1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 29 #include "dmaengine.h" 30 #define PL330_MAX_CHAN 8 31 #define PL330_MAX_IRQS 32 32 #define PL330_MAX_PERI 32 33 34 enum pl330_srccachectrl { 35 SCCTRL0, /* Noncacheable and nonbufferable */ 36 SCCTRL1, /* Bufferable only */ 37 SCCTRL2, /* Cacheable, but do not allocate */ 38 SCCTRL3, /* Cacheable and bufferable, but do not allocate */ 39 SINVALID1, 40 SINVALID2, 41 SCCTRL6, /* Cacheable write-through, allocate on reads only */ 42 SCCTRL7, /* Cacheable write-back, allocate on reads only */ 43 }; 44 45 enum pl330_dstcachectrl { 46 DCCTRL0, /* Noncacheable and nonbufferable */ 47 DCCTRL1, /* Bufferable only */ 48 DCCTRL2, /* Cacheable, but do not allocate */ 49 DCCTRL3, /* Cacheable and bufferable, but do not allocate */ 50 DINVALID1, /* AWCACHE = 0x1000 */ 51 DINVALID2, 52 DCCTRL6, /* Cacheable write-through, allocate on writes only */ 53 DCCTRL7, /* Cacheable write-back, allocate on writes only */ 54 }; 55 56 enum pl330_byteswap { 57 SWAP_NO, 58 SWAP_2, 59 SWAP_4, 60 SWAP_8, 61 SWAP_16, 62 }; 63 64 enum pl330_reqtype { 65 MEMTOMEM, 66 MEMTODEV, 67 DEVTOMEM, 68 DEVTODEV, 69 }; 70 71 /* Register and Bit field Definitions */ 72 #define DS 0x0 73 #define DS_ST_STOP 0x0 74 #define DS_ST_EXEC 0x1 75 #define DS_ST_CMISS 0x2 76 #define DS_ST_UPDTPC 0x3 77 #define DS_ST_WFE 0x4 78 #define DS_ST_ATBRR 0x5 79 #define DS_ST_QBUSY 0x6 80 #define DS_ST_WFP 0x7 81 #define DS_ST_KILL 0x8 82 #define DS_ST_CMPLT 0x9 83 #define DS_ST_FLTCMP 0xe 84 #define DS_ST_FAULT 0xf 85 86 #define DPC 0x4 87 #define INTEN 0x20 88 #define ES 0x24 89 #define INTSTATUS 0x28 90 #define INTCLR 0x2c 91 #define FSM 0x30 92 #define FSC 0x34 93 #define FTM 0x38 94 95 #define _FTC 0x40 96 #define FTC(n) (_FTC + (n)*0x4) 97 98 #define _CS 0x100 99 #define CS(n) (_CS + (n)*0x8) 100 #define CS_CNS (1 << 21) 101 102 #define _CPC 0x104 103 #define CPC(n) (_CPC + (n)*0x8) 104 105 #define _SA 0x400 106 #define SA(n) (_SA + (n)*0x20) 107 108 #define _DA 0x404 109 #define DA(n) (_DA + (n)*0x20) 110 111 #define _CC 0x408 112 #define CC(n) (_CC + (n)*0x20) 113 114 #define CC_SRCINC (1 << 0) 115 #define CC_DSTINC (1 << 14) 116 #define CC_SRCPRI (1 << 8) 117 #define CC_DSTPRI (1 << 22) 118 #define CC_SRCNS (1 << 9) 119 #define CC_DSTNS (1 << 23) 120 #define CC_SRCIA (1 << 10) 121 #define CC_DSTIA (1 << 24) 122 #define CC_SRCBRSTLEN_SHFT 4 123 #define CC_DSTBRSTLEN_SHFT 18 124 #define CC_SRCBRSTSIZE_SHFT 1 125 #define CC_DSTBRSTSIZE_SHFT 15 126 #define CC_SRCCCTRL_SHFT 11 127 #define CC_SRCCCTRL_MASK 0x7 128 #define CC_DSTCCTRL_SHFT 25 129 #define CC_DRCCCTRL_MASK 0x7 130 #define CC_SWAP_SHFT 28 131 132 #define _LC0 0x40c 133 #define LC0(n) (_LC0 + (n)*0x20) 134 135 #define _LC1 0x410 136 #define LC1(n) (_LC1 + (n)*0x20) 137 138 #define DBGSTATUS 0xd00 139 #define DBG_BUSY (1 << 0) 140 141 #define DBGCMD 0xd04 142 #define DBGINST0 0xd08 143 #define DBGINST1 0xd0c 144 145 #define CR0 0xe00 146 #define CR1 0xe04 147 #define CR2 0xe08 148 #define CR3 0xe0c 149 #define CR4 0xe10 150 #define CRD 0xe14 151 152 #define PERIPH_ID 0xfe0 153 #define PERIPH_REV_SHIFT 20 154 #define PERIPH_REV_MASK 0xf 155 #define PERIPH_REV_R0P0 0 156 #define PERIPH_REV_R1P0 1 157 #define PERIPH_REV_R1P1 2 158 #define PCELL_ID 0xff0 159 160 #define CR0_PERIPH_REQ_SET (1 << 0) 161 #define CR0_BOOT_EN_SET (1 << 1) 162 #define CR0_BOOT_MAN_NS (1 << 2) 163 #define CR0_NUM_CHANS_SHIFT 4 164 #define CR0_NUM_CHANS_MASK 0x7 165 #define CR0_NUM_PERIPH_SHIFT 12 166 #define CR0_NUM_PERIPH_MASK 0x1f 167 #define CR0_NUM_EVENTS_SHIFT 17 168 #define CR0_NUM_EVENTS_MASK 0x1f 169 170 #define CR1_ICACHE_LEN_SHIFT 0 171 #define CR1_ICACHE_LEN_MASK 0x7 172 #define CR1_NUM_ICACHELINES_SHIFT 4 173 #define CR1_NUM_ICACHELINES_MASK 0xf 174 175 #define CRD_DATA_WIDTH_SHIFT 0 176 #define CRD_DATA_WIDTH_MASK 0x7 177 #define CRD_WR_CAP_SHIFT 4 178 #define CRD_WR_CAP_MASK 0x7 179 #define CRD_WR_Q_DEP_SHIFT 8 180 #define CRD_WR_Q_DEP_MASK 0xf 181 #define CRD_RD_CAP_SHIFT 12 182 #define CRD_RD_CAP_MASK 0x7 183 #define CRD_RD_Q_DEP_SHIFT 16 184 #define CRD_RD_Q_DEP_MASK 0xf 185 #define CRD_DATA_BUFF_SHIFT 20 186 #define CRD_DATA_BUFF_MASK 0x3ff 187 188 #define PART 0x330 189 #define DESIGNER 0x41 190 #define REVISION 0x0 191 #define INTEG_CFG 0x0 192 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 193 194 #define PCELL_ID_VAL 0xb105f00d 195 196 #define PL330_STATE_STOPPED (1 << 0) 197 #define PL330_STATE_EXECUTING (1 << 1) 198 #define PL330_STATE_WFE (1 << 2) 199 #define PL330_STATE_FAULTING (1 << 3) 200 #define PL330_STATE_COMPLETING (1 << 4) 201 #define PL330_STATE_WFP (1 << 5) 202 #define PL330_STATE_KILLING (1 << 6) 203 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 204 #define PL330_STATE_CACHEMISS (1 << 8) 205 #define PL330_STATE_UPDTPC (1 << 9) 206 #define PL330_STATE_ATBARRIER (1 << 10) 207 #define PL330_STATE_QUEUEBUSY (1 << 11) 208 #define PL330_STATE_INVALID (1 << 15) 209 210 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 211 | PL330_STATE_WFE | PL330_STATE_FAULTING) 212 213 #define CMD_DMAADDH 0x54 214 #define CMD_DMAEND 0x00 215 #define CMD_DMAFLUSHP 0x35 216 #define CMD_DMAGO 0xa0 217 #define CMD_DMALD 0x04 218 #define CMD_DMALDP 0x25 219 #define CMD_DMALP 0x20 220 #define CMD_DMALPEND 0x28 221 #define CMD_DMAKILL 0x01 222 #define CMD_DMAMOV 0xbc 223 #define CMD_DMANOP 0x18 224 #define CMD_DMARMB 0x12 225 #define CMD_DMASEV 0x34 226 #define CMD_DMAST 0x08 227 #define CMD_DMASTP 0x29 228 #define CMD_DMASTZ 0x0c 229 #define CMD_DMAWFE 0x36 230 #define CMD_DMAWFP 0x30 231 #define CMD_DMAWMB 0x13 232 233 #define SZ_DMAADDH 3 234 #define SZ_DMAEND 1 235 #define SZ_DMAFLUSHP 2 236 #define SZ_DMALD 1 237 #define SZ_DMALDP 2 238 #define SZ_DMALP 2 239 #define SZ_DMALPEND 2 240 #define SZ_DMAKILL 1 241 #define SZ_DMAMOV 6 242 #define SZ_DMANOP 1 243 #define SZ_DMARMB 1 244 #define SZ_DMASEV 2 245 #define SZ_DMAST 1 246 #define SZ_DMASTP 2 247 #define SZ_DMASTZ 1 248 #define SZ_DMAWFE 2 249 #define SZ_DMAWFP 2 250 #define SZ_DMAWMB 1 251 #define SZ_DMAGO 6 252 253 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 254 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 255 256 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 257 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 258 259 /* 260 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 261 * at 1byte/burst for P<->M and M<->M respectively. 262 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 263 * should be enough for P<->M and M<->M respectively. 264 */ 265 #define MCODE_BUFF_PER_REQ 256 266 267 /* If the _pl330_req is available to the client */ 268 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND) 269 270 /* Use this _only_ to wait on transient states */ 271 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 272 273 #ifdef PL330_DEBUG_MCGEN 274 static unsigned cmd_line; 275 #define PL330_DBGCMD_DUMP(off, x...) do { \ 276 printk("%x:", cmd_line); \ 277 printk(x); \ 278 cmd_line += off; \ 279 } while (0) 280 #define PL330_DBGMC_START(addr) (cmd_line = addr) 281 #else 282 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 283 #define PL330_DBGMC_START(addr) do {} while (0) 284 #endif 285 286 /* The number of default descriptors */ 287 288 #define NR_DEFAULT_DESC 16 289 290 /* Populated by the PL330 core driver for DMA API driver's info */ 291 struct pl330_config { 292 u32 periph_id; 293 u32 pcell_id; 294 #define DMAC_MODE_NS (1 << 0) 295 unsigned int mode; 296 unsigned int data_bus_width:10; /* In number of bits */ 297 unsigned int data_buf_dep:10; 298 unsigned int num_chan:4; 299 unsigned int num_peri:6; 300 u32 peri_ns; 301 unsigned int num_events:6; 302 u32 irq_ns; 303 }; 304 305 /* Handle to the DMAC provided to the PL330 core */ 306 struct pl330_info { 307 /* Owning device */ 308 struct device *dev; 309 /* Size of MicroCode buffers for each channel. */ 310 unsigned mcbufsz; 311 /* ioremap'ed address of PL330 registers. */ 312 void __iomem *base; 313 /* Client can freely use it. */ 314 void *client_data; 315 /* PL330 core data, Client must not touch it. */ 316 void *pl330_data; 317 /* Populated by the PL330 core driver during pl330_add */ 318 struct pl330_config pcfg; 319 /* 320 * If the DMAC has some reset mechanism, then the 321 * client may want to provide pointer to the method. 322 */ 323 void (*dmac_reset)(struct pl330_info *pi); 324 }; 325 326 /** 327 * Request Configuration. 328 * The PL330 core does not modify this and uses the last 329 * working configuration if the request doesn't provide any. 330 * 331 * The Client may want to provide this info only for the 332 * first request and a request with new settings. 333 */ 334 struct pl330_reqcfg { 335 /* Address Incrementing */ 336 unsigned dst_inc:1; 337 unsigned src_inc:1; 338 339 /* 340 * For now, the SRC & DST protection levels 341 * and burst size/length are assumed same. 342 */ 343 bool nonsecure; 344 bool privileged; 345 bool insnaccess; 346 unsigned brst_len:5; 347 unsigned brst_size:3; /* in power of 2 */ 348 349 enum pl330_dstcachectrl dcctl; 350 enum pl330_srccachectrl scctl; 351 enum pl330_byteswap swap; 352 struct pl330_config *pcfg; 353 }; 354 355 /* 356 * One cycle of DMAC operation. 357 * There may be more than one xfer in a request. 