1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/err.h> 30 #include <linux/pm_runtime.h> 31 32 #include "dmaengine.h" 33 #define PL330_MAX_CHAN 8 34 #define PL330_MAX_IRQS 32 35 #define PL330_MAX_PERI 32 36 37 enum pl330_cachectrl { 38 CCTRL0, /* Noncacheable and nonbufferable */ 39 CCTRL1, /* Bufferable only */ 40 CCTRL2, /* Cacheable, but do not allocate */ 41 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 42 INVALID1, /* AWCACHE = 0x1000 */ 43 INVALID2, 44 CCTRL6, /* Cacheable write-through, allocate on writes only */ 45 CCTRL7, /* Cacheable write-back, allocate on writes only */ 46 }; 47 48 enum pl330_byteswap { 49 SWAP_NO, 50 SWAP_2, 51 SWAP_4, 52 SWAP_8, 53 SWAP_16, 54 }; 55 56 /* Register and Bit field Definitions */ 57 #define DS 0x0 58 #define DS_ST_STOP 0x0 59 #define DS_ST_EXEC 0x1 60 #define DS_ST_CMISS 0x2 61 #define DS_ST_UPDTPC 0x3 62 #define DS_ST_WFE 0x4 63 #define DS_ST_ATBRR 0x5 64 #define DS_ST_QBUSY 0x6 65 #define DS_ST_WFP 0x7 66 #define DS_ST_KILL 0x8 67 #define DS_ST_CMPLT 0x9 68 #define DS_ST_FLTCMP 0xe 69 #define DS_ST_FAULT 0xf 70 71 #define DPC 0x4 72 #define INTEN 0x20 73 #define ES 0x24 74 #define INTSTATUS 0x28 75 #define INTCLR 0x2c 76 #define FSM 0x30 77 #define FSC 0x34 78 #define FTM 0x38 79 80 #define _FTC 0x40 81 #define FTC(n) (_FTC + (n)*0x4) 82 83 #define _CS 0x100 84 #define CS(n) (_CS + (n)*0x8) 85 #define CS_CNS (1 << 21) 86 87 #define _CPC 0x104 88 #define CPC(n) (_CPC + (n)*0x8) 89 90 #define _SA 0x400 91 #define SA(n) (_SA + (n)*0x20) 92 93 #define _DA 0x404 94 #define DA(n) (_DA + (n)*0x20) 95 96 #define _CC 0x408 97 #define CC(n) (_CC + (n)*0x20) 98 99 #define CC_SRCINC (1 << 0) 100 #define CC_DSTINC (1 << 14) 101 #define CC_SRCPRI (1 << 8) 102 #define CC_DSTPRI (1 << 22) 103 #define CC_SRCNS (1 << 9) 104 #define CC_DSTNS (1 << 23) 105 #define CC_SRCIA (1 << 10) 106 #define CC_DSTIA (1 << 24) 107 #define CC_SRCBRSTLEN_SHFT 4 108 #define CC_DSTBRSTLEN_SHFT 18 109 #define CC_SRCBRSTSIZE_SHFT 1 110 #define CC_DSTBRSTSIZE_SHFT 15 111 #define CC_SRCCCTRL_SHFT 11 112 #define CC_SRCCCTRL_MASK 0x7 113 #define CC_DSTCCTRL_SHFT 25 114 #define CC_DRCCCTRL_MASK 0x7 115 #define CC_SWAP_SHFT 28 116 117 #define _LC0 0x40c 118 #define LC0(n) (_LC0 + (n)*0x20) 119 120 #define _LC1 0x410 121 #define LC1(n) (_LC1 + (n)*0x20) 122 123 #define DBGSTATUS 0xd00 124 #define DBG_BUSY (1 << 0) 125 126 #define DBGCMD 0xd04 127 #define DBGINST0 0xd08 128 #define DBGINST1 0xd0c 129 130 #define CR0 0xe00 131 #define CR1 0xe04 132 #define CR2 0xe08 133 #define CR3 0xe0c 134 #define CR4 0xe10 135 #define CRD 0xe14 136 137 #define PERIPH_ID 0xfe0 138 #define PERIPH_REV_SHIFT 20 139 #define PERIPH_REV_MASK 0xf 140 #define PERIPH_REV_R0P0 0 141 #define PERIPH_REV_R1P0 1 142 #define PERIPH_REV_R1P1 2 143 144 #define CR0_PERIPH_REQ_SET (1 << 0) 145 #define CR0_BOOT_EN_SET (1 << 1) 146 #define CR0_BOOT_MAN_NS (1 << 2) 147 #define CR0_NUM_CHANS_SHIFT 4 148 #define CR0_NUM_CHANS_MASK 0x7 149 #define CR0_NUM_PERIPH_SHIFT 12 150 #define CR0_NUM_PERIPH_MASK 0x1f 151 #define CR0_NUM_EVENTS_SHIFT 17 152 #define CR0_NUM_EVENTS_MASK 0x1f 153 154 #define CR1_ICACHE_LEN_SHIFT 0 155 #define CR1_ICACHE_LEN_MASK 0x7 156 #define CR1_NUM_ICACHELINES_SHIFT 4 157 #define CR1_NUM_ICACHELINES_MASK 0xf 158 159 #define CRD_DATA_WIDTH_SHIFT 0 160 #define CRD_DATA_WIDTH_MASK 0x7 161 #define CRD_WR_CAP_SHIFT 4 162 #define CRD_WR_CAP_MASK 0x7 163 #define CRD_WR_Q_DEP_SHIFT 8 164 #define CRD_WR_Q_DEP_MASK 0xf 165 #define CRD_RD_CAP_SHIFT 12 166 #define CRD_RD_CAP_MASK 0x7 167 #define CRD_RD_Q_DEP_SHIFT 16 168 #define CRD_RD_Q_DEP_MASK 0xf 169 #define CRD_DATA_BUFF_SHIFT 20 170 #define CRD_DATA_BUFF_MASK 0x3ff 171 172 #define PART 0x330 173 #define DESIGNER 0x41 174 #define REVISION 0x0 175 #define INTEG_CFG 0x0 176 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 177 178 #define PL330_STATE_STOPPED (1 << 0) 179 #define PL330_STATE_EXECUTING (1 << 1) 180 #define PL330_STATE_WFE (1 << 2) 181 #define PL330_STATE_FAULTING (1 << 3) 182 #define PL330_STATE_COMPLETING (1 << 4) 183 #define PL330_STATE_WFP (1 << 5) 184 #define PL330_STATE_KILLING (1 << 6) 185 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 186 #define PL330_STATE_CACHEMISS (1 << 8) 187 #define PL330_STATE_UPDTPC (1 << 9) 188 #define PL330_STATE_ATBARRIER (1 << 10) 189 #define PL330_STATE_QUEUEBUSY (1 << 11) 190 #define PL330_STATE_INVALID (1 << 15) 191 192 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 193 | PL330_STATE_WFE | PL330_STATE_FAULTING) 194 195 #define CMD_DMAADDH 0x54 196 #define CMD_DMAEND 0x00 197 #define CMD_DMAFLUSHP 0x35 198 #define CMD_DMAGO 0xa0 199 #define CMD_DMALD 0x04 200 #define CMD_DMALDP 0x25 201 #define CMD_DMALP 0x20 202 #define CMD_DMALPEND 0x28 203 #define CMD_DMAKILL 0x01 204 #define CMD_DMAMOV 0xbc 205 #define CMD_DMANOP 0x18 206 #define CMD_DMARMB 0x12 207 #define CMD_DMASEV 0x34 208 #define CMD_DMAST 0x08 209 #define CMD_DMASTP 0x29 210 #define CMD_DMASTZ 0x0c 211 #define CMD_DMAWFE 0x36 212 #define CMD_DMAWFP 0x30 213 #define CMD_DMAWMB 0x13 214 215 #define SZ_DMAADDH 3 216 #define SZ_DMAEND 1 217 #define SZ_DMAFLUSHP 2 218 #define SZ_DMALD 1 219 #define SZ_DMALDP 2 220 #define SZ_DMALP 2 221 #define SZ_DMALPEND 2 222 #define SZ_DMAKILL 1 223 #define SZ_DMAMOV 6 224 #define SZ_DMANOP 1 225 #define SZ_DMARMB 1 226 #define SZ_DMASEV 2 227 #define SZ_DMAST 1 228 #define SZ_DMASTP 2 229 #define SZ_DMASTZ 1 230 #define SZ_DMAWFE 2 231 #define SZ_DMAWFP 2 232 #define SZ_DMAWMB 1 233 #define SZ_DMAGO 6 234 235 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 236 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 237 238 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 239 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 240 241 /* 242 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 243 * at 1byte/burst for P<->M and M<->M respectively. 244 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 245 * should be enough for P<->M and M<->M respectively. 246 */ 247 #define MCODE_BUFF_PER_REQ 256 248 249 /* Use this _only_ to wait on transient states */ 250 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 251 252 #ifdef PL330_DEBUG_MCGEN 253 static unsigned cmd_line; 254 #define PL330_DBGCMD_DUMP(off, x...) do { \ 255 printk("%x:", cmd_line); \ 256 printk(x); \ 257 cmd_line += off; \ 258 } while (0) 259 #define PL330_DBGMC_START(addr) (cmd_line = addr) 260 #else 261 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 262 #define PL330_DBGMC_START(addr) do {} while (0) 263 #endif 264 265 /* The number of default descriptors */ 266 267 #define NR_DEFAULT_DESC 16 268 269 /* Delay for runtime PM autosuspend, ms */ 270 #define PL330_AUTOSUSPEND_DELAY 20 271 272 /* Populated by the PL330 core driver for DMA API driver's info */ 273 struct pl330_config { 274 u32 periph_id; 275 #define DMAC_MODE_NS (1 << 0) 276 unsigned int mode; 277 unsigned int data_bus_width:10; /* In number of bits */ 278 unsigned int data_buf_dep:11; 279 unsigned int num_chan:4; 280 unsigned int num_peri:6; 281 u32 peri_ns; 282 unsigned int num_events:6; 283 u32 irq_ns; 284 }; 285 286 /** 287 * Request Configuration. 288 * The PL330 core does not modify this and uses the last 289 * working configuration if the request doesn't provide any. 290 * 291 * The Client may want to provide this info only for the 292 * first request and a request with new settings. 