1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/err.h> 30 31 #include "dmaengine.h" 32 #define PL330_MAX_CHAN 8 33 #define PL330_MAX_IRQS 32 34 #define PL330_MAX_PERI 32 35 36 enum pl330_srccachectrl { 37 SCCTRL0, /* Noncacheable and nonbufferable */ 38 SCCTRL1, /* Bufferable only */ 39 SCCTRL2, /* Cacheable, but do not allocate */ 40 SCCTRL3, /* Cacheable and bufferable, but do not allocate */ 41 SINVALID1, 42 SINVALID2, 43 SCCTRL6, /* Cacheable write-through, allocate on reads only */ 44 SCCTRL7, /* Cacheable write-back, allocate on reads only */ 45 }; 46 47 enum pl330_dstcachectrl { 48 DCCTRL0, /* Noncacheable and nonbufferable */ 49 DCCTRL1, /* Bufferable only */ 50 DCCTRL2, /* Cacheable, but do not allocate */ 51 DCCTRL3, /* Cacheable and bufferable, but do not allocate */ 52 DINVALID1, /* AWCACHE = 0x1000 */ 53 DINVALID2, 54 DCCTRL6, /* Cacheable write-through, allocate on writes only */ 55 DCCTRL7, /* Cacheable write-back, allocate on writes only */ 56 }; 57 58 enum pl330_byteswap { 59 SWAP_NO, 60 SWAP_2, 61 SWAP_4, 62 SWAP_8, 63 SWAP_16, 64 }; 65 66 enum pl330_reqtype { 67 MEMTOMEM, 68 MEMTODEV, 69 DEVTOMEM, 70 DEVTODEV, 71 }; 72 73 /* Register and Bit field Definitions */ 74 #define DS 0x0 75 #define DS_ST_STOP 0x0 76 #define DS_ST_EXEC 0x1 77 #define DS_ST_CMISS 0x2 78 #define DS_ST_UPDTPC 0x3 79 #define DS_ST_WFE 0x4 80 #define DS_ST_ATBRR 0x5 81 #define DS_ST_QBUSY 0x6 82 #define DS_ST_WFP 0x7 83 #define DS_ST_KILL 0x8 84 #define DS_ST_CMPLT 0x9 85 #define DS_ST_FLTCMP 0xe 86 #define DS_ST_FAULT 0xf 87 88 #define DPC 0x4 89 #define INTEN 0x20 90 #define ES 0x24 91 #define INTSTATUS 0x28 92 #define INTCLR 0x2c 93 #define FSM 0x30 94 #define FSC 0x34 95 #define FTM 0x38 96 97 #define _FTC 0x40 98 #define FTC(n) (_FTC + (n)*0x4) 99 100 #define _CS 0x100 101 #define CS(n) (_CS + (n)*0x8) 102 #define CS_CNS (1 << 21) 103 104 #define _CPC 0x104 105 #define CPC(n) (_CPC + (n)*0x8) 106 107 #define _SA 0x400 108 #define SA(n) (_SA + (n)*0x20) 109 110 #define _DA 0x404 111 #define DA(n) (_DA + (n)*0x20) 112 113 #define _CC 0x408 114 #define CC(n) (_CC + (n)*0x20) 115 116 #define CC_SRCINC (1 << 0) 117 #define CC_DSTINC (1 << 14) 118 #define CC_SRCPRI (1 << 8) 119 #define CC_DSTPRI (1 << 22) 120 #define CC_SRCNS (1 << 9) 121 #define CC_DSTNS (1 << 23) 122 #define CC_SRCIA (1 << 10) 123 #define CC_DSTIA (1 << 24) 124 #define CC_SRCBRSTLEN_SHFT 4 125 #define CC_DSTBRSTLEN_SHFT 18 126 #define CC_SRCBRSTSIZE_SHFT 1 127 #define CC_DSTBRSTSIZE_SHFT 15 128 #define CC_SRCCCTRL_SHFT 11 129 #define CC_SRCCCTRL_MASK 0x7 130 #define CC_DSTCCTRL_SHFT 25 131 #define CC_DRCCCTRL_MASK 0x7 132 #define CC_SWAP_SHFT 28 133 134 #define _LC0 0x40c 135 #define LC0(n) (_LC0 + (n)*0x20) 136 137 #define _LC1 0x410 138 #define LC1(n) (_LC1 + (n)*0x20) 139 140 #define DBGSTATUS 0xd00 141 #define DBG_BUSY (1 << 0) 142 143 #define DBGCMD 0xd04 144 #define DBGINST0 0xd08 145 #define DBGINST1 0xd0c 146 147 #define CR0 0xe00 148 #define CR1 0xe04 149 #define CR2 0xe08 150 #define CR3 0xe0c 151 #define CR4 0xe10 152 #define CRD 0xe14 153 154 #define PERIPH_ID 0xfe0 155 #define PERIPH_REV_SHIFT 20 156 #define PERIPH_REV_MASK 0xf 157 #define PERIPH_REV_R0P0 0 158 #define PERIPH_REV_R1P0 1 159 #define PERIPH_REV_R1P1 2 160 161 #define CR0_PERIPH_REQ_SET (1 << 0) 162 #define CR0_BOOT_EN_SET (1 << 1) 163 #define CR0_BOOT_MAN_NS (1 << 2) 164 #define CR0_NUM_CHANS_SHIFT 4 165 #define CR0_NUM_CHANS_MASK 0x7 166 #define CR0_NUM_PERIPH_SHIFT 12 167 #define CR0_NUM_PERIPH_MASK 0x1f 168 #define CR0_NUM_EVENTS_SHIFT 17 169 #define CR0_NUM_EVENTS_MASK 0x1f 170 171 #define CR1_ICACHE_LEN_SHIFT 0 172 #define CR1_ICACHE_LEN_MASK 0x7 173 #define CR1_NUM_ICACHELINES_SHIFT 4 174 #define CR1_NUM_ICACHELINES_MASK 0xf 175 176 #define CRD_DATA_WIDTH_SHIFT 0 177 #define CRD_DATA_WIDTH_MASK 0x7 178 #define CRD_WR_CAP_SHIFT 4 179 #define CRD_WR_CAP_MASK 0x7 180 #define CRD_WR_Q_DEP_SHIFT 8 181 #define CRD_WR_Q_DEP_MASK 0xf 182 #define CRD_RD_CAP_SHIFT 12 183 #define CRD_RD_CAP_MASK 0x7 184 #define CRD_RD_Q_DEP_SHIFT 16 185 #define CRD_RD_Q_DEP_MASK 0xf 186 #define CRD_DATA_BUFF_SHIFT 20 187 #define CRD_DATA_BUFF_MASK 0x3ff 188 189 #define PART 0x330 190 #define DESIGNER 0x41 191 #define REVISION 0x0 192 #define INTEG_CFG 0x0 193 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 194 195 #define PL330_STATE_STOPPED (1 << 0) 196 #define PL330_STATE_EXECUTING (1 << 1) 197 #define PL330_STATE_WFE (1 << 2) 198 #define PL330_STATE_FAULTING (1 << 3) 199 #define PL330_STATE_COMPLETING (1 << 4) 200 #define PL330_STATE_WFP (1 << 5) 201 #define PL330_STATE_KILLING (1 << 6) 202 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 203 #define PL330_STATE_CACHEMISS (1 << 8) 204 #define PL330_STATE_UPDTPC (1 << 9) 205 #define PL330_STATE_ATBARRIER (1 << 10) 206 #define PL330_STATE_QUEUEBUSY (1 << 11) 207 #define PL330_STATE_INVALID (1 << 15) 208 209 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 210 | PL330_STATE_WFE | PL330_STATE_FAULTING) 211 212 #define CMD_DMAADDH 0x54 213 #define CMD_DMAEND 0x00 214 #define CMD_DMAFLUSHP 0x35 215 #define CMD_DMAGO 0xa0 216 #define CMD_DMALD 0x04 217 #define CMD_DMALDP 0x25 218 #define CMD_DMALP 0x20 219 #define CMD_DMALPEND 0x28 220 #define CMD_DMAKILL 0x01 221 #define CMD_DMAMOV 0xbc 222 #define CMD_DMANOP 0x18 223 #define CMD_DMARMB 0x12 224 #define CMD_DMASEV 0x34 225 #define CMD_DMAST 0x08 226 #define CMD_DMASTP 0x29 227 #define CMD_DMASTZ 0x0c 228 #define CMD_DMAWFE 0x36 229 #define CMD_DMAWFP 0x30 230 #define CMD_DMAWMB 0x13 231 232 #define SZ_DMAADDH 3 233 #define SZ_DMAEND 1 234 #define SZ_DMAFLUSHP 2 235 #define SZ_DMALD 1 236 #define SZ_DMALDP 2 237 #define SZ_DMALP 2 238 #define SZ_DMALPEND 2 239 #define SZ_DMAKILL 1 240 #define SZ_DMAMOV 6 241 #define SZ_DMANOP 1 242 #define SZ_DMARMB 1 243 #define SZ_DMASEV 2 244 #define SZ_DMAST 1 245 #define SZ_DMASTP 2 246 #define SZ_DMASTZ 1 247 #define SZ_DMAWFE 2 248 #define SZ_DMAWFP 2 249 #define SZ_DMAWMB 1 250 #define SZ_DMAGO 6 251 252 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 253 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 254 255 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 256 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 257 258 /* 259 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 260 * at 1byte/burst for P<->M and M<->M respectively. 261 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 262 * should be enough for P<->M and M<->M respectively. 263 */ 264 #define MCODE_BUFF_PER_REQ 256 265 266 /* If the _pl330_req is available to the client */ 267 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND) 268 269 /* Use this _only_ to wait on transient states */ 270 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 271 272 #ifdef PL330_DEBUG_MCGEN 273 static unsigned cmd_line; 274 #define PL330_DBGCMD_DUMP(off, x...) do { \ 275 printk("%x:", cmd_line); \ 276 printk(x); \ 277 cmd_line += off; \ 278 } while (0) 279 #define PL330_DBGMC_START(addr) (cmd_line = addr) 280 #else 281 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 282 #define PL330_DBGMC_START(addr) do {} while (0) 283 #endif 284 285 /* The number of default descriptors */ 286 287 #define NR_DEFAULT_DESC 16 288 289 /* Populated by the PL330 core driver for DMA API driver's info */ 290 struct pl330_config { 291 u32 periph_id; 292 #define DMAC_MODE_NS (1 << 0) 293 unsigned int mode; 294 unsigned int data_bus_width:10; /* In number of bits */ 295 unsigned int data_buf_dep:10; 296 unsigned int num_chan:4; 297 unsigned int num_peri:6; 298 u32 peri_ns; 299 unsigned int num_events:6; 300 u32 irq_ns; 301 }; 302 303 /* Handle to the DMAC provided to the PL330 core */ 304 struct pl330_info { 305 /* Owning device */ 306 struct device *dev; 307 /* Size of MicroCode buffers for each channel. */ 308 unsigned mcbufsz; 309 /* ioremap'ed address of PL330 registers. */ 310 void __iomem *base; 311 /* Client can freely use it. */ 312 void *client_data; 313 /* PL330 core data, Client must not touch it. */ 314 void *pl330_data; 315 /* Populated by the PL330 core driver during pl330_add */ 316 struct pl330_config pcfg; 317 /* 318 * If the DMAC has some reset mechanism, then the 319 * client may want to provide pointer to the method. 320 */ 321 void (*dmac_reset)(struct pl330_info *pi); 322 }; 323 324 /** 325 * Request Configuration. 326 * The PL330 core does not modify this and uses the last 327 * working configuration if the request doesn't provide any. 328 * 329 * The Client may want to provide this info only for the 330 * first request and a request with new settings. 331 */ 332 struct pl330_reqcfg { 333 /* Address Incrementing */ 334 unsigned dst_inc:1; 335 unsigned src_inc:1; 336 337 /* 338 * For now, the SRC & DST protection levels 339 * and burst size/length are assumed same. 340 */ 341 bool nonsecure; 342 bool privileged; 343 bool insnaccess; 344 unsigned brst_len:5; 345 unsigned brst_size:3; /* in power of 2 */ 346 347 enum pl330_dstcachectrl dcctl; 348 enum pl330_srccachectrl scctl; 349 enum pl330_byteswap swap; 350 struct pl330_config *pcfg; 351 }; 352 353 /* 354 * One cycle of DMAC operation. 355 * There may be more than one xfer in a request. 356 */ 357 struct pl330_xfer { 358 u32 src_addr; 359 u32 dst_addr; 360 /* Size to xfer */ 361 u32 bytes; 362 /* 363 * Pointer to next xfer in the list. 364 * The last xfer in the req must point to NULL. 365 */ 366 struct pl330_xfer *next; 367 }; 368 369 /* The xfer callbacks are made with one of these arguments. */ 370 enum pl330_op_err { 371 /* The all xfers in the request were success. */ 372 PL330_ERR_NONE, 373 /* If req aborted due to global error. */ 374 PL330_ERR_ABORT, 375 /* If req failed due to problem with Channel. */ 376 PL330_ERR_FAIL, 377 }; 378 379 /* A request defining Scatter-Gather List ending with NULL xfer. */ 380 struct pl330_req { 381 enum pl330_reqtype rqtype; 382 /* Index of peripheral for the xfer. */ 383 unsigned peri:5; 384 /* Unique token for this xfer, set by the client. */ 385 void *token; 386 /* Callback to be called after xfer. */ 387 void (*xfer_cb)(void *token, enum pl330_op_err err); 388 /* If NULL, req will be done at last set parameters. */ 389 struct pl330_reqcfg *cfg; 390 /* Pointer to first xfer in the request. */ 391 struct pl330_xfer *x; 392 /* Hook to attach to DMAC's list of reqs with due callback */ 393 struct list_head rqd; 394 }; 395 396 /* 397 * To know the status of the channel and DMAC, the client 398 * provides a pointer to this structure. The PL330 core 399 * fills it with current information. 