1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/interrupt.h> 25 #include <linux/amba/bus.h> 26 #include <linux/amba/pl330.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/scatterlist.h> 29 #include <linux/of.h> 30 31 #include "dmaengine.h" 32 #define PL330_MAX_CHAN 8 33 #define PL330_MAX_IRQS 32 34 #define PL330_MAX_PERI 32 35 36 enum pl330_srccachectrl { 37 SCCTRL0, /* Noncacheable and nonbufferable */ 38 SCCTRL1, /* Bufferable only */ 39 SCCTRL2, /* Cacheable, but do not allocate */ 40 SCCTRL3, /* Cacheable and bufferable, but do not allocate */ 41 SINVALID1, 42 SINVALID2, 43 SCCTRL6, /* Cacheable write-through, allocate on reads only */ 44 SCCTRL7, /* Cacheable write-back, allocate on reads only */ 45 }; 46 47 enum pl330_dstcachectrl { 48 DCCTRL0, /* Noncacheable and nonbufferable */ 49 DCCTRL1, /* Bufferable only */ 50 DCCTRL2, /* Cacheable, but do not allocate */ 51 DCCTRL3, /* Cacheable and bufferable, but do not allocate */ 52 DINVALID1, /* AWCACHE = 0x1000 */ 53 DINVALID2, 54 DCCTRL6, /* Cacheable write-through, allocate on writes only */ 55 DCCTRL7, /* Cacheable write-back, allocate on writes only */ 56 }; 57 58 enum pl330_byteswap { 59 SWAP_NO, 60 SWAP_2, 61 SWAP_4, 62 SWAP_8, 63 SWAP_16, 64 }; 65 66 enum pl330_reqtype { 67 MEMTOMEM, 68 MEMTODEV, 69 DEVTOMEM, 70 DEVTODEV, 71 }; 72 73 /* Register and Bit field Definitions */ 74 #define DS 0x0 75 #define DS_ST_STOP 0x0 76 #define DS_ST_EXEC 0x1 77 #define DS_ST_CMISS 0x2 78 #define DS_ST_UPDTPC 0x3 79 #define DS_ST_WFE 0x4 80 #define DS_ST_ATBRR 0x5 81 #define DS_ST_QBUSY 0x6 82 #define DS_ST_WFP 0x7 83 #define DS_ST_KILL 0x8 84 #define DS_ST_CMPLT 0x9 85 #define DS_ST_FLTCMP 0xe 86 #define DS_ST_FAULT 0xf 87 88 #define DPC 0x4 89 #define INTEN 0x20 90 #define ES 0x24 91 #define INTSTATUS 0x28 92 #define INTCLR 0x2c 93 #define FSM 0x30 94 #define FSC 0x34 95 #define FTM 0x38 96 97 #define _FTC 0x40 98 #define FTC(n) (_FTC + (n)*0x4) 99 100 #define _CS 0x100 101 #define CS(n) (_CS + (n)*0x8) 102 #define CS_CNS (1 << 21) 103 104 #define _CPC 0x104 105 #define CPC(n) (_CPC + (n)*0x8) 106 107 #define _SA 0x400 108 #define SA(n) (_SA + (n)*0x20) 109 110 #define _DA 0x404 111 #define DA(n) (_DA + (n)*0x20) 112 113 #define _CC 0x408 114 #define CC(n) (_CC + (n)*0x20) 115 116 #define CC_SRCINC (1 << 0) 117 #define CC_DSTINC (1 << 14) 118 #define CC_SRCPRI (1 << 8) 119 #define CC_DSTPRI (1 << 22) 120 #define CC_SRCNS (1 << 9) 121 #define CC_DSTNS (1 << 23) 122 #define CC_SRCIA (1 << 10) 123 #define CC_DSTIA (1 << 24) 124 #define CC_SRCBRSTLEN_SHFT 4 125 #define CC_DSTBRSTLEN_SHFT 18 126 #define CC_SRCBRSTSIZE_SHFT 1 127 #define CC_DSTBRSTSIZE_SHFT 15 128 #define CC_SRCCCTRL_SHFT 11 129 #define CC_SRCCCTRL_MASK 0x7 130 #define CC_DSTCCTRL_SHFT 25 131 #define CC_DRCCCTRL_MASK 0x7 132 #define CC_SWAP_SHFT 28 133 134 #define _LC0 0x40c 135 #define LC0(n) (_LC0 + (n)*0x20) 136 137 #define _LC1 0x410 138 #define LC1(n) (_LC1 + (n)*0x20) 139 140 #define DBGSTATUS 0xd00 141 #define DBG_BUSY (1 << 0) 142 143 #define DBGCMD 0xd04 144 #define DBGINST0 0xd08 145 #define DBGINST1 0xd0c 146 147 #define CR0 0xe00 148 #define CR1 0xe04 149 #define CR2 0xe08 150 #define CR3 0xe0c 151 #define CR4 0xe10 152 #define CRD 0xe14 153 154 #define PERIPH_ID 0xfe0 155 #define PERIPH_REV_SHIFT 20 156 #define PERIPH_REV_MASK 0xf 157 #define PERIPH_REV_R0P0 0 158 #define PERIPH_REV_R1P0 1 159 #define PERIPH_REV_R1P1 2 160 #define PCELL_ID 0xff0 161 162 #define CR0_PERIPH_REQ_SET (1 << 0) 163 #define CR0_BOOT_EN_SET (1 << 1) 164 #define CR0_BOOT_MAN_NS (1 << 2) 165 #define CR0_NUM_CHANS_SHIFT 4 166 #define CR0_NUM_CHANS_MASK 0x7 167 #define CR0_NUM_PERIPH_SHIFT 12 168 #define CR0_NUM_PERIPH_MASK 0x1f 169 #define CR0_NUM_EVENTS_SHIFT 17 170 #define CR0_NUM_EVENTS_MASK 0x1f 171 172 #define CR1_ICACHE_LEN_SHIFT 0 173 #define CR1_ICACHE_LEN_MASK 0x7 174 #define CR1_NUM_ICACHELINES_SHIFT 4 175 #define CR1_NUM_ICACHELINES_MASK 0xf 176 177 #define CRD_DATA_WIDTH_SHIFT 0 178 #define CRD_DATA_WIDTH_MASK 0x7 179 #define CRD_WR_CAP_SHIFT 4 180 #define CRD_WR_CAP_MASK 0x7 181 #define CRD_WR_Q_DEP_SHIFT 8 182 #define CRD_WR_Q_DEP_MASK 0xf 183 #define CRD_RD_CAP_SHIFT 12 184 #define CRD_RD_CAP_MASK 0x7 185 #define CRD_RD_Q_DEP_SHIFT 16 186 #define CRD_RD_Q_DEP_MASK 0xf 187 #define CRD_DATA_BUFF_SHIFT 20 188 #define CRD_DATA_BUFF_MASK 0x3ff 189 190 #define PART 0x330 191 #define DESIGNER 0x41 192 #define REVISION 0x0 193 #define INTEG_CFG 0x0 194 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 195 196 #define PCELL_ID_VAL 0xb105f00d 197 198 #define PL330_STATE_STOPPED (1 << 0) 199 #define PL330_STATE_EXECUTING (1 << 1) 200 #define PL330_STATE_WFE (1 << 2) 201 #define PL330_STATE_FAULTING (1 << 3) 202 #define PL330_STATE_COMPLETING (1 << 4) 203 #define PL330_STATE_WFP (1 << 5) 204 #define PL330_STATE_KILLING (1 << 6) 205 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 206 #define PL330_STATE_CACHEMISS (1 << 8) 207 #define PL330_STATE_UPDTPC (1 << 9) 208 #define PL330_STATE_ATBARRIER (1 << 10) 209 #define PL330_STATE_QUEUEBUSY (1 << 11) 210 #define PL330_STATE_INVALID (1 << 15) 211 212 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 213 | PL330_STATE_WFE | PL330_STATE_FAULTING) 214 215 #define CMD_DMAADDH 0x54 216 #define CMD_DMAEND 0x00 217 #define CMD_DMAFLUSHP 0x35 218 #define CMD_DMAGO 0xa0 219 #define CMD_DMALD 0x04 220 #define CMD_DMALDP 0x25 221 #define CMD_DMALP 0x20 222 #define CMD_DMALPEND 0x28 223 #define CMD_DMAKILL 0x01 224 #define CMD_DMAMOV 0xbc 225 #define CMD_DMANOP 0x18 226 #define CMD_DMARMB 0x12 227 #define CMD_DMASEV 0x34 228 #define CMD_DMAST 0x08 229 #define CMD_DMASTP 0x29 230 #define CMD_DMASTZ 0x0c 231 #define CMD_DMAWFE 0x36 232 #define CMD_DMAWFP 0x30 233 #define CMD_DMAWMB 0x13 234 235 #define SZ_DMAADDH 3 236 #define SZ_DMAEND 1 237 #define SZ_DMAFLUSHP 2 238 #define SZ_DMALD 1 239 #define SZ_DMALDP 2 240 #define SZ_DMALP 2 241 #define SZ_DMALPEND 2 242 #define SZ_DMAKILL 1 243 #define SZ_DMAMOV 6 244 #define SZ_DMANOP 1 245 #define SZ_DMARMB 1 246 #define SZ_DMASEV 2 247 #define SZ_DMAST 1 248 #define SZ_DMASTP 2 249 #define SZ_DMASTZ 1 250 #define SZ_DMAWFE 2 251 #define SZ_DMAWFP 2 252 #define SZ_DMAWMB 1 253 #define SZ_DMAGO 6 254 255 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 256 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 257 258 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 259 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 260 261 /* 262 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 263 * at 1byte/burst for P<->M and M<->M respectively. 264 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 265 * should be enough for P<->M and M<->M respectively. 266 */ 267 #define MCODE_BUFF_PER_REQ 256 268 269 /* If the _pl330_req is available to the client */ 270 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND) 271 272 /* Use this _only_ to wait on transient states */ 273 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 274 275 #ifdef PL330_DEBUG_MCGEN 276 static unsigned cmd_line; 277 #define PL330_DBGCMD_DUMP(off, x...) do { \ 278 printk("%x:", cmd_line); \ 279 printk(x); \ 280 cmd_line += off; \ 281 } while (0) 282 #define PL330_DBGMC_START(addr) (cmd_line = addr) 283 #else 284 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 285 #define PL330_DBGMC_START(addr) do {} while (0) 286 #endif 287 288 /* The number of default descriptors */ 289 290 #define NR_DEFAULT_DESC 16 291 292 /* Populated by the PL330 core driver for DMA API driver's info */ 293 struct pl330_config { 294 u32 periph_id; 295 u32 pcell_id; 296 #define DMAC_MODE_NS (1 << 0) 297 unsigned int mode; 298 unsigned int data_bus_width:10; /* In number of bits */ 299 unsigned int data_buf_dep:10; 300 unsigned int num_chan:4; 301 unsigned int num_peri:6; 302 u32 peri_ns; 303 unsigned int num_events:6; 304 u32 irq_ns; 305 }; 306 307 /* Handle to the DMAC provided to the PL330 core */ 308 struct pl330_info { 309 /* Owning device */ 310 struct device *dev; 311 /* Size of MicroCode buffers for each channel. */ 312 unsigned mcbufsz; 313 /* ioremap'ed address of PL330 registers. */ 314 void __iomem *base; 315 /* Client can freely use it. */ 316 void *client_data; 317 /* PL330 core data, Client must not touch it. */ 318 void *pl330_data; 319 /* Populated by the PL330 core driver during pl330_add */ 320 struct pl330_config pcfg; 321 /* 322 * If the DMAC has some reset mechanism, then the 323 * client may want to provide pointer to the method. 324 */ 325 void (*dmac_reset)(struct pl330_info *pi); 326 }; 327 328 /** 329 * Request Configuration. 330 * The PL330 core does not modify this and uses the last 331 * working configuration if the request doesn't provide any. 332 * 333 * The Client may want to provide this info only for the 334 * first request and a request with new settings. 335 */ 336 struct pl330_reqcfg { 337 /* Address Incrementing */ 338 unsigned dst_inc:1; 339 unsigned src_inc:1; 340 341 /* 342 * For now, the SRC & DST protection levels 343 * and burst size/length are assumed same. 344 */ 345 bool nonsecure; 346 bool privileged; 347 bool insnaccess; 348 unsigned brst_len:5; 349 unsigned brst_size:3; /* in power of 2 */ 350 351 enum pl330_dstcachectrl dcctl; 352 enum pl330_srccachectrl scctl; 353 enum pl330_byteswap swap; 354 struct pl330_config *pcfg; 355 }; 356 357 /* 358 * One cycle of DMAC operation. 359 * There may be more than one xfer in a request. 