xref: /openbmc/linux/drivers/dma/pl330.c (revision a8fe58ce)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30 #include <linux/pm_runtime.h>
31 
32 #include "dmaengine.h"
33 #define PL330_MAX_CHAN		8
34 #define PL330_MAX_IRQS		32
35 #define PL330_MAX_PERI		32
36 
37 enum pl330_cachectrl {
38 	CCTRL0,		/* Noncacheable and nonbufferable */
39 	CCTRL1,		/* Bufferable only */
40 	CCTRL2,		/* Cacheable, but do not allocate */
41 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
42 	INVALID1,	/* AWCACHE = 0x1000 */
43 	INVALID2,
44 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
45 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
46 };
47 
48 enum pl330_byteswap {
49 	SWAP_NO,
50 	SWAP_2,
51 	SWAP_4,
52 	SWAP_8,
53 	SWAP_16,
54 };
55 
56 /* Register and Bit field Definitions */
57 #define DS			0x0
58 #define DS_ST_STOP		0x0
59 #define DS_ST_EXEC		0x1
60 #define DS_ST_CMISS		0x2
61 #define DS_ST_UPDTPC		0x3
62 #define DS_ST_WFE		0x4
63 #define DS_ST_ATBRR		0x5
64 #define DS_ST_QBUSY		0x6
65 #define DS_ST_WFP		0x7
66 #define DS_ST_KILL		0x8
67 #define DS_ST_CMPLT		0x9
68 #define DS_ST_FLTCMP		0xe
69 #define DS_ST_FAULT		0xf
70 
71 #define DPC			0x4
72 #define INTEN			0x20
73 #define ES			0x24
74 #define INTSTATUS		0x28
75 #define INTCLR			0x2c
76 #define FSM			0x30
77 #define FSC			0x34
78 #define FTM			0x38
79 
80 #define _FTC			0x40
81 #define FTC(n)			(_FTC + (n)*0x4)
82 
83 #define _CS			0x100
84 #define CS(n)			(_CS + (n)*0x8)
85 #define CS_CNS			(1 << 21)
86 
87 #define _CPC			0x104
88 #define CPC(n)			(_CPC + (n)*0x8)
89 
90 #define _SA			0x400
91 #define SA(n)			(_SA + (n)*0x20)
92 
93 #define _DA			0x404
94 #define DA(n)			(_DA + (n)*0x20)
95 
96 #define _CC			0x408
97 #define CC(n)			(_CC + (n)*0x20)
98 
99 #define CC_SRCINC		(1 << 0)
100 #define CC_DSTINC		(1 << 14)
101 #define CC_SRCPRI		(1 << 8)
102 #define CC_DSTPRI		(1 << 22)
103 #define CC_SRCNS		(1 << 9)
104 #define CC_DSTNS		(1 << 23)
105 #define CC_SRCIA		(1 << 10)
106 #define CC_DSTIA		(1 << 24)
107 #define CC_SRCBRSTLEN_SHFT	4
108 #define CC_DSTBRSTLEN_SHFT	18
109 #define CC_SRCBRSTSIZE_SHFT	1
110 #define CC_DSTBRSTSIZE_SHFT	15
111 #define CC_SRCCCTRL_SHFT	11
112 #define CC_SRCCCTRL_MASK	0x7
113 #define CC_DSTCCTRL_SHFT	25
114 #define CC_DRCCCTRL_MASK	0x7
115 #define CC_SWAP_SHFT		28
116 
117 #define _LC0			0x40c
118 #define LC0(n)			(_LC0 + (n)*0x20)
119 
120 #define _LC1			0x410
121 #define LC1(n)			(_LC1 + (n)*0x20)
122 
123 #define DBGSTATUS		0xd00
124 #define DBG_BUSY		(1 << 0)
125 
126 #define DBGCMD			0xd04
127 #define DBGINST0		0xd08
128 #define DBGINST1		0xd0c
129 
130 #define CR0			0xe00
131 #define CR1			0xe04
132 #define CR2			0xe08
133 #define CR3			0xe0c
134 #define CR4			0xe10
135 #define CRD			0xe14
136 
137 #define PERIPH_ID		0xfe0
138 #define PERIPH_REV_SHIFT	20
139 #define PERIPH_REV_MASK		0xf
140 #define PERIPH_REV_R0P0		0
141 #define PERIPH_REV_R1P0		1
142 #define PERIPH_REV_R1P1		2
143 
144 #define CR0_PERIPH_REQ_SET	(1 << 0)
145 #define CR0_BOOT_EN_SET		(1 << 1)
146 #define CR0_BOOT_MAN_NS		(1 << 2)
147 #define CR0_NUM_CHANS_SHIFT	4
148 #define CR0_NUM_CHANS_MASK	0x7
149 #define CR0_NUM_PERIPH_SHIFT	12
150 #define CR0_NUM_PERIPH_MASK	0x1f
151 #define CR0_NUM_EVENTS_SHIFT	17
152 #define CR0_NUM_EVENTS_MASK	0x1f
153 
154 #define CR1_ICACHE_LEN_SHIFT	0
155 #define CR1_ICACHE_LEN_MASK	0x7
156 #define CR1_NUM_ICACHELINES_SHIFT	4
157 #define CR1_NUM_ICACHELINES_MASK	0xf
158 
159 #define CRD_DATA_WIDTH_SHIFT	0
160 #define CRD_DATA_WIDTH_MASK	0x7
161 #define CRD_WR_CAP_SHIFT	4
162 #define CRD_WR_CAP_MASK		0x7
163 #define CRD_WR_Q_DEP_SHIFT	8
164 #define CRD_WR_Q_DEP_MASK	0xf
165 #define CRD_RD_CAP_SHIFT	12
166 #define CRD_RD_CAP_MASK		0x7
167 #define CRD_RD_Q_DEP_SHIFT	16
168 #define CRD_RD_Q_DEP_MASK	0xf
169 #define CRD_DATA_BUFF_SHIFT	20
170 #define CRD_DATA_BUFF_MASK	0x3ff
171 
172 #define PART			0x330
173 #define DESIGNER		0x41
174 #define REVISION		0x0
175 #define INTEG_CFG		0x0
176 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
177 
178 #define PL330_STATE_STOPPED		(1 << 0)
179 #define PL330_STATE_EXECUTING		(1 << 1)
180 #define PL330_STATE_WFE			(1 << 2)
181 #define PL330_STATE_FAULTING		(1 << 3)
182 #define PL330_STATE_COMPLETING		(1 << 4)
183 #define PL330_STATE_WFP			(1 << 5)
184 #define PL330_STATE_KILLING		(1 << 6)
185 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
186 #define PL330_STATE_CACHEMISS		(1 << 8)
187 #define PL330_STATE_UPDTPC		(1 << 9)
188 #define PL330_STATE_ATBARRIER		(1 << 10)
189 #define PL330_STATE_QUEUEBUSY		(1 << 11)
190 #define PL330_STATE_INVALID		(1 << 15)
191 
192 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
193 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
194 
195 #define CMD_DMAADDH		0x54
196 #define CMD_DMAEND		0x00
197 #define CMD_DMAFLUSHP		0x35
198 #define CMD_DMAGO		0xa0
199 #define CMD_DMALD		0x04
200 #define CMD_DMALDP		0x25
201 #define CMD_DMALP		0x20
202 #define CMD_DMALPEND		0x28
203 #define CMD_DMAKILL		0x01
204 #define CMD_DMAMOV		0xbc
205 #define CMD_DMANOP		0x18
206 #define CMD_DMARMB		0x12
207 #define CMD_DMASEV		0x34
208 #define CMD_DMAST		0x08
209 #define CMD_DMASTP		0x29
210 #define CMD_DMASTZ		0x0c
211 #define CMD_DMAWFE		0x36
212 #define CMD_DMAWFP		0x30
213 #define CMD_DMAWMB		0x13
214 
215 #define SZ_DMAADDH		3
216 #define SZ_DMAEND		1
217 #define SZ_DMAFLUSHP		2
218 #define SZ_DMALD		1
219 #define SZ_DMALDP		2
220 #define SZ_DMALP		2
221 #define SZ_DMALPEND		2
222 #define SZ_DMAKILL		1
223 #define SZ_DMAMOV		6
224 #define SZ_DMANOP		1
225 #define SZ_DMARMB		1
226 #define SZ_DMASEV		2
227 #define SZ_DMAST		1
228 #define SZ_DMASTP		2
229 #define SZ_DMASTZ		1
230 #define SZ_DMAWFE		2
231 #define SZ_DMAWFP		2
232 #define SZ_DMAWMB		1
233 #define SZ_DMAGO		6
234 
235 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
236 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
237 
238 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
239 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
240 
241 /*
242  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
243  * at 1byte/burst for P<->M and M<->M respectively.
244  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
245  * should be enough for P<->M and M<->M respectively.
246  */
247 #define MCODE_BUFF_PER_REQ	256
248 
249 /* Use this _only_ to wait on transient states */
250 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
251 
252 #ifdef PL330_DEBUG_MCGEN
253 static unsigned cmd_line;
254 #define PL330_DBGCMD_DUMP(off, x...)	do { \
255 						printk("%x:", cmd_line); \
256 						printk(x); \
257 						cmd_line += off; \
258 					} while (0)
259 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
260 #else
261 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
262 #define PL330_DBGMC_START(addr)		do {} while (0)
263 #endif
264 
265 /* The number of default descriptors */
266 
267 #define NR_DEFAULT_DESC	16
268 
269 /* Delay for runtime PM autosuspend, ms */
270 #define PL330_AUTOSUSPEND_DELAY 20
271 
272 /* Populated by the PL330 core driver for DMA API driver's info */
273 struct pl330_config {
274 	u32	periph_id;
275 #define DMAC_MODE_NS	(1 << 0)
276 	unsigned int	mode;
277 	unsigned int	data_bus_width:10; /* In number of bits */
278 	unsigned int	data_buf_dep:11;
279 	unsigned int	num_chan:4;
280 	unsigned int	num_peri:6;
281 	u32		peri_ns;
282 	unsigned int	num_events:6;
283 	u32		irq_ns;
284 };
285 
286 /**
287  * Request Configuration.
288  * The PL330 core does not modify this and uses the last
289  * working configuration if the request doesn't provide any.
290  *
291  * The Client may want to provide this info only for the
292  * first request and a request with new settings.
293  */
294 struct pl330_reqcfg {
295 	/* Address Incrementing */
296 	unsigned dst_inc:1;
297 	unsigned src_inc:1;
298 
299 	/*
300 	 * For now, the SRC & DST protection levels
301 	 * and burst size/length are assumed same.
302 	 */
303 	bool nonsecure;
304 	bool privileged;
305 	bool insnaccess;
306 	unsigned brst_len:5;
307 	unsigned brst_size:3; /* in power of 2 */
308 
309 	enum pl330_cachectrl dcctl;
310 	enum pl330_cachectrl scctl;
311 	enum pl330_byteswap swap;
312 	struct pl330_config *pcfg;
313 };
314 
315 /*
316  * One cycle of DMAC operation.
317  * There may be more than one xfer in a request.