293 */ 294 struct pl330_reqcfg { 295 /* Address Incrementing */ 296 unsigned dst_inc:1; 297 unsigned src_inc:1; 298 299 /* 300 * For now, the SRC & DST protection levels 301 * and burst size/length are assumed same. 302 */ 303 bool nonsecure; 304 bool privileged; 305 bool insnaccess; 306 unsigned brst_len:5; 307 unsigned brst_size:3; /* in power of 2 */ 308 309 enum pl330_cachectrl dcctl; 310 enum pl330_cachectrl scctl; 311 enum pl330_byteswap swap; 312 struct pl330_config *pcfg; 313 }; 314 315 /* 316 * One cycle of DMAC operation. 317 * There may be more than one xfer in a request. 318 */ 319 struct pl330_xfer { 320 u32 src_addr; 321 u32 dst_addr; 322 /* Size to xfer */ 323 u32 bytes; 324 }; 325 326 /* The xfer callbacks are made with one of these arguments. */ 327 enum pl330_op_err { 328 /* The all xfers in the request were success. */ 329 PL330_ERR_NONE, 330 /* If req aborted due to global error. */ 331 PL330_ERR_ABORT, 332 /* If req failed due to problem with Channel. */ 333 PL330_ERR_FAIL, 334 }; 335 336 enum dmamov_dst { 337 SAR = 0, 338 CCR, 339 DAR, 340 }; 341 342 enum pl330_dst { 343 SRC = 0, 344 DST, 345 }; 346 347 enum pl330_cond { 348 SINGLE, 349 BURST, 350 ALWAYS, 351 }; 352 353 struct dma_pl330_desc; 354 355 struct _pl330_req { 356 u32 mc_bus; 357 void *mc_cpu; 358 struct dma_pl330_desc *desc; 359 }; 360 361 /* ToBeDone for tasklet */ 362 struct _pl330_tbd { 363 bool reset_dmac; 364 bool reset_mngr; 365 u8 reset_chan; 366 }; 367 368 /* A DMAC Thread */ 369 struct pl330_thread { 370 u8 id; 371 int ev; 372 /* If the channel is not yet acquired by any client */ 373 bool free; 374 /* Parent DMAC */ 375 struct pl330_dmac *dmac; 376 /* Only two at a time */ 377 struct _pl330_req req[2]; 378 /* Index of the last enqueued request */ 379 unsigned lstenq; 380 /* Index of the last submitted request or -1 if the DMA is stopped */ 381 int req_running; 382 }; 383 384 enum pl330_dmac_state { 385 UNINIT, 386 INIT, 387 DYING, 388 }; 389 390 enum desc_status { 391 /* In the DMAC pool */ 392 FREE, 393 /* 394 * Allocated to some channel during prep_xxx 395 * Also may be sitting on the work_list. 396 */ 397 PREP, 398 /* 399 * Sitting on the work_list and already submitted 400 * to the PL330 core. Not more than two descriptors 401 * of a channel can be BUSY at any time. 402 */ 403 BUSY, 404 /* 405 * Sitting on the channel work_list but xfer done 406 * by PL330 core 407 */ 408 DONE, 409 }; 410 411 struct dma_pl330_chan { 412 /* Schedule desc completion */ 413 struct tasklet_struct task; 414 415 /* DMA-Engine Channel */ 416 struct dma_chan chan; 417 418 /* List of submitted descriptors */ 419 struct list_head submitted_list; 420 /* List of issued descriptors */ 421 struct list_head work_list; 422 /* List of completed descriptors */ 423 struct list_head completed_list; 424 425 /* Pointer to the DMAC that manages this channel, 426 * NULL if the channel is available to be acquired. 427 * As the parent, this DMAC also provides descriptors 428 * to the channel. 429 */ 430 struct pl330_dmac *dmac; 431 432 /* To protect channel manipulation */ 433 spinlock_t lock; 434 435 /* 436 * Hardware channel thread of PL330 DMAC. NULL if the channel is 437 * available. 438 */ 439 struct pl330_thread *thread; 440 441 /* For D-to-M and M-to-D channels */ 442 int burst_sz; /* the peripheral fifo width */ 443 int burst_len; /* the number of burst */ 444 dma_addr_t fifo_addr; 445 446 /* for cyclic capability */ 447 bool cyclic; 448 }; 449 450 struct pl330_dmac { 451 /* DMA-Engine Device */ 452 struct dma_device ddma; 453 454 /* Holds info about sg limitations */ 455 struct device_dma_parameters dma_parms; 456 457 /* Pool of descriptors available for the DMAC's channels */ 458 struct list_head desc_pool; 459 /* To protect desc_pool manipulation */ 460 spinlock_t pool_lock; 461 462 /* Size of MicroCode buffers for each channel. */ 463 unsigned mcbufsz; 464 /* ioremap'ed address of PL330 registers. */ 465 void __iomem *base; 466 /* Populated by the PL330 core driver during pl330_add */ 467 struct pl330_config pcfg; 468 469 spinlock_t lock; 470 /* Maximum possible events/irqs */ 471 int events[32]; 472 /* BUS address of MicroCode buffer */ 473 dma_addr_t mcode_bus; 474 /* CPU address of MicroCode buffer */ 475 void *mcode_cpu; 476 /* List of all Channel threads */ 477 struct pl330_thread *channels; 478 /* Pointer to the MANAGER thread */ 479 struct pl330_thread *manager; 480 /* To handle bad news in interrupt */ 481 struct tasklet_struct tasks; 482 struct _pl330_tbd dmac_tbd; 483 /* State of DMAC operation */ 484 enum pl330_dmac_state state; 485 /* Holds list of reqs with due callbacks */ 486 struct list_head req_done; 487 488 /* Peripheral channels connected to this DMAC */ 489 unsigned int num_peripherals; 490 struct dma_pl330_chan *peripherals; /* keep at end */ 491 }; 492 493 struct dma_pl330_desc { 494 /* To attach to a queue as child */ 495 struct list_head node; 496 497 /* Descriptor for the DMA Engine API */ 498 struct dma_async_tx_descriptor txd; 499 500 /* Xfer for PL330 core */ 501 struct pl330_xfer px; 502 503 struct pl330_reqcfg rqcfg; 504 505 enum desc_status status; 506 507 /* The channel which currently holds this desc */ 508 struct dma_pl330_chan *pchan; 509 510 enum dma_transfer_direction rqtype; 511 /* Index of peripheral for the xfer. */ 512 unsigned peri:5; 513 /* Hook to attach to DMAC's list of reqs with due callback */ 514 struct list_head rqd; 515 }; 516 517 struct _xfer_spec { 518 u32 ccr; 519 struct dma_pl330_desc *desc; 520 }; 521 522 static inline bool _queue_empty(struct pl330_thread *thrd) 523 { 524 return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL; 525 } 526 527 static inline bool _queue_full(struct pl330_thread *thrd) 528 { 529 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 530 } 531 532 static inline bool is_manager(struct pl330_thread *thrd) 533 { 534 return thrd->dmac->manager == thrd; 535 } 536 537 /* If manager of the thread is in Non-Secure mode */ 538 static inline bool _manager_ns(struct pl330_thread *thrd) 539 { 540 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 541 } 542 543 static inline u32 get_revision(u32 periph_id) 544 { 545 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 546 } 547 548 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 549 enum pl330_dst da, u16 val) 550 { 551 if (dry_run) 552 return SZ_DMAADDH; 553 554 buf[0] = CMD_DMAADDH; 555 buf[0] |= (da << 1); 556 *((u16 *)&buf[1]) = val; 557 558 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 559 da == 1 ? "DA" : "SA", val); 560 561 return SZ_DMAADDH; 562 } 563 564 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 565 { 566 if (dry_run) 567 return SZ_DMAEND; 568 569 buf[0] = CMD_DMAEND; 570 571 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 572 573 return SZ_DMAEND; 574 } 575 576 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 577 { 578 if (dry_run) 579 return SZ_DMAFLUSHP; 580 581 buf[0] = CMD_DMAFLUSHP; 582 583 peri &= 0x1f; 584 peri <<= 3; 585 buf[1] = peri; 586 587 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 588 589 return SZ_DMAFLUSHP; 590 } 591 592 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 593 { 594 if (dry_run) 595 return SZ_DMALD; 596 597 buf[0] = CMD_DMALD; 598 599 if (cond == SINGLE) 600 buf[0] |= (0 << 1) | (1 << 0); 601 else if (cond == BURST) 602 buf[0] |= (1 << 1) | (1 << 0); 603 604 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 605 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 606 607 return SZ_DMALD; 608 } 609 610 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 611 enum pl330_cond cond, u8 peri) 612 { 613 if (dry_run) 614 return SZ_DMALDP; 615 616 buf[0] = CMD_DMALDP; 617 618 if (cond == BURST) 619 buf[0] |= (1 << 1); 620 621 peri &= 0x1f; 622 peri <<= 3; 623 buf[1] = peri; 624 625 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 626 cond == SINGLE ? 