358 */ 359 struct pl330_xfer { 360 u32 src_addr; 361 u32 dst_addr; 362 /* Size to xfer */ 363 u32 bytes; 364 /* 365 * Pointer to next xfer in the list. 366 * The last xfer in the req must point to NULL. 367 */ 368 struct pl330_xfer *next; 369 }; 370 371 /* The xfer callbacks are made with one of these arguments. */ 372 enum pl330_op_err { 373 /* The all xfers in the request were success. */ 374 PL330_ERR_NONE, 375 /* If req aborted due to global error. */ 376 PL330_ERR_ABORT, 377 /* If req failed due to problem with Channel. */ 378 PL330_ERR_FAIL, 379 }; 380 381 /* A request defining Scatter-Gather List ending with NULL xfer. */ 382 struct pl330_req { 383 enum pl330_reqtype rqtype; 384 /* Index of peripheral for the xfer. */ 385 unsigned peri:5; 386 /* Unique token for this xfer, set by the client. */ 387 void *token; 388 /* Callback to be called after xfer. */ 389 void (*xfer_cb)(void *token, enum pl330_op_err err); 390 /* If NULL, req will be done at last set parameters. */ 391 struct pl330_reqcfg *cfg; 392 /* Pointer to first xfer in the request. */ 393 struct pl330_xfer *x; 394 /* Hook to attach to DMAC's list of reqs with due callback */ 395 struct list_head rqd; 396 }; 397 398 /* 399 * To know the status of the channel and DMAC, the client 400 * provides a pointer to this structure. The PL330 core 401 * fills it with current information. 402 */ 403 struct pl330_chanstatus { 404 /* 405 * If the DMAC engine halted due to some error, 406 * the client should remove-add DMAC. 407 */ 408 bool dmac_halted; 409 /* 410 * If channel is halted due to some error, 411 * the client should ABORT/FLUSH and START the channel. 412 */ 413 bool faulting; 414 /* Location of last load */ 415 u32 src_addr; 416 /* Location of last store */ 417 u32 dst_addr; 418 /* 419 * Pointer to the currently active req, NULL if channel is 420 * inactive, even though the requests may be present. 421 */ 422 struct pl330_req *top_req; 423 /* Pointer to req waiting second in the queue if any. */ 424 struct pl330_req *wait_req; 425 }; 426 427 enum pl330_chan_op { 428 /* Start the channel */ 429 PL330_OP_START, 430 /* Abort the active xfer */ 431 PL330_OP_ABORT, 432 /* Stop xfer and flush queue */ 433 PL330_OP_FLUSH, 434 }; 435 436 struct _xfer_spec { 437 u32 ccr; 438 struct pl330_req *r; 439 struct pl330_xfer *x; 440 }; 441 442 enum dmamov_dst { 443 SAR = 0, 444 CCR, 445 DAR, 446 }; 447 448 enum pl330_dst { 449 SRC = 0, 450 DST, 451 }; 452 453 enum pl330_cond { 454 SINGLE, 455 BURST, 456 ALWAYS, 457 }; 458 459 struct _pl330_req { 460 u32 mc_bus; 461 void *mc_cpu; 462 /* Number of bytes taken to setup MC for the req */ 463 u32 mc_len; 464 struct pl330_req *r; 465 }; 466 467 /* ToBeDone for tasklet */ 468 struct _pl330_tbd { 469 bool reset_dmac; 470 bool reset_mngr; 471 u8 reset_chan; 472 }; 473 474 /* A DMAC Thread */ 475 struct pl330_thread { 476 u8 id; 477 int ev; 478 /* If the channel is not yet acquired by any client */ 479 bool free; 480 /* Parent DMAC */ 481 struct pl330_dmac *dmac; 482 /* Only two at a time */ 483 struct _pl330_req req[2]; 484 /* Index of the last enqueued request */ 485 unsigned lstenq; 486 /* Index of the last submitted request or -1 if the DMA is stopped */ 487 int req_running; 488 }; 489 490 enum pl330_dmac_state { 491 UNINIT, 492 INIT, 493 DYING, 494 }; 495 496 /* A DMAC */ 497 struct pl330_dmac { 498 spinlock_t lock; 499 /* Holds list of reqs with due callbacks */ 500 struct list_head req_done; 501 /* Pointer to platform specific stuff */ 502 struct pl330_info *pinfo; 503 /* Maximum possible events/irqs */ 504 int events[32]; 505 /* BUS address of MicroCode buffer */ 506 u32 mcode_bus; 507 /* CPU address of MicroCode buffer */ 508 void *mcode_cpu; 509 /* List of all Channel threads */ 510 struct pl330_thread *channels; 511 /* Pointer to the MANAGER thread */ 512 struct pl330_thread *manager; 513 /* To handle bad news in interrupt */ 514 struct tasklet_struct tasks; 515 struct _pl330_tbd dmac_tbd; 516 /* State of DMAC operation */ 517 enum pl330_dmac_state state; 518 }; 519 520 enum desc_status { 521 /* In the DMAC pool */ 522 FREE, 523 /* 524 * Allocated to some channel during prep_xxx 525 * Also may be sitting on the work_list. 526 */ 527 PREP, 528 /* 529 * Sitting on the work_list and already submitted 530 * to the PL330 core. Not more than two descriptors 531 * of a channel can be BUSY at any time. 532 */ 533 BUSY, 534 /* 535 * Sitting on the channel work_list but xfer done 536 * by PL330 core 537 */ 538 DONE, 539 }; 540 541 struct dma_pl330_chan { 542 /* Schedule desc completion */ 543 struct tasklet_struct task; 544 545 /* DMA-Engine Channel */ 546 struct dma_chan chan; 547 548 /* List of to be xfered descriptors */ 549 struct list_head work_list; 550 551 /* Pointer to the DMAC that manages this channel, 552 * NULL if the channel is available to be acquired. 553 * As the parent, this DMAC also provides descriptors 554 * to the channel. 555 */ 556 struct dma_pl330_dmac *dmac; 557 558 /* To protect channel manipulation */ 559 spinlock_t lock; 560 561 /* Token of a hardware channel thread of PL330 DMAC 562 * NULL if the channel is available to be acquired. 563 */ 564 void *pl330_chid; 565 566 /* For D-to-M and M-to-D channels */ 567 int burst_sz; /* the peripheral fifo width */ 568 int burst_len; /* the number of burst */ 569 dma_addr_t fifo_addr; 570 571 /* for cyclic capability */ 572 bool cyclic; 573 }; 574 575 struct dma_pl330_dmac { 576 struct pl330_info pif; 577 578 /* DMA-Engine Device */ 579 struct dma_device ddma; 580 581 /* Pool of descriptors available for the DMAC's channels */ 582 struct list_head desc_pool; 583 /* To protect desc_pool manipulation */ 584 spinlock_t pool_lock; 585 586 /* Peripheral channels connected to this DMAC */ 587 struct dma_pl330_chan *peripherals; /* keep at end */ 588 }; 589 590 struct dma_pl330_desc { 591 /* To attach to a queue as child */ 592 struct list_head node; 593 594 /* Descriptor for the DMA Engine API */ 595 struct dma_async_tx_descriptor txd; 596 597 /* Xfer for PL330 core */ 598 struct pl330_xfer px; 599 600 struct pl330_reqcfg rqcfg; 601 struct pl330_req req; 602 603 enum desc_status status; 604 605 /* The channel which currently holds this desc */ 606 struct dma_pl330_chan *pchan; 607 }; 608 609 static inline void _callback(struct pl330_req *r, enum pl330_op_err err) 610 { 611 if (r && r->xfer_cb) 612 r->xfer_cb(r->token, err); 613 } 614 615 static inline bool _queue_empty(struct pl330_thread *thrd) 616 { 617 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1])) 618 ? true : false; 619 } 620 621 static inline bool _queue_full(struct pl330_thread *thrd) 622 { 623 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1])) 624 ? false : true; 625 } 626 627 static inline bool is_manager(struct pl330_thread *thrd) 628 { 629 struct pl330_dmac *pl330 = thrd->dmac; 630 631 /* MANAGER is indexed at the end */ 632 if (thrd->id == pl330->pinfo->pcfg.num_chan) 633 return true; 634 else 635 return false; 636 } 637 638 /* If manager of the thread is in Non-Secure mode */ 639 static inline bool _manager_ns(struct pl330_thread *thrd) 640 { 641 struct pl330_dmac *pl330 = thrd->dmac; 642 643 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false; 644 } 645 646 static inline u32 get_id(struct pl330_info *pi, u32 off) 647 { 648 void __iomem *regs = pi->base; 649 u32 id = 0; 650 651 id |= (readb(regs + off + 0x0) << 0); 652 id |= (readb(regs + off + 0x4) << 8); 653 id |= (readb(regs + off + 0x8) << 16); 654 id |= (readb(regs + off + 0xc) << 24); 655 656 return id; 657 } 658 659 static inline u32 get_revision(u32 periph_id) 660 { 661 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 662 } 663 664 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 665 enum pl330_dst da, u16 val) 666 { 667 if (dry_run) 668 return SZ_DMAADDH; 669 670 buf[0] = CMD_DMAADDH; 671 buf[0] |= (da << 1); 672 *((u16 *)&buf[1]) = val; 673 674 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 675 da == 1 ? "DA" : "SA", val); 676 677 return SZ_DMAADDH; 678 } 679 680 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 681 { 682 if (dry_run) 683 return SZ_DMAEND; 684 685 buf[0] = CMD_DMAEND; 686 687 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 688 689 return SZ_DMAEND; 690 } 691 692 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 693 { 694 if (dry_run) 695 return SZ_DMAFLUSHP; 696 697 buf[0] = CMD_DMAFLUSHP; 698 699 peri &= 0x1f; 700 peri <<= 3; 701 buf[1] = peri; 702 703 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 704 705 return SZ_DMAFLUSHP; 706 } 707 708 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 709 { 710 if (dry_run) 711 return SZ_DMALD; 712 713 buf[0] = CMD_DMALD; 714 715 if (cond == SINGLE) 716 buf[0] |= (0 << 1) | (1 << 0); 717 else if (cond == BURST) 718 buf[0] |= (1 << 1) | (1 << 0); 719 720 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 721 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 722 723 return SZ_DMALD; 724 } 725 726 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 727 enum pl330_cond cond, u8 peri) 728 { 729 if (dry_run) 730 return SZ_DMALDP; 731 732 buf[0] = CMD_DMALDP; 733 734 if (cond == BURST) 735 buf[0] |= (1 << 1); 736 737 peri &= 0x1f; 738 peri <<= 3; 739 buf[1] = peri; 740 741 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 742 cond == SINGLE ? 