1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/scatterlist.h> 26 #include <linux/of.h> 27 #include <linux/of_dma.h> 28 #include <linux/err.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/bug.h> 31 32 #include "dmaengine.h" 33 #define PL330_MAX_CHAN 8 34 #define PL330_MAX_IRQS 32 35 #define PL330_MAX_PERI 32 36 #define PL330_MAX_BURST 16 37 38 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 39 40 enum pl330_cachectrl { 41 CCTRL0, /* Noncacheable and nonbufferable */ 42 CCTRL1, /* Bufferable only */ 43 CCTRL2, /* Cacheable, but do not allocate */ 44 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 45 INVALID1, /* AWCACHE = 0x1000 */ 46 INVALID2, 47 CCTRL6, /* Cacheable write-through, allocate on writes only */ 48 CCTRL7, /* Cacheable write-back, allocate on writes only */ 49 }; 50 51 enum pl330_byteswap { 52 SWAP_NO, 53 SWAP_2, 54 SWAP_4, 55 SWAP_8, 56 SWAP_16, 57 }; 58 59 /* Register and Bit field Definitions */ 60 #define DS 0x0 61 #define DS_ST_STOP 0x0 62 #define DS_ST_EXEC 0x1 63 #define DS_ST_CMISS 0x2 64 #define DS_ST_UPDTPC 0x3 65 #define DS_ST_WFE 0x4 66 #define DS_ST_ATBRR 0x5 67 #define DS_ST_QBUSY 0x6 68 #define DS_ST_WFP 0x7 69 #define DS_ST_KILL 0x8 70 #define DS_ST_CMPLT 0x9 71 #define DS_ST_FLTCMP 0xe 72 #define DS_ST_FAULT 0xf 73 74 #define DPC 0x4 75 #define INTEN 0x20 76 #define ES 0x24 77 #define INTSTATUS 0x28 78 #define INTCLR 0x2c 79 #define FSM 0x30 80 #define FSC 0x34 81 #define FTM 0x38 82 83 #define _FTC 0x40 84 #define FTC(n) (_FTC + (n)*0x4) 85 86 #define _CS 0x100 87 #define CS(n) (_CS + (n)*0x8) 88 #define CS_CNS (1 << 21) 89 90 #define _CPC 0x104 91 #define CPC(n) (_CPC + (n)*0x8) 92 93 #define _SA 0x400 94 #define SA(n) (_SA + (n)*0x20) 95 96 #define _DA 0x404 97 #define DA(n) (_DA + (n)*0x20) 98 99 #define _CC 0x408 100 #define CC(n) (_CC + (n)*0x20) 101 102 #define CC_SRCINC (1 << 0) 103 #define CC_DSTINC (1 << 14) 104 #define CC_SRCPRI (1 << 8) 105 #define CC_DSTPRI (1 << 22) 106 #define CC_SRCNS (1 << 9) 107 #define CC_DSTNS (1 << 23) 108 #define CC_SRCIA (1 << 10) 109 #define CC_DSTIA (1 << 24) 110 #define CC_SRCBRSTLEN_SHFT 4 111 #define CC_DSTBRSTLEN_SHFT 18 112 #define CC_SRCBRSTSIZE_SHFT 1 113 #define CC_DSTBRSTSIZE_SHFT 15 114 #define CC_SRCCCTRL_SHFT 11 115 #define CC_SRCCCTRL_MASK 0x7 116 #define CC_DSTCCTRL_SHFT 25 117 #define CC_DRCCCTRL_MASK 0x7 118 #define CC_SWAP_SHFT 28 119 120 #define _LC0 0x40c 121 #define LC0(n) (_LC0 + (n)*0x20) 122 123 #define _LC1 0x410 124 #define LC1(n) (_LC1 + (n)*0x20) 125 126 #define DBGSTATUS 0xd00 127 #define DBG_BUSY (1 << 0) 128 129 #define DBGCMD 0xd04 130 #define DBGINST0 0xd08 131 #define DBGINST1 0xd0c 132 133 #define CR0 0xe00 134 #define CR1 0xe04 135 #define CR2 0xe08 136 #define CR3 0xe0c 137 #define CR4 0xe10 138 #define CRD 0xe14 139 140 #define PERIPH_ID 0xfe0 141 #define PERIPH_REV_SHIFT 20 142 #define PERIPH_REV_MASK 0xf 143 #define PERIPH_REV_R0P0 0 144 #define PERIPH_REV_R1P0 1 145 #define PERIPH_REV_R1P1 2 146 147 #define CR0_PERIPH_REQ_SET (1 << 0) 148 #define CR0_BOOT_EN_SET (1 << 1) 149 #define CR0_BOOT_MAN_NS (1 << 2) 150 #define CR0_NUM_CHANS_SHIFT 4 151 #define CR0_NUM_CHANS_MASK 0x7 152 #define CR0_NUM_PERIPH_SHIFT 12 153 #define CR0_NUM_PERIPH_MASK 0x1f 154 #define CR0_NUM_EVENTS_SHIFT 17 155 #define CR0_NUM_EVENTS_MASK 0x1f 156 157 #define CR1_ICACHE_LEN_SHIFT 0 158 #define CR1_ICACHE_LEN_MASK 0x7 159 #define CR1_NUM_ICACHELINES_SHIFT 4 160 #define CR1_NUM_ICACHELINES_MASK 0xf 161 162 #define CRD_DATA_WIDTH_SHIFT 0 163 #define CRD_DATA_WIDTH_MASK 0x7 164 #define CRD_WR_CAP_SHIFT 4 165 #define CRD_WR_CAP_MASK 0x7 166 #define CRD_WR_Q_DEP_SHIFT 8 167 #define CRD_WR_Q_DEP_MASK 0xf 168 #define CRD_RD_CAP_SHIFT 12 169 #define CRD_RD_CAP_MASK 0x7 170 #define CRD_RD_Q_DEP_SHIFT 16 171 #define CRD_RD_Q_DEP_MASK 0xf 172 #define CRD_DATA_BUFF_SHIFT 20 173 #define CRD_DATA_BUFF_MASK 0x3ff 174 175 #define PART 0x330 176 #define DESIGNER 0x41 177 #define REVISION 0x0 178 #define INTEG_CFG 0x0 179 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 180 181 #define PL330_STATE_STOPPED (1 << 0) 182 #define PL330_STATE_EXECUTING (1 << 1) 183 #define PL330_STATE_WFE (1 << 2) 184 #define PL330_STATE_FAULTING (1 << 3) 185 #define PL330_STATE_COMPLETING (1 << 4) 186 #define PL330_STATE_WFP (1 << 5) 187 #define PL330_STATE_KILLING (1 << 6) 188 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 189 #define PL330_STATE_CACHEMISS (1 << 8) 190 #define PL330_STATE_UPDTPC (1 << 9) 191 #define PL330_STATE_ATBARRIER (1 << 10) 192 #define PL330_STATE_QUEUEBUSY (1 << 11) 193 #define PL330_STATE_INVALID (1 << 15) 194 195 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 196 | PL330_STATE_WFE | PL330_STATE_FAULTING) 197 198 #define CMD_DMAADDH 0x54 199 #define CMD_DMAEND 0x00 200 #define CMD_DMAFLUSHP 0x35 201 #define CMD_DMAGO 0xa0 202 #define CMD_DMALD 0x04 203 #define CMD_DMALDP 0x25 204 #define CMD_DMALP 0x20 205 #define CMD_DMALPEND 0x28 206 #define CMD_DMAKILL 0x01 207 #define CMD_DMAMOV 0xbc 208 #define CMD_DMANOP 0x18 209 #define CMD_DMARMB 0x12 210 #define CMD_DMASEV 0x34 211 #define CMD_DMAST 0x08 212 #define CMD_DMASTP 0x29 213 #define CMD_DMASTZ 0x0c 214 #define CMD_DMAWFE 0x36 215 #define CMD_DMAWFP 0x30 216 #define CMD_DMAWMB 0x13 217 218 #define SZ_DMAADDH 3 219 #define SZ_DMAEND 1 220 #define SZ_DMAFLUSHP 2 221 #define SZ_DMALD 1 222 #define SZ_DMALDP 2 223 #define SZ_DMALP 2 224 #define SZ_DMALPEND 2 225 #define SZ_DMAKILL 1 226 #define SZ_DMAMOV 6 227 #define SZ_DMANOP 1 228 #define SZ_DMARMB 1 229 #define SZ_DMASEV 2 230 #define SZ_DMAST 1 231 #define SZ_DMASTP 2 232 #define SZ_DMASTZ 1 233 #define SZ_DMAWFE 2 234 #define SZ_DMAWFP 2 235 #define SZ_DMAWMB 1 236 #define SZ_DMAGO 6 237 238 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 239 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 240 241 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 242 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 243 244 /* 245 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 246 * at 1byte/burst for P<->M and M<->M respectively. 247 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 248 * should be enough for P<->M and M<->M respectively. 249 */ 250 #define MCODE_BUFF_PER_REQ 256 251 252 /* Use this _only_ to wait on transient states */ 253 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 254 255 #ifdef PL330_DEBUG_MCGEN 256 static unsigned cmd_line; 257 #define PL330_DBGCMD_DUMP(off, x...) do { \ 258 printk("%x:", cmd_line); \ 259 printk(x); \ 260 cmd_line += off; \ 261 } while (0) 262 #define PL330_DBGMC_START(addr) (cmd_line = addr) 263 #else 264 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 265 #define PL330_DBGMC_START(addr) do {} while (0) 266 #endif 267 268 /* The number of default descriptors */ 269 270 #define NR_DEFAULT_DESC 16 271 272 /* Delay for runtime PM autosuspend, ms */ 273 #define PL330_AUTOSUSPEND_DELAY 20 274 275 /* Populated by the PL330 core driver for DMA API driver's info */ 276 struct pl330_config { 277 u32 periph_id; 278 #define DMAC_MODE_NS (1 << 0) 279 unsigned int mode; 280 unsigned int data_bus_width:10; /* In number of bits */ 281 unsigned int data_buf_dep:11; 282 unsigned int num_chan:4; 283 unsigned int num_peri:6; 284 u32 peri_ns; 285 unsigned int num_events:6; 286 u32 irq_ns; 287 }; 288 289 /** 290 * Request Configuration. 291 * The PL330 core does not modify this and uses the last 292 * working configuration if the request doesn't provide any. 293 * 294 * The Client may want to provide this info only for the 295 * first request and a request with new settings. 296 */ 297 struct pl330_reqcfg { 298 /* Address Incrementing */ 299 unsigned dst_inc:1; 300 unsigned src_inc:1; 301 302 /* 303 * For now, the SRC & DST protection levels 304 * and burst size/length are assumed same. 305 */ 306 bool nonsecure; 307 bool privileged; 308 bool insnaccess; 309 unsigned brst_len:5; 310 unsigned brst_size:3; /* in power of 2 */ 311 312 enum pl330_cachectrl dcctl; 313 enum pl330_cachectrl scctl; 314 enum pl330_byteswap swap; 315 struct pl330_config *pcfg; 316 }; 317 318 /* 319 * One cycle of DMAC operation. 320 * There may be more than one xfer in a request. 321 */ 322 struct pl330_xfer { 323 u32 src_addr; 324 u32 dst_addr; 325 /* Size to xfer */ 326 u32 bytes; 327 }; 328 329 /* The xfer callbacks are made with one of these arguments. */ 330 enum pl330_op_err { 331 /* The all xfers in the request were success. */ 332 PL330_ERR_NONE, 333 /* If req aborted due to global error. */ 334 PL330_ERR_ABORT, 335 /* If req failed due to problem with Channel. */ 336 PL330_ERR_FAIL, 337 }; 338 339 enum dmamov_dst { 340 SAR = 0, 341 CCR, 342 DAR, 343 }; 344 345 enum pl330_dst { 346 SRC = 0, 347 DST, 348 }; 349 350 enum pl330_cond { 351 SINGLE, 352 BURST, 353 ALWAYS, 354 }; 355 356 struct dma_pl330_desc; 357 358 struct _pl330_req { 359 u32 mc_bus; 360 void *mc_cpu; 361 struct dma_pl330_desc *desc; 362 }; 363 364 /* ToBeDone for tasklet */ 365 struct _pl330_tbd { 366 bool reset_dmac; 367 bool reset_mngr; 368 u8 reset_chan; 369 }; 370 371 /* A DMAC Thread */ 372 struct pl330_thread { 373 u8 id; 374 int ev; 375 /* If the channel is not yet acquired by any client */ 376 bool free; 377 /* Parent DMAC */ 378 struct pl330_dmac *dmac; 379 /* Only two at a time */ 380 struct _pl330_req req[2]; 381 /* Index of the last enqueued request */ 382 unsigned lstenq; 383 /* Index of the last submitted request or -1 if the DMA is stopped */ 384 int req_running; 385 }; 386 387 enum pl330_dmac_state { 388 UNINIT, 389 INIT, 390 DYING, 391 }; 392 393 enum desc_status { 394 /* In the DMAC pool */ 395 FREE, 396 /* 397 * Allocated to some channel during prep_xxx 398 * Also may be sitting on the work_list. 399 */ 400 PREP, 401 /* 402 * Sitting on the work_list and already submitted 403 * to the PL330 core. Not more than two descriptors 404 * of a channel can be BUSY at any time. 405 */ 406 BUSY, 407 /* 408 * Sitting on the channel work_list but xfer done 409 * by PL330 core 410 */ 411 DONE, 412 }; 413 414 struct dma_pl330_chan { 415 /* Schedule desc completion */ 416 struct tasklet_struct task; 417 418 /* DMA-Engine Channel */ 419 struct dma_chan chan; 420 421 /* List of submitted descriptors */ 422 struct list_head submitted_list; 423 /* List of issued descriptors */ 424 struct list_head work_list; 425 /* List of completed descriptors */ 426 struct list_head completed_list; 427 428 /* Pointer to the DMAC that manages this channel, 429 * NULL if the channel is available to be acquired. 