'S' : 'B', peri >> 3); 627 628 return SZ_DMALDP; 629 } 630 631 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 632 unsigned loop, u8 cnt) 633 { 634 if (dry_run) 635 return SZ_DMALP; 636 637 buf[0] = CMD_DMALP; 638 639 if (loop) 640 buf[0] |= (1 << 1); 641 642 cnt--; /* DMAC increments by 1 internally */ 643 buf[1] = cnt; 644 645 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 646 647 return SZ_DMALP; 648 } 649 650 struct _arg_LPEND { 651 enum pl330_cond cond; 652 bool forever; 653 unsigned loop; 654 u8 bjump; 655 }; 656 657 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 658 const struct _arg_LPEND *arg) 659 { 660 enum pl330_cond cond = arg->cond; 661 bool forever = arg->forever; 662 unsigned loop = arg->loop; 663 u8 bjump = arg->bjump; 664 665 if (dry_run) 666 return SZ_DMALPEND; 667 668 buf[0] = CMD_DMALPEND; 669 670 if (loop) 671 buf[0] |= (1 << 2); 672 673 if (!forever) 674 buf[0] |= (1 << 4); 675 676 if (cond == SINGLE) 677 buf[0] |= (0 << 1) | (1 << 0); 678 else if (cond == BURST) 679 buf[0] |= (1 << 1) | (1 << 0); 680 681 buf[1] = bjump; 682 683 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 684 forever ? "FE" : "END", 685 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 686 loop ? '1' : '0', 687 bjump); 688 689 return SZ_DMALPEND; 690 } 691 692 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 693 { 694 if (dry_run) 695 return SZ_DMAKILL; 696 697 buf[0] = CMD_DMAKILL; 698 699 return SZ_DMAKILL; 700 } 701 702 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 703 enum dmamov_dst dst, u32 val) 704 { 705 if (dry_run) 706 return SZ_DMAMOV; 707 708 buf[0] = CMD_DMAMOV; 709 buf[1] = dst; 710 *((u32 *)&buf[2]) = val; 711 712 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 713 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 714 715 return SZ_DMAMOV; 716 } 717 718 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 719 { 720 if (dry_run) 721 return SZ_DMANOP; 722 723 buf[0] = CMD_DMANOP; 724 725 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 726 727 return SZ_DMANOP; 728 } 729 730 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 731 { 732 if (dry_run) 733 return SZ_DMARMB; 734 735 buf[0] = CMD_DMARMB; 736 737 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 738 739 return SZ_DMARMB; 740 } 741 742 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 743 { 744 if (dry_run) 745 return SZ_DMASEV; 746 747 buf[0] = CMD_DMASEV; 748 749 ev &= 0x1f; 750 ev <<= 3; 751 buf[1] = ev; 752 753 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 754 755 return SZ_DMASEV; 756 } 757 758 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 759 { 760 if (dry_run) 761 return SZ_DMAST; 762 763 buf[0] = CMD_DMAST; 764 765 if (cond == SINGLE) 766 buf[0] |= (0 << 1) | (1 << 0); 767 else if (cond == BURST) 768 buf[0] |= (1 << 1) | (1 << 0); 769 770 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 771 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 772 773 return SZ_DMAST; 774 } 775 776 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 777 enum pl330_cond cond, u8 peri) 778 { 779 if (dry_run) 780 return SZ_DMASTP; 781 782 buf[0] = CMD_DMASTP; 783 784 if (cond == BURST) 785 buf[0] |= (1 << 1); 786 787 peri &= 0x1f; 788 peri <<= 3; 789 buf[1] = peri; 790 791 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 792 cond == SINGLE ? 'S' : 'B', peri >> 3); 793 794 return SZ_DMASTP; 795 } 796 797 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 798 { 799 if (dry_run) 800 return SZ_DMASTZ; 801 802 buf[0] = CMD_DMASTZ; 803 804 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 805 806 return SZ_DMASTZ; 807 } 808 809 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 810 unsigned invalidate) 811 { 812 if (dry_run) 813 return SZ_DMAWFE; 814 815 buf[0] = CMD_DMAWFE; 816 817 ev &= 0x1f; 818 ev <<= 3; 819 buf[1] = ev; 820 821 if (invalidate) 822 buf[1] |= (1 << 1); 823 824 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 825 ev >> 3, invalidate ? ", I" : ""); 826 827 return SZ_DMAWFE; 828 } 829 830 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 831 enum pl330_cond cond, u8 peri) 832 { 833 if (dry_run) 834 return SZ_DMAWFP; 835 836 buf[0] = CMD_DMAWFP; 837 838 if (cond == SINGLE) 839 buf[0] |= (0 << 1) | (0 << 0); 840 else if (cond == BURST) 841 buf[0] |= (1 << 1) | (0 << 0); 842 else 843 buf[0] |= (0 << 1) | (1 << 0); 844 845 peri &= 0x1f; 846 peri <<= 3; 847 buf[1] = peri; 848 849 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 850 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 851 852 return SZ_DMAWFP; 853 } 854 855 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 856 { 857 if (dry_run) 858 return SZ_DMAWMB; 859 860 buf[0] = CMD_DMAWMB; 861 862 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 863 864 return SZ_DMAWMB; 865 } 866 867 struct _arg_GO { 868 u8 chan; 869 u32 addr; 870 unsigned ns; 871 }; 872 873 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 874 const struct _arg_GO *arg) 875 { 876 u8 chan = arg->chan; 877 u32 addr = arg->addr; 878 unsigned ns = arg->ns; 879 880 if (dry_run) 881 return SZ_DMAGO; 882 883 buf[0] = CMD_DMAGO; 884 buf[0] |= (ns << 1); 885 886 buf[1] = chan & 0x7; 887 888 *((u32 *)&buf[2]) = addr; 889 890 return SZ_DMAGO; 891 } 892 893 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 894 895 /* Returns Time-Out */ 896 static bool _until_dmac_idle(struct pl330_thread *thrd) 897 { 898 void __iomem *regs = thrd->dmac->base; 899 unsigned long loops = msecs_to_loops(5); 900 901 do { 902 /* Until Manager is Idle */ 903 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 904 break; 905 906 cpu_relax(); 907 } while (--loops); 908 909 if (!loops) 910 return true; 911 912 return false; 913 } 914 915 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 916 u8 insn[], bool as_manager) 917 { 918 void __iomem *regs = thrd->dmac->base; 919 u32 val; 920 921 val = (insn[0] << 16) | (insn[1] << 24); 922 if (!as_manager) { 923 val |= (1 << 0); 924 val |= (thrd->id << 8); /* Channel Number */ 925 } 926 writel(val, regs + DBGINST0); 927 928 val = *((u32 *)&insn[2]); 929 writel(val, regs + DBGINST1); 930 931 /* If timed out due to halted state-machine */ 932 if (_until_dmac_idle(thrd)) { 933 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 934 return; 935 } 936 937 /* Get going */ 938 writel(0, regs + DBGCMD); 939 } 940 941 static inline u32 _state(struct pl330_thread *thrd) 942 { 943 void __iomem *regs = thrd->dmac->base; 944 u32 val; 945 946 if (is_manager(thrd)) 947 val = readl(regs + DS) & 0xf; 948 else 949 val = readl(regs + CS(thrd->id)) & 0xf; 950 951 switch (val) { 952 case DS_ST_STOP: 953 return PL330_STATE_STOPPED; 954 case DS_ST_EXEC: 955 return PL330_STATE_EXECUTING; 956 case DS_ST_CMISS: 957 return PL330_STATE_CACHEMISS; 958 case DS_ST_UPDTPC: 959 return PL330_STATE_UPDTPC; 960 case DS_ST_WFE: 961 return PL330_STATE_WFE; 962 case DS_ST_FAULT: 963 return PL330_STATE_FAULTING; 964 case DS_ST_ATBRR: 965 if (is_manager(thrd)) 966 return PL330_STATE_INVALID; 967 else 968 return PL330_STATE_ATBARRIER; 969 case DS_ST_QBUSY: 970 if (is_manager(thrd)) 971 return PL330_STATE_INVALID; 972 else 973 return PL330_STATE_QUEUEBUSY; 