318  */
319 struct pl330_xfer {
320 	u32 src_addr;
321 	u32 dst_addr;
322 	/* Size to xfer */
323 	u32 bytes;
324 };
325 
326 /* The xfer callbacks are made with one of these arguments. */
327 enum pl330_op_err {
328 	/* The all xfers in the request were success. */
329 	PL330_ERR_NONE,
330 	/* If req aborted due to global error. */
331 	PL330_ERR_ABORT,
332 	/* If req failed due to problem with Channel. */
333 	PL330_ERR_FAIL,
334 };
335 
336 enum dmamov_dst {
337 	SAR = 0,
338 	CCR,
339 	DAR,
340 };
341 
342 enum pl330_dst {
343 	SRC = 0,
344 	DST,
345 };
346 
347 enum pl330_cond {
348 	SINGLE,
349 	BURST,
350 	ALWAYS,
351 };
352 
353 struct dma_pl330_desc;
354 
355 struct _pl330_req {
356 	u32 mc_bus;
357 	void *mc_cpu;
358 	struct dma_pl330_desc *desc;
359 };
360 
361 /* ToBeDone for tasklet */
362 struct _pl330_tbd {
363 	bool reset_dmac;
364 	bool reset_mngr;
365 	u8 reset_chan;
366 };
367 
368 /* A DMAC Thread */
369 struct pl330_thread {
370 	u8 id;
371 	int ev;
372 	/* If the channel is not yet acquired by any client */
373 	bool free;
374 	/* Parent DMAC */
375 	struct pl330_dmac *dmac;
376 	/* Only two at a time */
377 	struct _pl330_req req[2];
378 	/* Index of the last enqueued request */
379 	unsigned lstenq;
380 	/* Index of the last submitted request or -1 if the DMA is stopped */
381 	int req_running;
382 };
383 
384 enum pl330_dmac_state {
385 	UNINIT,
386 	INIT,
387 	DYING,
388 };
389 
390 enum desc_status {
391 	/* In the DMAC pool */
392 	FREE,
393 	/*
394 	 * Allocated to some channel during prep_xxx
395 	 * Also may be sitting on the work_list.
396 	 */
397 	PREP,
398 	/*
399 	 * Sitting on the work_list and already submitted
400 	 * to the PL330 core. Not more than two descriptors
401 	 * of a channel can be BUSY at any time.
402 	 */
403 	BUSY,
404 	/*
405 	 * Sitting on the channel work_list but xfer done
406 	 * by PL330 core
407 	 */
408 	DONE,
409 };
410 
411 struct dma_pl330_chan {
412 	/* Schedule desc completion */
413 	struct tasklet_struct task;
414 
415 	/* DMA-Engine Channel */
416 	struct dma_chan chan;
417 
418 	/* List of submitted descriptors */
419 	struct list_head submitted_list;
420 	/* List of issued descriptors */
421 	struct list_head work_list;
422 	/* List of completed descriptors */
423 	struct list_head completed_list;
424 
425 	/* Pointer to the DMAC that manages this channel,
426 	 * NULL if the channel is available to be acquired.
427 	 * As the parent, this DMAC also provides descriptors
428 	 * to the channel.
429 	 */
430 	struct pl330_dmac *dmac;
431 
432 	/* To protect channel manipulation */
433 	spinlock_t lock;
434 
435 	/*
436 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
437 	 * available.
438 	 */
439 	struct pl330_thread *thread;
440 
441 	/* For D-to-M and M-to-D channels */
442 	int burst_sz; /* the peripheral fifo width */
443 	int burst_len; /* the number of burst */
444 	dma_addr_t fifo_addr;
445 
446 	/* for cyclic capability */
447 	bool cyclic;
448 };
449 
450 struct pl330_dmac {
451 	/* DMA-Engine Device */
452 	struct dma_device ddma;
453 
454 	/* Holds info about sg limitations */
455 	struct device_dma_parameters dma_parms;
456 
457 	/* Pool of descriptors available for the DMAC's channels */
458 	struct list_head desc_pool;
459 	/* To protect desc_pool manipulation */
460 	spinlock_t pool_lock;
461 
462 	/* Size of MicroCode buffers for each channel. */
463 	unsigned mcbufsz;
464 	/* ioremap'ed address of PL330 registers. */
465 	void __iomem	*base;
466 	/* Populated by the PL330 core driver during pl330_add */
467 	struct pl330_config	pcfg;
468 
469 	spinlock_t		lock;
470 	/* Maximum possible events/irqs */
471 	int			events[32];
472 	/* BUS address of MicroCode buffer */
473 	dma_addr_t		mcode_bus;
474 	/* CPU address of MicroCode buffer */
475 	void			*mcode_cpu;
476 	/* List of all Channel threads */
477 	struct pl330_thread	*channels;
478 	/* Pointer to the MANAGER thread */
479 	struct pl330_thread	*manager;
480 	/* To handle bad news in interrupt */
481 	struct tasklet_struct	tasks;
482 	struct _pl330_tbd	dmac_tbd;
483 	/* State of DMAC operation */
484 	enum pl330_dmac_state	state;
485 	/* Holds list of reqs with due callbacks */
486 	struct list_head        req_done;
487 
488 	/* Peripheral channels connected to this DMAC */
489 	unsigned int num_peripherals;
490 	struct dma_pl330_chan *peripherals; /* keep at end */
491 };
492 
493 struct dma_pl330_desc {
494 	/* To attach to a queue as child */
495 	struct list_head node;
496 
497 	/* Descriptor for the DMA Engine API */
498 	struct dma_async_tx_descriptor txd;
499 
500 	/* Xfer for PL330 core */
501 	struct pl330_xfer px;
502 
503 	struct pl330_reqcfg rqcfg;
504 
505 	enum desc_status status;
506 
507 	int bytes_requested;
508 	bool last;
509 
510 	/* The channel which currently holds this desc */
511 	struct dma_pl330_chan *pchan;
512 
513 	enum dma_transfer_direction rqtype;
514 	/* Index of peripheral for the xfer. */
515 	unsigned peri:5;
516 	/* Hook to attach to DMAC's list of reqs with due callback */
517 	struct list_head rqd;
518 };
519 
520 struct _xfer_spec {
521 	u32 ccr;
522 	struct dma_pl330_desc *desc;
523 };
524 
525 static inline bool _queue_empty(struct pl330_thread *thrd)
526 {
527 	return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL;
528 }
529 
530 static inline bool _queue_full(struct pl330_thread *thrd)
531 {
532 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
533 }
534 
535 static inline bool is_manager(struct pl330_thread *thrd)
536 {
537 	return thrd->dmac->manager == thrd;
538 }
539 
540 /* If manager of the thread is in Non-Secure mode */
541 static inline bool _manager_ns(struct pl330_thread *thrd)
542 {
543 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
544 }
545 
546 static inline u32 get_revision(u32 periph_id)
547 {
548 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
549 }
550 
551 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
552 		enum pl330_dst da, u16 val)
553 {
554 	if (dry_run)
555 		return SZ_DMAADDH;
556 
557 	buf[0] = CMD_DMAADDH;
558 	buf[0] |= (da << 1);
559 	*((__le16 *)&buf[1]) = cpu_to_le16(val);
560 
561 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
562 		da == 1 ? "DA" : "SA", val);
563 
564 	return SZ_DMAADDH;
565 }
566 
567 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
568 {
569 	if (dry_run)
570 		return SZ_DMAEND;
571 
572 	buf[0] = CMD_DMAEND;
573 
574 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
575 
576 	return SZ_DMAEND;
577 }
578 
579 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
580 {
581 	if (dry_run)
582 		return SZ_DMAFLUSHP;
583 
584 	buf[0] = CMD_DMAFLUSHP;
585 
586 	peri &= 0x1f;
587 	peri <<= 3;
588 	buf[1] = peri;
589 
590 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
591 
592 	return SZ_DMAFLUSHP;
593 }
594 
595 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
596 {
597 	if (dry_run)
598 		return SZ_DMALD;
599 
600 	buf[0] = CMD_DMALD;
601 
602 	if (cond == SINGLE)
603 		buf[0] |= (0 << 1) | (1 << 0);
604 	else if (cond == BURST)
605 		buf[0] |= (1 << 1) | (1 << 0);
606 
607 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
608 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
609 
610 	return SZ_DMALD;
611 }
612 
613 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
614 		enum pl330_cond cond, u8 peri)
615 {
616 	if (dry_run)
617 		return SZ_DMALDP;
618 
619 	buf[0] = CMD_DMALDP;
620 
621 	if (cond == BURST)
622 		buf[0] |= (1 << 1);
623 
624 	peri &= 0x1f;
625 	peri <<= 3;
626 	buf[1] = peri;
627 
628 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
629 		cond == SINGLE ? 'S' : 'B', peri >> 3);
630 
631 	return SZ_DMALDP;
632 }
633 
634 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
635 		unsigned loop, u8 cnt)
636 {
637 	if (dry_run)
638 		return SZ_DMALP;
639 
640 	buf[0] = CMD_DMALP;
641 
642 	if (loop)
643 		buf[0] |= (1 << 1);
644 
645 	cnt--; /* DMAC increments by 1 internally */
646 	buf[1] = cnt;
647 
648 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
649 
650 	return SZ_DMALP;
651 }
652 
653 struct _arg_LPEND {
654 	enum pl330_cond cond;
655 	bool forever;
656 	unsigned loop;
657 	u8 bjump;
658 };
659 
660 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
661 		const struct _arg_LPEND *arg)
662 {
663 	enum pl330_cond cond = arg->cond;
664 	bool forever = arg->forever;
665 	unsigned loop = arg->loop;
666 	u8 bjump = arg->bjump;
667 
668 	if (dry_run)
669 		return SZ_DMALPEND;
670 
671 	buf[0] = CMD_DMALPEND;
672 
673 	if (loop)
674 		buf[0] |= (1 << 2);
675 
676 	if (!forever)
677 		buf[0] |= (1 << 4);
678 
679 	if (cond == SINGLE)
680 		buf[0] |= (0 << 1) | (1 << 0);
681 	else if (cond == BURST)
682 		buf[0] |= (1 << 1) | (1 << 0);
683 
684 	buf[1] = bjump;
685 
686 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
687 			forever ? "FE" : "END",
688 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
689 			loop ? '1' : '0',
690 			bjump);
691 
692 	return SZ_DMALPEND;
693 }
694 
695 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
696 {
697 	if (dry_run)
698 		return SZ_DMAKILL;
699 
700 	buf[0] = CMD_DMAKILL;
701 
702 	return SZ_DMAKILL;
703 }
704 
705 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
706 		enum dmamov_dst dst, u32 val)
707 {
708 	if (dry_run)
709 		return SZ_DMAMOV;
710 
711 	buf[0] = CMD_DMAMOV;
712 	buf[1] = dst;
713 	*((__le32 *)&buf[2]) = cpu_to_le32(val);
714 
715 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
716 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
717 
718 	return SZ_DMAMOV;
719 }
720 
721 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
722 {
723 	if (dry_run)
724 		return SZ_DMANOP;
725 
726 	buf[0] = CMD_DMANOP;
727 
728 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
729 
730 	return SZ_DMANOP;
731 }
732 
733 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
734 {
735 	if (dry_run)
736 		return SZ_DMARMB;
737 
738 	buf[0] = CMD_DMARMB;
739 
740 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
741 
742 	return SZ_DMARMB;
743 }
744 
745 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
746 {
747 	if (dry_run)
748 		return SZ_DMASEV;
749 
750 	buf[0] = CMD_DMASEV;
751 
752 	ev &= 0x1f;
753 	ev <<= 3;
754 	buf[1] = ev;
755 
756 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
757 
758 	return SZ_DMASEV;
759 }
760 
761 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
762 {
763 	if (dry_run)
764 		return SZ_DMAST;
765 
766 	buf[0] = CMD_DMAST;
767 
768 	if (cond == SINGLE)
769 		buf[0] |= (0 << 1) | (1 << 0);
770 	else if (cond == BURST)
771 		buf[0] |= (1 << 1) | (1 << 0);
772 
773 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
774 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
775 
776 	return SZ_DMAST;
777 }
778 
779 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
780 		enum pl330_cond cond, u8 peri)
781 {
782 	if (dry_run)
783 		return SZ_DMASTP;
784 
785 	buf[0] = CMD_DMASTP;
786 
787 	if (cond == BURST)
788 		buf[0] |= (1 << 1);
789 
790 	peri &= 0x1f;
791 	peri <<= 3;
792 	buf[1] = peri;
793 
794 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
795 		cond == SINGLE ? 'S' : 'B', peri >> 3);
796 
797 	return SZ_DMASTP;
798 }
799 
