xref: /openbmc/linux/drivers/dma/pl330.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30 #include <linux/pm_runtime.h>
31 
32 #include "dmaengine.h"
33 #define PL330_MAX_CHAN		8
34 #define PL330_MAX_IRQS		32
35 #define PL330_MAX_PERI		32
36 
37 enum pl330_cachectrl {
38 	CCTRL0,		/* Noncacheable and nonbufferable */
39 	CCTRL1,		/* Bufferable only */
40 	CCTRL2,		/* Cacheable, but do not allocate */
41 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
42 	INVALID1,	/* AWCACHE = 0x1000 */
43 	INVALID2,
44 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
45 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
46 };
47 
48 enum pl330_byteswap {
49 	SWAP_NO,
50 	SWAP_2,
51 	SWAP_4,
52 	SWAP_8,
53 	SWAP_16,
54 };
55 
56 /* Register and Bit field Definitions */
57 #define DS			0x0
58 #define DS_ST_STOP		0x0
59 #define DS_ST_EXEC		0x1
60 #define DS_ST_CMISS		0x2
61 #define DS_ST_UPDTPC		0x3
62 #define DS_ST_WFE		0x4
63 #define DS_ST_ATBRR		0x5
64 #define DS_ST_QBUSY		0x6
65 #define DS_ST_WFP		0x7
66 #define DS_ST_KILL		0x8
67 #define DS_ST_CMPLT		0x9
68 #define DS_ST_FLTCMP		0xe
69 #define DS_ST_FAULT		0xf
70 
71 #define DPC			0x4
72 #define INTEN			0x20
73 #define ES			0x24
74 #define INTSTATUS		0x28
75 #define INTCLR			0x2c
76 #define FSM			0x30
77 #define FSC			0x34
78 #define FTM			0x38
79 
80 #define _FTC			0x40
81 #define FTC(n)			(_FTC + (n)*0x4)
82 
83 #define _CS			0x100
84 #define CS(n)			(_CS + (n)*0x8)
85 #define CS_CNS			(1 << 21)
86 
87 #define _CPC			0x104
88 #define CPC(n)			(_CPC + (n)*0x8)
89 
90 #define _SA			0x400
91 #define SA(n)			(_SA + (n)*0x20)
92 
93 #define _DA			0x404
94 #define DA(n)			(_DA + (n)*0x20)
95 
96 #define _CC			0x408
97 #define CC(n)			(_CC + (n)*0x20)
98 
99 #define CC_SRCINC		(1 << 0)
100 #define CC_DSTINC		(1 << 14)
101 #define CC_SRCPRI		(1 << 8)
102 #define CC_DSTPRI		(1 << 22)
103 #define CC_SRCNS		(1 << 9)
104 #define CC_DSTNS		(1 << 23)
105 #define CC_SRCIA		(1 << 10)
106 #define CC_DSTIA		(1 << 24)
107 #define CC_SRCBRSTLEN_SHFT	4
108 #define CC_DSTBRSTLEN_SHFT	18
109 #define CC_SRCBRSTSIZE_SHFT	1
110 #define CC_DSTBRSTSIZE_SHFT	15
111 #define CC_SRCCCTRL_SHFT	11
112 #define CC_SRCCCTRL_MASK	0x7
113 #define CC_DSTCCTRL_SHFT	25
114 #define CC_DRCCCTRL_MASK	0x7
115 #define CC_SWAP_SHFT		28
116 
117 #define _LC0			0x40c
118 #define LC0(n)			(_LC0 + (n)*0x20)
119 
120 #define _LC1			0x410
121 #define LC1(n)			(_LC1 + (n)*0x20)
122 
123 #define DBGSTATUS		0xd00
124 #define DBG_BUSY		(1 << 0)
125 
126 #define DBGCMD			0xd04
127 #define DBGINST0		0xd08
128 #define DBGINST1		0xd0c
129 
130 #define CR0			0xe00
131 #define CR1			0xe04
132 #define CR2			0xe08
133 #define CR3			0xe0c
134 #define CR4			0xe10
135 #define CRD			0xe14
136 
137 #define PERIPH_ID		0xfe0
138 #define PERIPH_REV_SHIFT	20
139 #define PERIPH_REV_MASK		0xf
140 #define PERIPH_REV_R0P0		0
141 #define PERIPH_REV_R1P0		1
142 #define PERIPH_REV_R1P1		2
143 
144 #define CR0_PERIPH_REQ_SET	(1 << 0)
145 #define CR0_BOOT_EN_SET		(1 << 1)
146 #define CR0_BOOT_MAN_NS		(1 << 2)
147 #define CR0_NUM_CHANS_SHIFT	4
148 #define CR0_NUM_CHANS_MASK	0x7
149 #define CR0_NUM_PERIPH_SHIFT	12
150 #define CR0_NUM_PERIPH_MASK	0x1f
151 #define CR0_NUM_EVENTS_SHIFT	17
152 #define CR0_NUM_EVENTS_MASK	0x1f
153 
154 #define CR1_ICACHE_LEN_SHIFT	0
155 #define CR1_ICACHE_LEN_MASK	0x7
156 #define CR1_NUM_ICACHELINES_SHIFT	4
157 #define CR1_NUM_ICACHELINES_MASK	0xf
158 
159 #define CRD_DATA_WIDTH_SHIFT	0
160 #define CRD_DATA_WIDTH_MASK	0x7
161 #define CRD_WR_CAP_SHIFT	4
162 #define CRD_WR_CAP_MASK		0x7
163 #define CRD_WR_Q_DEP_SHIFT	8
164 #define CRD_WR_Q_DEP_MASK	0xf
165 #define CRD_RD_CAP_SHIFT	12
166 #define CRD_RD_CAP_MASK		0x7
167 #define CRD_RD_Q_DEP_SHIFT	16
168 #define CRD_RD_Q_DEP_MASK	0xf
169 #define CRD_DATA_BUFF_SHIFT	20
170 #define CRD_DATA_BUFF_MASK	0x3ff
171 
172 #define PART			0x330
173 #define DESIGNER		0x41
174 #define REVISION		0x0
175 #define INTEG_CFG		0x0
176 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
177 
178 #define PL330_STATE_STOPPED		(1 << 0)
179 #define PL330_STATE_EXECUTING		(1 << 1)
180 #define PL330_STATE_WFE			(1 << 2)
181 #define PL330_STATE_FAULTING		(1 << 3)
182 #define PL330_STATE_COMPLETING		(1 << 4)
183 #define PL330_STATE_WFP			(1 << 5)
184 #define PL330_STATE_KILLING		(1 << 6)
185 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
186 #define PL330_STATE_CACHEMISS		(1 << 8)
187 #define PL330_STATE_UPDTPC		(1 << 9)
188 #define PL330_STATE_ATBARRIER		(1 << 10)
189 #define PL330_STATE_QUEUEBUSY		(1 << 11)
190 #define PL330_STATE_INVALID		(1 << 15)
191 
192 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
193 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
194 
195 #define CMD_DMAADDH		0x54
196 #define CMD_DMAEND		0x00
197 #define CMD_DMAFLUSHP		0x35
198 #define CMD_DMAGO		0xa0
199 #define CMD_DMALD		0x04
200 #define CMD_DMALDP		0x25
201 #define CMD_DMALP		0x20
202 #define CMD_DMALPEND		0x28
203 #define CMD_DMAKILL		0x01
204 #define CMD_DMAMOV		0xbc
205 #define CMD_DMANOP		0x18
206 #define CMD_DMARMB		0x12
207 #define CMD_DMASEV		0x34
208 #define CMD_DMAST		0x08
209 #define CMD_DMASTP		0x29
210 #define CMD_DMASTZ		0x0c
211 #define CMD_DMAWFE		0x36
212 #define CMD_DMAWFP		0x30
213 #define CMD_DMAWMB		0x13
214 
215 #define SZ_DMAADDH		3
216 #define SZ_DMAEND		1
217 #define SZ_DMAFLUSHP		2
218 #define SZ_DMALD		1
219 #define SZ_DMALDP		2
220 #define SZ_DMALP		2
221 #define SZ_DMALPEND		2
222 #define SZ_DMAKILL		1
223 #define SZ_DMAMOV		6
224 #define SZ_DMANOP		1
225 #define SZ_DMARMB		1
226 #define SZ_DMASEV		2
227 #define SZ_DMAST		1
228 #define SZ_DMASTP		2
229 #define SZ_DMASTZ		1
230 #define SZ_DMAWFE		2
231 #define SZ_DMAWFP		2
232 #define SZ_DMAWMB		1
233 #define SZ_DMAGO		6
234 
235 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
236 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
237 
238 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
239 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
240 
241 /*
242  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
243  * at 1byte/burst for P<->M and M<->M respectively.
244  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
245  * should be enough for P<->M and M<->M respectively.
246  */
247 #define MCODE_BUFF_PER_REQ	256
248 
249 /* Use this _only_ to wait on transient states */
250 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
251 
252 #ifdef PL330_DEBUG_MCGEN
253 static unsigned cmd_line;
254 #define PL330_DBGCMD_DUMP(off, x...)	do { \
255 						printk("%x:", cmd_line); \
256 						printk(x); \
257 						cmd_line += off; \
258 					} while (0)
259 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
260 #else
261 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
262 #define PL330_DBGMC_START(addr)		do {} while (0)
263 #endif
264 
265 /* The number of default descriptors */
266 
267 #define NR_DEFAULT_DESC	16
268 
269 /* Delay for runtime PM autosuspend, ms */
270 #define PL330_AUTOSUSPEND_DELAY 20
271 
272 /* Populated by the PL330 core driver for DMA API driver's info */
273 struct pl330_config {
274 	u32	periph_id;
275 #define DMAC_MODE_NS	(1 << 0)
276 	unsigned int	mode;
277 	unsigned int	data_bus_width:10; /* In number of bits */
278 	unsigned int	data_buf_dep:11;
279 	unsigned int	num_chan:4;
280 	unsigned int	num_peri:6;
281 	u32		peri_ns;
282 	unsigned int	num_events:6;
283 	u32		irq_ns;
284 };
285 
286 /**
287  * Request Configuration.
288  * The PL330 core does not modify this and uses the last
289  * working configuration if the request doesn't provide any.
290  *
291  * The Client may want to provide this info only for the
292  * first request and a request with new settings.
293  */
294 struct pl330_reqcfg {
295 	/* Address Incrementing */
296 	unsigned dst_inc:1;
297 	unsigned src_inc:1;
298 
299 	/*
300 	 * For now, the SRC & DST protection levels
301 	 * and burst size/length are assumed same.
302 	 */
303 	bool nonsecure;
304 	bool privileged;
305 	bool insnaccess;
306 	unsigned brst_len:5;
307 	unsigned brst_size:3; /* in power of 2 */
308 
309 	enum pl330_cachectrl dcctl;
310 	enum pl330_cachectrl scctl;
311 	enum pl330_byteswap swap;
312 	struct pl330_config *pcfg;
313 };
314 
315 /*
316  * One cycle of DMAC operation.
317  * There may be more than one xfer in a request.