'S' : 'B', peri >> 3); 743 744 return SZ_DMALDP; 745 } 746 747 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 748 unsigned loop, u8 cnt) 749 { 750 if (dry_run) 751 return SZ_DMALP; 752 753 buf[0] = CMD_DMALP; 754 755 if (loop) 756 buf[0] |= (1 << 1); 757 758 cnt--; /* DMAC increments by 1 internally */ 759 buf[1] = cnt; 760 761 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 762 763 return SZ_DMALP; 764 } 765 766 struct _arg_LPEND { 767 enum pl330_cond cond; 768 bool forever; 769 unsigned loop; 770 u8 bjump; 771 }; 772 773 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 774 const struct _arg_LPEND *arg) 775 { 776 enum pl330_cond cond = arg->cond; 777 bool forever = arg->forever; 778 unsigned loop = arg->loop; 779 u8 bjump = arg->bjump; 780 781 if (dry_run) 782 return SZ_DMALPEND; 783 784 buf[0] = CMD_DMALPEND; 785 786 if (loop) 787 buf[0] |= (1 << 2); 788 789 if (!forever) 790 buf[0] |= (1 << 4); 791 792 if (cond == SINGLE) 793 buf[0] |= (0 << 1) | (1 << 0); 794 else if (cond == BURST) 795 buf[0] |= (1 << 1) | (1 << 0); 796 797 buf[1] = bjump; 798 799 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 800 forever ? "FE" : "END", 801 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 802 loop ? '1' : '0', 803 bjump); 804 805 return SZ_DMALPEND; 806 } 807 808 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 809 { 810 if (dry_run) 811 return SZ_DMAKILL; 812 813 buf[0] = CMD_DMAKILL; 814 815 return SZ_DMAKILL; 816 } 817 818 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 819 enum dmamov_dst dst, u32 val) 820 { 821 if (dry_run) 822 return SZ_DMAMOV; 823 824 buf[0] = CMD_DMAMOV; 825 buf[1] = dst; 826 *((u32 *)&buf[2]) = val; 827 828 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 829 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 830 831 return SZ_DMAMOV; 832 } 833 834 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 835 { 836 if (dry_run) 837 return SZ_DMANOP; 838 839 buf[0] = CMD_DMANOP; 840 841 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 842 843 return SZ_DMANOP; 844 } 845 846 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 847 { 848 if (dry_run) 849 return SZ_DMARMB; 850 851 buf[0] = CMD_DMARMB; 852 853 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 854 855 return SZ_DMARMB; 856 } 857 858 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 859 { 860 if (dry_run) 861 return SZ_DMASEV; 862 863 buf[0] = CMD_DMASEV; 864 865 ev &= 0x1f; 866 ev <<= 3; 867 buf[1] = ev; 868 869 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 870 871 return SZ_DMASEV; 872 } 873 874 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 875 { 876 if (dry_run) 877 return SZ_DMAST; 878 879 buf[0] = CMD_DMAST; 880 881 if (cond == SINGLE) 882 buf[0] |= (0 << 1) | (1 << 0); 883 else if (cond == BURST) 884 buf[0] |= (1 << 1) | (1 << 0); 885 886 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 887 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 888 889 return SZ_DMAST; 890 } 891 892 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 893 enum pl330_cond cond, u8 peri) 894 { 895 if (dry_run) 896 return SZ_DMASTP; 897 898 buf[0] = CMD_DMASTP; 899 900 if (cond == BURST) 901 buf[0] |= (1 << 1); 902 903 peri &= 0x1f; 904 peri <<= 3; 905 buf[1] = peri; 906 907 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 908 cond == SINGLE ? 'S' : 'B', peri >> 3); 909 910 return SZ_DMASTP; 911 } 912 913 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 914 { 915 if (dry_run) 916 return SZ_DMASTZ; 917 918 buf[0] = CMD_DMASTZ; 919 920 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 921 922 return SZ_DMASTZ; 923 } 924 925 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 926 unsigned invalidate) 927 { 928 if (dry_run) 929 return SZ_DMAWFE; 930 931 buf[0] = CMD_DMAWFE; 932 933 ev &= 0x1f; 934 ev <<= 3; 935 buf[1] = ev; 936 937 if (invalidate) 938 buf[1] |= (1 << 1); 939 940 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 941 ev >> 3, invalidate ? ", I" : ""); 942 943 return SZ_DMAWFE; 944 } 945 946 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 947 enum pl330_cond cond, u8 peri) 948 { 949 if (dry_run) 950 return SZ_DMAWFP; 951 952 buf[0] = CMD_DMAWFP; 953 954 if (cond == SINGLE) 955 buf[0] |= (0 << 1) | (0 << 0); 956 else if (cond == BURST) 957 buf[0] |= (1 << 1) | (0 << 0); 958 else 959 buf[0] |= (0 << 1) | (1 << 0); 960 961 peri &= 0x1f; 962 peri <<= 3; 963 buf[1] = peri; 964 965 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 966 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 967 968 return SZ_DMAWFP; 969 } 970 971 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 972 { 973 if (dry_run) 974 return SZ_DMAWMB; 975 976 buf[0] = CMD_DMAWMB; 977 978 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 979 980 return SZ_DMAWMB; 981 } 982 983 struct _arg_GO { 984 u8 chan; 985 u32 addr; 986 unsigned ns; 987 }; 988 989 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 990 const struct _arg_GO *arg) 991 { 992 u8 chan = arg->chan; 993 u32 addr = arg->addr; 994 unsigned ns = arg->ns; 995 996 if (dry_run) 997 return SZ_DMAGO; 998 999 buf[0] = CMD_DMAGO; 1000 buf[0] |= (ns << 1); 1001 1002 buf[1] = chan & 0x7; 1003 1004 *((u32 *)&buf[2]) = addr; 1005 1006 return SZ_DMAGO; 1007 } 1008 1009 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 1010 1011 /* Returns Time-Out */ 1012 static bool _until_dmac_idle(struct pl330_thread *thrd) 1013 { 1014 void __iomem *regs = thrd->dmac->pinfo->base; 1015 unsigned long loops = msecs_to_loops(5); 1016 1017 do { 1018 /* Until Manager is Idle */ 1019 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 1020 break; 1021 1022 cpu_relax(); 1023 } while (--loops); 1024 1025 if (!loops) 1026 return true; 1027 1028 return false; 1029 } 1030 1031 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 1032 u8 insn[], bool as_manager) 1033 { 1034 void __iomem *regs = thrd->dmac->pinfo->base; 1035 u32 val; 1036 1037 val = (insn[0] << 16) | (insn[1] << 24); 1038 if (!as_manager) { 1039 val |= (1 << 0); 1040 val |= (thrd->id << 8); /* Channel Number */ 1041 } 1042 writel(val, regs + DBGINST0); 1043 1044 val = *((u32 *)&insn[2]); 1045 writel(val, regs + DBGINST1); 1046 1047 /* If timed out due to halted state-machine */ 1048 if (_until_dmac_idle(thrd)) { 1049 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n"); 1050 return; 1051 } 1052 1053 /* Get going */ 1054 writel(0, regs + DBGCMD); 1055 } 1056 1057 /* 1058 * Mark a _pl330_req as free. 1059 * We do it by writing DMAEND as the first instruction 1060 * because no valid request is going to have DMAEND as 1061 * its first instruction to execute. 1062 */ 1063 static void mark_free(struct pl330_thread *thrd, int idx) 1064 { 1065 struct _pl330_req *req = &thrd->req[idx]; 1066 1067 _emit_END(0, req->mc_cpu); 1068 req->mc_len = 0; 1069 1070 thrd->req_running = -1; 1071 } 1072 1073 static inline u32 _state(struct pl330_thread *thrd) 1074 { 1075 void __iomem *regs = thrd->dmac->pinfo->base; 1076 u32 val; 1077 1078 if (is_manager(thrd)) 1079 val = readl(regs + DS) & 0xf; 1080 else 1081 val = readl(regs + CS(thrd->id)) & 0xf; 1082 1083 switch (val) { 1084 case DS_ST_STOP: 1085 return PL330_STATE_STOPPED; 1086 case DS_ST_EXEC: 1087 return PL330_STATE_EXECUTING; 1088 case DS_ST_CMISS: 1089 return PL330_STATE_CACHEMISS; 1090 case DS_ST_UPDTPC: 1091 return PL330_STATE_UPDTPC; 1092 case DS_ST_WFE: 1093 return PL330_STATE_WFE; 1094 case DS_ST_FAULT: 1095 return PL330_STATE_FAULTING; 1096 case DS_ST_ATBRR: 1097 if (is_manager(thrd)) 1098 return PL330_STATE_INVALID; 1099 else 1100 return PL330_STATE_ATBARRIER; 1101 case DS_ST_QBUSY: 1102 if (is_manager(thrd)) 1103 return PL330_STATE_INVALID; 1104 else 1105 return PL330_STATE_QUEUEBUSY; 1106 case DS_ST_WFP: 1107 if (is_manager(thrd)) 1108 return PL330_STATE_INVALID; 1109 else 1110 return PL330_STATE_WFP; 1111 case DS_ST_KILL: 1112 if (is_manager(thrd)) 1113 return PL330_STATE_INVALID; 1114 else 1115 return PL330_STATE_KILLING; 1116 case DS_ST_CMPLT: 1117 if (is_manager(thrd)) 1118 return PL330_STATE_INVALID; 1119 else 1120 return PL330_STATE_COMPLETING; 1121 case DS_ST_FLTCMP: 1122 if (is_manager(thrd)) 1123 return PL330_STATE_INVALID; 1124 else 1125 return PL330_STATE_FAULT_COMPLETING; 1126 default: 1127 return PL330_STATE_INVALID; 1128 } 1129 } 1130 1131 static void _stop(struct pl330_thread *thrd) 1132 { 1133 void __iomem *regs = thrd->dmac->pinfo->base; 1134 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1135 1136 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1137 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1138 1139 /* Return if nothing needs to be done */ 1140 if (_state(thrd) == PL330_STATE_COMPLETING 1141 || _state(thrd) == PL330_STATE_KILLING 1142 || _state(thrd) == PL330_STATE_STOPPED) 1143 return; 1144 1145 _emit_KILL(0, insn); 1146 1147 /* Stop generating interrupts for SEV */ 1148 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1149 1150 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1151 } 1152 1153 /* Start doing req 'idx' of thread 'thrd' */ 1154 static bool _trigger(struct pl330_thread *thrd) 1155 { 1156 void __iomem *regs = thrd->dmac->pinfo->base; 1157 struct _pl330_req *req; 1158 struct pl330_req *r; 1159 struct _arg_GO go; 1160 unsigned ns; 1161 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1162 int idx; 1163 1164 /* Return if already ACTIVE */ 1165 if (_state(thrd) != PL330_STATE_STOPPED) 1166 return true; 1167 1168 idx = 1 - thrd->lstenq; 1169 if (!IS_FREE(&thrd->req[idx])) 1170 req = &thrd->req[idx]; 1171 else { 1172 idx = thrd->lstenq; 1173 if (!IS_FREE(&thrd->req[idx])) 1174 req = &thrd->req[idx]; 1175 else 1176 req = NULL; 1177 } 1178 1179 /* Return if no request */ 1180 if (!req || !req->r) 1181 return true; 1182 1183 r = req->r; 1184 1185 if (r->cfg) 1186 ns = r->cfg->nonsecure ? 