped */
489 	int req_running;
490 };
491 
492 enum pl330_dmac_state {
493 	UNINIT,
494 	INIT,
495 	DYING,
496 };
497 
498 /* A DMAC */
499 struct pl330_dmac {
500 	spinlock_t		lock;
501 	/* Holds list of reqs with due callbacks */
502 	struct list_head	req_done;
503 	/* Pointer to platform specific stuff */
504 	struct pl330_info	*pinfo;
505 	/* Maximum possible events/irqs */
506 	int			events[32];
507 	/* BUS address of MicroCode buffer */
508 	u32			mcode_bus;
509 	/* CPU address of MicroCode buffer */
510 	void			*mcode_cpu;
511 	/* List of all Channel threads */
512 	struct pl330_thread	*channels;
513 	/* Pointer to the MANAGER thread */
514 	struct pl330_thread	*manager;
515 	/* To handle bad news in interrupt */
516 	struct tasklet_struct	tasks;
517 	struct _pl330_tbd	dmac_tbd;
518 	/* State of DMAC operation */
519 	enum pl330_dmac_state	state;
520 };
521 
522 enum desc_status {
523 	/* In the DMAC pool */
524 	FREE,
525 	/*
526 	 * Allocted to some channel during prep_xxx
527 	 * Also may be sitting on the work_list.
528 	 */
529 	PREP,
530 	/*
531 	 * Sitting on the work_list and already submitted
532 	 * to the PL330 core. Not more than two descriptors
533 	 * of a channel can be BUSY at any time.
534 	 */
535 	BUSY,
536 	/*
537 	 * Sitting on the channel work_list but xfer done
538 	 * by PL330 core
539 	 */
540 	DONE,
541 };
542 
543 struct dma_pl330_chan {
544 	/* Schedule desc completion */
545 	struct tasklet_struct task;
546 
547 	/* DMA-Engine Channel */
548 	struct dma_chan chan;
549 
550 	/* List of to be xfered descriptors */
551 	struct list_head work_list;
552 
553 	/* Pointer to the DMAC that manages this channel,
554 	 * NULL if the channel is available to be acquired.
555 	 * As the parent, this DMAC also provides descriptors
556 	 * to the channel.
557 	 */
558 	struct dma_pl330_dmac *dmac;
559 
560 	/* To protect channel manipulation */
561 	spinlock_t lock;
562 
563 	/* Token of a hardware channel thread of PL330 DMAC
564 	 * NULL if the channel is available to be acquired.
565 	 */
566 	void *pl330_chid;
567 
568 	/* For D-to-M and M-to-D channels */
569 	int burst_sz; /* the peripheral fifo width */
570 	int burst_len; /* the number of burst */
571 	dma_addr_t fifo_addr;
572 
573 	/* for cyclic capability */
574 	bool cyclic;
575 };
576 
577 struct dma_pl330_dmac {
578 	struct pl330_info pif;
579 
580 	/* DMA-Engine Device */
581 	struct dma_device ddma;
582 
583 	/* Pool of descriptors available for the DMAC's channels */
584 	struct list_head desc_pool;
585 	/* To protect desc_pool manipulation */
586 	spinlock_t pool_lock;
587 
588 	/* Peripheral channels connected to this DMAC */
589 	struct dma_pl330_chan *peripherals; /* keep at end */
590 
591 	struct clk *clk;
592 };
593 
594 struct dma_pl330_desc {
595 	/* To attach to a queue as child */
596 	struct list_head node;
597 
598 	/* Descriptor for the DMA Engine API */
599 	struct dma_async_tx_descriptor txd;
600 
601 	/* Xfer for PL330 core */
602 	struct pl330_xfer px;
603 
604 	struct pl330_reqcfg rqcfg;
605 	struct pl330_req req;
606 
607 	enum desc_status status;
608 
609 	/* The channel which currently holds this desc */
610 	struct dma_pl330_chan *pchan;
611 };
612 
613 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
614 {
615 	if (r && r->xfer_cb)
616 		r->xfer_cb(r->token, err);
617 }
618 
619 static inline bool _queue_empty(struct pl330_thread *thrd)
620 {
621 	return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
622 		? true : false;
623 }
624 
625 static inline bool _queue_full(struct pl330_thread *thrd)
626 {
627 	return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
628 		? false : true;
629 }
630 
631 static inline bool is_manager(struct pl330_thread *thrd)
632 {
633 	struct pl330_dmac *pl330 = thrd->dmac;
634 
635 	/* MANAGER is indexed at the end */
636 	if (thrd->id == pl330->pinfo->pcfg.num_chan)
637 		return true;
638 	else
639 		return false;
640 }
641 
642 /* If manager of the thread is in Non-Secure mode */
643 static inline bool _manager_ns(struct pl330_thread *thrd)
644 {
645 	struct pl330_dmac *pl330 = thrd->dmac;
646 
647 	return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
648 }
649 
650 static inline u32 get_id(struct pl330_info *pi, u32 off)
651 {
652 	void __iomem *regs = pi->base;
653 	u32 id = 0;
654 
655 	id |= (readb(regs + off + 0x0) << 0);
656 	id |= (readb(regs + off + 0x4) << 8);
657 	id |= (readb(regs + off + 0x8) << 16);
658 	id |= (readb(regs + off + 0xc) << 24);
659 
660 	return id;
661 }
662 
663 static inline u32 get_revision(u32 periph_id)
664 {
665 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
666 }
667 
668 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
669 		enum pl330_dst da, u16 val)
670 {
671 	if (dry_run)
672 		return SZ_DMAADDH;
673 
674 	buf[0] = CMD_DMAADDH;
675 	buf[0] |= (da << 1);
676 	*((u16 *)&buf[1]) = val;
677 
678 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
679 		da == 1 ? "DA" : "SA", val);
680 
681 	return SZ_DMAADDH;
682 }
683 
684 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
685 {
686 	if (dry_run)
687 		return SZ_DMAEND;
688 
689 	buf[0] = CMD_DMAEND;
690 
691 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
692 
693 	return SZ_DMAEND;
694 }
695 
696 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
697 {
698 	if (dry_run)
699 		return SZ_DMAFLUSHP;
700 
701 	buf[0] = CMD_DMAFLUSHP;
702 
703 	peri &= 0x1f;
704 	peri <<= 3;
705 	buf[1] = peri;
706 
707 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
708 
709 	return SZ_DMAFLUSHP;
710 }
711 
712 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
713 {
714 	if (dry_run)
715 		return SZ_DMALD;
716 
717 	buf[0] = CMD_DMALD;
718 
719 	if (cond == SINGLE)
720 		buf[0] |= (0 << 1) | (1 << 0);
721 	else if (cond == BURST)
722 		buf[0] |= (1 << 1) | (1 << 0);
723 
724 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
725 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
726 
727 	return SZ_DMALD;
728 }
729 
730 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
731 		enum pl330_cond cond, u8 peri)
732 {
733 	if (dry_run)
734 		return SZ_DMALDP;
735 
736 	buf[0] = CMD_DMALDP;
737 
738 	if (cond == BURST)
739 		buf[0] |= (1 << 1);
740 
741 	peri &= 0x1f;
742 	peri <<= 3;
743 	buf[1] = peri;
744 
745 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
746 		cond == SINGLE ? 'S' : 'B', peri >> 3);
747 
748 	return SZ_DMALDP;
749 }
750 
751 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
752 		unsigned loop, u8 cnt)
753 {
754 	if (dry_run)
755 		return SZ_DMALP;
756 
757 	buf[0] = CMD_DMALP;
758 
759 	if (loop)
760 		buf[0] |= (1 << 1);
761 
762 	cnt--; /* DMAC increments by 1 internally */
763 	buf[1] = cnt;
764 
765 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
766 
767 	return SZ_DMALP;
768 }
769 
770 struct _arg_LPEND {
771 	enum pl330_cond cond;
772 	bool forever;
773 	unsigned loop;
774 	u8 bjump;
775 };
776 
777 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
778 		const struct _arg_LPEND *arg)
779 {
780 	enum pl330_cond cond = arg->cond;
781 	bool forever = arg->forever;
782 	unsigned loop = arg->loop;
783 	u8 bjump = arg->bjump;
784 
785 	if (dry_run)
786 		return SZ_DMALPEND;
787 
788 	buf[0] = CMD_DMALPEND;
789 
790 	if (loop)
791 		buf[0] |= (1 << 2);
792 
793 	if (!forever)
794 		buf[0] |= (1 << 4);
795 
796 	if (cond == SINGLE)
797 		buf[0] |= (0 << 1) | (1 << 0);
798 	else if (cond == BURST)
799 		buf[0] |= (1 << 1) | (1 << 0);
800 
801 	buf[1] = bjump;
802 
803 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
804 			forever ? "FE" : "END",
805 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
806 			loop ? '1' : '0',
807 			bjump);
808 
809 	return SZ_DMALPEND;
810 }
811 
812 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
813 {
814 	if (dry_run)
815 		return SZ_DMAKILL;
816 
817 	buf[0] = CMD_DMAKILL;
818 
819 	return SZ_DMAKILL;
820 }
821 
822 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
823 		enum dmamov_dst dst, u32 val)
824 {
825 	if (dry_run)
826 		return SZ_DMAMOV;
827 
828 	buf[0] = CMD_DMAMOV;
829 	buf[1] = dst;
830 	*((u32 *)&buf[2]) = val;
831 
832 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
833 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
834 
835 	return SZ_DMAMOV;
836 }
837 
838 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
839 {
840 	if (dry_run)
841 		return SZ_DMANOP;
842 
843 	buf[0] = CMD_DMANOP;
844 
845 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
846 
847 	return SZ_DMANOP;
848 }
849 
850 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
851 {
852 	if (dry_run)