318  */
319 struct pl330_xfer {
320 	u32 src_addr;
321 	u32 dst_addr;
322 	/* Size to xfer */
323 	u32 bytes;
324 };
325 
326 /* The xfer callbacks are made with one of these arguments. */
327 enum pl330_op_err {
328 	/* The all xfers in the request were success. */
329 	PL330_ERR_NONE,
330 	/* If req aborted due to global error. */
331 	PL330_ERR_ABORT,
332 	/* If req failed due to problem with Channel. */
333 	PL330_ERR_FAIL,
334 };
335 
336 enum dmamov_dst {
337 	SAR = 0,
338 	CCR,
339 	DAR,
340 };
341 
342 enum pl330_dst {
343 	SRC = 0,
344 	DST,
345 };
346 
347 enum pl330_cond {
348 	SINGLE,
349 	BURST,
350 	ALWAYS,
351 };
352 
353 struct dma_pl330_desc;
354 
355 struct _pl330_req {
356 	u32 mc_bus;
357 	void *mc_cpu;
358 	struct dma_pl330_desc *desc;
359 };
360 
361 /* ToBeDone for tasklet */
362 struct _pl330_tbd {
363 	bool reset_dmac;
364 	bool reset_mngr;
365 	u8 reset_chan;
366 };
367 
368 /* A DMAC Thread */
369 struct pl330_thread {
370 	u8 id;
371 	int ev;
372 	/* If the channel is not yet acquired by any client */
373 	bool free;
374 	/* Parent DMAC */
375 	struct pl330_dmac *dmac;
376 	/* Only two at a time */
377 	struct _pl330_req req[2];
378 	/* Index of the last enqueued request */
379 	unsigned lstenq;
380 	/* Index of the last submitted request or -1 if the DMA is stopped */
381 	int req_running;
382 };
383 
384 enum pl330_dmac_state {
385 	UNINIT,
386 	INIT,
387 	DYING,
388 };
389 
390 enum desc_status {
391 	/* In the DMAC pool */
392 	FREE,
393 	/*
394 	 * Allocated to some channel during prep_xxx
395 	 * Also may be sitting on the work_list.
396 	 */
397 	PREP,
398 	/*
399 	 * Sitting on the work_list and already submitted
400 	 * to the PL330 core. Not more than two descriptors
401 	 * of a channel can be BUSY at any time.
402 	 */
403 	BUSY,
404 	/*
405 	 * Sitting on the channel work_list but xfer done
406 	 * by PL330 core
407 	 */
408 	DONE,
409 };
410 
411 struct dma_pl330_chan {
412 	/* Schedule desc completion */
413 	struct tasklet_struct task;
414 
415 	/* DMA-Engine Channel */
416 	struct dma_chan chan;
417 
418 	/* List of submitted descriptors */
419 	struct list_head submitted_list;
420 	/* List of issued descriptors */
421 	struct list_head work_list;
422 	/* List of completed descriptors */
423 	struct list_head completed_list;
424 
425 	/* Pointer to the DMAC that manages this channel,
426 	 * NULL if the channel is available to be acquired.
427 	 * As the parent, this DMAC also provides descriptors
428 	 * to the channel.
429 	 */
430 	struct pl330_dmac *dmac;
431 
432 	/* To protect channel manipulation */
433 	spinlock_t lock;
434 
435 	/*
436 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
437 	 * available.
438 	 */
439 	struct pl330_thread *thread;
440 
441 	/* For D-to-M and M-to-D channels */
442 	int burst_sz; /* the peripheral fifo width */
443 	int burst_len; /* the number of burst */
444 	dma_addr_t fifo_addr;
445 
446 	/* for cyclic capability */
447 	bool cyclic;
448 };
449 
450 struct pl330_dmac {
451 	/* DMA-Engine Device */
452 	struct dma_device ddma;
453 
454 	/* Holds info about sg limitations */
455 	struct device_dma_parameters dma_parms;
456 
457 	/* Pool of descriptors available for the DMAC's channels */
458 	struct list_head desc_pool;
459 	/* To protect desc_pool manipulation */
460 	spinlock_t pool_lock;
461 
462 	/* Size of MicroCode buffers for each channel. */
463 	unsigned mcbufsz;
464 	/* ioremap'ed address of PL330 registers. */
465 	void __iomem	*base;
466 	/* Populated by the PL330 core driver during pl330_add */
467 	struct pl330_config	pcfg;
468 
469 	spinlock_t		lock;
470 	/* Maximum possible events/irqs */
471 	int			events[32];
472 	/* BUS address of MicroCode buffer */
473 	dma_addr_t		mcode_bus;
474 	/* CPU address of MicroCode buffer */
475 	void			*mcode_cpu;
476 	/* List of all Channel threads */
477 	struct pl330_thread	*channels;
478 	/* Pointer to the MANAGER thread */
479 	struct pl330_thread	*manager;
480 	/* To handle bad news in interrupt */
481 	struct tasklet_struct	tasks;
482 	struct _pl330_tbd	dmac_tbd;
483 	/* State of DMAC operation */
484 	enum pl330_dmac_state	state;
485 	/* Holds list of reqs with due callbacks */
486 	struct list_head        req_done;
487 
488 	/* Peripheral channels connected to this DMAC */
489 	unsigned int num_peripherals;
490 	struct dma_pl330_chan *peripherals; /* keep at end */
491 };
492 
493 struct dma_pl330_desc {
494 	/* To attach to a queue as child */
495 	struct list_head node;
496 
497 	/* Descriptor for the DMA Engine API */
498 	struct dma_async_tx_descriptor txd;
499 
500 	/* Xfer for PL330 core */
501 	struct pl330_xfer px;
502 
503 	struct pl330_reqcfg rqcfg;
504 
505 	enum desc_status status;
506 
507 	int bytes_requested;
508 	bool last;
509 
510 	/* The channel which currently holds this desc */
511 	struct dma_pl330_chan *pchan;
512 
513 	enum dma_transfer_direction rqtype;
514 	/* Index of peripheral for the xfer. */
515 	unsigned peri:5;
516 	/* Hook to attach to DMAC's list of reqs with due callback */
517 	struct list_head rqd;
518 };
519 
520 struct _xfer_spec {
521 	u32 ccr;
522 	struct dma_pl330_desc *desc;
523 };
524 
525 static inline bool _queue_empty(struct pl330_thread *thrd)
526 {
527 	return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL;
528 }
529 
530 static inline bool _queue_full(struct pl330_thread *thrd)
531 {
532 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
533 }
534 
535 static inline bool is_manager(struct pl330_thread *thrd)
536 {
537 	return thrd->dmac->manager == thrd;
538 }
539 
540 /* If manager of the thread is in Non-Secure mode */
541 static inline bool _manager_ns(struct pl330_thread *thrd)
542 {
543 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
544 }
545 
546 static inline u32 get_revision(u32 periph_id)
547 {
548 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
549 }
550 
551 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
552 		enum pl330_dst da, u16 val)
553 {
554 	if (dry_run)
555 		return SZ_DMAADDH;
556 
557 	buf[0] = CMD_DMAADDH;
558 	buf[0] |= (da << 1);
559 	*((u16 *)&buf[1]) = val;
560 
561 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
562 		da == 1 ? "DA" : "SA", val);
563 
564 	return SZ_DMAADDH;
565 }
566 
567 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
568 {
569 	if (dry_run)
570 		return SZ_DMAEND;
571 
572 	buf[0] = CMD_DMAEND;
573 
574 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
575 
576 	return SZ_DMAEND;
577 }
578 
579 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
580 {
581 	if (dry_run)
582 		return SZ_DMAFLUSHP;
583 
584 	buf[0] = CMD_DMAFLUSHP;
585 
586 	peri &= 0x1f;
587 	peri <<= 3;
588 	buf[1] = peri;
589 
590 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
591 
592 	return SZ_DMAFLUSHP;
593 }
594 
595 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
596 {
597 	if (dry_run)
598 		return SZ_DMALD;
599 
600 	buf[0] = CMD_DMALD;
601 
602 	if (cond == SINGLE)
603 		buf[0] |= (0 << 1) | (1 << 0);
604 	else if (cond == BURST)
605 		buf[0] |= (1 << 1) | (1 << 0);
606 
607 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
608 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
609 
610 	return SZ_DMALD;
611 }
612 
613 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
614 		enum pl330_cond cond, u8 peri)
615 {
616 	if (dry_run)
617 		return SZ_DMALDP;
618 
619 	buf[0] = CMD_DMALDP;
620 
621 	if (cond == BURST)
622 		buf[0] |= (1 << 1);
623 
624 	peri &= 0x1f;
625 	peri <<= 3;
626 	buf[1] = peri;
627 
628 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
629 		cond == SINGLE ? 'S' : 'B', peri >> 3);
630 
631 	return SZ_DMALDP;
632 }
633 
634 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
635 		unsigned loop, u8 cnt)
636 {
637 	if (dry_run)
638 		return SZ_DMALP;
639 
640 	buf[0] = CMD_DMALP;
641 
642 	if (loop)
643 		buf[0] |= (1 << 1);
644 
645 	cnt--; /* DMAC increments by 1 internally */
646 	buf[1] = cnt;
647 
648 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
649 
650 	return SZ_DMALP;
651 }
652 
653 struct _arg_LPEND {
654 	enum pl330_cond cond;
655 	bool forever;
656 	unsigned loop;
657 	u8 bjump;
658 };
659 
660 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
661 		const struct _arg_LPEND *arg)
662 {
663 	enum pl330_cond cond = arg->cond;
664 	bool forever = arg->forever;
665 	unsigned loop = arg->loop;
666 	u8 bjump = arg->bjump;
667 
668 	if (dry_run)
669 		return SZ_DMALPEND;
670 
671 	buf[0] = CMD_DMALPEND;
672 
673 	if (loop)
674 		buf[0] |= (1 << 2);
675 
676 	if (!forever)
677 		buf[0] |= (1 << 4);
678 
679 	if (cond == SINGLE)
680 		buf[0] |= (0 << 1) | (1 << 0);
681 	else if (cond == BURST)
682 		buf[0] |= (1 << 1) | (1 << 0);
683 
684 	buf[1] = bjump;
685 
686 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
687 			forever ? "FE" : "END",
688 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
689 			loop ? '1' : '0',
690 			bjump);
691 
692 	return SZ_DMALPEND;
693 }
694 
695 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
696 {
697 	if (dry_run)
698 		return SZ_DMAKILL;
699 
700 	buf[0] = CMD_DMAKILL;
701 
702 	return SZ_DMAKILL;
703 }
704 
705 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
706 		enum dmamov_dst dst, u32 val)
707 {
708 	if (dry_run)
709 		return SZ_DMAMOV;
710 
711 	buf[0] = CMD_DMAMOV;
712 	buf[1] = dst;
713 	*((u32 *)&buf[2]) = val;
714 
715 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
716 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
717 
718 	return SZ_DMAMOV;
719 }
720 
721 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
722 {
723 	if (dry_run)
724 		return SZ_DMANOP;
725 
726 	buf[0] = CMD_DMANOP;
727 
728 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
729 
730 	return SZ_DMANOP;
731 }
732 
733 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
734 {
735 	if (dry_run)
736 		return SZ_DMARMB;
737 
738 	buf[0] = CMD_DMARMB;
739 
740 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
741 
742 	return SZ_DMARMB;
743 }
744 
745 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
746 {
747 	if (dry_run)
748 		return SZ_DMASEV;
749 
750 	buf[0] = CMD_DMASEV;
751 
752 	ev &= 0x1f;
753 	ev <<= 3;
754 	buf[1] = ev;
755 
756 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
757 
758 	return SZ_DMASEV;
759 }
760 
761 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
762 {
763 	if (dry_run)
764 		return SZ_DMAST;
765 
766 	buf[0] = CMD_DMAST;
767 
768 	if (cond == SINGLE)
769 		buf[0] |= (0 << 1) | (1 << 0);
770 	else if (cond == BURST)
771 		buf[0] |= (1 << 1) | (1 << 0);
772 
773 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
774 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
775 
776 	return SZ_DMAST;
777 }
778 
779 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
780 		enum pl330_cond cond, u8 peri)
781 {
782 	if (dry_run)
783 		return SZ_DMASTP;
784 
785 	buf[0] = CMD_DMASTP;
786 
787 	if (cond == BURST)
788 		buf[0] |= (1 << 1);
789 
790 	peri &= 0x1f;
791 	peri <<= 3;
792 	buf[1] = peri;
793 
794 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
795 		cond == SINGLE ? 'S' : 'B', peri >> 3);
796 
797 	return SZ_DMASTP;