360 */ 361 struct pl330_xfer { 362 u32 src_addr; 363 u32 dst_addr; 364 /* Size to xfer */ 365 u32 bytes; 366 /* 367 * Pointer to next xfer in the list. 368 * The last xfer in the req must point to NULL. 369 */ 370 struct pl330_xfer *next; 371 }; 372 373 /* The xfer callbacks are made with one of these arguments. */ 374 enum pl330_op_err { 375 /* The all xfers in the request were success. */ 376 PL330_ERR_NONE, 377 /* If req aborted due to global error. */ 378 PL330_ERR_ABORT, 379 /* If req failed due to problem with Channel. */ 380 PL330_ERR_FAIL, 381 }; 382 383 /* A request defining Scatter-Gather List ending with NULL xfer. */ 384 struct pl330_req { 385 enum pl330_reqtype rqtype; 386 /* Index of peripheral for the xfer. */ 387 unsigned peri:5; 388 /* Unique token for this xfer, set by the client. */ 389 void *token; 390 /* Callback to be called after xfer. */ 391 void (*xfer_cb)(void *token, enum pl330_op_err err); 392 /* If NULL, req will be done at last set parameters. */ 393 struct pl330_reqcfg *cfg; 394 /* Pointer to first xfer in the request. */ 395 struct pl330_xfer *x; 396 }; 397 398 /* 399 * To know the status of the channel and DMAC, the client 400 * provides a pointer to this structure. The PL330 core 401 * fills it with current information. 402 */ 403 struct pl330_chanstatus { 404 /* 405 * If the DMAC engine halted due to some error, 406 * the client should remove-add DMAC. 407 */ 408 bool dmac_halted; 409 /* 410 * If channel is halted due to some error, 411 * the client should ABORT/FLUSH and START the channel. 412 */ 413 bool faulting; 414 /* Location of last load */ 415 u32 src_addr; 416 /* Location of last store */ 417 u32 dst_addr; 418 /* 419 * Pointer to the currently active req, NULL if channel is 420 * inactive, even though the requests may be present. 421 */ 422 struct pl330_req *top_req; 423 /* Pointer to req waiting second in the queue if any. */ 424 struct pl330_req *wait_req; 425 }; 426 427 enum pl330_chan_op { 428 /* Start the channel */ 429 PL330_OP_START, 430 /* Abort the active xfer */ 431 PL330_OP_ABORT, 432 /* Stop xfer and flush queue */ 433 PL330_OP_FLUSH, 434 }; 435 436 struct _xfer_spec { 437 u32 ccr; 438 struct pl330_req *r; 439 struct pl330_xfer *x; 440 }; 441 442 enum dmamov_dst { 443 SAR = 0, 444 CCR, 445 DAR, 446 }; 447 448 enum pl330_dst { 449 SRC = 0, 450 DST, 451 }; 452 453 enum pl330_cond { 454 SINGLE, 455 BURST, 456 ALWAYS, 457 }; 458 459 struct _pl330_req { 460 u32 mc_bus; 461 void *mc_cpu; 462 /* Number of bytes taken to setup MC for the req */ 463 u32 mc_len; 464 struct pl330_req *r; 465 /* Hook to attach to DMAC's list of reqs with due callback */ 466 struct list_head rqd; 467 }; 468 469 /* ToBeDone for tasklet */ 470 struct _pl330_tbd { 471 bool reset_dmac; 472 bool reset_mngr; 473 u8 reset_chan; 474 }; 475 476 /* A DMAC Thread */ 477 struct pl330_thread { 478 u8 id; 479 int ev; 480 /* If the channel is not yet acquired by any client */ 481 bool free; 482 /* Parent DMAC */ 483 struct pl330_dmac *dmac; 484 /* Only two at a time */ 485 struct _pl330_req req[2]; 486 /* Index of the last enqueued request */ 487 unsigned lstenq; 488 /* Index of the last submitted request or -1 if the DMA is stopped */ 489 int req_running; 490 }; 491 492 enum pl330_dmac_state { 493 UNINIT, 494 INIT, 495 DYING, 496 }; 497 498 /* A DMAC */ 499 struct pl330_dmac { 500 spinlock_t lock; 501 /* Holds list of reqs with due callbacks */ 502 struct list_head req_done; 503 /* Pointer to platform specific stuff */ 504 struct pl330_info *pinfo; 505 /* Maximum possible events/irqs */ 506 int events[32]; 507 /* BUS address of MicroCode buffer */ 508 u32 mcode_bus; 509 /* CPU address of MicroCode buffer */ 510 void *mcode_cpu; 511 /* List of all Channel threads */ 512 struct pl330_thread *channels; 513 /* Pointer to the MANAGER thread */ 514 struct pl330_thread *manager; 515 /* To handle bad news in interrupt */ 516 struct tasklet_struct tasks; 517 struct _pl330_tbd dmac_tbd; 518 /* State of DMAC operation */ 519 enum pl330_dmac_state state; 520 }; 521 522 enum desc_status { 523 /* In the DMAC pool */ 524 FREE, 525 /* 526 * Allocted to some channel during prep_xxx 527 * Also may be sitting on the work_list. 528 */ 529 PREP, 530 /* 531 * Sitting on the work_list and already submitted 532 * to the PL330 core. Not more than two descriptors 533 * of a channel can be BUSY at any time. 534 */ 535 BUSY, 536 /* 537 * Sitting on the channel work_list but xfer done 538 * by PL330 core 539 */ 540 DONE, 541 }; 542 543 struct dma_pl330_chan { 544 /* Schedule desc completion */ 545 struct tasklet_struct task; 546 547 /* DMA-Engine Channel */ 548 struct dma_chan chan; 549 550 /* List of to be xfered descriptors */ 551 struct list_head work_list; 552 553 /* Pointer to the DMAC that manages this channel, 554 * NULL if the channel is available to be acquired. 555 * As the parent, this DMAC also provides descriptors 556 * to the channel. 557 */ 558 struct dma_pl330_dmac *dmac; 559 560 /* To protect channel manipulation */ 561 spinlock_t lock; 562 563 /* Token of a hardware channel thread of PL330 DMAC 564 * NULL if the channel is available to be acquired. 565 */ 566 void *pl330_chid; 567 568 /* For D-to-M and M-to-D channels */ 569 int burst_sz; /* the peripheral fifo width */ 570 int burst_len; /* the number of burst */ 571 dma_addr_t fifo_addr; 572 573 /* for cyclic capability */ 574 bool cyclic; 575 }; 576 577 struct dma_pl330_dmac { 578 struct pl330_info pif; 579 580 /* DMA-Engine Device */ 581 struct dma_device ddma; 582 583 /* Pool of descriptors available for the DMAC's channels */ 584 struct list_head desc_pool; 585 /* To protect desc_pool manipulation */ 586 spinlock_t pool_lock; 587 588 /* Peripheral channels connected to this DMAC */ 589 struct dma_pl330_chan *peripherals; /* keep at end */ 590 591 struct clk *clk; 592 }; 593 594 struct dma_pl330_desc { 595 /* To attach to a queue as child */ 596 struct list_head node; 597 598 /* Descriptor for the DMA Engine API */ 599 struct dma_async_tx_descriptor txd; 600 601 /* Xfer for PL330 core */ 602 struct pl330_xfer px; 603 604 struct pl330_reqcfg rqcfg; 605 struct pl330_req req; 606 607 enum desc_status status; 608 609 /* The channel which currently holds this desc */ 610 struct dma_pl330_chan *pchan; 611 }; 612 613 static inline void _callback(struct pl330_req *r, enum pl330_op_err err) 614 { 615 if (r && r->xfer_cb) 616 r->xfer_cb(r->token, err); 617 } 618 619 static inline bool _queue_empty(struct pl330_thread *thrd) 620 { 621 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1])) 622 ? true : false; 623 } 624 625 static inline bool _queue_full(struct pl330_thread *thrd) 626 { 627 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1])) 628 ? false : true; 629 } 630 631 static inline bool is_manager(struct pl330_thread *thrd) 632 { 633 struct pl330_dmac *pl330 = thrd->dmac; 634 635 /* MANAGER is indexed at the end */ 636 if (thrd->id == pl330->pinfo->pcfg.num_chan) 637 return true; 638 else 639 return false; 640 } 641 642 /* If manager of the thread is in Non-Secure mode */ 643 static inline bool _manager_ns(struct pl330_thread *thrd) 644 { 645 struct pl330_dmac *pl330 = thrd->dmac; 646 647 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false; 648 } 649 650 static inline u32 get_id(struct pl330_info *pi, u32 off) 651 { 652 void __iomem *regs = pi->base; 653 u32 id = 0; 654 655 id |= (readb(regs + off + 0x0) << 0); 656 id |= (readb(regs + off + 0x4) << 8); 657 id |= (readb(regs + off + 0x8) << 16); 658 id |= (readb(regs + off + 0xc) << 24); 659 660 return id; 661 } 662 663 static inline u32 get_revision(u32 periph_id) 664 { 665 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 666 } 667 668 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 669 enum pl330_dst da, u16 val) 670 { 671 if (dry_run) 672 return SZ_DMAADDH; 673 674 buf[0] = CMD_DMAADDH; 675 buf[0] |= (da << 1); 676 *((u16 *)&buf[1]) = val; 677 678 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 679 da == 1 ? "DA" : "SA", val); 680 681 return SZ_DMAADDH; 682 } 683 684 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 685 { 686 if (dry_run) 687 return SZ_DMAEND; 688 689 buf[0] = CMD_DMAEND; 690 691 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 692 693 return SZ_DMAEND; 694 } 695 696 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 697 { 698 if (dry_run) 699 return SZ_DMAFLUSHP; 700 701 buf[0] = CMD_DMAFLUSHP; 702 703 peri &= 0x1f; 704 peri <<= 3; 705 buf[1] = peri; 706 707 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 708 709 return SZ_DMAFLUSHP; 710 } 711 712 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 713 { 714 if (dry_run) 715 return SZ_DMALD; 716 717 buf[0] = CMD_DMALD; 718 719 if (cond == SINGLE) 720 buf[0] |= (0 << 1) | (1 << 0); 721 else if (cond == BURST) 722 buf[0] |= (1 << 1) | (1 << 0); 723 724 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 725 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 726 727 return SZ_DMALD; 728 } 729 730 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 731 enum pl330_cond cond, u8 peri) 732 { 733 if (dry_run) 734 return SZ_DMALDP; 735 736 buf[0] = CMD_DMALDP; 737 738 if (cond == BURST) 739 buf[0] |= (1 << 1); 740 741 peri &= 0x1f; 742 peri <<= 3; 743 buf[1] = peri; 744 745 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 746 cond == SINGLE ? 