800 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
801 {
802 	if (dry_run)
803 		return SZ_DMASTZ;
804 
805 	buf[0] = CMD_DMASTZ;
806 
807 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
808 
809 	return SZ_DMASTZ;
810 }
811 
812 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
813 		unsigned invalidate)
814 {
815 	if (dry_run)
816 		return SZ_DMAWFE;
817 
818 	buf[0] = CMD_DMAWFE;
819 
820 	ev &= 0x1f;
821 	ev <<= 3;
822 	buf[1] = ev;
823 
824 	if (invalidate)
825 		buf[1] |= (1 << 1);
826 
827 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
828 		ev >> 3, invalidate ? ", I" : "");
829 
830 	return SZ_DMAWFE;
831 }
832 
833 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
834 		enum pl330_cond cond, u8 peri)
835 {
836 	if (dry_run)
837 		return SZ_DMAWFP;
838 
839 	buf[0] = CMD_DMAWFP;
840 
841 	if (cond == SINGLE)
842 		buf[0] |= (0 << 1) | (0 << 0);
843 	else if (cond == BURST)
844 		buf[0] |= (1 << 1) | (0 << 0);
845 	else
846 		buf[0] |= (0 << 1) | (1 << 0);
847 
848 	peri &= 0x1f;
849 	peri <<= 3;
850 	buf[1] = peri;
851 
852 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
853 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
854 
855 	return SZ_DMAWFP;
856 }
857 
858 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
859 {
860 	if (dry_run)
861 		return SZ_DMAWMB;
862 
863 	buf[0] = CMD_DMAWMB;
864 
865 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
866 
867 	return SZ_DMAWMB;
868 }
869 
870 struct _arg_GO {
871 	u8 chan;
872 	u32 addr;
873 	unsigned ns;
874 };
875 
876 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
877 		const struct _arg_GO *arg)
878 {
879 	u8 chan = arg->chan;
880 	u32 addr = arg->addr;
881 	unsigned ns = arg->ns;
882 
883 	if (dry_run)
884 		return SZ_DMAGO;
885 
886 	buf[0] = CMD_DMAGO;
887 	buf[0] |= (ns << 1);
888 
889 	buf[1] = chan & 0x7;
890 
891 	*((__le32 *)&buf[2]) = cpu_to_le32(addr);
892 
893 	return SZ_DMAGO;
894 }
895 
896 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
897 
898 /* Returns Time-Out */
899 static bool _until_dmac_idle(struct pl330_thread *thrd)
900 {
901 	void __iomem *regs = thrd->dmac->base;
902 	unsigned long loops = msecs_to_loops(5);
903 
904 	do {
905 		/* Until Manager is Idle */
906 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
907 			break;
908 
909 		cpu_relax();
910 	} while (--loops);
911 
912 	if (!loops)
913 		return true;
914 
915 	return false;
916 }
917 
918 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
919 		u8 insn[], bool as_manager)
920 {
921 	void __iomem *regs = thrd->dmac->base;
922 	u32 val;
923 
924 	val = (insn[0] << 16) | (insn[1] << 24);
925 	if (!as_manager) {
926 		val |= (1 << 0);
927 		val |= (thrd->id << 8); /* Channel Number */
928 	}
929 	writel(val, regs + DBGINST0);
930 
931 	val = le32_to_cpu(*((__le32 *)&insn[2]));
932 	writel(val, regs + DBGINST1);
933 
934 	/* If timed out due to halted state-machine */
935 	if (_until_dmac_idle(thrd)) {
936 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
937 		return;
938 	}
939 
940 	/* Get going */
941 	writel(0, regs + DBGCMD);
942 }
943 
944 static inline u32 _state(struct pl330_thread *thrd)
945 {
946 	void __iomem *regs = thrd->dmac->base;
947 	u32 val;
948 
949 	if (is_manager(thrd))
950 		val = readl(regs + DS) & 0xf;
951 	else
952 		val = readl(regs + CS(thrd->id)) & 0xf;
953 
954 	switch (val) {
955 	case DS_ST_STOP:
956 		return PL330_STATE_STOPPED;
957 	case DS_ST_EXEC:
958 		return PL330_STATE_EXECUTING;
959 	case DS_ST_CMISS:
960 		return PL330_STATE_CACHEMISS;
961 	case DS_ST_UPDTPC:
962 		return PL330_STATE_UPDTPC;
963 	case DS_ST_WFE:
964 		return PL330_STATE_WFE;
965 	case DS_ST_FAULT:
966 		return PL330_STATE_FAULTING;
967 	case DS_ST_ATBRR:
968 		if (is_manager(thrd))
969 			return PL330_STATE_INVALID;
970 		else
971 			return PL330_STATE_ATBARRIER;
972 	case DS_ST_QBUSY:
973 		if (is_manager(thrd))
974 			return PL330_STATE_INVALID;
975 		else
976 			return PL330_STATE_QUEUEBUSY;
977 	case DS_ST_WFP:
978 		if (is_manager(thrd))
979 			return PL330_STATE_INVALID;
980 		else
981 			return PL330_STATE_WFP;
982 	case DS_ST_KILL:
983 		if (is_manager(thrd))
984 			return PL330_STATE_INVALID;
985 		else
986 			return PL330_STATE_KILLING;
987 	case DS_ST_CMPLT:
988 		if (is_manager(thrd))
989 			return PL330_STATE_INVALID;
990 		else
991 			return PL330_STATE_COMPLETING;
992 	case DS_ST_FLTCMP:
993 		if (is_manager(thrd))
994 			return PL330_STATE_INVALID;
995 		else
996 			return PL330_STATE_FAULT_COMPLETING;
997 	default:
998 		return PL330_STATE_INVALID;
999 	}
1000 }
1001 
1002 static void _stop(struct pl330_thread *thrd)
1003 {
1004 	void __iomem *regs = thrd->dmac->base;
1005 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1006 
1007 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1008 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1009 
1010 	/* Return if nothing needs to be done */
1011 	if (_state(thrd) == PL330_STATE_COMPLETING
1012 		  || _state(thrd) == PL330_STATE_KILLING
1013 		  || _state(thrd) == PL330_STATE_STOPPED)
1014 		return;
1015 
1016 	_emit_KILL(0, insn);
1017 
1018 	/* Stop generating interrupts for SEV */
1019 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1020 
1021 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1022 }
1023 
1024 /* Start doing req 'idx' of thread 'thrd' */
1025 static bool _trigger(struct pl330_thread *thrd)
1026 {
1027 	void __iomem *regs = thrd->dmac->base;
1028 	struct _pl330_req *req;
1029 	struct dma_pl330_desc *desc;
1030 	struct _arg_GO go;
1031 	unsigned ns;
1032 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1033 	int idx;
1034 
1035 	/* Return if already ACTIVE */
1036 	if (_state(thrd) != PL330_STATE_STOPPED)
1037 		return true;
1038 
1039 	idx = 1 - thrd->lstenq;
1040 	if (thrd->req[idx].desc != NULL) {
1041 		req = &thrd->req[idx];
1042 	} else {
1043 		idx = thrd->lstenq;
1044 		if (thrd->req[idx].desc != NULL)
1045 			req = &thrd->req[idx];
1046 		else
1047 			req = NULL;
1048 	}
1049 
1050 	/* Return if no request */
1051 	if (!req)
1052 		return true;
1053 
1054 	/* Return if req is running */
1055 	if (idx == thrd->req_running)
1056 		return true;
1057 
1058 	desc = req->desc;
1059 
1060 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1061 
1062 	/* See 'Abort Sources' point-4 at Page 2-25 */
1063 	if (_manager_ns(thrd) && !ns)
1064 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1065 			__func__, __LINE__);
1066 
1067 	go.chan = thrd->id;
1068 	go.addr = req->mc_bus;
1069 	go.ns = ns;
1070 	_emit_GO(0, insn, &go);
1071 
1072 	/* Set to generate interrupts for SEV */
1073 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1074 
1075 	/* Only manager can execute GO */
1076 	_execute_DBGINSN(thrd, insn, true);
1077 
1078 	thrd->req_running = idx;
1079 
1080 	return true;
1081 }
1082 
1083 static bool _start(struct pl330_thread *thrd)
1084 {
1085 	switch (_state(thrd)) {
1086 	case PL330_STATE_FAULT_COMPLETING:
1087 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1088 
1089 		if (_state(thrd) == PL330_STATE_KILLING)
1090 			UNTIL(thrd, PL330_STATE_STOPPED)
1091 
1092 	case PL330_STATE_FAULTING:
1093 		_stop(thrd);
1094 
1095 	case PL330_STATE_KILLING:
1096 	case PL330_STATE_COMPLETING:
1097 		UNTIL(thrd, PL330_STATE_STOPPED)
1098 
1099 	case PL330_STATE_STOPPED:
1100 		return _trigger(thrd);
1101 
1102 	case PL330_STATE_WFP:
1103 	case PL330_STATE_QUEUEBUSY:
1104 	case PL330_STATE_ATBARRIER:
1105 	case PL330_STATE_UPDTPC:
1106 	case PL330_STATE_CACHEMISS:
1107 	case PL330_STATE_EXECUTING:
1108 		return true;
1109 
1110 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1111 	default:
1112 		return false;
1113 	}
1114 }
1115 
1116 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1117 		const struct _xfer_spec *pxs, int cyc)
1118 {
1119 	int off = 0;
1120 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1121 
1122 	/* check lock-up free version */
1123 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1124 		while (cyc--) {
1125 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1126 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1127 		}
1128 	} else {
1129 		while (cyc--) {
1130 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1131 			off += _emit_RMB(dry_run, &buf[off]);
1132 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1133 			off += _emit_WMB(dry_run, &buf[off]);
1134 		}
1135 	}
1136 
1137 	return off;
1138 }
1139 
1140 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1141 		const struct _xfer_spec *pxs, int cyc)
1142 {
1143 	int off = 0;
1144 
1145 	while (cyc--) {
1146 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1147 		off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1148 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1149 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1150 	}
1151 
1152 	return off;
1153 }
1154 
1155 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1156 		const struct _xfer_spec *pxs, int cyc)
1157 {
1158 	int off = 0;
1159 
1160 	while (cyc--) {
1161 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1162 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1163 		off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1164 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1165 	}
1166 
1167 	return off;
1168 }
1169 
1170 static int _bursts(unsigned dry_run, u8 buf[],
1171 		const struct _xfer_spec *pxs, int cyc)
1172 {
1173 	int off = 0;
1174 
1175 	switch (pxs->desc->rqtype) {
1176 	case DMA_MEM_TO_DEV:
1177 		off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1178 		break;
1179 	case DMA_DEV_TO_MEM:
1180 		off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1181 		break;
1182 	case DMA_MEM_TO_MEM:
1183 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1184 		break;
1185 	default:
1186 		off += 0x40000000; /* Scare off the Client */
1187 		break;
1188 	}
1189 
1190 	return off;
1191 }
1192 
1193 /* Returns bytes consumed and updates bursts */
1194 static inline int _loop(unsigned dry_run, u8 buf[],
1195 		unsigned long *bursts, const struct _xfer_spec *pxs)
1196 {
1197 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1198 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1199 	struct _arg_LPEND lpend;
1200 
1201 	if (*bursts == 1)
1202 		return _bursts(dry_run, buf, pxs, 1);
1203 
1204 	/* Max iterations possible in DMALP is 256 */
1205 	if (*bursts >= 256*256) {
1206 		lcnt1 = 256;
1207 		lcnt0 = 256;
1208 		cyc = *bursts / lcnt1 / lcnt0;
1209 	} else if (*bursts > 256) {
1210 		lcnt1 = 256;
1211 		lcnt0 = *bursts / lcnt1;
1212 		cyc = 1;
1213 	} else {
1214 		lcnt1 = *bursts;
1215 		lcnt0 = 0;
1216 		cyc = 1;
1217 	}
1218 
1219 	szlp = _emit_LP(1, buf, 0, 0);
1220 	szbrst = _bursts(1, buf, pxs, 1);
1221 
1222 	lpend.cond = ALWAYS;
1223 	lpend.forever = false;
1224 	lpend.loop = 0;
1225 	lpend.bjump = 0;
1226 	szlpend = _emit_LPEND(1, buf, &lpend);
1227 
1228 	if (lcnt0) {
1229 		szlp *= 2;
1230 		szlpend *= 2;
1231 	}
1232 
1233 	/*
1234 	 * Max bursts that we can unroll due to limit on the
1235 	 * size of backward jump that can be encoded in DMALPEND
1236 	 * which is 8-bits and hence 255
1237 	 */
1238 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1239 