798 }
799 
800 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
801 {
802 	if (dry_run)
803 		return SZ_DMASTZ;
804 
805 	buf[0] = CMD_DMASTZ;
806 
807 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
808 
809 	return SZ_DMASTZ;
810 }
811 
812 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
813 		unsigned invalidate)
814 {
815 	if (dry_run)
816 		return SZ_DMAWFE;
817 
818 	buf[0] = CMD_DMAWFE;
819 
820 	ev &= 0x1f;
821 	ev <<= 3;
822 	buf[1] = ev;
823 
824 	if (invalidate)
825 		buf[1] |= (1 << 1);
826 
827 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
828 		ev >> 3, invalidate ? ", I" : "");
829 
830 	return SZ_DMAWFE;
831 }
832 
833 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
834 		enum pl330_cond cond, u8 peri)
835 {
836 	if (dry_run)
837 		return SZ_DMAWFP;
838 
839 	buf[0] = CMD_DMAWFP;
840 
841 	if (cond == SINGLE)
842 		buf[0] |= (0 << 1) | (0 << 0);
843 	else if (cond == BURST)
844 		buf[0] |= (1 << 1) | (0 << 0);
845 	else
846 		buf[0] |= (0 << 1) | (1 << 0);
847 
848 	peri &= 0x1f;
849 	peri <<= 3;
850 	buf[1] = peri;
851 
852 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
853 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
854 
855 	return SZ_DMAWFP;
856 }
857 
858 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
859 {
860 	if (dry_run)
861 		return SZ_DMAWMB;
862 
863 	buf[0] = CMD_DMAWMB;
864 
865 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
866 
867 	return SZ_DMAWMB;
868 }
869 
870 struct _arg_GO {
871 	u8 chan;
872 	u32 addr;
873 	unsigned ns;
874 };
875 
876 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
877 		const struct _arg_GO *arg)
878 {
879 	u8 chan = arg->chan;
880 	u32 addr = arg->addr;
881 	unsigned ns = arg->ns;
882 
883 	if (dry_run)
884 		return SZ_DMAGO;
885 
886 	buf[0] = CMD_DMAGO;
887 	buf[0] |= (ns << 1);
888 
889 	buf[1] = chan & 0x7;
890 
891 	*((u32 *)&buf[2]) = addr;
892 
893 	return SZ_DMAGO;
894 }
895 
896 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
897 
898 /* Returns Time-Out */
899 static bool _until_dmac_idle(struct pl330_thread *thrd)
900 {
901 	void __iomem *regs = thrd->dmac->base;
902 	unsigned long loops = msecs_to_loops(5);
903 
904 	do {
905 		/* Until Manager is Idle */
906 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
907 			break;
908 
909 		cpu_relax();
910 	} while (--loops);
911 
912 	if (!loops)
913 		return true;
914 
915 	return false;
916 }
917 
918 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
919 		u8 insn[], bool as_manager)
920 {
921 	void __iomem *regs = thrd->dmac->base;
922 	u32 val;
923 
924 	val = (insn[0] << 16) | (insn[1] << 24);
925 	if (!as_manager) {
926 		val |= (1 << 0);
927 		val |= (thrd->id << 8); /* Channel Number */
928 	}
929 	writel(val, regs + DBGINST0);
930 
931 	val = *((u32 *)&insn[2]);
932 	writel(val, regs + DBGINST1);
933 
934 	/* If timed out due to halted state-machine */
935 	if (_until_dmac_idle(thrd)) {
936 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
937 		return;
938 	}
939 
940 	/* Get going */
941 	writel(0, regs + DBGCMD);
942 }
943 
944 static inline u32 _state(struct pl330_thread *thrd)
945 {
946 	void __iomem *regs = thrd->dmac->base;
947 	u32 val;
948 
949 	if (is_manager(thrd))
950 		val = readl(regs + DS) & 0xf;
951 	else
952 		val = readl(regs + CS(thrd->id)) & 0xf;
953 
954 	switch (val) {
955 	case DS_ST_STOP:
956 		return PL330_STATE_STOPPED;
957 	case DS_ST_EXEC:
958 		return PL330_STATE_EXECUTING;
959 	case DS_ST_CMISS:
960 		return PL330_STATE_CACHEMISS;
961 	case DS_ST_UPDTPC:
962 		return PL330_STATE_UPDTPC;
963 	case DS_ST_WFE:
964 		return PL330_STATE_WFE;
965 	case DS_ST_FAULT:
966 		return PL330_STATE_FAULTING;
967 	case DS_ST_ATBRR:
968 		if (is_manager(thrd))
969 			return PL330_STATE_INVALID;
970 		else
971 			return PL330_STATE_ATBARRIER;
972 	case DS_ST_QBUSY:
973 		if (is_manager(thrd))
974 			return PL330_STATE_INVALID;
975 		else
976 			return PL330_STATE_QUEUEBUSY;
977 	case DS_ST_WFP:
978 		if (is_manager(thrd))
979 			return PL330_STATE_INVALID;
980 		else
981 			return PL330_STATE_WFP;
982 	case DS_ST_KILL:
983 		if (is_manager(thrd))
984 			return PL330_STATE_INVALID;
985 		else
986 			return PL330_STATE_KILLING;
987 	case DS_ST_CMPLT:
988 		if (is_manager(thrd))
989 			return PL330_STATE_INVALID;
990 		else
991 			return PL330_STATE_COMPLETING;
992 	case DS_ST_FLTCMP:
993 		if (is_manager(thrd))
994 			return PL330_STATE_INVALID;
995 		else
996 			return PL330_STATE_FAULT_COMPLETING;
997 	default:
998 		return PL330_STATE_INVALID;
999 	}
1000 }
1001 
1002 static void _stop(struct pl330_thread *thrd)
1003 {
1004 	void __iomem *regs = thrd->dmac->base;
1005 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1006 
1007 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1008 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1009 
1010 	/* Return if nothing needs to be done */
1011 	if (_state(thrd) == PL330_STATE_COMPLETING
1012 		  || _state(thrd) == PL330_STATE_KILLING
1013 		  || _state(thrd) == PL330_STATE_STOPPED)
1014 		return;
1015 
1016 	_emit_KILL(0, insn);
1017 
1018 	/* Stop generating interrupts for SEV */
1019 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1020 
1021 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1022 }
1023 
1024 /* Start doing req 'idx' of thread 'thrd' */
1025 static bool _trigger(struct pl330_thread *thrd)
1026 {
1027 	void __iomem *regs = thrd->dmac->base;
1028 	struct _pl330_req *req;
1029 	struct dma_pl330_desc *desc;
1030 	struct _arg_GO go;
1031 	unsigned ns;
1032 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1033 	int idx;
1034 
1035 	/* Return if already ACTIVE */
1036 	if (_state(thrd) != PL330_STATE_STOPPED)
1037 		return true;
1038 
1039 	idx = 1 - thrd->lstenq;
1040 	if (thrd->req[idx].desc != NULL) {
1041 		req = &thrd->req[idx];
1042 	} else {
1043 		idx = thrd->lstenq;
1044 		if (thrd->req[idx].desc != NULL)
1045 			req = &thrd->req[idx];
1046 		else
1047 			req = NULL;
1048 	}
1049 
1050 	/* Return if no request */
1051 	if (!req)
1052 		return true;
1053 
1054 	/* Return if req is running */
1055 	if (idx == thrd->req_running)
1056 		return true;
1057 
1058 	desc = req->desc;
1059 
1060 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1061 
1062 	/* See 'Abort Sources' point-4 at Page 2-25 */
1063 	if (_manager_ns(thrd) && !ns)
1064 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1065 			__func__, __LINE__);
1066 
1067 	go.chan = thrd->id;
1068 	go.addr = req->mc_bus;
1069 	go.ns = ns;
1070 	_emit_GO(0, insn, &go);
1071 
1072 	/* Set to generate interrupts for SEV */
1073 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1074 
1075 	/* Only manager can execute GO */
1076 	_execute_DBGINSN(thrd, insn, true);
1077 
1078 	thrd->req_running = idx;
1079 
1080 	return true;
1081 }
1082 
1083 static bool _start(struct pl330_thread *thrd)
1084 {
1085 	switch (_state(thrd)) {
1086 	case PL330_STATE_FAULT_COMPLETING:
1087 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1088 
1089 		if (_state(thrd) == PL330_STATE_KILLING)
1090 			UNTIL(thrd, PL330_STATE_STOPPED)
1091 
1092 	case PL330_STATE_FAULTING:
1093 		_stop(thrd);
1094 
1095 	case PL330_STATE_KILLING:
1096 	case PL330_STATE_COMPLETING:
1097 		UNTIL(thrd, PL330_STATE_STOPPED)
1098 
1099 	case PL330_STATE_STOPPED:
1100 		return _trigger(thrd);
1101 
1102 	case PL330_STATE_WFP:
1103 	case PL330_STATE_QUEUEBUSY:
1104 	case PL330_STATE_ATBARRIER:
1105 	case PL330_STATE_UPDTPC:
1106 	case PL330_STATE_CACHEMISS:
1107 	case PL330_STATE_EXECUTING:
1108 		return true;
1109 
1110 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1111 	default:
1112 		return false;
1113 	}
1114 }
1115 
1116 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1117 		const struct _xfer_spec *pxs, int cyc)
1118 {
1119 	int off = 0;
1120 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1121 
1122 	/* check lock-up free version */
1123 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1124 		while (cyc--) {
1125 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1126 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1127 		}
1128 	} else {
1129 		while (cyc--) {
1130 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1131 			off += _emit_RMB(dry_run, &buf[off]);
1132 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1133 			off += _emit_WMB(dry_run, &buf[off]);
1134 		}
1135 	}
1136 
1137 	return off;
1138 }
1139 
1140 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1141 		const struct _xfer_spec *pxs, int cyc)
1142 {
1143 	int off = 0;
1144 
1145 	while (cyc--) {
1146 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1147 		off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1148 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1149 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1150 	}
1151 
1152 	return off;
1153 }
1154 
1155 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1156 		const struct _xfer_spec *pxs, int cyc)
1157 {
1158 	int off = 0;
1159 
1160 	while (cyc--) {
1161 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1162 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1163 		off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1164 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1165 	}
1166 
1167 	return off;
1168 }
1169 
1170 static int _bursts(unsigned dry_run, u8 buf[],
1171 		const struct _xfer_spec *pxs, int cyc)
1172 {
1173 	int off = 0;
1174 
1175 	switch (pxs->desc->rqtype) {
1176 	case DMA_MEM_TO_DEV:
1177 		off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1178 		break;
1179 	case DMA_DEV_TO_MEM:
1180 		off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1181 		break;
1182 	case DMA_MEM_TO_MEM:
1183 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1184 		break;
1185 	default:
1186 		off += 0x40000000; /* Scare off the Client */
1187 		break;
1188 	}
1189 
1190 	return off;
1191 }
1192 
1193 /* Returns bytes consumed and updates bursts */
1194 static inline int _loop(unsigned dry_run, u8 buf[],
1195 		unsigned long *bursts, const struct _xfer_spec *pxs)
1196 {
1197 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1198 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1199 	struct _arg_LPEND lpend;
1200 
1201 	/* Max iterations possible in DMALP is 256 */
1202 	if (*bursts >= 256*256) {
1203 		lcnt1 = 256;
1204 		lcnt0 = 256;
1205 		cyc = *bursts / lcnt1 / lcnt0;
1206 	} else if (*bursts > 256) {
1207 		lcnt1 = 256;
1208 		lcnt0 = *bursts / lcnt1;
1209 		cyc = 1;
1210 	} else {
1211 		lcnt1 = *bursts;
1212 		lcnt0 = 0;
1213 		cyc = 1;
1214 	}
1215 
1216 	szlp = _emit_LP(1, buf, 0, 0);
1217 	szbrst = _bursts(1, buf, pxs, 1);
1218 
1219 	lpend.cond = ALWAYS;
1220 	lpend.forever = false;
1221 	lpend.loop = 0;
1222 	lpend.bjump = 0;
1223 	szlpend = _emit_LPEND(1, buf, &lpend);
1224 
1225 	if (lcnt0) {
1226 		szlp *= 2;
1227 		szlpend *= 2;
1228 	}
1229 
1230 	/*
1231 	 * Max bursts that we can unroll due to limit on the
1232 	 * size of backward jump that can be encoded in DMALPEND
1233 	 * which is 8-bits and hence 255
1234 	 */
1235 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1236 