400 */ 401 struct pl330_chanstatus { 402 /* 403 * If the DMAC engine halted due to some error, 404 * the client should remove-add DMAC. 405 */ 406 bool dmac_halted; 407 /* 408 * If channel is halted due to some error, 409 * the client should ABORT/FLUSH and START the channel. 410 */ 411 bool faulting; 412 /* Location of last load */ 413 u32 src_addr; 414 /* Location of last store */ 415 u32 dst_addr; 416 /* 417 * Pointer to the currently active req, NULL if channel is 418 * inactive, even though the requests may be present. 419 */ 420 struct pl330_req *top_req; 421 /* Pointer to req waiting second in the queue if any. */ 422 struct pl330_req *wait_req; 423 }; 424 425 enum pl330_chan_op { 426 /* Start the channel */ 427 PL330_OP_START, 428 /* Abort the active xfer */ 429 PL330_OP_ABORT, 430 /* Stop xfer and flush queue */ 431 PL330_OP_FLUSH, 432 }; 433 434 struct _xfer_spec { 435 u32 ccr; 436 struct pl330_req *r; 437 struct pl330_xfer *x; 438 }; 439 440 enum dmamov_dst { 441 SAR = 0, 442 CCR, 443 DAR, 444 }; 445 446 enum pl330_dst { 447 SRC = 0, 448 DST, 449 }; 450 451 enum pl330_cond { 452 SINGLE, 453 BURST, 454 ALWAYS, 455 }; 456 457 struct _pl330_req { 458 u32 mc_bus; 459 void *mc_cpu; 460 /* Number of bytes taken to setup MC for the req */ 461 u32 mc_len; 462 struct pl330_req *r; 463 }; 464 465 /* ToBeDone for tasklet */ 466 struct _pl330_tbd { 467 bool reset_dmac; 468 bool reset_mngr; 469 u8 reset_chan; 470 }; 471 472 /* A DMAC Thread */ 473 struct pl330_thread { 474 u8 id; 475 int ev; 476 /* If the channel is not yet acquired by any client */ 477 bool free; 478 /* Parent DMAC */ 479 struct pl330_dmac *dmac; 480 /* Only two at a time */ 481 struct _pl330_req req[2]; 482 /* Index of the last enqueued request */ 483 unsigned lstenq; 484 /* Index of the last submitted request or -1 if the DMA is stopped */ 485 int req_running; 486 }; 487 488 enum pl330_dmac_state { 489 UNINIT, 490 INIT, 491 DYING, 492 }; 493 494 /* A DMAC */ 495 struct pl330_dmac { 496 spinlock_t lock; 497 /* Holds list of reqs with due callbacks */ 498 struct list_head req_done; 499 /* Pointer to platform specific stuff */ 500 struct pl330_info *pinfo; 501 /* Maximum possible events/irqs */ 502 int events[32]; 503 /* BUS address of MicroCode buffer */ 504 dma_addr_t mcode_bus; 505 /* CPU address of MicroCode buffer */ 506 void *mcode_cpu; 507 /* List of all Channel threads */ 508 struct pl330_thread *channels; 509 /* Pointer to the MANAGER thread */ 510 struct pl330_thread *manager; 511 /* To handle bad news in interrupt */ 512 struct tasklet_struct tasks; 513 struct _pl330_tbd dmac_tbd; 514 /* State of DMAC operation */ 515 enum pl330_dmac_state state; 516 }; 517 518 enum desc_status { 519 /* In the DMAC pool */ 520 FREE, 521 /* 522 * Allocated to some channel during prep_xxx 523 * Also may be sitting on the work_list. 524 */ 525 PREP, 526 /* 527 * Sitting on the work_list and already submitted 528 * to the PL330 core. Not more than two descriptors 529 * of a channel can be BUSY at any time. 530 */ 531 BUSY, 532 /* 533 * Sitting on the channel work_list but xfer done 534 * by PL330 core 535 */ 536 DONE, 537 }; 538 539 struct dma_pl330_chan { 540 /* Schedule desc completion */ 541 struct tasklet_struct task; 542 543 /* DMA-Engine Channel */ 544 struct dma_chan chan; 545 546 /* List of submitted descriptors */ 547 struct list_head submitted_list; 548 /* List of issued descriptors */ 549 struct list_head work_list; 550 /* List of completed descriptors */ 551 struct list_head completed_list; 552 553 /* Pointer to the DMAC that manages this channel, 554 * NULL if the channel is available to be acquired. 555 * As the parent, this DMAC also provides descriptors 556 * to the channel. 557 */ 558 struct dma_pl330_dmac *dmac; 559 560 /* To protect channel manipulation */ 561 spinlock_t lock; 562 563 /* Token of a hardware channel thread of PL330 DMAC 564 * NULL if the channel is available to be acquired. 565 */ 566 void *pl330_chid; 567 568 /* For D-to-M and M-to-D channels */ 569 int burst_sz; /* the peripheral fifo width */ 570 int burst_len; /* the number of burst */ 571 dma_addr_t fifo_addr; 572 573 /* for cyclic capability */ 574 bool cyclic; 575 }; 576 577 struct dma_pl330_dmac { 578 struct pl330_info pif; 579 580 /* DMA-Engine Device */ 581 struct dma_device ddma; 582 583 /* Holds info about sg limitations */ 584 struct device_dma_parameters dma_parms; 585 586 /* Pool of descriptors available for the DMAC's channels */ 587 struct list_head desc_pool; 588 /* To protect desc_pool manipulation */ 589 spinlock_t pool_lock; 590 591 /* Peripheral channels connected to this DMAC */ 592 unsigned int num_peripherals; 593 struct dma_pl330_chan *peripherals; /* keep at end */ 594 }; 595 596 struct dma_pl330_desc { 597 /* To attach to a queue as child */ 598 struct list_head node; 599 600 /* Descriptor for the DMA Engine API */ 601 struct dma_async_tx_descriptor txd; 602 603 /* Xfer for PL330 core */ 604 struct pl330_xfer px; 605 606 struct pl330_reqcfg rqcfg; 607 struct pl330_req req; 608 609 enum desc_status status; 610 611 /* The channel which currently holds this desc */ 612 struct dma_pl330_chan *pchan; 613 }; 614 615 static inline void _callback(struct pl330_req *r, enum pl330_op_err err) 616 { 617 if (r && r->xfer_cb) 618 r->xfer_cb(r->token, err); 619 } 620 621 static inline bool _queue_empty(struct pl330_thread *thrd) 622 { 623 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1])) 624 ? true : false; 625 } 626 627 static inline bool _queue_full(struct pl330_thread *thrd) 628 { 629 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1])) 630 ? false : true; 631 } 632 633 static inline bool is_manager(struct pl330_thread *thrd) 634 { 635 struct pl330_dmac *pl330 = thrd->dmac; 636 637 /* MANAGER is indexed at the end */ 638 if (thrd->id == pl330->pinfo->pcfg.num_chan) 639 return true; 640 else 641 return false; 642 } 643 644 /* If manager of the thread is in Non-Secure mode */ 645 static inline bool _manager_ns(struct pl330_thread *thrd) 646 { 647 struct pl330_dmac *pl330 = thrd->dmac; 648 649 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false; 650 } 651 652 static inline u32 get_revision(u32 periph_id) 653 { 654 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 655 } 656 657 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 658 enum pl330_dst da, u16 val) 659 { 660 if (dry_run) 661 return SZ_DMAADDH; 662 663 buf[0] = CMD_DMAADDH; 664 buf[0] |= (da << 1); 665 *((u16 *)&buf[1]) = val; 666 667 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 668 da == 1 ? "DA" : "SA", val); 669 670 return SZ_DMAADDH; 671 } 672 673 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 674 { 675 if (dry_run) 676 return SZ_DMAEND; 677 678 buf[0] = CMD_DMAEND; 679 680 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 681 682 return SZ_DMAEND; 683 } 684 685 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 686 { 687 if (dry_run) 688 return SZ_DMAFLUSHP; 689 690 buf[0] = CMD_DMAFLUSHP; 691 692 peri &= 0x1f; 693 peri <<= 3; 694 buf[1] = peri; 695 696 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 697 698 return SZ_DMAFLUSHP; 699 } 700 701 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 702 { 703 if (dry_run) 704 return SZ_DMALD; 705 706 buf[0] = CMD_DMALD; 707 708 if (cond == SINGLE) 709 buf[0] |= (0 << 1) | (1 << 0); 710 else if (cond == BURST) 711 buf[0] |= (1 << 1) | (1 << 0); 712 713 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 714 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 715 716 return SZ_DMALD; 717 } 718 719 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 720 enum pl330_cond cond, u8 peri) 721 { 722 if (dry_run) 723 return SZ_DMALDP; 724 725 buf[0] = CMD_DMALDP; 726 727 if (cond == BURST) 728 buf[0] |= (1 << 1); 729 730 peri &= 0x1f; 731 peri <<= 3; 732 buf[1] = peri; 733 734 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 735 cond == SINGLE ? 