430 * As the parent, this DMAC also provides descriptors 431 * to the channel. 432 */ 433 struct pl330_dmac *dmac; 434 435 /* To protect channel manipulation */ 436 spinlock_t lock; 437 438 /* 439 * Hardware channel thread of PL330 DMAC. NULL if the channel is 440 * available. 441 */ 442 struct pl330_thread *thread; 443 444 /* For D-to-M and M-to-D channels */ 445 int burst_sz; /* the peripheral fifo width */ 446 int burst_len; /* the number of burst */ 447 phys_addr_t fifo_addr; 448 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ 449 dma_addr_t fifo_dma; 450 enum dma_data_direction dir; 451 struct dma_slave_config slave_config; 452 453 /* for cyclic capability */ 454 bool cyclic; 455 456 /* for runtime pm tracking */ 457 bool active; 458 }; 459 460 struct pl330_dmac { 461 /* DMA-Engine Device */ 462 struct dma_device ddma; 463 464 /* Holds info about sg limitations */ 465 struct device_dma_parameters dma_parms; 466 467 /* Pool of descriptors available for the DMAC's channels */ 468 struct list_head desc_pool; 469 /* To protect desc_pool manipulation */ 470 spinlock_t pool_lock; 471 472 /* Size of MicroCode buffers for each channel. */ 473 unsigned mcbufsz; 474 /* ioremap'ed address of PL330 registers. */ 475 void __iomem *base; 476 /* Populated by the PL330 core driver during pl330_add */ 477 struct pl330_config pcfg; 478 479 spinlock_t lock; 480 /* Maximum possible events/irqs */ 481 int events[32]; 482 /* BUS address of MicroCode buffer */ 483 dma_addr_t mcode_bus; 484 /* CPU address of MicroCode buffer */ 485 void *mcode_cpu; 486 /* List of all Channel threads */ 487 struct pl330_thread *channels; 488 /* Pointer to the MANAGER thread */ 489 struct pl330_thread *manager; 490 /* To handle bad news in interrupt */ 491 struct tasklet_struct tasks; 492 struct _pl330_tbd dmac_tbd; 493 /* State of DMAC operation */ 494 enum pl330_dmac_state state; 495 /* Holds list of reqs with due callbacks */ 496 struct list_head req_done; 497 498 /* Peripheral channels connected to this DMAC */ 499 unsigned int num_peripherals; 500 struct dma_pl330_chan *peripherals; /* keep at end */ 501 int quirks; 502 }; 503 504 static struct pl330_of_quirks { 505 char *quirk; 506 int id; 507 } of_quirks[] = { 508 { 509 .quirk = "arm,pl330-broken-no-flushp", 510 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 511 } 512 }; 513 514 struct dma_pl330_desc { 515 /* To attach to a queue as child */ 516 struct list_head node; 517 518 /* Descriptor for the DMA Engine API */ 519 struct dma_async_tx_descriptor txd; 520 521 /* Xfer for PL330 core */ 522 struct pl330_xfer px; 523 524 struct pl330_reqcfg rqcfg; 525 526 enum desc_status status; 527 528 int bytes_requested; 529 bool last; 530 531 /* The channel which currently holds this desc */ 532 struct dma_pl330_chan *pchan; 533 534 enum dma_transfer_direction rqtype; 535 /* Index of peripheral for the xfer. */ 536 unsigned peri:5; 537 /* Hook to attach to DMAC's list of reqs with due callback */ 538 struct list_head rqd; 539 }; 540 541 struct _xfer_spec { 542 u32 ccr; 543 struct dma_pl330_desc *desc; 544 }; 545 546 static int pl330_config_write(struct dma_chan *chan, 547 struct dma_slave_config *slave_config, 548 enum dma_transfer_direction direction); 549 550 static inline bool _queue_full(struct pl330_thread *thrd) 551 { 552 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 553 } 554 555 static inline bool is_manager(struct pl330_thread *thrd) 556 { 557 return thrd->dmac->manager == thrd; 558 } 559 560 /* If manager of the thread is in Non-Secure mode */ 561 static inline bool _manager_ns(struct pl330_thread *thrd) 562 { 563 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 564 } 565 566 static inline u32 get_revision(u32 periph_id) 567 { 568 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 569 } 570 571 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 572 { 573 if (dry_run) 574 return SZ_DMAEND; 575 576 buf[0] = CMD_DMAEND; 577 578 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 579 580 return SZ_DMAEND; 581 } 582 583 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 584 { 585 if (dry_run) 586 return SZ_DMAFLUSHP; 587 588 buf[0] = CMD_DMAFLUSHP; 589 590 peri &= 0x1f; 591 peri <<= 3; 592 buf[1] = peri; 593 594 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 595 596 return SZ_DMAFLUSHP; 597 } 598 599 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 600 { 601 if (dry_run) 602 return SZ_DMALD; 603 604 buf[0] = CMD_DMALD; 605 606 if (cond == SINGLE) 607 buf[0] |= (0 << 1) | (1 << 0); 608 else if (cond == BURST) 609 buf[0] |= (1 << 1) | (1 << 0); 610 611 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 612 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 613 614 return SZ_DMALD; 615 } 616 617 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 618 enum pl330_cond cond, u8 peri) 619 { 620 if (dry_run) 621 return SZ_DMALDP; 622 623 buf[0] = CMD_DMALDP; 624 625 if (cond == BURST) 626 buf[0] |= (1 << 1); 627 628 peri &= 0x1f; 629 peri <<= 3; 630 buf[1] = peri; 631 632 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 633 cond == SINGLE ? 'S' : 'B', peri >> 3); 634 635 return SZ_DMALDP; 636 } 637 638 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 639 unsigned loop, u8 cnt) 640 { 641 if (dry_run) 642 return SZ_DMALP; 643 644 buf[0] = CMD_DMALP; 645 646 if (loop) 647 buf[0] |= (1 << 1); 648 649 cnt--; /* DMAC increments by 1 internally */ 650 buf[1] = cnt; 651 652 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 653 654 return SZ_DMALP; 655 } 656 657 struct _arg_LPEND { 658 enum pl330_cond cond; 659 bool forever; 660 unsigned loop; 661 u8 bjump; 662 }; 663 664 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 665 const struct _arg_LPEND *arg) 666 { 667 enum pl330_cond cond = arg->cond; 668 bool forever = arg->forever; 669 unsigned loop = arg->loop; 670 u8 bjump = arg->bjump; 671 672 if (dry_run) 673 return SZ_DMALPEND; 674 675 buf[0] = CMD_DMALPEND; 676 677 if (loop) 678 buf[0] |= (1 << 2); 679 680 if (!forever) 681 buf[0] |= (1 << 4); 682 683 if (cond == SINGLE) 684 buf[0] |= (0 << 1) | (1 << 0); 685 else if (cond == BURST) 686 buf[0] |= (1 << 1) | (1 << 0); 687 688 buf[1] = bjump; 689 690 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 691 forever ? "FE" : "END", 692 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 693 loop ? '1' : '0', 694 bjump); 695 696 return SZ_DMALPEND; 697 } 698 699 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 700 { 701 if (dry_run) 702 return SZ_DMAKILL; 703 704 buf[0] = CMD_DMAKILL; 705 706 return SZ_DMAKILL; 707 } 708 709 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 710 enum dmamov_dst dst, u32 val) 711 { 712 if (dry_run) 713 return SZ_DMAMOV; 714 715 buf[0] = CMD_DMAMOV; 716 buf[1] = dst; 717 buf[2] = val; 718 buf[3] = val >> 8; 719 buf[4] = val >> 16; 720 buf[5] = val >> 24; 721 722 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 723 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 724 725 return SZ_DMAMOV; 726 } 727 728 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 729 { 730 if (dry_run) 731 return SZ_DMARMB; 732 733 buf[0] = CMD_DMARMB; 734 735 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 736 737 return SZ_DMARMB; 738 } 739 740 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 741 { 742 if (dry_run) 743 return SZ_DMASEV; 744 745 buf[0] = CMD_DMASEV; 746 747 ev &= 0x1f; 748 ev <<= 3; 749 buf[1] = ev; 750 751 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 752 753 return SZ_DMASEV; 754 } 755 756 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 757 { 758 if (dry_run) 759 return SZ_DMAST; 760 761 buf[0] = CMD_DMAST; 762 763 if (cond == SINGLE) 764 buf[0] |= (0 << 1) | (1 << 0); 765 else if (cond == BURST) 766 buf[0] |= (1 << 1) | (1 << 0); 767 768 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 769 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 770 771 return SZ_DMAST; 772 } 773 774 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 775 enum pl330_cond cond, u8 peri) 776 { 777 if (dry_run) 778 return SZ_DMASTP; 779 780 buf[0] = CMD_DMASTP; 781 782 if (cond == BURST) 783 buf[0] |= (1 << 1); 784 785 peri &= 0x1f; 786 peri <<= 3; 787 buf[1] = peri; 788 789 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 790 cond == SINGLE ? 'S' : 'B', peri >> 3); 791 792 return SZ_DMASTP; 793 } 794 795 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 796 enum pl330_cond cond, u8 peri) 797 { 798 if (dry_run) 799 return SZ_DMAWFP; 800 801 buf[0] = CMD_DMAWFP; 802 803 if (cond == SINGLE) 804 buf[0] |= (0 << 1) | (0 << 0); 805 else if (cond == BURST) 806 buf[0] |= (1 << 1) | (0 << 0); 807 else 808 buf[0] |= (0 << 1) | (1 << 0); 809 810 peri &= 0x1f; 811 peri <<= 3; 812 buf[1] = peri; 813 814 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 815 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 816 817 return SZ_DMAWFP; 818 } 819 820 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 821 { 822 if (dry_run) 823 return SZ_DMAWMB; 824 825 buf[0] = CMD_DMAWMB; 826 827 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 828 829 return SZ_DMAWMB; 830 } 831 832 struct _arg_GO { 833 u8 chan; 834 u32 addr; 835 unsigned ns; 836 }; 837 838 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 839 const struct _arg_GO *arg) 840 { 841 u8 chan = arg->chan; 842 u32 addr = arg->addr; 843 unsigned ns = arg->ns; 844 845 if (dry_run) 846 return SZ_DMAGO; 847 848 buf[0] = CMD_DMAGO; 849 buf[0] |= (ns << 1); 850 buf[1] = chan & 0x7; 851 buf[2] = addr; 852 buf[3] = addr >> 8; 853 buf[4] = addr >> 16; 854 buf[5] = addr >> 24; 855 856 return SZ_DMAGO; 857 } 858 859 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 860 861 /* Returns Time-Out */ 862 static bool _until_dmac_idle(struct pl330_thread *thrd) 863 { 864 void __iomem *regs = thrd->dmac->base; 865 unsigned long loops = msecs_to_loops(5); 866 867 do { 868 /* Until Manager is Idle */ 869 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 870 break; 871 872 