1 : 0; 1187 else if (readl(regs + CS(thrd->id)) & CS_CNS) 1188 ns = 1; 1189 else 1190 ns = 0; 1191 1192 /* See 'Abort Sources' point-4 at Page 2-25 */ 1193 if (_manager_ns(thrd) && !ns) 1194 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n", 1195 __func__, __LINE__); 1196 1197 go.chan = thrd->id; 1198 go.addr = req->mc_bus; 1199 go.ns = ns; 1200 _emit_GO(0, insn, &go); 1201 1202 /* Set to generate interrupts for SEV */ 1203 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1204 1205 /* Only manager can execute GO */ 1206 _execute_DBGINSN(thrd, insn, true); 1207 1208 thrd->req_running = idx; 1209 1210 return true; 1211 } 1212 1213 static bool _start(struct pl330_thread *thrd) 1214 { 1215 switch (_state(thrd)) { 1216 case PL330_STATE_FAULT_COMPLETING: 1217 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1218 1219 if (_state(thrd) == PL330_STATE_KILLING) 1220 UNTIL(thrd, PL330_STATE_STOPPED) 1221 1222 case PL330_STATE_FAULTING: 1223 _stop(thrd); 1224 1225 case PL330_STATE_KILLING: 1226 case PL330_STATE_COMPLETING: 1227 UNTIL(thrd, PL330_STATE_STOPPED) 1228 1229 case PL330_STATE_STOPPED: 1230 return _trigger(thrd); 1231 1232 case PL330_STATE_WFP: 1233 case PL330_STATE_QUEUEBUSY: 1234 case PL330_STATE_ATBARRIER: 1235 case PL330_STATE_UPDTPC: 1236 case PL330_STATE_CACHEMISS: 1237 case PL330_STATE_EXECUTING: 1238 return true; 1239 1240 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1241 default: 1242 return false; 1243 } 1244 } 1245 1246 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1247 const struct _xfer_spec *pxs, int cyc) 1248 { 1249 int off = 0; 1250 struct pl330_config *pcfg = pxs->r->cfg->pcfg; 1251 1252 /* check lock-up free version */ 1253 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1254 while (cyc--) { 1255 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1256 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1257 } 1258 } else { 1259 while (cyc--) { 1260 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1261 off += _emit_RMB(dry_run, &buf[off]); 1262 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1263 off += _emit_WMB(dry_run, &buf[off]); 1264 } 1265 } 1266 1267 return off; 1268 } 1269 1270 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1271 const struct _xfer_spec *pxs, int cyc) 1272 { 1273 int off = 0; 1274 1275 while (cyc--) { 1276 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1277 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1278 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1279 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1280 } 1281 1282 return off; 1283 } 1284 1285 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1286 const struct _xfer_spec *pxs, int cyc) 1287 { 1288 int off = 0; 1289 1290 while (cyc--) { 1291 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1292 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1293 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1294 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1295 } 1296 1297 return off; 1298 } 1299 1300 static int _bursts(unsigned dry_run, u8 buf[], 1301 const struct _xfer_spec *pxs, int cyc) 1302 { 1303 int off = 0; 1304 1305 switch (pxs->r->rqtype) { 1306 case MEMTODEV: 1307 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1308 break; 1309 case DEVTOMEM: 1310 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1311 break; 1312 case MEMTOMEM: 1313 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1314 break; 1315 default: 1316 off += 0x40000000; /* Scare off the Client */ 1317 break; 1318 } 1319 1320 return off; 1321 } 1322 1323 /* Returns bytes consumed and updates bursts */ 1324 static inline int _loop(unsigned dry_run, u8 buf[], 1325 unsigned long *bursts, const struct _xfer_spec *pxs) 1326 { 1327 int cyc, cycmax, szlp, szlpend, szbrst, off; 1328 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1329 struct _arg_LPEND lpend; 1330 1331 /* Max iterations possible in DMALP is 256 */ 1332 if (*bursts >= 256*256) { 1333 lcnt1 = 256; 1334 lcnt0 = 256; 1335 cyc = *bursts / lcnt1 / lcnt0; 1336 } else if (*bursts > 256) { 1337 lcnt1 = 256; 1338 lcnt0 = *bursts / lcnt1; 1339 cyc = 1; 1340 } else { 1341 lcnt1 = *bursts; 1342 lcnt0 = 0; 1343 cyc = 1; 1344 } 1345 1346 szlp = _emit_LP(1, buf, 0, 0); 1347 szbrst = _bursts(1, buf, pxs, 1); 1348 1349 lpend.cond = ALWAYS; 1350 lpend.forever = false; 1351 lpend.loop = 0; 1352 lpend.bjump = 0; 1353 szlpend = _emit_LPEND(1, buf, &lpend); 1354 1355 if (lcnt0) { 1356 szlp *= 2; 1357 szlpend *= 2; 1358 } 1359 1360 /* 1361 * Max bursts that we can unroll due to limit on the 1362 * size of backward jump that can be encoded in DMALPEND 1363 * which is 8-bits and hence 255 1364 */ 1365 cycmax = (255 - (szlp + szlpend)) / szbrst; 1366 1367 cyc = (cycmax < cyc) ? cycmax : cyc; 1368 1369 off = 0; 1370 1371 if (lcnt0) { 1372 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1373 ljmp0 = off; 1374 } 1375 1376 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1377 ljmp1 = off; 1378 1379 off += _bursts(dry_run, &buf[off], pxs, cyc); 1380 1381 lpend.cond = ALWAYS; 1382 lpend.forever = false; 1383 lpend.loop = 1; 1384 lpend.bjump = off - ljmp1; 1385 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1386 1387 if (lcnt0) { 1388 lpend.cond = ALWAYS; 1389 lpend.forever = false; 1390 lpend.loop = 0; 1391 lpend.bjump = off - ljmp0; 1392 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1393 } 1394 1395 *bursts = lcnt1 * cyc; 1396 if (lcnt0) 1397 *bursts *= lcnt0; 1398 1399 return off; 1400 } 1401 1402 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1403 const struct _xfer_spec *pxs) 1404 { 1405 struct pl330_xfer *x = pxs->x; 1406 u32 ccr = pxs->ccr; 1407 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1408 int off = 0; 1409 1410 while (bursts) { 1411 c = bursts; 1412 off += _loop(dry_run, &buf[off], &c, pxs); 1413 bursts -= c; 1414 } 1415 1416 return off; 1417 } 1418 1419 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1420 const struct _xfer_spec *pxs) 1421 { 1422 struct pl330_xfer *x = pxs->x; 1423 int off = 0; 1424 1425 /* DMAMOV SAR, x->src_addr */ 1426 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1427 /* DMAMOV DAR, x->dst_addr */ 1428 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1429 1430 /* Setup Loop(s) */ 1431 off += _setup_loops(dry_run, &buf[off], pxs); 1432 1433 return off; 1434 } 1435 1436 /* 1437 * A req is a sequence of one or more xfer units. 1438 * Returns the number of bytes taken to setup the MC for the req. 1439 */ 1440 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1441 unsigned index, struct _xfer_spec *pxs) 1442 { 1443 struct _pl330_req *req = &thrd->req[index]; 1444 struct pl330_xfer *x; 1445 u8 *buf = req->mc_cpu; 1446 int off = 0; 1447 1448 PL330_DBGMC_START(req->mc_bus); 1449 1450 /* DMAMOV CCR, ccr */ 1451 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1452 1453 x = pxs->r->x; 1454 do { 1455 /* Error if xfer length is not aligned at burst size */ 1456 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1457 return -EINVAL; 1458 1459 pxs->x = x; 1460 off += _setup_xfer(dry_run, &buf[off], pxs); 1461 1462 x = x->next; 1463 } while (x); 1464 1465 /* DMASEV peripheral/event */ 1466 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1467 /* DMAEND */ 1468 off += _emit_END(dry_run, &buf[off]); 1469 1470 return off; 1471 } 1472 1473 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1474 { 1475 u32 ccr = 0; 1476 1477 if (rqc->src_inc) 1478 ccr |= CC_SRCINC; 1479 1480 if (rqc->dst_inc) 1481 ccr |= CC_DSTINC; 1482 1483 /* We set same protection levels for Src and DST for now */ 1484 if (rqc->privileged) 1485 ccr |= CC_SRCPRI | CC_DSTPRI; 1486 if (rqc->nonsecure) 1487 ccr |= CC_SRCNS | CC_DSTNS; 1488 if (rqc->insnaccess) 1489 ccr |= CC_SRCIA | CC_DSTIA; 1490 1491 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1492 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1493 1494 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1495 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1496 1497 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1498 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1499 1500 ccr |= (rqc->swap << CC_SWAP_SHFT); 1501 1502 return ccr; 1503 } 1504 1505 static inline bool _is_valid(u32 ccr) 1506 { 1507 enum pl330_dstcachectrl dcctl; 1508 enum pl330_srccachectrl scctl; 1509 1510 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK; 1511 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK; 1512 1513 if (dcctl == DINVALID1 || dcctl == DINVALID2 1514 || scctl == SINVALID1 || scctl == SINVALID2) 1515 return false; 1516 else 1517 return true; 1518 } 1519 1520 /* 1521 * Submit a list of xfers after which the client wants notification. 1522 * Client is not notified after each xfer unit, just once after all 1523 * xfer units are done or some error occurs. 1524 */ 1525 static int pl330_submit_req(void *ch_id, struct pl330_req *r) 1526 { 1527 struct pl330_thread *thrd = ch_id; 1528 struct pl330_dmac *pl330; 1529 struct pl330_info *pi; 1530 struct _xfer_spec xs; 1531 unsigned long flags; 1532 void __iomem *regs; 1533 unsigned idx; 1534 u32 ccr; 1535 int ret = 0; 1536 1537 /* No Req or Unacquired Channel or DMAC */ 1538 if (!r || !thrd || thrd->free) 1539 return -EINVAL; 1540 1541 pl330 = thrd->dmac; 1542 pi = pl330->pinfo; 1543 regs = pi->base; 1544 1545 if (pl330->state == DYING 1546 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1547 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n", 1548 __func__, __LINE__); 1549 return -EAGAIN; 1550 } 1551 1552 /* If request for non-existing peripheral */ 1553 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) { 1554 dev_info(thrd->dmac->pinfo->dev, 1555 "%s:%d Invalid peripheral(%u)!\n", 1556 __func__, __LINE__, r->peri); 1557 return -EINVAL; 1558 } 1559 1560 spin_lock_irqsave(&pl330->lock, flags); 1561 1562 if (_queue_full(thrd)) { 1563 ret = -EAGAIN; 1564 goto xfer_exit; 1565 } 1566 1567 1568 /* Use last settings, if not provided */ 1569 if (r->cfg) { 1570 /* Prefer Secure Channel */ 1571 if (!