'S' : 'B', peri >> 3); 747 748 return SZ_DMALDP; 749 } 750 751 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 752 unsigned loop, u8 cnt) 753 { 754 if (dry_run) 755 return SZ_DMALP; 756 757 buf[0] = CMD_DMALP; 758 759 if (loop) 760 buf[0] |= (1 << 1); 761 762 cnt--; /* DMAC increments by 1 internally */ 763 buf[1] = cnt; 764 765 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 766 767 return SZ_DMALP; 768 } 769 770 struct _arg_LPEND { 771 enum pl330_cond cond; 772 bool forever; 773 unsigned loop; 774 u8 bjump; 775 }; 776 777 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 778 const struct _arg_LPEND *arg) 779 { 780 enum pl330_cond cond = arg->cond; 781 bool forever = arg->forever; 782 unsigned loop = arg->loop; 783 u8 bjump = arg->bjump; 784 785 if (dry_run) 786 return SZ_DMALPEND; 787 788 buf[0] = CMD_DMALPEND; 789 790 if (loop) 791 buf[0] |= (1 << 2); 792 793 if (!forever) 794 buf[0] |= (1 << 4); 795 796 if (cond == SINGLE) 797 buf[0] |= (0 << 1) | (1 << 0); 798 else if (cond == BURST) 799 buf[0] |= (1 << 1) | (1 << 0); 800 801 buf[1] = bjump; 802 803 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 804 forever ? "FE" : "END", 805 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 806 loop ? '1' : '0', 807 bjump); 808 809 return SZ_DMALPEND; 810 } 811 812 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 813 { 814 if (dry_run) 815 return SZ_DMAKILL; 816 817 buf[0] = CMD_DMAKILL; 818 819 return SZ_DMAKILL; 820 } 821 822 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 823 enum dmamov_dst dst, u32 val) 824 { 825 if (dry_run) 826 return SZ_DMAMOV; 827 828 buf[0] = CMD_DMAMOV; 829 buf[1] = dst; 830 *((u32 *)&buf[2]) = val; 831 832 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 833 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 834 835 return SZ_DMAMOV; 836 } 837 838 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 839 { 840 if (dry_run) 841 return SZ_DMANOP; 842 843 buf[0] = CMD_DMANOP; 844 845 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 846 847 return SZ_DMANOP; 848 } 849 850 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 851 { 852 if (dry_run) 853 return SZ_DMARMB; 854 855 buf[0] = CMD_DMARMB; 856 857 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 858 859 return SZ_DMARMB; 860 } 861 862 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 863 { 864 if (dry_run) 865 return SZ_DMASEV; 866 867 buf[0] = CMD_DMASEV; 868 869 ev &= 0x1f; 870 ev <<= 3; 871 buf[1] = ev; 872 873 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 874 875 return SZ_DMASEV; 876 } 877 878 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 879 { 880 if (dry_run) 881 return SZ_DMAST; 882 883 buf[0] = CMD_DMAST; 884 885 if (cond == SINGLE) 886 buf[0] |= (0 << 1) | (1 << 0); 887 else if (cond == BURST) 888 buf[0] |= (1 << 1) | (1 << 0); 889 890 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 891 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 892 893 return SZ_DMAST; 894 } 895 896 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 897 enum pl330_cond cond, u8 peri) 898 { 899 if (dry_run) 900 return SZ_DMASTP; 901 902 buf[0] = CMD_DMASTP; 903 904 if (cond == BURST) 905 buf[0] |= (1 << 1); 906 907 peri &= 0x1f; 908 peri <<= 3; 909 buf[1] = peri; 910 911 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 912 cond == SINGLE ? 'S' : 'B', peri >> 3); 913 914 return SZ_DMASTP; 915 } 916 917 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 918 { 919 if (dry_run) 920 return SZ_DMASTZ; 921 922 buf[0] = CMD_DMASTZ; 923 924 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 925 926 return SZ_DMASTZ; 927 } 928 929 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 930 unsigned invalidate) 931 { 932 if (dry_run) 933 return SZ_DMAWFE; 934 935 buf[0] = CMD_DMAWFE; 936 937 ev &= 0x1f; 938 ev <<= 3; 939 buf[1] = ev; 940 941 if (invalidate) 942 buf[1] |= (1 << 1); 943 944 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 945 ev >> 3, invalidate ? ", I" : ""); 946 947 return SZ_DMAWFE; 948 } 949 950 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 951 enum pl330_cond cond, u8 peri) 952 { 953 if (dry_run) 954 return SZ_DMAWFP; 955 956 buf[0] = CMD_DMAWFP; 957 958 if (cond == SINGLE) 959 buf[0] |= (0 << 1) | (0 << 0); 960 else if (cond == BURST) 961 buf[0] |= (1 << 1) | (0 << 0); 962 else 963 buf[0] |= (0 << 1) | (1 << 0); 964 965 peri &= 0x1f; 966 peri <<= 3; 967 buf[1] = peri; 968 969 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 970 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 971 972 return SZ_DMAWFP; 973 } 974 975 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 976 { 977 if (dry_run) 978 return SZ_DMAWMB; 979 980 buf[0] = CMD_DMAWMB; 981 982 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 983 984 return SZ_DMAWMB; 985 } 986 987 struct _arg_GO { 988 u8 chan; 989 u32 addr; 990 unsigned ns; 991 }; 992 993 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 994 const struct _arg_GO *arg) 995 { 996 u8 chan = arg->chan; 997 u32 addr = arg->addr; 998 unsigned ns = arg->ns; 999 1000 if (dry_run) 1001 return SZ_DMAGO; 1002 1003 buf[0] = CMD_DMAGO; 1004 buf[0] |= (ns << 1); 1005 1006 buf[1] = chan & 0x7; 1007 1008 *((u32 *)&buf[2]) = addr; 1009 1010 return SZ_DMAGO; 1011 } 1012 1013 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 1014 1015 /* Returns Time-Out */ 1016 static bool _until_dmac_idle(struct pl330_thread *thrd) 1017 { 1018 void __iomem *regs = thrd->dmac->pinfo->base; 1019 unsigned long loops = msecs_to_loops(5); 1020 1021 do { 1022 /* Until Manager is Idle */ 1023 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 1024 break; 1025 1026 cpu_relax(); 1027 } while (--loops); 1028 1029 if (!loops) 1030 return true; 1031 1032 return false; 1033 } 1034 1035 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 1036 u8 insn[], bool as_manager) 1037 { 1038 void __iomem *regs = thrd->dmac->pinfo->base; 1039 u32 val; 1040 1041 val = (insn[0] << 16) | (insn[1] << 24); 1042 if (!as_manager) { 1043 val |= (1 << 0); 1044 val |= (thrd->id << 8); /* Channel Number */ 1045 } 1046 writel(val, regs + DBGINST0); 1047 1048 val = *((u32 *)&insn[2]); 1049 writel(val, regs + DBGINST1); 1050 1051 /* If timed out due to halted state-machine */ 1052 if (_until_dmac_idle(thrd)) { 1053 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n"); 1054 return; 1055 } 1056 1057 /* Get going */ 1058 writel(0, regs + DBGCMD); 1059 } 1060 1061 /* 1062 * Mark a _pl330_req as free. 1063 * We do it by writing DMAEND as the first instruction 1064 * because no valid request is going to have DMAEND as 1065 * its first instruction to execute. 1066 */ 1067 static void mark_free(struct pl330_thread *thrd, int idx) 1068 { 1069 struct _pl330_req *req = &thrd->req[idx]; 1070 1071 _emit_END(0, req->mc_cpu); 1072 req->mc_len = 0; 1073 1074 thrd->req_running = -1; 1075 } 1076 1077 static inline u32 _state(struct pl330_thread *thrd) 1078 { 1079 void __iomem *regs = thrd->dmac->pinfo->base; 1080 u32 val; 1081 1082 if (is_manager(thrd)) 1083 val = readl(regs + DS) & 0xf; 1084 else 1085 val = readl(regs + CS(thrd->id)) & 0xf; 1086 1087 switch (val) { 1088 case DS_ST_STOP: 1089 return PL330_STATE_STOPPED; 1090 case DS_ST_EXEC: 1091 return PL330_STATE_EXECUTING; 1092 case DS_ST_CMISS: 1093 return PL330_STATE_CACHEMISS; 1094 case DS_ST_UPDTPC: 1095 return PL330_STATE_UPDTPC; 1096 case DS_ST_WFE: 1097 return PL330_STATE_WFE; 1098 case DS_ST_FAULT: 1099 return PL330_STATE_FAULTING; 1100 case DS_ST_ATBRR: 1101 if (is_manager(thrd)) 1102 return PL330_STATE_INVALID; 1103 else 1104 return PL330_STATE_ATBARRIER; 1105 case DS_ST_QBUSY: 1106 if (is_manager(thrd)) 1107 return PL330_STATE_INVALID; 1108 else 1109 return PL330_STATE_QUEUEBUSY; 1110 case DS_ST_WFP: 1111 if (is_manager(thrd)) 1112 return PL330_STATE_INVALID; 1113 else 1114 return PL330_STATE_WFP; 1115 case DS_ST_KILL: 1116 if (is_manager(thrd)) 1117 return PL330_STATE_INVALID; 1118 else 1119 return PL330_STATE_KILLING; 1120 case DS_ST_CMPLT: 1121 if (is_manager(thrd)) 1122 return PL330_STATE_INVALID; 1123 else 1124 return PL330_STATE_COMPLETING; 1125 case DS_ST_FLTCMP: 1126 if (is_manager(thrd)) 1127 return PL330_STATE_INVALID; 1128 else 1129 return PL330_STATE_FAULT_COMPLETING; 1130 default: 1131 return PL330_STATE_INVALID; 1132 } 1133 } 1134 1135 static void _stop(struct pl330_thread *thrd) 1136 { 1137 void __iomem *regs = thrd->dmac->pinfo->base; 1138 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1139 1140 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1141 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1142 1143 /* Return if nothing needs to be done */ 1144 if (_state(thrd) == PL330_STATE_COMPLETING 1145 || _state(thrd) == PL330_STATE_KILLING 1146 || _state(thrd) == PL330_STATE_STOPPED) 1147 return; 1148 1149 _emit_KILL(0, insn); 1150 1151 /* Stop generating interrupts for SEV */ 1152 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1153 1154 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1155 } 1156 1157 /* Start doing req 'idx' of thread 'thrd' */ 1158 static bool _trigger(struct pl330_thread *thrd) 1159 { 1160 void __iomem *regs = thrd->dmac->pinfo->base; 1161 struct _pl330_req *req; 1162 struct pl330_req *r; 1163 struct _arg_GO go; 1164 unsigned ns; 1165 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1166 int idx; 1167 1168 /* Return if already ACTIVE */ 1169 if (_state(thrd) != PL330_STATE_STOPPED) 1170 return true; 1171 1172 idx = 1 - thrd->lstenq; 1173 if (!IS_FREE(&thrd->req[idx])) 1174 req = &thrd->req[idx]; 1175 else { 1176 idx = thrd->lstenq; 1177 if (!IS_FREE(&thrd->req[idx])) 1178 req = &thrd->req[idx]; 1179 else 1180 req = NULL; 1181 } 1182 1183 /* Return if no request */ 1184 if (!req || !req->r) 1185 return true; 1186 1187 r = req->r; 1188 1189 if (r->cfg) 1190 ns = r->cfg->nonsecure ? 