'S' : 'B', peri >> 3); 736 737 return SZ_DMALDP; 738 } 739 740 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 741 unsigned loop, u8 cnt) 742 { 743 if (dry_run) 744 return SZ_DMALP; 745 746 buf[0] = CMD_DMALP; 747 748 if (loop) 749 buf[0] |= (1 << 1); 750 751 cnt--; /* DMAC increments by 1 internally */ 752 buf[1] = cnt; 753 754 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 755 756 return SZ_DMALP; 757 } 758 759 struct _arg_LPEND { 760 enum pl330_cond cond; 761 bool forever; 762 unsigned loop; 763 u8 bjump; 764 }; 765 766 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 767 const struct _arg_LPEND *arg) 768 { 769 enum pl330_cond cond = arg->cond; 770 bool forever = arg->forever; 771 unsigned loop = arg->loop; 772 u8 bjump = arg->bjump; 773 774 if (dry_run) 775 return SZ_DMALPEND; 776 777 buf[0] = CMD_DMALPEND; 778 779 if (loop) 780 buf[0] |= (1 << 2); 781 782 if (!forever) 783 buf[0] |= (1 << 4); 784 785 if (cond == SINGLE) 786 buf[0] |= (0 << 1) | (1 << 0); 787 else if (cond == BURST) 788 buf[0] |= (1 << 1) | (1 << 0); 789 790 buf[1] = bjump; 791 792 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 793 forever ? "FE" : "END", 794 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 795 loop ? '1' : '0', 796 bjump); 797 798 return SZ_DMALPEND; 799 } 800 801 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 802 { 803 if (dry_run) 804 return SZ_DMAKILL; 805 806 buf[0] = CMD_DMAKILL; 807 808 return SZ_DMAKILL; 809 } 810 811 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 812 enum dmamov_dst dst, u32 val) 813 { 814 if (dry_run) 815 return SZ_DMAMOV; 816 817 buf[0] = CMD_DMAMOV; 818 buf[1] = dst; 819 *((u32 *)&buf[2]) = val; 820 821 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 822 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 823 824 return SZ_DMAMOV; 825 } 826 827 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 828 { 829 if (dry_run) 830 return SZ_DMANOP; 831 832 buf[0] = CMD_DMANOP; 833 834 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 835 836 return SZ_DMANOP; 837 } 838 839 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 840 { 841 if (dry_run) 842 return SZ_DMARMB; 843 844 buf[0] = CMD_DMARMB; 845 846 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 847 848 return SZ_DMARMB; 849 } 850 851 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 852 { 853 if (dry_run) 854 return SZ_DMASEV; 855 856 buf[0] = CMD_DMASEV; 857 858 ev &= 0x1f; 859 ev <<= 3; 860 buf[1] = ev; 861 862 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 863 864 return SZ_DMASEV; 865 } 866 867 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 868 { 869 if (dry_run) 870 return SZ_DMAST; 871 872 buf[0] = CMD_DMAST; 873 874 if (cond == SINGLE) 875 buf[0] |= (0 << 1) | (1 << 0); 876 else if (cond == BURST) 877 buf[0] |= (1 << 1) | (1 << 0); 878 879 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 880 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 881 882 return SZ_DMAST; 883 } 884 885 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 886 enum pl330_cond cond, u8 peri) 887 { 888 if (dry_run) 889 return SZ_DMASTP; 890 891 buf[0] = CMD_DMASTP; 892 893 if (cond == BURST) 894 buf[0] |= (1 << 1); 895 896 peri &= 0x1f; 897 peri <<= 3; 898 buf[1] = peri; 899 900 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 901 cond == SINGLE ? 'S' : 'B', peri >> 3); 902 903 return SZ_DMASTP; 904 } 905 906 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 907 { 908 if (dry_run) 909 return SZ_DMASTZ; 910 911 buf[0] = CMD_DMASTZ; 912 913 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 914 915 return SZ_DMASTZ; 916 } 917 918 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 919 unsigned invalidate) 920 { 921 if (dry_run) 922 return SZ_DMAWFE; 923 924 buf[0] = CMD_DMAWFE; 925 926 ev &= 0x1f; 927 ev <<= 3; 928 buf[1] = ev; 929 930 if (invalidate) 931 buf[1] |= (1 << 1); 932 933 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 934 ev >> 3, invalidate ? ", I" : ""); 935 936 return SZ_DMAWFE; 937 } 938 939 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 940 enum pl330_cond cond, u8 peri) 941 { 942 if (dry_run) 943 return SZ_DMAWFP; 944 945 buf[0] = CMD_DMAWFP; 946 947 if (cond == SINGLE) 948 buf[0] |= (0 << 1) | (0 << 0); 949 else if (cond == BURST) 950 buf[0] |= (1 << 1) | (0 << 0); 951 else 952 buf[0] |= (0 << 1) | (1 << 0); 953 954 peri &= 0x1f; 955 peri <<= 3; 956 buf[1] = peri; 957 958 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 959 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 960 961 return SZ_DMAWFP; 962 } 963 964 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 965 { 966 if (dry_run) 967 return SZ_DMAWMB; 968 969 buf[0] = CMD_DMAWMB; 970 971 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 972 973 return SZ_DMAWMB; 974 } 975 976 struct _arg_GO { 977 u8 chan; 978 u32 addr; 979 unsigned ns; 980 }; 981 982 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 983 const struct _arg_GO *arg) 984 { 985 u8 chan = arg->chan; 986 u32 addr = arg->addr; 987 unsigned ns = arg->ns; 988 989 if (dry_run) 990 return SZ_DMAGO; 991 992 buf[0] = CMD_DMAGO; 993 buf[0] |= (ns << 1); 994 995 buf[1] = chan & 0x7; 996 997 *((u32 *)&buf[2]) = addr; 998 999 return SZ_DMAGO; 1000 } 1001 1002 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 1003 1004 /* Returns Time-Out */ 1005 static bool _until_dmac_idle(struct pl330_thread *thrd) 1006 { 1007 void __iomem *regs = thrd->dmac->pinfo->base; 1008 unsigned long loops = msecs_to_loops(5); 1009 1010 do { 1011 /* Until Manager is Idle */ 1012 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 1013 break; 1014 1015 cpu_relax(); 1016 } while (--loops); 1017 1018 if (!loops) 1019 return true; 1020 1021 return false; 1022 } 1023 1024 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 1025 u8 insn[], bool as_manager) 1026 { 1027 void __iomem *regs = thrd->dmac->pinfo->base; 1028 u32 val; 1029 1030 val = (insn[0] << 16) | (insn[1] << 24); 1031 if (!as_manager) { 1032 val |= (1 << 0); 1033 val |= (thrd->id << 8); /* Channel Number */ 1034 } 1035 writel(val, regs + DBGINST0); 1036 1037 val = *((u32 *)&insn[2]); 1038 writel(val, regs + DBGINST1); 1039 1040 /* If timed out due to halted state-machine */ 1041 if (_until_dmac_idle(thrd)) { 1042 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n"); 1043 return; 1044 } 1045 1046 /* Get going */ 1047 writel(0, regs + DBGCMD); 1048 } 1049 1050 /* 1051 * Mark a _pl330_req as free. 1052 * We do it by writing DMAEND as the first instruction 1053 * because no valid request is going to have DMAEND as 1054 * its first instruction to execute. 1055 */ 1056 static void mark_free(struct pl330_thread *thrd, int idx) 1057 { 1058 struct _pl330_req *req = &thrd->req[idx]; 1059 1060 _emit_END(0, req->mc_cpu); 1061 req->mc_len = 0; 1062 1063 thrd->req_running = -1; 1064 } 1065 1066 static inline u32 _state(struct pl330_thread *thrd) 1067 { 1068 void __iomem *regs = thrd->dmac->pinfo->base; 1069 u32 val; 1070 1071 if (is_manager(thrd)) 1072 val = readl(regs + DS) & 0xf; 1073 else 1074 val = readl(regs + CS(thrd->id)) & 0xf; 1075 1076 switch (val) { 1077 case DS_ST_STOP: 1078 return PL330_STATE_STOPPED; 1079 case DS_ST_EXEC: 1080 return PL330_STATE_EXECUTING; 1081 case DS_ST_CMISS: 1082 return PL330_STATE_CACHEMISS; 1083 case DS_ST_UPDTPC: 1084 return PL330_STATE_UPDTPC; 1085 case DS_ST_WFE: 1086 return PL330_STATE_WFE; 1087 case DS_ST_FAULT: 1088 return PL330_STATE_FAULTING; 1089 case DS_ST_ATBRR: 1090 if (is_manager(thrd)) 1091 return PL330_STATE_INVALID; 1092 else 1093 return PL330_STATE_ATBARRIER; 1094 case DS_ST_QBUSY: 1095 if (is_manager(thrd)) 1096 return PL330_STATE_INVALID; 1097 else 1098 return PL330_STATE_QUEUEBUSY; 1099 case DS_ST_WFP: 1100 if (is_manager(thrd)) 1101 return PL330_STATE_INVALID; 1102 else 1103 return PL330_STATE_WFP; 1104 case DS_ST_KILL: 1105 if (is_manager(thrd)) 1106 return PL330_STATE_INVALID; 1107 else 1108 return PL330_STATE_KILLING; 1109 case DS_ST_CMPLT: 1110 if (is_manager(thrd)) 1111 return PL330_STATE_INVALID; 1112 else 1113 return PL330_STATE_COMPLETING; 1114 case DS_ST_FLTCMP: 1115 if (is_manager(thrd)) 1116 return PL330_STATE_INVALID; 1117 else 1118 return PL330_STATE_FAULT_COMPLETING; 1119 default: 1120 return PL330_STATE_INVALID; 1121 } 1122 } 1123 1124 static void _stop(struct pl330_thread *thrd) 1125 { 1126 void __iomem *regs = thrd->dmac->pinfo->base; 1127 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1128 1129 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1130 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1131 1132 /* Return if nothing needs to be done */ 1133 if (_state(thrd) == PL330_STATE_COMPLETING 1134 || _state(thrd) == PL330_STATE_KILLING 1135 || _state(thrd) == PL330_STATE_STOPPED) 1136 return; 1137 1138 _emit_KILL(0, insn); 1139 1140 /* Stop generating interrupts for SEV */ 1141 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1142 1143 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1144 } 1145 1146 /* Start doing req 'idx' of thread 'thrd' */ 1147 static bool _trigger(struct pl330_thread *thrd) 1148 { 1149 void __iomem *regs = thrd->dmac->pinfo->base; 1150 struct _pl330_req *req; 1151 struct pl330_req *r; 1152 struct _arg_GO go; 1153 unsigned ns; 1154 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1155 int idx; 1156 1157 /* Return if already ACTIVE */ 1158 if (_state(thrd) != PL330_STATE_STOPPED) 1159 return true; 1160 1161 idx = 1 - thrd->lstenq; 1162 if (!IS_FREE(&thrd->req[idx])) 1163 req = &thrd->req[idx]; 1164 else { 1165 idx = thrd->lstenq; 1166 if (!IS_FREE(&thrd->req[idx])) 1167 req = &thrd->req[idx]; 1168 else 1169 req = NULL; 1170 } 1171 1172 /* Return if no request */ 1173 if (!req || !req->r) 1174 return true; 1175 1176 r = req->r; 1177 1178 if (r->cfg) 1179 ns = r->cfg->nonsecure ? 