cpu_relax(); 873 } while (--loops); 874 875 if (!loops) 876 return true; 877 878 return false; 879 } 880 881 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 882 u8 insn[], bool as_manager) 883 { 884 void __iomem *regs = thrd->dmac->base; 885 u32 val; 886 887 val = (insn[0] << 16) | (insn[1] << 24); 888 if (!as_manager) { 889 val |= (1 << 0); 890 val |= (thrd->id << 8); /* Channel Number */ 891 } 892 writel(val, regs + DBGINST0); 893 894 val = le32_to_cpu(*((__le32 *)&insn[2])); 895 writel(val, regs + DBGINST1); 896 897 /* If timed out due to halted state-machine */ 898 if (_until_dmac_idle(thrd)) { 899 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 900 return; 901 } 902 903 /* Get going */ 904 writel(0, regs + DBGCMD); 905 } 906 907 static inline u32 _state(struct pl330_thread *thrd) 908 { 909 void __iomem *regs = thrd->dmac->base; 910 u32 val; 911 912 if (is_manager(thrd)) 913 val = readl(regs + DS) & 0xf; 914 else 915 val = readl(regs + CS(thrd->id)) & 0xf; 916 917 switch (val) { 918 case DS_ST_STOP: 919 return PL330_STATE_STOPPED; 920 case DS_ST_EXEC: 921 return PL330_STATE_EXECUTING; 922 case DS_ST_CMISS: 923 return PL330_STATE_CACHEMISS; 924 case DS_ST_UPDTPC: 925 return PL330_STATE_UPDTPC; 926 case DS_ST_WFE: 927 return PL330_STATE_WFE; 928 case DS_ST_FAULT: 929 return PL330_STATE_FAULTING; 930 case DS_ST_ATBRR: 931 if (is_manager(thrd)) 932 return PL330_STATE_INVALID; 933 else 934 return PL330_STATE_ATBARRIER; 935 case DS_ST_QBUSY: 936 if (is_manager(thrd)) 937 return PL330_STATE_INVALID; 938 else 939 return PL330_STATE_QUEUEBUSY; 940 case DS_ST_WFP: 941 if (is_manager(thrd)) 942 return PL330_STATE_INVALID; 943 else 944 return PL330_STATE_WFP; 945 case DS_ST_KILL: 946 if (is_manager(thrd)) 947 return PL330_STATE_INVALID; 948 else 949 return PL330_STATE_KILLING; 950 case DS_ST_CMPLT: 951 if (is_manager(thrd)) 952 return PL330_STATE_INVALID; 953 else 954 return PL330_STATE_COMPLETING; 955 case DS_ST_FLTCMP: 956 if (is_manager(thrd)) 957 return PL330_STATE_INVALID; 958 else 959 return PL330_STATE_FAULT_COMPLETING; 960 default: 961 return PL330_STATE_INVALID; 962 } 963 } 964 965 static void _stop(struct pl330_thread *thrd) 966 { 967 void __iomem *regs = thrd->dmac->base; 968 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 969 970 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 971 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 972 973 /* Return if nothing needs to be done */ 974 if (_state(thrd) == PL330_STATE_COMPLETING 975 || _state(thrd) == PL330_STATE_KILLING 976 || _state(thrd) == PL330_STATE_STOPPED) 977 return; 978 979 _emit_KILL(0, insn); 980 981 /* Stop generating interrupts for SEV */ 982 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 983 984 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 985 } 986 987 /* Start doing req 'idx' of thread 'thrd' */ 988 static bool _trigger(struct pl330_thread *thrd) 989 { 990 void __iomem *regs = thrd->dmac->base; 991 struct _pl330_req *req; 992 struct dma_pl330_desc *desc; 993 struct _arg_GO go; 994 unsigned ns; 995 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 996 int idx; 997 998 /* Return if already ACTIVE */ 999 if (_state(thrd) != PL330_STATE_STOPPED) 1000 return true; 1001 1002 idx = 1 - thrd->lstenq; 1003 if (thrd->req[idx].desc != NULL) { 1004 req = &thrd->req[idx]; 1005 } else { 1006 idx = thrd->lstenq; 1007 if (thrd->req[idx].desc != NULL) 1008 req = &thrd->req[idx]; 1009 else 1010 req = NULL; 1011 } 1012 1013 /* Return if no request */ 1014 if (!req) 1015 return true; 1016 1017 /* Return if req is running */ 1018 if (idx == thrd->req_running) 1019 return true; 1020 1021 desc = req->desc; 1022 1023 ns = desc->rqcfg.nonsecure ? 1 : 0; 1024 1025 /* See 'Abort Sources' point-4 at Page 2-25 */ 1026 if (_manager_ns(thrd) && !ns) 1027 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1028 __func__, __LINE__); 1029 1030 go.chan = thrd->id; 1031 go.addr = req->mc_bus; 1032 go.ns = ns; 1033 _emit_GO(0, insn, &go); 1034 1035 /* Set to generate interrupts for SEV */ 1036 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1037 1038 /* Only manager can execute GO */ 1039 _execute_DBGINSN(thrd, insn, true); 1040 1041 thrd->req_running = idx; 1042 1043 return true; 1044 } 1045 1046 static bool _start(struct pl330_thread *thrd) 1047 { 1048 switch (_state(thrd)) { 1049 case PL330_STATE_FAULT_COMPLETING: 1050 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1051 1052 if (_state(thrd) == PL330_STATE_KILLING) 1053 UNTIL(thrd, PL330_STATE_STOPPED) 1054 /* fall through */ 1055 1056 case PL330_STATE_FAULTING: 1057 _stop(thrd); 1058 /* fall through */ 1059 1060 case PL330_STATE_KILLING: 1061 case PL330_STATE_COMPLETING: 1062 UNTIL(thrd, PL330_STATE_STOPPED) 1063 /* fall through */ 1064 1065 case PL330_STATE_STOPPED: 1066 return _trigger(thrd); 1067 1068 case PL330_STATE_WFP: 1069 case PL330_STATE_QUEUEBUSY: 1070 case PL330_STATE_ATBARRIER: 1071 case PL330_STATE_UPDTPC: 1072 case PL330_STATE_CACHEMISS: 1073 case PL330_STATE_EXECUTING: 1074 return true; 1075 1076 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1077 default: 1078 return false; 1079 } 1080 } 1081 1082 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1083 const struct _xfer_spec *pxs, int cyc) 1084 { 1085 int off = 0; 1086 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1087 1088 /* check lock-up free version */ 1089 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1090 while (cyc--) { 1091 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1092 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1093 } 1094 } else { 1095 while (cyc--) { 1096 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1097 off += _emit_RMB(dry_run, &buf[off]); 1098 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1099 off += _emit_WMB(dry_run, &buf[off]); 1100 } 1101 } 1102 1103 return off; 1104 } 1105 1106 static u32 _emit_load(unsigned int dry_run, u8 buf[], 1107 enum pl330_cond cond, enum dma_transfer_direction direction, 1108 u8 peri) 1109 { 1110 int off = 0; 1111 1112 switch (direction) { 1113 case DMA_MEM_TO_MEM: 1114 /* fall through */ 1115 case DMA_MEM_TO_DEV: 1116 off += _emit_LD(dry_run, &buf[off], cond); 1117 break; 1118 1119 case DMA_DEV_TO_MEM: 1120 if (cond == ALWAYS) { 1121 off += _emit_LDP(dry_run, &buf[off], SINGLE, 1122 peri); 1123 off += _emit_LDP(dry_run, &buf[off], BURST, 1124 peri); 1125 } else { 1126 off += _emit_LDP(dry_run, &buf[off], cond, 1127 peri); 1128 } 1129 break; 1130 1131 default: 1132 /* this code should be unreachable */ 1133 WARN_ON(1); 1134 break; 1135 } 1136 1137 return off; 1138 } 1139 1140 static inline u32 _emit_store(unsigned int dry_run, u8 buf[], 1141 enum pl330_cond cond, enum dma_transfer_direction direction, 1142 u8 peri) 1143 { 1144 int off = 0; 1145 1146 switch (direction) { 1147 case DMA_MEM_TO_MEM: 1148 /* fall through */ 1149 case DMA_DEV_TO_MEM: 1150 off += _emit_ST(dry_run, &buf[off], cond); 1151 break; 1152 1153 case DMA_MEM_TO_DEV: 1154 if (cond == ALWAYS) { 1155 off += _emit_STP(dry_run, &buf[off], SINGLE, 1156 peri); 1157 off += _emit_STP(dry_run, &buf[off], BURST, 1158 peri); 1159 } else { 1160 off += _emit_STP(dry_run, &buf[off], cond, 1161 peri); 1162 } 1163 break; 1164 1165 default: 1166 /* this code should be unreachable */ 1167 WARN_ON(1); 1168 break; 1169 } 1170 1171 return off; 1172 } 1173 1174 static inline int _ldst_peripheral(struct pl330_dmac *pl330, 1175 unsigned dry_run, u8 buf[], 1176 const struct _xfer_spec *pxs, int cyc, 1177 enum pl330_cond cond) 1178 { 1179 int off = 0; 1180 1181 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 1182 cond = BURST; 1183 1184 /* 1185 * do FLUSHP at beginning to clear any stale dma requests before the 1186 * first WFP. 1187 */ 1188 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1189 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1190 while (cyc--) { 1191 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1192 off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype, 1193 pxs->desc->peri); 1194 off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype, 1195 pxs->desc->peri); 1196 } 1197 1198 return off; 1199 } 1200 1201 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1202 const struct _xfer_spec *pxs, int cyc) 1203 { 1204 int off = 0; 1205 enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE; 1206 1207 switch (pxs->desc->rqtype) { 1208 case DMA_MEM_TO_DEV: 1209 /* fall through */ 1210 case DMA_DEV_TO_MEM: 1211 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc, 1212 cond); 1213 break; 1214 1215 case DMA_MEM_TO_MEM: 1216 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1217 break; 1218 1219 default: 1220 /* this code should be unreachable */ 1221 WARN_ON(1); 1222 break; 1223 } 1224 1225 return off; 1226 } 1227 1228 /* 1229 * transfer dregs with single transfers to peripheral, or a reduced size burst 1230 * for mem-to-mem. 1231 */ 1232 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[], 1233 const struct _xfer_spec *pxs, int transfer_length) 1234 { 1235 int off = 0; 1236 int dregs_ccr; 1237 1238 if (transfer_length == 0) 1239 return off; 1240 1241 switch (pxs->desc->rqtype) { 1242 case DMA_MEM_TO_DEV: 1243 /* fall through */ 1244 case DMA_DEV_TO_MEM: 1245 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1246 transfer_length, SINGLE); 1247 break; 1248 1249 case DMA_MEM_TO_MEM: 1250 dregs_ccr = pxs->ccr; 1251 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) | 1252 (0xf << CC_DSTBRSTLEN_SHFT)); 1253 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1254 CC_SRCBRSTLEN_SHFT); 1255 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1256 CC_DSTBRSTLEN_SHFT); 1257 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1258 off += _ldst_memtomem(dry_run, &buf[off], pxs, 1); 1259 break; 1260 1261 default: 1262 /* this code should be unreachable */ 1263 WARN_ON(1); 1264 break; 1265 } 1266 1267 return off; 1268 } 1269 1270 /* Returns bytes consumed and updates bursts */ 1271 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1272 unsigned long *bursts, const struct _xfer_spec *pxs) 1273 { 1274 int cyc, cycmax, szlp, szlpend, szbrst, off; 1275 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1276 struct _arg_LPEND lpend; 1277 1278 if (*bursts == 