853 		return SZ_DMARMB;
854 
855 	buf[0] = CMD_DMARMB;
856 
857 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
858 
859 	return SZ_DMARMB;
860 }
861 
862 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
863 {
864 	if (dry_run)
865 		return SZ_DMASEV;
866 
867 	buf[0] = CMD_DMASEV;
868 
869 	ev &= 0x1f;
870 	ev <<= 3;
871 	buf[1] = ev;
872 
873 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
874 
875 	return SZ_DMASEV;
876 }
877 
878 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
879 {
880 	if (dry_run)
881 		return SZ_DMAST;
882 
883 	buf[0] = CMD_DMAST;
884 
885 	if (cond == SINGLE)
886 		buf[0] |= (0 << 1) | (1 << 0);
887 	else if (cond == BURST)
888 		buf[0] |= (1 << 1) | (1 << 0);
889 
890 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
891 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
892 
893 	return SZ_DMAST;
894 }
895 
896 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
897 		enum pl330_cond cond, u8 peri)
898 {
899 	if (dry_run)
900 		return SZ_DMASTP;
901 
902 	buf[0] = CMD_DMASTP;
903 
904 	if (cond == BURST)
905 		buf[0] |= (1 << 1);
906 
907 	peri &= 0x1f;
908 	peri <<= 3;
909 	buf[1] = peri;
910 
911 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
912 		cond == SINGLE ? 'S' : 'B', peri >> 3);
913 
914 	return SZ_DMASTP;
915 }
916 
917 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
918 {
919 	if (dry_run)
920 		return SZ_DMASTZ;
921 
922 	buf[0] = CMD_DMASTZ;
923 
924 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
925 
926 	return SZ_DMASTZ;
927 }
928 
929 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
930 		unsigned invalidate)
931 {
932 	if (dry_run)
933 		return SZ_DMAWFE;
934 
935 	buf[0] = CMD_DMAWFE;
936 
937 	ev &= 0x1f;
938 	ev <<= 3;
939 	buf[1] = ev;
940 
941 	if (invalidate)
942 		buf[1] |= (1 << 1);
943 
944 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
945 		ev >> 3, invalidate ? ", I" : "");
946 
947 	return SZ_DMAWFE;
948 }
949 
950 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
951 		enum pl330_cond cond, u8 peri)
952 {
953 	if (dry_run)
954 		return SZ_DMAWFP;
955 
956 	buf[0] = CMD_DMAWFP;
957 
958 	if (cond == SINGLE)
959 		buf[0] |= (0 << 1) | (0 << 0);
960 	else if (cond == BURST)
961 		buf[0] |= (1 << 1) | (0 << 0);
962 	else
963 		buf[0] |= (0 << 1) | (1 << 0);
964 
965 	peri &= 0x1f;
966 	peri <<= 3;
967 	buf[1] = peri;
968 
969 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
970 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
971 
972 	return SZ_DMAWFP;
973 }
974 
975 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
976 {
977 	if (dry_run)
978 		return SZ_DMAWMB;
979 
980 	buf[0] = CMD_DMAWMB;
981 
982 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
983 
984 	return SZ_DMAWMB;
985 }
986 
987 struct _arg_GO {
988 	u8 chan;
989 	u32 addr;
990 	unsigned ns;
991 };
992 
993 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
994 		const struct _arg_GO *arg)
995 {
996 	u8 chan = arg->chan;
997 	u32 addr = arg->addr;
998 	unsigned ns = arg->ns;
999 
1000 	if (dry_run)
1001 		return SZ_DMAGO;
1002 
1003 	buf[0] = CMD_DMAGO;
1004 	buf[0] |= (ns << 1);
1005 
1006 	buf[1] = chan & 0x7;
1007 
1008 	*((u32 *)&buf[2]) = addr;
1009 
1010 	return SZ_DMAGO;
1011 }
1012 
1013 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1014 
1015 /* Returns Time-Out */
1016 static bool _until_dmac_idle(struct pl330_thread *thrd)
1017 {
1018 	void __iomem *regs = thrd->dmac->pinfo->base;
1019 	unsigned long loops = msecs_to_loops(5);
1020 
1021 	do {
1022 		/* Until Manager is Idle */
1023 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1024 			break;
1025 
1026 		cpu_relax();
1027 	} while (--loops);
1028 
1029 	if (!loops)
1030 		return true;
1031 
1032 	return false;
1033 }
1034 
1035 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1036 		u8 insn[], bool as_manager)
1037 {
1038 	void __iomem *regs = thrd->dmac->pinfo->base;
1039 	u32 val;
1040 
1041 	val = (insn[0] << 16) | (insn[1] << 24);
1042 	if (!as_manager) {
1043 		val |= (1 << 0);
1044 		val |= (thrd->id << 8); /* Channel Number */
1045 	}
1046 	writel(val, regs + DBGINST0);
1047 
1048 	val = *((u32 *)&insn[2]);
1049 	writel(val, regs + DBGINST1);
1050 
1051 	/* If timed out due to halted state-machine */
1052 	if (_until_dmac_idle(thrd)) {
1053 		dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1054 		return;
1055 	}
1056 
1057 	/* Get going */
1058 	writel(0, regs + DBGCMD);
1059 }
1060 
1061 /*
1062  * Mark a _pl330_req as free.
1063  * We do it by writing DMAEND as the first instruction
1064  * because no valid request is going to have DMAEND as
1065  * its first instruction to execute.
1066  */
1067 static void mark_free(struct pl330_thread *thrd, int idx)
1068 {
1069 	struct _pl330_req *req = &thrd->req[idx];
1070 
1071 	_emit_END(0, req->mc_cpu);
1072 	req->mc_len = 0;
1073 
1074 	thrd->req_running = -1;
1075 }
1076 
1077 static inline u32 _state(struct pl330_thread *thrd)
1078 {
1079 	void __iomem *regs = thrd->dmac->pinfo->base;
1080 	u32 val;
1081 
1082 	if (is_manager(thrd))
1083 		val = readl(regs + DS) & 0xf;
1084 	else
1085 		val = readl(regs + CS(thrd->id)) & 0xf;
1086 
1087 	switch (val) {
1088 	case DS_ST_STOP:
1089 		return PL330_STATE_STOPPED;
1090 	case DS_ST_EXEC:
1091 		return PL330_STATE_EXECUTING;
1092 	case DS_ST_CMISS:
1093 		return PL330_STATE_CACHEMISS;
1094 	case DS_ST_UPDTPC:
1095 		return PL330_STATE_UPDTPC;
1096 	case DS_ST_WFE:
1097 		return PL330_STATE_WFE;
1098 	case DS_ST_FAULT:
1099 		return PL330_STATE_FAULTING;
1100 	case DS_ST_ATBRR:
1101 		if (is_manager(thrd))
1102 			return PL330_STATE_INVALID;
1103 		else
1104 			return PL330_STATE_ATBARRIER;
1105 	case DS_ST_QBUSY:
1106 		if (is_manager(thrd))
1107 			return PL330_STATE_INVALID;
1108 		else
1109 			return PL330_STATE_QUEUEBUSY;
1110 	case DS_ST_WFP:
1111 		if (is_manager(thrd))
1112 			return PL330_STATE_INVALID;
1113 		else
1114 			return PL330_STATE_WFP;
1115 	case DS_ST_KILL:
1116 		if (is_manager(thrd))
1117 			return PL330_STATE_INVALID;
1118 		else
1119 			return PL330_STATE_KILLING;
1120 	case DS_ST_CMPLT:
1121 		if (is_manager(thrd))
1122 			return PL330_STATE_INVALID;
1123 		else
1124 			return PL330_STATE_COMPLETING;
1125 	case DS_ST_FLTCMP:
1126 		if (is_manager(thrd))
1127 			return PL330_STATE_INVALID;
1128 		else
1129 			return PL330_STATE_FAULT_COMPLETING;
1130 	default:
1131 		return PL330_STATE_INVALID;
1132 	}
1133 }
1134 
1135 static void _stop(struct pl330_thread *thrd)
1136 {
1137 	void __iomem *regs = thrd->dmac->pinfo->base;
1138 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1139 
1140 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1141 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1142 
1143 	/* Return if nothing needs to be done */
1144 	if (_state(thrd) == PL330_STATE_COMPLETING
1145 		  || _state(thrd) == PL330_STATE_KILLING
1146 		  || _state(thrd) == PL330_STATE_STOPPED)
1147 		return;
1148 
1149 	_emit_KILL(0, insn);
1150 
1151 	/* Stop generating interrupts for SEV */
1152 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1153 
1154 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1155 }
1156 
1157 /* Start doing req 'idx' of thread 'thrd' */
1158 static bool _trigger(struct pl330_thread *thrd)
1159 {
1160 	void __iomem *regs = thrd->dmac->pinfo->base;
1161 	struct _pl330_req *req;
1162 	struct pl330_req *r;
1163 	struct _arg_GO go;
1164 	unsigned ns;
1165 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1166 	int idx;
1167 
1168 	/* Return if already ACTIVE */
1169 	if (_state(thrd) != PL330_STATE_STOPPED)
1170 		return true;
1171 
1172 	idx = 1 - thrd->lstenq;
1173 	if (!IS_FREE(&thrd->req[idx]))
1174 		req = &thrd->req[idx];
1175 	else {
1176 		idx = thrd->lstenq;
1177 		if (!IS_FREE(&thrd->req[idx]))
1178 			req = &thrd->req[idx];
1179 		else
1180 			req = NULL;
1181 	}
1182 
1183 	/* Return if no request */
1184 	if (!req || !req->r)
1185 		return true;
1186 
1187 	r = req->r;
1188 
1189 	if (r->cfg)
1190 		ns = r->cfg->nonsecure ? 1 : 0;
1191 	else if (readl(regs + CS(thrd->id)) & CS_CNS)
1192 		ns = 1;
1193 	else
1194 		ns = 0;
1195 
1196 	/* See 'Abort Sources' point-4 at Page 2-25 */
1197 	if (_manager_ns(thrd) && !ns)
1198 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1199 			__func__, __LINE__);
1200 
1201 	go.chan = thrd->id;
1202 	go.addr = req->mc_bus;
1203 	go.ns = ns;
1204 	_emit_GO(0, insn, &go);
1205 
1206 	/* Set to generate interrupts for SEV */
1207 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1208 
1209 	/* Only manager can execute GO */
1210 	_execute_DBGINSN(thrd, insn, true);
1211 