1 : 0; 1180 else if (readl(regs + CS(thrd->id)) & CS_CNS) 1181 ns = 1; 1182 else 1183 ns = 0; 1184 1185 /* See 'Abort Sources' point-4 at Page 2-25 */ 1186 if (_manager_ns(thrd) && !ns) 1187 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n", 1188 __func__, __LINE__); 1189 1190 go.chan = thrd->id; 1191 go.addr = req->mc_bus; 1192 go.ns = ns; 1193 _emit_GO(0, insn, &go); 1194 1195 /* Set to generate interrupts for SEV */ 1196 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1197 1198 /* Only manager can execute GO */ 1199 _execute_DBGINSN(thrd, insn, true); 1200 1201 thrd->req_running = idx; 1202 1203 return true; 1204 } 1205 1206 static bool _start(struct pl330_thread *thrd) 1207 { 1208 switch (_state(thrd)) { 1209 case PL330_STATE_FAULT_COMPLETING: 1210 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1211 1212 if (_state(thrd) == PL330_STATE_KILLING) 1213 UNTIL(thrd, PL330_STATE_STOPPED) 1214 1215 case PL330_STATE_FAULTING: 1216 _stop(thrd); 1217 1218 case PL330_STATE_KILLING: 1219 case PL330_STATE_COMPLETING: 1220 UNTIL(thrd, PL330_STATE_STOPPED) 1221 1222 case PL330_STATE_STOPPED: 1223 return _trigger(thrd); 1224 1225 case PL330_STATE_WFP: 1226 case PL330_STATE_QUEUEBUSY: 1227 case PL330_STATE_ATBARRIER: 1228 case PL330_STATE_UPDTPC: 1229 case PL330_STATE_CACHEMISS: 1230 case PL330_STATE_EXECUTING: 1231 return true; 1232 1233 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1234 default: 1235 return false; 1236 } 1237 } 1238 1239 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1240 const struct _xfer_spec *pxs, int cyc) 1241 { 1242 int off = 0; 1243 struct pl330_config *pcfg = pxs->r->cfg->pcfg; 1244 1245 /* check lock-up free version */ 1246 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1247 while (cyc--) { 1248 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1249 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1250 } 1251 } else { 1252 while (cyc--) { 1253 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1254 off += _emit_RMB(dry_run, &buf[off]); 1255 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1256 off += _emit_WMB(dry_run, &buf[off]); 1257 } 1258 } 1259 1260 return off; 1261 } 1262 1263 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1264 const struct _xfer_spec *pxs, int cyc) 1265 { 1266 int off = 0; 1267 1268 while (cyc--) { 1269 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1270 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1271 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1272 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1273 } 1274 1275 return off; 1276 } 1277 1278 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1279 const struct _xfer_spec *pxs, int cyc) 1280 { 1281 int off = 0; 1282 1283 while (cyc--) { 1284 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1285 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1286 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1287 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1288 } 1289 1290 return off; 1291 } 1292 1293 static int _bursts(unsigned dry_run, u8 buf[], 1294 const struct _xfer_spec *pxs, int cyc) 1295 { 1296 int off = 0; 1297 1298 switch (pxs->r->rqtype) { 1299 case MEMTODEV: 1300 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1301 break; 1302 case DEVTOMEM: 1303 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1304 break; 1305 case MEMTOMEM: 1306 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1307 break; 1308 default: 1309 off += 0x40000000; /* Scare off the Client */ 1310 break; 1311 } 1312 1313 return off; 1314 } 1315 1316 /* Returns bytes consumed and updates bursts */ 1317 static inline int _loop(unsigned dry_run, u8 buf[], 1318 unsigned long *bursts, const struct _xfer_spec *pxs) 1319 { 1320 int cyc, cycmax, szlp, szlpend, szbrst, off; 1321 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1322 struct _arg_LPEND lpend; 1323 1324 /* Max iterations possible in DMALP is 256 */ 1325 if (*bursts >= 256*256) { 1326 lcnt1 = 256; 1327 lcnt0 = 256; 1328 cyc = *bursts / lcnt1 / lcnt0; 1329 } else if (*bursts > 256) { 1330 lcnt1 = 256; 1331 lcnt0 = *bursts / lcnt1; 1332 cyc = 1; 1333 } else { 1334 lcnt1 = *bursts; 1335 lcnt0 = 0; 1336 cyc = 1; 1337 } 1338 1339 szlp = _emit_LP(1, buf, 0, 0); 1340 szbrst = _bursts(1, buf, pxs, 1); 1341 1342 lpend.cond = ALWAYS; 1343 lpend.forever = false; 1344 lpend.loop = 0; 1345 lpend.bjump = 0; 1346 szlpend = _emit_LPEND(1, buf, &lpend); 1347 1348 if (lcnt0) { 1349 szlp *= 2; 1350 szlpend *= 2; 1351 } 1352 1353 /* 1354 * Max bursts that we can unroll due to limit on the 1355 * size of backward jump that can be encoded in DMALPEND 1356 * which is 8-bits and hence 255 1357 */ 1358 cycmax = (255 - (szlp + szlpend)) / szbrst; 1359 1360 cyc = (cycmax < cyc) ? cycmax : cyc; 1361 1362 off = 0; 1363 1364 if (lcnt0) { 1365 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1366 ljmp0 = off; 1367 } 1368 1369 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1370 ljmp1 = off; 1371 1372 off += _bursts(dry_run, &buf[off], pxs, cyc); 1373 1374 lpend.cond = ALWAYS; 1375 lpend.forever = false; 1376 lpend.loop = 1; 1377 lpend.bjump = off - ljmp1; 1378 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1379 1380 if (lcnt0) { 1381 lpend.cond = ALWAYS; 1382 lpend.forever = false; 1383 lpend.loop = 0; 1384 lpend.bjump = off - ljmp0; 1385 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1386 } 1387 1388 *bursts = lcnt1 * cyc; 1389 if (lcnt0) 1390 *bursts *= lcnt0; 1391 1392 return off; 1393 } 1394 1395 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1396 const struct _xfer_spec *pxs) 1397 { 1398 struct pl330_xfer *x = pxs->x; 1399 u32 ccr = pxs->ccr; 1400 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1401 int off = 0; 1402 1403 while (bursts) { 1404 c = bursts; 1405 off += _loop(dry_run, &buf[off], &c, pxs); 1406 bursts -= c; 1407 } 1408 1409 return off; 1410 } 1411 1412 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1413 const struct _xfer_spec *pxs) 1414 { 1415 struct pl330_xfer *x = pxs->x; 1416 int off = 0; 1417 1418 /* DMAMOV SAR, x->src_addr */ 1419 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1420 /* DMAMOV DAR, x->dst_addr */ 1421 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1422 1423 /* Setup Loop(s) */ 1424 off += _setup_loops(dry_run, &buf[off], pxs); 1425 1426 return off; 1427 } 1428 1429 /* 1430 * A req is a sequence of one or more xfer units. 1431 * Returns the number of bytes taken to setup the MC for the req. 1432 */ 1433 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1434 unsigned index, struct _xfer_spec *pxs) 1435 { 1436 struct _pl330_req *req = &thrd->req[index]; 1437 struct pl330_xfer *x; 1438 u8 *buf = req->mc_cpu; 1439 int off = 0; 1440 1441 PL330_DBGMC_START(req->mc_bus); 1442 1443 /* DMAMOV CCR, ccr */ 1444 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1445 1446 x = pxs->r->x; 1447 do { 1448 /* Error if xfer length is not aligned at burst size */ 1449 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1450 return -EINVAL; 1451 1452 pxs->x = x; 1453 off += _setup_xfer(dry_run, &buf[off], pxs); 1454 1455 x = x->next; 1456 } while (x); 1457 1458 /* DMASEV peripheral/event */ 1459 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1460 /* DMAEND */ 1461 off += _emit_END(dry_run, &buf[off]); 1462 1463 return off; 1464 } 1465 1466 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1467 { 1468 u32 ccr = 0; 1469 1470 if (rqc->src_inc) 1471 ccr |= CC_SRCINC; 1472 1473 if (rqc->dst_inc) 1474 ccr |= CC_DSTINC; 1475 1476 /* We set same protection levels for Src and DST for now */ 1477 if (rqc->privileged) 1478 ccr |= CC_SRCPRI | CC_DSTPRI; 1479 if (rqc->nonsecure) 1480 ccr |= CC_SRCNS | CC_DSTNS; 1481 if (rqc->insnaccess) 1482 ccr |= CC_SRCIA | CC_DSTIA; 1483 1484 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1485 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1486 1487 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1488 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1489 1490 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1491 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1492 1493 ccr |= (rqc->swap << CC_SWAP_SHFT); 1494 1495 return ccr; 1496 } 1497 1498 static inline bool _is_valid(u32 ccr) 1499 { 1500 enum pl330_dstcachectrl dcctl; 1501 enum pl330_srccachectrl scctl; 1502 1503 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK; 1504 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK; 1505 1506 if (dcctl == DINVALID1 || dcctl == DINVALID2 1507 || scctl == SINVALID1 || scctl == SINVALID2) 1508 return false; 1509 else 1510 return true; 1511 } 1512 1513 /* 1514 * Submit a list of xfers after which the client wants notification. 1515 * Client is not notified after each xfer unit, just once after all 1516 * xfer units are done or some error occurs. 1517 */ 1518 static int pl330_submit_req(void *ch_id, struct pl330_req *r) 1519 { 1520 struct pl330_thread *thrd = ch_id; 1521 struct pl330_dmac *pl330; 1522 struct pl330_info *pi; 1523 struct _xfer_spec xs; 1524 unsigned long flags; 1525 void __iomem *regs; 1526 unsigned idx; 1527 u32 ccr; 1528 int ret = 0; 1529 1530 /* No Req or Unacquired Channel or DMAC */ 1531 if (!r || !thrd || thrd->free) 1532 return -EINVAL; 1533 1534 pl330 = thrd->dmac; 1535 pi = pl330->pinfo; 1536 regs = pi->base; 1537 1538 if (pl330->state == DYING 1539 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1540 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n", 1541 __func__, __LINE__); 1542 return -EAGAIN; 1543 } 1544 1545 /* If request for non-existing peripheral */ 1546 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) { 1547 dev_info(thrd->dmac->pinfo->dev, 1548 "%s:%d Invalid peripheral(%u)!\n", 1549 __func__, __LINE__, r->peri); 1550 return -EINVAL; 1551 } 1552 1553 spin_lock_irqsave(&pl330->lock, flags); 1554 1555 if (_queue_full(thrd)) { 1556 ret = -EAGAIN; 1557 goto xfer_exit; 1558 } 1559 1560 1561 /* Use last settings, if not provided */ 1562 if (r->cfg) { 1563 /* Prefer Secure Channel */ 1564 if (!_manager_ns(thrd)) 1565 r->cfg->nonsecure = 0; 1566 else 1567 r->cfg->nonsecure = 1; 1568 1569 ccr = _prepare_ccr(r->cfg); 1570 } else { 1571 ccr = readl(regs + CC(thrd->id)); 1572 } 1573 1574 /* If this req doesn't have valid xfer settings */ 1575 if (!_is_valid(ccr)) { 1576 ret = -EINVAL; 1577 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n", 1578 __func__, __LINE__, ccr); 1579 goto xfer_exit; 1580 } 1581 1582 idx = IS_FREE(&thrd->req[0]) ? 