1 : 0; 1191 else if (readl(regs + CS(thrd->id)) & CS_CNS) 1192 ns = 1; 1193 else 1194 ns = 0; 1195 1196 /* See 'Abort Sources' point-4 at Page 2-25 */ 1197 if (_manager_ns(thrd) && !ns) 1198 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n", 1199 __func__, __LINE__); 1200 1201 go.chan = thrd->id; 1202 go.addr = req->mc_bus; 1203 go.ns = ns; 1204 _emit_GO(0, insn, &go); 1205 1206 /* Set to generate interrupts for SEV */ 1207 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1208 1209 /* Only manager can execute GO */ 1210 _execute_DBGINSN(thrd, insn, true); 1211 1212 thrd->req_running = idx; 1213 1214 return true; 1215 } 1216 1217 static bool _start(struct pl330_thread *thrd) 1218 { 1219 switch (_state(thrd)) { 1220 case PL330_STATE_FAULT_COMPLETING: 1221 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1222 1223 if (_state(thrd) == PL330_STATE_KILLING) 1224 UNTIL(thrd, PL330_STATE_STOPPED) 1225 1226 case PL330_STATE_FAULTING: 1227 _stop(thrd); 1228 1229 case PL330_STATE_KILLING: 1230 case PL330_STATE_COMPLETING: 1231 UNTIL(thrd, PL330_STATE_STOPPED) 1232 1233 case PL330_STATE_STOPPED: 1234 return _trigger(thrd); 1235 1236 case PL330_STATE_WFP: 1237 case PL330_STATE_QUEUEBUSY: 1238 case PL330_STATE_ATBARRIER: 1239 case PL330_STATE_UPDTPC: 1240 case PL330_STATE_CACHEMISS: 1241 case PL330_STATE_EXECUTING: 1242 return true; 1243 1244 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1245 default: 1246 return false; 1247 } 1248 } 1249 1250 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1251 const struct _xfer_spec *pxs, int cyc) 1252 { 1253 int off = 0; 1254 struct pl330_config *pcfg = pxs->r->cfg->pcfg; 1255 1256 /* check lock-up free version */ 1257 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1258 while (cyc--) { 1259 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1260 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1261 } 1262 } else { 1263 while (cyc--) { 1264 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1265 off += _emit_RMB(dry_run, &buf[off]); 1266 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1267 off += _emit_WMB(dry_run, &buf[off]); 1268 } 1269 } 1270 1271 return off; 1272 } 1273 1274 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1275 const struct _xfer_spec *pxs, int cyc) 1276 { 1277 int off = 0; 1278 1279 while (cyc--) { 1280 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1281 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1282 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1283 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1284 } 1285 1286 return off; 1287 } 1288 1289 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1290 const struct _xfer_spec *pxs, int cyc) 1291 { 1292 int off = 0; 1293 1294 while (cyc--) { 1295 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1296 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1297 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1298 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1299 } 1300 1301 return off; 1302 } 1303 1304 static int _bursts(unsigned dry_run, u8 buf[], 1305 const struct _xfer_spec *pxs, int cyc) 1306 { 1307 int off = 0; 1308 1309 switch (pxs->r->rqtype) { 1310 case MEMTODEV: 1311 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1312 break; 1313 case DEVTOMEM: 1314 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1315 break; 1316 case MEMTOMEM: 1317 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1318 break; 1319 default: 1320 off += 0x40000000; /* Scare off the Client */ 1321 break; 1322 } 1323 1324 return off; 1325 } 1326 1327 /* Returns bytes consumed and updates bursts */ 1328 static inline int _loop(unsigned dry_run, u8 buf[], 1329 unsigned long *bursts, const struct _xfer_spec *pxs) 1330 { 1331 int cyc, cycmax, szlp, szlpend, szbrst, off; 1332 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1333 struct _arg_LPEND lpend; 1334 1335 /* Max iterations possible in DMALP is 256 */ 1336 if (*bursts >= 256*256) { 1337 lcnt1 = 256; 1338 lcnt0 = 256; 1339 cyc = *bursts / lcnt1 / lcnt0; 1340 } else if (*bursts > 256) { 1341 lcnt1 = 256; 1342 lcnt0 = *bursts / lcnt1; 1343 cyc = 1; 1344 } else { 1345 lcnt1 = *bursts; 1346 lcnt0 = 0; 1347 cyc = 1; 1348 } 1349 1350 szlp = _emit_LP(1, buf, 0, 0); 1351 szbrst = _bursts(1, buf, pxs, 1); 1352 1353 lpend.cond = ALWAYS; 1354 lpend.forever = false; 1355 lpend.loop = 0; 1356 lpend.bjump = 0; 1357 szlpend = _emit_LPEND(1, buf, &lpend); 1358 1359 if (lcnt0) { 1360 szlp *= 2; 1361 szlpend *= 2; 1362 } 1363 1364 /* 1365 * Max bursts that we can unroll due to limit on the 1366 * size of backward jump that can be encoded in DMALPEND 1367 * which is 8-bits and hence 255 1368 */ 1369 cycmax = (255 - (szlp + szlpend)) / szbrst; 1370 1371 cyc = (cycmax < cyc) ? cycmax : cyc; 1372 1373 off = 0; 1374 1375 if (lcnt0) { 1376 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1377 ljmp0 = off; 1378 } 1379 1380 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1381 ljmp1 = off; 1382 1383 off += _bursts(dry_run, &buf[off], pxs, cyc); 1384 1385 lpend.cond = ALWAYS; 1386 lpend.forever = false; 1387 lpend.loop = 1; 1388 lpend.bjump = off - ljmp1; 1389 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1390 1391 if (lcnt0) { 1392 lpend.cond = ALWAYS; 1393 lpend.forever = false; 1394 lpend.loop = 0; 1395 lpend.bjump = off - ljmp0; 1396 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1397 } 1398 1399 *bursts = lcnt1 * cyc; 1400 if (lcnt0) 1401 *bursts *= lcnt0; 1402 1403 return off; 1404 } 1405 1406 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1407 const struct _xfer_spec *pxs) 1408 { 1409 struct pl330_xfer *x = pxs->x; 1410 u32 ccr = pxs->ccr; 1411 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1412 int off = 0; 1413 1414 while (bursts) { 1415 c = bursts; 1416 off += _loop(dry_run, &buf[off], &c, pxs); 1417 bursts -= c; 1418 } 1419 1420 return off; 1421 } 1422 1423 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1424 const struct _xfer_spec *pxs) 1425 { 1426 struct pl330_xfer *x = pxs->x; 1427 int off = 0; 1428 1429 /* DMAMOV SAR, x->src_addr */ 1430 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1431 /* DMAMOV DAR, x->dst_addr */ 1432 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1433 1434 /* Setup Loop(s) */ 1435 off += _setup_loops(dry_run, &buf[off], pxs); 1436 1437 return off; 1438 } 1439 1440 /* 1441 * A req is a sequence of one or more xfer units. 1442 * Returns the number of bytes taken to setup the MC for the req. 1443 */ 1444 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1445 unsigned index, struct _xfer_spec *pxs) 1446 { 1447 struct _pl330_req *req = &thrd->req[index]; 1448 struct pl330_xfer *x; 1449 u8 *buf = req->mc_cpu; 1450 int off = 0; 1451 1452 PL330_DBGMC_START(req->mc_bus); 1453 1454 /* DMAMOV CCR, ccr */ 1455 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1456 1457 x = pxs->r->x; 1458 do { 1459 /* Error if xfer length is not aligned at burst size */ 1460 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1461 return -EINVAL; 1462 1463 pxs->x = x; 1464 off += _setup_xfer(dry_run, &buf[off], pxs); 1465 1466 x = x->next; 1467 } while (x); 1468 1469 /* DMASEV peripheral/event */ 1470 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1471 /* DMAEND */ 1472 off += _emit_END(dry_run, &buf[off]); 1473 1474 return off; 1475 } 1476 1477 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1478 { 1479 u32 ccr = 0; 1480 1481 if (rqc->src_inc) 1482 ccr |= CC_SRCINC; 1483 1484 if (rqc->dst_inc) 1485 ccr |= CC_DSTINC; 1486 1487 /* We set same protection levels for Src and DST for now */ 1488 if (rqc->privileged) 1489 ccr |= CC_SRCPRI | CC_DSTPRI; 1490 if (rqc->nonsecure) 1491 ccr |= CC_SRCNS | CC_DSTNS; 1492 if (rqc->insnaccess) 1493 ccr |= CC_SRCIA | CC_DSTIA; 1494 1495 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1496 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1497 1498 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1499 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1500 1501 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1502 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1503 1504 ccr |= (rqc->swap << CC_SWAP_SHFT); 1505 1506 return ccr; 1507 } 1508 1509 static inline bool _is_valid(u32 ccr) 1510 { 1511 enum pl330_dstcachectrl dcctl; 1512 enum pl330_srccachectrl scctl; 1513 1514 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK; 1515 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK; 1516 1517 if (dcctl == DINVALID1 || dcctl == DINVALID2 1518 || scctl == SINVALID1 || scctl == SINVALID2) 1519 return false; 1520 else 1521 return true; 1522 } 1523 1524 /* 1525 * Submit a list of xfers after which the client wants notification. 1526 * Client is not notified after each xfer unit, just once after all 1527 * xfer units are done or some error occurs. 1528 */ 1529 static int pl330_submit_req(void *ch_id, struct pl330_req *r) 1530 { 1531 struct pl330_thread *thrd = ch_id; 1532 struct pl330_dmac *pl330; 1533 struct pl330_info *pi; 1534 struct _xfer_spec xs; 1535 unsigned long flags; 1536 void __iomem *regs; 1537 unsigned idx; 1538 u32 ccr; 1539 int ret = 0; 1540 1541 /* No Req or Unacquired Channel or DMAC */ 1542 if (!r || !thrd || thrd->free) 1543 return -EINVAL; 1544 1545 pl330 = thrd->dmac; 1546 pi = pl330->pinfo; 1547 regs = pi->base; 1548 1549 if (pl330->state == DYING 1550 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1551 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n", 1552 __func__, __LINE__); 1553 return -EAGAIN; 1554 } 1555 1556 /* If request for non-existing peripheral */ 1557 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) { 1558 dev_info(thrd->dmac->pinfo->dev, 1559 "%s:%d Invalid peripheral(%u)!\n", 1560 __func__, __LINE__, r->peri); 1561 return -EINVAL; 1562 } 1563 1564 spin_lock_irqsave(&pl330->lock, flags); 1565 1566 if (_queue_full(thrd)) { 1567 ret = -EAGAIN; 1568 goto xfer_exit; 1569 } 1570 1571 /* Prefer Secure Channel */ 1572 if (!_manager_ns(thrd)) 1573 r->cfg->nonsecure = 0; 1574 else 1575 r->cfg->nonsecure = 1; 1576 1577 /* Use last settings, if not provided */ 1578 if (r->cfg) 1579 ccr = _prepare_ccr(r->cfg); 1580 else 1581 ccr = readl(regs + CC(thrd->id)); 1582 1583 /* If this req doesn't have valid xfer settings */ 1584 if (!_is_valid(ccr)) { 1585 ret = -EINVAL; 1586 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n", 1587 __func__, __LINE__, ccr); 1588 goto xfer_exit; 1589 } 1590 1591 idx = IS_FREE(&thrd->req[0]) ? 