_manager_ns(thrd)) 1572 r->cfg->nonsecure = 0; 1573 else 1574 r->cfg->nonsecure = 1; 1575 1576 ccr = _prepare_ccr(r->cfg); 1577 } else { 1578 ccr = readl(regs + CC(thrd->id)); 1579 } 1580 1581 /* If this req doesn't have valid xfer settings */ 1582 if (!_is_valid(ccr)) { 1583 ret = -EINVAL; 1584 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n", 1585 __func__, __LINE__, ccr); 1586 goto xfer_exit; 1587 } 1588 1589 idx = IS_FREE(&thrd->req[0]) ? 0 : 1; 1590 1591 xs.ccr = ccr; 1592 xs.r = r; 1593 1594 /* First dry run to check if req is acceptable */ 1595 ret = _setup_req(1, thrd, idx, &xs); 1596 if (ret < 0) 1597 goto xfer_exit; 1598 1599 if (ret > pi->mcbufsz / 2) { 1600 dev_info(thrd->dmac->pinfo->dev, 1601 "%s:%d Trying increasing mcbufsz\n", 1602 __func__, __LINE__); 1603 ret = -ENOMEM; 1604 goto xfer_exit; 1605 } 1606 1607 /* Hook the request */ 1608 thrd->lstenq = idx; 1609 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs); 1610 thrd->req[idx].r = r; 1611 1612 ret = 0; 1613 1614 xfer_exit: 1615 spin_unlock_irqrestore(&pl330->lock, flags); 1616 1617 return ret; 1618 } 1619 1620 static void pl330_dotask(unsigned long data) 1621 { 1622 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1623 struct pl330_info *pi = pl330->pinfo; 1624 unsigned long flags; 1625 int i; 1626 1627 spin_lock_irqsave(&pl330->lock, flags); 1628 1629 /* The DMAC itself gone nuts */ 1630 if (pl330->dmac_tbd.reset_dmac) { 1631 pl330->state = DYING; 1632 /* Reset the manager too */ 1633 pl330->dmac_tbd.reset_mngr = true; 1634 /* Clear the reset flag */ 1635 pl330->dmac_tbd.reset_dmac = false; 1636 } 1637 1638 if (pl330->dmac_tbd.reset_mngr) { 1639 _stop(pl330->manager); 1640 /* Reset all channels */ 1641 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1; 1642 /* Clear the reset flag */ 1643 pl330->dmac_tbd.reset_mngr = false; 1644 } 1645 1646 for (i = 0; i < pi->pcfg.num_chan; i++) { 1647 1648 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1649 struct pl330_thread *thrd = &pl330->channels[i]; 1650 void __iomem *regs = pi->base; 1651 enum pl330_op_err err; 1652 1653 _stop(thrd); 1654 1655 if (readl(regs + FSC) & (1 << thrd->id)) 1656 err = PL330_ERR_FAIL; 1657 else 1658 err = PL330_ERR_ABORT; 1659 1660 spin_unlock_irqrestore(&pl330->lock, flags); 1661 1662 _callback(thrd->req[1 - thrd->lstenq].r, err); 1663 _callback(thrd->req[thrd->lstenq].r, err); 1664 1665 spin_lock_irqsave(&pl330->lock, flags); 1666 1667 thrd->req[0].r = NULL; 1668 thrd->req[1].r = NULL; 1669 mark_free(thrd, 0); 1670 mark_free(thrd, 1); 1671 1672 /* Clear the reset flag */ 1673 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1674 } 1675 } 1676 1677 spin_unlock_irqrestore(&pl330->lock, flags); 1678 1679 return; 1680 } 1681 1682 /* Returns 1 if state was updated, 0 otherwise */ 1683 static int pl330_update(const struct pl330_info *pi) 1684 { 1685 struct pl330_req *rqdone, *tmp; 1686 struct pl330_dmac *pl330; 1687 unsigned long flags; 1688 void __iomem *regs; 1689 u32 val; 1690 int id, ev, ret = 0; 1691 1692 if (!pi || !pi->pl330_data) 1693 return 0; 1694 1695 regs = pi->base; 1696 pl330 = pi->pl330_data; 1697 1698 spin_lock_irqsave(&pl330->lock, flags); 1699 1700 val = readl(regs + FSM) & 0x1; 1701 if (val) 1702 pl330->dmac_tbd.reset_mngr = true; 1703 else 1704 pl330->dmac_tbd.reset_mngr = false; 1705 1706 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1); 1707 pl330->dmac_tbd.reset_chan |= val; 1708 if (val) { 1709 int i = 0; 1710 while (i < pi->pcfg.num_chan) { 1711 if (val & (1 << i)) { 1712 dev_info(pi->dev, 1713 "Reset Channel-%d\t CS-%x FTC-%x\n", 1714 i, readl(regs + CS(i)), 1715 readl(regs + FTC(i))); 1716 _stop(&pl330->channels[i]); 1717 } 1718 i++; 1719 } 1720 } 1721 1722 /* Check which event happened i.e, thread notified */ 1723 val = readl(regs + ES); 1724 if (pi->pcfg.num_events < 32 1725 && val & ~((1 << pi->pcfg.num_events) - 1)) { 1726 pl330->dmac_tbd.reset_dmac = true; 1727 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__); 1728 ret = 1; 1729 goto updt_exit; 1730 } 1731 1732 for (ev = 0; ev < pi->pcfg.num_events; ev++) { 1733 if (val & (1 << ev)) { /* Event occurred */ 1734 struct pl330_thread *thrd; 1735 u32 inten = readl(regs + INTEN); 1736 int active; 1737 1738 /* Clear the event */ 1739 if (inten & (1 << ev)) 1740 writel(1 << ev, regs + INTCLR); 1741 1742 ret = 1; 1743 1744 id = pl330->events[ev]; 1745 1746 thrd = &pl330->channels[id]; 1747 1748 active = thrd->req_running; 1749 if (active == -1) /* Aborted */ 1750 continue; 1751 1752 /* Detach the req */ 1753 rqdone = thrd->req[active].r; 1754 thrd->req[active].r = NULL; 1755 1756 mark_free(thrd, active); 1757 1758 /* Get going again ASAP */ 1759 _start(thrd); 1760 1761 /* For now, just make a list of callbacks to be done */ 1762 list_add_tail(&rqdone->rqd, &pl330->req_done); 1763 } 1764 } 1765 1766 /* Now that we are in no hurry, do the callbacks */ 1767 list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) { 1768 list_del(&rqdone->rqd); 1769 1770 spin_unlock_irqrestore(&pl330->lock, flags); 1771 _callback(rqdone, PL330_ERR_NONE); 1772 spin_lock_irqsave(&pl330->lock, flags); 1773 } 1774 1775 updt_exit: 1776 spin_unlock_irqrestore(&pl330->lock, flags); 1777 1778 if (pl330->dmac_tbd.reset_dmac 1779 || pl330->dmac_tbd.reset_mngr 1780 || pl330->dmac_tbd.reset_chan) { 1781 ret = 1; 1782 tasklet_schedule(&pl330->tasks); 1783 } 1784 1785 return ret; 1786 } 1787 1788 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op) 1789 { 1790 struct pl330_thread *thrd = ch_id; 1791 struct pl330_dmac *pl330; 1792 unsigned long flags; 1793 int ret = 0, active; 1794 1795 if (!thrd || thrd->free || thrd->dmac->state == DYING) 1796 return -EINVAL; 1797 1798 pl330 = thrd->dmac; 1799 active = thrd->req_running; 1800 1801 spin_lock_irqsave(&pl330->lock, flags); 1802 1803 switch (op) { 1804 case PL330_OP_FLUSH: 1805 /* Make sure the channel is stopped */ 1806 _stop(thrd); 1807 1808 thrd->req[0].r = NULL; 1809 thrd->req[1].r = NULL; 1810 mark_free(thrd, 0); 1811 mark_free(thrd, 1); 1812 break; 1813 1814 case PL330_OP_ABORT: 1815 /* Make sure the channel is stopped */ 1816 _stop(thrd); 1817 1818 /* ABORT is only for the active req */ 1819 if (active == -1) 1820 break; 1821 1822 thrd->req[active].r = NULL; 1823 mark_free(thrd, active); 1824 1825 /* Start the next */ 1826 case PL330_OP_START: 1827 if ((active == -1) && !_start(thrd)) 1828 ret = -EIO; 1829 break; 1830 1831 default: 1832 ret = -EINVAL; 1833 } 1834 1835 spin_unlock_irqrestore(&pl330->lock, flags); 1836 return ret; 1837 } 1838 1839 /* Reserve an event */ 1840 static inline int _alloc_event(struct pl330_thread *thrd) 1841 { 1842 struct pl330_dmac *pl330 = thrd->dmac; 1843 struct pl330_info *pi = pl330->pinfo; 1844 int ev; 1845 1846 for (ev = 0; ev < pi->pcfg.num_events; ev++) 1847 if (pl330->events[ev] == -1) { 1848 pl330->events[ev] = thrd->id; 1849 return ev; 1850 } 1851 1852 return -1; 1853 } 1854 1855 static bool _chan_ns(const struct pl330_info *pi, int i) 1856 { 1857 return pi->pcfg.irq_ns & (1 << i); 1858 } 1859 1860 /* Upon success, returns IdentityToken for the 1861 * allocated channel, NULL otherwise. 1862 */ 1863 static void *pl330_request_channel(const struct pl330_info *pi) 1864 { 1865 struct pl330_thread *thrd = NULL; 1866 struct pl330_dmac *pl330; 1867 unsigned long flags; 1868 int chans, i; 1869 1870 if (!pi || !pi->pl330_data) 1871 return NULL; 1872 1873 pl330 = pi->pl330_data; 1874 1875 if (pl330->state == DYING) 1876 return NULL; 1877 1878 chans = pi->pcfg.num_chan; 1879 1880 spin_lock_irqsave(&pl330->lock, flags); 1881 1882 for (i = 0; i < chans; i++) { 1883 thrd = &pl330->channels[i]; 1884 if ((thrd->free) && (!_manager_ns(thrd) || 1885 _chan_ns(pi, i))) { 1886 thrd->ev = _alloc_event(thrd); 1887 if (thrd->ev >= 0) { 1888 thrd->free = false; 1889 thrd->lstenq = 1; 1890 thrd->req[0].r = NULL; 1891 mark_free(thrd, 0); 1892 thrd->req[1].r = NULL; 1893 mark_free(thrd, 1); 1894 break; 1895 } 1896 } 1897 thrd = NULL; 1898 } 1899 1900 spin_unlock_irqrestore(&pl330->lock, flags); 1901 1902 return thrd; 1903 } 1904 1905 /* Release an event */ 1906 static inline void _free_event(struct pl330_thread *thrd, int ev) 1907 { 1908 struct pl330_dmac *pl330 = thrd->dmac; 1909 struct pl330_info *pi = pl330->pinfo; 1910 1911 /* If the event is valid and was held by the thread */ 1912 if (ev >= 0 && ev < pi->pcfg.num_events 1913 && pl330->events[ev] == thrd->id) 1914 pl330->events[ev] = -1; 1915 } 1916 1917 static void pl330_release_channel(void *ch_id) 1918 { 1919 struct pl330_thread *thrd = ch_id; 1920 struct pl330_dmac *pl330; 1921 unsigned long flags; 1922 1923 if (!thrd || thrd->free) 1924 return; 1925 1926 _stop(thrd); 1927 1928 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT); 1929 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT); 1930 1931 pl330 = thrd->dmac; 1932 1933 spin_lock_irqsave(&pl330->lock, flags); 1934 _free_event(thrd, thrd->ev); 1935 thrd->free = true; 1936 spin_unlock_irqrestore(&pl330->lock, flags); 1937 } 1938 1939 /* Initialize the structure for PL330 configuration, that can be used 1940 * by the client driver the make best use of the DMAC 1941 */ 1942 static void read_dmac_config(struct pl330_info *pi) 1943 { 1944 void __iomem *regs = pi->base; 1945 u32 val; 1946 1947 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1948 val &= CRD_DATA_WIDTH_MASK; 1949 pi->pcfg.data_bus_width = 8 * (1 << val); 1950 1951 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1952 val &= CRD_DATA_BUFF_MASK; 1953 pi->pcfg.data_buf_dep = val + 1; 1954 1955 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1956 val &= CR0_NUM_CHANS_MASK; 1957 val += 1; 