974 case DS_ST_WFP: 975 if (is_manager(thrd)) 976 return PL330_STATE_INVALID; 977 else 978 return PL330_STATE_WFP; 979 case DS_ST_KILL: 980 if (is_manager(thrd)) 981 return PL330_STATE_INVALID; 982 else 983 return PL330_STATE_KILLING; 984 case DS_ST_CMPLT: 985 if (is_manager(thrd)) 986 return PL330_STATE_INVALID; 987 else 988 return PL330_STATE_COMPLETING; 989 case DS_ST_FLTCMP: 990 if (is_manager(thrd)) 991 return PL330_STATE_INVALID; 992 else 993 return PL330_STATE_FAULT_COMPLETING; 994 default: 995 return PL330_STATE_INVALID; 996 } 997 } 998 999 static void _stop(struct pl330_thread *thrd) 1000 { 1001 void __iomem *regs = thrd->dmac->base; 1002 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1003 1004 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1005 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1006 1007 /* Return if nothing needs to be done */ 1008 if (_state(thrd) == PL330_STATE_COMPLETING 1009 || _state(thrd) == PL330_STATE_KILLING 1010 || _state(thrd) == PL330_STATE_STOPPED) 1011 return; 1012 1013 _emit_KILL(0, insn); 1014 1015 /* Stop generating interrupts for SEV */ 1016 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1017 1018 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1019 } 1020 1021 /* Start doing req 'idx' of thread 'thrd' */ 1022 static bool _trigger(struct pl330_thread *thrd) 1023 { 1024 void __iomem *regs = thrd->dmac->base; 1025 struct _pl330_req *req; 1026 struct dma_pl330_desc *desc; 1027 struct _arg_GO go; 1028 unsigned ns; 1029 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1030 int idx; 1031 1032 /* Return if already ACTIVE */ 1033 if (_state(thrd) != PL330_STATE_STOPPED) 1034 return true; 1035 1036 idx = 1 - thrd->lstenq; 1037 if (thrd->req[idx].desc != NULL) { 1038 req = &thrd->req[idx]; 1039 } else { 1040 idx = thrd->lstenq; 1041 if (thrd->req[idx].desc != NULL) 1042 req = &thrd->req[idx]; 1043 else 1044 req = NULL; 1045 } 1046 1047 /* Return if no request */ 1048 if (!req) 1049 return true; 1050 1051 desc = req->desc; 1052 1053 ns = desc->rqcfg.nonsecure ? 1 : 0; 1054 1055 /* See 'Abort Sources' point-4 at Page 2-25 */ 1056 if (_manager_ns(thrd) && !ns) 1057 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1058 __func__, __LINE__); 1059 1060 go.chan = thrd->id; 1061 go.addr = req->mc_bus; 1062 go.ns = ns; 1063 _emit_GO(0, insn, &go); 1064 1065 /* Set to generate interrupts for SEV */ 1066 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1067 1068 /* Only manager can execute GO */ 1069 _execute_DBGINSN(thrd, insn, true); 1070 1071 thrd->req_running = idx; 1072 1073 return true; 1074 } 1075 1076 static bool _start(struct pl330_thread *thrd) 1077 { 1078 switch (_state(thrd)) { 1079 case PL330_STATE_FAULT_COMPLETING: 1080 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1081 1082 if (_state(thrd) == PL330_STATE_KILLING) 1083 UNTIL(thrd, PL330_STATE_STOPPED) 1084 1085 case PL330_STATE_FAULTING: 1086 _stop(thrd); 1087 1088 case PL330_STATE_KILLING: 1089 case PL330_STATE_COMPLETING: 1090 UNTIL(thrd, PL330_STATE_STOPPED) 1091 1092 case PL330_STATE_STOPPED: 1093 return _trigger(thrd); 1094 1095 case PL330_STATE_WFP: 1096 case PL330_STATE_QUEUEBUSY: 1097 case PL330_STATE_ATBARRIER: 1098 case PL330_STATE_UPDTPC: 1099 case PL330_STATE_CACHEMISS: 1100 case PL330_STATE_EXECUTING: 1101 return true; 1102 1103 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1104 default: 1105 return false; 1106 } 1107 } 1108 1109 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1110 const struct _xfer_spec *pxs, int cyc) 1111 { 1112 int off = 0; 1113 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1114 1115 /* check lock-up free version */ 1116 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1117 while (cyc--) { 1118 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1119 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1120 } 1121 } else { 1122 while (cyc--) { 1123 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1124 off += _emit_RMB(dry_run, &buf[off]); 1125 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1126 off += _emit_WMB(dry_run, &buf[off]); 1127 } 1128 } 1129 1130 return off; 1131 } 1132 1133 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1134 const struct _xfer_spec *pxs, int cyc) 1135 { 1136 int off = 0; 1137 1138 while (cyc--) { 1139 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1140 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1141 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1142 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1143 } 1144 1145 return off; 1146 } 1147 1148 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1149 const struct _xfer_spec *pxs, int cyc) 1150 { 1151 int off = 0; 1152 1153 while (cyc--) { 1154 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1155 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1156 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1157 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1158 } 1159 1160 return off; 1161 } 1162 1163 static int _bursts(unsigned dry_run, u8 buf[], 1164 const struct _xfer_spec *pxs, int cyc) 1165 { 1166 int off = 0; 1167 1168 switch (pxs->desc->rqtype) { 1169 case DMA_MEM_TO_DEV: 1170 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1171 break; 1172 case DMA_DEV_TO_MEM: 1173 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1174 break; 1175 case DMA_MEM_TO_MEM: 1176 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1177 break; 1178 default: 1179 off += 0x40000000; /* Scare off the Client */ 1180 break; 1181 } 1182 1183 return off; 1184 } 1185 1186 /* Returns bytes consumed and updates bursts */ 1187 static inline int _loop(unsigned dry_run, u8 buf[], 1188 unsigned long *bursts, const struct _xfer_spec *pxs) 1189 { 1190 int cyc, cycmax, szlp, szlpend, szbrst, off; 1191 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1192 struct _arg_LPEND lpend; 1193 1194 /* Max iterations possible in DMALP is 256 */ 1195 if (*bursts >= 256*256) { 1196 lcnt1 = 256; 1197 lcnt0 = 256; 1198 cyc = *bursts / lcnt1 / lcnt0; 1199 } else if (*bursts > 256) { 1200 lcnt1 = 256; 1201 lcnt0 = *bursts / lcnt1; 1202 cyc = 1; 1203 } else { 1204 lcnt1 = *bursts; 1205 lcnt0 = 0; 1206 cyc = 1; 1207 } 1208 1209 szlp = _emit_LP(1, buf, 0, 0); 1210 szbrst = _bursts(1, buf, pxs, 1); 1211 1212 lpend.cond = ALWAYS; 1213 lpend.forever = false; 1214 lpend.loop = 0; 1215 lpend.bjump = 0; 1216 szlpend = _emit_LPEND(1, buf, &lpend); 1217 1218 if (lcnt0) { 1219 szlp *= 2; 1220 szlpend *= 2; 1221 } 1222 1223 /* 1224 * Max bursts that we can unroll due to limit on the 1225 * size of backward jump that can be encoded in DMALPEND 1226 * which is 8-bits and hence 255 1227 */ 1228 cycmax = (255 - (szlp + szlpend)) / szbrst; 1229 1230 cyc = (cycmax < cyc) ? cycmax : cyc; 1231 1232 off = 0; 1233 1234 if (lcnt0) { 1235 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1236 ljmp0 = off; 1237 } 1238 1239 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1240 ljmp1 = off; 1241 1242 off += _bursts(dry_run, &buf[off], pxs, cyc); 1243 1244 lpend.cond = ALWAYS; 1245 lpend.forever = false; 1246 lpend.loop = 1; 1247 lpend.bjump = off - ljmp1; 1248 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1249 1250 if (lcnt0) { 1251 lpend.cond = ALWAYS; 1252 lpend.forever = false; 1253 lpend.loop = 0; 1254 lpend.bjump = off - ljmp0; 1255 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1256 } 1257 1258 *bursts = lcnt1 * cyc; 1259 if (lcnt0) 1260 *bursts *= lcnt0; 1261 1262 return off; 1263 } 1264 1265 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1266 const struct _xfer_spec *pxs) 1267 { 1268 struct pl330_xfer *x = &pxs->desc->px; 1269 u32 ccr = pxs->ccr; 1270 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1271 int off = 0; 1272 1273 while (bursts) { 1274 c = bursts; 1275 off += _loop(dry_run, &buf[off], &c, pxs); 1276 bursts -= c; 1277 } 1278 1279 return off; 1280 } 1281 1282 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1283 const struct _xfer_spec *pxs) 1284 { 1285 struct pl330_xfer *x = &pxs->desc->px; 1286 int off = 0; 1287 1288 /* DMAMOV SAR, x->src_addr */ 1289 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1290 /* DMAMOV DAR, x->dst_addr */ 1291 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1292 1293 /* Setup Loop(s) */ 1294 off += _setup_loops(dry_run, &buf[off], pxs); 1295 1296 return off; 1297 } 1298 1299 /* 1300 * A req is a sequence of one or more xfer units. 