1240 	cyc = (cycmax < cyc) ? cycmax : cyc;
1241 
1242 	off = 0;
1243 
1244 	if (lcnt0) {
1245 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1246 		ljmp0 = off;
1247 	}
1248 
1249 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1250 	ljmp1 = off;
1251 
1252 	off += _bursts(dry_run, &buf[off], pxs, cyc);
1253 
1254 	lpend.cond = ALWAYS;
1255 	lpend.forever = false;
1256 	lpend.loop = 1;
1257 	lpend.bjump = off - ljmp1;
1258 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1259 
1260 	if (lcnt0) {
1261 		lpend.cond = ALWAYS;
1262 		lpend.forever = false;
1263 		lpend.loop = 0;
1264 		lpend.bjump = off - ljmp0;
1265 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1266 	}
1267 
1268 	*bursts = lcnt1 * cyc;
1269 	if (lcnt0)
1270 		*bursts *= lcnt0;
1271 
1272 	return off;
1273 }
1274 
1275 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1276 		const struct _xfer_spec *pxs)
1277 {
1278 	struct pl330_xfer *x = &pxs->desc->px;
1279 	u32 ccr = pxs->ccr;
1280 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1281 	int off = 0;
1282 
1283 	while (bursts) {
1284 		c = bursts;
1285 		off += _loop(dry_run, &buf[off], &c, pxs);
1286 		bursts -= c;
1287 	}
1288 
1289 	return off;
1290 }
1291 
1292 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1293 		const struct _xfer_spec *pxs)
1294 {
1295 	struct pl330_xfer *x = &pxs->desc->px;
1296 	int off = 0;
1297 
1298 	/* DMAMOV SAR, x->src_addr */
1299 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1300 	/* DMAMOV DAR, x->dst_addr */
1301 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1302 
1303 	/* Setup Loop(s) */
1304 	off += _setup_loops(dry_run, &buf[off], pxs);
1305 
1306 	return off;
1307 }
1308 
1309 /*
1310  * A req is a sequence of one or more xfer units.
1311  * Returns the number of bytes taken to setup the MC for the req.
1312  */
1313 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1314 		unsigned index, struct _xfer_spec *pxs)
1315 {
1316 	struct _pl330_req *req = &thrd->req[index];
1317 	struct pl330_xfer *x;
1318 	u8 *buf = req->mc_cpu;
1319 	int off = 0;
1320 
1321 	PL330_DBGMC_START(req->mc_bus);
1322 
1323 	/* DMAMOV CCR, ccr */
1324 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1325 
1326 	x = &pxs->desc->px;
1327 	/* Error if xfer length is not aligned at burst size */
1328 	if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1329 		return -EINVAL;
1330 
1331 	off += _setup_xfer(dry_run, &buf[off], pxs);
1332 
1333 	/* DMASEV peripheral/event */
1334 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1335 	/* DMAEND */
1336 	off += _emit_END(dry_run, &buf[off]);
1337 
1338 	return off;
1339 }
1340 
1341 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1342 {
1343 	u32 ccr = 0;
1344 
1345 	if (rqc->src_inc)
1346 		ccr |= CC_SRCINC;
1347 
1348 	if (rqc->dst_inc)
1349 		ccr |= CC_DSTINC;
1350 
1351 	/* We set same protection levels for Src and DST for now */
1352 	if (rqc->privileged)
1353 		ccr |= CC_SRCPRI | CC_DSTPRI;
1354 	if (rqc->nonsecure)
1355 		ccr |= CC_SRCNS | CC_DSTNS;
1356 	if (rqc->insnaccess)
1357 		ccr |= CC_SRCIA | CC_DSTIA;
1358 
1359 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1360 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1361 
1362 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1363 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1364 
1365 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1366 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1367 
1368 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1369 
1370 	return ccr;
1371 }
1372 
1373 /*
1374  * Submit a list of xfers after which the client wants notification.
1375  * Client is not notified after each xfer unit, just once after all
1376  * xfer units are done or some error occurs.
1377  */
1378 static int pl330_submit_req(struct pl330_thread *thrd,
1379 	struct dma_pl330_desc *desc)
1380 {
1381 	struct pl330_dmac *pl330 = thrd->dmac;
1382 	struct _xfer_spec xs;
1383 	unsigned long flags;
1384 	unsigned idx;
1385 	u32 ccr;
1386 	int ret = 0;
1387 
1388 	if (pl330->state == DYING
1389 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1390 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1391 			__func__, __LINE__);
1392 		return -EAGAIN;
1393 	}
1394 
1395 	/* If request for non-existing peripheral */
1396 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1397 	    desc->peri >= pl330->pcfg.num_peri) {
1398 		dev_info(thrd->dmac->ddma.dev,
1399 				"%s:%d Invalid peripheral(%u)!\n",
1400 				__func__, __LINE__, desc->peri);
1401 		return -EINVAL;
1402 	}
1403 
1404 	spin_lock_irqsave(&pl330->lock, flags);
1405 
1406 	if (_queue_full(thrd)) {
1407 		ret = -EAGAIN;
1408 		goto xfer_exit;
1409 	}
1410 
1411 	/* Prefer Secure Channel */
1412 	if (!_manager_ns(thrd))
1413 		desc->rqcfg.nonsecure = 0;
1414 	else
1415 		desc->rqcfg.nonsecure = 1;
1416 
1417 	ccr = _prepare_ccr(&desc->rqcfg);
1418 
1419 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1420 
1421 	xs.ccr = ccr;
1422 	xs.desc = desc;
1423 
1424 	/* First dry run to check if req is acceptable */
1425 	ret = _setup_req(1, thrd, idx, &xs);
1426 	if (ret < 0)
1427 		goto xfer_exit;
1428 
1429 	if (ret > pl330->mcbufsz / 2) {
1430 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1431 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1432 		ret = -ENOMEM;
1433 		goto xfer_exit;
1434 	}
1435 
1436 	/* Hook the request */
1437 	thrd->lstenq = idx;
1438 	thrd->req[idx].desc = desc;
1439 	_setup_req(0, thrd, idx, &xs);
1440 
1441 	ret = 0;
1442 
1443 xfer_exit:
1444 	spin_unlock_irqrestore(&pl330->lock, flags);
1445 
1446 	return ret;
1447 }
1448 
1449 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1450 {
1451 	struct dma_pl330_chan *pch;
1452 	unsigned long flags;
1453 
1454 	if (!desc)
1455 		return;
1456 
1457 	pch = desc->pchan;
1458 
1459 	/* If desc aborted */
1460 	if (!pch)
1461 		return;
1462 
1463 	spin_lock_irqsave(&pch->lock, flags);
1464 
1465 	desc->status = DONE;
1466 
1467 	spin_unlock_irqrestore(&pch->lock, flags);
1468 
1469 	tasklet_schedule(&pch->task);
1470 }
1471 
1472 static void pl330_dotask(unsigned long data)
1473 {
1474 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1475 	unsigned long flags;
1476 	int i;
1477 
1478 	spin_lock_irqsave(&pl330->lock, flags);
1479 
1480 	/* The DMAC itself gone nuts */
1481 	if (pl330->dmac_tbd.reset_dmac) {
1482 		pl330->state = DYING;
1483 		/* Reset the manager too */
1484 		pl330->dmac_tbd.reset_mngr = true;
1485 		/* Clear the reset flag */
1486 		pl330->dmac_tbd.reset_dmac = false;
1487 	}
1488 
1489 	if (pl330->dmac_tbd.reset_mngr) {
1490 		_stop(pl330->manager);
1491 		/* Reset all channels */
1492 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1493 		/* Clear the reset flag */
1494 		pl330->dmac_tbd.reset_mngr = false;
1495 	}
1496 
1497 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1498 
1499 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1500 			struct pl330_thread *thrd = &pl330->channels[i];
1501 			void __iomem *regs = pl330->base;
1502 			enum pl330_op_err err;
1503 
1504 			_stop(thrd);
1505 
1506 			if (readl(regs + FSC) & (1 << thrd->id))
1507 				err = PL330_ERR_FAIL;
1508 			else
1509 				err = PL330_ERR_ABORT;
1510 
1511 			spin_unlock_irqrestore(&pl330->lock, flags);
1512 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1513 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1514 			spin_lock_irqsave(&pl330->lock, flags);
1515 
1516 			thrd->req[0].desc = NULL;
1517 			thrd->req[1].desc = NULL;
1518 			thrd->req_running = -1;
1519 
1520 			/* Clear the reset flag */
1521 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1522 		}
1523 	}
1524 
1525 	spin_unlock_irqrestore(&pl330->lock, flags);
1526 
1527 	return;
1528 }
1529 
1530 /* Returns 1 if state was updated, 0 otherwise */
1531 static int pl330_update(struct pl330_dmac *pl330)
1532 {
1533 	struct dma_pl330_desc *descdone, *tmp;
1534 	unsigned long flags;
1535 	void __iomem *regs;
1536 	u32 val;
1537 	int id, ev, ret = 0;
1538 
1539 	regs = pl330->base;
1540 
1541 	spin_lock_irqsave(&pl330->lock, flags);
1542 
1543 	val = readl(regs + FSM) & 0x1;
1544 	if (val)
1545 		pl330->dmac_tbd.reset_mngr = true;
1546 	else
1547 		pl330->dmac_tbd.reset_mngr = false;
1548 
1549 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1550 	pl330->dmac_tbd.reset_chan |= val;
1551 	if (val) {
1552 		int i = 0;
1553 		while (i < pl330->pcfg.num_chan) {
1554 			if (val & (1 << i)) {
1555 				dev_info(pl330->ddma.dev,
1556 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1557 						i, readl(regs + CS(i)),
1558 						readl(regs + FTC(i)));
1559 				_stop(&pl330->channels[i]);
1560 			}
1561 			i++;
1562 		}
1563 	}
1564 
1565 	/* Check which event happened i.e, thread notified */
1566 	val = readl(regs + ES);
1567 	if (pl330->pcfg.num_events < 32
1568 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1569 		pl330->dmac_tbd.reset_dmac = true;
1570 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1571 			__LINE__);
1572 		ret = 1;
1573 		goto updt_exit;
1574 	}
1575 
1576 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1577 		if (val & (1 << ev)) { /* Event occurred */
1578 			struct pl330_thread *thrd;
1579 			u32 inten = readl(regs + INTEN);
1580 			int active;
1581 
1582 			/* Clear the event */
1583 			if (inten & (1 << ev))
1584 				writel(1 << ev, regs + INTCLR);
1585 
1586 			ret = 1;
1587 
1588 			id = pl330->events[ev];
1589 
1590 			thrd = &pl330->channels[id];
1591 
1592 			active = thrd->req_running;
1593 			if (active == -1) /* Aborted */
1594 				continue;
1595 
1596 			/* Detach the req */
1597 			descdone = thrd->req[active].desc;
1598 			thrd->req[active].desc = NULL;
1599 
1600 			thrd->req_running = -1;
1601 
1602 			/* Get going again ASAP */
1603 			_start(thrd);
1604 
1605 			/* For now, just make a list of callbacks to be done */
1606 			list_add_tail(&descdone->rqd, &pl330->req_done);
1607 		}
1608 	}
1609 
1610 	/* Now that we are in no hurry, do the callbacks */
1611 	list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) {
1612 		list_del(&descdone->rqd);
1613 		spin_unlock_irqrestore(&pl330->lock, flags);
1614 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1615 		spin_lock_irqsave(&pl330->lock, flags);
1616 	}
1617 
1618 updt_exit:
1619 	spin_unlock_irqrestore(&pl330->lock, flags);
1620 
1621 	if (pl330->dmac_tbd.reset_dmac
1622 			|| pl330->dmac_tbd.reset_mngr
1623 			|| pl330->dmac_tbd.reset_chan) {
1624 		ret = 1;
1625 		tasklet_schedule(&pl330->tasks);
1626 	}
1627 
1628 	return ret;
1629 }
1630 
1631 /* Reserve an event */
1632 static inline int _alloc_event(struct pl330_thread *thrd)
1633 {
1634 	struct pl330_dmac *pl330 = thrd->dmac;
1635 	int ev;
1636 
1637 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1638 		if (pl330->events[ev] == -1) {
1639 			pl330->events[ev] = thrd->id;
1640 			return ev;
1641 		}
1642 
1643 	return -1;
1644 }
1645 
1646 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1647 {
1648 	return pl330->pcfg.irq_ns & (1 << i);
1649 }
1650 
1651 /* Upon success, returns IdentityToken for the
1652  * allocated channel, NULL otherwise.