1212 	thrd->req_running = idx;
1213 
1214 	return true;
1215 }
1216 
1217 static bool _start(struct pl330_thread *thrd)
1218 {
1219 	switch (_state(thrd)) {
1220 	case PL330_STATE_FAULT_COMPLETING:
1221 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1222 
1223 		if (_state(thrd) == PL330_STATE_KILLING)
1224 			UNTIL(thrd, PL330_STATE_STOPPED)
1225 
1226 	case PL330_STATE_FAULTING:
1227 		_stop(thrd);
1228 
1229 	case PL330_STATE_KILLING:
1230 	case PL330_STATE_COMPLETING:
1231 		UNTIL(thrd, PL330_STATE_STOPPED)
1232 
1233 	case PL330_STATE_STOPPED:
1234 		return _trigger(thrd);
1235 
1236 	case PL330_STATE_WFP:
1237 	case PL330_STATE_QUEUEBUSY:
1238 	case PL330_STATE_ATBARRIER:
1239 	case PL330_STATE_UPDTPC:
1240 	case PL330_STATE_CACHEMISS:
1241 	case PL330_STATE_EXECUTING:
1242 		return true;
1243 
1244 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1245 	default:
1246 		return false;
1247 	}
1248 }
1249 
1250 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1251 		const struct _xfer_spec *pxs, int cyc)
1252 {
1253 	int off = 0;
1254 	struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1255 
1256 	/* check lock-up free version */
1257 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1258 		while (cyc--) {
1259 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1260 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1261 		}
1262 	} else {
1263 		while (cyc--) {
1264 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1265 			off += _emit_RMB(dry_run, &buf[off]);
1266 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1267 			off += _emit_WMB(dry_run, &buf[off]);
1268 		}
1269 	}
1270 
1271 	return off;
1272 }
1273 
1274 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1275 		const struct _xfer_spec *pxs, int cyc)
1276 {
1277 	int off = 0;
1278 
1279 	while (cyc--) {
1280 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1281 		off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1282 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1283 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1284 	}
1285 
1286 	return off;
1287 }
1288 
1289 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1290 		const struct _xfer_spec *pxs, int cyc)
1291 {
1292 	int off = 0;
1293 
1294 	while (cyc--) {
1295 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1296 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1297 		off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1298 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1299 	}
1300 
1301 	return off;
1302 }
1303 
1304 static int _bursts(unsigned dry_run, u8 buf[],
1305 		const struct _xfer_spec *pxs, int cyc)
1306 {
1307 	int off = 0;
1308 
1309 	switch (pxs->r->rqtype) {
1310 	case MEMTODEV:
1311 		off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1312 		break;
1313 	case DEVTOMEM:
1314 		off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1315 		break;
1316 	case MEMTOMEM:
1317 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1318 		break;
1319 	default:
1320 		off += 0x40000000; /* Scare off the Client */
1321 		break;
1322 	}
1323 
1324 	return off;
1325 }
1326 
1327 /* Returns bytes consumed and updates bursts */
1328 static inline int _loop(unsigned dry_run, u8 buf[],
1329 		unsigned long *bursts, const struct _xfer_spec *pxs)
1330 {
1331 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1332 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1333 	struct _arg_LPEND lpend;
1334 
1335 	/* Max iterations possible in DMALP is 256 */
1336 	if (*bursts >= 256*256) {
1337 		lcnt1 = 256;
1338 		lcnt0 = 256;
1339 		cyc = *bursts / lcnt1 / lcnt0;
1340 	} else if (*bursts > 256) {
1341 		lcnt1 = 256;
1342 		lcnt0 = *bursts / lcnt1;
1343 		cyc = 1;
1344 	} else {
1345 		lcnt1 = *bursts;
1346 		lcnt0 = 0;
1347 		cyc = 1;
1348 	}
1349 
1350 	szlp = _emit_LP(1, buf, 0, 0);
1351 	szbrst = _bursts(1, buf, pxs, 1);
1352 
1353 	lpend.cond = ALWAYS;
1354 	lpend.forever = false;
1355 	lpend.loop = 0;
1356 	lpend.bjump = 0;
1357 	szlpend = _emit_LPEND(1, buf, &lpend);
1358 
1359 	if (lcnt0) {
1360 		szlp *= 2;
1361 		szlpend *= 2;
1362 	}
1363 
1364 	/*
1365 	 * Max bursts that we can unroll due to limit on the
1366 	 * size of backward jump that can be encoded in DMALPEND
1367 	 * which is 8-bits and hence 255
1368 	 */
1369 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1370 
1371 	cyc = (cycmax < cyc) ? cycmax : cyc;
1372 
1373 	off = 0;
1374 
1375 	if (lcnt0) {
1376 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1377 		ljmp0 = off;
1378 	}
1379 
1380 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1381 	ljmp1 = off;
1382 
1383 	off += _bursts(dry_run, &buf[off], pxs, cyc);
1384 
1385 	lpend.cond = ALWAYS;
1386 	lpend.forever = false;
1387 	lpend.loop = 1;
1388 	lpend.bjump = off - ljmp1;
1389 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1390 
1391 	if (lcnt0) {
1392 		lpend.cond = ALWAYS;
1393 		lpend.forever = false;
1394 		lpend.loop = 0;
1395 		lpend.bjump = off - ljmp0;
1396 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1397 	}
1398 
1399 	*bursts = lcnt1 * cyc;
1400 	if (lcnt0)
1401 		*bursts *= lcnt0;
1402 
1403 	return off;
1404 }
1405 
1406 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1407 		const struct _xfer_spec *pxs)
1408 {
1409 	struct pl330_xfer *x = pxs->x;
1410 	u32 ccr = pxs->ccr;
1411 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1412 	int off = 0;
1413 
1414 	while (bursts) {
1415 		c = bursts;
1416 		off += _loop(dry_run, &buf[off], &c, pxs);
1417 		bursts -= c;
1418 	}
1419 
1420 	return off;
1421 }
1422 
1423 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1424 		const struct _xfer_spec *pxs)
1425 {
1426 	struct pl330_xfer *x = pxs->x;
1427 	int off = 0;
1428 
1429 	/* DMAMOV SAR, x->src_addr */
1430 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1431 	/* DMAMOV DAR, x->dst_addr */
1432 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1433 
1434 	/* Setup Loop(s) */
1435 	off += _setup_loops(dry_run, &buf[off], pxs);
1436 
1437 	return off;
1438 }
1439 
1440 /*
1441  * A req is a sequence of one or more xfer units.
1442  * Returns the number of bytes taken to setup the MC for the req.
1443  */
1444 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1445 		unsigned index, struct _xfer_spec *pxs)
1446 {
1447 	struct _pl330_req *req = &thrd->req[index];
1448 	struct pl330_xfer *x;
1449 	u8 *buf = req->mc_cpu;
1450 	int off = 0;
1451 
1452 	PL330_DBGMC_START(req->mc_bus);
1453 
1454 	/* DMAMOV CCR, ccr */
1455 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1456 
1457 	x = pxs->r->x;
1458 	do {
1459 		/* Error if xfer length is not aligned at burst size */
1460 		if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1461 			return -EINVAL;
1462 
1463 		pxs->x = x;
1464 		off += _setup_xfer(dry_run, &buf[off], pxs);
1465 
1466 		x = x->next;
1467 	} while (x);
1468 
1469 	/* DMASEV peripheral/event */
1470 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1471 	/* DMAEND */
1472 	off += _emit_END(dry_run, &buf[off]);
1473 
1474 	return off;
1475 }
1476 
1477 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1478 {
1479 	u32 ccr = 0;
1480 
1481 	if (rqc->src_inc)
1482 		ccr |= CC_SRCINC;
1483 
1484 	if (rqc->dst_inc)
1485 		ccr |= CC_DSTINC;
1486 
1487 	/* We set same protection levels for Src and DST for now */
1488 	if (rqc->privileged)
1489 		ccr |= CC_SRCPRI | CC_DSTPRI;
1490 	if (rqc->nonsecure)
1491 		ccr |= CC_SRCNS | CC_DSTNS;
1492 	if (rqc->insnaccess)
1493 		ccr |= CC_SRCIA | CC_DSTIA;
1494 
1495 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1496 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1497 
1498 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1499 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1500 
1501 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1502 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1503 
1504 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1505 
1506 	return ccr;
1507 }
1508 
1509 static inline bool _is_valid(u32 ccr)
1510 {
1511 	enum pl330_dstcachectrl dcctl;
1512 	enum pl330_srccachectrl scctl;
1513 
1514 	dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1515 	scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1516 
1517 	if (dcctl == DINVALID1 || dcctl == DINVALID2
1518 			|| scctl == SINVALID1 || scctl == SINVALID2)
1519 		return false;
1520 	else
1521 		return true;
1522 }
1523 
1524 /*
1525  * Submit a list of xfers after which the client wants notification.
1526  * Client is not notified after each xfer unit, just once after all
1527  * xfer units are done or some error occurs.