1301 * Returns the number of bytes taken to setup the MC for the req. 1302 */ 1303 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1304 unsigned index, struct _xfer_spec *pxs) 1305 { 1306 struct _pl330_req *req = &thrd->req[index]; 1307 struct pl330_xfer *x; 1308 u8 *buf = req->mc_cpu; 1309 int off = 0; 1310 1311 PL330_DBGMC_START(req->mc_bus); 1312 1313 /* DMAMOV CCR, ccr */ 1314 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1315 1316 x = &pxs->desc->px; 1317 /* Error if xfer length is not aligned at burst size */ 1318 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1319 return -EINVAL; 1320 1321 off += _setup_xfer(dry_run, &buf[off], pxs); 1322 1323 /* DMASEV peripheral/event */ 1324 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1325 /* DMAEND */ 1326 off += _emit_END(dry_run, &buf[off]); 1327 1328 return off; 1329 } 1330 1331 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1332 { 1333 u32 ccr = 0; 1334 1335 if (rqc->src_inc) 1336 ccr |= CC_SRCINC; 1337 1338 if (rqc->dst_inc) 1339 ccr |= CC_DSTINC; 1340 1341 /* We set same protection levels for Src and DST for now */ 1342 if (rqc->privileged) 1343 ccr |= CC_SRCPRI | CC_DSTPRI; 1344 if (rqc->nonsecure) 1345 ccr |= CC_SRCNS | CC_DSTNS; 1346 if (rqc->insnaccess) 1347 ccr |= CC_SRCIA | CC_DSTIA; 1348 1349 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1350 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1351 1352 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1353 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1354 1355 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1356 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1357 1358 ccr |= (rqc->swap << CC_SWAP_SHFT); 1359 1360 return ccr; 1361 } 1362 1363 /* 1364 * Submit a list of xfers after which the client wants notification. 1365 * Client is not notified after each xfer unit, just once after all 1366 * xfer units are done or some error occurs. 1367 */ 1368 static int pl330_submit_req(struct pl330_thread *thrd, 1369 struct dma_pl330_desc *desc) 1370 { 1371 struct pl330_dmac *pl330 = thrd->dmac; 1372 struct _xfer_spec xs; 1373 unsigned long flags; 1374 unsigned idx; 1375 u32 ccr; 1376 int ret = 0; 1377 1378 if (pl330->state == DYING 1379 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1380 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1381 __func__, __LINE__); 1382 return -EAGAIN; 1383 } 1384 1385 /* If request for non-existing peripheral */ 1386 if (desc->rqtype != DMA_MEM_TO_MEM && 1387 desc->peri >= pl330->pcfg.num_peri) { 1388 dev_info(thrd->dmac->ddma.dev, 1389 "%s:%d Invalid peripheral(%u)!\n", 1390 __func__, __LINE__, desc->peri); 1391 return -EINVAL; 1392 } 1393 1394 spin_lock_irqsave(&pl330->lock, flags); 1395 1396 if (_queue_full(thrd)) { 1397 ret = -EAGAIN; 1398 goto xfer_exit; 1399 } 1400 1401 /* Prefer Secure Channel */ 1402 if (!_manager_ns(thrd)) 1403 desc->rqcfg.nonsecure = 0; 1404 else 1405 desc->rqcfg.nonsecure = 1; 1406 1407 ccr = _prepare_ccr(&desc->rqcfg); 1408 1409 idx = thrd->req[0].desc == NULL ? 0 : 1; 1410 1411 xs.ccr = ccr; 1412 xs.desc = desc; 1413 1414 /* First dry run to check if req is acceptable */ 1415 ret = _setup_req(1, thrd, idx, &xs); 1416 if (ret < 0) 1417 goto xfer_exit; 1418 1419 if (ret > pl330->mcbufsz / 2) { 1420 dev_info(pl330->ddma.dev, "%s:%d Trying increasing mcbufsz\n", 1421 __func__, __LINE__); 1422 ret = -ENOMEM; 1423 goto xfer_exit; 1424 } 1425 1426 /* Hook the request */ 1427 thrd->lstenq = idx; 1428 thrd->req[idx].desc = desc; 1429 _setup_req(0, thrd, idx, &xs); 1430 1431 ret = 0; 1432 1433 xfer_exit: 1434 spin_unlock_irqrestore(&pl330->lock, flags); 1435 1436 return ret; 1437 } 1438 1439 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1440 { 1441 struct dma_pl330_chan *pch; 1442 unsigned long flags; 1443 1444 if (!desc) 1445 return; 1446 1447 pch = desc->pchan; 1448 1449 /* If desc aborted */ 1450 if (!pch) 1451 return; 1452 1453 spin_lock_irqsave(&pch->lock, flags); 1454 1455 desc->status = DONE; 1456 1457 spin_unlock_irqrestore(&pch->lock, flags); 1458 1459 tasklet_schedule(&pch->task); 1460 } 1461 1462 static void pl330_dotask(unsigned long data) 1463 { 1464 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1465 unsigned long flags; 1466 int i; 1467 1468 spin_lock_irqsave(&pl330->lock, flags); 1469 1470 /* The DMAC itself gone nuts */ 1471 if (pl330->dmac_tbd.reset_dmac) { 1472 pl330->state = DYING; 1473 /* Reset the manager too */ 1474 pl330->dmac_tbd.reset_mngr = true; 1475 /* Clear the reset flag */ 1476 pl330->dmac_tbd.reset_dmac = false; 1477 } 1478 1479 if (pl330->dmac_tbd.reset_mngr) { 1480 _stop(pl330->manager); 1481 /* Reset all channels */ 1482 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1483 /* Clear the reset flag */ 1484 pl330->dmac_tbd.reset_mngr = false; 1485 } 1486 1487 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1488 1489 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1490 struct pl330_thread *thrd = &pl330->channels[i]; 1491 void __iomem *regs = pl330->base; 1492 enum pl330_op_err err; 1493 1494 _stop(thrd); 1495 1496 if (readl(regs + FSC) & (1 << thrd->id)) 1497 err = PL330_ERR_FAIL; 1498 else 1499 err = PL330_ERR_ABORT; 1500 1501 spin_unlock_irqrestore(&pl330->lock, flags); 1502 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1503 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1504 spin_lock_irqsave(&pl330->lock, flags); 1505 1506 thrd->req[0].desc = NULL; 1507 thrd->req[1].desc = NULL; 1508 thrd->req_running = -1; 1509 1510 /* Clear the reset flag */ 1511 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1512 } 1513 } 1514 1515 spin_unlock_irqrestore(&pl330->lock, flags); 1516 1517 return; 1518 } 1519 1520 /* Returns 1 if state was updated, 0 otherwise */ 1521 static int pl330_update(struct pl330_dmac *pl330) 1522 { 1523 struct dma_pl330_desc *descdone, *tmp; 1524 unsigned long flags; 1525 void __iomem *regs; 1526 u32 val; 1527 int id, ev, ret = 0; 1528 1529 regs = pl330->base; 1530 1531 spin_lock_irqsave(&pl330->lock, flags); 1532 1533 val = readl(regs + FSM) & 0x1; 1534 if (val) 1535 pl330->dmac_tbd.reset_mngr = true; 1536 else 1537 pl330->dmac_tbd.reset_mngr = false; 1538 1539 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1540 pl330->dmac_tbd.reset_chan |= val; 1541 if (val) { 1542 int i = 0; 1543 while (i < pl330->pcfg.num_chan) { 1544 if (val & (1 << i)) { 1545 dev_info(pl330->ddma.dev, 1546 "Reset Channel-%d\t CS-%x FTC-%x\n", 1547 i, readl(regs + CS(i)), 1548 readl(regs + FTC(i))); 