1237 	cyc = (cycmax < cyc) ? cycmax : cyc;
1238 
1239 	off = 0;
1240 
1241 	if (lcnt0) {
1242 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1243 		ljmp0 = off;
1244 	}
1245 
1246 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1247 	ljmp1 = off;
1248 
1249 	off += _bursts(dry_run, &buf[off], pxs, cyc);
1250 
1251 	lpend.cond = ALWAYS;
1252 	lpend.forever = false;
1253 	lpend.loop = 1;
1254 	lpend.bjump = off - ljmp1;
1255 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1256 
1257 	if (lcnt0) {
1258 		lpend.cond = ALWAYS;
1259 		lpend.forever = false;
1260 		lpend.loop = 0;
1261 		lpend.bjump = off - ljmp0;
1262 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1263 	}
1264 
1265 	*bursts = lcnt1 * cyc;
1266 	if (lcnt0)
1267 		*bursts *= lcnt0;
1268 
1269 	return off;
1270 }
1271 
1272 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1273 		const struct _xfer_spec *pxs)
1274 {
1275 	struct pl330_xfer *x = &pxs->desc->px;
1276 	u32 ccr = pxs->ccr;
1277 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1278 	int off = 0;
1279 
1280 	while (bursts) {
1281 		c = bursts;
1282 		off += _loop(dry_run, &buf[off], &c, pxs);
1283 		bursts -= c;
1284 	}
1285 
1286 	return off;
1287 }
1288 
1289 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1290 		const struct _xfer_spec *pxs)
1291 {
1292 	struct pl330_xfer *x = &pxs->desc->px;
1293 	int off = 0;
1294 
1295 	/* DMAMOV SAR, x->src_addr */
1296 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1297 	/* DMAMOV DAR, x->dst_addr */
1298 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1299 
1300 	/* Setup Loop(s) */
1301 	off += _setup_loops(dry_run, &buf[off], pxs);
1302 
1303 	return off;
1304 }
1305 
1306 /*
1307  * A req is a sequence of one or more xfer units.
1308  * Returns the number of bytes taken to setup the MC for the req.
1309  */
1310 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1311 		unsigned index, struct _xfer_spec *pxs)
1312 {
1313 	struct _pl330_req *req = &thrd->req[index];
1314 	struct pl330_xfer *x;
1315 	u8 *buf = req->mc_cpu;
1316 	int off = 0;
1317 
1318 	PL330_DBGMC_START(req->mc_bus);
1319 
1320 	/* DMAMOV CCR, ccr */
1321 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1322 
1323 	x = &pxs->desc->px;
1324 	/* Error if xfer length is not aligned at burst size */
1325 	if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1326 		return -EINVAL;
1327 
1328 	off += _setup_xfer(dry_run, &buf[off], pxs);
1329 
1330 	/* DMASEV peripheral/event */
1331 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1332 	/* DMAEND */
1333 	off += _emit_END(dry_run, &buf[off]);
1334 
1335 	return off;
1336 }
1337 
1338 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1339 {
1340 	u32 ccr = 0;
1341 
1342 	if (rqc->src_inc)
1343 		ccr |= CC_SRCINC;
1344 
1345 	if (rqc->dst_inc)
1346 		ccr |= CC_DSTINC;
1347 
1348 	/* We set same protection levels for Src and DST for now */
1349 	if (rqc->privileged)
1350 		ccr |= CC_SRCPRI | CC_DSTPRI;
1351 	if (rqc->nonsecure)
1352 		ccr |= CC_SRCNS | CC_DSTNS;
1353 	if (rqc->insnaccess)
1354 		ccr |= CC_SRCIA | CC_DSTIA;
1355 
1356 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1357 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1358 
1359 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1360 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1361 
1362 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1363 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1364 
1365 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1366 
1367 	return ccr;
1368 }
1369 
1370 /*
1371  * Submit a list of xfers after which the client wants notification.
1372  * Client is not notified after each xfer unit, just once after all
1373  * xfer units are done or some error occurs.
1374  */
1375 static int pl330_submit_req(struct pl330_thread *thrd,
1376 	struct dma_pl330_desc *desc)
1377 {
1378 	struct pl330_dmac *pl330 = thrd->dmac;
1379 	struct _xfer_spec xs;
1380 	unsigned long flags;
1381 	unsigned idx;
1382 	u32 ccr;
1383 	int ret = 0;
1384 
1385 	if (pl330->state == DYING
1386 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1387 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1388 			__func__, __LINE__);
1389 		return -EAGAIN;
1390 	}
1391 
1392 	/* If request for non-existing peripheral */
1393 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1394 	    desc->peri >= pl330->pcfg.num_peri) {
1395 		dev_info(thrd->dmac->ddma.dev,
1396 				"%s:%d Invalid peripheral(%u)!\n",
1397 				__func__, __LINE__, desc->peri);
1398 		return -EINVAL;
1399 	}
1400 
1401 	spin_lock_irqsave(&pl330->lock, flags);
1402 
1403 	if (_queue_full(thrd)) {
1404 		ret = -EAGAIN;
1405 		goto xfer_exit;
1406 	}
1407 
1408 	/* Prefer Secure Channel */
1409 	if (!_manager_ns(thrd))
1410 		desc->rqcfg.nonsecure = 0;
1411 	else
1412 		desc->rqcfg.nonsecure = 1;
1413 
1414 	ccr = _prepare_ccr(&desc->rqcfg);
1415 
1416 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1417 
1418 	xs.ccr = ccr;
1419 	xs.desc = desc;
1420 
1421 	/* First dry run to check if req is acceptable */
1422 	ret = _setup_req(1, thrd, idx, &xs);
1423 	if (ret < 0)
1424 		goto xfer_exit;
1425 
1426 	if (ret > pl330->mcbufsz / 2) {
1427 		dev_info(pl330->ddma.dev, "%s:%d Trying increasing mcbufsz\n",
1428 				__func__, __LINE__);
1429 		ret = -ENOMEM;
1430 		goto xfer_exit;
1431 	}
1432 
1433 	/* Hook the request */
1434 	thrd->lstenq = idx;
1435 	thrd->req[idx].desc = desc;
1436 	_setup_req(0, thrd, idx, &xs);
1437 
1438 	ret = 0;
1439 
1440 xfer_exit:
1441 	spin_unlock_irqrestore(&pl330->lock, flags);
1442 
1443 	return ret;
1444 }
1445 
1446 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1447 {
1448 	struct dma_pl330_chan *pch;
1449 	unsigned long flags;
1450 
1451 	if (!desc)
1452 		return;
1453 
1454 	pch = desc->pchan;
1455 
1456 	/* If desc aborted */
1457 	if (!pch)
1458 		return;
1459 
1460 	spin_lock_irqsave(&pch->lock, flags);
1461 
1462 	desc->status = DONE;
1463 
1464 	spin_unlock_irqrestore(&pch->lock, flags);
1465 
1466 	tasklet_schedule(&pch->task);
1467 }
1468 
1469 static void pl330_dotask(unsigned long data)
1470 {
1471 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1472 	unsigned long flags;
1473 	int i;
1474 
1475 	spin_lock_irqsave(&pl330->lock, flags);
1476 
1477 	/* The DMAC itself gone nuts */
1478 	if (pl330->dmac_tbd.reset_dmac) {
1479 		pl330->state = DYING;
1480 		/* Reset the manager too */
1481 		pl330->dmac_tbd.reset_mngr = true;
1482 		/* Clear the reset flag */
1483 		pl330->dmac_tbd.reset_dmac = false;
1484 	}
1485 
1486 	if (pl330->dmac_tbd.reset_mngr) {
1487 		_stop(pl330->manager);
1488 		/* Reset all channels */
1489 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1490 		/* Clear the reset flag */
1491 		pl330->dmac_tbd.reset_mngr = false;
1492 	}
1493 
1494 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1495 
1496 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1497 			struct pl330_thread *thrd = &pl330->channels[i];
1498 			void __iomem *regs = pl330->base;
1499 			enum pl330_op_err err;
1500 
1501 			_stop(thrd);
1502 
1503 			if (readl(regs + FSC) & (1 << thrd->id))
1504 				err = PL330_ERR_FAIL;
1505 			else
1506 				err = PL330_ERR_ABORT;
1507 
1508 			spin_unlock_irqrestore(&pl330->lock, flags);
1509 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1510 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1511 			spin_lock_irqsave(&pl330->lock, flags);
1512 
1513 			thrd->req[0].desc = NULL;
1514 			thrd->req[1].desc = NULL;
1515 			thrd->req_running = -1;
1516 
1517 			/* Clear the reset flag */
1518 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1519 		}
1520 	}
1521 
1522 	spin_unlock_irqrestore(&pl330->lock, flags);
1523 
1524 	return;
1525 }
1526 
1527 /* Returns 1 if state was updated, 0 otherwise */
1528 static int pl330_update(struct pl330_dmac *pl330)
1529 {
1530 	struct dma_pl330_desc *descdone, *tmp;
1531 	unsigned long flags;
1532 	void __iomem *regs;
1533 	u32 val;
1534 	int id, ev, ret = 0;
1535 
1536 	regs = pl330->base;
1537 
1538 	spin_lock_irqsave(&pl330->lock, flags);
1539 
1540 	val = readl(regs + FSM) & 0x1;
1541 	if (val)
1542 		pl330->dmac_tbd.reset_mngr = true;
1543 	else
1544 		pl330->dmac_tbd.reset_mngr = false;
1545 
1546 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1547 	pl330->dmac_tbd.reset_chan |= val;
1548 	if (val) {
1549 		int i = 0;
1550 		while (i < pl330->pcfg.num_chan) {
1551 			if (val & (1 << i)) {
1552 				dev_info(pl330->ddma.dev,
1553 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1554 						i, readl(regs + CS(i)),
1555 						readl(regs + FTC(i)));
1556 				_stop(&pl330->channels[i]);
1557 			}
1558 			i++;
1559 		}
1560 	}
1561 
1562 	/* Check which event happened i.e, thread notified */
1563 	val = readl(regs + ES);
1564 	if (pl330->pcfg.num_events < 32
1565 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1566 		pl330->dmac_tbd.reset_dmac = true;
1567 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1568 			__LINE__);
1569 		ret = 1;
1570 		goto updt_exit;
1571 	}
1572 
1573 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1574 		if (val & (1 << ev)) { /* Event occurred */
1575 			struct pl330_thread *thrd;
1576 			u32 inten = readl(regs + INTEN);
1577 			int active;
1578 
1579 			/* Clear the event */
1580 			if (inten & (1 << ev))
1581 				writel(1 << ev, regs + INTCLR);
1582 
1583 			ret = 1;
1584 
1585 			id = pl330->events[ev];
1586 
1587 			thrd = &pl330->channels[id];
1588 
1589 			active = thrd->req_running;
1590 			if (active == -1) /* Aborted */
1591 				continue;
1592 
1593 			/* Detach the req */
1594 			descdone = thrd->req[active].desc;
1595 			thrd->req[active].desc = NULL;
1596 
1597 			thrd->req_running = -1;
1598 
1599 			/* Get going again ASAP */
1600 			_start(thrd);
1601 
1602 			/* For now, just make a list of callbacks to be done */
1603 			list_add_tail(&descdone->rqd, &pl330->req_done);
1604 		}
1605 	}
1606 
1607 	/* Now that we are in no hurry, do the callbacks */
1608 	list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) {
1609 		list_del(&descdone->rqd);
1610 		spin_unlock_irqrestore(&pl330->lock, flags);
1611 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1612 		spin_lock_irqsave(&pl330->lock, flags);
1613 	}
1614 
1615 updt_exit:
1616 	spin_unlock_irqrestore(&pl330->lock, flags);
1617 
1618 	if (pl330->dmac_tbd.reset_dmac
1619 			|| pl330->dmac_tbd.reset_mngr
1620 			|| pl330->dmac_tbd.reset_chan) {
1621 		ret = 1;
1622 		tasklet_schedule(&pl330->tasks);
1623 	}
1624 
1625 	return ret;
1626 }
1627 
1628 /* Reserve an event */
1629 static inline int _alloc_event(struct pl330_thread *thrd)
1630 {
1631 	struct pl330_dmac *pl330 = thrd->dmac;
1632 	int ev;
1633 
1634 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1635 		if (pl330->events[ev] == -1) {
1636 			pl330->events[ev] = thrd->id;
1637 			return ev;
1638 		}
1639 
1640 	return -1;
1641 }
1642 
1643 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1644 {
1645 	return pl330->pcfg.irq_ns & (1 << i);
1646 }
1647 
1648 /* Upon success, returns IdentityToken for the
1649  * allocated channel, NULL otherwise.