1528  */
1529 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1530 {
1531 	struct pl330_thread *thrd = ch_id;
1532 	struct pl330_dmac *pl330;
1533 	struct pl330_info *pi;
1534 	struct _xfer_spec xs;
1535 	unsigned long flags;
1536 	void __iomem *regs;
1537 	unsigned idx;
1538 	u32 ccr;
1539 	int ret = 0;
1540 
1541 	/* No Req or Unacquired Channel or DMAC */
1542 	if (!r || !thrd || thrd->free)
1543 		return -EINVAL;
1544 
1545 	pl330 = thrd->dmac;
1546 	pi = pl330->pinfo;
1547 	regs = pi->base;
1548 
1549 	if (pl330->state == DYING
1550 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1551 		dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1552 			__func__, __LINE__);
1553 		return -EAGAIN;
1554 	}
1555 
1556 	/* If request for non-existing peripheral */
1557 	if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1558 		dev_info(thrd->dmac->pinfo->dev,
1559 				"%s:%d Invalid peripheral(%u)!\n",
1560 				__func__, __LINE__, r->peri);
1561 		return -EINVAL;
1562 	}
1563 
1564 	spin_lock_irqsave(&pl330->lock, flags);
1565 
1566 	if (_queue_full(thrd)) {
1567 		ret = -EAGAIN;
1568 		goto xfer_exit;
1569 	}
1570 
1571 	/* Prefer Secure Channel */
1572 	if (!_manager_ns(thrd))
1573 		r->cfg->nonsecure = 0;
1574 	else
1575 		r->cfg->nonsecure = 1;
1576 
1577 	/* Use last settings, if not provided */
1578 	if (r->cfg)
1579 		ccr = _prepare_ccr(r->cfg);
1580 	else
1581 		ccr = readl(regs + CC(thrd->id));
1582 
1583 	/* If this req doesn't have valid xfer settings */
1584 	if (!_is_valid(ccr)) {
1585 		ret = -EINVAL;
1586 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1587 			__func__, __LINE__, ccr);
1588 		goto xfer_exit;
1589 	}
1590 
1591 	idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1592 
1593 	xs.ccr = ccr;
1594 	xs.r = r;
1595 
1596 	/* First dry run to check if req is acceptable */
1597 	ret = _setup_req(1, thrd, idx, &xs);
1598 	if (ret < 0)
1599 		goto xfer_exit;
1600 
1601 	if (ret > pi->mcbufsz / 2) {
1602 		dev_info(thrd->dmac->pinfo->dev,
1603 			"%s:%d Trying increasing mcbufsz\n",
1604 				__func__, __LINE__);
1605 		ret = -ENOMEM;
1606 		goto xfer_exit;
1607 	}
1608 
1609 	/* Hook the request */
1610 	thrd->lstenq = idx;
1611 	thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1612 	thrd->req[idx].r = r;
1613 
1614 	ret = 0;
1615 
1616 xfer_exit:
1617 	spin_unlock_irqrestore(&pl330->lock, flags);
1618 
1619 	return ret;
1620 }
1621 
1622 static void pl330_dotask(unsigned long data)
1623 {
1624 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1625 	struct pl330_info *pi = pl330->pinfo;
1626 	unsigned long flags;
1627 	int i;
1628 
1629 	spin_lock_irqsave(&pl330->lock, flags);
1630 
1631 	/* The DMAC itself gone nuts */
1632 	if (pl330->dmac_tbd.reset_dmac) {
1633 		pl330->state = DYING;
1634 		/* Reset the manager too */
1635 		pl330->dmac_tbd.reset_mngr = true;
1636 		/* Clear the reset flag */
1637 		pl330->dmac_tbd.reset_dmac = false;
1638 	}
1639 
1640 	if (pl330->dmac_tbd.reset_mngr) {
1641 		_stop(pl330->manager);
1642 		/* Reset all channels */
1643 		pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1644 		/* Clear the reset flag */
1645 		pl330->dmac_tbd.reset_mngr = false;
1646 	}
1647 
1648 	for (i = 0; i < pi->pcfg.num_chan; i++) {
1649 
1650 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1651 			struct pl330_thread *thrd = &pl330->channels[i];
1652 			void __iomem *regs = pi->base;
1653 			enum pl330_op_err err;
1654 
1655 			_stop(thrd);
1656 
1657 			if (readl(regs + FSC) & (1 << thrd->id))
1658 				err = PL330_ERR_FAIL;
1659 			else
1660 				err = PL330_ERR_ABORT;
1661 
1662 			spin_unlock_irqrestore(&pl330->lock, flags);
1663 
1664 			_callback(thrd->req[1 - thrd->lstenq].r, err);
1665 			_callback(thrd->req[thrd->lstenq].r, err);
1666 
1667 			spin_lock_irqsave(&pl330->lock, flags);
1668 
1669 			thrd->req[0].r = NULL;
1670 			thrd->req[1].r = NULL;
1671 			mark_free(thrd, 0);
1672 			mark_free(thrd, 1);
1673 
1674 			/* Clear the reset flag */
1675 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1676 		}
1677 	}
1678 
1679 	spin_unlock_irqrestore(&pl330->lock, flags);
1680 
1681 	return;
1682 }
1683 
1684 /* Returns 1 if state was updated, 0 otherwise */
1685 static int pl330_update(const struct pl330_info *pi)
1686 {
1687 	struct _pl330_req *rqdone;
1688 	struct pl330_dmac *pl330;
1689 	unsigned long flags;
1690 	void __iomem *regs;
1691 	u32 val;
1692 	int id, ev, ret = 0;
1693 
1694 	if (!pi || !pi->pl330_data)
1695 		return 0;
1696 
1697 	regs = pi->base;
1698 	pl330 = pi->pl330_data;
1699 
1700 	spin_lock_irqsave(&pl330->lock, flags);
1701 
1702 	val = readl(regs + FSM) & 0x1;
1703 	if (val)
1704 		pl330->dmac_tbd.reset_mngr = true;
1705 	else
1706 		pl330->dmac_tbd.reset_mngr = false;
1707 
1708 	val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1709 	pl330->dmac_tbd.reset_chan |= val;
1710 	if (val) {
1711 		int i = 0;
1712 		while (i < pi->pcfg.num_chan) {
1713 			if (val & (1 << i)) {
1714 				dev_info(pi->dev,
1715 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1716 						i, readl(regs + CS(i)),
1717 						readl(regs + FTC(i)));
1718 				_stop(&pl330->channels[i]);
1719 			}
1720 			i++;
1721 		}
1722 	}
1723 
1724 	/* Check which event happened i.e, thread notified */
1725 	val = readl(regs + ES);
1726 	if (pi->pcfg.num_events < 32
1727 			&& val & ~((1 << pi->pcfg.num_events) - 1)) {
1728 		pl330->dmac_tbd.reset_dmac = true;
1729 		dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1730 		ret = 1;
1731 		goto updt_exit;
1732 	}
1733 
1734 	for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1735 		if (val & (1 << ev)) { /* Event occurred */
1736 			struct pl330_thread *thrd;
1737 			u32 inten = readl(regs + INTEN);
1738 			int active;
1739 
1740 			/* Clear the event */
1741 			if (inten & (1 << ev))
1742 				writel(1 << ev, regs + INTCLR);
1743 
1744 			ret = 1;
1745 
1746 			id = pl330->events[ev];
1747 
1748 			thrd = &pl330->channels[id];
1749 
1750 			active = thrd->req_running;
1751 			if (active == -1) /* Aborted */
1752 				continue;
1753 
1754 			rqdone = &thrd->req[active];
1755 			mark_free(thrd, active);
1756 
1757 			/* Get going again ASAP */
1758 			_start(thrd);
1759 
1760 			/* For now, just make a list of callbacks to be done */
1761 			list_add_tail(&rqdone->rqd, &pl330->req_done);
1762 		}
1763 	}
1764 
1765 	/* Now that we are in no hurry, do the callbacks */
1766 	while (!list_empty(&pl330->req_done)) {
1767 		struct pl330_req *r;
1768 
1769 		rqdone = container_of(pl330->req_done.next,
1770 					struct _pl330_req, rqd);
1771 
1772 		list_del_init(&rqdone->rqd);
1773 
1774 		/* Detach the req */
1775 		r = rqdone->r;
1776 		rqdone->r = NULL;
1777 
1778 		spin_unlock_irqrestore(&pl330->lock, flags);
1779 		_callback(r, PL330_ERR_NONE);
1780 		spin_lock_irqsave(&pl330->lock, flags);
1781 	}
1782 
1783 updt_exit:
1784 	spin_unlock_irqrestore(&pl330->lock, flags);
1785 
1786 	if (pl330->dmac_tbd.reset_dmac
1787 			|| pl330->dmac_tbd.reset_mngr
1788 			|| pl330->dmac_tbd.reset_chan) {
1789 		ret = 1;
1790 		tasklet_schedule(&pl330->tasks);
1791 	}
1792 
1793 	return ret;
1794 }
1795 
1796 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1797 {
1798 	struct pl330_thread *thrd = ch_id;
1799 	struct pl330_dmac *pl330;
1800 	unsigned long flags;
1801 	int ret = 0, active;
1802 
1803 	if (!thrd || thrd->free || thrd->dmac->state == DYING)
1804 		return -EINVAL;
1805 
1806 	pl330 = thrd->dmac;
1807 	active = thrd->req_running;
1808 
1809 	spin_lock_irqsave(&pl330->lock, flags);
1810 
1811 	switch (op) {
1812 	case PL330_OP_FLUSH:
1813 		/* Make sure the channel is stopped */
1814 		_stop(thrd);
1815 
1816 		thrd->req[0].r = NULL;
1817 		thrd->req[1].r = NULL;
1818 		mark_free(thrd, 0);
1819 		mark_free(thrd, 1);
1820 		break;
1821 
1822 	case PL330_OP_ABORT:
1823 		/* Make sure the channel is stopped */
1824 		_stop(thrd);
1825 
1826 		/* ABORT is only for the active req */
1827 		if (active == -1)
1828 			break;
1829 
1830 		thrd->req[active].r = NULL;
1831 		mark_free(thrd, active);
1832 
1833 		/* Start the next */
1834 	case PL330_OP_START:
1835 		if ((active == -1) && !_start(thrd))
1836 			ret = -EIO;
1837 		break;
1838 
1839 	default:
1840 		ret = -EINVAL;
1841 	}
1842 
1843 	spin_unlock_irqrestore(&pl330->lock, flags);
1844 	return ret;
1845 }
1846 
1847 /* Reserve an event */
1848 static inline int _alloc_event(struct pl330_thread *thrd)
1849 {
1850 	struct pl330_dmac *pl330 = thrd->dmac;
1851 	struct pl330_info *pi = pl330->pinfo;
1852 	int ev;
1853 
1854 	for (ev = 0; ev < pi->pcfg.num_events; ev++)
1855 		if (pl330->events[ev] == -1) {
1856 			pl330->events[ev] = thrd->id;
1857 			return ev;
1858 		}
1859 
1860 	return -1;
1861 }
1862 
1863 static bool _chan_ns(const struct pl330_info *pi, int i)
1864 {
1865 	return pi->pcfg.irq_ns & (1 << i);
1866 }
1867 
1868 /* Upon success, returns IdentityToken for the
1869  * allocated channel, NULL otherwise.