0 : 1; 1583 1584 xs.ccr = ccr; 1585 xs.r = r; 1586 1587 /* First dry run to check if req is acceptable */ 1588 ret = _setup_req(1, thrd, idx, &xs); 1589 if (ret < 0) 1590 goto xfer_exit; 1591 1592 if (ret > pi->mcbufsz / 2) { 1593 dev_info(thrd->dmac->pinfo->dev, 1594 "%s:%d Trying increasing mcbufsz\n", 1595 __func__, __LINE__); 1596 ret = -ENOMEM; 1597 goto xfer_exit; 1598 } 1599 1600 /* Hook the request */ 1601 thrd->lstenq = idx; 1602 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs); 1603 thrd->req[idx].r = r; 1604 1605 ret = 0; 1606 1607 xfer_exit: 1608 spin_unlock_irqrestore(&pl330->lock, flags); 1609 1610 return ret; 1611 } 1612 1613 static void pl330_dotask(unsigned long data) 1614 { 1615 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1616 struct pl330_info *pi = pl330->pinfo; 1617 unsigned long flags; 1618 int i; 1619 1620 spin_lock_irqsave(&pl330->lock, flags); 1621 1622 /* The DMAC itself gone nuts */ 1623 if (pl330->dmac_tbd.reset_dmac) { 1624 pl330->state = DYING; 1625 /* Reset the manager too */ 1626 pl330->dmac_tbd.reset_mngr = true; 1627 /* Clear the reset flag */ 1628 pl330->dmac_tbd.reset_dmac = false; 1629 } 1630 1631 if (pl330->dmac_tbd.reset_mngr) { 1632 _stop(pl330->manager); 1633 /* Reset all channels */ 1634 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1; 1635 /* Clear the reset flag */ 1636 pl330->dmac_tbd.reset_mngr = false; 1637 } 1638 1639 for (i = 0; i < pi->pcfg.num_chan; i++) { 1640 1641 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1642 struct pl330_thread *thrd = &pl330->channels[i]; 1643 void __iomem *regs = pi->base; 1644 enum pl330_op_err err; 1645 1646 _stop(thrd); 1647 1648 if (readl(regs + FSC) & (1 << thrd->id)) 1649 err = PL330_ERR_FAIL; 1650 else 1651 err = PL330_ERR_ABORT; 1652 1653 spin_unlock_irqrestore(&pl330->lock, flags); 1654 1655 _callback(thrd->req[1 - thrd->lstenq].r, err); 1656 _callback(thrd->req[thrd->lstenq].r, err); 1657 1658 spin_lock_irqsave(&pl330->lock, flags); 1659 1660 thrd->req[0].r = NULL; 1661 thrd->req[1].r = NULL; 1662 mark_free(thrd, 0); 1663 mark_free(thrd, 1); 1664 1665 /* Clear the reset flag */ 1666 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1667 } 1668 } 1669 1670 spin_unlock_irqrestore(&pl330->lock, flags); 1671 1672 return; 1673 } 1674 1675 /* Returns 1 if state was updated, 0 otherwise */ 1676 static int pl330_update(const struct pl330_info *pi) 1677 { 1678 struct pl330_req *rqdone, *tmp; 1679 struct pl330_dmac *pl330; 1680 unsigned long flags; 1681 void __iomem *regs; 1682 u32 val; 1683 int id, ev, ret = 0; 1684 1685 if (!pi || !pi->pl330_data) 1686 return 0; 1687 1688 regs = pi->base; 1689 pl330 = pi->pl330_data; 1690 1691 spin_lock_irqsave(&pl330->lock, flags); 1692 1693 val = readl(regs + FSM) & 0x1; 1694 if (val) 1695 pl330->dmac_tbd.reset_mngr = true; 1696 else 1697 pl330->dmac_tbd.reset_mngr = false; 1698 1699 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1); 1700 pl330->dmac_tbd.reset_chan |= val; 1701 if (val) { 1702 int i = 0; 1703 while (i < pi->pcfg.num_chan) { 1704 if (val & (1 << i)) { 1705 dev_info(pi->dev, 1706 "Reset Channel-%d\t CS-%x FTC-%x\n", 1707 i, readl(regs + CS(i)), 1708 readl(regs + FTC(i))); 1709 _stop(&pl330->channels[i]); 1710 } 1711 i++; 1712 } 1713 } 1714 1715 /* Check which event happened i.e, thread notified */ 1716 val = readl(regs + ES); 1717 if (pi->pcfg.num_events < 32 1718 && val & ~((1 << pi->pcfg.num_events) - 1)) { 1719 pl330->dmac_tbd.reset_dmac = true; 1720 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__); 1721 ret = 1; 1722 goto updt_exit; 1723 } 1724 1725 for (ev = 0; ev < pi->pcfg.num_events; ev++) { 1726 if (val & (1 << ev)) { /* Event occurred */ 1727 struct pl330_thread *thrd; 1728 u32 inten = readl(regs + INTEN); 1729 int active; 1730 1731 /* Clear the event */ 1732 if (inten & (1 << ev)) 1733 writel(1 << ev, regs + INTCLR); 1734 1735 ret = 1; 1736 1737 id = pl330->events[ev]; 1738 1739 thrd = &pl330->channels[id]; 1740 1741 active = thrd->req_running; 1742 if (active == -1) /* Aborted */ 1743 continue; 1744 1745 /* Detach the req */ 1746 rqdone = thrd->req[active].r; 1747 thrd->req[active].r = NULL; 1748 1749 mark_free(thrd, active); 1750 1751 /* Get going again ASAP */ 1752 _start(thrd); 1753 1754 /* For now, just make a list of callbacks to be done */ 1755 list_add_tail(&rqdone->rqd, &pl330->req_done); 1756 } 1757 } 1758 1759 /* Now that we are in no hurry, do the callbacks */ 1760 list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) { 1761 list_del(&rqdone->rqd); 1762 1763 spin_unlock_irqrestore(&pl330->lock, flags); 1764 _callback(rqdone, PL330_ERR_NONE); 1765 spin_lock_irqsave(&pl330->lock, flags); 1766 } 1767 1768 updt_exit: 1769 spin_unlock_irqrestore(&pl330->lock, flags); 1770 1771 if (pl330->dmac_tbd.reset_dmac 1772 || pl330->dmac_tbd.reset_mngr 1773 || pl330->dmac_tbd.reset_chan) { 1774 ret = 1; 1775 tasklet_schedule(&pl330->tasks); 1776 } 1777 1778 return ret; 1779 } 1780 1781 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op) 1782 { 1783 struct pl330_thread *thrd = ch_id; 1784 struct pl330_dmac *pl330; 1785 unsigned long flags; 1786 int ret = 0, active; 1787 1788 if (!thrd || thrd->free || thrd->dmac->state == DYING) 1789 return -EINVAL; 1790 1791 pl330 = thrd->dmac; 1792 active = thrd->req_running; 1793 1794 spin_lock_irqsave(&pl330->lock, flags); 1795 1796 switch (op) { 1797 case PL330_OP_FLUSH: 1798 /* Make sure the channel is stopped */ 1799 _stop(thrd); 1800 1801 thrd->req[0].r = NULL; 1802 thrd->req[1].r = NULL; 1803 mark_free(thrd, 0); 1804 mark_free(thrd, 1); 1805 break; 1806 1807 case PL330_OP_ABORT: 1808 /* Make sure the channel is stopped */ 1809 _stop(thrd); 1810 1811 /* ABORT is only for the active req */ 1812 if (active == -1) 1813 break; 1814 1815 thrd->req[active].r = NULL; 1816 mark_free(thrd, active); 1817 1818 /* Start the next */ 1819 case PL330_OP_START: 1820 if ((active == -1) && !_start(thrd)) 1821 ret = -EIO; 1822 break; 1823 1824 default: 1825 ret = -EINVAL; 1826 } 1827 1828 spin_unlock_irqrestore(&pl330->lock, flags); 1829 return ret; 1830 } 1831 1832 /* Reserve an event */ 1833 static inline int _alloc_event(struct pl330_thread *thrd) 1834 { 1835 struct pl330_dmac *pl330 = thrd->dmac; 1836 struct pl330_info *pi = pl330->pinfo; 1837 int ev; 1838 1839 for (ev = 0; ev < pi->pcfg.num_events; ev++) 1840 if (pl330->events[ev] == -1) { 1841 pl330->events[ev] = thrd->id; 1842 return ev; 1843 } 1844 1845 return -1; 1846 } 1847 1848 static bool _chan_ns(const struct pl330_info *pi, int i) 1849 { 1850 return pi->pcfg.irq_ns & (1 << i); 1851 } 1852 1853 /* Upon success, returns IdentityToken for the 1854 * allocated channel, NULL otherwise. 1855 */ 1856 static void *pl330_request_channel(const struct pl330_info *pi) 1857 { 1858 struct pl330_thread *thrd = NULL; 1859 struct pl330_dmac *pl330; 1860 unsigned long flags; 1861 int chans, i; 1862 1863 if (!pi || !pi->pl330_data) 1864 return NULL; 1865 1866 pl330 = pi->pl330_data; 1867 1868 if (pl330->state == DYING) 1869 return NULL; 1870 1871 chans = pi->pcfg.num_chan; 1872 1873 spin_lock_irqsave(&pl330->lock, flags); 1874 1875 for (i = 0; i < chans; i++) { 1876 thrd = &pl330->channels[i]; 1877 if ((thrd->free) && (!_manager_ns(thrd) || 1878 _chan_ns(pi, i))) { 1879 thrd->ev = _alloc_event(thrd); 1880 if (thrd->ev >= 0) { 1881 thrd->free = false; 1882 thrd->lstenq = 1; 1883 thrd->req[0].r = NULL; 1884 mark_free(thrd, 0); 1885 thrd->req[1].r = NULL; 1886 mark_free(thrd, 1); 1887 break; 1888 } 1889 } 1890 thrd = NULL; 1891 } 1892 1893 spin_unlock_irqrestore(&pl330->lock, flags); 1894 1895 return thrd; 1896 } 1897 1898 /* Release an event */ 1899 static inline void _free_event(struct pl330_thread *thrd, int ev) 1900 { 1901 struct pl330_dmac *pl330 = thrd->dmac; 1902 struct pl330_info *pi = pl330->pinfo; 1903 1904 /* If the event is valid and was held by the thread */ 1905 if (ev >= 0 && ev < pi->pcfg.num_events 1906 && pl330->events[ev] == thrd->id) 1907 pl330->events[ev] = -1; 1908 } 1909 1910 static void pl330_release_channel(void *ch_id) 1911 { 1912 struct pl330_thread *thrd = ch_id; 1913 struct pl330_dmac *pl330; 1914 unsigned long flags; 1915 1916 if (!thrd || thrd->free) 1917 return; 1918 1919 _stop(thrd); 1920 1921 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT); 1922 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT); 1923 1924 pl330 = thrd->dmac; 1925 1926 spin_lock_irqsave(&pl330->lock, flags); 1927 _free_event(thrd, thrd->ev); 1928 thrd->free = true; 1929 spin_unlock_irqrestore(&pl330->lock, flags); 1930 } 1931 1932 /* Initialize the structure for PL330 configuration, that can be used 1933 * by the client driver the make best use of the DMAC 1934 */ 1935 static void read_dmac_config(struct pl330_info *pi) 1936 { 1937 void __iomem *regs = pi->base; 1938 u32 val; 1939 1940 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1941 val &= CRD_DATA_WIDTH_MASK; 1942 pi->pcfg.data_bus_width = 8 * (1 << val); 1943 1944 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1945 val &= CRD_DATA_BUFF_MASK; 1946 pi->pcfg.data_buf_dep = val + 1; 1947 1948 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1949 val &= CR0_NUM_CHANS_MASK; 1950 val += 1; 1951 pi->pcfg.num_chan = val; 1952 1953 val = readl(regs + CR0); 1954 if (val & CR0_PERIPH_REQ_SET) { 1955 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1956 val += 1; 1957 pi->pcfg.num_peri = val; 1958 pi->pcfg.peri_ns = readl(regs + CR4); 1959 } else { 1960 pi->pcfg.num_peri = 0; 1961 } 1962 1963 val = readl(regs + CR0); 1964 if (val & CR0_BOOT_MAN_NS) 1965 pi->pcfg.mode |= DMAC_MODE_NS; 1966 else 1967 pi->pcfg.mode &= ~DMAC_MODE_NS; 1968 1969 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1970 val &= CR0_NUM_EVENTS_MASK; 1971 val += 1; 1972 pi->pcfg.num_events = val; 1973 1974 pi->pcfg.irq_ns = readl(regs + CR3); 1975 } 1976 1977 static inline void _reset_thread(struct pl330_thread *thrd) 1978 { 1979 struct pl330_dmac *pl330 = thrd->dmac; 1980 struct pl330_info *pi = pl330->pinfo; 1981 1982 thrd->req[0].mc_cpu = pl330->mcode_cpu 1983 + (thrd->id * pi->mcbufsz); 1984 thrd->req[0].mc_bus = pl330->mcode_bus 1985 + (thrd->id * pi->mcbufsz); 1986 thrd->req[0].r = NULL; 1987 mark_free(thrd, 0); 1988 1989 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1990 + pi->mcbufsz / 2; 1991 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1992 + pi->mcbufsz / 2; 1993 thrd->req[1].r = NULL; 1994 mark_free(thrd, 1); 1995 } 1996 1997 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1998 { 1999 struct pl330_info *pi = pl330->pinfo; 2000 int chans = pi->pcfg.num_chan; 2001 struct pl330_thread *thrd; 2002 int i; 2003 2004 /* Allocate 1 Manager and 'chans' Channel threads */ 2005 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 2006 GFP_KERNEL); 2007 if (!pl330->channels) 2008 return -ENOMEM; 2009 2010 /* Init Channel threads */ 2011 for (i = 0; i < chans; i++) { 2012 thrd = &pl330->channels[i]; 2013 thrd->id = i; 2014 thrd->dmac = pl330; 2015 _reset_thread(thrd); 2016 thrd->free = true; 2017 } 2018 2019 /* MANAGER is indexed at the end */ 2020 thrd = &pl330->channels[chans]; 2021 thrd->id = chans; 2022 thrd->dmac = pl330; 2023 thrd->free = false; 2024 pl330->manager = thrd; 2025 2026 return 0; 2027 } 2028 2029 static int dmac_alloc_resources(struct pl330_dmac *pl330) 2030 { 2031 struct pl330_info *pi = pl330->pinfo; 2032 int chans = pi->pcfg.num_chan; 2033 int ret; 2034 2035 /* 2036 * Alloc MicroCode buffer for 'chans' Channel threads. 