1) 1279 return _bursts(pl330, dry_run, buf, pxs, 1); 1280 1281 /* Max iterations possible in DMALP is 256 */ 1282 if (*bursts >= 256*256) { 1283 lcnt1 = 256; 1284 lcnt0 = 256; 1285 cyc = *bursts / lcnt1 / lcnt0; 1286 } else if (*bursts > 256) { 1287 lcnt1 = 256; 1288 lcnt0 = *bursts / lcnt1; 1289 cyc = 1; 1290 } else { 1291 lcnt1 = *bursts; 1292 lcnt0 = 0; 1293 cyc = 1; 1294 } 1295 1296 szlp = _emit_LP(1, buf, 0, 0); 1297 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1298 1299 lpend.cond = ALWAYS; 1300 lpend.forever = false; 1301 lpend.loop = 0; 1302 lpend.bjump = 0; 1303 szlpend = _emit_LPEND(1, buf, &lpend); 1304 1305 if (lcnt0) { 1306 szlp *= 2; 1307 szlpend *= 2; 1308 } 1309 1310 /* 1311 * Max bursts that we can unroll due to limit on the 1312 * size of backward jump that can be encoded in DMALPEND 1313 * which is 8-bits and hence 255 1314 */ 1315 cycmax = (255 - (szlp + szlpend)) / szbrst; 1316 1317 cyc = (cycmax < cyc) ? cycmax : cyc; 1318 1319 off = 0; 1320 1321 if (lcnt0) { 1322 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1323 ljmp0 = off; 1324 } 1325 1326 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1327 ljmp1 = off; 1328 1329 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1330 1331 lpend.cond = ALWAYS; 1332 lpend.forever = false; 1333 lpend.loop = 1; 1334 lpend.bjump = off - ljmp1; 1335 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1336 1337 if (lcnt0) { 1338 lpend.cond = ALWAYS; 1339 lpend.forever = false; 1340 lpend.loop = 0; 1341 lpend.bjump = off - ljmp0; 1342 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1343 } 1344 1345 *bursts = lcnt1 * cyc; 1346 if (lcnt0) 1347 *bursts *= lcnt0; 1348 1349 return off; 1350 } 1351 1352 static inline int _setup_loops(struct pl330_dmac *pl330, 1353 unsigned dry_run, u8 buf[], 1354 const struct _xfer_spec *pxs) 1355 { 1356 struct pl330_xfer *x = &pxs->desc->px; 1357 u32 ccr = pxs->ccr; 1358 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1359 int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) / 1360 BRST_SIZE(ccr); 1361 int off = 0; 1362 1363 while (bursts) { 1364 c = bursts; 1365 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1366 bursts -= c; 1367 } 1368 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs); 1369 1370 return off; 1371 } 1372 1373 static inline int _setup_xfer(struct pl330_dmac *pl330, 1374 unsigned dry_run, u8 buf[], 1375 const struct _xfer_spec *pxs) 1376 { 1377 struct pl330_xfer *x = &pxs->desc->px; 1378 int off = 0; 1379 1380 /* DMAMOV SAR, x->src_addr */ 1381 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1382 /* DMAMOV DAR, x->dst_addr */ 1383 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1384 1385 /* Setup Loop(s) */ 1386 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1387 1388 return off; 1389 } 1390 1391 /* 1392 * A req is a sequence of one or more xfer units. 1393 * Returns the number of bytes taken to setup the MC for the req. 1394 */ 1395 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1396 struct pl330_thread *thrd, unsigned index, 1397 struct _xfer_spec *pxs) 1398 { 1399 struct _pl330_req *req = &thrd->req[index]; 1400 u8 *buf = req->mc_cpu; 1401 int off = 0; 1402 1403 PL330_DBGMC_START(req->mc_bus); 1404 1405 /* DMAMOV CCR, ccr */ 1406 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1407 1408 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1409 1410 /* DMASEV peripheral/event */ 1411 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1412 /* DMAEND */ 1413 off += _emit_END(dry_run, &buf[off]); 1414 1415 return off; 1416 } 1417 1418 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1419 { 1420 u32 ccr = 0; 1421 1422 if (rqc->src_inc) 1423 ccr |= CC_SRCINC; 1424 1425 if (rqc->dst_inc) 1426 ccr |= CC_DSTINC; 1427 1428 /* We set same protection levels for Src and DST for now */ 1429 if (rqc->privileged) 1430 ccr |= CC_SRCPRI | CC_DSTPRI; 1431 if (rqc->nonsecure) 1432 ccr |= CC_SRCNS | CC_DSTNS; 1433 if (rqc->insnaccess) 1434 ccr |= CC_SRCIA | CC_DSTIA; 1435 1436 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1437 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1438 1439 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1440 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1441 1442 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1443 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1444 1445 ccr |= (rqc->swap << CC_SWAP_SHFT); 1446 1447 return ccr; 1448 } 1449 1450 /* 1451 * Submit a list of xfers after which the client wants notification. 1452 * Client is not notified after each xfer unit, just once after all 1453 * xfer units are done or some error occurs. 1454 */ 1455 static int pl330_submit_req(struct pl330_thread *thrd, 1456 struct dma_pl330_desc *desc) 1457 { 1458 struct pl330_dmac *pl330 = thrd->dmac; 1459 struct _xfer_spec xs; 1460 unsigned long flags; 1461 unsigned idx; 1462 u32 ccr; 1463 int ret = 0; 1464 1465 switch (desc->rqtype) { 1466 case DMA_MEM_TO_DEV: 1467 break; 1468 1469 case DMA_DEV_TO_MEM: 1470 break; 1471 1472 case DMA_MEM_TO_MEM: 1473 break; 1474 1475 default: 1476 return -ENOTSUPP; 1477 } 1478 1479 if (pl330->state == DYING 1480 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1481 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1482 __func__, __LINE__); 1483 return -EAGAIN; 1484 } 1485 1486 /* If request for non-existing peripheral */ 1487 if (desc->rqtype != DMA_MEM_TO_MEM && 1488 desc->peri >= pl330->pcfg.num_peri) { 1489 dev_info(thrd->dmac->ddma.dev, 1490 "%s:%d Invalid peripheral(%u)!\n", 1491 __func__, __LINE__, desc->peri); 1492 return -EINVAL; 1493 } 1494 1495 spin_lock_irqsave(&pl330->lock, flags); 1496 1497 if (_queue_full(thrd)) { 1498 ret = -EAGAIN; 1499 goto xfer_exit; 1500 } 1501 1502 /* Prefer Secure Channel */ 1503 if (!_manager_ns(thrd)) 1504 desc->rqcfg.nonsecure = 0; 1505 else 1506 desc->rqcfg.nonsecure = 1; 1507 1508 ccr = _prepare_ccr(&desc->rqcfg); 1509 1510 idx = thrd->req[0].desc == NULL ? 0 : 1; 1511 1512 xs.ccr = ccr; 1513 xs.desc = desc; 1514 1515 /* First dry run to check if req is acceptable */ 1516 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1517 if (ret < 0) 1518 goto xfer_exit; 1519 1520 if (ret > pl330->mcbufsz / 2) { 1521 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1522 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1523 ret = -ENOMEM; 1524 goto xfer_exit; 1525 } 1526 1527 /* Hook the request */ 1528 thrd->lstenq = idx; 1529 thrd->req[idx].desc = desc; 1530 _setup_req(pl330, 0, thrd, idx, &xs); 1531 1532 ret = 0; 1533 1534 xfer_exit: 1535 spin_unlock_irqrestore(&pl330->lock, flags); 1536 1537 return ret; 1538 } 1539 1540 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1541 { 1542 struct dma_pl330_chan *pch; 1543 unsigned long flags; 1544 1545 if (!desc) 1546 return; 1547 1548 pch = desc->pchan; 1549 1550 /* If desc aborted */ 1551 if (!pch) 1552 return; 1553 1554 spin_lock_irqsave(&pch->lock, flags); 1555 1556 desc->status = DONE; 1557 1558 spin_unlock_irqrestore(&pch->lock, flags); 1559 1560 tasklet_schedule(&pch->task); 1561 } 1562 1563 static void pl330_dotask(unsigned long data) 1564 { 1565 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1566 unsigned long flags; 1567 int i; 1568 1569 spin_lock_irqsave(&pl330->lock, flags); 1570 1571 /* The DMAC itself gone nuts */ 1572 if (pl330->dmac_tbd.reset_dmac) { 1573 pl330->state = DYING; 1574 /* Reset the manager too */ 1575 pl330->dmac_tbd.reset_mngr = true; 1576 /* Clear the reset flag */ 1577 pl330->dmac_tbd.reset_dmac = false; 1578 } 1579 1580 if (pl330->dmac_tbd.reset_mngr) { 1581 _stop(pl330->manager); 1582 /* Reset all channels */ 1583 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1584 /* Clear the reset flag */ 1585 pl330->dmac_tbd.reset_mngr = false; 1586 } 1587 1588 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1589 1590 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1591 struct pl330_thread *thrd = &pl330->channels[i]; 1592 void __iomem *regs = pl330->base; 1593 enum pl330_op_err err; 1594 1595 _stop(thrd); 1596 1597 if (readl(regs + FSC) & (1 << thrd->id)) 1598 err = PL330_ERR_FAIL; 1599 else 1600 err = PL330_ERR_ABORT; 1601 1602 spin_unlock_irqrestore(&pl330->lock, flags); 1603 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1604 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1605 spin_lock_irqsave(&pl330->lock, flags); 1606 1607 thrd->req[0].desc = NULL; 1608 thrd->req[1].desc = NULL; 1609 thrd->req_running = -1; 1610 1611 /* Clear the reset flag */ 1612 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1613 } 1614 } 1615 1616 spin_unlock_irqrestore(&pl330->lock, flags); 1617 1618 return; 1619 } 1620 1621 /* Returns 1 if state was updated, 0 otherwise */ 1622 static int pl330_update(struct pl330_dmac *pl330) 1623 { 1624 struct dma_pl330_desc *descdone; 1625 unsigned long flags; 1626 void __iomem *regs; 1627 u32 val; 1628 int id, ev, ret = 0; 1629 1630 regs = pl330->base; 1631 1632 spin_lock_irqsave(&pl330->lock, flags); 1633 1634 val = readl(regs + FSM) & 0x1; 1635 if (val) 1636 pl330->dmac_tbd.reset_mngr = true; 1637 else 1638 pl330->dmac_tbd.reset_mngr = false; 1639 1640 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1641 pl330->dmac_tbd.reset_chan |= val; 1642 if (val) { 1643 int i = 0; 1644 while (i < pl330->pcfg.num_chan) { 1645 if (val & (1 << i)) { 1646 dev_info(pl330->ddma.dev, 1647 "Reset Channel-%d\t CS-%x FTC-%x\n", 1648 i, readl(regs + CS(i)), 1649 readl(regs + FTC(i))); 1650 _stop(&pl330->channels[i]); 1651 } 1652 i++; 1653 } 1654 } 1655 1656 /* Check which event happened i.e, thread notified */ 1657 val = readl(regs + ES); 1658 if (pl330->pcfg.num_events < 32 1659 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1660 pl330->dmac_tbd.reset_dmac = true; 1661 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1662 __LINE__); 1663 ret = 1; 1664 goto updt_exit; 1665 } 1666 1667 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1668 if (val & (1 << ev)) { /* Event occurred */ 1669 struct pl330_thread *thrd; 1670 u32 inten = readl(regs + INTEN); 1671 int active; 1672 1673 /* Clear the event */ 1674 if (inten & (1 << ev)) 1675 writel(1 << ev, regs + INTCLR); 1676 1677 ret = 1; 1678 1679 id = pl330->events[ev]; 1680 1681 thrd = &pl330->channels[id]; 1682 1683 active = thrd->req_running; 1684 if (active == -1) /* Aborted */ 1685 continue; 1686 1687 /* Detach the req */ 1688 descdone = thrd->req[active].desc; 1689 thrd->req[active].desc = NULL; 1690 1691 thrd->req_running = -1; 1692 1693 /* Get going again ASAP */ 1694 _start(thrd); 1695 1696 /* For now, just make a list of callbacks to be done */ 1697 list_add_tail(&descdone->rqd, &pl330->req_done); 1698 } 1699 } 1700 1701 /* Now that we are in no hurry, do the callbacks */ 1702 while (!list_empty(&pl330->req_done)) { 1703 descdone = list_first_entry(&pl330->req_done, 1704 struct dma_pl330_desc, rqd); 1705 list_del(&descdone->rqd); 1706 spin_unlock_irqrestore(&pl330->lock, flags); 1707 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1708 spin_lock_irqsave(&pl330->lock, flags); 1709 } 1710 1711 updt_exit: 1712 spin_unlock_irqrestore(&pl330->lock, flags); 1713 1714 if (pl330->dmac_tbd.reset_dmac 1715 || pl330->dmac_tbd.reset_mngr 1716 || pl330->dmac_tbd.reset_chan) { 1717 ret = 1; 1718 tasklet_schedule(&pl330->tasks); 1719 } 1720 1721 return ret; 1722 } 1723 1724 /* Reserve an event */ 1725 static inline int _alloc_event(struct pl330_thread *thrd) 1726 { 1727 struct pl330_dmac *pl330 = thrd->dmac; 1728 int ev; 1729 1730 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1731 if (pl330->events[ev] == -1) { 1732 pl330->events[ev] = thrd->id; 1733 return ev; 1734 } 1735 1736 return -1; 1737 } 1738 1739 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1740 { 1741 return pl330->pcfg.irq_ns & (1 << i); 1742 } 1743 1744 /* Upon success, returns IdentityToken for the 1745 * allocated channel, NULL otherwise. 1746 */ 1747 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1748 { 1749 struct pl330_thread *thrd = NULL; 1750 int chans, i; 1751 1752 if (pl330->state == DYING) 1753 return NULL; 1754 1755 chans = pl330->pcfg.num_chan; 1756 1757 for (i = 0; i < chans; i++) { 1758 thrd = &pl330->channels[i]; 1759 if ((thrd->free) && (!_manager_ns(thrd) || 1760 _chan_ns(pl330, i))) { 1761 thrd->ev = _alloc_event(thrd); 1762 if (thrd->ev >= 0) { 1763 thrd->free = false; 1764 thrd->lstenq = 1; 1765 thrd->req[0].desc = NULL; 1766 thrd->req[1].desc = NULL; 1767 thrd->req_running = -1; 1768 break; 1769 } 1770 } 1771 thrd = NULL; 1772 } 1773 1774 return thrd; 1775 } 1776 1777 /* Release an event */ 1778 static inline void _free_event(struct pl330_thread *thrd, int ev) 1779 { 1780 struct pl330_dmac *pl330 = thrd->dmac; 1781 1782 /* If the event is valid and was held by the thread */ 1783 if (ev >= 0 && ev < pl330->pcfg.num_events 1784 && pl330->events[ev] == thrd->id) 1785 pl330->events[ev] = -1; 1786 } 1787 1788 static void pl330_release_channel(struct pl330_thread *thrd) 1789 { 1790 if (!thrd || thrd->free) 1791 return; 1792 1793 _stop(thrd); 1794 1795 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1796 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1797 1798 _free_event(thrd, thrd->ev); 1799 thrd->free = true; 1800 } 1801 1802 /* Initialize the structure for PL330 configuration, that can be used 1803 * by the client driver the make best use of the DMAC 1804 */ 1805 static void read_dmac_config(struct pl330_dmac *pl330) 1806 { 1807 void __iomem *regs = pl330->base; 1808 u32 val; 1809 1810 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1811 val &= CRD_DATA_WIDTH_MASK; 1812 pl330->pcfg.data_bus_width = 8 * (1 << val); 1813 1814 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1815 val &= CRD_DATA_BUFF_MASK; 1816 pl330->pcfg.data_buf_dep = val + 1; 1817 1818 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1819 val &= CR0_NUM_CHANS_MASK; 1820 val += 1; 1821 pl330->pcfg.num_chan = val; 1822 1823 val = readl(regs + CR0); 1824 if (val & CR0_PERIPH_REQ_SET) { 1825 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1826 val += 1; 1827 pl330->pcfg.num_peri = val; 1828 pl330->pcfg.peri_ns = readl(regs + CR4); 1829 } else { 1830 pl330->pcfg.num_peri = 0; 1831 } 1832 1833 val = readl(regs + CR0); 1834 if (val & CR0_BOOT_MAN_NS) 1835 pl330->pcfg.mode |= DMAC_MODE_NS; 1836 else 1837 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1838 1839 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1840 val &= CR0_NUM_EVENTS_MASK; 1841 val += 1; 1842 pl330->pcfg.num_events = val; 1843 1844 pl330->pcfg.irq_ns = readl(regs + CR3); 1845 } 1846 1847 static inline void _reset_thread(struct pl330_thread *thrd) 1848 { 1849 struct pl330_dmac *pl330 = thrd->dmac; 1850 1851 thrd->req[0].mc_cpu = pl330->mcode_cpu 1852 + (thrd->id * pl330->mcbufsz); 1853 thrd->req[0].mc_bus = pl330->mcode_bus 1854 + (thrd->id * pl330->mcbufsz); 1855 thrd->req[0].desc = NULL; 1856 1857 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1858 + pl330->mcbufsz / 2; 1859 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1860 + pl330->mcbufsz / 2; 1861 thrd->req[1].desc = NULL; 1862 1863 thrd->req_running = -1; 1864 } 1865 1866 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1867 { 1868 int chans = pl330->pcfg.num_chan; 1869 struct pl330_thread *thrd; 1870 int i; 1871 1872 /* Allocate 1 Manager and 'chans' Channel threads */ 1873 pl330->channels = kcalloc(1 + chans, sizeof(*thrd), 1874 GFP_KERNEL); 1875 if (!pl330->channels) 1876 return -ENOMEM; 1877 1878 /* Init Channel threads */ 1879 for (i = 0; i < chans; i++) { 1880 thrd = &pl330->channels[i]; 1881 thrd->id = i; 1882 thrd->dmac = pl330; 1883 _reset_thread(thrd); 1884 thrd->free = true; 1885 } 1886 1887 /* MANAGER is indexed at the end */ 1888 thrd = &pl330->channels[chans]; 1889 thrd->id = chans; 1890 thrd->dmac = pl330; 1891 thrd->free = false; 1892 pl330->manager = thrd; 1893 1894 return 0; 1895 } 1896 1897 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1898 { 1899 int chans = pl330->pcfg.num_chan; 1900 int ret; 1901 1902 /* 1903 * Alloc MicroCode buffer for 'chans' Channel threads. 1904 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1905 */ 1906 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, 1907 chans * pl330->mcbufsz, 1908 &pl330->mcode_bus, GFP_KERNEL, 1909 DMA_ATTR_PRIVILEGED); 1910 if (!pl330->mcode_cpu) { 1911 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1912 __func__, __LINE__); 1913 return -ENOMEM; 1914 } 1915 1916 ret = dmac_alloc_threads(pl330); 1917 if (ret) { 1918 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1919 __func__, __LINE__); 1920 dma_free_coherent(pl330->ddma.dev, 1921 chans * pl330->mcbufsz, 1922 pl330->mcode_cpu, pl330->mcode_bus); 1923 return ret; 1924 } 1925 1926 return 0; 1927 } 1928 1929 static int pl330_add(struct pl330_dmac *pl330) 1930 { 1931 int i, ret; 1932 1933 /* Check if we can handle this DMAC */ 1934 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1935 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1936 pl330->pcfg.periph_id); 1937 return -EINVAL; 1938 } 1939 1940 /* Read the configuration of the DMAC */ 1941 read_dmac_config(pl330); 1942 1943 if (pl330->pcfg.num_events == 0) { 1944 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1945 __func__, __LINE__); 1946 return -EINVAL; 1947 } 1948 1949 spin_lock_init(&pl330->lock); 1950 1951 INIT_LIST_HEAD(&pl330->req_done); 1952 1953 /* Use default MC buffer size if not provided */ 1954 if (!pl330->mcbufsz) 1955 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1956 1957 /* Mark all events as free */ 1958 for (i = 0; i < pl330->pcfg.num_events; i++) 1959 pl330->events[i] = -1; 1960 1961 /* Allocate resources needed by the DMAC */ 1962 ret = dmac_alloc_resources(pl330); 1963 if (ret) { 1964 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1965 return ret; 1966 } 1967 1968 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1969 1970 pl330->state = INIT; 1971 1972 return 0; 1973 } 1974 1975 static int dmac_free_threads(struct pl330_dmac *pl330) 1976 { 1977 struct pl330_thread *thrd; 1978 int i; 1979 1980 /* Release Channel threads */ 1981 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1982 thrd = &pl330->channels[i]; 1983 pl330_release_channel(thrd); 1984 } 1985 1986 /* Free memory */ 1987 kfree(pl330->channels); 1988 1989 return 0; 1990 } 1991 1992 static void pl330_del(struct pl330_dmac *pl330) 1993 { 1994 pl330->state = UNINIT; 1995 1996 tasklet_kill(&pl330->tasks); 1997 1998 /* Free DMAC resources */ 1999 dmac_free_threads(pl330); 2000 2001 dma_free_coherent(pl330->ddma.dev, 2002 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 2003 pl330->mcode_bus); 2004 } 2005 2006 /* forward declaration */ 2007 static struct amba_driver pl330_driver; 2008 2009 static inline struct dma_pl330_chan * 2010 to_pchan(struct dma_chan *ch) 2011 { 2012 if (!ch) 2013 return NULL; 2014 2015 return container_of(ch, struct dma_pl330_chan, chan); 2016 } 2017 2018 static inline struct dma_pl330_desc * 2019 to_desc(struct dma_async_tx_descriptor *tx) 2020 { 2021 return container_of(tx, struct dma_pl330_desc, txd); 2022 } 2023 2024 static inline void fill_queue(struct dma_pl330_chan *pch) 2025 { 2026 struct dma_pl330_desc *desc; 2027 int ret; 2028 2029 list_for_each_entry(desc, &pch->work_list, node) { 2030 2031 /* If already submitted */ 2032 if (desc->status == BUSY) 2033 continue; 2034 2035 ret = pl330_submit_req(pch->thread, desc); 2036 if (!ret) { 2037 desc->status = BUSY; 2038 } else if (ret == -EAGAIN) { 2039 /* QFull or DMAC Dying */ 2040 break; 2041 } else { 2042 /* Unacceptable request */ 2043 desc->status = DONE; 2044 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 2045 __func__, __LINE__, desc->txd.cookie); 2046 tasklet_schedule(&pch->task); 2047 } 2048 } 2049 } 2050 2051 static void pl330_tasklet(unsigned long data) 2052 { 2053 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2054 struct dma_pl330_desc *desc, *_dt; 2055 unsigned long flags; 2056 bool power_down = false; 2057 2058 spin_lock_irqsave(&pch->lock, flags); 2059 2060 /* Pick up ripe tomatoes */ 2061 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2062 if (desc->status == DONE) { 2063 if (!pch->cyclic) 2064 dma_cookie_complete(&desc->txd); 2065 list_move_tail(&desc->node, &pch->completed_list); 2066 } 2067 2068 /* Try to submit a req imm. next to the last completed cookie */ 2069 fill_queue(pch); 2070 2071 if (list_empty(&pch->work_list)) { 2072 spin_lock(&pch->thread->dmac->lock); 2073 _stop(pch->thread); 2074 spin_unlock(&pch->thread->dmac->lock); 2075 power_down = true; 2076 pch->active = false; 2077 } else { 2078 /* Make sure the PL330 Channel thread is active */ 2079 spin_lock(&pch->thread->dmac->lock); 2080 _start(pch->thread); 2081 spin_unlock(&pch->thread->dmac->lock); 2082 } 2083 2084 while (!list_empty(&pch->completed_list)) { 2085 struct dmaengine_desc_callback cb; 2086 2087 desc = list_first_entry(&pch->completed_list, 2088 struct dma_pl330_desc, node); 2089 2090 dmaengine_desc_get_callback(&desc->txd, &cb); 2091 2092 if (pch->cyclic) { 2093 desc->status = PREP; 2094 list_move_tail(&desc->node, &pch->work_list); 2095 if (power_down) { 2096 pch->active = true; 2097 spin_lock(&pch->thread->dmac->lock); 2098 _start(pch->thread); 2099 spin_unlock(&pch->thread->dmac->lock); 2100 power_down = false; 2101 } 2102 } else { 2103 desc->status = FREE; 2104 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2105 } 2106 2107 dma_descriptor_unmap(&desc->txd); 2108 2109 if (dmaengine_desc_callback_valid(&cb)) { 2110 spin_unlock_irqrestore(&pch->lock, flags); 2111 dmaengine_desc_callback_invoke(&cb, NULL); 2112 spin_lock_irqsave(&pch->lock, flags); 2113 } 2114 } 2115 spin_unlock_irqrestore(&pch->lock, flags); 2116 2117 /* If work list empty, power down */ 2118 if (power_down) { 2119 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2120 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2121 } 2122 } 2123 2124 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2125 struct of_dma *ofdma) 2126 { 2127 int count = dma_spec->args_count; 2128 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2129 unsigned int chan_id; 2130 2131 if (!pl330) 2132 return NULL; 2133 2134 if (count != 1) 2135 return NULL; 2136 2137 chan_id = dma_spec->args[0]; 2138 if (chan_id >= pl330->num_peripherals) 2139 return NULL; 2140 2141 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2142 } 2143 2144 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2145 { 2146 struct dma_pl330_chan *pch = to_pchan(chan); 2147 struct pl330_dmac *pl330 = pch->dmac; 2148 unsigned long flags; 2149 2150 spin_lock_irqsave(&pl330->lock, flags); 2151 2152 dma_cookie_init(chan); 2153 pch->cyclic = false; 2154 2155 pch->thread = pl330_request_channel(pl330); 2156 if (!pch->thread) { 2157 spin_unlock_irqrestore(&pl330->lock, flags); 2158 return -ENOMEM; 2159 } 2160 2161 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2162 2163 spin_unlock_irqrestore(&pl330->lock, flags); 2164 2165 return 1; 2166 } 2167 2168 /* 2169 * We need the data direction between the DMAC (the dma-mapping "device") and 2170 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! 2171 */ 2172 static enum dma_data_direction 2173 pl330_dma_slave_map_dir(enum dma_transfer_direction dir) 2174 { 2175 switch (dir) { 2176 case DMA_MEM_TO_DEV: 2177 return DMA_FROM_DEVICE; 2178 case DMA_DEV_TO_MEM: 2179 return DMA_TO_DEVICE; 2180 case DMA_DEV_TO_DEV: 2181 return DMA_BIDIRECTIONAL; 2182 default: 2183 return DMA_NONE; 2184 } 2185 } 2186 2187 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) 2188 { 2189 if (pch->dir != DMA_NONE) 2190 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 2191 1 << pch->burst_sz, pch->dir, 0); 2192 pch->dir = DMA_NONE; 2193 } 2194 2195 2196 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, 2197 enum dma_transfer_direction dir) 2198 { 2199 struct device *dev = pch->chan.device->dev; 2200 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); 2201 2202 /* Already mapped for this config? */ 2203 if (pch->dir == dma_dir) 2204 return true; 2205 2206 pl330_unprep_slave_fifo(pch); 2207 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 2208 1 << pch->burst_sz, dma_dir, 0); 2209 if (dma_mapping_error(dev, pch->fifo_dma)) 2210 return false; 2211 2212 pch->dir = dma_dir; 2213 return true; 2214 } 2215 2216 static int fixup_burst_len(int max_burst_len, int quirks) 2217 { 2218 if (quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 2219 return 1; 2220 else if (max_burst_len > PL330_MAX_BURST) 2221 return PL330_MAX_BURST; 2222 else if (max_burst_len < 1) 2223 return 1; 2224 else 2225 return max_burst_len; 2226 } 2227 2228 static int pl330_config_write(struct dma_chan *chan, 2229 struct dma_slave_config *slave_config, 2230 enum dma_transfer_direction direction) 2231 { 2232 struct dma_pl330_chan *pch = to_pchan(chan); 2233 2234 pl330_unprep_slave_fifo(pch); 2235 if (direction == DMA_MEM_TO_DEV) { 2236 if (slave_config->dst_addr) 2237 pch->fifo_addr = slave_config->dst_addr; 2238 if (slave_config->dst_addr_width) 2239 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2240 pch->burst_len = fixup_burst_len(slave_config->dst_maxburst, 2241 pch->dmac->quirks); 2242 } else if (direction == DMA_DEV_TO_MEM) { 2243 if (slave_config->src_addr) 2244 pch->fifo_addr = slave_config->src_addr; 2245 if (slave_config->src_addr_width) 2246 pch->burst_sz = __ffs(slave_config->src_addr_width); 2247 pch->burst_len = fixup_burst_len(slave_config->src_maxburst, 2248 pch->dmac->quirks); 2249 } 2250 2251 return 0; 2252 } 2253 2254 static int pl330_config(struct dma_chan *chan, 2255 struct dma_slave_config *slave_config) 2256 { 2257 struct dma_pl330_chan *pch = to_pchan(chan); 2258 2259 memcpy(&pch->slave_config, slave_config, sizeof(*slave_config)); 2260 2261 return 0; 2262 } 2263 2264 static int pl330_terminate_all(struct dma_chan *chan) 2265 { 2266 struct dma_pl330_chan *pch = to_pchan(chan); 2267 struct dma_pl330_desc *desc; 2268 unsigned long flags; 2269 struct pl330_dmac *pl330 = pch->dmac; 2270 LIST_HEAD(list); 2271 bool power_down = false; 2272 2273 pm_runtime_get_sync(pl330->ddma.dev); 2274 spin_lock_irqsave(&pch->lock, flags); 2275 2276 spin_lock(&pl330->lock); 2277 _stop(pch->thread); 2278 pch->thread->req[0].desc = NULL; 2279 pch->thread->req[1].desc = NULL; 2280 pch->thread->req_running = -1; 2281 spin_unlock(&pl330->lock); 2282 2283 power_down = pch->active; 2284 pch->active = false; 2285 2286 /* Mark all desc done */ 2287 list_for_each_entry(desc, &pch->submitted_list, node) { 2288 desc->status = FREE; 2289 dma_cookie_complete(&desc->txd); 2290 } 2291 2292 list_for_each_entry(desc, &pch->work_list , node) { 2293 desc->status = FREE; 2294 dma_cookie_complete(&desc->txd); 2295 } 2296 2297 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2298 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2299 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2300 spin_unlock_irqrestore(&pch->lock, flags); 2301 pm_runtime_mark_last_busy(pl330->ddma.dev); 2302 if (power_down) 2303 pm_runtime_put_autosuspend(pl330->ddma.dev); 2304 pm_runtime_put_autosuspend(pl330->ddma.dev); 2305 2306 return 0; 2307 } 2308 2309 /* 2310 * We don't support DMA_RESUME command because of hardware 2311 * limitations, so after pausing the channel we cannot restore 2312 * it to active state. We have to terminate channel and setup 2313 * DMA transfer again. This pause feature was implemented to 2314 * allow safely read residue before channel termination. 2315 */ 2316 static int pl330_pause(struct dma_chan *chan) 2317 { 2318 struct dma_pl330_chan *pch = to_pchan(chan); 2319 struct pl330_dmac *pl330 = pch->dmac; 2320 unsigned long flags; 2321 2322 pm_runtime_get_sync(pl330->ddma.dev); 2323 spin_lock_irqsave(&pch->lock, flags); 2324 2325 spin_lock(&pl330->lock); 2326 _stop(pch->thread); 2327 spin_unlock(&pl330->lock); 2328 2329 spin_unlock_irqrestore(&pch->lock, flags); 2330 pm_runtime_mark_last_busy(pl330->ddma.dev); 2331 pm_runtime_put_autosuspend(pl330->ddma.dev); 2332 2333 return 0; 2334 } 2335 2336 static void pl330_free_chan_resources(struct dma_chan *chan) 2337 { 2338 struct dma_pl330_chan *pch = to_pchan(chan); 2339 struct pl330_dmac *pl330 = pch->dmac; 2340 unsigned long flags; 2341 2342 tasklet_kill(&pch->task); 2343 2344 pm_runtime_get_sync(pch->dmac->ddma.dev); 2345 spin_lock_irqsave(&pl330->lock, flags); 2346 2347 pl330_release_channel(pch->thread); 2348 pch->thread = NULL; 2349 2350 if (pch->cyclic) 2351 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2352 2353 spin_unlock_irqrestore(&pl330->lock, flags); 2354 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2355 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2356 pl330_unprep_slave_fifo(pch); 2357 } 2358 2359 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2360 struct dma_pl330_desc *desc) 2361 { 2362 struct pl330_thread *thrd = pch->thread; 2363 struct pl330_dmac *pl330 = pch->dmac; 2364 void __iomem *regs = thrd->dmac->base; 2365 u32 val, addr; 2366 2367 pm_runtime_get_sync(pl330->ddma.dev); 2368 val = addr = 0; 2369 if (desc->rqcfg.src_inc) { 2370 val = readl(regs + SA(thrd->id)); 2371 addr = desc->px.src_addr; 2372 } else { 2373 val = readl(regs + DA(thrd->id)); 2374 addr = desc->px.dst_addr; 2375 } 2376 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2377 pm_runtime_put_autosuspend(pl330->ddma.dev); 2378 2379 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ 2380 if (!val) 2381 return 0; 2382 2383 return val - addr; 2384 } 2385 2386 static enum dma_status 2387 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2388 struct dma_tx_state *txstate) 2389 { 2390 enum dma_status ret; 2391 unsigned long flags; 2392 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; 2393 struct dma_pl330_chan *pch = to_pchan(chan); 2394 unsigned int transferred, residual = 0; 2395 2396 ret = dma_cookie_status(chan, cookie, txstate); 2397 2398 if (!txstate) 2399 return ret; 2400 2401 if (ret == DMA_COMPLETE) 2402 goto out; 2403 2404 spin_lock_irqsave(&pch->lock, flags); 2405 spin_lock(&pch->thread->dmac->lock); 2406 2407 if (pch->thread->req_running != -1) 2408 running = pch->thread->req[pch->thread->req_running].desc; 2409 2410 last_enq = pch->thread->req[pch->thread->lstenq].desc; 2411 2412 /* Check in pending list */ 2413 list_for_each_entry(desc, &pch->work_list, node) { 2414 if (desc->status == DONE) 2415 transferred = desc->bytes_requested; 2416 else if (running && desc == running) 2417 transferred = 2418 pl330_get_current_xferred_count(pch, desc); 2419 else if (desc->status == BUSY) 2420 /* 2421 * Busy but not running means either just enqueued, 2422 * or finished and not yet marked done 2423 */ 2424 if (desc == last_enq) 2425 transferred = 0; 2426 else 2427 transferred = desc->bytes_requested; 2428 else 2429 transferred = 0; 2430 residual += desc->bytes_requested - transferred; 2431 if (desc->txd.cookie == cookie) { 2432 switch (desc->status) { 2433 case DONE: 2434 ret = DMA_COMPLETE; 2435 break; 2436 case PREP: 2437 case BUSY: 2438 ret = DMA_IN_PROGRESS; 2439 break; 2440 default: 2441 WARN_ON(1); 2442 } 2443 break; 2444 } 2445 if (desc->last) 2446 residual = 0; 2447 } 2448 spin_unlock(&pch->thread->dmac->lock); 2449 spin_unlock_irqrestore(&pch->lock, flags); 2450 2451 out: 2452 dma_set_residue(txstate, residual); 2453 2454 return ret; 2455 } 2456 2457 static void pl330_issue_pending(struct dma_chan *chan) 2458 { 2459 struct dma_pl330_chan *pch = to_pchan(chan); 2460 unsigned long flags; 2461 2462 spin_lock_irqsave(&pch->lock, flags); 2463 if (list_empty(&pch->work_list)) { 2464 /* 2465 * Warn on nothing pending. Empty submitted_list may 2466 * break our pm_runtime usage counter as it is 2467 * updated on work_list emptiness status. 