1870  */
1871 static void *pl330_request_channel(const struct pl330_info *pi)
1872 {
1873 	struct pl330_thread *thrd = NULL;
1874 	struct pl330_dmac *pl330;
1875 	unsigned long flags;
1876 	int chans, i;
1877 
1878 	if (!pi || !pi->pl330_data)
1879 		return NULL;
1880 
1881 	pl330 = pi->pl330_data;
1882 
1883 	if (pl330->state == DYING)
1884 		return NULL;
1885 
1886 	chans = pi->pcfg.num_chan;
1887 
1888 	spin_lock_irqsave(&pl330->lock, flags);
1889 
1890 	for (i = 0; i < chans; i++) {
1891 		thrd = &pl330->channels[i];
1892 		if ((thrd->free) && (!_manager_ns(thrd) ||
1893 					_chan_ns(pi, i))) {
1894 			thrd->ev = _alloc_event(thrd);
1895 			if (thrd->ev >= 0) {
1896 				thrd->free = false;
1897 				thrd->lstenq = 1;
1898 				thrd->req[0].r = NULL;
1899 				mark_free(thrd, 0);
1900 				thrd->req[1].r = NULL;
1901 				mark_free(thrd, 1);
1902 				break;
1903 			}
1904 		}
1905 		thrd = NULL;
1906 	}
1907 
1908 	spin_unlock_irqrestore(&pl330->lock, flags);
1909 
1910 	return thrd;
1911 }
1912 
1913 /* Release an event */
1914 static inline void _free_event(struct pl330_thread *thrd, int ev)
1915 {
1916 	struct pl330_dmac *pl330 = thrd->dmac;
1917 	struct pl330_info *pi = pl330->pinfo;
1918 
1919 	/* If the event is valid and was held by the thread */
1920 	if (ev >= 0 && ev < pi->pcfg.num_events
1921 			&& pl330->events[ev] == thrd->id)
1922 		pl330->events[ev] = -1;
1923 }
1924 
1925 static void pl330_release_channel(void *ch_id)
1926 {
1927 	struct pl330_thread *thrd = ch_id;
1928 	struct pl330_dmac *pl330;
1929 	unsigned long flags;
1930 
1931 	if (!thrd || thrd->free)
1932 		return;
1933 
1934 	_stop(thrd);
1935 
1936 	_callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1937 	_callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1938 
1939 	pl330 = thrd->dmac;
1940 
1941 	spin_lock_irqsave(&pl330->lock, flags);
1942 	_free_event(thrd, thrd->ev);
1943 	thrd->free = true;
1944 	spin_unlock_irqrestore(&pl330->lock, flags);
1945 }
1946 
1947 /* Initialize the structure for PL330 configuration, that can be used
1948  * by the client driver the make best use of the DMAC
1949  */
1950 static void read_dmac_config(struct pl330_info *pi)
1951 {
1952 	void __iomem *regs = pi->base;
1953 	u32 val;
1954 
1955 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1956 	val &= CRD_DATA_WIDTH_MASK;
1957 	pi->pcfg.data_bus_width = 8 * (1 << val);
1958 
1959 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1960 	val &= CRD_DATA_BUFF_MASK;
1961 	pi->pcfg.data_buf_dep = val + 1;
1962 
1963 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1964 	val &= CR0_NUM_CHANS_MASK;
1965 	val += 1;
1966 	pi->pcfg.num_chan = val;
1967 
1968 	val = readl(regs + CR0);
1969 	if (val & CR0_PERIPH_REQ_SET) {
1970 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1971 		val += 1;
1972 		pi->pcfg.num_peri = val;
1973 		pi->pcfg.peri_ns = readl(regs + CR4);
1974 	} else {
1975 		pi->pcfg.num_peri = 0;
1976 	}
1977 
1978 	val = readl(regs + CR0);
1979 	if (val & CR0_BOOT_MAN_NS)
1980 		pi->pcfg.mode |= DMAC_MODE_NS;
1981 	else
1982 		pi->pcfg.mode &= ~DMAC_MODE_NS;
1983 
1984 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1985 	val &= CR0_NUM_EVENTS_MASK;
1986 	val += 1;
1987 	pi->pcfg.num_events = val;
1988 
1989 	pi->pcfg.irq_ns = readl(regs + CR3);
1990 
1991 	pi->pcfg.periph_id = get_id(pi, PERIPH_ID);
1992 	pi->pcfg.pcell_id = get_id(pi, PCELL_ID);
1993 }
1994 
1995 static inline void _reset_thread(struct pl330_thread *thrd)
1996 {
1997 	struct pl330_dmac *pl330 = thrd->dmac;
1998 	struct pl330_info *pi = pl330->pinfo;
1999 
2000 	thrd->req[0].mc_cpu = pl330->mcode_cpu
2001 				+ (thrd->id * pi->mcbufsz);
2002 	thrd->req[0].mc_bus = pl330->mcode_bus
2003 				+ (thrd->id * pi->mcbufsz);
2004 	thrd->req[0].r = NULL;
2005 	mark_free(thrd, 0);
2006 
2007 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
2008 				+ pi->mcbufsz / 2;
2009 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
2010 				+ pi->mcbufsz / 2;
2011 	thrd->req[1].r = NULL;
2012 	mark_free(thrd, 1);
2013 }
2014 
2015 static int dmac_alloc_threads(struct pl330_dmac *pl330)
2016 {
2017 	struct pl330_info *pi = pl330->pinfo;
2018 	int chans = pi->pcfg.num_chan;
2019 	struct pl330_thread *thrd;
2020 	int i;
2021 
2022 	/* Allocate 1 Manager and 'chans' Channel threads */
2023 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2024 					GFP_KERNEL);
2025 	if (!pl330->channels)
2026 		return -ENOMEM;
2027 
2028 	/* Init Channel threads */
2029 	for (i = 0; i < chans; i++) {
2030 		thrd = &pl330->channels[i];
2031 		thrd->id = i;
2032 		thrd->dmac = pl330;
2033 		_reset_thread(thrd);
2034 		thrd->free = true;
2035 	}
2036 
2037 	/* MANAGER is indexed at the end */
2038 	thrd = &pl330->channels[chans];
2039 	thrd->id = chans;
2040 	thrd->dmac = pl330;
2041 	thrd->free = false;
2042 	pl330->manager = thrd;
2043 
2044 	return 0;
2045 }
2046 
2047 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2048 {
2049 	struct pl330_info *pi = pl330->pinfo;
2050 	int chans = pi->pcfg.num_chan;
2051 	int ret;
2052 
2053 	/*
2054 	 * Alloc MicroCode buffer for 'chans' Channel threads.
2055 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2056 	 */
2057 	pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2058 				chans * pi->mcbufsz,
2059 				&pl330->mcode_bus, GFP_KERNEL);
2060 	if (!pl330->mcode_cpu) {
2061 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2062 			__func__, __LINE__);
2063 		return -ENOMEM;
2064 	}
2065 
2066 	ret = dmac_alloc_threads(pl330);
2067 	if (ret) {
2068 		dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2069 			__func__, __LINE__);
2070 		dma_free_coherent(pi->dev,
2071 				chans * pi->mcbufsz,
2072 				pl330->mcode_cpu, pl330->mcode_bus);
2073 		return ret;
2074 	}
2075 
2076 	return 0;
2077 }
2078 
2079 static int pl330_add(struct pl330_info *pi)
2080 {
2081 	struct pl330_dmac *pl330;
2082 	void __iomem *regs;
2083 	int i, ret;
2084 
2085 	if (!pi || !pi->dev)
2086 		return -EINVAL;
2087 
2088 	/* If already added */
2089 	if (pi->pl330_data)
2090 		return -EINVAL;
2091 
2092 	/*
2093 	 * If the SoC can perform reset on the DMAC, then do it
2094 	 * before reading its configuration.