2037 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 2038 */ 2039 pl330->mcode_cpu = dma_alloc_coherent(pi->dev, 2040 chans * pi->mcbufsz, 2041 &pl330->mcode_bus, GFP_KERNEL); 2042 if (!pl330->mcode_cpu) { 2043 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2044 __func__, __LINE__); 2045 return -ENOMEM; 2046 } 2047 2048 ret = dmac_alloc_threads(pl330); 2049 if (ret) { 2050 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n", 2051 __func__, __LINE__); 2052 dma_free_coherent(pi->dev, 2053 chans * pi->mcbufsz, 2054 pl330->mcode_cpu, pl330->mcode_bus); 2055 return ret; 2056 } 2057 2058 return 0; 2059 } 2060 2061 static int pl330_add(struct pl330_info *pi) 2062 { 2063 struct pl330_dmac *pl330; 2064 void __iomem *regs; 2065 int i, ret; 2066 2067 if (!pi || !pi->dev) 2068 return -EINVAL; 2069 2070 /* If already added */ 2071 if (pi->pl330_data) 2072 return -EINVAL; 2073 2074 /* 2075 * If the SoC can perform reset on the DMAC, then do it 2076 * before reading its configuration. 2077 */ 2078 if (pi->dmac_reset) 2079 pi->dmac_reset(pi); 2080 2081 regs = pi->base; 2082 2083 /* Check if we can handle this DMAC */ 2084 if ((pi->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 2085 dev_err(pi->dev, "PERIPH_ID 0x%x !\n", pi->pcfg.periph_id); 2086 return -EINVAL; 2087 } 2088 2089 /* Read the configuration of the DMAC */ 2090 read_dmac_config(pi); 2091 2092 if (pi->pcfg.num_events == 0) { 2093 dev_err(pi->dev, "%s:%d Can't work without events!\n", 2094 __func__, __LINE__); 2095 return -EINVAL; 2096 } 2097 2098 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL); 2099 if (!pl330) { 2100 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2101 __func__, __LINE__); 2102 return -ENOMEM; 2103 } 2104 2105 /* Assign the info structure and private data */ 2106 pl330->pinfo = pi; 2107 pi->pl330_data = pl330; 2108 2109 spin_lock_init(&pl330->lock); 2110 2111 INIT_LIST_HEAD(&pl330->req_done); 2112 2113 /* Use default MC buffer size if not provided */ 2114 if (!pi->mcbufsz) 2115 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2; 2116 2117 /* Mark all events as free */ 2118 for (i = 0; i < pi->pcfg.num_events; i++) 2119 pl330->events[i] = -1; 2120 2121 /* Allocate resources needed by the DMAC */ 2122 ret = dmac_alloc_resources(pl330); 2123 if (ret) { 2124 dev_err(pi->dev, "Unable to create channels for DMAC\n"); 2125 kfree(pl330); 2126 return ret; 2127 } 2128 2129 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 2130 2131 pl330->state = INIT; 2132 2133 return 0; 2134 } 2135 2136 static int dmac_free_threads(struct pl330_dmac *pl330) 2137 { 2138 struct pl330_info *pi = pl330->pinfo; 2139 int chans = pi->pcfg.num_chan; 2140 struct pl330_thread *thrd; 2141 int i; 2142 2143 /* Release Channel threads */ 2144 for (i = 0; i < chans; i++) { 2145 thrd = &pl330->channels[i]; 2146 pl330_release_channel((void *)thrd); 2147 } 2148 2149 /* Free memory */ 2150 kfree(pl330->channels); 2151 2152 return 0; 2153 } 2154 2155 static void dmac_free_resources(struct pl330_dmac *pl330) 2156 { 2157 struct pl330_info *pi = pl330->pinfo; 2158 int chans = pi->pcfg.num_chan; 2159 2160 dmac_free_threads(pl330); 2161 2162 dma_free_coherent(pi->dev, chans * pi->mcbufsz, 2163 pl330->mcode_cpu, pl330->mcode_bus); 2164 } 2165 2166 static void pl330_del(struct pl330_info *pi) 2167 { 2168 struct pl330_dmac *pl330; 2169 2170 if (!pi || !pi->pl330_data) 2171 return; 2172 2173 pl330 = pi->pl330_data; 2174 2175 pl330->state = UNINIT; 2176 2177 tasklet_kill(&pl330->tasks); 2178 2179 /* Free DMAC resources */ 2180 dmac_free_resources(pl330); 2181 2182 kfree(pl330); 2183 pi->pl330_data = NULL; 2184 } 2185 2186 /* forward declaration */ 2187 static struct amba_driver pl330_driver; 2188 2189 static inline struct dma_pl330_chan * 2190 to_pchan(struct dma_chan *ch) 2191 { 2192 if (!ch) 2193 return NULL; 2194 2195 return container_of(ch, struct dma_pl330_chan, chan); 2196 } 2197 2198 static inline struct dma_pl330_desc * 2199 to_desc(struct dma_async_tx_descriptor *tx) 2200 { 2201 return container_of(tx, struct dma_pl330_desc, txd); 2202 } 2203 2204 static inline void fill_queue(struct dma_pl330_chan *pch) 2205 { 2206 struct dma_pl330_desc *desc; 2207 int ret; 2208 2209 list_for_each_entry(desc, &pch->work_list, node) { 2210 2211 /* If already submitted */ 2212 if (desc->status == BUSY) 2213 continue; 2214 2215 ret = pl330_submit_req(pch->pl330_chid, 2216 &desc->req); 2217 if (!ret) { 2218 desc->status = BUSY; 2219 } else if (ret == -EAGAIN) { 2220 /* QFull or DMAC Dying */ 2221 break; 2222 } else { 2223 /* Unacceptable request */ 2224 desc->status = DONE; 2225 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n", 2226 __func__, __LINE__, desc->txd.cookie); 2227 tasklet_schedule(&pch->task); 2228 } 2229 } 2230 } 2231 2232 static void pl330_tasklet(unsigned long data) 2233 { 2234 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2235 struct dma_pl330_desc *desc, *_dt; 2236 unsigned long flags; 2237 2238 spin_lock_irqsave(&pch->lock, flags); 2239 2240 /* Pick up ripe tomatoes */ 2241 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2242 if (desc->status == DONE) { 2243 if (!pch->cyclic) 2244 dma_cookie_complete(&desc->txd); 2245 list_move_tail(&desc->node, &pch->completed_list); 2246 } 2247 2248 /* Try to submit a req imm. next to the last completed cookie */ 2249 fill_queue(pch); 2250 2251 /* Make sure the PL330 Channel thread is active */ 2252 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START); 2253 2254 while (!list_empty(&pch->completed_list)) { 2255 dma_async_tx_callback callback; 2256 void *callback_param; 2257 2258 desc = list_first_entry(&pch->completed_list, 2259 struct dma_pl330_desc, node); 2260 2261 callback = desc->txd.callback; 2262 callback_param = desc->txd.callback_param; 2263 2264 if (pch->cyclic) { 2265 desc->status = PREP; 2266 list_move_tail(&desc->node, &pch->work_list); 2267 } else { 2268 desc->status = FREE; 2269 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2270 } 2271 2272 dma_descriptor_unmap(&desc->txd); 2273 2274 if (callback) { 2275 spin_unlock_irqrestore(&pch->lock, flags); 2276 callback(callback_param); 2277 spin_lock_irqsave(&pch->lock, flags); 2278 } 2279 } 2280 spin_unlock_irqrestore(&pch->lock, flags); 2281 } 2282 2283 static void dma_pl330_rqcb(void *token, enum pl330_op_err err) 2284 { 2285 struct dma_pl330_desc *desc = token; 2286 struct dma_pl330_chan *pch = desc->pchan; 2287 unsigned long flags; 2288 2289 /* If desc aborted */ 2290 if (!pch) 2291 return; 2292 2293 spin_lock_irqsave(&pch->lock, flags); 2294 2295 desc->status = DONE; 2296 2297 spin_unlock_irqrestore(&pch->lock, flags); 2298 2299 tasklet_schedule(&pch->task); 2300 } 2301 2302 bool pl330_filter(struct dma_chan *chan, void *param) 2303 { 2304 u8 *peri_id; 2305 2306 if (chan->device->dev->driver != &pl330_driver.drv) 2307 return false; 2308 2309 peri_id = chan->private; 2310 return *peri_id == (unsigned long)param; 2311 } 2312 EXPORT_SYMBOL(pl330_filter); 2313 2314 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2315 struct of_dma *ofdma) 2316 { 2317 int count = dma_spec->args_count; 2318 struct dma_pl330_dmac *pdmac = ofdma->of_dma_data; 2319 unsigned int chan_id; 2320 2321 if (count != 1) 2322 return NULL; 2323 2324 chan_id = dma_spec->args[0]; 2325 if (chan_id >= pdmac->num_peripherals) 2326 return NULL; 2327 2328 return dma_get_slave_channel(&pdmac->peripherals[chan_id].chan); 2329 } 2330 2331 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2332 { 2333 struct dma_pl330_chan *pch = to_pchan(chan); 2334 struct dma_pl330_dmac *pdmac = pch->dmac; 2335 unsigned long flags; 2336 2337 spin_lock_irqsave(&pch->lock, flags); 2338 2339 dma_cookie_init(chan); 2340 pch->cyclic = false; 2341 2342 pch->pl330_chid = pl330_request_channel(&pdmac->pif); 2343 if (!pch->pl330_chid) { 2344 spin_unlock_irqrestore(&pch->lock, flags); 2345 return -ENOMEM; 2346 } 2347 2348 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2349 2350 spin_unlock_irqrestore(&pch->lock, flags); 2351 2352 return 1; 2353 } 2354 2355 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2356 { 2357 struct dma_pl330_chan *pch = to_pchan(chan); 2358 struct dma_pl330_desc *desc; 2359 unsigned long flags; 2360 struct dma_pl330_dmac *pdmac = pch->dmac; 2361 struct dma_slave_config *slave_config; 2362 LIST_HEAD(list); 2363 2364 switch (cmd) { 2365 case DMA_TERMINATE_ALL: 2366 spin_lock_irqsave(&pch->lock, flags); 2367 2368 /* FLUSH the PL330 Channel thread */ 2369 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH); 2370 2371 /* Mark all desc done */ 2372 list_for_each_entry(desc, &pch->submitted_list, node) { 2373 desc->status = FREE; 2374 dma_cookie_complete(&desc->txd); 2375 } 2376 2377 list_for_each_entry(desc, &pch->work_list , node) { 2378 desc->status = FREE; 2379 dma_cookie_complete(&desc->txd); 2380 } 2381 2382 list_for_each_entry(desc, &pch->completed_list , node) { 2383 desc->status = FREE; 2384 dma_cookie_complete(&desc->txd); 2385 } 2386 2387 list_splice_tail_init(&pch->submitted_list, &pdmac->desc_pool); 2388 list_splice_tail_init(&pch->work_list, &pdmac->desc_pool); 2389 list_splice_tail_init(&pch->completed_list, &pdmac->desc_pool); 2390 spin_unlock_irqrestore(&pch->lock, flags); 2391 break; 2392 case DMA_SLAVE_CONFIG: 2393 slave_config = (struct dma_slave_config *)arg; 2394 2395 if (slave_config->direction == DMA_MEM_TO_DEV) { 2396 if (slave_config->dst_addr) 2397 pch->fifo_addr = slave_config->dst_addr; 2398 if (slave_config->dst_addr_width) 2399 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2400 if (slave_config->dst_maxburst) 2401 pch->burst_len = slave_config->dst_maxburst; 2402 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2403 if (slave_config->src_addr) 2404 pch->fifo_addr = slave_config->src_addr; 2405 if (slave_config->src_addr_width) 2406 pch->burst_sz = __ffs(slave_config->src_addr_width); 2407 if (slave_config->src_maxburst) 2408 pch->burst_len = slave_config->src_maxburst; 2409 } 2410 break; 2411 default: 2412 dev_err(pch->dmac->pif.dev, "Not supported command.