1653  */
1654 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1655 {
1656 	struct pl330_thread *thrd = NULL;
1657 	unsigned long flags;
1658 	int chans, i;
1659 
1660 	if (pl330->state == DYING)
1661 		return NULL;
1662 
1663 	chans = pl330->pcfg.num_chan;
1664 
1665 	spin_lock_irqsave(&pl330->lock, flags);
1666 
1667 	for (i = 0; i < chans; i++) {
1668 		thrd = &pl330->channels[i];
1669 		if ((thrd->free) && (!_manager_ns(thrd) ||
1670 					_chan_ns(pl330, i))) {
1671 			thrd->ev = _alloc_event(thrd);
1672 			if (thrd->ev >= 0) {
1673 				thrd->free = false;
1674 				thrd->lstenq = 1;
1675 				thrd->req[0].desc = NULL;
1676 				thrd->req[1].desc = NULL;
1677 				thrd->req_running = -1;
1678 				break;
1679 			}
1680 		}
1681 		thrd = NULL;
1682 	}
1683 
1684 	spin_unlock_irqrestore(&pl330->lock, flags);
1685 
1686 	return thrd;
1687 }
1688 
1689 /* Release an event */
1690 static inline void _free_event(struct pl330_thread *thrd, int ev)
1691 {
1692 	struct pl330_dmac *pl330 = thrd->dmac;
1693 
1694 	/* If the event is valid and was held by the thread */
1695 	if (ev >= 0 && ev < pl330->pcfg.num_events
1696 			&& pl330->events[ev] == thrd->id)
1697 		pl330->events[ev] = -1;
1698 }
1699 
1700 static void pl330_release_channel(struct pl330_thread *thrd)
1701 {
1702 	struct pl330_dmac *pl330;
1703 	unsigned long flags;
1704 
1705 	if (!thrd || thrd->free)
1706 		return;
1707 
1708 	_stop(thrd);
1709 
1710 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1711 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1712 
1713 	pl330 = thrd->dmac;
1714 
1715 	spin_lock_irqsave(&pl330->lock, flags);
1716 	_free_event(thrd, thrd->ev);
1717 	thrd->free = true;
1718 	spin_unlock_irqrestore(&pl330->lock, flags);
1719 }
1720 
1721 /* Initialize the structure for PL330 configuration, that can be used
1722  * by the client driver the make best use of the DMAC
1723  */
1724 static void read_dmac_config(struct pl330_dmac *pl330)
1725 {
1726 	void __iomem *regs = pl330->base;
1727 	u32 val;
1728 
1729 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1730 	val &= CRD_DATA_WIDTH_MASK;
1731 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1732 
1733 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1734 	val &= CRD_DATA_BUFF_MASK;
1735 	pl330->pcfg.data_buf_dep = val + 1;
1736 
1737 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1738 	val &= CR0_NUM_CHANS_MASK;
1739 	val += 1;
1740 	pl330->pcfg.num_chan = val;
1741 
1742 	val = readl(regs + CR0);
1743 	if (val & CR0_PERIPH_REQ_SET) {
1744 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1745 		val += 1;
1746 		pl330->pcfg.num_peri = val;
1747 		pl330->pcfg.peri_ns = readl(regs + CR4);
1748 	} else {
1749 		pl330->pcfg.num_peri = 0;
1750 	}
1751 
1752 	val = readl(regs + CR0);
1753 	if (val & CR0_BOOT_MAN_NS)
1754 		pl330->pcfg.mode |= DMAC_MODE_NS;
1755 	else
1756 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1757 
1758 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1759 	val &= CR0_NUM_EVENTS_MASK;
1760 	val += 1;
1761 	pl330->pcfg.num_events = val;
1762 
1763 	pl330->pcfg.irq_ns = readl(regs + CR3);
1764 }
1765 
1766 static inline void _reset_thread(struct pl330_thread *thrd)
1767 {
1768 	struct pl330_dmac *pl330 = thrd->dmac;
1769 
1770 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1771 				+ (thrd->id * pl330->mcbufsz);
1772 	thrd->req[0].mc_bus = pl330->mcode_bus
1773 				+ (thrd->id * pl330->mcbufsz);
1774 	thrd->req[0].desc = NULL;
1775 
1776 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1777 				+ pl330->mcbufsz / 2;
1778 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1779 				+ pl330->mcbufsz / 2;
1780 	thrd->req[1].desc = NULL;
1781 
1782 	thrd->req_running = -1;
1783 }
1784 
1785 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1786 {
1787 	int chans = pl330->pcfg.num_chan;
1788 	struct pl330_thread *thrd;
1789 	int i;
1790 
1791 	/* Allocate 1 Manager and 'chans' Channel threads */
1792 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1793 					GFP_KERNEL);
1794 	if (!pl330->channels)
1795 		return -ENOMEM;
1796 
1797 	/* Init Channel threads */
1798 	for (i = 0; i < chans; i++) {
1799 		thrd = &pl330->channels[i];
1800 		thrd->id = i;
1801 		thrd->dmac = pl330;
1802 		_reset_thread(thrd);
1803 		thrd->free = true;
1804 	}
1805 
1806 	/* MANAGER is indexed at the end */
1807 	thrd = &pl330->channels[chans];
1808 	thrd->id = chans;
1809 	thrd->dmac = pl330;
1810 	thrd->free = false;
1811 	pl330->manager = thrd;
1812 
1813 	return 0;
1814 }
1815 
1816 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1817 {
1818 	int chans = pl330->pcfg.num_chan;
1819 	int ret;
1820 
1821 	/*
1822 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1823 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1824 	 */
1825 	pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev,
1826 				chans * pl330->mcbufsz,
1827 				&pl330->mcode_bus, GFP_KERNEL);
1828 	if (!pl330->mcode_cpu) {
1829 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1830 			__func__, __LINE__);
1831 		return -ENOMEM;
1832 	}
1833 
1834 	ret = dmac_alloc_threads(pl330);
1835 	if (ret) {
1836 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1837 			__func__, __LINE__);
1838 		dma_free_coherent(pl330->ddma.dev,
1839 				chans * pl330->mcbufsz,
1840 				pl330->mcode_cpu, pl330->mcode_bus);
1841 		return ret;
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 static int pl330_add(struct pl330_dmac *pl330)
1848 {
1849 	void __iomem *regs;
1850 	int i, ret;
1851 
1852 	regs = pl330->base;
1853 
1854 	/* Check if we can handle this DMAC */
1855 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1856 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1857 			pl330->pcfg.periph_id);
1858 		return -EINVAL;
1859 	}
1860 
1861 	/* Read the configuration of the DMAC */
1862 	read_dmac_config(pl330);
1863 
1864 	if (pl330->pcfg.num_events == 0) {
1865 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1866 			__func__, __LINE__);
1867 		return -EINVAL;
1868 	}
1869 
1870 	spin_lock_init(&pl330->lock);
1871 
1872 	INIT_LIST_HEAD(&pl330->req_done);
1873 
1874 	/* Use default MC buffer size if not provided */
1875 	if (!pl330->mcbufsz)
1876 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1877 
1878 	/* Mark all events as free */
1879 	for (i = 0; i < pl330->pcfg.num_events; i++)
1880 		pl330->events[i] = -1;
1881 
1882 	/* Allocate resources needed by the DMAC */
1883 	ret = dmac_alloc_resources(pl330);
1884 	if (ret) {
1885 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1886 		return ret;
1887 	}
1888 
1889 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1890 
1891 	pl330->state = INIT;
1892 
1893 	return 0;
1894 }
1895 
1896 static int dmac_free_threads(struct pl330_dmac *pl330)
1897 {
1898 	struct pl330_thread *thrd;
1899 	int i;
1900 
1901 	/* Release Channel threads */
1902 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1903 		thrd = &pl330->channels[i];
1904 		pl330_release_channel(thrd);
1905 	}
1906 
1907 	/* Free memory */
1908 	kfree(pl330->channels);
1909 
1910 	return 0;
1911 }
1912 
1913 static void pl330_del(struct pl330_dmac *pl330)
1914 {
1915 	pl330->state = UNINIT;
1916 
1917 	tasklet_kill(&pl330->tasks);
1918 
1919 	/* Free DMAC resources */
1920 	dmac_free_threads(pl330);
1921 
1922 	dma_free_coherent(pl330->ddma.dev,
1923 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1924 		pl330->mcode_bus);
1925 }
1926 
1927 /* forward declaration */
1928 static struct amba_driver pl330_driver;
1929 
1930 static inline struct dma_pl330_chan *
1931 to_pchan(struct dma_chan *ch)
1932 {
1933 	if (!ch)
1934 		return NULL;
1935 
1936 	return container_of(ch, struct dma_pl330_chan, chan);
1937 }
1938 
1939 static inline struct dma_pl330_desc *
1940 to_desc(struct dma_async_tx_descriptor *tx)
1941 {
1942 	return container_of(tx, struct dma_pl330_desc, txd);
1943 }
1944 
1945 static inline void fill_queue(struct dma_pl330_chan *pch)
1946 {
1947 	struct dma_pl330_desc *desc;
1948 	int ret;
1949 
1950 	list_for_each_entry(desc, &pch->work_list, node) {
1951 
1952 		/* If already submitted */
1953 		if (desc->status == BUSY)
1954 			continue;
1955 
1956 		ret = pl330_submit_req(pch->thread, desc);
1957 		if (!ret) {
1958 			desc->status = BUSY;
1959 		} else if (ret == -EAGAIN) {
1960 			/* QFull or DMAC Dying */
1961 			break;
1962 		} else {
1963 			/* Unacceptable request */
1964 			desc->status = DONE;
1965 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
1966 					__func__, __LINE__, desc->txd.cookie);
1967 			tasklet_schedule(&pch->task);
1968 		}
1969 	}
1970 }
1971 
1972 static void pl330_tasklet(unsigned long data)
1973 {
1974 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
1975 	struct dma_pl330_desc *desc, *_dt;
1976 	unsigned long flags;
1977 	bool power_down = false;
1978 
1979 	spin_lock_irqsave(&pch->lock, flags);
1980 
1981 	/* Pick up ripe tomatoes */
1982 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
1983 		if (desc->status == DONE) {
1984 			if (!pch->cyclic)
1985 				dma_cookie_complete(&desc->txd);
1986 			list_move_tail(&desc->node, &pch->completed_list);
1987 		}
1988 
1989 	/* Try to submit a req imm. next to the last completed cookie */
1990 	fill_queue(pch);
1991 
1992 	if (list_empty(&pch->work_list)) {