1958 pi->pcfg.num_chan = val; 1959 1960 val = readl(regs + CR0); 1961 if (val & CR0_PERIPH_REQ_SET) { 1962 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1963 val += 1; 1964 pi->pcfg.num_peri = val; 1965 pi->pcfg.peri_ns = readl(regs + CR4); 1966 } else { 1967 pi->pcfg.num_peri = 0; 1968 } 1969 1970 val = readl(regs + CR0); 1971 if (val & CR0_BOOT_MAN_NS) 1972 pi->pcfg.mode |= DMAC_MODE_NS; 1973 else 1974 pi->pcfg.mode &= ~DMAC_MODE_NS; 1975 1976 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1977 val &= CR0_NUM_EVENTS_MASK; 1978 val += 1; 1979 pi->pcfg.num_events = val; 1980 1981 pi->pcfg.irq_ns = readl(regs + CR3); 1982 1983 pi->pcfg.periph_id = get_id(pi, PERIPH_ID); 1984 pi->pcfg.pcell_id = get_id(pi, PCELL_ID); 1985 } 1986 1987 static inline void _reset_thread(struct pl330_thread *thrd) 1988 { 1989 struct pl330_dmac *pl330 = thrd->dmac; 1990 struct pl330_info *pi = pl330->pinfo; 1991 1992 thrd->req[0].mc_cpu = pl330->mcode_cpu 1993 + (thrd->id * pi->mcbufsz); 1994 thrd->req[0].mc_bus = pl330->mcode_bus 1995 + (thrd->id * pi->mcbufsz); 1996 thrd->req[0].r = NULL; 1997 mark_free(thrd, 0); 1998 1999 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 2000 + pi->mcbufsz / 2; 2001 thrd->req[1].mc_bus = thrd->req[0].mc_bus 2002 + pi->mcbufsz / 2; 2003 thrd->req[1].r = NULL; 2004 mark_free(thrd, 1); 2005 } 2006 2007 static int dmac_alloc_threads(struct pl330_dmac *pl330) 2008 { 2009 struct pl330_info *pi = pl330->pinfo; 2010 int chans = pi->pcfg.num_chan; 2011 struct pl330_thread *thrd; 2012 int i; 2013 2014 /* Allocate 1 Manager and 'chans' Channel threads */ 2015 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 2016 GFP_KERNEL); 2017 if (!pl330->channels) 2018 return -ENOMEM; 2019 2020 /* Init Channel threads */ 2021 for (i = 0; i < chans; i++) { 2022 thrd = &pl330->channels[i]; 2023 thrd->id = i; 2024 thrd->dmac = pl330; 2025 _reset_thread(thrd); 2026 thrd->free = true; 2027 } 2028 2029 /* MANAGER is indexed at the end */ 2030 thrd = &pl330->channels[chans]; 2031 thrd->id = chans; 2032 thrd->dmac = pl330; 2033 thrd->free = false; 2034 pl330->manager = thrd; 2035 2036 return 0; 2037 } 2038 2039 static int dmac_alloc_resources(struct pl330_dmac *pl330) 2040 { 2041 struct pl330_info *pi = pl330->pinfo; 2042 int chans = pi->pcfg.num_chan; 2043 int ret; 2044 2045 /* 2046 * Alloc MicroCode buffer for 'chans' Channel threads. 2047 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 2048 */ 2049 pl330->mcode_cpu = dma_alloc_coherent(pi->dev, 2050 chans * pi->mcbufsz, 2051 &pl330->mcode_bus, GFP_KERNEL); 2052 if (!pl330->mcode_cpu) { 2053 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2054 __func__, __LINE__); 2055 return -ENOMEM; 2056 } 2057 2058 ret = dmac_alloc_threads(pl330); 2059 if (ret) { 2060 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n", 2061 __func__, __LINE__); 2062 dma_free_coherent(pi->dev, 2063 chans * pi->mcbufsz, 2064 pl330->mcode_cpu, pl330->mcode_bus); 2065 return ret; 2066 } 2067 2068 return 0; 2069 } 2070 2071 static int pl330_add(struct pl330_info *pi) 2072 { 2073 struct pl330_dmac *pl330; 2074 void __iomem *regs; 2075 int i, ret; 2076 2077 if (!pi || !pi->dev) 2078 return -EINVAL; 2079 2080 /* If already added */ 2081 if (pi->pl330_data) 2082 return -EINVAL; 2083 2084 /* 2085 * If the SoC can perform reset on the DMAC, then do it 2086 * before reading its configuration. 2087 */ 2088 if (pi->dmac_reset) 2089 pi->dmac_reset(pi); 2090 2091 regs = pi->base; 2092 2093 /* Check if we can handle this DMAC */ 2094 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL 2095 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) { 2096 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n", 2097 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID)); 2098 return -EINVAL; 2099 } 2100 2101 /* Read the configuration of the DMAC */ 2102 read_dmac_config(pi); 2103 2104 if (pi->pcfg.num_events == 0) { 2105 dev_err(pi->dev, "%s:%d Can't work without events!\n", 2106 __func__, __LINE__); 2107 return -EINVAL; 2108 } 2109 2110 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL); 2111 if (!pl330) { 2112 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2113 __func__, __LINE__); 2114 return -ENOMEM; 2115 } 2116 2117 /* Assign the info structure and private data */ 2118 pl330->pinfo = pi; 2119 pi->pl330_data = pl330; 2120 2121 spin_lock_init(&pl330->lock); 2122 2123 INIT_LIST_HEAD(&pl330->req_done); 2124 2125 /* Use default MC buffer size if not provided */ 2126 if (!pi->mcbufsz) 2127 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2; 2128 2129 /* Mark all events as free */ 2130 for (i = 0; i < pi->pcfg.num_events; i++) 2131 pl330->events[i] = -1; 2132 2133 /* Allocate resources needed by the DMAC */ 2134 ret = dmac_alloc_resources(pl330); 2135 if (ret) { 2136 dev_err(pi->dev, "Unable to create channels for DMAC\n"); 2137 kfree(pl330); 2138 return ret; 2139 } 2140 2141 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 2142 2143 pl330->state = INIT; 2144 2145 return 0; 2146 } 2147 2148 static int dmac_free_threads(struct pl330_dmac *pl330) 2149 { 2150 struct pl330_info *pi = pl330->pinfo; 2151 int chans = pi->pcfg.num_chan; 2152 struct pl330_thread *thrd; 2153 int i; 2154 2155 /* Release Channel threads */ 2156 for (i = 0; i < chans; i++) { 2157 thrd = &pl330->channels[i]; 2158 pl330_release_channel((void *)thrd); 2159 } 2160 2161 /* Free memory */ 2162 kfree(pl330->channels); 2163 2164 return 0; 2165 } 2166 2167 static void dmac_free_resources(struct pl330_dmac *pl330) 2168 { 2169 struct pl330_info *pi = pl330->pinfo; 2170 int chans = pi->pcfg.num_chan; 2171 2172 dmac_free_threads(pl330); 2173 2174 dma_free_coherent(pi->dev, chans * pi->mcbufsz, 2175 pl330->mcode_cpu, pl330->mcode_bus); 2176 } 2177 2178 static void pl330_del(struct pl330_info *pi) 2179 { 2180 struct pl330_dmac *pl330; 2181 2182 if (!pi || !pi->pl330_data) 2183 return; 2184 2185 pl330 = pi->pl330_data; 2186 2187 pl330->state = UNINIT; 2188 2189 tasklet_kill(&pl330->tasks); 2190 2191 /* Free DMAC resources */ 2192 dmac_free_resources(pl330); 2193 2194 kfree(pl330); 2195 pi->pl330_data = NULL; 2196 } 2197 2198 /* forward declaration */ 2199 static struct amba_driver pl330_driver; 2200 2201 static inline struct dma_pl330_chan * 2202 to_pchan(struct dma_chan *ch) 2203 { 2204 if (!ch) 2205 return NULL; 2206 2207 return container_of(ch, struct dma_pl330_chan, chan); 2208 } 2209 2210 static inline struct dma_pl330_desc * 2211 to_desc(struct dma_async_tx_descriptor *tx) 2212 { 2213 return container_of(tx, struct dma_pl330_desc, txd); 2214 } 2215 2216 static inline void free_desc_list(struct list_head *list) 2217 { 2218 struct dma_pl330_dmac *pdmac; 2219 struct dma_pl330_desc *desc; 2220 struct dma_pl330_chan *pch = NULL; 2221 unsigned long flags; 2222 2223 /* Finish off the work list */ 2224 list_for_each_entry(desc, list, node) { 2225 dma_async_tx_callback callback; 2226 void *param; 2227 2228 /* All desc in a list belong to same channel */ 2229 pch = desc->pchan; 2230 callback = desc->txd.callback; 2231 param = desc->txd.callback_param; 2232 2233 if (callback) 2234 callback(param); 2235 2236 desc->pchan = NULL; 2237 } 2238 2239 /* pch will be unset if list was empty */ 2240 if (!pch) 2241 return; 2242 2243 pdmac = pch->dmac; 2244 2245 spin_lock_irqsave(&pdmac->pool_lock, flags); 2246 list_splice_tail_init(list, &pdmac->desc_pool); 2247 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2248 } 2249 2250 static inline void handle_cyclic_desc_list(struct list_head *list) 2251 { 2252 struct dma_pl330_desc *desc; 2253 struct dma_pl330_chan *pch = NULL; 2254 unsigned long flags; 2255 2256 list_for_each_entry(desc, list, node) { 2257 dma_async_tx_callback callback; 2258 2259 /* Change status to reload it */ 2260 desc->status = PREP; 2261 pch = desc->pchan; 2262 callback = desc->txd.callback; 2263 if (callback) 2264 callback(desc->txd.callback_param); 2265 } 2266 2267 /* pch will be unset if list was empty */ 2268 if (!pch) 2269 return; 2270 2271 spin_lock_irqsave(&pch->lock, flags); 2272 list_splice_tail_init(list, &pch->work_list); 2273 spin_unlock_irqrestore(&pch->lock, flags); 2274 } 2275 2276 static inline void fill_queue(struct dma_pl330_chan *pch) 2277 { 2278 struct dma_pl330_desc *desc; 2279 int ret; 2280 2281 list_for_each_entry(desc, &pch->work_list, node) { 2282 2283 /* If already submitted */ 2284 if (desc->status == BUSY) 2285 break; 2286 2287 ret = pl330_submit_req(pch->pl330_chid, 2288 &desc->req); 2289 if (!ret) { 2290 desc->status = BUSY; 2291 break; 2292 } else if (ret == -EAGAIN) { 2293 /* QFull or DMAC Dying */ 2294 break; 2295 } else { 2296 /* Unacceptable request */ 2297 desc->status = DONE; 2298 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n", 2299 __func__, __LINE__, desc->txd.cookie); 2300 tasklet_schedule(&pch->task); 2301 } 2302 } 2303 } 2304 2305 static void pl330_tasklet(unsigned long data) 2306 { 2307 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2308 struct dma_pl330_desc *desc, *_dt; 2309 unsigned long flags; 2310 LIST_HEAD(list); 2311 2312 spin_lock_irqsave(&pch->lock, flags); 2313 2314 /* Pick up ripe tomatoes */ 2315 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2316 if (desc->status == DONE) { 2317 if (!pch->cyclic) 2318 dma_cookie_complete(&desc->txd); 2319 list_move_tail(&desc->node, &list); 2320 } 2321 2322 /* Try to submit a req imm. next to the last completed cookie */ 2323 fill_queue(pch); 2324 2325 /* Make sure the PL330 Channel thread is active */ 2326 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START); 2327 2328 spin_unlock_irqrestore(&pch->lock, flags); 2329 