\n"); 2413 return -ENXIO; 2414 } 2415 2416 return 0; 2417 } 2418 2419 static void pl330_free_chan_resources(struct dma_chan *chan) 2420 { 2421 struct dma_pl330_chan *pch = to_pchan(chan); 2422 unsigned long flags; 2423 2424 tasklet_kill(&pch->task); 2425 2426 spin_lock_irqsave(&pch->lock, flags); 2427 2428 pl330_release_channel(pch->pl330_chid); 2429 pch->pl330_chid = NULL; 2430 2431 if (pch->cyclic) 2432 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2433 2434 spin_unlock_irqrestore(&pch->lock, flags); 2435 } 2436 2437 static enum dma_status 2438 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2439 struct dma_tx_state *txstate) 2440 { 2441 return dma_cookie_status(chan, cookie, txstate); 2442 } 2443 2444 static void pl330_issue_pending(struct dma_chan *chan) 2445 { 2446 struct dma_pl330_chan *pch = to_pchan(chan); 2447 unsigned long flags; 2448 2449 spin_lock_irqsave(&pch->lock, flags); 2450 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2451 spin_unlock_irqrestore(&pch->lock, flags); 2452 2453 pl330_tasklet((unsigned long)pch); 2454 } 2455 2456 /* 2457 * We returned the last one of the circular list of descriptor(s) 2458 * from prep_xxx, so the argument to submit corresponds to the last 2459 * descriptor of the list. 2460 */ 2461 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2462 { 2463 struct dma_pl330_desc *desc, *last = to_desc(tx); 2464 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2465 dma_cookie_t cookie; 2466 unsigned long flags; 2467 2468 spin_lock_irqsave(&pch->lock, flags); 2469 2470 /* Assign cookies to all nodes */ 2471 while (!list_empty(&last->node)) { 2472 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2473 if (pch->cyclic) { 2474 desc->txd.callback = last->txd.callback; 2475 desc->txd.callback_param = last->txd.callback_param; 2476 } 2477 2478 dma_cookie_assign(&desc->txd); 2479 2480 list_move_tail(&desc->node, &pch->submitted_list); 2481 } 2482 2483 cookie = dma_cookie_assign(&last->txd); 2484 list_add_tail(&last->node, &pch->submitted_list); 2485 spin_unlock_irqrestore(&pch->lock, flags); 2486 2487 return cookie; 2488 } 2489 2490 static inline void _init_desc(struct dma_pl330_desc *desc) 2491 { 2492 desc->req.x = &desc->px; 2493 desc->req.token = desc; 2494 desc->rqcfg.swap = SWAP_NO; 2495 desc->rqcfg.scctl = SCCTRL0; 2496 desc->rqcfg.dcctl = DCCTRL0; 2497 desc->req.cfg = &desc->rqcfg; 2498 desc->req.xfer_cb = dma_pl330_rqcb; 2499 desc->txd.tx_submit = pl330_tx_submit; 2500 2501 INIT_LIST_HEAD(&desc->node); 2502 } 2503 2504 /* Returns the number of descriptors added to the DMAC pool */ 2505 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count) 2506 { 2507 struct dma_pl330_desc *desc; 2508 unsigned long flags; 2509 int i; 2510 2511 if (!pdmac) 2512 return 0; 2513 2514 desc = kcalloc(count, sizeof(*desc), flg); 2515 if (!desc) 2516 return 0; 2517 2518 spin_lock_irqsave(&pdmac->pool_lock, flags); 2519 2520 for (i = 0; i < count; i++) { 2521 _init_desc(&desc[i]); 2522 list_add_tail(&desc[i].node, &pdmac->desc_pool); 2523 } 2524 2525 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2526 2527 return count; 2528 } 2529 2530 static struct dma_pl330_desc * 2531 pluck_desc(struct dma_pl330_dmac *pdmac) 2532 { 2533 struct dma_pl330_desc *desc = NULL; 2534 unsigned long flags; 2535 2536 if (!pdmac) 2537 return NULL; 2538 2539 spin_lock_irqsave(&pdmac->pool_lock, flags); 2540 2541 if (!list_empty(&pdmac->desc_pool)) { 2542 desc = list_entry(pdmac->desc_pool.next, 2543 struct dma_pl330_desc, node); 2544 2545 list_del_init(&desc->node); 2546 2547 desc->status = PREP; 2548 desc->txd.callback = NULL; 2549 } 2550 2551 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2552 2553 return desc; 2554 } 2555 2556 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2557 { 2558 struct dma_pl330_dmac *pdmac = pch->dmac; 2559 u8 *peri_id = pch->chan.private; 2560 struct dma_pl330_desc *desc; 2561 2562 /* Pluck one desc from the pool of DMAC */ 2563 desc = pluck_desc(pdmac); 2564 2565 /* If the DMAC pool is empty, alloc new */ 2566 if (!desc) { 2567 if (!add_desc(pdmac, GFP_ATOMIC, 1)) 2568 return NULL; 2569 2570 /* Try again */ 2571 desc = pluck_desc(pdmac); 2572 if (!desc) { 2573 dev_err(pch->dmac->pif.dev, 2574 "%s:%d ALERT!\n", __func__, __LINE__); 2575 return NULL; 2576 } 2577 } 2578 2579 /* Initialize the descriptor */ 2580 desc->pchan = pch; 2581 desc->txd.cookie = 0; 2582 async_tx_ack(&desc->txd); 2583 2584 desc->req.peri = peri_id ? pch->chan.chan_id : 0; 2585 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg; 2586 2587 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2588 2589 return desc; 2590 } 2591 2592 static inline void fill_px(struct pl330_xfer *px, 2593 dma_addr_t dst, dma_addr_t src, size_t len) 2594 { 2595 px->next = NULL; 2596 px->bytes = len; 2597 px->dst_addr = dst; 2598 px->src_addr = src; 2599 } 2600 2601 static struct dma_pl330_desc * 2602 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2603 dma_addr_t src, size_t len) 2604 { 2605 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2606 2607 if (!desc) { 2608 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2609 __func__, __LINE__); 2610 return NULL; 2611 } 2612 2613 /* 2614 * Ideally we should lookout for reqs bigger than 2615 * those that can be programmed with 256 bytes of 2616 * MC buffer, but considering a req size is seldom 2617 * going to be word-unaligned and more than 200MB, 2618 * we take it easy. 2619 * Also, should the limit is reached we'd rather 2620 * have the platform increase MC buffer size than 2621 * complicating this API driver. 2622 */ 2623 fill_px(&desc->px, dst, src, len); 2624 2625 return desc; 2626 } 2627 2628 /* Call after fixing burst size */ 2629 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2630 { 2631 struct dma_pl330_chan *pch = desc->pchan; 2632 struct pl330_info *pi = &pch->dmac->pif; 2633 int burst_len; 2634 2635 burst_len = pi->pcfg.data_bus_width / 8; 2636 burst_len *= pi->pcfg.data_buf_dep; 2637 burst_len >>= desc->rqcfg.brst_size; 2638 2639 /* src/dst_burst_len can't be more than 16 */ 2640 if (burst_len > 16) 2641 burst_len = 16; 2642 2643 while (burst_len > 1) { 2644 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2645 break; 2646 burst_len--; 2647 } 2648 2649 return burst_len; 2650 } 2651 2652 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2653 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2654 size_t period_len, enum dma_transfer_direction direction, 2655 unsigned long flags, void *context) 2656 { 2657 struct dma_pl330_desc *desc = NULL, *first = NULL; 2658 struct dma_pl330_chan *pch = to_pchan(chan); 2659 struct dma_pl330_dmac *pdmac = pch->dmac; 2660 unsigned int i; 2661 dma_addr_t dst; 2662 dma_addr_t src; 2663 2664 if (len % period_len != 0) 2665 return NULL; 2666 2667 if (!is_slave_direction(direction)) { 2668 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n", 2669 __func__, __LINE__); 2670 return NULL; 2671 } 2672 2673 for (i = 0; i < len / period_len; i++) { 2674 desc = pl330_get_desc(pch); 2675 if (!desc) { 2676 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2677 __func__, __LINE__); 2678 2679 if (!first) 2680 return NULL; 2681 2682 spin_lock_irqsave(&pdmac->pool_lock, flags); 2683 2684 while (!list_empty(&first->node)) { 2685 desc = list_entry(first->node.next, 2686 struct dma_pl330_desc, node); 2687 list_move_tail(&desc->node, &pdmac->desc_pool); 2688 } 2689 2690 list_move_tail(&first->node, &pdmac->desc_pool); 2691 2692 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2693 2694 return NULL; 2695 } 2696 2697 switch (direction) { 2698 case DMA_MEM_TO_DEV: 2699 desc->rqcfg.src_inc = 1; 2700 desc->rqcfg.dst_inc = 0; 2701 desc->req.rqtype = MEMTODEV; 2702 src = dma_addr; 2703 dst = pch->fifo_addr; 2704 break; 2705 case DMA_DEV_TO_MEM: 2706 desc->rqcfg.src_inc = 0; 2707 desc->rqcfg.dst_inc = 1; 2708 desc->req.rqtype = DEVTOMEM; 2709 src = pch->fifo_addr; 2710 dst = dma_addr; 2711 break; 2712 default: 2713 break; 2714 } 2715 2716 desc->rqcfg.brst_size = pch->burst_sz; 2717 desc->rqcfg.brst_len = 1; 2718 fill_px(&desc->px, dst, src, period_len); 2719 2720 if (!first) 2721 first = desc; 2722 else 2723 list_add_tail(&desc->node, &first->node); 2724 2725 dma_addr += period_len; 2726 } 2727 2728 if (!desc) 2729 return NULL; 2730 2731 pch->cyclic = true; 2732 desc->txd.flags = flags; 2733 2734 return &desc->txd; 2735 } 2736 2737 static struct dma_async_tx_descriptor * 2738 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2739 dma_addr_t src, size_t len, unsigned long flags) 2740 { 2741 struct dma_pl330_desc *desc; 2742 struct dma_pl330_chan *pch = to_pchan(chan); 2743 struct pl330_info *pi; 2744 int burst; 2745 2746 if (unlikely(!pch || !len)) 2747 return NULL; 2748 2749 pi = &pch->dmac->pif; 2750 2751 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2752 if (!desc) 2753 return NULL; 2754 2755 desc->rqcfg.src_inc = 1; 2756 desc->rqcfg.dst_inc = 1; 2757 desc->req.rqtype = MEMTOMEM; 2758 2759 /* Select max possible burst size */ 2760 burst = pi->pcfg.data_bus_width / 8; 2761 2762 while (burst > 1) { 2763 if (!