1650  */
1651 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1652 {
1653 	struct pl330_thread *thrd = NULL;
1654 	unsigned long flags;
1655 	int chans, i;
1656 
1657 	if (pl330->state == DYING)
1658 		return NULL;
1659 
1660 	chans = pl330->pcfg.num_chan;
1661 
1662 	spin_lock_irqsave(&pl330->lock, flags);
1663 
1664 	for (i = 0; i < chans; i++) {
1665 		thrd = &pl330->channels[i];
1666 		if ((thrd->free) && (!_manager_ns(thrd) ||
1667 					_chan_ns(pl330, i))) {
1668 			thrd->ev = _alloc_event(thrd);
1669 			if (thrd->ev >= 0) {
1670 				thrd->free = false;
1671 				thrd->lstenq = 1;
1672 				thrd->req[0].desc = NULL;
1673 				thrd->req[1].desc = NULL;
1674 				thrd->req_running = -1;
1675 				break;
1676 			}
1677 		}
1678 		thrd = NULL;
1679 	}
1680 
1681 	spin_unlock_irqrestore(&pl330->lock, flags);
1682 
1683 	return thrd;
1684 }
1685 
1686 /* Release an event */
1687 static inline void _free_event(struct pl330_thread *thrd, int ev)
1688 {
1689 	struct pl330_dmac *pl330 = thrd->dmac;
1690 
1691 	/* If the event is valid and was held by the thread */
1692 	if (ev >= 0 && ev < pl330->pcfg.num_events
1693 			&& pl330->events[ev] == thrd->id)
1694 		pl330->events[ev] = -1;
1695 }
1696 
1697 static void pl330_release_channel(struct pl330_thread *thrd)
1698 {
1699 	struct pl330_dmac *pl330;
1700 	unsigned long flags;
1701 
1702 	if (!thrd || thrd->free)
1703 		return;
1704 
1705 	_stop(thrd);
1706 
1707 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1708 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1709 
1710 	pl330 = thrd->dmac;
1711 
1712 	spin_lock_irqsave(&pl330->lock, flags);
1713 	_free_event(thrd, thrd->ev);
1714 	thrd->free = true;
1715 	spin_unlock_irqrestore(&pl330->lock, flags);
1716 }
1717 
1718 /* Initialize the structure for PL330 configuration, that can be used
1719  * by the client driver the make best use of the DMAC
1720  */
1721 static void read_dmac_config(struct pl330_dmac *pl330)
1722 {
1723 	void __iomem *regs = pl330->base;
1724 	u32 val;
1725 
1726 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1727 	val &= CRD_DATA_WIDTH_MASK;
1728 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1729 
1730 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1731 	val &= CRD_DATA_BUFF_MASK;
1732 	pl330->pcfg.data_buf_dep = val + 1;
1733 
1734 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1735 	val &= CR0_NUM_CHANS_MASK;
1736 	val += 1;
1737 	pl330->pcfg.num_chan = val;
1738 
1739 	val = readl(regs + CR0);
1740 	if (val & CR0_PERIPH_REQ_SET) {
1741 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1742 		val += 1;
1743 		pl330->pcfg.num_peri = val;
1744 		pl330->pcfg.peri_ns = readl(regs + CR4);
1745 	} else {
1746 		pl330->pcfg.num_peri = 0;
1747 	}
1748 
1749 	val = readl(regs + CR0);
1750 	if (val & CR0_BOOT_MAN_NS)
1751 		pl330->pcfg.mode |= DMAC_MODE_NS;
1752 	else
1753 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1754 
1755 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1756 	val &= CR0_NUM_EVENTS_MASK;
1757 	val += 1;
1758 	pl330->pcfg.num_events = val;
1759 
1760 	pl330->pcfg.irq_ns = readl(regs + CR3);
1761 }
1762 
1763 static inline void _reset_thread(struct pl330_thread *thrd)
1764 {
1765 	struct pl330_dmac *pl330 = thrd->dmac;
1766 
1767 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1768 				+ (thrd->id * pl330->mcbufsz);
1769 	thrd->req[0].mc_bus = pl330->mcode_bus
1770 				+ (thrd->id * pl330->mcbufsz);
1771 	thrd->req[0].desc = NULL;
1772 
1773 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1774 				+ pl330->mcbufsz / 2;
1775 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1776 				+ pl330->mcbufsz / 2;
1777 	thrd->req[1].desc = NULL;
1778 
1779 	thrd->req_running = -1;
1780 }
1781 
1782 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1783 {
1784 	int chans = pl330->pcfg.num_chan;
1785 	struct pl330_thread *thrd;
1786 	int i;
1787 
1788 	/* Allocate 1 Manager and 'chans' Channel threads */
1789 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1790 					GFP_KERNEL);
1791 	if (!pl330->channels)
1792 		return -ENOMEM;
1793 
1794 	/* Init Channel threads */
1795 	for (i = 0; i < chans; i++) {
1796 		thrd = &pl330->channels[i];
1797 		thrd->id = i;
1798 		thrd->dmac = pl330;
1799 		_reset_thread(thrd);
1800 		thrd->free = true;
1801 	}
1802 
1803 	/* MANAGER is indexed at the end */
1804 	thrd = &pl330->channels[chans];
1805 	thrd->id = chans;
1806 	thrd->dmac = pl330;
1807 	thrd->free = false;
1808 	pl330->manager = thrd;
1809 
1810 	return 0;
1811 }
1812 
1813 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1814 {
1815 	int chans = pl330->pcfg.num_chan;
1816 	int ret;
1817 
1818 	/*
1819 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1820 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1821 	 */
1822 	pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev,
1823 				chans * pl330->mcbufsz,
1824 				&pl330->mcode_bus, GFP_KERNEL);
1825 	if (!pl330->mcode_cpu) {
1826 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1827 			__func__, __LINE__);
1828 		return -ENOMEM;
1829 	}
1830 
1831 	ret = dmac_alloc_threads(pl330);
1832 	if (ret) {
1833 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1834 			__func__, __LINE__);
1835 		dma_free_coherent(pl330->ddma.dev,
1836 				chans * pl330->mcbufsz,
1837 				pl330->mcode_cpu, pl330->mcode_bus);
1838 		return ret;
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 static int pl330_add(struct pl330_dmac *pl330)
1845 {
1846 	void __iomem *regs;
1847 	int i, ret;
1848 
1849 	regs = pl330->base;
1850 
1851 	/* Check if we can handle this DMAC */
1852 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1853 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1854 			pl330->pcfg.periph_id);
1855 		return -EINVAL;
1856 	}
1857 
1858 	/* Read the configuration of the DMAC */
1859 	read_dmac_config(pl330);
1860 
1861 	if (pl330->pcfg.num_events == 0) {
1862 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1863 			__func__, __LINE__);
1864 		return -EINVAL;
1865 	}
1866 
1867 	spin_lock_init(&pl330->lock);
1868 
1869 	INIT_LIST_HEAD(&pl330->req_done);
1870 
1871 	/* Use default MC buffer size if not provided */
1872 	if (!pl330->mcbufsz)
1873 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1874 
1875 	/* Mark all events as free */
1876 	for (i = 0; i < pl330->pcfg.num_events; i++)
1877 		pl330->events[i] = -1;
1878 
1879 	/* Allocate resources needed by the DMAC */
1880 	ret = dmac_alloc_resources(pl330);
1881 	if (ret) {
1882 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1883 		return ret;
1884 	}
1885 
1886 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1887 
1888 	pl330->state = INIT;
1889 
1890 	return 0;
1891 }
1892 
1893 static int dmac_free_threads(struct pl330_dmac *pl330)
1894 {
1895 	struct pl330_thread *thrd;
1896 	int i;
1897 
1898 	/* Release Channel threads */
1899 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1900 		thrd = &pl330->channels[i];
1901 		pl330_release_channel(thrd);
1902 	}
1903 
1904 	/* Free memory */
1905 	kfree(pl330->channels);
1906 
1907 	return 0;
1908 }
1909 
1910 static void pl330_del(struct pl330_dmac *pl330)
1911 {
1912 	pl330->state = UNINIT;
1913 
1914 	tasklet_kill(&pl330->tasks);
1915 
1916 	/* Free DMAC resources */
1917 	dmac_free_threads(pl330);
1918 
1919 	dma_free_coherent(pl330->ddma.dev,
1920 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1921 		pl330->mcode_bus);
1922 }
1923 
1924 /* forward declaration */
1925 static struct amba_driver pl330_driver;
1926 
1927 static inline struct dma_pl330_chan *
1928 to_pchan(struct dma_chan *ch)
1929 {
1930 	if (!ch)
1931 		return NULL;
1932 
1933 	return container_of(ch, struct dma_pl330_chan, chan);
1934 }
1935 
1936 static inline struct dma_pl330_desc *
1937 to_desc(struct dma_async_tx_descriptor *tx)
1938 {
1939 	return container_of(tx, struct dma_pl330_desc, txd);
1940 }
1941 
1942 static inline void fill_queue(struct dma_pl330_chan *pch)
1943 {
1944 	struct dma_pl330_desc *desc;
1945 	int ret;
1946 
1947 	list_for_each_entry(desc, &pch->work_list, node) {
1948 
1949 		/* If already submitted */
1950 		if (desc->status == BUSY)
1951 			continue;
1952 
1953 		ret = pl330_submit_req(pch->thread, desc);
1954 		if (!ret) {
1955 			desc->status = BUSY;
1956 		} else if (ret == -EAGAIN) {
1957 			/* QFull or DMAC Dying */
1958 			break;
1959 		} else {
1960 			/* Unacceptable request */
1961 			desc->status = DONE;
1962 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
1963 					__func__, __LINE__, desc->txd.cookie);
1964 			tasklet_schedule(&pch->task);
1965 		}
1966 	}
1967 }
1968 
1969 static void pl330_tasklet(unsigned long data)
1970 {
1971 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
1972 	struct dma_pl330_desc *desc, *_dt;
1973 	unsigned long flags;
1974 	bool power_down = false;
1975 
1976 	spin_lock_irqsave(&pch->lock, flags);
1977 
1978 	/* Pick up ripe tomatoes */
1979 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
1980 		if (desc->status == DONE) {
1981 			if (!pch->cyclic)
1982 				dma_cookie_complete(&desc->txd);