2330 if (pch->cyclic) 2331 handle_cyclic_desc_list(&list); 2332 else 2333 free_desc_list(&list); 2334 } 2335 2336 static void dma_pl330_rqcb(void *token, enum pl330_op_err err) 2337 { 2338 struct dma_pl330_desc *desc = token; 2339 struct dma_pl330_chan *pch = desc->pchan; 2340 unsigned long flags; 2341 2342 /* If desc aborted */ 2343 if (!pch) 2344 return; 2345 2346 spin_lock_irqsave(&pch->lock, flags); 2347 2348 desc->status = DONE; 2349 2350 spin_unlock_irqrestore(&pch->lock, flags); 2351 2352 tasklet_schedule(&pch->task); 2353 } 2354 2355 bool pl330_filter(struct dma_chan *chan, void *param) 2356 { 2357 u8 *peri_id; 2358 2359 if (chan->device->dev->driver != &pl330_driver.drv) 2360 return false; 2361 2362 #ifdef CONFIG_OF 2363 if (chan->device->dev->of_node) { 2364 const __be32 *prop_value; 2365 phandle phandle; 2366 struct device_node *node; 2367 2368 prop_value = ((struct property *)param)->value; 2369 phandle = be32_to_cpup(prop_value++); 2370 node = of_find_node_by_phandle(phandle); 2371 return ((chan->private == node) && 2372 (chan->chan_id == be32_to_cpup(prop_value))); 2373 } 2374 #endif 2375 2376 peri_id = chan->private; 2377 return *peri_id == (unsigned)param; 2378 } 2379 EXPORT_SYMBOL(pl330_filter); 2380 2381 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2382 { 2383 struct dma_pl330_chan *pch = to_pchan(chan); 2384 struct dma_pl330_dmac *pdmac = pch->dmac; 2385 unsigned long flags; 2386 2387 spin_lock_irqsave(&pch->lock, flags); 2388 2389 dma_cookie_init(chan); 2390 pch->cyclic = false; 2391 2392 pch->pl330_chid = pl330_request_channel(&pdmac->pif); 2393 if (!pch->pl330_chid) { 2394 spin_unlock_irqrestore(&pch->lock, flags); 2395 return -ENOMEM; 2396 } 2397 2398 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2399 2400 spin_unlock_irqrestore(&pch->lock, flags); 2401 2402 return 1; 2403 } 2404 2405 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2406 { 2407 struct dma_pl330_chan *pch = to_pchan(chan); 2408 struct dma_pl330_desc *desc, *_dt; 2409 unsigned long flags; 2410 struct dma_pl330_dmac *pdmac = pch->dmac; 2411 struct dma_slave_config *slave_config; 2412 LIST_HEAD(list); 2413 2414 switch (cmd) { 2415 case DMA_TERMINATE_ALL: 2416 spin_lock_irqsave(&pch->lock, flags); 2417 2418 /* FLUSH the PL330 Channel thread */ 2419 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH); 2420 2421 /* Mark all desc done */ 2422 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) { 2423 desc->status = DONE; 2424 list_move_tail(&desc->node, &list); 2425 } 2426 2427 list_splice_tail_init(&list, &pdmac->desc_pool); 2428 spin_unlock_irqrestore(&pch->lock, flags); 2429 break; 2430 case DMA_SLAVE_CONFIG: 2431 slave_config = (struct dma_slave_config *)arg; 2432 2433 if (slave_config->direction == DMA_MEM_TO_DEV) { 2434 if (slave_config->dst_addr) 2435 pch->fifo_addr = slave_config->dst_addr; 2436 if (slave_config->dst_addr_width) 2437 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2438 if (slave_config->dst_maxburst) 2439 pch->burst_len = slave_config->dst_maxburst; 2440 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2441 if (slave_config->src_addr) 2442 pch->fifo_addr = slave_config->src_addr; 2443 if (slave_config->src_addr_width) 2444 pch->burst_sz = __ffs(slave_config->src_addr_width); 2445 if (slave_config->src_maxburst) 2446 pch->burst_len = slave_config->src_maxburst; 2447 } 2448 break; 2449 default: 2450 dev_err(pch->dmac->pif.dev, "Not supported command.\n"); 2451 return -ENXIO; 2452 } 2453 2454 return 0; 2455 } 2456 2457 static void pl330_free_chan_resources(struct dma_chan *chan) 2458 { 2459 struct dma_pl330_chan *pch = to_pchan(chan); 2460 unsigned long flags; 2461 2462 spin_lock_irqsave(&pch->lock, flags); 2463 2464 tasklet_kill(&pch->task); 2465 2466 pl330_release_channel(pch->pl330_chid); 2467 pch->pl330_chid = NULL; 2468 2469 if (pch->cyclic) 2470 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2471 2472 spin_unlock_irqrestore(&pch->lock, flags); 2473 } 2474 2475 static enum dma_status 2476 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2477 struct dma_tx_state *txstate) 2478 { 2479 return dma_cookie_status(chan, cookie, txstate); 2480 } 2481 2482 static void pl330_issue_pending(struct dma_chan *chan) 2483 { 2484 pl330_tasklet((unsigned long) to_pchan(chan)); 2485 } 2486 2487 /* 2488 * We returned the last one of the circular list of descriptor(s) 2489 * from prep_xxx, so the argument to submit corresponds to the last 2490 * descriptor of the list. 2491 */ 2492 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2493 { 2494 struct dma_pl330_desc *desc, *last = to_desc(tx); 2495 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2496 dma_cookie_t cookie; 2497 unsigned long flags; 2498 2499 spin_lock_irqsave(&pch->lock, flags); 2500 2501 /* Assign cookies to all nodes */ 2502 while (!list_empty(&last->node)) { 2503 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2504 2505 dma_cookie_assign(&desc->txd); 2506 2507 list_move_tail(&desc->node, &pch->work_list); 2508 } 2509 2510 cookie = dma_cookie_assign(&last->txd); 2511 list_add_tail(&last->node, &pch->work_list); 2512 spin_unlock_irqrestore(&pch->lock, flags); 2513 2514 return cookie; 2515 } 2516 2517 static inline void _init_desc(struct dma_pl330_desc *desc) 2518 { 2519 desc->pchan = NULL; 2520 desc->req.x = &desc->px; 2521 desc->req.token = desc; 2522 desc->rqcfg.swap = SWAP_NO; 2523 desc->rqcfg.privileged = 0; 2524 desc->rqcfg.insnaccess = 0; 2525 desc->rqcfg.scctl = SCCTRL0; 2526 desc->rqcfg.dcctl = DCCTRL0; 2527 desc->req.cfg = &desc->rqcfg; 2528 desc->req.xfer_cb = dma_pl330_rqcb; 2529 desc->txd.tx_submit = pl330_tx_submit; 2530 2531 INIT_LIST_HEAD(&desc->node); 2532 } 2533 2534 /* Returns the number of descriptors added to the DMAC pool */ 2535 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count) 2536 { 2537 struct dma_pl330_desc *desc; 2538 unsigned long flags; 2539 int i; 2540 2541 if (!pdmac) 2542 return 0; 2543 2544 desc = kmalloc(count * sizeof(*desc), flg); 2545 if (!desc) 2546 return 0; 2547 2548 spin_lock_irqsave(&pdmac->pool_lock, flags); 2549 2550 for (i = 0; i < count; i++) { 2551 _init_desc(&desc[i]); 2552 list_add_tail(&desc[i].node, &pdmac->desc_pool); 2553 } 2554 2555 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2556 2557 return count; 2558 } 2559 2560 static struct dma_pl330_desc * 2561 pluck_desc(struct dma_pl330_dmac *pdmac) 2562 { 2563 struct dma_pl330_desc *desc = NULL; 2564 unsigned long flags; 2565 2566 if (!pdmac) 2567 return NULL; 2568 2569 spin_lock_irqsave(&pdmac->pool_lock, flags); 2570 2571 if (!list_empty(&pdmac->desc_pool)) { 2572 desc = list_entry(pdmac->desc_pool.next, 2573 struct dma_pl330_desc, node); 2574 2575 list_del_init(&desc->node); 2576 2577 desc->status = PREP; 2578 desc->txd.callback = NULL; 2579 } 2580 2581 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2582 2583 return desc; 2584 } 2585 2586 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2587 { 2588 struct dma_pl330_dmac *pdmac = pch->dmac; 2589 u8 *peri_id = pch->chan.private; 2590 struct dma_pl330_desc *desc; 2591 2592 /* Pluck one desc from the pool of DMAC */ 2593 desc = pluck_desc(pdmac); 2594 2595 /* If the DMAC pool is empty, alloc new */ 2596 if (!desc) { 2597 if (!add_desc(pdmac, GFP_ATOMIC, 1)) 2598 return NULL; 2599 2600 /* Try again */ 2601 desc = pluck_desc(pdmac); 2602 if (!desc) { 2603 dev_err(pch->dmac->pif.dev, 2604 "%s:%d ALERT!\n", __func__, __LINE__); 2605 return NULL; 2606 } 2607 } 2608 2609 /* Initialize the descriptor */ 2610 desc->pchan = pch; 2611 desc->txd.cookie = 0; 2612 async_tx_ack(&desc->txd); 2613 2614 desc->req.peri = peri_id ? pch->chan.chan_id : 0; 2615 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg; 2616 2617 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2618 2619 return desc; 2620 } 2621 2622 static inline void fill_px(struct pl330_xfer *px, 2623 dma_addr_t dst, dma_addr_t src, size_t len) 2624 { 2625 px->next = NULL; 2626 px->bytes = len; 2627 px->dst_addr = dst; 2628 px->src_addr = src; 2629 } 2630 2631 static struct dma_pl330_desc * 2632 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2633 dma_addr_t src, size_t len) 2634 { 2635 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2636 2637 if (!desc) { 2638 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2639 __func__, __LINE__); 2640 return NULL; 2641 } 2642 2643 /* 2644 * Ideally we should lookout for reqs bigger than 2645 * those that can be programmed with 256 bytes of 2646 * MC buffer, but considering a req size is seldom 2647 * going to be word-unaligned and more than 200MB, 2648 * we take it easy. 2649 * Also, should the limit is reached we'd rather 2650 * have the platform increase MC buffer size than 2651 * complicating this API driver. 