2468 */ 2469 WARN_ON(list_empty(&pch->submitted_list)); 2470 pch->active = true; 2471 pm_runtime_get_sync(pch->dmac->ddma.dev); 2472 } 2473 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2474 spin_unlock_irqrestore(&pch->lock, flags); 2475 2476 pl330_tasklet((unsigned long)pch); 2477 } 2478 2479 /* 2480 * We returned the last one of the circular list of descriptor(s) 2481 * from prep_xxx, so the argument to submit corresponds to the last 2482 * descriptor of the list. 2483 */ 2484 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2485 { 2486 struct dma_pl330_desc *desc, *last = to_desc(tx); 2487 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2488 dma_cookie_t cookie; 2489 unsigned long flags; 2490 2491 spin_lock_irqsave(&pch->lock, flags); 2492 2493 /* Assign cookies to all nodes */ 2494 while (!list_empty(&last->node)) { 2495 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2496 if (pch->cyclic) { 2497 desc->txd.callback = last->txd.callback; 2498 desc->txd.callback_param = last->txd.callback_param; 2499 } 2500 desc->last = false; 2501 2502 dma_cookie_assign(&desc->txd); 2503 2504 list_move_tail(&desc->node, &pch->submitted_list); 2505 } 2506 2507 last->last = true; 2508 cookie = dma_cookie_assign(&last->txd); 2509 list_add_tail(&last->node, &pch->submitted_list); 2510 spin_unlock_irqrestore(&pch->lock, flags); 2511 2512 return cookie; 2513 } 2514 2515 static inline void _init_desc(struct dma_pl330_desc *desc) 2516 { 2517 desc->rqcfg.swap = SWAP_NO; 2518 desc->rqcfg.scctl = CCTRL0; 2519 desc->rqcfg.dcctl = CCTRL0; 2520 desc->txd.tx_submit = pl330_tx_submit; 2521 2522 INIT_LIST_HEAD(&desc->node); 2523 } 2524 2525 /* Returns the number of descriptors added to the DMAC pool */ 2526 static int add_desc(struct list_head *pool, spinlock_t *lock, 2527 gfp_t flg, int count) 2528 { 2529 struct dma_pl330_desc *desc; 2530 unsigned long flags; 2531 int i; 2532 2533 desc = kcalloc(count, sizeof(*desc), flg); 2534 if (!desc) 2535 return 0; 2536 2537 spin_lock_irqsave(lock, flags); 2538 2539 for (i = 0; i < count; i++) { 2540 _init_desc(&desc[i]); 2541 list_add_tail(&desc[i].node, pool); 2542 } 2543 2544 spin_unlock_irqrestore(lock, flags); 2545 2546 return count; 2547 } 2548 2549 static struct dma_pl330_desc *pluck_desc(struct list_head *pool, 2550 spinlock_t *lock) 2551 { 2552 struct dma_pl330_desc *desc = NULL; 2553 unsigned long flags; 2554 2555 spin_lock_irqsave(lock, flags); 2556 2557 if (!list_empty(pool)) { 2558 desc = list_entry(pool->next, 2559 struct dma_pl330_desc, node); 2560 2561 list_del_init(&desc->node); 2562 2563 desc->status = PREP; 2564 desc->txd.callback = NULL; 2565 } 2566 2567 spin_unlock_irqrestore(lock, flags); 2568 2569 return desc; 2570 } 2571 2572 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2573 { 2574 struct pl330_dmac *pl330 = pch->dmac; 2575 u8 *peri_id = pch->chan.private; 2576 struct dma_pl330_desc *desc; 2577 2578 /* Pluck one desc from the pool of DMAC */ 2579 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock); 2580 2581 /* If the DMAC pool is empty, alloc new */ 2582 if (!desc) { 2583 DEFINE_SPINLOCK(lock); 2584 LIST_HEAD(pool); 2585 2586 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1)) 2587 return NULL; 2588 2589 desc = pluck_desc(&pool, &lock); 2590 WARN_ON(!desc || !list_empty(&pool)); 2591 } 2592 2593 /* Initialize the descriptor */ 2594 desc->pchan = pch; 2595 desc->txd.cookie = 0; 2596 async_tx_ack(&desc->txd); 2597 2598 desc->peri = peri_id ? pch->chan.chan_id : 0; 2599 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2600 2601 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2602 2603 return desc; 2604 } 2605 2606 static inline void fill_px(struct pl330_xfer *px, 2607 dma_addr_t dst, dma_addr_t src, size_t len) 2608 { 2609 px->bytes = len; 2610 px->dst_addr = dst; 2611 px->src_addr = src; 2612 } 2613 2614 static struct dma_pl330_desc * 2615 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2616 dma_addr_t src, size_t len) 2617 { 2618 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2619 2620 if (!desc) { 2621 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2622 __func__, __LINE__); 2623 return NULL; 2624 } 2625 2626 /* 2627 * Ideally we should lookout for reqs bigger than 2628 * those that can be programmed with 256 bytes of 2629 * MC buffer, but considering a req size is seldom 2630 * going to be word-unaligned and more than 200MB, 2631 * we take it easy. 2632 * Also, should the limit is reached we'd rather 2633 * have the platform increase MC buffer size than 2634 * complicating this API driver. 2635 */ 2636 fill_px(&desc->px, dst, src, len); 2637 2638 return desc; 2639 } 2640 2641 /* Call after fixing burst size */ 2642 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2643 { 2644 struct dma_pl330_chan *pch = desc->pchan; 2645 struct pl330_dmac *pl330 = pch->dmac; 2646 int burst_len; 2647 2648 burst_len = pl330->pcfg.data_bus_width / 8; 2649 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2650 burst_len >>= desc->rqcfg.brst_size; 2651 2652 /* src/dst_burst_len can't be more than 16 */ 2653 if (burst_len > PL330_MAX_BURST) 2654 burst_len = PL330_MAX_BURST; 2655 2656 return burst_len; 2657 } 2658 2659 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2660 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2661 size_t period_len, enum dma_transfer_direction direction, 2662 unsigned long flags) 2663 { 2664 struct dma_pl330_desc *desc = NULL, *first = NULL; 2665 struct dma_pl330_chan *pch = to_pchan(chan); 2666 struct pl330_dmac *pl330 = pch->dmac; 2667 unsigned int i; 2668 dma_addr_t dst; 2669 dma_addr_t src; 2670 2671 if (len % period_len != 0) 2672 return NULL; 2673 2674 if (!is_slave_direction(direction)) { 2675 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2676 __func__, __LINE__); 2677 return NULL; 2678 } 2679 2680 pl330_config_write(chan, &pch->slave_config, direction); 2681 2682 if (!pl330_prep_slave_fifo(pch, direction)) 2683 return NULL; 2684 2685 for (i = 0; i < len / period_len; i++) { 2686 desc = pl330_get_desc(pch); 2687 if (!desc) { 2688 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2689 __func__, __LINE__); 2690 2691 if (!first) 2692 return NULL; 2693 2694 spin_lock_irqsave(&pl330->pool_lock, flags); 2695 2696 while (!list_empty(&first->node)) { 2697 desc = list_entry(first->node.next, 2698 struct dma_pl330_desc, node); 2699 list_move_tail(&desc->node, &pl330->desc_pool); 2700 } 2701 2702 list_move_tail(&first->node, &pl330->desc_pool); 2703 2704 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2705 2706 return NULL; 2707 } 2708 2709 switch (direction) { 2710 case DMA_MEM_TO_DEV: 2711 desc->rqcfg.src_inc = 1; 2712 desc->rqcfg.dst_inc = 0; 2713 src = dma_addr; 2714 dst = pch->fifo_dma; 2715 break; 2716 case DMA_DEV_TO_MEM: 2717 desc->rqcfg.src_inc = 0; 2718 desc->rqcfg.dst_inc = 1; 2719 src = pch->fifo_dma; 2720 dst = dma_addr; 2721 break; 2722 default: 2723 break; 2724 } 2725 2726 desc->rqtype = direction; 2727 desc->rqcfg.brst_size = pch->burst_sz; 2728 desc->rqcfg.brst_len = pch->burst_len; 2729 desc->bytes_requested = period_len; 2730 fill_px(&desc->px, dst, src, period_len); 2731 2732 if (!first) 2733 first = desc; 2734 else 2735 list_add_tail(&desc->node, &first->node); 2736 2737 dma_addr += period_len; 2738 } 2739 2740 if (!desc) 2741 return NULL; 2742 2743 pch->cyclic = true; 2744 desc->txd.flags = flags; 2745 2746 return &desc->txd; 2747 } 2748 2749 static struct dma_async_tx_descriptor * 2750 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2751 dma_addr_t src, size_t len, unsigned long flags) 2752 { 2753 struct dma_pl330_desc *desc; 2754 struct dma_pl330_chan *pch = to_pchan(chan); 2755 struct pl330_dmac *pl330; 2756 int burst; 2757 2758 if (unlikely(!pch || !len)) 2759 return NULL; 2760 2761 pl330 = pch->dmac; 2762 2763 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2764 if (!desc) 2765 return NULL; 2766 2767 desc->rqcfg.src_inc = 1; 2768 desc->rqcfg.dst_inc = 1; 2769 desc->rqtype = DMA_MEM_TO_MEM; 2770 2771 /* Select max possible burst size */ 2772 burst = pl330->pcfg.data_bus_width / 8; 2773 2774 /* 2775 * Make sure we use a burst size that aligns with all the memcpy 2776 * parameters because our DMA programming algorithm doesn't cope with 2777 * transfers which straddle an entry in the DMA device's MFIFO. 