2095 	 */
2096 	if (pi->dmac_reset)
2097 		pi->dmac_reset(pi);
2098 
2099 	regs = pi->base;
2100 
2101 	/* Check if we can handle this DMAC */
2102 	if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL
2103 	   || get_id(pi, PCELL_ID) != PCELL_ID_VAL) {
2104 		dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n",
2105 			get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID));
2106 		return -EINVAL;
2107 	}
2108 
2109 	/* Read the configuration of the DMAC */
2110 	read_dmac_config(pi);
2111 
2112 	if (pi->pcfg.num_events == 0) {
2113 		dev_err(pi->dev, "%s:%d Can't work without events!\n",
2114 			__func__, __LINE__);
2115 		return -EINVAL;
2116 	}
2117 
2118 	pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2119 	if (!pl330) {
2120 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2121 			__func__, __LINE__);
2122 		return -ENOMEM;
2123 	}
2124 
2125 	/* Assign the info structure and private data */
2126 	pl330->pinfo = pi;
2127 	pi->pl330_data = pl330;
2128 
2129 	spin_lock_init(&pl330->lock);
2130 
2131 	INIT_LIST_HEAD(&pl330->req_done);
2132 
2133 	/* Use default MC buffer size if not provided */
2134 	if (!pi->mcbufsz)
2135 		pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2136 
2137 	/* Mark all events as free */
2138 	for (i = 0; i < pi->pcfg.num_events; i++)
2139 		pl330->events[i] = -1;
2140 
2141 	/* Allocate resources needed by the DMAC */
2142 	ret = dmac_alloc_resources(pl330);
2143 	if (ret) {
2144 		dev_err(pi->dev, "Unable to create channels for DMAC\n");
2145 		kfree(pl330);
2146 		return ret;
2147 	}
2148 
2149 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2150 
2151 	pl330->state = INIT;
2152 
2153 	return 0;
2154 }
2155 
2156 static int dmac_free_threads(struct pl330_dmac *pl330)
2157 {
2158 	struct pl330_info *pi = pl330->pinfo;
2159 	int chans = pi->pcfg.num_chan;
2160 	struct pl330_thread *thrd;
2161 	int i;
2162 
2163 	/* Release Channel threads */
2164 	for (i = 0; i < chans; i++) {
2165 		thrd = &pl330->channels[i];
2166 		pl330_release_channel((void *)thrd);
2167 	}
2168 
2169 	/* Free memory */
2170 	kfree(pl330->channels);
2171 
2172 	return 0;
2173 }
2174 
2175 static void dmac_free_resources(struct pl330_dmac *pl330)
2176 {
2177 	struct pl330_info *pi = pl330->pinfo;
2178 	int chans = pi->pcfg.num_chan;
2179 
2180 	dmac_free_threads(pl330);
2181 
2182 	dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2183 				pl330->mcode_cpu, pl330->mcode_bus);
2184 }
2185 
2186 static void pl330_del(struct pl330_info *pi)
2187 {
2188 	struct pl330_dmac *pl330;
2189 
2190 	if (!pi || !pi->pl330_data)
2191 		return;
2192 
2193 	pl330 = pi->pl330_data;
2194 
2195 	pl330->state = UNINIT;
2196 
2197 	tasklet_kill(&pl330->tasks);
2198 
2199 	/* Free DMAC resources */
2200 	dmac_free_resources(pl330);
2201 
2202 	kfree(pl330);
2203 	pi->pl330_data = NULL;
2204 }
2205 
2206 /* forward declaration */
2207 static struct amba_driver pl330_driver;
2208 
2209 static inline struct dma_pl330_chan *
2210 to_pchan(struct dma_chan *ch)
2211 {
2212 	if (!ch)
2213 		return NULL;
2214 
2215 	return container_of(ch, struct dma_pl330_chan, chan);
2216 }
2217 
2218 static inline struct dma_pl330_desc *
2219 to_desc(struct dma_async_tx_descriptor *tx)
2220 {
2221 	return container_of(tx, struct dma_pl330_desc, txd);
2222 }
2223 
2224 static inline void free_desc_list(struct list_head *list)
2225 {
2226 	struct dma_pl330_dmac *pdmac;
2227 	struct dma_pl330_desc *desc;
2228 	struct dma_pl330_chan *pch = NULL;
2229 	unsigned long flags;
2230 
2231 	/* Finish off the work list */
2232 	list_for_each_entry(desc, list, node) {
2233 		dma_async_tx_callback callback;
2234 		void *param;
2235 
2236 		/* All desc in a list belong to same channel */
2237 		pch = desc->pchan;
2238 		callback = desc->txd.callback;
2239 		param = desc->txd.callback_param;
2240 
2241 		if (callback)
2242 			callback(param);
2243 
2244 		desc->pchan = NULL;
2245 	}
2246 
2247 	/* pch will be unset if list was empty */
2248 	if (!pch)
2249 		return;
2250 
2251 	pdmac = pch->dmac;
2252 
2253 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2254 	list_splice_tail_init(list, &pdmac->desc_pool);
2255 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2256 }
2257 
2258 static inline void handle_cyclic_desc_list(struct list_head *list)
2259 {
2260 	struct dma_pl330_desc *desc;
2261 	struct dma_pl330_chan *pch = NULL;
2262 	unsigned long flags;
2263 
2264 	list_for_each_entry(desc, list, node) {
2265 		dma_async_tx_callback callback;
2266 
2267 		/* Change status to reload it */
2268 		desc->status = PREP;
2269 		pch = desc->pchan;
2270 		callback = desc->txd.callback;
2271 		if (callback)
2272 			callback(desc->txd.callback_param);
2273 	}
2274 
2275 	/* pch will be unset if list was empty */
2276 	if (!pch)
2277 		return;
2278 
2279 	spin_lock_irqsave(&pch->lock, flags);
2280 	list_splice_tail_init(list, &pch->work_list);
2281 	spin_unlock_irqrestore(&pch->lock, flags);
2282 }
2283 
2284 static inline void fill_queue(struct dma_pl330_chan *pch)
2285 {
2286 	struct dma_pl330_desc *desc;
2287 	int ret;
2288 
2289 	list_for_each_entry(desc, &pch->work_list, node) {
2290 
2291 		/* If already submitted */
2292 		if (desc->status == BUSY)
2293 			break;
2294 
2295 		ret = pl330_submit_req(pch->pl330_chid,
2296 						&desc->req);
2297 		if (!ret) {
2298 			desc->status = BUSY;
2299 			break;
2300 		} else if (ret == -EAGAIN) {
2301 			/* QFull or DMAC Dying */
2302 			break;
2303 		} else {
2304 			/* Unacceptable request */
2305 			desc->status = DONE;
2306 			dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2307 					__func__, __LINE__, desc->txd.cookie);
2308 			tasklet_schedule(&pch->task);
2309 		}
2310 	}
2311 }
2312 
2313 static void pl330_tasklet(unsigned long data)
2314 {
2315 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2316 	struct dma_pl330_desc *desc, *_dt;
2317 	unsigned long flags;
2318 	LIST_HEAD(list);
2319 
2320 	spin_lock_irqsave(&pch->lock, flags);
2321 
2322 	/* Pick up ripe tomatoes */
2323 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2324 		if (desc->status == DONE) {
2325 			if (pch->cyclic)
2326 				dma_cookie_complete(&desc->txd);
2327 			list_move_tail(&desc->node, &list);
2328 		}
2329 
2330 	/* Try to submit a req imm. next to the last completed cookie */
2331 	fill_queue(pch);
2332 
2333 	/* Make sure the PL330 Channel thread is active */
2334 	pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2335 
2336 	spin_unlock_irqrestore(&pch->lock, flags);
2337 
2338 	if (pch->cyclic)
2339 		handle_cyclic_desc_list(&list);
2340 	else
2341 		free_desc_list(&list);
2342 }
2343 
2344 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2345 {
2346 	struct dma_pl330_desc *desc = token;
2347 	struct dma_pl330_chan *pch = desc->pchan;
2348 	unsigned long flags;
2349 
2350 	/* If desc aborted */
2351 	if (!pch)
2352 		return;
2353 
2354 	spin_lock_irqsave(&pch->lock, flags);
2355 
2356 	desc->status = DONE;
2357 
2358 	spin_unlock_irqrestore(&pch->lock, flags);
2359 
2360 	tasklet_schedule(&pch->task);
2361 }
2362 
2363 bool pl330_filter(struct dma_chan *chan, void *param)
2364 {
2365 	u8 *peri_id;
2366 
2367 	if (chan->device->dev->driver != &pl330_driver.drv)
2368 		return false;
2369 
2370 #ifdef CONFIG_OF
2371 	if (chan->device->dev->of_node) {
2372 		const __be32 *prop_value;
2373 		phandle phandle;
2374 		struct device_node *node;
2375 
2376 		prop_value = ((struct property *)param)->value;
2377 		phandle = be32_to_cpup(prop_value++);
2378 		node = of_find_node_by_phandle(phandle);
2379 		return ((chan->private == node) &&
2380 				(chan->chan_id == be32_to_cpup(prop_value)));
2381 	}
2382 #endif
2383 
2384 	peri_id = chan->private;
2385 	return *peri_id == (unsigned)param;
2386 }
2387 EXPORT_SYMBOL(pl330_filter);
2388 
2389 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2390 {
2391 	struct dma_pl330_chan *pch = to_pchan(chan);
2392 	struct dma_pl330_dmac *pdmac = pch->dmac;
2393 	unsigned long flags;
2394 
2395 	spin_lock_irqsave(&pch->lock, flags);
2396 
2397 	dma_cookie_init(chan);
2398 	pch->cyclic = false;
2399 
2400 	pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2401 	if (!pch->pl330_chid) {
2402 		spin_unlock_irqrestore(&pch->lock, flags);
2403 		return 0;
2404 	}
2405 
2406 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2407 
2408 	spin_unlock_irqrestore(&pch->lock, flags);
2409 
2410 	return 1;
2411 }
2412 
2413 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2414 {
2415 	struct dma_pl330_chan *pch = to_pchan(chan);
2416 	struct dma_pl330_desc *desc, *_dt;
2417 	unsigned long flags;
2418 	struct dma_pl330_dmac *pdmac = pch->dmac;
2419 	struct dma_slave_config *slave_config;
2420 	LIST_HEAD(list);
2421 
2422 	switch (cmd) {
2423 	case DMA_TERMINATE_ALL:
2424 		spin_lock_irqsave(&pch->lock, flags);
2425 
2426 		/* FLUSH the PL330 Channel thread */
2427 		pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2428 
2429 		/* Mark all desc done */
2430 		list_for_each_entry_safe(desc, _dt, &pch->work_list , node) {
2431 			desc->status = DONE;
2432 			list_move_tail(&desc->node, &list);
2433 		}
2434 
2435 		list_splice_tail_init(&list, &pdmac->desc_pool);
2436 		spin_unlock_irqrestore(&pch->lock, flags);
2437 		break;
2438 	case DMA_SLAVE_CONFIG:
2439 		slave_config = (struct dma_slave_config *)arg;
2440 
2441 		if (slave_config->direction == DMA_MEM_TO_DEV) {
2442 			if (slave_config->dst_addr)
2443 				pch->fifo_addr = slave_config->dst_addr;
2444 			if (slave_config->dst_addr_width)
2445 				pch->burst_sz = __ffs(slave_config->dst_addr_width);
2446 			if (slave_config->dst_maxburst)
2447 				pch->burst_len = slave_config->dst_maxburst;
2448 		} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2449 			if (slave_config->src_addr)
2450 				pch->fifo_addr = slave_config->src_addr;
2451 			if (slave_config->src_addr_width)
2452 				pch->burst_sz = __ffs(slave_config->src_addr_width);
2453 			if (slave_config->src_maxburst)
2454 				pch->burst_len = slave_config->src_maxburst;
2455 		}
2456 		break;
2457 	default:
2458 		dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2459 		return -ENXIO;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 static void pl330_free_chan_resources(struct dma_chan *chan)
2466 {
2467 	struct dma_pl330_chan *pch = to_pchan(chan);
2468 	unsigned long flags;
2469 
2470 	spin_lock_irqsave(&pch->lock, flags);
2471 
2472 	tasklet_kill(&pch->task);
2473 
2474 	pl330_release_channel(pch->pl330_chid);
2475 	pch->pl330_chid = NULL;
2476 
2477 	if (pch->cyclic)
2478 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2479 
2480 	spin_unlock_irqrestore(&pch->lock, flags);
2481 }
2482 
2483 static enum dma_status
2484 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2485 		 struct dma_tx_state *txstate)
2486 {
2487 	return dma_cookie_status(chan, cookie, txstate);
2488 }
2489 
2490 static void pl330_issue_pending(struct dma_chan *chan)
2491 {
2492 	pl330_tasklet((unsigned long) to_pchan(chan));
2493 }
2494 
2495 /*
2496  * We returned the last one of the circular list of descriptor(s)
2497  * from prep_xxx, so the argument to submit corresponds to the last
2498  * descriptor of the list.