2652 */ 2653 fill_px(&desc->px, dst, src, len); 2654 2655 return desc; 2656 } 2657 2658 /* Call after fixing burst size */ 2659 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2660 { 2661 struct dma_pl330_chan *pch = desc->pchan; 2662 struct pl330_info *pi = &pch->dmac->pif; 2663 int burst_len; 2664 2665 burst_len = pi->pcfg.data_bus_width / 8; 2666 burst_len *= pi->pcfg.data_buf_dep; 2667 burst_len >>= desc->rqcfg.brst_size; 2668 2669 /* src/dst_burst_len can't be more than 16 */ 2670 if (burst_len > 16) 2671 burst_len = 16; 2672 2673 while (burst_len > 1) { 2674 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2675 break; 2676 burst_len--; 2677 } 2678 2679 return burst_len; 2680 } 2681 2682 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2683 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2684 size_t period_len, enum dma_transfer_direction direction, 2685 unsigned long flags, void *context) 2686 { 2687 struct dma_pl330_desc *desc; 2688 struct dma_pl330_chan *pch = to_pchan(chan); 2689 dma_addr_t dst; 2690 dma_addr_t src; 2691 2692 desc = pl330_get_desc(pch); 2693 if (!desc) { 2694 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2695 __func__, __LINE__); 2696 return NULL; 2697 } 2698 2699 switch (direction) { 2700 case DMA_MEM_TO_DEV: 2701 desc->rqcfg.src_inc = 1; 2702 desc->rqcfg.dst_inc = 0; 2703 desc->req.rqtype = MEMTODEV; 2704 src = dma_addr; 2705 dst = pch->fifo_addr; 2706 break; 2707 case DMA_DEV_TO_MEM: 2708 desc->rqcfg.src_inc = 0; 2709 desc->rqcfg.dst_inc = 1; 2710 desc->req.rqtype = DEVTOMEM; 2711 src = pch->fifo_addr; 2712 dst = dma_addr; 2713 break; 2714 default: 2715 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n", 2716 __func__, __LINE__); 2717 return NULL; 2718 } 2719 2720 desc->rqcfg.brst_size = pch->burst_sz; 2721 desc->rqcfg.brst_len = 1; 2722 2723 pch->cyclic = true; 2724 2725 fill_px(&desc->px, dst, src, period_len); 2726 2727 return &desc->txd; 2728 } 2729 2730 static struct dma_async_tx_descriptor * 2731 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2732 dma_addr_t src, size_t len, unsigned long flags) 2733 { 2734 struct dma_pl330_desc *desc; 2735 struct dma_pl330_chan *pch = to_pchan(chan); 2736 struct pl330_info *pi; 2737 int burst; 2738 2739 if (unlikely(!pch || !len)) 2740 return NULL; 2741 2742 pi = &pch->dmac->pif; 2743 2744 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2745 if (!desc) 2746 return NULL; 2747 2748 desc->rqcfg.src_inc = 1; 2749 desc->rqcfg.dst_inc = 1; 2750 desc->req.rqtype = MEMTOMEM; 2751 2752 /* Select max possible burst size */ 2753 burst = pi->pcfg.data_bus_width / 8; 2754 2755 while (burst > 1) { 2756 if (!(len % burst)) 2757 break; 2758 burst /= 2; 2759 } 2760 2761 desc->rqcfg.brst_size = 0; 2762 while (burst != (1 << desc->rqcfg.brst_size)) 2763 desc->rqcfg.brst_size++; 2764 2765 desc->rqcfg.brst_len = get_burst_len(desc, len); 2766 2767 desc->txd.flags = flags; 2768 2769 return &desc->txd; 2770 } 2771 2772 static struct dma_async_tx_descriptor * 2773 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2774 unsigned int sg_len, enum dma_transfer_direction direction, 2775 unsigned long flg, void *context) 2776 { 2777 struct dma_pl330_desc *first, *desc = NULL; 2778 struct dma_pl330_chan *pch = to_pchan(chan); 2779 struct scatterlist *sg; 2780 unsigned long flags; 2781 int i; 2782 dma_addr_t addr; 2783 2784 if (unlikely(!pch || !sgl || !sg_len)) 2785 return NULL; 2786 2787 addr = pch->fifo_addr; 2788 2789 first = NULL; 2790 2791 for_each_sg(sgl, sg, sg_len, i) { 2792 2793 desc = pl330_get_desc(pch); 2794 if (!desc) { 2795 struct dma_pl330_dmac *pdmac = pch->dmac; 2796 2797 dev_err(pch->dmac->pif.dev, 2798 "%s:%d Unable to fetch desc\n", 2799 __func__, __LINE__); 2800 if (!first) 2801 return NULL; 2802 2803 spin_lock_irqsave(&pdmac->pool_lock, flags); 2804 2805 while (!list_empty(&first->node)) { 2806 desc = list_entry(first->node.next, 2807 struct dma_pl330_desc, node); 2808 list_move_tail(&desc->node, &pdmac->desc_pool); 2809 } 2810 2811 list_move_tail(&first->node, &pdmac->desc_pool); 2812 2813 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2814 2815 return NULL; 2816 } 2817 2818 if (!first) 2819 first = desc; 2820 else 2821 list_add_tail(&desc->node, &first->node); 2822 2823 if (direction == DMA_MEM_TO_DEV) { 2824 desc->rqcfg.src_inc = 1; 2825 desc->rqcfg.dst_inc = 0; 2826 desc->req.rqtype = MEMTODEV; 2827 fill_px(&desc->px, 2828 addr, sg_dma_address(sg), sg_dma_len(sg)); 2829 } else { 2830 desc->rqcfg.src_inc = 0; 2831 desc->rqcfg.dst_inc = 1; 2832 desc->req.rqtype = DEVTOMEM; 2833 fill_px(&desc->px, 2834 sg_dma_address(sg), addr, sg_dma_len(sg)); 2835 } 2836 2837 desc->rqcfg.brst_size = pch->burst_sz; 2838 desc->rqcfg.brst_len = 1; 2839 } 2840 2841 /* Return the last desc in the chain */ 2842 desc->txd.flags = flg; 2843 return &desc->txd; 2844 } 2845 2846 static irqreturn_t pl330_irq_handler(int irq, void *data) 2847 { 2848 if (pl330_update(data)) 2849 return IRQ_HANDLED; 2850 else 2851 return IRQ_NONE; 2852 } 2853 2854 static int 2855 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2856 { 2857 struct dma_pl330_platdata *pdat; 2858 struct dma_pl330_dmac *pdmac; 2859 struct dma_pl330_chan *pch; 2860 struct pl330_info *pi; 2861 struct dma_device *pd; 2862 struct resource *res; 2863 int i, ret, irq; 2864 int num_chan; 2865 2866 pdat = adev->dev.platform_data; 2867 2868 /* Allocate a new DMAC and its Channels */ 2869 pdmac = kzalloc(sizeof(*pdmac), GFP_KERNEL); 2870 if (!pdmac) { 2871 dev_err(&adev->dev, "unable to allocate mem\n"); 2872 return -ENOMEM; 2873 } 2874 2875 pi = &pdmac->pif; 2876 pi->dev = &adev->dev; 2877 pi->pl330_data = NULL; 2878 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2879 2880 res = &adev->res; 2881 request_mem_region(res->start, resource_size(res), "dma-pl330"); 2882 2883 pi->base = ioremap(res->start, resource_size(res)); 2884 if (!pi->base) { 2885 ret = -ENXIO; 2886 goto probe_err1; 2887 } 2888 2889 amba_set_drvdata(adev, pdmac); 2890 2891 irq = adev->irq[0]; 2892 ret = request_irq(irq, pl330_irq_handler, 0, 2893 dev_name(&adev->dev), pi); 2894 if (ret) 2895 goto probe_err2; 2896 2897 ret = pl330_add(pi); 2898 if (ret) 2899 goto probe_err3; 2900 2901 INIT_LIST_HEAD(&pdmac->desc_pool); 2902 spin_lock_init(&pdmac->pool_lock); 2903 2904 /* Create a descriptor pool of default size */ 2905 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC)) 2906 dev_warn(&adev->dev, "unable to allocate desc\n"); 2907 2908 pd = &pdmac->ddma; 2909 INIT_LIST_HEAD(&pd->channels); 2910 2911 /* Initialize channel parameters */ 2912 if (pdat) 2913 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan); 2914 else 2915 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan); 2916 2917 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2918 if (!pdmac->peripherals) { 2919 ret = -ENOMEM; 2920 dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n"); 2921 goto probe_err4; 2922 } 2923 2924 for (i = 0; i < num_chan; i++) { 2925 pch = &pdmac->peripherals[i]; 2926 if (!adev->dev.of_node) 2927 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2928 else 2929 pch->chan.private = adev->dev.of_node; 2930 2931 INIT_LIST_HEAD(&pch->work_list); 2932 spin_lock_init(&pch->lock); 2933 pch->pl330_chid = NULL; 2934 pch->chan.device = pd; 2935 pch->dmac = pdmac; 2936 2937 /* Add the channel to the DMAC list */ 2938 list_add_tail(&pch->chan.device_node, &pd->channels); 2939 } 2940 2941 pd->dev = &adev->dev; 2942 if (pdat) { 2943 pd->cap_mask = pdat->cap_mask; 2944 } else { 2945 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2946 if (pi->pcfg.num_peri) { 2947 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2948 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2949 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2950 } 2951 } 2952 2953 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2954 pd->device_free_chan_resources = pl330_free_chan_resources; 2955 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2956 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2957 pd->device_tx_status = pl330_tx_status; 2958 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2959 pd->device_control = pl330_control; 2960 pd->device_issue_pending = pl330_issue_pending; 2961 2962 ret = dma_async_device_register(pd); 2963 if (ret) { 2964 dev_err(&adev->dev, "unable to register DMAC\n"); 2965 goto probe_err4; 2966 } 2967 2968 dev_info(&adev->dev, 2969 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 2970 dev_info(&adev->dev, 2971 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2972 pi->pcfg.data_buf_dep, 2973 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan, 2974 pi->pcfg.num_peri, pi->pcfg.num_events); 2975 2976 return 0; 2977 2978 probe_err4: 2979 pl330_del(pi); 2980 probe_err3: 2981 free_irq(irq, pi); 2982 probe_err2: 2983 iounmap(pi->base); 2984 probe_err1: 2985 release_mem_region(res->start, resource_size(res)); 2986 kfree(pdmac); 2987 2988 return ret; 2989 } 2990 2991 static int pl330_remove(struct amba_device *adev) 2992 { 2993 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev); 2994 struct dma_pl330_chan *pch, *_p; 2995 struct pl330_info *pi; 2996 struct resource *res; 2997 int irq; 2998 2999 if (!pdmac) 3000 return 0; 3001 3002 amba_set_drvdata(adev, NULL); 3003 3004 /* Idle the DMAC */ 3005 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3006 chan.device_node) { 3007 3008 /* Remove the channel */ 3009 list_del(&pch->chan.device_node); 3010 3011 /* Flush the channel */ 3012 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3013 pl330_free_chan_resources(&pch->chan); 3014 } 3015 3016 pi = &pdmac->pif; 3017 3018 pl330_del(pi); 3019 3020 irq = adev->irq[0]; 3021 free_irq(irq, pi); 3022 3023 iounmap(pi->base); 3024 3025 res = &adev->res; 3026 release_mem_region(res->start, resource_size(res)); 3027 3028 kfree(pdmac); 3029 3030 return 0; 3031 } 3032 3033 static struct amba_id pl330_ids[] = { 3034 { 3035 .id = 0x00041330, 3036 .mask = 0x000fffff, 3037 }, 3038 { 0, 0 }, 3039 }; 3040 3041 MODULE_DEVICE_TABLE(amba, pl330_ids); 3042 3043 static struct amba_driver pl330_driver = { 3044 .drv = { 3045 .owner = THIS_MODULE, 3046 .name = "dma-pl330", 3047 }, 3048 .id_table = pl330_ids, 3049 .probe = pl330_probe, 3050 .remove = pl330_remove, 3051 }; 3052 3053 module_amba_driver(pl330_driver); 3054 3055 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 3056 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3057 MODULE_LICENSE("GPL"); 3058