1549 _stop(&pl330->channels[i]); 1550 } 1551 i++; 1552 } 1553 } 1554 1555 /* Check which event happened i.e, thread notified */ 1556 val = readl(regs + ES); 1557 if (pl330->pcfg.num_events < 32 1558 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1559 pl330->dmac_tbd.reset_dmac = true; 1560 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1561 __LINE__); 1562 ret = 1; 1563 goto updt_exit; 1564 } 1565 1566 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1567 if (val & (1 << ev)) { /* Event occurred */ 1568 struct pl330_thread *thrd; 1569 u32 inten = readl(regs + INTEN); 1570 int active; 1571 1572 /* Clear the event */ 1573 if (inten & (1 << ev)) 1574 writel(1 << ev, regs + INTCLR); 1575 1576 ret = 1; 1577 1578 id = pl330->events[ev]; 1579 1580 thrd = &pl330->channels[id]; 1581 1582 active = thrd->req_running; 1583 if (active == -1) /* Aborted */ 1584 continue; 1585 1586 /* Detach the req */ 1587 descdone = thrd->req[active].desc; 1588 thrd->req[active].desc = NULL; 1589 1590 /* Get going again ASAP */ 1591 _start(thrd); 1592 1593 /* For now, just make a list of callbacks to be done */ 1594 list_add_tail(&descdone->rqd, &pl330->req_done); 1595 } 1596 } 1597 1598 /* Now that we are in no hurry, do the callbacks */ 1599 list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) { 1600 list_del(&descdone->rqd); 1601 spin_unlock_irqrestore(&pl330->lock, flags); 1602 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1603 spin_lock_irqsave(&pl330->lock, flags); 1604 } 1605 1606 updt_exit: 1607 spin_unlock_irqrestore(&pl330->lock, flags); 1608 1609 if (pl330->dmac_tbd.reset_dmac 1610 || pl330->dmac_tbd.reset_mngr 1611 || pl330->dmac_tbd.reset_chan) { 1612 ret = 1; 1613 tasklet_schedule(&pl330->tasks); 1614 } 1615 1616 return ret; 1617 } 1618 1619 /* Reserve an event */ 1620 static inline int _alloc_event(struct pl330_thread *thrd) 1621 { 1622 struct pl330_dmac *pl330 = thrd->dmac; 1623 int ev; 1624 1625 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1626 if (pl330->events[ev] == -1) { 1627 pl330->events[ev] = thrd->id; 1628 return ev; 1629 } 1630 1631 return -1; 1632 } 1633 1634 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1635 { 1636 return pl330->pcfg.irq_ns & (1 << i); 1637 } 1638 1639 /* Upon success, returns IdentityToken for the 1640 * allocated channel, NULL otherwise. 1641 */ 1642 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1643 { 1644 struct pl330_thread *thrd = NULL; 1645 unsigned long flags; 1646 int chans, i; 1647 1648 if (pl330->state == DYING) 1649 return NULL; 1650 1651 chans = pl330->pcfg.num_chan; 1652 1653 spin_lock_irqsave(&pl330->lock, flags); 1654 1655 for (i = 0; i < chans; i++) { 1656 thrd = &pl330->channels[i]; 1657 if ((thrd->free) && (!_manager_ns(thrd) || 1658 _chan_ns(pl330, i))) { 1659 thrd->ev = _alloc_event(thrd); 1660 if (thrd->ev >= 0) { 1661 thrd->free = false; 1662 thrd->lstenq = 1; 1663 thrd->req[0].desc = NULL; 1664 thrd->req[1].desc = NULL; 1665 thrd->req_running = -1; 1666 break; 1667 } 1668 } 1669 thrd = NULL; 1670 } 1671 1672 spin_unlock_irqrestore(&pl330->lock, flags); 1673 1674 return thrd; 1675 } 1676 1677 /* Release an event */ 1678 static inline void _free_event(struct pl330_thread *thrd, int ev) 1679 { 1680 struct pl330_dmac *pl330 = thrd->dmac; 1681 1682 /* If the event is valid and was held by the thread */ 1683 if (ev >= 0 && ev < pl330->pcfg.num_events 1684 && pl330->events[ev] == thrd->id) 1685 pl330->events[ev] = -1; 1686 } 1687 1688 static void pl330_release_channel(struct pl330_thread *thrd) 1689 { 1690 struct pl330_dmac *pl330; 1691 unsigned long flags; 1692 1693 if (!thrd || thrd->free) 1694 return; 1695 1696 _stop(thrd); 1697 1698 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1699 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1700 1701 pl330 = thrd->dmac; 1702 1703 spin_lock_irqsave(&pl330->lock, flags); 1704 _free_event(thrd, thrd->ev); 1705 thrd->free = true; 1706 spin_unlock_irqrestore(&pl330->lock, flags); 1707 } 1708 1709 /* Initialize the structure for PL330 configuration, that can be used 1710 * by the client driver the make best use of the DMAC 1711 */ 1712 static void read_dmac_config(struct pl330_dmac *pl330) 1713 { 1714 void __iomem *regs = pl330->base; 1715 u32 val; 1716 1717 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1718 val &= CRD_DATA_WIDTH_MASK; 1719 pl330->pcfg.data_bus_width = 8 * (1 << val); 1720 1721 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1722 val &= CRD_DATA_BUFF_MASK; 1723 pl330->pcfg.data_buf_dep = val + 1; 1724 1725 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1726 val &= CR0_NUM_CHANS_MASK; 1727 val += 1; 1728 pl330->pcfg.num_chan = val; 1729 1730 val = readl(regs + CR0); 1731 if (val & CR0_PERIPH_REQ_SET) { 1732 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1733 val += 1; 1734 pl330->pcfg.num_peri = val; 1735 pl330->pcfg.peri_ns = readl(regs + CR4); 1736 } else { 1737 pl330->pcfg.num_peri = 0; 1738 } 1739 1740 val = readl(regs + CR0); 1741 if (val & CR0_BOOT_MAN_NS) 1742 pl330->pcfg.mode |= DMAC_MODE_NS; 1743 else 1744 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1745 1746 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1747 val &= CR0_NUM_EVENTS_MASK; 1748 val += 1; 1749 pl330->pcfg.num_events = val; 1750 1751 pl330->pcfg.irq_ns = readl(regs + CR3); 1752 } 1753 1754 static inline void _reset_thread(struct pl330_thread *thrd) 1755 { 1756 struct pl330_dmac *pl330 = thrd->dmac; 1757 1758 thrd->req[0].mc_cpu = pl330->mcode_cpu 1759 + (thrd->id * pl330->mcbufsz); 1760 thrd->req[0].mc_bus = pl330->mcode_bus 1761 + (thrd->id * pl330->mcbufsz); 1762 thrd->req[0].desc = NULL; 1763 1764 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1765 + pl330->mcbufsz / 2; 1766 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1767 + pl330->mcbufsz / 2; 1768 thrd->req[1].desc = NULL; 1769 1770 thrd->req_running = -1; 1771 } 1772 1773 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1774 { 1775 int chans = pl330->pcfg.num_chan; 1776 struct pl330_thread *thrd; 1777 int i; 1778 1779 /* Allocate 1 Manager and 'chans' Channel threads */ 1780 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 1781 GFP_KERNEL); 1782 if (!pl330->channels) 1783 return -ENOMEM; 1784 1785 /* Init Channel threads */ 1786 for (i = 0; i < chans; i++) { 1787 thrd = &pl330->channels[i]; 1788 thrd->id = i; 1789 thrd->dmac = pl330; 1790 _reset_thread(thrd); 1791 thrd->free = true; 1792 } 1793 1794 /* MANAGER is indexed at the end */ 1795 thrd = &pl330->channels[chans]; 1796 thrd->id = chans; 1797 thrd->dmac = pl330; 1798 thrd->free = false; 1799 pl330->manager = thrd; 1800 1801 return 0; 1802 } 1803 1804 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1805 { 1806 int chans = pl330->pcfg.num_chan; 1807 int ret; 1808 1809 /* 1810 * Alloc MicroCode buffer for 'chans' Channel threads. 