2778 */ 2779 while ((src | dst | len) & (burst - 1)) 2780 burst /= 2; 2781 2782 desc->rqcfg.brst_size = 0; 2783 while (burst != (1 << desc->rqcfg.brst_size)) 2784 desc->rqcfg.brst_size++; 2785 2786 /* 2787 * If burst size is smaller than bus width then make sure we only 2788 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2789 */ 2790 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2791 desc->rqcfg.brst_len = 1; 2792 2793 desc->rqcfg.brst_len = get_burst_len(desc, len); 2794 desc->bytes_requested = len; 2795 2796 desc->txd.flags = flags; 2797 2798 return &desc->txd; 2799 } 2800 2801 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2802 struct dma_pl330_desc *first) 2803 { 2804 unsigned long flags; 2805 struct dma_pl330_desc *desc; 2806 2807 if (!first) 2808 return; 2809 2810 spin_lock_irqsave(&pl330->pool_lock, flags); 2811 2812 while (!list_empty(&first->node)) { 2813 desc = list_entry(first->node.next, 2814 struct dma_pl330_desc, node); 2815 list_move_tail(&desc->node, &pl330->desc_pool); 2816 } 2817 2818 list_move_tail(&first->node, &pl330->desc_pool); 2819 2820 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2821 } 2822 2823 static struct dma_async_tx_descriptor * 2824 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2825 unsigned int sg_len, enum dma_transfer_direction direction, 2826 unsigned long flg, void *context) 2827 { 2828 struct dma_pl330_desc *first, *desc = NULL; 2829 struct dma_pl330_chan *pch = to_pchan(chan); 2830 struct scatterlist *sg; 2831 int i; 2832 2833 if (unlikely(!pch || !sgl || !sg_len)) 2834 return NULL; 2835 2836 pl330_config_write(chan, &pch->slave_config, direction); 2837 2838 if (!pl330_prep_slave_fifo(pch, direction)) 2839 return NULL; 2840 2841 first = NULL; 2842 2843 for_each_sg(sgl, sg, sg_len, i) { 2844 2845 desc = pl330_get_desc(pch); 2846 if (!desc) { 2847 struct pl330_dmac *pl330 = pch->dmac; 2848 2849 dev_err(pch->dmac->ddma.dev, 2850 "%s:%d Unable to fetch desc\n", 2851 __func__, __LINE__); 2852 __pl330_giveback_desc(pl330, first); 2853 2854 return NULL; 2855 } 2856 2857 if (!first) 2858 first = desc; 2859 else 2860 list_add_tail(&desc->node, &first->node); 2861 2862 if (direction == DMA_MEM_TO_DEV) { 2863 desc->rqcfg.src_inc = 1; 2864 desc->rqcfg.dst_inc = 0; 2865 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), 2866 sg_dma_len(sg)); 2867 } else { 2868 desc->rqcfg.src_inc = 0; 2869 desc->rqcfg.dst_inc = 1; 2870 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, 2871 sg_dma_len(sg)); 2872 } 2873 2874 desc->rqcfg.brst_size = pch->burst_sz; 2875 desc->rqcfg.brst_len = pch->burst_len; 2876 desc->rqtype = direction; 2877 desc->bytes_requested = sg_dma_len(sg); 2878 } 2879 2880 /* Return the last desc in the chain */ 2881 desc->txd.flags = flg; 2882 return &desc->txd; 2883 } 2884 2885 static irqreturn_t pl330_irq_handler(int irq, void *data) 2886 { 2887 if (pl330_update(data)) 2888 return IRQ_HANDLED; 2889 else 2890 return IRQ_NONE; 2891 } 2892 2893 #define PL330_DMA_BUSWIDTHS \ 2894 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2895 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2896 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2897 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2898 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2899 2900 /* 2901 * Runtime PM callbacks are provided by amba/bus.c driver. 2902 * 2903 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2904 * bus driver will only disable/enable the clock in runtime PM callbacks. 2905 */ 2906 static int __maybe_unused pl330_suspend(struct device *dev) 2907 { 2908 struct amba_device *pcdev = to_amba_device(dev); 2909 2910 pm_runtime_disable(dev); 2911 2912 if (!pm_runtime_status_suspended(dev)) { 2913 /* amba did not disable the clock */ 2914 amba_pclk_disable(pcdev); 2915 } 2916 amba_pclk_unprepare(pcdev); 2917 2918 return 0; 2919 } 2920 2921 static int __maybe_unused pl330_resume(struct device *dev) 2922 { 2923 struct amba_device *pcdev = to_amba_device(dev); 2924 int ret; 2925 2926 ret = amba_pclk_prepare(pcdev); 2927 if (ret) 2928 return ret; 2929 2930 if (!pm_runtime_status_suspended(dev)) 2931 ret = amba_pclk_enable(pcdev); 2932 2933 pm_runtime_enable(dev); 2934 2935 return ret; 2936 } 2937 2938 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume); 2939 2940 static int 2941 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2942 { 2943 struct pl330_config *pcfg; 2944 struct pl330_dmac *pl330; 2945 struct dma_pl330_chan *pch, *_p; 2946 struct dma_device *pd; 2947 struct resource *res; 2948 int i, ret, irq; 2949 int num_chan; 2950 struct device_node *np = adev->dev.of_node; 2951 2952 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 2953 if (ret) 2954 return ret; 2955 2956 /* Allocate a new DMAC and its Channels */ 2957 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 2958 if (!pl330) 2959 return -ENOMEM; 2960 2961 pd = &pl330->ddma; 2962 pd->dev = &adev->dev; 2963 2964 pl330->mcbufsz = 0; 2965 2966 /* get quirk */ 2967 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 2968 if (of_property_read_bool(np, of_quirks[i].quirk)) 2969 pl330->quirks |= of_quirks[i].id; 2970 2971 res = &adev->res; 2972 pl330->base = devm_ioremap_resource(&adev->dev, res); 2973 if (IS_ERR(pl330->base)) 2974 return PTR_ERR(pl330->base); 2975 2976 amba_set_drvdata(adev, pl330); 2977 2978 for (i = 0; i < AMBA_NR_IRQS; i++) { 2979 irq = adev->irq[i]; 2980 if (irq) { 2981 ret = devm_request_irq(&adev->dev, irq, 2982 pl330_irq_handler, 0, 2983 dev_name(&adev->dev), pl330); 2984 if (ret) 2985 return ret; 2986 } else { 2987 break; 2988 } 2989 } 2990 2991 pcfg = &pl330->pcfg; 2992 2993 pcfg->periph_id = adev->periphid; 2994 ret = pl330_add(pl330); 2995 if (ret) 2996 return ret; 2997 2998 INIT_LIST_HEAD(&pl330->desc_pool); 2999 spin_lock_init(&pl330->pool_lock); 3000 3001 /* Create a descriptor pool of default size */ 3002 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock, 3003 GFP_KERNEL, NR_DEFAULT_DESC)) 3004 dev_warn(&adev->dev, "unable to allocate desc\n"); 3005 3006 INIT_LIST_HEAD(&pd->channels); 3007 3008 /* Initialize channel parameters */ 3009 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 3010 3011 pl330->num_peripherals = num_chan; 3012 3013 pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL); 3014 if (!pl330->peripherals) { 3015 ret = -ENOMEM; 3016 goto probe_err2; 3017 } 3018 3019 for (i = 0; i < num_chan; i++) { 3020 pch = &pl330->peripherals[i]; 3021 3022 pch->chan.private = adev->dev.of_node; 3023 INIT_LIST_HEAD(&pch->submitted_list); 3024 INIT_LIST_HEAD(&pch->work_list); 3025 INIT_LIST_HEAD(&pch->completed_list); 3026 spin_lock_init(&pch->lock); 3027 pch->thread = NULL; 3028 pch->chan.device = pd; 3029 pch->dmac = pl330; 3030 pch->dir = DMA_NONE; 3031 3032 /* Add the channel to the DMAC list */ 3033 list_add_tail(&pch->chan.device_node, &pd->channels); 3034 } 3035 3036 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 3037 if (pcfg->num_peri) { 3038 dma_cap_set(DMA_SLAVE, pd->cap_mask); 3039 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 3040 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 3041 } 3042 3043 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 3044 pd->device_free_chan_resources = pl330_free_chan_resources; 3045 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 3046 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 3047 pd->device_tx_status = pl330_tx_status; 3048 pd->device_prep_slave_sg = pl330_prep_slave_sg; 3049 pd->device_config = pl330_config; 3050 pd->device_pause = pl330_pause; 3051 pd->device_terminate_all = pl330_terminate_all; 3052 pd->device_issue_pending = pl330_issue_pending; 3053 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 3054 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 3055 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 3056 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 3057 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ? 3058 1 : PL330_MAX_BURST); 3059 3060 ret = dma_async_device_register(pd); 3061 if (ret) { 3062 dev_err(&adev->dev, "unable to register DMAC\n"); 3063 goto probe_err3; 3064 } 3065 3066 if (adev->dev.of_node) { 3067 ret = of_dma_controller_register(adev->dev.of_node, 3068 of_dma_pl330_xlate, pl330); 3069 if (ret) { 3070 dev_err(&adev->dev, 3071 "unable to register DMA to the generic DT DMA helpers\n"); 3072 } 3073 } 3074 3075 adev->dev.dma_parms = &pl330->dma_parms; 3076 3077 /* 3078 * This is the limit for transfers with a buswidth of 1, larger 3079 * buswidths will have larger limits. 3080 */ 3081 ret = dma_set_max_seg_size(&adev->dev, 1900800); 3082 if (ret) 3083 dev_err(&adev->dev, "unable to set the seg size\n"); 3084 3085 3086 dev_info(&adev->dev, 3087 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 3088 dev_info(&adev->dev, 3089 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3090 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 3091 pcfg->num_peri, pcfg->num_events); 3092 3093 pm_runtime_irq_safe(&adev->dev); 3094 pm_runtime_use_autosuspend(&adev->dev); 3095 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 3096 pm_runtime_mark_last_busy(&adev->dev); 3097 pm_runtime_put_autosuspend(&adev->dev); 3098 3099 return 0; 3100 probe_err3: 3101 /* Idle the DMAC */ 3102 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3103 chan.device_node) { 3104 3105 /* Remove the channel */ 3106 list_del(&pch->chan.device_node); 3107 3108 /* Flush the channel */ 3109 if (pch->thread) { 3110 pl330_terminate_all(&pch->chan); 3111 pl330_free_chan_resources(&pch->chan); 3112 } 3113 } 3114 probe_err2: 3115 pl330_del(pl330); 3116 3117 return ret; 3118 } 3119 3120 static int pl330_remove(struct amba_device *adev) 3121 { 3122 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 3123 struct dma_pl330_chan *pch, *_p; 3124 int i, irq; 3125 3126 pm_runtime_get_noresume(pl330->ddma.dev); 3127 3128 if (adev->dev.of_node) 3129 of_dma_controller_free(adev->dev.of_node); 3130 3131 for (i = 0; i < AMBA_NR_IRQS; i++) { 3132 irq = adev->irq[i]; 3133 if (irq) 3134 devm_free_irq(&adev->dev, irq, pl330); 3135 } 3136 3137 dma_async_device_unregister(&pl330->ddma); 3138 3139 /* Idle the DMAC */ 3140 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3141 chan.device_node) { 3142 3143 /* Remove the channel */ 3144 list_del(&pch->chan.device_node); 3145 3146 /* Flush the channel */ 3147 if (pch->thread) { 3148 pl330_terminate_all(&pch->chan); 3149 pl330_free_chan_resources(&pch->chan); 3150 } 3151 } 3152 3153 pl330_del(pl330); 3154 3155 return 0; 3156 } 3157 3158 static const struct amba_id pl330_ids[] = { 3159 { 3160 .id = 0x00041330, 3161 .mask = 0x000fffff, 3162 }, 3163 { 0, 0 }, 3164 }; 3165 3166 MODULE_DEVICE_TABLE(amba, pl330_ids); 3167 3168 static struct amba_driver pl330_driver = { 3169 .drv = { 3170 .owner = THIS_MODULE, 3171 .name = "dma-pl330", 3172 .pm = &pl330_pm, 3173 }, 3174 .id_table = pl330_ids, 3175 .probe = pl330_probe, 3176 .remove = pl330_remove, 3177 }; 3178 3179 module_amba_driver(pl330_driver); 3180 3181 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3182 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3183 MODULE_LICENSE("GPL"); 3184