0 : 1; 1592 1593 xs.ccr = ccr; 1594 xs.r = r; 1595 1596 /* First dry run to check if req is acceptable */ 1597 ret = _setup_req(1, thrd, idx, &xs); 1598 if (ret < 0) 1599 goto xfer_exit; 1600 1601 if (ret > pi->mcbufsz / 2) { 1602 dev_info(thrd->dmac->pinfo->dev, 1603 "%s:%d Trying increasing mcbufsz\n", 1604 __func__, __LINE__); 1605 ret = -ENOMEM; 1606 goto xfer_exit; 1607 } 1608 1609 /* Hook the request */ 1610 thrd->lstenq = idx; 1611 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs); 1612 thrd->req[idx].r = r; 1613 1614 ret = 0; 1615 1616 xfer_exit: 1617 spin_unlock_irqrestore(&pl330->lock, flags); 1618 1619 return ret; 1620 } 1621 1622 static void pl330_dotask(unsigned long data) 1623 { 1624 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1625 struct pl330_info *pi = pl330->pinfo; 1626 unsigned long flags; 1627 int i; 1628 1629 spin_lock_irqsave(&pl330->lock, flags); 1630 1631 /* The DMAC itself gone nuts */ 1632 if (pl330->dmac_tbd.reset_dmac) { 1633 pl330->state = DYING; 1634 /* Reset the manager too */ 1635 pl330->dmac_tbd.reset_mngr = true; 1636 /* Clear the reset flag */ 1637 pl330->dmac_tbd.reset_dmac = false; 1638 } 1639 1640 if (pl330->dmac_tbd.reset_mngr) { 1641 _stop(pl330->manager); 1642 /* Reset all channels */ 1643 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1; 1644 /* Clear the reset flag */ 1645 pl330->dmac_tbd.reset_mngr = false; 1646 } 1647 1648 for (i = 0; i < pi->pcfg.num_chan; i++) { 1649 1650 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1651 struct pl330_thread *thrd = &pl330->channels[i]; 1652 void __iomem *regs = pi->base; 1653 enum pl330_op_err err; 1654 1655 _stop(thrd); 1656 1657 if (readl(regs + FSC) & (1 << thrd->id)) 1658 err = PL330_ERR_FAIL; 1659 else 1660 err = PL330_ERR_ABORT; 1661 1662 spin_unlock_irqrestore(&pl330->lock, flags); 1663 1664 _callback(thrd->req[1 - thrd->lstenq].r, err); 1665 _callback(thrd->req[thrd->lstenq].r, err); 1666 1667 spin_lock_irqsave(&pl330->lock, flags); 1668 1669 thrd->req[0].r = NULL; 1670 thrd->req[1].r = NULL; 1671 mark_free(thrd, 0); 1672 mark_free(thrd, 1); 1673 1674 /* Clear the reset flag */ 1675 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1676 } 1677 } 1678 1679 spin_unlock_irqrestore(&pl330->lock, flags); 1680 1681 return; 1682 } 1683 1684 /* Returns 1 if state was updated, 0 otherwise */ 1685 static int pl330_update(const struct pl330_info *pi) 1686 { 1687 struct _pl330_req *rqdone; 1688 struct pl330_dmac *pl330; 1689 unsigned long flags; 1690 void __iomem *regs; 1691 u32 val; 1692 int id, ev, ret = 0; 1693 1694 if (!pi || !pi->pl330_data) 1695 return 0; 1696 1697 regs = pi->base; 1698 pl330 = pi->pl330_data; 1699 1700 spin_lock_irqsave(&pl330->lock, flags); 1701 1702 val = readl(regs + FSM) & 0x1; 1703 if (val) 1704 pl330->dmac_tbd.reset_mngr = true; 1705 else 1706 pl330->dmac_tbd.reset_mngr = false; 1707 1708 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1); 1709 pl330->dmac_tbd.reset_chan |= val; 1710 if (val) { 1711 int i = 0; 1712 while (i < pi->pcfg.num_chan) { 1713 if (val & (1 << i)) { 1714 dev_info(pi->dev, 1715 "Reset Channel-%d\t CS-%x FTC-%x\n", 1716 i, readl(regs + CS(i)), 1717 readl(regs + FTC(i))); 1718 _stop(&pl330->channels[i]); 1719 } 1720 i++; 1721 } 1722 } 1723 1724 /* Check which event happened i.e, thread notified */ 1725 val = readl(regs + ES); 1726 if (pi->pcfg.num_events < 32 1727 && val & ~((1 << pi->pcfg.num_events) - 1)) { 1728 pl330->dmac_tbd.reset_dmac = true; 1729 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__); 1730 ret = 1; 1731 goto updt_exit; 1732 } 1733 1734 for (ev = 0; ev < pi->pcfg.num_events; ev++) { 1735 if (val & (1 << ev)) { /* Event occurred */ 1736 struct pl330_thread *thrd; 1737 u32 inten = readl(regs + INTEN); 1738 int active; 1739 1740 /* Clear the event */ 1741 if (inten & (1 << ev)) 1742 writel(1 << ev, regs + INTCLR); 1743 1744 ret = 1; 1745 1746 id = pl330->events[ev]; 1747 1748 thrd = &pl330->channels[id]; 1749 1750 active = thrd->req_running; 1751 if (active == -1) /* Aborted */ 1752 continue; 1753 1754 rqdone = &thrd->req[active]; 1755 mark_free(thrd, active); 1756 1757 /* Get going again ASAP */ 1758 _start(thrd); 1759 1760 /* For now, just make a list of callbacks to be done */ 1761 list_add_tail(&rqdone->rqd, &pl330->req_done); 1762 } 1763 } 1764 1765 /* Now that we are in no hurry, do the callbacks */ 1766 while (!list_empty(&pl330->req_done)) { 1767 struct pl330_req *r; 1768 1769 rqdone = container_of(pl330->req_done.next, 1770 struct _pl330_req, rqd); 1771 1772 list_del_init(&rqdone->rqd); 1773 1774 /* Detach the req */ 1775 r = rqdone->r; 1776 rqdone->r = NULL; 1777 1778 spin_unlock_irqrestore(&pl330->lock, flags); 1779 _callback(r, PL330_ERR_NONE); 1780 spin_lock_irqsave(&pl330->lock, flags); 1781 } 1782 1783 updt_exit: 1784 spin_unlock_irqrestore(&pl330->lock, flags); 1785 1786 if (pl330->dmac_tbd.reset_dmac 1787 || pl330->dmac_tbd.reset_mngr 1788 || pl330->dmac_tbd.reset_chan) { 1789 ret = 1; 1790 tasklet_schedule(&pl330->tasks); 1791 } 1792 1793 return ret; 1794 } 1795 1796 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op) 1797 { 1798 struct pl330_thread *thrd = ch_id; 1799 struct pl330_dmac *pl330; 1800 unsigned long flags; 1801 int ret = 0, active; 1802 1803 if (!thrd || thrd->free || thrd->dmac->state == DYING) 1804 return -EINVAL; 1805 1806 pl330 = thrd->dmac; 1807 active = thrd->req_running; 1808 1809 spin_lock_irqsave(&pl330->lock, flags); 1810 1811 switch (op) { 1812 case PL330_OP_FLUSH: 1813 /* Make sure the channel is stopped */ 1814 _stop(thrd); 1815 1816 thrd->req[0].r = NULL; 1817 thrd->req[1].r = NULL; 1818 mark_free(thrd, 0); 1819 mark_free(thrd, 1); 1820 break; 1821 1822 case PL330_OP_ABORT: 1823 /* Make sure the channel is stopped */ 1824 _stop(thrd); 1825 1826 /* ABORT is only for the active req */ 1827 if (active == -1) 1828 break; 1829 1830 thrd->req[active].r = NULL; 1831 mark_free(thrd, active); 1832 1833 /* Start the next */ 1834 case PL330_OP_START: 1835 if ((active == -1) && !_start(thrd)) 1836 ret = -EIO; 1837 break; 1838 1839 default: 1840 ret = -EINVAL; 1841 } 1842 1843 spin_unlock_irqrestore(&pl330->lock, flags); 1844 return ret; 1845 } 1846 1847 /* Reserve an event */ 1848 static inline int _alloc_event(struct pl330_thread *thrd) 1849 { 1850 struct pl330_dmac *pl330 = thrd->dmac; 1851 struct pl330_info *pi = pl330->pinfo; 1852 int ev; 1853 1854 for (ev = 0; ev < pi->pcfg.num_events; ev++) 1855 if (pl330->events[ev] == -1) { 1856 pl330->events[ev] = thrd->id; 1857 return ev; 1858 } 1859 1860 return -1; 1861 } 1862 1863 static bool _chan_ns(const struct pl330_info *pi, int i) 1864 { 1865 return pi->pcfg.irq_ns & (1 << i); 1866 } 1867 1868 /* Upon success, returns IdentityToken for the 1869 * allocated channel, NULL otherwise. 1870 */ 1871 static void *pl330_request_channel(const struct pl330_info *pi) 1872 { 1873 struct pl330_thread *thrd = NULL; 1874 struct pl330_dmac *pl330; 1875 unsigned long flags; 1876 int chans, i; 1877 1878 if (!pi || !pi->pl330_data) 1879 return NULL; 1880 1881 pl330 = pi->pl330_data; 1882 1883 if (pl330->state == DYING) 1884 return NULL; 1885 1886 chans = pi->pcfg.num_chan; 1887 1888 spin_lock_irqsave(&pl330->lock, flags); 1889 1890 for (i = 0; i < chans; i++) { 1891 thrd = &pl330->channels[i]; 1892 if ((thrd->free) && (!_manager_ns(thrd) || 1893 _chan_ns(pi, i))) { 1894 thrd->ev = _alloc_event(thrd); 1895 if (thrd->ev >= 0) { 1896 thrd->free = false; 1897 thrd->lstenq = 1; 1898 thrd->req[0].r = NULL; 1899 mark_free(thrd, 0); 1900 thrd->req[1].r = NULL; 1901 mark_free(thrd, 1); 1902 break; 1903 } 1904 } 1905 thrd = NULL; 1906 } 1907 1908 spin_unlock_irqrestore(&pl330->lock, flags); 1909 1910 return thrd; 1911 } 1912 1913 /* Release an event */ 1914 static inline void _free_event(struct pl330_thread *thrd, int ev) 1915 { 1916 struct pl330_dmac *pl330 = thrd->dmac; 1917 struct pl330_info *pi = pl330->pinfo; 1918 1919 /* If the event is valid and was held by the thread */ 1920 if (ev >= 0 && ev < pi->pcfg.num_events 1921 && pl330->events[ev] == thrd->id) 1922 pl330->events[ev] = -1; 1923 } 1924 1925 static void pl330_release_channel(void *ch_id) 1926 { 1927 struct pl330_thread *thrd = ch_id; 1928 struct pl330_dmac *pl330; 1929 unsigned long flags; 1930 1931 if (!thrd || thrd->free) 1932 return; 1933 1934 _stop(thrd); 1935 1936 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT); 1937 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT); 1938 1939 pl330 = thrd->dmac; 1940 1941 spin_lock_irqsave(&pl330->lock, flags); 1942 _free_event(thrd, thrd->ev); 1943 thrd->free = true; 1944 spin_unlock_irqrestore(&pl330->lock, flags); 1945 } 1946 1947 /* Initialize the structure for PL330 configuration, that can be used 1948 * by the client driver the make best use of the DMAC 1949 */ 1950 static void read_dmac_config(struct pl330_info *pi) 1951 { 1952 void __iomem *regs = pi->base; 1953 u32 val; 1954 1955 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1956 val &= CRD_DATA_WIDTH_MASK; 1957 pi->pcfg.data_bus_width = 8 * (1 << val); 1958 1959 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1960 val &= CRD_DATA_BUFF_MASK; 1961 pi->pcfg.data_buf_dep = val + 1; 1962 1963 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1964 val &= CR0_NUM_CHANS_MASK; 1965 val += 1; 1966 pi->pcfg.num_chan = val; 1967 1968 val = readl(regs + CR0); 1969 if (val & CR0_PERIPH_REQ_SET) { 1970 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1971 val += 1; 1972 pi->pcfg.num_peri = val; 1973 pi->pcfg.peri_ns = readl(regs + CR4); 1974 } else { 1975 pi->pcfg.num_peri = 0; 1976 } 1977 1978 val = readl(regs + CR0); 1979 if (val & CR0_BOOT_MAN_NS) 1980 pi->pcfg.mode |= DMAC_MODE_NS; 1981 else 1982 pi->pcfg.mode &= ~DMAC_MODE_NS; 1983 1984 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1985 val &= CR0_NUM_EVENTS_MASK; 1986 val += 1; 1987 pi->pcfg.num_events = val; 1988 1989 pi->pcfg.irq_ns = readl(regs + CR3); 1990 