1993 		spin_lock(&pch->thread->dmac->lock);
1994 		_stop(pch->thread);
1995 		spin_unlock(&pch->thread->dmac->lock);
1996 		power_down = true;
1997 	} else {
1998 		/* Make sure the PL330 Channel thread is active */
1999 		spin_lock(&pch->thread->dmac->lock);
2000 		_start(pch->thread);
2001 		spin_unlock(&pch->thread->dmac->lock);
2002 	}
2003 
2004 	while (!list_empty(&pch->completed_list)) {
2005 		dma_async_tx_callback callback;
2006 		void *callback_param;
2007 
2008 		desc = list_first_entry(&pch->completed_list,
2009 					struct dma_pl330_desc, node);
2010 
2011 		callback = desc->txd.callback;
2012 		callback_param = desc->txd.callback_param;
2013 
2014 		if (pch->cyclic) {
2015 			desc->status = PREP;
2016 			list_move_tail(&desc->node, &pch->work_list);
2017 			if (power_down) {
2018 				spin_lock(&pch->thread->dmac->lock);
2019 				_start(pch->thread);
2020 				spin_unlock(&pch->thread->dmac->lock);
2021 				power_down = false;
2022 			}
2023 		} else {
2024 			desc->status = FREE;
2025 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2026 		}
2027 
2028 		dma_descriptor_unmap(&desc->txd);
2029 
2030 		if (callback) {
2031 			spin_unlock_irqrestore(&pch->lock, flags);
2032 			callback(callback_param);
2033 			spin_lock_irqsave(&pch->lock, flags);
2034 		}
2035 	}
2036 	spin_unlock_irqrestore(&pch->lock, flags);
2037 
2038 	/* If work list empty, power down */
2039 	if (power_down) {
2040 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2041 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2042 	}
2043 }
2044 
2045 bool pl330_filter(struct dma_chan *chan, void *param)
2046 {
2047 	u8 *peri_id;
2048 
2049 	if (chan->device->dev->driver != &pl330_driver.drv)
2050 		return false;
2051 
2052 	peri_id = chan->private;
2053 	return *peri_id == (unsigned long)param;
2054 }
2055 EXPORT_SYMBOL(pl330_filter);
2056 
2057 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2058 						struct of_dma *ofdma)
2059 {
2060 	int count = dma_spec->args_count;
2061 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2062 	unsigned int chan_id;
2063 
2064 	if (!pl330)
2065 		return NULL;
2066 
2067 	if (count != 1)
2068 		return NULL;
2069 
2070 	chan_id = dma_spec->args[0];
2071 	if (chan_id >= pl330->num_peripherals)
2072 		return NULL;
2073 
2074 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2075 }
2076 
2077 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2078 {
2079 	struct dma_pl330_chan *pch = to_pchan(chan);
2080 	struct pl330_dmac *pl330 = pch->dmac;
2081 	unsigned long flags;
2082 
2083 	spin_lock_irqsave(&pch->lock, flags);
2084 
2085 	dma_cookie_init(chan);
2086 	pch->cyclic = false;
2087 
2088 	pch->thread = pl330_request_channel(pl330);
2089 	if (!pch->thread) {
2090 		spin_unlock_irqrestore(&pch->lock, flags);
2091 		return -ENOMEM;
2092 	}
2093 
2094 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2095 
2096 	spin_unlock_irqrestore(&pch->lock, flags);
2097 
2098 	return 1;
2099 }
2100 
2101 static int pl330_config(struct dma_chan *chan,
2102 			struct dma_slave_config *slave_config)
2103 {
2104 	struct dma_pl330_chan *pch = to_pchan(chan);
2105 
2106 	if (slave_config->direction == DMA_MEM_TO_DEV) {
2107 		if (slave_config->dst_addr)
2108 			pch->fifo_addr = slave_config->dst_addr;
2109 		if (slave_config->dst_addr_width)
2110 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2111 		if (slave_config->dst_maxburst)
2112 			pch->burst_len = slave_config->dst_maxburst;
2113 	} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2114 		if (slave_config->src_addr)
2115 			pch->fifo_addr = slave_config->src_addr;
2116 		if (slave_config->src_addr_width)
2117 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2118 		if (slave_config->src_maxburst)
2119 			pch->burst_len = slave_config->src_maxburst;
2120 	}
2121 
2122 	return 0;
2123 }
2124 
2125 static int pl330_terminate_all(struct dma_chan *chan)
2126 {
2127 	struct dma_pl330_chan *pch = to_pchan(chan);
2128 	struct dma_pl330_desc *desc;
2129 	unsigned long flags;
2130 	struct pl330_dmac *pl330 = pch->dmac;
2131 	LIST_HEAD(list);
2132 
2133 	pm_runtime_get_sync(pl330->ddma.dev);
2134 	spin_lock_irqsave(&pch->lock, flags);
2135 	spin_lock(&pl330->lock);
2136 	_stop(pch->thread);
2137 	spin_unlock(&pl330->lock);
2138 
2139 	pch->thread->req[0].desc = NULL;
2140 	pch->thread->req[1].desc = NULL;
2141 	pch->thread->req_running = -1;
2142 
2143 	/* Mark all desc done */
2144 	list_for_each_entry(desc, &pch->submitted_list, node) {
2145 		desc->status = FREE;
2146 		dma_cookie_complete(&desc->txd);
2147 	}
2148 
2149 	list_for_each_entry(desc, &pch->work_list , node) {
2150 		desc->status = FREE;
2151 		dma_cookie_complete(&desc->txd);
2152 	}
2153 
2154 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2155 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2156 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2157 	spin_unlock_irqrestore(&pch->lock, flags);
2158 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2159 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2160 
2161 	return 0;
2162 }
2163 
2164 /*
2165  * We don't support DMA_RESUME command because of hardware
2166  * limitations, so after pausing the channel we cannot restore
2167  * it to active state. We have to terminate channel and setup
2168  * DMA transfer again. This pause feature was implemented to
2169  * allow safely read residue before channel termination.
2170  */
2171 static int pl330_pause(struct dma_chan *chan)
2172 {
2173 	struct dma_pl330_chan *pch = to_pchan(chan);
2174 	struct pl330_dmac *pl330 = pch->dmac;
2175 	unsigned long flags;
2176 
2177 	pm_runtime_get_sync(pl330->ddma.dev);
2178 	spin_lock_irqsave(&pch->lock, flags);
2179 
2180 	spin_lock(&pl330->lock);
2181 	_stop(pch->thread);
2182 	spin_unlock(&pl330->lock);
2183 
2184 	spin_unlock_irqrestore(&pch->lock, flags);
2185 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2186 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2187 
2188 	return 0;
2189 }
2190 
2191 static void pl330_free_chan_resources(struct dma_chan *chan)
2192 {
2193 	struct dma_pl330_chan *pch = to_pchan(chan);
2194 	unsigned long flags;
2195 
2196 	tasklet_kill(&pch->task);
2197 
2198 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2199 	spin_lock_irqsave(&pch->lock, flags);
2200 
2201 	pl330_release_channel(pch->thread);
2202 	pch->thread = NULL;
2203 
2204 	if (pch->cyclic)
2205 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2206 
2207 	spin_unlock_irqrestore(&pch->lock, flags);
2208 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2209 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2210 }
2211 
2212 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2213 					   struct dma_pl330_desc *desc)
2214 {
2215 	struct pl330_thread *thrd = pch->thread;
2216 	struct pl330_dmac *pl330 = pch->dmac;
2217 	void __iomem *regs = thrd->dmac->base;
2218 	u32 val, addr;
2219 
2220 	pm_runtime_get_sync(pl330->ddma.dev);
2221 	val = addr = 0;
2222 	if (desc->rqcfg.src_inc) {
2223 		val = readl(regs + SA(thrd->id));
2224 		addr = desc->px.src_addr;
2225 	} else {
2226 		val = readl(regs + DA(thrd->id));
2227 		addr = desc->px.dst_addr;
2228 	}
2229 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2230 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2231 	return val - addr;
2232 }
2233 
2234 static enum dma_status
2235 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2236 		 struct dma_tx_state *txstate)
2237 {
2238 	enum dma_status ret;
2239 	unsigned long flags;
2240 	struct dma_pl330_desc *desc, *running = NULL;
2241 	struct dma_pl330_chan *pch = to_pchan(chan);
2242 	unsigned int transferred, residual = 0;
2243 
2244 	ret = dma_cookie_status(chan, cookie, txstate);
2245 
2246 	if (!txstate)
2247 		return ret;
2248 
2249 	if (ret == DMA_COMPLETE)
2250 		goto out;
2251 
2252 	spin_lock_irqsave(&pch->lock, flags);
2253 
2254 	if (pch->thread->req_running != -1)
2255 		running = pch->thread->req[pch->thread->req_running].desc;
2256 
2257 	/* Check in pending list */
2258 	list_for_each_entry(desc, &pch->work_list, node) {
2259 		if (desc->status == DONE)
2260 			transferred = desc->bytes_requested;
2261 		else if (running && desc == running)
2262 			transferred =
2263 				pl330_get_current_xferred_count(pch, desc);
2264 		else
2265 			transferred = 0;
2266 		residual += desc->bytes_requested - transferred;
2267 		if (desc->txd.cookie == cookie) {
2268 			switch (desc->status) {
2269 			case DONE:
2270 				ret = DMA_COMPLETE;
2271 				break;
2272 			case PREP:
2273 			case BUSY:
2274 				ret = DMA_IN_PROGRESS;
2275 				break;
2276 			default:
2277 				WARN_ON(1);
2278 			}
2279 			break;
2280 		}
2281 		if (desc->last)
2282 			residual = 0;
2283 	}
2284 	spin_unlock_irqrestore(&pch->lock, flags);
2285 
2286 out:
2287 	dma_set_residue(txstate, residual);
2288 
2289 	return ret;
2290 }
2291 
2292 static void pl330_issue_pending(struct dma_chan *chan)
2293 {
2294 	struct dma_pl330_chan *pch = to_pchan(chan);
2295 	unsigned long flags;
2296 
2297 	spin_lock_irqsave(&pch->lock, flags);
2298 	if (list_empty(&pch->work_list)) {
2299 		/*
2300 		 * Warn on nothing pending. Empty submitted_list may
2301 		 * break our pm_runtime usage counter as it is
2302 		 * updated on work_list emptiness status.