1811 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1812 */ 1813 pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev, 1814 chans * pl330->mcbufsz, 1815 &pl330->mcode_bus, GFP_KERNEL); 1816 if (!pl330->mcode_cpu) { 1817 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1818 __func__, __LINE__); 1819 return -ENOMEM; 1820 } 1821 1822 ret = dmac_alloc_threads(pl330); 1823 if (ret) { 1824 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1825 __func__, __LINE__); 1826 dma_free_coherent(pl330->ddma.dev, 1827 chans * pl330->mcbufsz, 1828 pl330->mcode_cpu, pl330->mcode_bus); 1829 return ret; 1830 } 1831 1832 return 0; 1833 } 1834 1835 static int pl330_add(struct pl330_dmac *pl330) 1836 { 1837 void __iomem *regs; 1838 int i, ret; 1839 1840 regs = pl330->base; 1841 1842 /* Check if we can handle this DMAC */ 1843 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1844 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1845 pl330->pcfg.periph_id); 1846 return -EINVAL; 1847 } 1848 1849 /* Read the configuration of the DMAC */ 1850 read_dmac_config(pl330); 1851 1852 if (pl330->pcfg.num_events == 0) { 1853 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1854 __func__, __LINE__); 1855 return -EINVAL; 1856 } 1857 1858 spin_lock_init(&pl330->lock); 1859 1860 INIT_LIST_HEAD(&pl330->req_done); 1861 1862 /* Use default MC buffer size if not provided */ 1863 if (!pl330->mcbufsz) 1864 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1865 1866 /* Mark all events as free */ 1867 for (i = 0; i < pl330->pcfg.num_events; i++) 1868 pl330->events[i] = -1; 1869 1870 /* Allocate resources needed by the DMAC */ 1871 ret = dmac_alloc_resources(pl330); 1872 if (ret) { 1873 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1874 return ret; 1875 } 1876 1877 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1878 1879 pl330->state = INIT; 1880 1881 return 0; 1882 } 1883 1884 static int dmac_free_threads(struct pl330_dmac *pl330) 1885 { 1886 struct pl330_thread *thrd; 1887 int i; 1888 1889 /* Release Channel threads */ 1890 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1891 thrd = &pl330->channels[i]; 1892 pl330_release_channel(thrd); 1893 } 1894 1895 /* Free memory */ 1896 kfree(pl330->channels); 1897 1898 return 0; 1899 } 1900 1901 static void pl330_del(struct pl330_dmac *pl330) 1902 { 1903 pl330->state = UNINIT; 1904 1905 tasklet_kill(&pl330->tasks); 1906 1907 /* Free DMAC resources */ 1908 dmac_free_threads(pl330); 1909 1910 dma_free_coherent(pl330->ddma.dev, 1911 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 1912 pl330->mcode_bus); 1913 } 1914 1915 /* forward declaration */ 1916 static struct amba_driver pl330_driver; 1917 1918 static inline struct dma_pl330_chan * 1919 to_pchan(struct dma_chan *ch) 1920 { 1921 if (!ch) 1922 return NULL; 1923 1924 return container_of(ch, struct dma_pl330_chan, chan); 1925 } 1926 1927 static inline struct dma_pl330_desc * 1928 to_desc(struct dma_async_tx_descriptor *tx) 1929 { 1930 return container_of(tx, struct dma_pl330_desc, txd); 1931 } 1932 1933 static inline void fill_queue(struct dma_pl330_chan *pch) 1934 { 1935 struct dma_pl330_desc *desc; 1936 int ret; 1937 1938 list_for_each_entry(desc, &pch->work_list, node) { 1939 1940 /* If already submitted */ 1941 if (desc->status == BUSY) 1942 continue; 1943 1944 ret = pl330_submit_req(pch->thread, desc); 1945 if (!ret) { 1946 desc->status = BUSY; 1947 } else if (ret == -EAGAIN) { 1948 /* QFull or DMAC Dying */ 1949 break; 1950 } else { 1951 /* Unacceptable request */ 1952 desc->status = DONE; 1953 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 1954 __func__, __LINE__, desc->txd.cookie); 1955 tasklet_schedule(&pch->task); 1956 } 1957 } 1958 } 1959 1960 static void pl330_tasklet(unsigned long data) 1961 { 1962 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 1963 struct dma_pl330_desc *desc, *_dt; 1964 unsigned long flags; 1965 bool power_down = false; 1966 1967 spin_lock_irqsave(&pch->lock, flags); 1968 1969 /* Pick up ripe tomatoes */ 1970 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 1971 if (desc->status == DONE) { 1972 if (!pch->cyclic) 1973 dma_cookie_complete(&desc->txd); 1974 list_move_tail(&desc->node, &pch->completed_list); 1975 } 1976 1977 /* Try to submit a req imm. next to the last completed cookie */ 1978 fill_queue(pch); 1979 1980 if (list_empty(&pch->work_list)) { 1981 spin_lock(&pch->thread->dmac->lock); 1982 _stop(pch->thread); 1983 spin_unlock(&pch->thread->dmac->lock); 1984 power_down = true; 1985 } else { 1986 /* Make sure the PL330 Channel thread is active */ 1987 spin_lock(&pch->thread->dmac->lock); 1988 _start(pch->thread); 1989 spin_unlock(&pch->thread->dmac->lock); 1990 } 1991 1992 while (!list_empty(&pch->completed_list)) { 1993 dma_async_tx_callback callback; 1994 void *callback_param; 1995 1996 desc = list_first_entry(&pch->completed_list, 1997 struct dma_pl330_desc, node); 1998 1999 callback = desc->txd.callback; 2000 callback_param = desc->txd.callback_param; 2001 2002 if (pch->cyclic) { 2003 desc->status = PREP; 2004 list_move_tail(&desc->node, &pch->work_list); 2005 if (power_down) { 2006 spin_lock(&pch->thread->dmac->lock); 2007 _start(pch->thread); 2008 spin_unlock(&pch->thread->dmac->lock); 2009 power_down = false; 2010 } 2011 } else { 2012 desc->status = FREE; 2013 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2014 } 2015 2016 dma_descriptor_unmap(&desc->txd); 2017 2018 if (callback) { 2019 spin_unlock_irqrestore(&pch->lock, flags); 2020 callback(callback_param); 2021 spin_lock_irqsave(&pch->lock, flags); 2022 } 2023 } 2024 spin_unlock_irqrestore(&pch->lock, flags); 2025 2026 /* If work list empty, power down */ 2027 if (power_down) { 2028 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2029 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2030 } 2031 } 2032 2033 bool pl330_filter(struct dma_chan *chan, void *param) 2034 { 2035 u8 *peri_id; 2036 2037 if (chan->device->dev->driver != &pl330_driver.drv) 2038 return false; 2039 2040 peri_id = chan->private; 2041 return *peri_id == (unsigned long)param; 2042 } 2043 EXPORT_SYMBOL(pl330_filter); 2044 2045 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2046 struct of_dma *ofdma) 2047 { 2048 int count = dma_spec->args_count; 2049 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2050 unsigned int chan_id; 2051 2052 if (!pl330) 2053 return NULL; 2054 2055 if (count != 1) 2056 return NULL; 2057 2058 chan_id = dma_spec->args[0]; 2059 if (chan_id >= pl330->num_peripherals) 2060 return NULL; 2061 2062 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2063 } 2064 2065 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2066 { 2067 struct dma_pl330_chan *pch = to_pchan(chan); 2068 struct pl330_dmac *pl330 = pch->dmac; 2069 unsigned long flags; 2070 2071 spin_lock_irqsave(&pch->lock, flags); 2072 2073 dma_cookie_init(chan); 2074 pch->cyclic = false; 2075 2076 pch->thread = pl330_request_channel(pl330); 2077 if (!pch->thread) { 2078 spin_unlock_irqrestore(&pch->lock, flags); 2079 return -ENOMEM; 2080 } 2081 2082 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2083 2084 spin_unlock_irqrestore(&pch->lock, flags); 2085 2086 return 1; 2087 } 2088 2089 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2090 { 2091 struct dma_pl330_chan *pch = to_pchan(chan); 2092 struct dma_pl330_desc *desc; 2093 unsigned long flags; 2094 struct pl330_dmac *pl330 = pch->dmac; 2095 struct dma_slave_config *slave_config; 2096 LIST_HEAD(list); 2097 2098 switch (cmd) { 2099 case DMA_TERMINATE_ALL: 2100 pm_runtime_get_sync(pl330->ddma.dev); 2101 spin_lock_irqsave(&pch->lock, flags); 2102 2103 spin_lock(&pl330->lock); 2104 _stop(pch->thread); 2105 spin_unlock(&pl330->lock); 2106 2107 pch->thread->req[0].desc = NULL; 2108 pch->thread->req[1].desc = NULL; 2109 pch->thread->req_running = -1; 2110 2111 /* Mark all desc done */ 2112 list_for_each_entry(desc, &pch->submitted_list, node) { 2113 desc->status = FREE; 2114 dma_cookie_complete(&desc->txd); 2115 } 2116 2117 list_for_each_entry(desc, &pch->work_list , node) { 2118 desc->status = FREE; 2119 