1983 			list_move_tail(&desc->node, &pch->completed_list);
1984 		}
1985 
1986 	/* Try to submit a req imm. next to the last completed cookie */
1987 	fill_queue(pch);
1988 
1989 	if (list_empty(&pch->work_list)) {
1990 		spin_lock(&pch->thread->dmac->lock);
1991 		_stop(pch->thread);
1992 		spin_unlock(&pch->thread->dmac->lock);
1993 		power_down = true;
1994 	} else {
1995 		/* Make sure the PL330 Channel thread is active */
1996 		spin_lock(&pch->thread->dmac->lock);
1997 		_start(pch->thread);
1998 		spin_unlock(&pch->thread->dmac->lock);
1999 	}
2000 
2001 	while (!list_empty(&pch->completed_list)) {
2002 		dma_async_tx_callback callback;
2003 		void *callback_param;
2004 
2005 		desc = list_first_entry(&pch->completed_list,
2006 					struct dma_pl330_desc, node);
2007 
2008 		callback = desc->txd.callback;
2009 		callback_param = desc->txd.callback_param;
2010 
2011 		if (pch->cyclic) {
2012 			desc->status = PREP;
2013 			list_move_tail(&desc->node, &pch->work_list);
2014 			if (power_down) {
2015 				spin_lock(&pch->thread->dmac->lock);
2016 				_start(pch->thread);
2017 				spin_unlock(&pch->thread->dmac->lock);
2018 				power_down = false;
2019 			}
2020 		} else {
2021 			desc->status = FREE;
2022 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2023 		}
2024 
2025 		dma_descriptor_unmap(&desc->txd);
2026 
2027 		if (callback) {
2028 			spin_unlock_irqrestore(&pch->lock, flags);
2029 			callback(callback_param);
2030 			spin_lock_irqsave(&pch->lock, flags);
2031 		}
2032 	}
2033 	spin_unlock_irqrestore(&pch->lock, flags);
2034 
2035 	/* If work list empty, power down */
2036 	if (power_down) {
2037 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2038 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2039 	}
2040 }
2041 
2042 bool pl330_filter(struct dma_chan *chan, void *param)
2043 {
2044 	u8 *peri_id;
2045 
2046 	if (chan->device->dev->driver != &pl330_driver.drv)
2047 		return false;
2048 
2049 	peri_id = chan->private;
2050 	return *peri_id == (unsigned long)param;
2051 }
2052 EXPORT_SYMBOL(pl330_filter);
2053 
2054 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2055 						struct of_dma *ofdma)
2056 {
2057 	int count = dma_spec->args_count;
2058 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2059 	unsigned int chan_id;
2060 
2061 	if (!pl330)
2062 		return NULL;
2063 
2064 	if (count != 1)
2065 		return NULL;
2066 
2067 	chan_id = dma_spec->args[0];
2068 	if (chan_id >= pl330->num_peripherals)
2069 		return NULL;
2070 
2071 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2072 }
2073 
2074 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2075 {
2076 	struct dma_pl330_chan *pch = to_pchan(chan);
2077 	struct pl330_dmac *pl330 = pch->dmac;
2078 	unsigned long flags;
2079 
2080 	spin_lock_irqsave(&pch->lock, flags);
2081 
2082 	dma_cookie_init(chan);
2083 	pch->cyclic = false;
2084 
2085 	pch->thread = pl330_request_channel(pl330);
2086 	if (!pch->thread) {
2087 		spin_unlock_irqrestore(&pch->lock, flags);
2088 		return -ENOMEM;
2089 	}
2090 
2091 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2092 
2093 	spin_unlock_irqrestore(&pch->lock, flags);
2094 
2095 	return 1;
2096 }
2097 
2098 static int pl330_config(struct dma_chan *chan,
2099 			struct dma_slave_config *slave_config)
2100 {
2101 	struct dma_pl330_chan *pch = to_pchan(chan);
2102 
2103 	if (slave_config->direction == DMA_MEM_TO_DEV) {
2104 		if (slave_config->dst_addr)
2105 			pch->fifo_addr = slave_config->dst_addr;
2106 		if (slave_config->dst_addr_width)
2107 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2108 		if (slave_config->dst_maxburst)
2109 			pch->burst_len = slave_config->dst_maxburst;
2110 	} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2111 		if (slave_config->src_addr)
2112 			pch->fifo_addr = slave_config->src_addr;
2113 		if (slave_config->src_addr_width)
2114 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2115 		if (slave_config->src_maxburst)
2116 			pch->burst_len = slave_config->src_maxburst;
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 static int pl330_terminate_all(struct dma_chan *chan)
2123 {
2124 	struct dma_pl330_chan *pch = to_pchan(chan);
2125 	struct dma_pl330_desc *desc;
2126 	unsigned long flags;
2127 	struct pl330_dmac *pl330 = pch->dmac;
2128 	LIST_HEAD(list);
2129 
2130 	spin_lock_irqsave(&pch->lock, flags);
2131 	spin_lock(&pl330->lock);
2132 	_stop(pch->thread);
2133 	spin_unlock(&pl330->lock);
2134 
2135 	pch->thread->req[0].desc = NULL;
2136 	pch->thread->req[1].desc = NULL;
2137 	pch->thread->req_running = -1;
2138 
2139 	/* Mark all desc done */
2140 	list_for_each_entry(desc, &pch->submitted_list, node) {
2141 		desc->status = FREE;
2142 		dma_cookie_complete(&desc->txd);
2143 	}
2144 
2145 	list_for_each_entry(desc, &pch->work_list , node) {
2146 		desc->status = FREE;
2147 		dma_cookie_complete(&desc->txd);
2148 	}
2149 
2150 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2151 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2152 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2153 	spin_unlock_irqrestore(&pch->lock, flags);
2154 
2155 	return 0;
2156 }
2157 
2158 /*
2159  * We don't support DMA_RESUME command because of hardware
2160  * limitations, so after pausing the channel we cannot restore
2161  * it to active state. We have to terminate channel and setup
2162  * DMA transfer again. This pause feature was implemented to
2163  * allow safely read residue before channel termination.
2164  */
2165 int pl330_pause(struct dma_chan *chan)
2166 {
2167 	struct dma_pl330_chan *pch = to_pchan(chan);
2168 	struct pl330_dmac *pl330 = pch->dmac;
2169 	unsigned long flags;
2170 
2171 	pm_runtime_get_sync(pl330->ddma.dev);
2172 	spin_lock_irqsave(&pch->lock, flags);
2173 
2174 	spin_lock(&pl330->lock);
2175 	_stop(pch->thread);
2176 	spin_unlock(&pl330->lock);
2177 
2178 	spin_unlock_irqrestore(&pch->lock, flags);
2179 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2180 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2181 
2182 	return 0;
2183 }
2184 
2185 static void pl330_free_chan_resources(struct dma_chan *chan)
2186 {
2187 	struct dma_pl330_chan *pch = to_pchan(chan);
2188 	unsigned long flags;
2189 
2190 	tasklet_kill(&pch->task);
2191 
2192 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2193 	spin_lock_irqsave(&pch->lock, flags);
2194 
2195 	pl330_release_channel(pch->thread);
2196 	pch->thread = NULL;
2197 
2198 	if (pch->cyclic)
2199 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2200 
2201 	spin_unlock_irqrestore(&pch->lock, flags);
2202 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2203 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2204 }
2205 
2206 int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2207 		struct dma_pl330_desc *desc)
2208 {
2209 	struct pl330_thread *thrd = pch->thread;
2210 	struct pl330_dmac *pl330 = pch->dmac;
2211 	void __iomem *regs = thrd->dmac->base;
2212 	u32 val, addr;
2213 
2214 	pm_runtime_get_sync(pl330->ddma.dev);
2215 	val = addr = 0;
2216 	if (desc->rqcfg.src_inc) {
2217 		val = readl(regs + SA(thrd->id));
2218 		addr = desc->px.src_addr;
2219 	} else {
2220 		val = readl(regs + DA(thrd->id));
2221 		addr = desc->px.dst_addr;
2222 	}
2223 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2224 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2225 	return val - addr;
2226 }
2227 
2228 static enum dma_status
2229 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2230 		 struct dma_tx_state *txstate)
2231 {
2232 	enum dma_status ret;
2233 	unsigned long flags;
2234 	struct dma_pl330_desc *desc, *running = NULL;
2235 	struct dma_pl330_chan *pch = to_pchan(chan);
2236 	unsigned int transferred, residual = 0;
2237 
2238 	ret = dma_cookie_status(chan, cookie, txstate);
2239 
2240 	if (!txstate)
2241 		return ret;
2242 
2243 	if (ret == DMA_COMPLETE)
2244 		goto out;
2245 
2246 	spin_lock_irqsave(&pch->lock, flags);
2247 
2248 	if (pch->thread->req_running != -1)
2249 		running = pch->thread->req[pch->thread->req_running].desc;
2250 
2251 	/* Check in pending list */
2252 	list_for_each_entry(desc, &pch->work_list, node) {
2253 		if (desc->status == DONE)
2254 			transferred = desc->bytes_requested;
2255 		else if (running && desc == running)
2256 			transferred =
2257 				pl330_get_current_xferred_count(pch, desc);
2258 		else
2259 			transferred = 0;
2260 		residual += desc->bytes_requested - transferred;
2261 		if (desc->txd.cookie == cookie) {
2262 			ret = desc->status;
2263 			break;
2264 		}
2265 		if (desc->last)
2266 			residual = 0;
2267 	}
2268 	spin_unlock_irqrestore(&pch->lock, flags);
2269 
2270 out:
2271 	dma_set_residue(txstate, residual);
2272 
2273 	return ret;
2274 }
2275 
2276 static void pl330_issue_pending(struct dma_chan *chan)
2277 {
2278 	struct dma_pl330_chan *pch = to_pchan(chan);
2279 	unsigned long flags;
2280 
2281 	spin_lock_irqsave(&pch->lock, flags);
2282 	if (list_empty(&pch->work_list)) {
2283 		/*
2284 		 * Warn on nothing pending. Empty submitted_list may
2285 		 * break our pm_runtime usage counter as it is
2286 		 * updated on work_list emptiness status.