(len % burst)) 2764 break; 2765 burst /= 2; 2766 } 2767 2768 desc->rqcfg.brst_size = 0; 2769 while (burst != (1 << desc->rqcfg.brst_size)) 2770 desc->rqcfg.brst_size++; 2771 2772 desc->rqcfg.brst_len = get_burst_len(desc, len); 2773 2774 desc->txd.flags = flags; 2775 2776 return &desc->txd; 2777 } 2778 2779 static void __pl330_giveback_desc(struct dma_pl330_dmac *pdmac, 2780 struct dma_pl330_desc *first) 2781 { 2782 unsigned long flags; 2783 struct dma_pl330_desc *desc; 2784 2785 if (!first) 2786 return; 2787 2788 spin_lock_irqsave(&pdmac->pool_lock, flags); 2789 2790 while (!list_empty(&first->node)) { 2791 desc = list_entry(first->node.next, 2792 struct dma_pl330_desc, node); 2793 list_move_tail(&desc->node, &pdmac->desc_pool); 2794 } 2795 2796 list_move_tail(&first->node, &pdmac->desc_pool); 2797 2798 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2799 } 2800 2801 static struct dma_async_tx_descriptor * 2802 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2803 unsigned int sg_len, enum dma_transfer_direction direction, 2804 unsigned long flg, void *context) 2805 { 2806 struct dma_pl330_desc *first, *desc = NULL; 2807 struct dma_pl330_chan *pch = to_pchan(chan); 2808 struct scatterlist *sg; 2809 int i; 2810 dma_addr_t addr; 2811 2812 if (unlikely(!pch || !sgl || !sg_len)) 2813 return NULL; 2814 2815 addr = pch->fifo_addr; 2816 2817 first = NULL; 2818 2819 for_each_sg(sgl, sg, sg_len, i) { 2820 2821 desc = pl330_get_desc(pch); 2822 if (!desc) { 2823 struct dma_pl330_dmac *pdmac = pch->dmac; 2824 2825 dev_err(pch->dmac->pif.dev, 2826 "%s:%d Unable to fetch desc\n", 2827 __func__, __LINE__); 2828 __pl330_giveback_desc(pdmac, first); 2829 2830 return NULL; 2831 } 2832 2833 if (!first) 2834 first = desc; 2835 else 2836 list_add_tail(&desc->node, &first->node); 2837 2838 if (direction == DMA_MEM_TO_DEV) { 2839 desc->rqcfg.src_inc = 1; 2840 desc->rqcfg.dst_inc = 0; 2841 desc->req.rqtype = MEMTODEV; 2842 fill_px(&desc->px, 2843 addr, sg_dma_address(sg), sg_dma_len(sg)); 2844 } else { 2845 desc->rqcfg.src_inc = 0; 2846 desc->rqcfg.dst_inc = 1; 2847 desc->req.rqtype = DEVTOMEM; 2848 fill_px(&desc->px, 2849 sg_dma_address(sg), addr, sg_dma_len(sg)); 2850 } 2851 2852 desc->rqcfg.brst_size = pch->burst_sz; 2853 desc->rqcfg.brst_len = 1; 2854 } 2855 2856 /* Return the last desc in the chain */ 2857 desc->txd.flags = flg; 2858 return &desc->txd; 2859 } 2860 2861 static irqreturn_t pl330_irq_handler(int irq, void *data) 2862 { 2863 if (pl330_update(data)) 2864 return IRQ_HANDLED; 2865 else 2866 return IRQ_NONE; 2867 } 2868 2869 #define PL330_DMA_BUSWIDTHS \ 2870 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2871 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2872 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2873 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2874 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2875 2876 static int pl330_dma_device_slave_caps(struct dma_chan *dchan, 2877 struct dma_slave_caps *caps) 2878 { 2879 caps->src_addr_widths = PL330_DMA_BUSWIDTHS; 2880 caps->dstn_addr_widths = PL330_DMA_BUSWIDTHS; 2881 caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2882 caps->cmd_pause = false; 2883 caps->cmd_terminate = true; 2884 caps->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 2885 2886 return 0; 2887 } 2888 2889 static int 2890 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2891 { 2892 struct dma_pl330_platdata *pdat; 2893 struct dma_pl330_dmac *pdmac; 2894 struct dma_pl330_chan *pch, *_p; 2895 struct pl330_info *pi; 2896 struct dma_device *pd; 2897 struct resource *res; 2898 int i, ret, irq; 2899 int num_chan; 2900 2901 pdat = dev_get_platdata(&adev->dev); 2902 2903 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 2904 if (ret) 2905 return ret; 2906 2907 /* Allocate a new DMAC and its Channels */ 2908 pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL); 2909 if (!pdmac) { 2910 dev_err(&adev->dev, "unable to allocate mem\n"); 2911 return -ENOMEM; 2912 } 2913 2914 pi = &pdmac->pif; 2915 pi->dev = &adev->dev; 2916 pi->pl330_data = NULL; 2917 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2918 2919 res = &adev->res; 2920 pi->base = devm_ioremap_resource(&adev->dev, res); 2921 if (IS_ERR(pi->base)) 2922 return PTR_ERR(pi->base); 2923 2924 amba_set_drvdata(adev, pdmac); 2925 2926 for (i = 0; i < AMBA_NR_IRQS; i++) { 2927 irq = adev->irq[i]; 2928 if (irq) { 2929 ret = devm_request_irq(&adev->dev, irq, 2930 pl330_irq_handler, 0, 2931 dev_name(&adev->dev), pi); 2932 if (ret) 2933 return ret; 2934 } else { 2935 break; 2936 } 2937 } 2938 2939 pi->pcfg.periph_id = adev->periphid; 2940 ret = pl330_add(pi); 2941 if (ret) 2942 return ret; 2943 2944 INIT_LIST_HEAD(&pdmac->desc_pool); 2945 spin_lock_init(&pdmac->pool_lock); 2946 2947 /* Create a descriptor pool of default size */ 2948 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC)) 2949 dev_warn(&adev->dev, "unable to allocate desc\n"); 2950 2951 pd = &pdmac->ddma; 2952 INIT_LIST_HEAD(&pd->channels); 2953 2954 /* Initialize channel parameters */ 2955 if (pdat) 2956 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan); 2957 else 2958 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan); 2959 2960 pdmac->num_peripherals = num_chan; 2961 2962 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2963 if (!pdmac->peripherals) { 2964 ret = -ENOMEM; 2965 dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n"); 2966 goto probe_err2; 2967 } 2968 2969 for (i = 0; i < num_chan; i++) { 2970 pch = &pdmac->peripherals[i]; 2971 if (!adev->dev.of_node) 2972 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2973 else 2974 pch->chan.private = adev->dev.of_node; 2975 2976 INIT_LIST_HEAD(&pch->submitted_list); 2977 INIT_LIST_HEAD(&pch->work_list); 2978 INIT_LIST_HEAD(&pch->completed_list); 2979 spin_lock_init(&pch->lock); 2980 pch->pl330_chid = NULL; 2981 pch->chan.device = pd; 2982 pch->dmac = pdmac; 2983 2984 /* Add the channel to the DMAC list */ 2985 list_add_tail(&pch->chan.device_node, &pd->channels); 2986 } 2987 2988 pd->dev = &adev->dev; 2989 if (pdat) { 2990 pd->cap_mask = pdat->cap_mask; 2991 } else { 2992 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2993 if (pi->pcfg.num_peri) { 2994 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2995 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2996 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2997 } 2998 } 2999 3000 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 3001 pd->device_free_chan_resources = pl330_free_chan_resources; 3002 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 3003 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 3004 pd->device_tx_status = pl330_tx_status; 3005 pd->device_prep_slave_sg = pl330_prep_slave_sg; 3006 pd->device_control = pl330_control; 3007 pd->device_issue_pending = pl330_issue_pending; 3008 pd->device_slave_caps = pl330_dma_device_slave_caps; 3009 3010 ret = dma_async_device_register(pd); 3011 if (ret) { 3012 dev_err(&adev->dev, "unable to register DMAC\n"); 3013 goto probe_err3; 3014 } 3015 3016 if (adev->dev.of_node) { 3017 ret = of_dma_controller_register(adev->dev.of_node, 3018 of_dma_pl330_xlate, pdmac); 3019 if (ret) { 3020 dev_err(&adev->dev, 3021 "unable to register DMA to the generic DT DMA helpers\n"); 3022 } 3023 } 3024 3025 adev->dev.dma_parms = &pdmac->dma_parms; 3026 3027 /* 3028 * This is the limit for transfers with a buswidth of 1, larger 3029 * buswidths will have larger limits. 3030 */ 3031 ret = dma_set_max_seg_size(&adev->dev, 1900800); 3032 if (ret) 3033 dev_err(&adev->dev, "unable to set the seg size\n"); 3034 3035 3036 dev_info(&adev->dev, 3037 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 3038 dev_info(&adev->dev, 3039 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3040 pi->pcfg.data_buf_dep, 3041 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan, 3042 pi->pcfg.num_peri, pi->pcfg.num_events); 3043 3044 return 0; 3045 probe_err3: 3046 /* Idle the DMAC */ 3047 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3048 chan.device_node) { 3049 3050 /* Remove the channel */ 3051 list_del(&pch->chan.device_node); 3052 3053 /* Flush the channel */ 3054 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3055 pl330_free_chan_resources(&pch->chan); 3056 } 3057 probe_err2: 3058 pl330_del(pi); 3059 3060 return ret; 3061 } 3062 3063 static int pl330_remove(struct amba_device *adev) 3064 { 3065 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev); 3066 struct dma_pl330_chan *pch, *_p; 3067 struct pl330_info *pi; 3068 3069 if (!pdmac) 3070 return 0; 3071 3072 if (adev->dev.of_node) 3073 of_dma_controller_free(adev->dev.of_node); 3074 3075 dma_async_device_unregister(&pdmac->ddma); 3076 3077 /* Idle the DMAC */ 3078 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3079 chan.device_node) { 3080 3081 /* Remove the channel */ 3082 list_del(&pch->chan.device_node); 3083 3084 /* Flush the channel */ 3085 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3086 pl330_free_chan_resources(&pch->chan); 3087 } 3088 3089 pi = &pdmac->pif; 3090 3091 pl330_del(pi); 3092 3093 return 0; 3094 } 3095 3096 static struct amba_id pl330_ids[] = { 3097 { 3098 .id = 0x00041330, 3099 .mask = 0x000fffff, 3100 }, 3101 { 0, 0 }, 3102 }; 3103 3104 MODULE_DEVICE_TABLE(amba, pl330_ids); 3105 3106 static struct amba_driver pl330_driver = { 3107 .drv = { 3108 .owner = THIS_MODULE, 3109 .name = "dma-pl330", 3110 }, 3111 .id_table = pl330_ids, 3112 .probe = pl330_probe, 3113 .remove = pl330_remove, 3114 }; 3115 3116 module_amba_driver(pl330_driver); 3117 3118 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 3119 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3120 MODULE_LICENSE("GPL"); 3121