1991 pi->pcfg.periph_id = get_id(pi, PERIPH_ID); 1992 pi->pcfg.pcell_id = get_id(pi, PCELL_ID); 1993 } 1994 1995 static inline void _reset_thread(struct pl330_thread *thrd) 1996 { 1997 struct pl330_dmac *pl330 = thrd->dmac; 1998 struct pl330_info *pi = pl330->pinfo; 1999 2000 thrd->req[0].mc_cpu = pl330->mcode_cpu 2001 + (thrd->id * pi->mcbufsz); 2002 thrd->req[0].mc_bus = pl330->mcode_bus 2003 + (thrd->id * pi->mcbufsz); 2004 thrd->req[0].r = NULL; 2005 mark_free(thrd, 0); 2006 2007 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 2008 + pi->mcbufsz / 2; 2009 thrd->req[1].mc_bus = thrd->req[0].mc_bus 2010 + pi->mcbufsz / 2; 2011 thrd->req[1].r = NULL; 2012 mark_free(thrd, 1); 2013 } 2014 2015 static int dmac_alloc_threads(struct pl330_dmac *pl330) 2016 { 2017 struct pl330_info *pi = pl330->pinfo; 2018 int chans = pi->pcfg.num_chan; 2019 struct pl330_thread *thrd; 2020 int i; 2021 2022 /* Allocate 1 Manager and 'chans' Channel threads */ 2023 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 2024 GFP_KERNEL); 2025 if (!pl330->channels) 2026 return -ENOMEM; 2027 2028 /* Init Channel threads */ 2029 for (i = 0; i < chans; i++) { 2030 thrd = &pl330->channels[i]; 2031 thrd->id = i; 2032 thrd->dmac = pl330; 2033 _reset_thread(thrd); 2034 thrd->free = true; 2035 } 2036 2037 /* MANAGER is indexed at the end */ 2038 thrd = &pl330->channels[chans]; 2039 thrd->id = chans; 2040 thrd->dmac = pl330; 2041 thrd->free = false; 2042 pl330->manager = thrd; 2043 2044 return 0; 2045 } 2046 2047 static int dmac_alloc_resources(struct pl330_dmac *pl330) 2048 { 2049 struct pl330_info *pi = pl330->pinfo; 2050 int chans = pi->pcfg.num_chan; 2051 int ret; 2052 2053 /* 2054 * Alloc MicroCode buffer for 'chans' Channel threads. 2055 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 2056 */ 2057 pl330->mcode_cpu = dma_alloc_coherent(pi->dev, 2058 chans * pi->mcbufsz, 2059 &pl330->mcode_bus, GFP_KERNEL); 2060 if (!pl330->mcode_cpu) { 2061 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2062 __func__, __LINE__); 2063 return -ENOMEM; 2064 } 2065 2066 ret = dmac_alloc_threads(pl330); 2067 if (ret) { 2068 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n", 2069 __func__, __LINE__); 2070 dma_free_coherent(pi->dev, 2071 chans * pi->mcbufsz, 2072 pl330->mcode_cpu, pl330->mcode_bus); 2073 return ret; 2074 } 2075 2076 return 0; 2077 } 2078 2079 static int pl330_add(struct pl330_info *pi) 2080 { 2081 struct pl330_dmac *pl330; 2082 void __iomem *regs; 2083 int i, ret; 2084 2085 if (!pi || !pi->dev) 2086 return -EINVAL; 2087 2088 /* If already added */ 2089 if (pi->pl330_data) 2090 return -EINVAL; 2091 2092 /* 2093 * If the SoC can perform reset on the DMAC, then do it 2094 * before reading its configuration. 2095 */ 2096 if (pi->dmac_reset) 2097 pi->dmac_reset(pi); 2098 2099 regs = pi->base; 2100 2101 /* Check if we can handle this DMAC */ 2102 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL 2103 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) { 2104 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n", 2105 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID)); 2106 return -EINVAL; 2107 } 2108 2109 /* Read the configuration of the DMAC */ 2110 read_dmac_config(pi); 2111 2112 if (pi->pcfg.num_events == 0) { 2113 dev_err(pi->dev, "%s:%d Can't work without events!\n", 2114 __func__, __LINE__); 2115 return -EINVAL; 2116 } 2117 2118 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL); 2119 if (!pl330) { 2120 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2121 __func__, __LINE__); 2122 return -ENOMEM; 2123 } 2124 2125 /* Assign the info structure and private data */ 2126 pl330->pinfo = pi; 2127 pi->pl330_data = pl330; 2128 2129 spin_lock_init(&pl330->lock); 2130 2131 INIT_LIST_HEAD(&pl330->req_done); 2132 2133 /* Use default MC buffer size if not provided */ 2134 if (!pi->mcbufsz) 2135 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2; 2136 2137 /* Mark all events as free */ 2138 for (i = 0; i < pi->pcfg.num_events; i++) 2139 pl330->events[i] = -1; 2140 2141 /* Allocate resources needed by the DMAC */ 2142 ret = dmac_alloc_resources(pl330); 2143 if (ret) { 2144 dev_err(pi->dev, "Unable to create channels for DMAC\n"); 2145 kfree(pl330); 2146 return ret; 2147 } 2148 2149 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 2150 2151 pl330->state = INIT; 2152 2153 return 0; 2154 } 2155 2156 static int dmac_free_threads(struct pl330_dmac *pl330) 2157 { 2158 struct pl330_info *pi = pl330->pinfo; 2159 int chans = pi->pcfg.num_chan; 2160 struct pl330_thread *thrd; 2161 int i; 2162 2163 /* Release Channel threads */ 2164 for (i = 0; i < chans; i++) { 2165 thrd = &pl330->channels[i]; 2166 pl330_release_channel((void *)thrd); 2167 } 2168 2169 /* Free memory */ 2170 kfree(pl330->channels); 2171 2172 return 0; 2173 } 2174 2175 static void dmac_free_resources(struct pl330_dmac *pl330) 2176 { 2177 struct pl330_info *pi = pl330->pinfo; 2178 int chans = pi->pcfg.num_chan; 2179 2180 dmac_free_threads(pl330); 2181 2182 dma_free_coherent(pi->dev, chans * pi->mcbufsz, 2183 pl330->mcode_cpu, pl330->mcode_bus); 2184 } 2185 2186 static void pl330_del(struct pl330_info *pi) 2187 { 2188 struct pl330_dmac *pl330; 2189 2190 if (!pi || !pi->pl330_data) 2191 return; 2192 2193 pl330 = pi->pl330_data; 2194 2195 pl330->state = UNINIT; 2196 2197 tasklet_kill(&pl330->tasks); 2198 2199 /* Free DMAC resources */ 2200 dmac_free_resources(pl330); 2201 2202 kfree(pl330); 2203 pi->pl330_data = NULL; 2204 } 2205 2206 /* forward declaration */ 2207 static struct amba_driver pl330_driver; 2208 2209 static inline struct dma_pl330_chan * 2210 to_pchan(struct dma_chan *ch) 2211 { 2212 if (!ch) 2213 return NULL; 2214 2215 return container_of(ch, struct dma_pl330_chan, chan); 2216 } 2217 2218 static inline struct dma_pl330_desc * 2219 to_desc(struct dma_async_tx_descriptor *tx) 2220 { 2221 return container_of(tx, struct dma_pl330_desc, txd); 2222 } 2223 2224 static inline void free_desc_list(struct list_head *list) 2225 { 2226 struct dma_pl330_dmac *pdmac; 2227 struct dma_pl330_desc *desc; 2228 struct dma_pl330_chan *pch = NULL; 2229 unsigned long flags; 2230 2231 /* Finish off the work list */ 2232 list_for_each_entry(desc, list, node) { 2233 dma_async_tx_callback callback; 2234 void *param; 2235 2236 /* All desc in a list belong to same channel */ 2237 pch = desc->pchan; 2238 callback = desc->txd.callback; 2239 param = desc->txd.callback_param; 2240 2241 if (callback) 2242 callback(param); 2243 2244 desc->pchan = NULL; 2245 } 2246 2247 /* pch will be unset if list was empty */ 2248 if (!pch) 2249 return; 2250 2251 pdmac = pch->dmac; 2252 2253 spin_lock_irqsave(&pdmac->pool_lock, flags); 2254 list_splice_tail_init(list, &pdmac->desc_pool); 2255 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2256 } 2257 2258 static inline void handle_cyclic_desc_list(struct list_head *list) 2259 { 2260 struct dma_pl330_desc *desc; 2261 struct dma_pl330_chan *pch = NULL; 2262 unsigned long flags; 2263 2264 list_for_each_entry(desc, list, node) { 2265 dma_async_tx_callback callback; 2266 2267 /* Change status to reload it */ 2268 desc->status = PREP; 2269 pch = desc->pchan; 2270 callback = desc->txd.callback; 2271 if (callback) 2272 callback(desc->txd.callback_param); 2273 } 2274 2275 /* pch will be unset if list was empty */ 2276 if (!pch) 2277 return; 2278 2279 spin_lock_irqsave(&pch->lock, flags); 2280 list_splice_tail_init(list, &pch->work_list); 2281 spin_unlock_irqrestore(&pch->lock, flags); 2282 } 2283 2284 static inline void fill_queue(struct dma_pl330_chan *pch) 2285 { 2286 struct dma_pl330_desc *desc; 2287 int ret; 2288 2289 list_for_each_entry(desc, &pch->work_list, node) { 2290 2291 /* If already submitted */ 2292 if (desc->status == BUSY) 2293 break; 2294 2295 ret = pl330_submit_req(pch->pl330_chid, 2296 &desc->req); 2297 if (!ret) { 2298 desc->status = BUSY; 2299 break; 2300 } else if (ret == -EAGAIN) { 2301 /* QFull or DMAC Dying */ 2302 break; 2303 } else { 2304 /* Unacceptable request */ 2305 desc->status = DONE; 2306 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n", 2307 __func__, __LINE__, desc->txd.cookie); 2308 tasklet_schedule(&pch->task); 2309 } 2310 } 2311 } 2312 2313 static void pl330_tasklet(unsigned long data) 2314 { 2315 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2316 struct dma_pl330_desc *desc, *_dt; 2317 unsigned long flags; 2318 LIST_HEAD(list); 2319 2320 spin_lock_irqsave(&pch->lock, flags); 2321 2322 /* Pick up ripe tomatoes */ 2323 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2324 if (desc->status == DONE) { 2325 if (pch->cyclic) 2326 dma_cookie_complete(&desc->txd); 2327 list_move_tail(&desc->node, &list); 2328 } 2329 2330 /* Try to submit a req imm. next to the last completed cookie */ 2331 fill_queue(pch); 2332 2333 /* Make sure the PL330 Channel thread is active */ 2334 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START); 2335 2336 spin_unlock_irqrestore(&pch->lock, flags); 2337 2338 if (pch->cyclic) 2339 handle_cyclic_desc_list(&list); 2340 else 2341 free_desc_list(&list); 2342 } 2343 2344 static void dma_pl330_rqcb(void *token, enum pl330_op_err err) 2345 { 2346 struct dma_pl330_desc *desc = token; 2347 struct dma_pl330_chan *pch = desc->pchan; 2348 unsigned long flags; 2349 2350 /* If desc aborted */ 2351 if (!pch) 2352 return; 2353 2354 spin_lock_irqsave(&pch->lock, flags); 2355 2356 desc->status = DONE; 2357 2358 spin_unlock_irqrestore(&pch->lock, flags); 2359 2360 tasklet_schedule(&pch->task); 2361 } 2362 2363 bool pl330_filter(struct dma_chan *chan, void *param) 2364 { 2365 u8 *peri_id; 2366 2367 if (chan->device->dev->driver != &pl330_driver.drv) 2368 return false; 2369 2370 #ifdef CONFIG_OF 2371 if (chan->device->dev->of_node) { 2372 const __be32 *prop_value; 2373 phandle phandle; 2374 