2287 		 */
2288 		WARN_ON(list_empty(&pch->submitted_list));
2289 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2290 	}
2291 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2292 	spin_unlock_irqrestore(&pch->lock, flags);
2293 
2294 	pl330_tasklet((unsigned long)pch);
2295 }
2296 
2297 /*
2298  * We returned the last one of the circular list of descriptor(s)
2299  * from prep_xxx, so the argument to submit corresponds to the last
2300  * descriptor of the list.
2301  */
2302 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2303 {
2304 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2305 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2306 	dma_cookie_t cookie;
2307 	unsigned long flags;
2308 
2309 	spin_lock_irqsave(&pch->lock, flags);
2310 
2311 	/* Assign cookies to all nodes */
2312 	while (!list_empty(&last->node)) {
2313 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2314 		if (pch->cyclic) {
2315 			desc->txd.callback = last->txd.callback;
2316 			desc->txd.callback_param = last->txd.callback_param;
2317 		}
2318 		last->last = false;
2319 
2320 		dma_cookie_assign(&desc->txd);
2321 
2322 		list_move_tail(&desc->node, &pch->submitted_list);
2323 	}
2324 
2325 	last->last = true;
2326 	cookie = dma_cookie_assign(&last->txd);
2327 	list_add_tail(&last->node, &pch->submitted_list);
2328 	spin_unlock_irqrestore(&pch->lock, flags);
2329 
2330 	return cookie;
2331 }
2332 
2333 static inline void _init_desc(struct dma_pl330_desc *desc)
2334 {
2335 	desc->rqcfg.swap = SWAP_NO;
2336 	desc->rqcfg.scctl = CCTRL0;
2337 	desc->rqcfg.dcctl = CCTRL0;
2338 	desc->txd.tx_submit = pl330_tx_submit;
2339 
2340 	INIT_LIST_HEAD(&desc->node);
2341 }
2342 
2343 /* Returns the number of descriptors added to the DMAC pool */
2344 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
2345 {
2346 	struct dma_pl330_desc *desc;
2347 	unsigned long flags;
2348 	int i;
2349 
2350 	desc = kcalloc(count, sizeof(*desc), flg);
2351 	if (!desc)
2352 		return 0;
2353 
2354 	spin_lock_irqsave(&pl330->pool_lock, flags);
2355 
2356 	for (i = 0; i < count; i++) {
2357 		_init_desc(&desc[i]);
2358 		list_add_tail(&desc[i].node, &pl330->desc_pool);
2359 	}
2360 
2361 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2362 
2363 	return count;
2364 }
2365 
2366 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
2367 {
2368 	struct dma_pl330_desc *desc = NULL;
2369 	unsigned long flags;
2370 
2371 	spin_lock_irqsave(&pl330->pool_lock, flags);
2372 
2373 	if (!list_empty(&pl330->desc_pool)) {
2374 		desc = list_entry(pl330->desc_pool.next,
2375 				struct dma_pl330_desc, node);
2376 
2377 		list_del_init(&desc->node);
2378 
2379 		desc->status = PREP;
2380 		desc->txd.callback = NULL;
2381 	}
2382 
2383 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2384 
2385 	return desc;
2386 }
2387 
2388 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2389 {
2390 	struct pl330_dmac *pl330 = pch->dmac;
2391 	u8 *peri_id = pch->chan.private;
2392 	struct dma_pl330_desc *desc;
2393 
2394 	/* Pluck one desc from the pool of DMAC */
2395 	desc = pluck_desc(pl330);
2396 
2397 	/* If the DMAC pool is empty, alloc new */
2398 	if (!desc) {
2399 		if (!add_desc(pl330, GFP_ATOMIC, 1))
2400 			return NULL;
2401 
2402 		/* Try again */
2403 		desc = pluck_desc(pl330);
2404 		if (!desc) {
2405 			dev_err(pch->dmac->ddma.dev,
2406 				"%s:%d ALERT!\n", __func__, __LINE__);
2407 			return NULL;
2408 		}
2409 	}
2410 
2411 	/* Initialize the descriptor */
2412 	desc->pchan = pch;
2413 	desc->txd.cookie = 0;
2414 	async_tx_ack(&desc->txd);
2415 
2416 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2417 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2418 
2419 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2420 
2421 	return desc;
2422 }
2423 
2424 static inline void fill_px(struct pl330_xfer *px,
2425 		dma_addr_t dst, dma_addr_t src, size_t len)
2426 {
2427 	px->bytes = len;
2428 	px->dst_addr = dst;
2429 	px->src_addr = src;
2430 }
2431 
2432 static struct dma_pl330_desc *
2433 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2434 		dma_addr_t src, size_t len)
2435 {
2436 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2437 
2438 	if (!desc) {
2439 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2440 			__func__, __LINE__);
2441 		return NULL;
2442 	}
2443 
2444 	/*
2445 	 * Ideally we should lookout for reqs bigger than
2446 	 * those that can be programmed with 256 bytes of
2447 	 * MC buffer, but considering a req size is seldom
2448 	 * going to be word-unaligned and more than 200MB,
2449 	 * we take it easy.
2450 	 * Also, should the limit is reached we'd rather
2451 	 * have the platform increase MC buffer size than
2452 	 * complicating this API driver.
2453 	 */
2454 	fill_px(&desc->px, dst, src, len);
2455 
2456 	return desc;
2457 }
2458 
2459 /* Call after fixing burst size */
2460 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2461 {
2462 	struct dma_pl330_chan *pch = desc->pchan;
2463 	struct pl330_dmac *pl330 = pch->dmac;
2464 	int burst_len;
2465 
2466 	burst_len = pl330->pcfg.data_bus_width / 8;
2467 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2468 	burst_len >>= desc->rqcfg.brst_size;
2469 
2470 	/* src/dst_burst_len can't be more than 16 */
2471 	if (burst_len > 16)
2472 		burst_len = 16;
2473 
2474 	while (burst_len > 1) {
2475 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2476 			break;
2477 		burst_len--;
2478 	}
2479 
2480 	return burst_len;
2481 }
2482 
2483 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2484 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2485 		size_t period_len, enum dma_transfer_direction direction,
2486 		unsigned long flags)
2487 {
2488 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2489 	struct dma_pl330_chan *pch = to_pchan(chan);
2490 	struct pl330_dmac *pl330 = pch->dmac;
2491 	unsigned int i;
2492 	dma_addr_t dst;
2493 	dma_addr_t src;
2494 
2495 	if (len % period_len != 0)
2496 		return NULL;
2497 
2498 	if (!is_slave_direction(direction)) {
2499 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2500 		__func__, __LINE__);
2501 		return NULL;
2502 	}
2503 
2504 	for (i = 0; i < len / period_len; i++) {
2505 		desc = pl330_get_desc(pch);
2506 		if (!desc) {
2507 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2508 				__func__, __LINE__);
2509 
2510 			if (!first)
2511 				return NULL;
2512 
2513 			spin_lock_irqsave(&pl330->pool_lock, flags);
2514 
2515 			while (!list_empty(&first->node)) {
2516 				desc = list_entry(first->node.next,
2517 						struct dma_pl330_desc, node);
2518 				list_move_tail(&desc->node, &pl330->desc_pool);
2519 			}
2520 
2521 			list_move_tail(&first->node, &pl330->desc_pool);
2522 
2523 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2524 
2525 			return NULL;
2526 		}
2527 
2528 		switch (direction) {
2529 		case DMA_MEM_TO_DEV:
2530 			desc->rqcfg.src_inc = 1;
2531 			desc->rqcfg.dst_inc = 0;
2532 			src = dma_addr;
2533 			dst = pch->fifo_addr;
2534 			break;
2535 		case DMA_DEV_TO_MEM:
2536 			desc->rqcfg.src_inc = 0;
2537 			desc->rqcfg.dst_inc = 1;
2538 			src = pch->fifo_addr;
2539 			dst = dma_addr;
2540 			break;
2541 		default:
2542 			break;
2543 		}
2544 
2545 		desc->rqtype = direction;
2546 		desc->rqcfg.brst_size = pch->burst_sz;
2547 		desc->rqcfg.brst_len = 1;
2548 		desc->bytes_requested = period_len;
2549 		fill_px(&desc->px, dst, src, period_len);
2550 
2551 		if (!first)
2552 			first = desc;
2553 		else
2554 			list_add_tail(&desc->node, &first->node);
2555 
2556 		dma_addr += period_len;
2557 	}
2558 
2559 	if (!desc)
2560 		return NULL;
2561 
2562 	pch->cyclic = true;
2563 	desc->txd.flags = flags;
2564 
2565 	return &desc->txd;
2566 }
2567 
2568 static struct dma_async_tx_descriptor *
2569 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2570 		dma_addr_t src, size_t len, unsigned long flags)
2571 {
2572 	struct dma_pl330_desc *desc;
2573 	struct dma_pl330_chan *pch = to_pchan(chan);
2574 	struct pl330_dmac *pl330 = pch->dmac;
2575 	int burst;
2576 
2577 	if (unlikely(!pch || !len))
2578 		return NULL;
2579 
2580 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2581 	if (!desc)
2582 		return NULL;
2583 
2584 	desc->rqcfg.src_inc = 1;
2585 	desc->rqcfg.dst_inc = 1;
2586 	desc->rqtype = DMA_MEM_TO_MEM;
2587 
2588 	/* Select max possible burst size */
2589 	burst = pl330->pcfg.data_bus_width / 8;
2590 
2591 	/*
2592 	 * Make sure we use a burst size that aligns with all the memcpy
2593 	 * parameters because our DMA programming algorithm doesn't cope with
2594 	 * transfers which straddle an entry in the DMA device's MFIFO.