2499  */
2500 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2501 {
2502 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2503 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2504 	dma_cookie_t cookie;
2505 	unsigned long flags;
2506 
2507 	spin_lock_irqsave(&pch->lock, flags);
2508 
2509 	/* Assign cookies to all nodes */
2510 	while (!list_empty(&last->node)) {
2511 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2512 
2513 		dma_cookie_assign(&desc->txd);
2514 
2515 		list_move_tail(&desc->node, &pch->work_list);
2516 	}
2517 
2518 	cookie = dma_cookie_assign(&last->txd);
2519 	list_add_tail(&last->node, &pch->work_list);
2520 	spin_unlock_irqrestore(&pch->lock, flags);
2521 
2522 	return cookie;
2523 }
2524 
2525 static inline void _init_desc(struct dma_pl330_desc *desc)
2526 {
2527 	desc->pchan = NULL;
2528 	desc->req.x = &desc->px;
2529 	desc->req.token = desc;
2530 	desc->rqcfg.swap = SWAP_NO;
2531 	desc->rqcfg.privileged = 0;
2532 	desc->rqcfg.insnaccess = 0;
2533 	desc->rqcfg.scctl = SCCTRL0;
2534 	desc->rqcfg.dcctl = DCCTRL0;
2535 	desc->req.cfg = &desc->rqcfg;
2536 	desc->req.xfer_cb = dma_pl330_rqcb;
2537 	desc->txd.tx_submit = pl330_tx_submit;
2538 
2539 	INIT_LIST_HEAD(&desc->node);
2540 }
2541 
2542 /* Returns the number of descriptors added to the DMAC pool */
2543 int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2544 {
2545 	struct dma_pl330_desc *desc;
2546 	unsigned long flags;
2547 	int i;
2548 
2549 	if (!pdmac)
2550 		return 0;
2551 
2552 	desc = kmalloc(count * sizeof(*desc), flg);
2553 	if (!desc)
2554 		return 0;
2555 
2556 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2557 
2558 	for (i = 0; i < count; i++) {
2559 		_init_desc(&desc[i]);
2560 		list_add_tail(&desc[i].node, &pdmac->desc_pool);
2561 	}
2562 
2563 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2564 
2565 	return count;
2566 }
2567 
2568 static struct dma_pl330_desc *
2569 pluck_desc(struct dma_pl330_dmac *pdmac)
2570 {
2571 	struct dma_pl330_desc *desc = NULL;
2572 	unsigned long flags;
2573 
2574 	if (!pdmac)
2575 		return NULL;
2576 
2577 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2578 
2579 	if (!list_empty(&pdmac->desc_pool)) {
2580 		desc = list_entry(pdmac->desc_pool.next,
2581 				struct dma_pl330_desc, node);
2582 
2583 		list_del_init(&desc->node);
2584 
2585 		desc->status = PREP;
2586 		desc->txd.callback = NULL;
2587 	}
2588 
2589 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2590 
2591 	return desc;
2592 }
2593 
2594 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2595 {
2596 	struct dma_pl330_dmac *pdmac = pch->dmac;
2597 	u8 *peri_id = pch->chan.private;
2598 	struct dma_pl330_desc *desc;
2599 
2600 	/* Pluck one desc from the pool of DMAC */
2601 	desc = pluck_desc(pdmac);
2602 
2603 	/* If the DMAC pool is empty, alloc new */
2604 	if (!desc) {
2605 		if (!add_desc(pdmac, GFP_ATOMIC, 1))
2606 			return NULL;
2607 
2608 		/* Try again */
2609 		desc = pluck_desc(pdmac);
2610 		if (!desc) {
2611 			dev_err(pch->dmac->pif.dev,
2612 				"%s:%d ALERT!\n", __func__, __LINE__);
2613 			return NULL;
2614 		}
2615 	}
2616 
2617 	/* Initialize the descriptor */
2618 	desc->pchan = pch;
2619 	desc->txd.cookie = 0;
2620 	async_tx_ack(&desc->txd);
2621 
2622 	desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2623 	desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2624 
2625 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2626 
2627 	return desc;
2628 }
2629 
2630 static inline void fill_px(struct pl330_xfer *px,
2631 		dma_addr_t dst, dma_addr_t src, size_t len)
2632 {
2633 	px->next = NULL;
2634 	px->bytes = len;
2635 	px->dst_addr = dst;
2636 	px->src_addr = src;
2637 }
2638 
2639 static struct dma_pl330_desc *
2640 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2641 		dma_addr_t src, size_t len)
2642 {
2643 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2644 
2645 	if (!desc) {
2646 		dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2647 			__func__, __LINE__);
2648 		return NULL;
2649 	}
2650 
2651 	/*
2652 	 * Ideally we should lookout for reqs bigger than
2653 	 * those that can be programmed with 256 bytes of
2654 	 * MC buffer, but considering a req size is seldom
2655 	 * going to be word-unaligned and more than 200MB,
2656 	 * we take it easy.
2657 	 * Also, should the limit is reached we'd rather
2658 	 * have the platform increase MC buffer size than
2659 	 * complicating this API driver.
2660 	 */
2661 	fill_px(&desc->px, dst, src, len);
2662 
2663 	return desc;
2664 }
2665 
2666 /* Call after fixing burst size */
2667 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2668 {
2669 	struct dma_pl330_chan *pch = desc->pchan;
2670 	struct pl330_info *pi = &pch->dmac->pif;
2671 	int burst_len;
2672 
2673 	burst_len = pi->pcfg.data_bus_width / 8;
2674 	burst_len *= pi->pcfg.data_buf_dep;
2675 	burst_len >>= desc->rqcfg.brst_size;
2676 
2677 	/* src/dst_burst_len can't be more than 16 */
2678 	if (burst_len > 16)
2679 		burst_len = 16;
2680 
2681 	while (burst_len > 1) {
2682 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2683 			break;
2684 		burst_len--;
2685 	}
2686 
2687 	return burst_len;
2688 }
2689 
2690 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2691 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2692 		size_t period_len, enum dma_transfer_direction direction,
2693 		void *context)
2694 {
2695 	struct dma_pl330_desc *desc;
2696 	struct dma_pl330_chan *pch = to_pchan(chan);
2697 	dma_addr_t dst;
2698 	dma_addr_t src;
2699 
2700 	desc = pl330_get_desc(pch);
2701 	if (!desc) {
2702 		dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2703 			__func__, __LINE__);
2704 		return NULL;
2705 	}
2706 
2707 	switch (direction) {
2708 	case DMA_MEM_TO_DEV:
2709 		desc->rqcfg.src_inc = 1;
2710 		desc->rqcfg.dst_inc = 0;
2711 		desc->req.rqtype = MEMTODEV;
2712 		src = dma_addr;
2713 		dst = pch->fifo_addr;
2714 		break;
2715 	case DMA_DEV_TO_MEM:
2716 		desc->rqcfg.src_inc = 0;
2717 		desc->rqcfg.dst_inc = 1;
2718 		desc->req.rqtype = DEVTOMEM;
2719 		src = pch->fifo_addr;
2720 		dst = dma_addr;
2721 		break;
2722 	default:
2723 		dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2724 		__func__, __LINE__);
2725 		return NULL;
2726 	}
2727 
2728 	desc->rqcfg.brst_size = pch->burst_sz;
2729 	desc->rqcfg.brst_len = 1;
2730 
2731 	pch->cyclic = true;
2732 
2733 	fill_px(&desc->px, dst, src, period_len);
2734 
2735 	return &desc->txd;
2736 }
2737 
2738 static struct dma_async_tx_descriptor *
2739 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2740 		dma_addr_t src, size_t len, unsigned long flags)
2741 {
2742 	struct dma_pl330_desc *desc;
2743 	struct dma_pl330_chan *pch = to_pchan(chan);
2744 	struct pl330_info *pi;
2745 	int burst;
2746 
2747 	if (unlikely(!pch || !len))
2748 		return NULL;
2749 
2750 	pi = &pch->dmac->pif;
2751 
2752 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2753 	if (!desc)
2754 		return NULL;
2755 
2756 	desc->rqcfg.src_inc = 1;
2757 	desc->rqcfg.dst_inc = 1;
2758 	desc->req.rqtype = MEMTOMEM;
2759 
2760 	/* Select max possible burst size */
2761 	burst = pi->pcfg.data_bus_width / 8;
2762 
2763 	while (burst > 1) {
2764 		if (!(len % burst))
2765 			break;
2766 		burst /= 2;
2767 	}
2768 
2769 	desc->rqcfg.brst_size = 0;
2770 	while (burst != (1 << desc->rqcfg.brst_size))
2771 		desc->rqcfg.brst_size++;
2772 
2773 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2774 
2775 	desc->txd.flags = flags;
2776 
2777 	return &desc->txd;
2778 }
2779 
2780 static struct dma_async_tx_descriptor *
2781 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2782 		unsigned int sg_len, enum dma_transfer_direction direction,
2783 		unsigned long flg, void *context)
2784 {
2785 	struct dma_pl330_desc *first, *desc = NULL;
2786 	struct dma_pl330_chan *pch = to_pchan(chan);
2787 	struct scatterlist *sg;
2788 	unsigned long flags;
2789 	int i;
2790 	dma_addr_t addr;
2791 
2792 	if (unlikely(!pch || !sgl || !sg_len))
2793 		return NULL;
2794 
2795 	addr = pch->fifo_addr;
2796 
2797 	first = NULL;
2798 
2799 	for_each_sg(sgl, sg, sg_len, i) {
2800 
2801 		desc = pl330_get_desc(pch);
2802 		if (!desc) {
2803 			struct dma_pl330_dmac *pdmac = pch->dmac;
2804 
2805 			dev_err(pch->dmac->pif.dev,
2806 				"%s:%d Unable to fetch desc\n",
2807 				__func__, __LINE__);