struct device_node *node; 2375 2376 prop_value = ((struct property *)param)->value; 2377 phandle = be32_to_cpup(prop_value++); 2378 node = of_find_node_by_phandle(phandle); 2379 return ((chan->private == node) && 2380 (chan->chan_id == be32_to_cpup(prop_value))); 2381 } 2382 #endif 2383 2384 peri_id = chan->private; 2385 return *peri_id == (unsigned)param; 2386 } 2387 EXPORT_SYMBOL(pl330_filter); 2388 2389 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2390 { 2391 struct dma_pl330_chan *pch = to_pchan(chan); 2392 struct dma_pl330_dmac *pdmac = pch->dmac; 2393 unsigned long flags; 2394 2395 spin_lock_irqsave(&pch->lock, flags); 2396 2397 dma_cookie_init(chan); 2398 pch->cyclic = false; 2399 2400 pch->pl330_chid = pl330_request_channel(&pdmac->pif); 2401 if (!pch->pl330_chid) { 2402 spin_unlock_irqrestore(&pch->lock, flags); 2403 return 0; 2404 } 2405 2406 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2407 2408 spin_unlock_irqrestore(&pch->lock, flags); 2409 2410 return 1; 2411 } 2412 2413 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2414 { 2415 struct dma_pl330_chan *pch = to_pchan(chan); 2416 struct dma_pl330_desc *desc, *_dt; 2417 unsigned long flags; 2418 struct dma_pl330_dmac *pdmac = pch->dmac; 2419 struct dma_slave_config *slave_config; 2420 LIST_HEAD(list); 2421 2422 switch (cmd) { 2423 case DMA_TERMINATE_ALL: 2424 spin_lock_irqsave(&pch->lock, flags); 2425 2426 /* FLUSH the PL330 Channel thread */ 2427 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH); 2428 2429 /* Mark all desc done */ 2430 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) { 2431 desc->status = DONE; 2432 list_move_tail(&desc->node, &list); 2433 } 2434 2435 list_splice_tail_init(&list, &pdmac->desc_pool); 2436 spin_unlock_irqrestore(&pch->lock, flags); 2437 break; 2438 case DMA_SLAVE_CONFIG: 2439 slave_config = (struct dma_slave_config *)arg; 2440 2441 if (slave_config->direction == DMA_MEM_TO_DEV) { 2442 if (slave_config->dst_addr) 2443 pch->fifo_addr = slave_config->dst_addr; 2444 if (slave_config->dst_addr_width) 2445 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2446 if (slave_config->dst_maxburst) 2447 pch->burst_len = slave_config->dst_maxburst; 2448 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2449 if (slave_config->src_addr) 2450 pch->fifo_addr = slave_config->src_addr; 2451 if (slave_config->src_addr_width) 2452 pch->burst_sz = __ffs(slave_config->src_addr_width); 2453 if (slave_config->src_maxburst) 2454 pch->burst_len = slave_config->src_maxburst; 2455 } 2456 break; 2457 default: 2458 dev_err(pch->dmac->pif.dev, "Not supported command.\n"); 2459 return -ENXIO; 2460 } 2461 2462 return 0; 2463 } 2464 2465 static void pl330_free_chan_resources(struct dma_chan *chan) 2466 { 2467 struct dma_pl330_chan *pch = to_pchan(chan); 2468 unsigned long flags; 2469 2470 spin_lock_irqsave(&pch->lock, flags); 2471 2472 tasklet_kill(&pch->task); 2473 2474 pl330_release_channel(pch->pl330_chid); 2475 pch->pl330_chid = NULL; 2476 2477 if (pch->cyclic) 2478 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2479 2480 spin_unlock_irqrestore(&pch->lock, flags); 2481 } 2482 2483 static enum dma_status 2484 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2485 struct dma_tx_state *txstate) 2486 { 2487 return dma_cookie_status(chan, cookie, txstate); 2488 } 2489 2490 static void pl330_issue_pending(struct dma_chan *chan) 2491 { 2492 pl330_tasklet((unsigned long) to_pchan(chan)); 2493 } 2494 2495 /* 2496 * We returned the last one of the circular list of descriptor(s) 2497 * from prep_xxx, so the argument to submit corresponds to the last 2498 * descriptor of the list. 2499 */ 2500 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2501 { 2502 struct dma_pl330_desc *desc, *last = to_desc(tx); 2503 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2504 dma_cookie_t cookie; 2505 unsigned long flags; 2506 2507 spin_lock_irqsave(&pch->lock, flags); 2508 2509 /* Assign cookies to all nodes */ 2510 while (!list_empty(&last->node)) { 2511 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2512 2513 dma_cookie_assign(&desc->txd); 2514 2515 list_move_tail(&desc->node, &pch->work_list); 2516 } 2517 2518 cookie = dma_cookie_assign(&last->txd); 2519 list_add_tail(&last->node, &pch->work_list); 2520 spin_unlock_irqrestore(&pch->lock, flags); 2521 2522 return cookie; 2523 } 2524 2525 static inline void _init_desc(struct dma_pl330_desc *desc) 2526 { 2527 desc->pchan = NULL; 2528 desc->req.x = &desc->px; 2529 desc->req.token = desc; 2530 desc->rqcfg.swap = SWAP_NO; 2531 desc->rqcfg.privileged = 0; 2532 desc->rqcfg.insnaccess = 0; 2533 desc->rqcfg.scctl = SCCTRL0; 2534 desc->rqcfg.dcctl = DCCTRL0; 2535 desc->req.cfg = &desc->rqcfg; 2536 desc->req.xfer_cb = dma_pl330_rqcb; 2537 desc->txd.tx_submit = pl330_tx_submit; 2538 2539 INIT_LIST_HEAD(&desc->node); 2540 } 2541 2542 /* Returns the number of descriptors added to the DMAC pool */ 2543 int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count) 2544 { 2545 struct dma_pl330_desc *desc; 2546 unsigned long flags; 2547 int i; 2548 2549 if (!pdmac) 2550 return 0; 2551 2552 desc = kmalloc(count * sizeof(*desc), flg); 2553 if (!desc) 2554 return 0; 2555 2556 spin_lock_irqsave(&pdmac->pool_lock, flags); 2557 2558 for (i = 0; i < count; i++) { 2559 _init_desc(&desc[i]); 2560 list_add_tail(&desc[i].node, &pdmac->desc_pool); 2561 } 2562 2563 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2564 2565 return count; 2566 } 2567 2568 static struct dma_pl330_desc * 2569 pluck_desc(struct dma_pl330_dmac *pdmac) 2570 { 2571 struct dma_pl330_desc *desc = NULL; 2572 unsigned long flags; 2573 2574 if (!pdmac) 2575 return NULL; 2576 2577 spin_lock_irqsave(&pdmac->pool_lock, flags); 2578 2579 if (!list_empty(&pdmac->desc_pool)) { 2580 desc = list_entry(pdmac->desc_pool.next, 2581 struct dma_pl330_desc, node); 2582 2583 list_del_init(&desc->node); 2584 2585 desc->status = PREP; 2586 desc->txd.callback = NULL; 2587 } 2588 2589 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2590 2591 return desc; 2592 } 2593 2594 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2595 { 2596 struct dma_pl330_dmac *pdmac = pch->dmac; 2597 u8 *peri_id = pch->chan.private; 2598 struct dma_pl330_desc *desc; 2599 2600 /* Pluck one desc from the pool of DMAC */ 2601 desc = pluck_desc(pdmac); 2602 2603 /* If the DMAC pool is empty, alloc new */ 2604 if (!desc) { 2605 if (!add_desc(pdmac, GFP_ATOMIC, 1)) 2606 return NULL; 2607 2608 /* Try again */ 2609 desc = pluck_desc(pdmac); 2610 if (!desc) { 2611 dev_err(pch->dmac->pif.dev, 2612 "%s:%d ALERT!\n", __func__, __LINE__); 2613 return NULL; 2614 } 2615 } 2616 2617 /* Initialize the descriptor */ 2618 desc->pchan = pch; 2619 desc->txd.cookie = 0; 2620 async_tx_ack(&desc->txd); 2621 2622 desc->req.peri = peri_id ? pch->chan.chan_id : 0; 2623 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg; 2624 2625 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2626 2627 return desc; 2628 } 2629 2630 static inline void fill_px(struct pl330_xfer *px, 2631 dma_addr_t dst, dma_addr_t src, size_t len) 2632 { 2633 px->next = NULL; 2634 px->bytes = len; 2635 px->dst_addr = dst; 2636 px->src_addr = src; 2637 } 2638 2639 static struct dma_pl330_desc * 2640 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2641 dma_addr_t src, size_t len) 2642 { 2643 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2644 2645 if (!desc) { 2646 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2647 __func__, __LINE__); 2648 return NULL; 2649 } 2650 2651 /* 2652 * Ideally we should lookout for reqs bigger than 2653 * those that can be programmed with 256 bytes of 2654 * MC buffer, but considering a req size is seldom 2655 * going to be word-unaligned and more than 200MB, 2656 * we take it easy. 2657 * Also, should the limit is reached we'd rather 2658 * have the platform increase MC buffer size than 2659 * complicating this API driver. 2660 */ 2661 fill_px(&desc->px, dst, src, len); 2662 2663 return desc; 2664 } 2665 2666 /* Call after fixing burst size */ 2667 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2668 { 2669 struct dma_pl330_chan *pch = desc->pchan; 2670 struct pl330_info *pi = &pch->dmac->pif; 2671 int burst_len; 2672 2673 burst_len = pi->pcfg.data_bus_width / 8; 2674 burst_len *= pi->pcfg.data_buf_dep; 2675 burst_len >>= desc->rqcfg.brst_size; 2676 2677 /* src/dst_burst_len can't be more than 16 */ 2678 if (burst_len > 16) 2679 burst_len = 16; 2680 2681 while (burst_len > 1) { 2682 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2683 break; 2684 burst_len--; 2685 } 2686 2687 return burst_len; 2688 } 2689 2690 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2691 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2692 size_t period_len, enum dma_transfer_direction direction, 2693 void *context) 2694 { 2695 struct dma_pl330_desc *desc; 2696 struct dma_pl330_chan *pch = to_pchan(chan); 2697 dma_addr_t dst; 2698 dma_addr_t src; 2699 2700 desc = pl330_get_desc(pch); 2701 if (!desc) { 2702 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2703 __func__, __LINE__); 2704 return NULL; 2705 } 2706 2707 switch (direction) { 2708 case DMA_MEM_TO_DEV: 2709 desc->rqcfg.src_inc = 1; 2710 desc->rqcfg.dst_inc = 0; 2711 desc->req.rqtype = MEMTODEV; 2712 src = dma_addr; 2713 dst = pch->fifo_addr; 2714 break; 2715 case DMA_DEV_TO_MEM: 2716 desc->rqcfg.src_inc = 0; 2717 desc->rqcfg.dst_inc = 1; 2718 desc->req.rqtype = DEVTOMEM; 2719 src = pch->fifo_addr; 2720 dst = dma_addr; 2721 break; 2722 default: 2723 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n", 2724 __func__, __LINE__); 2725 return NULL; 2726 } 2727 2728 desc->rqcfg.brst_size = pch->burst_sz; 2729 desc->rqcfg.brst_len = 1; 2730 2731 pch->cyclic = true; 2732 2733 fill_px(&desc->px, dst, src, period_len); 2734 2735 return &desc->txd; 2736 } 2737 2738 static struct dma_async_tx_descriptor * 2739 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2740 dma_addr_t src, size_t len, unsigned long flags) 2741 { 2742 struct dma_pl330_desc *desc; 2743 struct dma_pl330_chan *pch = to_pchan(chan); 2744 struct pl330_info *pi; 2745 int burst; 2746 2747 if (unlikely(!pch || !len)) 2748 return NULL; 2749 2750 pi = &pch->dmac->pif; 2751 2752 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2753 if (!desc) 2754 return NULL; 2755 2756 desc->rqcfg.src_inc = 1; 2757 desc->rqcfg.dst_inc = 1; 2758 desc->req.rqtype = MEMTOMEM; 2759 2760 /* Select max possible burst size */ 2761 burst = pi->pcfg.data_bus_width / 8; 2762 2763 while (burst > 1) { 2764 if (!