2303 		 */
2304 		WARN_ON(list_empty(&pch->submitted_list));
2305 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2306 	}
2307 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2308 	spin_unlock_irqrestore(&pch->lock, flags);
2309 
2310 	pl330_tasklet((unsigned long)pch);
2311 }
2312 
2313 /*
2314  * We returned the last one of the circular list of descriptor(s)
2315  * from prep_xxx, so the argument to submit corresponds to the last
2316  * descriptor of the list.
2317  */
2318 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2319 {
2320 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2321 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2322 	dma_cookie_t cookie;
2323 	unsigned long flags;
2324 
2325 	spin_lock_irqsave(&pch->lock, flags);
2326 
2327 	/* Assign cookies to all nodes */
2328 	while (!list_empty(&last->node)) {
2329 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2330 		if (pch->cyclic) {
2331 			desc->txd.callback = last->txd.callback;
2332 			desc->txd.callback_param = last->txd.callback_param;
2333 		}
2334 		desc->last = false;
2335 
2336 		dma_cookie_assign(&desc->txd);
2337 
2338 		list_move_tail(&desc->node, &pch->submitted_list);
2339 	}
2340 
2341 	last->last = true;
2342 	cookie = dma_cookie_assign(&last->txd);
2343 	list_add_tail(&last->node, &pch->submitted_list);
2344 	spin_unlock_irqrestore(&pch->lock, flags);
2345 
2346 	return cookie;
2347 }
2348 
2349 static inline void _init_desc(struct dma_pl330_desc *desc)
2350 {
2351 	desc->rqcfg.swap = SWAP_NO;
2352 	desc->rqcfg.scctl = CCTRL0;
2353 	desc->rqcfg.dcctl = CCTRL0;
2354 	desc->txd.tx_submit = pl330_tx_submit;
2355 
2356 	INIT_LIST_HEAD(&desc->node);
2357 }
2358 
2359 /* Returns the number of descriptors added to the DMAC pool */
2360 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
2361 {
2362 	struct dma_pl330_desc *desc;
2363 	unsigned long flags;
2364 	int i;
2365 
2366 	desc = kcalloc(count, sizeof(*desc), flg);
2367 	if (!desc)
2368 		return 0;
2369 
2370 	spin_lock_irqsave(&pl330->pool_lock, flags);
2371 
2372 	for (i = 0; i < count; i++) {
2373 		_init_desc(&desc[i]);
2374 		list_add_tail(&desc[i].node, &pl330->desc_pool);
2375 	}
2376 
2377 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2378 
2379 	return count;
2380 }
2381 
2382 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
2383 {
2384 	struct dma_pl330_desc *desc = NULL;
2385 	unsigned long flags;
2386 
2387 	spin_lock_irqsave(&pl330->pool_lock, flags);
2388 
2389 	if (!list_empty(&pl330->desc_pool)) {
2390 		desc = list_entry(pl330->desc_pool.next,
2391 				struct dma_pl330_desc, node);
2392 
2393 		list_del_init(&desc->node);
2394 
2395 		desc->status = PREP;
2396 		desc->txd.callback = NULL;
2397 	}
2398 
2399 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2400 
2401 	return desc;
2402 }
2403 
2404 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2405 {
2406 	struct pl330_dmac *pl330 = pch->dmac;
2407 	u8 *peri_id = pch->chan.private;
2408 	struct dma_pl330_desc *desc;
2409 
2410 	/* Pluck one desc from the pool of DMAC */
2411 	desc = pluck_desc(pl330);
2412 
2413 	/* If the DMAC pool is empty, alloc new */
2414 	if (!desc) {
2415 		if (!add_desc(pl330, GFP_ATOMIC, 1))
2416 			return NULL;
2417 
2418 		/* Try again */
2419 		desc = pluck_desc(pl330);
2420 		if (!desc) {
2421 			dev_err(pch->dmac->ddma.dev,
2422 				"%s:%d ALERT!\n", __func__, __LINE__);
2423 			return NULL;
2424 		}
2425 	}
2426 
2427 	/* Initialize the descriptor */
2428 	desc->pchan = pch;
2429 	desc->txd.cookie = 0;
2430 	async_tx_ack(&desc->txd);
2431 
2432 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2433 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2434 
2435 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2436 
2437 	return desc;
2438 }
2439 
2440 static inline void fill_px(struct pl330_xfer *px,
2441 		dma_addr_t dst, dma_addr_t src, size_t len)
2442 {
2443 	px->bytes = len;
2444 	px->dst_addr = dst;
2445 	px->src_addr = src;
2446 }
2447 
2448 static struct dma_pl330_desc *
2449 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2450 		dma_addr_t src, size_t len)
2451 {
2452 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2453 
2454 	if (!desc) {
2455 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2456 			__func__, __LINE__);
2457 		return NULL;
2458 	}
2459 
2460 	/*
2461 	 * Ideally we should lookout for reqs bigger than
2462 	 * those that can be programmed with 256 bytes of
2463 	 * MC buffer, but considering a req size is seldom
2464 	 * going to be word-unaligned and more than 200MB,
2465 	 * we take it easy.
2466 	 * Also, should the limit is reached we'd rather
2467 	 * have the platform increase MC buffer size than
2468 	 * complicating this API driver.
2469 	 */
2470 	fill_px(&desc->px, dst, src, len);
2471 
2472 	return desc;
2473 }
2474 
2475 /* Call after fixing burst size */
2476 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2477 {
2478 	struct dma_pl330_chan *pch = desc->pchan;
2479 	struct pl330_dmac *pl330 = pch->dmac;
2480 	int burst_len;
2481 
2482 	burst_len = pl330->pcfg.data_bus_width / 8;
2483 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2484 	burst_len >>= desc->rqcfg.brst_size;
2485 
2486 	/* src/dst_burst_len can't be more than 16 */
2487 	if (burst_len > 16)
2488 		burst_len = 16;
2489 
2490 	while (burst_len > 1) {
2491 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2492 			break;
2493 		burst_len--;
2494 	}
2495 
2496 	return burst_len;
2497 }
2498 
2499 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2500 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2501 		size_t period_len, enum dma_transfer_direction direction,
2502 		unsigned long flags)
2503 {
2504 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2505 	struct dma_pl330_chan *pch = to_pchan(chan);
2506 	struct pl330_dmac *pl330 = pch->dmac;
2507 	unsigned int i;
2508 	dma_addr_t dst;
2509 	dma_addr_t src;
2510 
2511 	if (len % period_len != 0)
2512 		return NULL;
2513 
2514 	if (!is_slave_direction(direction)) {
2515 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2516 		__func__, __LINE__);
2517 		return NULL;
2518 	}
2519 
2520 	for (i = 0; i < len / period_len; i++) {
2521 		desc = pl330_get_desc(pch);
2522 		if (!desc) {
2523 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2524 				__func__, __LINE__);
2525 
2526 			if (!first)
2527 				return NULL;
2528 
2529 			spin_lock_irqsave(&pl330->pool_lock, flags);
2530 
2531 			while (!list_empty(&first->node)) {
2532 				desc = list_entry(first->node.next,
2533 						struct dma_pl330_desc, node);
2534 				list_move_tail(&desc->node, &pl330->desc_pool);
2535 			}
2536 
2537 			list_move_tail(&first->node, &pl330->desc_pool);
2538 
2539 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2540 
2541 			return NULL;
2542 		}
2543 
2544 		switch (direction) {
2545 		case DMA_MEM_TO_DEV:
2546 			desc->rqcfg.src_inc = 1;
2547 			desc->rqcfg.dst_inc = 0;
2548 			src = dma_addr;
2549 			dst = pch->fifo_addr;
2550 			break;
2551 		case DMA_DEV_TO_MEM:
2552 			desc->rqcfg.src_inc = 0;
2553 			desc->rqcfg.dst_inc = 1;
2554 			src = pch->fifo_addr;
2555 			dst = dma_addr;
2556 			break;
2557 		default:
2558 			break;
2559 		}
2560 
2561 		desc->rqtype = direction;
2562 		desc->rqcfg.brst_size = pch->burst_sz;
2563 		desc->rqcfg.brst_len = 1;
2564 		desc->bytes_requested = period_len;
2565 		fill_px(&desc->px, dst, src, period_len);
2566 
2567 		if (!first)
2568 			first = desc;
2569 		else
2570 			list_add_tail(&desc->node, &first->node);
2571 
2572 		dma_addr += period_len;
2573 	}
2574 
2575 	if (!desc)
2576 		return NULL;
2577 
2578 	pch->cyclic = true;
2579 	desc->txd.flags = flags;
2580 
2581 	return &desc->txd;
2582 }
2583 
2584 static struct dma_async_tx_descriptor *
2585 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2586 		dma_addr_t src, size_t len, unsigned long flags)
2587 {
2588 	struct dma_pl330_desc *desc;
2589 	struct dma_pl330_chan *pch = to_pchan(chan);
2590 	struct pl330_dmac *pl330;
2591 	int burst;
2592 
2593 	if (unlikely(!pch || !len))
2594 		return NULL;
2595 
2596 	pl330 = pch->dmac;
2597 
2598 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2599 	if (!desc)
2600 		return NULL;
2601 
2602 	desc->rqcfg.src_inc = 1;
2603 	desc->rqcfg.dst_inc = 1;
2604 	desc->rqtype = DMA_MEM_TO_MEM;
2605 
2606 	/* Select max possible burst size */
2607 	burst = pl330->pcfg.data_bus_width / 8;
2608 
2609 	/*
2610 	 * Make sure we use a burst size that aligns with all the memcpy
2611 	 * parameters because our DMA programming algorithm doesn't cope with
2612 	 * transfers which straddle an entry in the DMA device's MFIFO.