2595 	 */
2596 	while ((src | dst | len) & (burst - 1))
2597 		burst /= 2;
2598 
2599 	desc->rqcfg.brst_size = 0;
2600 	while (burst != (1 << desc->rqcfg.brst_size))
2601 		desc->rqcfg.brst_size++;
2602 
2603 	/*
2604 	 * If burst size is smaller than bus width then make sure we only
2605 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2606 	 */
2607 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2608 		desc->rqcfg.brst_len = 1;
2609 
2610 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2611 
2612 	desc->txd.flags = flags;
2613 
2614 	return &desc->txd;
2615 }
2616 
2617 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2618 				  struct dma_pl330_desc *first)
2619 {
2620 	unsigned long flags;
2621 	struct dma_pl330_desc *desc;
2622 
2623 	if (!first)
2624 		return;
2625 
2626 	spin_lock_irqsave(&pl330->pool_lock, flags);
2627 
2628 	while (!list_empty(&first->node)) {
2629 		desc = list_entry(first->node.next,
2630 				struct dma_pl330_desc, node);
2631 		list_move_tail(&desc->node, &pl330->desc_pool);
2632 	}
2633 
2634 	list_move_tail(&first->node, &pl330->desc_pool);
2635 
2636 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2637 }
2638 
2639 static struct dma_async_tx_descriptor *
2640 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2641 		unsigned int sg_len, enum dma_transfer_direction direction,
2642 		unsigned long flg, void *context)
2643 {
2644 	struct dma_pl330_desc *first, *desc = NULL;
2645 	struct dma_pl330_chan *pch = to_pchan(chan);
2646 	struct scatterlist *sg;
2647 	int i;
2648 	dma_addr_t addr;
2649 
2650 	if (unlikely(!pch || !sgl || !sg_len))
2651 		return NULL;
2652 
2653 	addr = pch->fifo_addr;
2654 
2655 	first = NULL;
2656 
2657 	for_each_sg(sgl, sg, sg_len, i) {
2658 
2659 		desc = pl330_get_desc(pch);
2660 		if (!desc) {
2661 			struct pl330_dmac *pl330 = pch->dmac;
2662 
2663 			dev_err(pch->dmac->ddma.dev,
2664 				"%s:%d Unable to fetch desc\n",
2665 				__func__, __LINE__);
2666 			__pl330_giveback_desc(pl330, first);
2667 
2668 			return NULL;
2669 		}
2670 
2671 		if (!first)
2672 			first = desc;
2673 		else
2674 			list_add_tail(&desc->node, &first->node);
2675 
2676 		if (direction == DMA_MEM_TO_DEV) {
2677 			desc->rqcfg.src_inc = 1;
2678 			desc->rqcfg.dst_inc = 0;
2679 			fill_px(&desc->px,
2680 				addr, sg_dma_address(sg), sg_dma_len(sg));
2681 		} else {
2682 			desc->rqcfg.src_inc = 0;
2683 			desc->rqcfg.dst_inc = 1;
2684 			fill_px(&desc->px,
2685 				sg_dma_address(sg), addr, sg_dma_len(sg));
2686 		}
2687 
2688 		desc->rqcfg.brst_size = pch->burst_sz;
2689 		desc->rqcfg.brst_len = 1;
2690 		desc->rqtype = direction;
2691 		desc->bytes_requested = sg_dma_len(sg);
2692 	}
2693 
2694 	/* Return the last desc in the chain */
2695 	desc->txd.flags = flg;
2696 	return &desc->txd;
2697 }
2698 
2699 static irqreturn_t pl330_irq_handler(int irq, void *data)
2700 {
2701 	if (pl330_update(data))
2702 		return IRQ_HANDLED;
2703 	else
2704 		return IRQ_NONE;
2705 }
2706 
2707 #define PL330_DMA_BUSWIDTHS \
2708 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2709 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2710 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2711 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2712 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2713 
2714 /*
2715  * Runtime PM callbacks are provided by amba/bus.c driver.
2716  *
2717  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2718  * bus driver will only disable/enable the clock in runtime PM callbacks.
2719  */
2720 static int __maybe_unused pl330_suspend(struct device *dev)
2721 {
2722 	struct amba_device *pcdev = to_amba_device(dev);
2723 
2724 	pm_runtime_disable(dev);
2725 
2726 	if (!pm_runtime_status_suspended(dev)) {
2727 		/* amba did not disable the clock */
2728 		amba_pclk_disable(pcdev);
2729 	}
2730 	amba_pclk_unprepare(pcdev);
2731 
2732 	return 0;
2733 }
2734 
2735 static int __maybe_unused pl330_resume(struct device *dev)
2736 {
2737 	struct amba_device *pcdev = to_amba_device(dev);
2738 	int ret;
2739 
2740 	ret = amba_pclk_prepare(pcdev);
2741 	if (ret)
2742 		return ret;
2743 
2744 	if (!pm_runtime_status_suspended(dev))
2745 		ret = amba_pclk_enable(pcdev);
2746 
2747 	pm_runtime_enable(dev);
2748 
2749 	return ret;
2750 }
2751 
2752 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2753 
2754 static int
2755 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2756 {
2757 	struct dma_pl330_platdata *pdat;
2758 	struct pl330_config *pcfg;
2759 	struct pl330_dmac *pl330;
2760 	struct dma_pl330_chan *pch, *_p;
2761 	struct dma_device *pd;
2762 	struct resource *res;
2763 	int i, ret, irq;
2764 	int num_chan;
2765 
2766 	pdat = dev_get_platdata(&adev->dev);
2767 
2768 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2769 	if (ret)
2770 		return ret;
2771 
2772 	/* Allocate a new DMAC and its Channels */
2773 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2774 	if (!pl330) {
2775 		dev_err(&adev->dev, "unable to allocate mem\n");
2776 		return -ENOMEM;
2777 	}
2778 
2779 	pd = &pl330->ddma;
2780 	pd->dev = &adev->dev;
2781 
2782 	pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2783 
2784 	res = &adev->res;
2785 	pl330->base = devm_ioremap_resource(&adev->dev, res);
2786 	if (IS_ERR(pl330->base))
2787 		return PTR_ERR(pl330->base);
2788 
2789 	amba_set_drvdata(adev, pl330);
2790 
2791 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2792 		irq = adev->irq[i];
2793 		if (irq) {
2794 			ret = devm_request_irq(&adev->dev, irq,
2795 					       pl330_irq_handler, 0,
2796 					       dev_name(&adev->dev), pl330);
2797 			if (ret)
2798 				return ret;
2799 		} else {
2800 			break;
2801 		}
2802 	}
2803 
2804 	pcfg = &pl330->pcfg;
2805 
2806 	pcfg->periph_id = adev->periphid;
2807 	ret = pl330_add(pl330);
2808 	if (ret)
2809 		return ret;
2810 
2811 	INIT_LIST_HEAD(&pl330->desc_pool);
2812 	spin_lock_init(&pl330->pool_lock);
2813 
2814 	/* Create a descriptor pool of default size */
2815 	if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC))
2816 		dev_warn(&adev->dev, "unable to allocate desc\n");
2817 
2818 	INIT_LIST_HEAD(&pd->channels);
2819 
2820 	/* Initialize channel parameters */
2821 	if (pdat)
2822 		num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan);
2823 	else
2824 		num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2825 
2826 	pl330->num_peripherals = num_chan;
2827 
2828 	pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2829 	if (!pl330->peripherals) {
2830 		ret = -ENOMEM;
2831 		dev_err(&adev->dev, "unable to allocate pl330->peripherals\n");
2832 		goto probe_err2;
2833 	}
2834 
2835 	for (i = 0; i < num_chan; i++) {
2836 		pch = &pl330->peripherals[i];
2837 		if (!adev->dev.of_node)
2838 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2839 		else
2840 			pch->chan.private = adev->dev.of_node;
2841 
2842 		INIT_LIST_HEAD(&pch->submitted_list);
2843 		INIT_LIST_HEAD(&pch->work_list);
2844 		INIT_LIST_HEAD(&pch->completed_list);
2845 		spin_lock_init(&pch->lock);
2846 		pch->thread = NULL;
2847 		pch->chan.device = pd;
2848 		pch->dmac = pl330;
2849 
2850 		/* Add the channel to the DMAC list */
2851 		list_add_tail(&pch->chan.device_node, &pd->channels);
2852 	}
2853 
2854 	if (pdat) {
2855 		pd->cap_mask = pdat->cap_mask;
2856 	} else {
2857 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2858 		if (pcfg->num_peri) {
2859 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2860 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2861 			dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2862 		}
2863 	}
2864 
2865 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2866 	pd->device_free_chan_resources = pl330_free_chan_resources;
2867 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2868 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2869 	pd->device_tx_status = pl330_tx_status;
2870 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2871 	pd->device_config = pl330_config;
2872 	pd->device_pause = pl330_pause;
2873 	pd->device_terminate_all = pl330_terminate_all;
2874 	pd->device_issue_pending = pl330_issue_pending;
2875 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2876 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2877 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2878 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2879 
2880 	ret = dma_async_device_register(pd);
2881 	if (ret) {
2882 		dev_err(&adev->dev, "unable to register DMAC\n");
2883 		goto probe_err3;
2884 	}
2885 
2886 	if (adev->dev.of_node) {
2887 		ret = of_dma_controller_register(adev->dev.of_node,
2888 					 of_dma_pl330_xlate, pl330);
2889 		if (ret) {
2890 			dev_err(&adev->dev,
2891 			"unable to register DMA to the generic DT DMA helpers\n");
2892 		}
2893 	}
2894 
2895 	adev->dev.dma_parms = &pl330->dma_parms;
2896 
2897 	/*
2898 	 * This is the limit for transfers with a buswidth of 1, larger
2899 	 * buswidths will have larger limits.
2900 	 */
2901 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
2902 	if (ret)
2903 		dev_err(&adev->dev, "unable to set the seg size\n");
2904 
2905 
2906 	dev_info(&adev->dev,
2907 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2908 	dev_info(&adev->dev,
2909 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2910 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2911 		pcfg->num_peri, pcfg->num_events);
2912 
2913 	pm_runtime_irq_safe(&adev->dev);
2914 	pm_runtime_use_autosuspend(&adev->dev);
2915 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2916 	pm_runtime_mark_last_busy(&adev->dev);
2917 	pm_runtime_put_autosuspend(&adev->dev);
2918 
2919 	return 0;
2920 probe_err3:
2921 	/* Idle the DMAC */
2922 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2923 			chan.device_node) {
2924 
2925 		/* Remove the channel */
2926 		list_del(&pch->chan.device_node);
2927 
2928 		/* Flush the channel */
2929 		if (pch->thread) {
2930 			pl330_terminate_all(&pch->chan);
2931 			pl330_free_chan_resources(&pch->chan);
2932 		}
2933 	}
2934 probe_err2:
2935 	pl330_del(pl330);
2936 
2937 	return ret;
2938 }
2939 
2940 static int pl330_remove(struct amba_device *adev)
2941 {
2942 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
2943 	struct dma_pl330_chan *pch, *_p;
2944 
2945 	pm_runtime_get_noresume(pl330->ddma.dev);
2946 
2947 	if (adev->dev.of_node)
2948 		of_dma_controller_free(adev->dev.of_node);
2949 
2950 	dma_async_device_unregister(&pl330->ddma);
2951 
2952 	/* Idle the DMAC */
2953 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2954 			chan.device_node) {
2955 
2956 		/* Remove the channel */
2957 		list_del(&pch->chan.device_node);
2958 
2959 		/* Flush the channel */
2960 		if (pch->thread) {
2961 			pl330_terminate_all(&pch->chan);
2962 			pl330_free_chan_resources(&pch->chan);
2963 		}
2964 	}
2965 
2966 	pl330_del(pl330);
2967 
2968 	return 0;
2969 }
2970 
2971 static struct amba_id pl330_ids[] = {
2972 	{
2973 		.id	= 0x00041330,
2974 		.mask	= 0x000fffff,
2975 	},
2976 	{ 0, 0 },
2977 };
2978 
2979 MODULE_DEVICE_TABLE(amba, pl330_ids);
2980 
2981 static struct amba_driver pl330_driver = {
2982 	.drv = {
2983 		.owner = THIS_MODULE,
2984 		.name = "dma-pl330",
2985 		.pm = &pl330_pm,
2986 	},
2987 	.id_table = pl330_ids,
2988 	.probe = pl330_probe,
2989 	.remove = pl330_remove,
2990 };
2991 
2992 module_amba_driver(pl330_driver);
2993 
2994 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
2995 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
2996 MODULE_LICENSE("GPL");
2997