(len % burst)) 2765 break; 2766 burst /= 2; 2767 } 2768 2769 desc->rqcfg.brst_size = 0; 2770 while (burst != (1 << desc->rqcfg.brst_size)) 2771 desc->rqcfg.brst_size++; 2772 2773 desc->rqcfg.brst_len = get_burst_len(desc, len); 2774 2775 desc->txd.flags = flags; 2776 2777 return &desc->txd; 2778 } 2779 2780 static struct dma_async_tx_descriptor * 2781 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2782 unsigned int sg_len, enum dma_transfer_direction direction, 2783 unsigned long flg, void *context) 2784 { 2785 struct dma_pl330_desc *first, *desc = NULL; 2786 struct dma_pl330_chan *pch = to_pchan(chan); 2787 struct scatterlist *sg; 2788 unsigned long flags; 2789 int i; 2790 dma_addr_t addr; 2791 2792 if (unlikely(!pch || !sgl || !sg_len)) 2793 return NULL; 2794 2795 addr = pch->fifo_addr; 2796 2797 first = NULL; 2798 2799 for_each_sg(sgl, sg, sg_len, i) { 2800 2801 desc = pl330_get_desc(pch); 2802 if (!desc) { 2803 struct dma_pl330_dmac *pdmac = pch->dmac; 2804 2805 dev_err(pch->dmac->pif.dev, 2806 "%s:%d Unable to fetch desc\n", 2807 __func__, __LINE__); 2808 if (!first) 2809 return NULL; 2810 2811 spin_lock_irqsave(&pdmac->pool_lock, flags); 2812 2813 while (!list_empty(&first->node)) { 2814 desc = list_entry(first->node.next, 2815 struct dma_pl330_desc, node); 2816 list_move_tail(&desc->node, &pdmac->desc_pool); 2817 } 2818 2819 list_move_tail(&first->node, &pdmac->desc_pool); 2820 2821 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2822 2823 return NULL; 2824 } 2825 2826 if (!first) 2827 first = desc; 2828 else 2829 list_add_tail(&desc->node, &first->node); 2830 2831 if (direction == DMA_MEM_TO_DEV) { 2832 desc->rqcfg.src_inc = 1; 2833 desc->rqcfg.dst_inc = 0; 2834 desc->req.rqtype = MEMTODEV; 2835 fill_px(&desc->px, 2836 addr, sg_dma_address(sg), sg_dma_len(sg)); 2837 } else { 2838 desc->rqcfg.src_inc = 0; 2839 desc->rqcfg.dst_inc = 1; 2840 desc->req.rqtype = DEVTOMEM; 2841 fill_px(&desc->px, 2842 sg_dma_address(sg), addr, sg_dma_len(sg)); 2843 } 2844 2845 desc->rqcfg.brst_size = pch->burst_sz; 2846 desc->rqcfg.brst_len = 1; 2847 } 2848 2849 /* Return the last desc in the chain */ 2850 desc->txd.flags = flg; 2851 return &desc->txd; 2852 } 2853 2854 static irqreturn_t pl330_irq_handler(int irq, void *data) 2855 { 2856 if (pl330_update(data)) 2857 return IRQ_HANDLED; 2858 else 2859 return IRQ_NONE; 2860 } 2861 2862 static int __devinit 2863 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2864 { 2865 struct dma_pl330_platdata *pdat; 2866 struct dma_pl330_dmac *pdmac; 2867 struct dma_pl330_chan *pch; 2868 struct pl330_info *pi; 2869 struct dma_device *pd; 2870 struct resource *res; 2871 int i, ret, irq; 2872 int num_chan; 2873 2874 pdat = adev->dev.platform_data; 2875 2876 /* Allocate a new DMAC and its Channels */ 2877 pdmac = kzalloc(sizeof(*pdmac), GFP_KERNEL); 2878 if (!pdmac) { 2879 dev_err(&adev->dev, "unable to allocate mem\n"); 2880 return -ENOMEM; 2881 } 2882 2883 pi = &pdmac->pif; 2884 pi->dev = &adev->dev; 2885 pi->pl330_data = NULL; 2886 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2887 2888 res = &adev->res; 2889 request_mem_region(res->start, resource_size(res), "dma-pl330"); 2890 2891 pi->base = ioremap(res->start, resource_size(res)); 2892 if (!pi->base) { 2893 ret = -ENXIO; 2894 goto probe_err1; 2895 } 2896 2897 pdmac->clk = clk_get(&adev->dev, "dma"); 2898 if (IS_ERR(pdmac->clk)) { 2899 dev_err(&adev->dev, "Cannot get operation clock.\n"); 2900 ret = -EINVAL; 2901 goto probe_err2; 2902 } 2903 2904 amba_set_drvdata(adev, pdmac); 2905 2906 #ifndef CONFIG_PM_RUNTIME 2907 /* enable dma clk */ 2908 clk_enable(pdmac->clk); 2909 #endif 2910 2911 irq = adev->irq[0]; 2912 ret = request_irq(irq, pl330_irq_handler, 0, 2913 dev_name(&adev->dev), pi); 2914 if (ret) 2915 goto probe_err3; 2916 2917 ret = pl330_add(pi); 2918 if (ret) 2919 goto probe_err4; 2920 2921 INIT_LIST_HEAD(&pdmac->desc_pool); 2922 spin_lock_init(&pdmac->pool_lock); 2923 2924 /* Create a descriptor pool of default size */ 2925 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC)) 2926 dev_warn(&adev->dev, "unable to allocate desc\n"); 2927 2928 pd = &pdmac->ddma; 2929 INIT_LIST_HEAD(&pd->channels); 2930 2931 /* Initialize channel parameters */ 2932 if (pdat) 2933 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan); 2934 else 2935 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan); 2936 2937 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2938 2939 for (i = 0; i < num_chan; i++) { 2940 pch = &pdmac->peripherals[i]; 2941 if (!adev->dev.of_node) 2942 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2943 else 2944 pch->chan.private = adev->dev.of_node; 2945 2946 INIT_LIST_HEAD(&pch->work_list); 2947 spin_lock_init(&pch->lock); 2948 pch->pl330_chid = NULL; 2949 pch->chan.device = pd; 2950 pch->dmac = pdmac; 2951 2952 /* Add the channel to the DMAC list */ 2953 list_add_tail(&pch->chan.device_node, &pd->channels); 2954 } 2955 2956 pd->dev = &adev->dev; 2957 if (pdat) { 2958 pd->cap_mask = pdat->cap_mask; 2959 } else { 2960 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2961 if (pi->pcfg.num_peri) { 2962 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2963 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2964 } 2965 } 2966 2967 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2968 pd->device_free_chan_resources = pl330_free_chan_resources; 2969 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2970 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2971 pd->device_tx_status = pl330_tx_status; 2972 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2973 pd->device_control = pl330_control; 2974 pd->device_issue_pending = pl330_issue_pending; 2975 2976 ret = dma_async_device_register(pd); 2977 if (ret) { 2978 dev_err(&adev->dev, "unable to register DMAC\n"); 2979 goto probe_err5; 2980 } 2981 2982 dev_info(&adev->dev, 2983 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 2984 dev_info(&adev->dev, 2985 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2986 pi->pcfg.data_buf_dep, 2987 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan, 2988 pi->pcfg.num_peri, pi->pcfg.num_events); 2989 2990 return 0; 2991 2992 probe_err5: 2993 pl330_del(pi); 2994 probe_err4: 2995 free_irq(irq, pi); 2996 probe_err3: 2997 #ifndef CONFIG_PM_RUNTIME 2998 clk_disable(pdmac->clk); 2999 #endif 3000 clk_put(pdmac->clk); 3001 probe_err2: 3002 iounmap(pi->base); 3003 probe_err1: 3004 release_mem_region(res->start, resource_size(res)); 3005 kfree(pdmac); 3006 3007 return ret; 3008 } 3009 3010 static int __devexit pl330_remove(struct amba_device *adev) 3011 { 3012 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev); 3013 struct dma_pl330_chan *pch, *_p; 3014 struct pl330_info *pi; 3015 struct resource *res; 3016 int irq; 3017 3018 if (!pdmac) 3019 return 0; 3020 3021 amba_set_drvdata(adev, NULL); 3022 3023 /* Idle the DMAC */ 3024 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3025 chan.device_node) { 3026 3027 /* Remove the channel */ 3028 list_del(&pch->chan.device_node); 3029 3030 /* Flush the channel */ 3031 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3032 pl330_free_chan_resources(&pch->chan); 3033 } 3034 3035 pi = &pdmac->pif; 3036 3037 pl330_del(pi); 3038 3039 irq = adev->irq[0]; 3040 free_irq(irq, pi); 3041 3042 iounmap(pi->base); 3043 3044 res = &adev->res; 3045 release_mem_region(res->start, resource_size(res)); 3046 3047 #ifndef CONFIG_PM_RUNTIME 3048 clk_disable(pdmac->clk); 3049 #endif 3050 3051 kfree(pdmac); 3052 3053 return 0; 3054 } 3055 3056 static struct amba_id pl330_ids[] = { 3057 { 3058 .id = 0x00041330, 3059 .mask = 0x000fffff, 3060 }, 3061 { 0, 0 }, 3062 }; 3063 3064 MODULE_DEVICE_TABLE(amba, pl330_ids); 3065 3066 #ifdef CONFIG_PM_RUNTIME 3067 static int pl330_runtime_suspend(struct device *dev) 3068 { 3069 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev); 3070 3071 if (!pdmac) { 3072 dev_err(dev, "failed to get dmac\n"); 3073 return -ENODEV; 3074 } 3075 3076 clk_disable(pdmac->clk); 3077 3078 return 0; 3079 } 3080 3081 static int pl330_runtime_resume(struct device *dev) 3082 { 3083 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev); 3084 3085 if (!pdmac) { 3086 dev_err(dev, "failed to get dmac\n"); 3087 return -ENODEV; 3088 } 3089 3090 clk_enable(pdmac->clk); 3091 3092 return 0; 3093 } 3094 #else 3095 #define pl330_runtime_suspend NULL 3096 #define pl330_runtime_resume NULL 3097 #endif /* CONFIG_PM_RUNTIME */ 3098 3099 static const struct dev_pm_ops pl330_pm_ops = { 3100 .runtime_suspend = pl330_runtime_suspend, 3101 .runtime_resume = pl330_runtime_resume, 3102 }; 3103 3104 static struct amba_driver pl330_driver = { 3105 .drv = { 3106 .owner = THIS_MODULE, 3107 .name = "dma-pl330", 3108 .pm = &pl330_pm_ops, 3109 }, 3110 .id_table = pl330_ids, 3111 .probe = pl330_probe, 3112 .remove = pl330_remove, 3113 }; 3114 3115 module_amba_driver(pl330_driver); 3116 3117 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 3118 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3119 MODULE_LICENSE("GPL"); 3120