2613 	 */
2614 	while ((src | dst | len) & (burst - 1))
2615 		burst /= 2;
2616 
2617 	desc->rqcfg.brst_size = 0;
2618 	while (burst != (1 << desc->rqcfg.brst_size))
2619 		desc->rqcfg.brst_size++;
2620 
2621 	/*
2622 	 * If burst size is smaller than bus width then make sure we only
2623 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2624 	 */
2625 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2626 		desc->rqcfg.brst_len = 1;
2627 
2628 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2629 	desc->bytes_requested = len;
2630 
2631 	desc->txd.flags = flags;
2632 
2633 	return &desc->txd;
2634 }
2635 
2636 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2637 				  struct dma_pl330_desc *first)
2638 {
2639 	unsigned long flags;
2640 	struct dma_pl330_desc *desc;
2641 
2642 	if (!first)
2643 		return;
2644 
2645 	spin_lock_irqsave(&pl330->pool_lock, flags);
2646 
2647 	while (!list_empty(&first->node)) {
2648 		desc = list_entry(first->node.next,
2649 				struct dma_pl330_desc, node);
2650 		list_move_tail(&desc->node, &pl330->desc_pool);
2651 	}
2652 
2653 	list_move_tail(&first->node, &pl330->desc_pool);
2654 
2655 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2656 }
2657 
2658 static struct dma_async_tx_descriptor *
2659 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2660 		unsigned int sg_len, enum dma_transfer_direction direction,
2661 		unsigned long flg, void *context)
2662 {
2663 	struct dma_pl330_desc *first, *desc = NULL;
2664 	struct dma_pl330_chan *pch = to_pchan(chan);
2665 	struct scatterlist *sg;
2666 	int i;
2667 	dma_addr_t addr;
2668 
2669 	if (unlikely(!pch || !sgl || !sg_len))
2670 		return NULL;
2671 
2672 	addr = pch->fifo_addr;
2673 
2674 	first = NULL;
2675 
2676 	for_each_sg(sgl, sg, sg_len, i) {
2677 
2678 		desc = pl330_get_desc(pch);
2679 		if (!desc) {
2680 			struct pl330_dmac *pl330 = pch->dmac;
2681 
2682 			dev_err(pch->dmac->ddma.dev,
2683 				"%s:%d Unable to fetch desc\n",
2684 				__func__, __LINE__);
2685 			__pl330_giveback_desc(pl330, first);
2686 
2687 			return NULL;
2688 		}
2689 
2690 		if (!first)
2691 			first = desc;
2692 		else
2693 			list_add_tail(&desc->node, &first->node);
2694 
2695 		if (direction == DMA_MEM_TO_DEV) {
2696 			desc->rqcfg.src_inc = 1;
2697 			desc->rqcfg.dst_inc = 0;
2698 			fill_px(&desc->px,
2699 				addr, sg_dma_address(sg), sg_dma_len(sg));
2700 		} else {
2701 			desc->rqcfg.src_inc = 0;
2702 			desc->rqcfg.dst_inc = 1;
2703 			fill_px(&desc->px,
2704 				sg_dma_address(sg), addr, sg_dma_len(sg));
2705 		}
2706 
2707 		desc->rqcfg.brst_size = pch->burst_sz;
2708 		desc->rqcfg.brst_len = 1;
2709 		desc->rqtype = direction;
2710 		desc->bytes_requested = sg_dma_len(sg);
2711 	}
2712 
2713 	/* Return the last desc in the chain */
2714 	desc->txd.flags = flg;
2715 	return &desc->txd;
2716 }
2717 
2718 static irqreturn_t pl330_irq_handler(int irq, void *data)
2719 {
2720 	if (pl330_update(data))
2721 		return IRQ_HANDLED;
2722 	else
2723 		return IRQ_NONE;
2724 }
2725 
2726 #define PL330_DMA_BUSWIDTHS \
2727 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2728 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2729 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2730 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2731 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2732 
2733 /*
2734  * Runtime PM callbacks are provided by amba/bus.c driver.
2735  *
2736  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2737  * bus driver will only disable/enable the clock in runtime PM callbacks.
2738  */
2739 static int __maybe_unused pl330_suspend(struct device *dev)
2740 {
2741 	struct amba_device *pcdev = to_amba_device(dev);
2742 
2743 	pm_runtime_disable(dev);
2744 
2745 	if (!pm_runtime_status_suspended(dev)) {
2746 		/* amba did not disable the clock */
2747 		amba_pclk_disable(pcdev);
2748 	}
2749 	amba_pclk_unprepare(pcdev);
2750 
2751 	return 0;
2752 }
2753 
2754 static int __maybe_unused pl330_resume(struct device *dev)
2755 {
2756 	struct amba_device *pcdev = to_amba_device(dev);
2757 	int ret;
2758 
2759 	ret = amba_pclk_prepare(pcdev);
2760 	if (ret)
2761 		return ret;
2762 
2763 	if (!pm_runtime_status_suspended(dev))
2764 		ret = amba_pclk_enable(pcdev);
2765 
2766 	pm_runtime_enable(dev);
2767 
2768 	return ret;
2769 }
2770 
2771 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2772 
2773 static int
2774 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2775 {
2776 	struct dma_pl330_platdata *pdat;
2777 	struct pl330_config *pcfg;
2778 	struct pl330_dmac *pl330;
2779 	struct dma_pl330_chan *pch, *_p;
2780 	struct dma_device *pd;
2781 	struct resource *res;
2782 	int i, ret, irq;
2783 	int num_chan;
2784 
2785 	pdat = dev_get_platdata(&adev->dev);
2786 
2787 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2788 	if (ret)
2789 		return ret;
2790 
2791 	/* Allocate a new DMAC and its Channels */
2792 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2793 	if (!pl330) {
2794 		dev_err(&adev->dev, "unable to allocate mem\n");
2795 		return -ENOMEM;
2796 	}
2797 
2798 	pd = &pl330->ddma;
2799 	pd->dev = &adev->dev;
2800 
2801 	pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2802 
2803 	res = &adev->res;
2804 	pl330->base = devm_ioremap_resource(&adev->dev, res);
2805 	if (IS_ERR(pl330->base))
2806 		return PTR_ERR(pl330->base);
2807 
2808 	amba_set_drvdata(adev, pl330);
2809 
2810 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2811 		irq = adev->irq[i];
2812 		if (irq) {
2813 			ret = devm_request_irq(&adev->dev, irq,
2814 					       pl330_irq_handler, 0,
2815 					       dev_name(&adev->dev), pl330);
2816 			if (ret)
2817 				return ret;
2818 		} else {
2819 			break;
2820 		}
2821 	}
2822 
2823 	pcfg = &pl330->pcfg;
2824 
2825 	pcfg->periph_id = adev->periphid;
2826 	ret = pl330_add(pl330);
2827 	if (ret)
2828 		return ret;
2829 
2830 	INIT_LIST_HEAD(&pl330->desc_pool);
2831 	spin_lock_init(&pl330->pool_lock);
2832 
2833 	/* Create a descriptor pool of default size */
2834 	if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC))
2835 		dev_warn(&adev->dev, "unable to allocate desc\n");
2836 
2837 	INIT_LIST_HEAD(&pd->channels);
2838 
2839 	/* Initialize channel parameters */
2840 	if (pdat)
2841 		num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan);
2842 	else
2843 		num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2844 
2845 	pl330->num_peripherals = num_chan;
2846 
2847 	pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2848 	if (!pl330->peripherals) {
2849 		ret = -ENOMEM;
2850 		dev_err(&adev->dev, "unable to allocate pl330->peripherals\n");
2851 		goto probe_err2;
2852 	}
2853 
2854 	for (i = 0; i < num_chan; i++) {
2855 		pch = &pl330->peripherals[i];
2856 		if (!adev->dev.of_node)
2857 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2858 		else
2859 			pch->chan.private = adev->dev.of_node;
2860 
2861 		INIT_LIST_HEAD(&pch->submitted_list);
2862 		INIT_LIST_HEAD(&pch->work_list);
2863 		INIT_LIST_HEAD(&pch->completed_list);
2864 		spin_lock_init(&pch->lock);
2865 		pch->thread = NULL;
2866 		pch->chan.device = pd;
2867 		pch->dmac = pl330;
2868 
2869 		/* Add the channel to the DMAC list */
2870 		list_add_tail(&pch->chan.device_node, &pd->channels);
2871 	}
2872 
2873 	if (pdat) {
2874 		pd->cap_mask = pdat->cap_mask;
2875 	} else {
2876 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2877 		if (pcfg->num_peri) {
2878 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2879 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2880 			dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2881 		}
2882 	}
2883 
2884 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2885 	pd->device_free_chan_resources = pl330_free_chan_resources;
2886 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2887 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2888 	pd->device_tx_status = pl330_tx_status;
2889 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2890 	pd->device_config = pl330_config;
2891 	pd->device_pause = pl330_pause;
2892 	pd->device_terminate_all = pl330_terminate_all;
2893 	pd->device_issue_pending = pl330_issue_pending;
2894 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2895 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2896 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2897 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2898 
2899 	ret = dma_async_device_register(pd);
2900 	if (ret) {
2901 		dev_err(&adev->dev, "unable to register DMAC\n");
2902 		goto probe_err3;
2903 	}
2904 
2905 	if (adev->dev.of_node) {
2906 		ret = of_dma_controller_register(adev->dev.of_node,
2907 					 of_dma_pl330_xlate, pl330);
2908 		if (ret) {
2909 			dev_err(&adev->dev,
2910 			"unable to register DMA to the generic DT DMA helpers\n");
2911 		}
2912 	}
2913 
2914 	adev->dev.dma_parms = &pl330->dma_parms;
2915 
2916 	/*
2917 	 * This is the limit for transfers with a buswidth of 1, larger
2918 	 * buswidths will have larger limits.
2919 	 */
2920 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
2921 	if (ret)
2922 		dev_err(&adev->dev, "unable to set the seg size\n");
2923 
2924 
2925 	dev_info(&adev->dev,
2926 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2927 	dev_info(&adev->dev,
2928 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2929 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2930 		pcfg->num_peri, pcfg->num_events);
2931 
2932 	pm_runtime_irq_safe(&adev->dev);
2933 	pm_runtime_use_autosuspend(&adev->dev);
2934 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2935 	pm_runtime_mark_last_busy(&adev->dev);
2936 	pm_runtime_put_autosuspend(&adev->dev);
2937 
2938 	return 0;
2939 probe_err3:
2940 	/* Idle the DMAC */
2941 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2942 			chan.device_node) {
2943 
2944 		/* Remove the channel */
2945 		list_del(&pch->chan.device_node);
2946 
2947 		/* Flush the channel */
2948 		if (pch->thread) {
2949 			pl330_terminate_all(&pch->chan);
2950 			pl330_free_chan_resources(&pch->chan);
2951 		}
2952 	}
2953 probe_err2:
2954 	pl330_del(pl330);
2955 
2956 	return ret;
2957 }
2958 
2959 static int pl330_remove(struct amba_device *adev)
2960 {
2961 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
2962 	struct dma_pl330_chan *pch, *_p;
2963 
2964 	pm_runtime_get_noresume(pl330->ddma.dev);
2965 
2966 	if (adev->dev.of_node)
2967 		of_dma_controller_free(adev->dev.of_node);
2968 
2969 	dma_async_device_unregister(&pl330->ddma);
2970 
2971 	/* Idle the DMAC */
2972 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2973 			chan.device_node) {
2974 
2975 		/* Remove the channel */
2976 		list_del(&pch->chan.device_node);
2977 
2978 		/* Flush the channel */
2979 		if (pch->thread) {
2980 			pl330_terminate_all(&pch->chan);
2981 			pl330_free_chan_resources(&pch->chan);
2982 		}
2983 	}
2984 
2985 	pl330_del(pl330);
2986 
2987 	return 0;
2988 }
2989 
2990 static struct amba_id pl330_ids[] = {
2991 	{
2992 		.id	= 0x00041330,
2993 		.mask	= 0x000fffff,
2994 	},
2995 	{ 0, 0 },
2996 };
2997 
2998 MODULE_DEVICE_TABLE(amba, pl330_ids);
2999 
3000 static struct amba_driver pl330_driver = {
3001 	.drv = {
3002 		.owner = THIS_MODULE,
3003 		.name = "dma-pl330",
3004 		.pm = &pl330_pm,
3005 	},
3006 	.id_table = pl330_ids,
3007 	.probe = pl330_probe,
3008 	.remove = pl330_remove,
3009 };
3010 
3011 module_amba_driver(pl330_driver);
3012 
3013 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3014 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3015 MODULE_LICENSE("GPL");
3016