2808 			if (!first)
2809 				return NULL;
2810 
2811 			spin_lock_irqsave(&pdmac->pool_lock, flags);
2812 
2813 			while (!list_empty(&first->node)) {
2814 				desc = list_entry(first->node.next,
2815 						struct dma_pl330_desc, node);
2816 				list_move_tail(&desc->node, &pdmac->desc_pool);
2817 			}
2818 
2819 			list_move_tail(&first->node, &pdmac->desc_pool);
2820 
2821 			spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2822 
2823 			return NULL;
2824 		}
2825 
2826 		if (!first)
2827 			first = desc;
2828 		else
2829 			list_add_tail(&desc->node, &first->node);
2830 
2831 		if (direction == DMA_MEM_TO_DEV) {
2832 			desc->rqcfg.src_inc = 1;
2833 			desc->rqcfg.dst_inc = 0;
2834 			desc->req.rqtype = MEMTODEV;
2835 			fill_px(&desc->px,
2836 				addr, sg_dma_address(sg), sg_dma_len(sg));
2837 		} else {
2838 			desc->rqcfg.src_inc = 0;
2839 			desc->rqcfg.dst_inc = 1;
2840 			desc->req.rqtype = DEVTOMEM;
2841 			fill_px(&desc->px,
2842 				sg_dma_address(sg), addr, sg_dma_len(sg));
2843 		}
2844 
2845 		desc->rqcfg.brst_size = pch->burst_sz;
2846 		desc->rqcfg.brst_len = 1;
2847 	}
2848 
2849 	/* Return the last desc in the chain */
2850 	desc->txd.flags = flg;
2851 	return &desc->txd;
2852 }
2853 
2854 static irqreturn_t pl330_irq_handler(int irq, void *data)
2855 {
2856 	if (pl330_update(data))
2857 		return IRQ_HANDLED;
2858 	else
2859 		return IRQ_NONE;
2860 }
2861 
2862 static int __devinit
2863 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2864 {
2865 	struct dma_pl330_platdata *pdat;
2866 	struct dma_pl330_dmac *pdmac;
2867 	struct dma_pl330_chan *pch;
2868 	struct pl330_info *pi;
2869 	struct dma_device *pd;
2870 	struct resource *res;
2871 	int i, ret, irq;
2872 	int num_chan;
2873 
2874 	pdat = adev->dev.platform_data;
2875 
2876 	/* Allocate a new DMAC and its Channels */
2877 	pdmac = kzalloc(sizeof(*pdmac), GFP_KERNEL);
2878 	if (!pdmac) {
2879 		dev_err(&adev->dev, "unable to allocate mem\n");
2880 		return -ENOMEM;
2881 	}
2882 
2883 	pi = &pdmac->pif;
2884 	pi->dev = &adev->dev;
2885 	pi->pl330_data = NULL;
2886 	pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2887 
2888 	res = &adev->res;
2889 	request_mem_region(res->start, resource_size(res), "dma-pl330");
2890 
2891 	pi->base = ioremap(res->start, resource_size(res));
2892 	if (!pi->base) {
2893 		ret = -ENXIO;
2894 		goto probe_err1;
2895 	}
2896 
2897 	pdmac->clk = clk_get(&adev->dev, "dma");
2898 	if (IS_ERR(pdmac->clk)) {
2899 		dev_err(&adev->dev, "Cannot get operation clock.\n");
2900 		ret = -EINVAL;
2901 		goto probe_err2;
2902 	}
2903 
2904 	amba_set_drvdata(adev, pdmac);
2905 
2906 #ifndef CONFIG_PM_RUNTIME
2907 	/* enable dma clk */
2908 	clk_enable(pdmac->clk);
2909 #endif
2910 
2911 	irq = adev->irq[0];
2912 	ret = request_irq(irq, pl330_irq_handler, 0,
2913 			dev_name(&adev->dev), pi);
2914 	if (ret)
2915 		goto probe_err3;
2916 
2917 	ret = pl330_add(pi);
2918 	if (ret)
2919 		goto probe_err4;
2920 
2921 	INIT_LIST_HEAD(&pdmac->desc_pool);
2922 	spin_lock_init(&pdmac->pool_lock);
2923 
2924 	/* Create a descriptor pool of default size */
2925 	if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2926 		dev_warn(&adev->dev, "unable to allocate desc\n");
2927 
2928 	pd = &pdmac->ddma;
2929 	INIT_LIST_HEAD(&pd->channels);
2930 
2931 	/* Initialize channel parameters */
2932 	if (pdat)
2933 		num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan);
2934 	else
2935 		num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan);
2936 
2937 	pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2938 
2939 	for (i = 0; i < num_chan; i++) {
2940 		pch = &pdmac->peripherals[i];
2941 		if (!adev->dev.of_node)
2942 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2943 		else
2944 			pch->chan.private = adev->dev.of_node;
2945 
2946 		INIT_LIST_HEAD(&pch->work_list);
2947 		spin_lock_init(&pch->lock);
2948 		pch->pl330_chid = NULL;
2949 		pch->chan.device = pd;
2950 		pch->dmac = pdmac;
2951 
2952 		/* Add the channel to the DMAC list */
2953 		list_add_tail(&pch->chan.device_node, &pd->channels);
2954 	}
2955 
2956 	pd->dev = &adev->dev;
2957 	if (pdat) {
2958 		pd->cap_mask = pdat->cap_mask;
2959 	} else {
2960 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2961 		if (pi->pcfg.num_peri) {
2962 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2963 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2964 		}
2965 	}
2966 
2967 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2968 	pd->device_free_chan_resources = pl330_free_chan_resources;
2969 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2970 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2971 	pd->device_tx_status = pl330_tx_status;
2972 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2973 	pd->device_control = pl330_control;
2974 	pd->device_issue_pending = pl330_issue_pending;
2975 
2976 	ret = dma_async_device_register(pd);
2977 	if (ret) {
2978 		dev_err(&adev->dev, "unable to register DMAC\n");
2979 		goto probe_err5;
2980 	}
2981 
2982 	dev_info(&adev->dev,
2983 		"Loaded driver for PL330 DMAC-%d\n", adev->periphid);
2984 	dev_info(&adev->dev,
2985 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2986 		pi->pcfg.data_buf_dep,
2987 		pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
2988 		pi->pcfg.num_peri, pi->pcfg.num_events);
2989 
2990 	return 0;
2991 
2992 probe_err5:
2993 	pl330_del(pi);
2994 probe_err4:
2995 	free_irq(irq, pi);
2996 probe_err3:
2997 #ifndef CONFIG_PM_RUNTIME
2998 	clk_disable(pdmac->clk);
2999 #endif
3000 	clk_put(pdmac->clk);
3001 probe_err2:
3002 	iounmap(pi->base);
3003 probe_err1:
3004 	release_mem_region(res->start, resource_size(res));
3005 	kfree(pdmac);
3006 
3007 	return ret;
3008 }
3009 
3010 static int __devexit pl330_remove(struct amba_device *adev)
3011 {
3012 	struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
3013 	struct dma_pl330_chan *pch, *_p;
3014 	struct pl330_info *pi;
3015 	struct resource *res;
3016 	int irq;
3017 
3018 	if (!pdmac)
3019 		return 0;
3020 
3021 	amba_set_drvdata(adev, NULL);
3022 
3023 	/* Idle the DMAC */
3024 	list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3025 			chan.device_node) {
3026 
3027 		/* Remove the channel */
3028 		list_del(&pch->chan.device_node);
3029 
3030 		/* Flush the channel */
3031 		pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3032 		pl330_free_chan_resources(&pch->chan);
3033 	}
3034 
3035 	pi = &pdmac->pif;
3036 
3037 	pl330_del(pi);
3038 
3039 	irq = adev->irq[0];
3040 	free_irq(irq, pi);
3041 
3042 	iounmap(pi->base);
3043 
3044 	res = &adev->res;
3045 	release_mem_region(res->start, resource_size(res));
3046 
3047 #ifndef CONFIG_PM_RUNTIME
3048 	clk_disable(pdmac->clk);
3049 #endif
3050 
3051 	kfree(pdmac);
3052 
3053 	return 0;
3054 }
3055 
3056 static struct amba_id pl330_ids[] = {
3057 	{
3058 		.id	= 0x00041330,
3059 		.mask	= 0x000fffff,
3060 	},
3061 	{ 0, 0 },
3062 };
3063 
3064 MODULE_DEVICE_TABLE(amba, pl330_ids);
3065 
3066 #ifdef CONFIG_PM_RUNTIME
3067 static int pl330_runtime_suspend(struct device *dev)
3068 {
3069 	struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev);
3070 
3071 	if (!pdmac) {
3072 		dev_err(dev, "failed to get dmac\n");
3073 		return -ENODEV;
3074 	}
3075 
3076 	clk_disable(pdmac->clk);
3077 
3078 	return 0;
3079 }
3080 
3081 static int pl330_runtime_resume(struct device *dev)
3082 {
3083 	struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev);
3084 
3085 	if (!pdmac) {
3086 		dev_err(dev, "failed to get dmac\n");
3087 		return -ENODEV;
3088 	}
3089 
3090 	clk_enable(pdmac->clk);
3091 
3092 	return 0;
3093 }
3094 #else
3095 #define pl330_runtime_suspend	NULL
3096 #define pl330_runtime_resume	NULL
3097 #endif /* CONFIG_PM_RUNTIME */
3098 
3099 static const struct dev_pm_ops pl330_pm_ops = {
3100 	.runtime_suspend = pl330_runtime_suspend,
3101 	.runtime_resume = pl330_runtime_resume,
3102 };
3103 
3104 static struct amba_driver pl330_driver = {
3105 	.drv = {
3106 		.owner = THIS_MODULE,
3107 		.name = "dma-pl330",
3108 		.pm = &pl330_pm_ops,
3109 	},
3110 	.id_table = pl330_ids,
3111 	.probe = pl330_probe,
3112 	.remove = pl330_remove,
3113 };
3114 
3115 module_amba_driver(pl330_driver);
3116 
3117 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3118 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3119 MODULE_LICENSE("GPL");
3120