dma_cookie_complete(&desc->txd); 2120 } 2121 2122 list_for_each_entry(desc, &pch->completed_list , node) { 2123 desc->status = FREE; 2124 dma_cookie_complete(&desc->txd); 2125 } 2126 2127 if (!list_empty(&pch->work_list)) 2128 pm_runtime_put(pl330->ddma.dev); 2129 2130 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2131 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2132 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2133 spin_unlock_irqrestore(&pch->lock, flags); 2134 pm_runtime_mark_last_busy(pl330->ddma.dev); 2135 pm_runtime_put_autosuspend(pl330->ddma.dev); 2136 break; 2137 case DMA_SLAVE_CONFIG: 2138 slave_config = (struct dma_slave_config *)arg; 2139 2140 if (slave_config->direction == DMA_MEM_TO_DEV) { 2141 if (slave_config->dst_addr) 2142 pch->fifo_addr = slave_config->dst_addr; 2143 if (slave_config->dst_addr_width) 2144 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2145 if (slave_config->dst_maxburst) 2146 pch->burst_len = slave_config->dst_maxburst; 2147 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2148 if (slave_config->src_addr) 2149 pch->fifo_addr = slave_config->src_addr; 2150 if (slave_config->src_addr_width) 2151 pch->burst_sz = __ffs(slave_config->src_addr_width); 2152 if (slave_config->src_maxburst) 2153 pch->burst_len = slave_config->src_maxburst; 2154 } 2155 break; 2156 default: 2157 dev_err(pch->dmac->ddma.dev, "Not supported command.\n"); 2158 return -ENXIO; 2159 } 2160 2161 return 0; 2162 } 2163 2164 static void pl330_free_chan_resources(struct dma_chan *chan) 2165 { 2166 struct dma_pl330_chan *pch = to_pchan(chan); 2167 unsigned long flags; 2168 2169 tasklet_kill(&pch->task); 2170 2171 pm_runtime_get_sync(pch->dmac->ddma.dev); 2172 spin_lock_irqsave(&pch->lock, flags); 2173 2174 pl330_release_channel(pch->thread); 2175 pch->thread = NULL; 2176 2177 if (pch->cyclic) 2178 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2179 2180 spin_unlock_irqrestore(&pch->lock, flags); 2181 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2182 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2183 } 2184 2185 static enum dma_status 2186 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2187 struct dma_tx_state *txstate) 2188 { 2189 return dma_cookie_status(chan, cookie, txstate); 2190 } 2191 2192 static void pl330_issue_pending(struct dma_chan *chan) 2193 { 2194 struct dma_pl330_chan *pch = to_pchan(chan); 2195 unsigned long flags; 2196 2197 spin_lock_irqsave(&pch->lock, flags); 2198 if (list_empty(&pch->work_list)) { 2199 /* 2200 * Warn on nothing pending. Empty submitted_list may 2201 * break our pm_runtime usage counter as it is 2202 * updated on work_list emptiness status. 2203 */ 2204 WARN_ON(list_empty(&pch->submitted_list)); 2205 pm_runtime_get_sync(pch->dmac->ddma.dev); 2206 } 2207 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2208 spin_unlock_irqrestore(&pch->lock, flags); 2209 2210 pl330_tasklet((unsigned long)pch); 2211 } 2212 2213 /* 2214 * We returned the last one of the circular list of descriptor(s) 2215 * from prep_xxx, so the argument to submit corresponds to the last 2216 * descriptor of the list. 2217 */ 2218 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2219 { 2220 struct dma_pl330_desc *desc, *last = to_desc(tx); 2221 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2222 dma_cookie_t cookie; 2223 unsigned long flags; 2224 2225 spin_lock_irqsave(&pch->lock, flags); 2226 2227 /* Assign cookies to all nodes */ 2228 while (!list_empty(&last->node)) { 2229 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2230 if (pch->cyclic) { 2231 desc->txd.callback = last->txd.callback; 2232 desc->txd.callback_param = last->txd.callback_param; 2233 } 2234 2235 dma_cookie_assign(&desc->txd); 2236 2237 list_move_tail(&desc->node, &pch->submitted_list); 2238 } 2239 2240 cookie = dma_cookie_assign(&last->txd); 2241 list_add_tail(&last->node, &pch->submitted_list); 2242 spin_unlock_irqrestore(&pch->lock, flags); 2243 2244 return cookie; 2245 } 2246 2247 static inline void _init_desc(struct dma_pl330_desc *desc) 2248 { 2249 desc->rqcfg.swap = SWAP_NO; 2250 desc->rqcfg.scctl = CCTRL0; 2251 desc->rqcfg.dcctl = CCTRL0; 2252 desc->txd.tx_submit = pl330_tx_submit; 2253 2254 INIT_LIST_HEAD(&desc->node); 2255 } 2256 2257 /* Returns the number of descriptors added to the DMAC pool */ 2258 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count) 2259 { 2260 struct dma_pl330_desc *desc; 2261 unsigned long flags; 2262 int i; 2263 2264 desc = kcalloc(count, sizeof(*desc), flg); 2265 if (!desc) 2266 return 0; 2267 2268 spin_lock_irqsave(&pl330->pool_lock, flags); 2269 2270 for (i = 0; i < count; i++) { 2271 _init_desc(&desc[i]); 2272 list_add_tail(&desc[i].node, &pl330->desc_pool); 2273 } 2274 2275 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2276 2277 return count; 2278 } 2279 2280 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330) 2281 { 2282 struct dma_pl330_desc *desc = NULL; 2283 unsigned long flags; 2284 2285 spin_lock_irqsave(&pl330->pool_lock, flags); 2286 2287 if (!list_empty(&pl330->desc_pool)) { 2288 desc = list_entry(pl330->desc_pool.next, 2289 struct dma_pl330_desc, node); 2290 2291 list_del_init(&desc->node); 2292 2293 desc->status = PREP; 2294 desc->txd.callback = NULL; 2295 } 2296 2297 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2298 2299 return desc; 2300 } 2301 2302 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2303 { 2304 struct pl330_dmac *pl330 = pch->dmac; 2305 u8 *peri_id = pch->chan.private; 2306 struct dma_pl330_desc *desc; 2307 2308 /* Pluck one desc from the pool of DMAC */ 2309 desc = pluck_desc(pl330); 2310 2311 /* If the DMAC pool is empty, alloc new */ 2312 if (!desc) { 2313 if (!add_desc(pl330, GFP_ATOMIC, 1)) 2314 return NULL; 2315 2316 /* Try again */ 2317 desc = pluck_desc(pl330); 2318 if (!desc) { 2319 dev_err(pch->dmac->ddma.dev, 2320 "%s:%d ALERT!\n", __func__, __LINE__); 2321 return NULL; 2322 } 2323 } 2324 2325 /* Initialize the descriptor */ 2326 desc->pchan = pch; 2327 desc->txd.cookie = 0; 2328 async_tx_ack(&desc->txd); 2329 2330 desc->peri = peri_id ? pch->chan.chan_id : 0; 2331 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2332 2333 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2334 2335 return desc; 2336 } 2337 2338 static inline void fill_px(struct pl330_xfer *px, 2339 dma_addr_t dst, dma_addr_t src, size_t len) 2340 { 2341 px->bytes = len; 2342 px->dst_addr = dst; 2343 px->src_addr = src; 2344 } 2345 2346 static struct dma_pl330_desc * 2347 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2348 dma_addr_t src, size_t len) 2349 { 2350 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2351 2352 if (!desc) { 2353 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2354 __func__, __LINE__); 2355 return NULL; 2356 } 2357 2358 /* 2359 * Ideally we should lookout for reqs bigger than 2360 * those that can be programmed with 256 bytes of 2361 * MC buffer, but considering a req size is seldom 2362 * going to be word-unaligned and more than 200MB, 2363 * we take it easy. 2364 * Also, should the limit is reached we'd rather 2365 * have the platform increase MC buffer size than 2366 * complicating this API driver. 2367 */ 2368 fill_px(&desc->px, dst, src, len); 2369 2370 return desc; 2371 } 2372 2373 /* Call after fixing burst size */ 2374 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2375 { 2376 struct dma_pl330_chan *pch = desc->pchan; 2377 struct pl330_dmac *pl330 = pch->dmac; 2378 int burst_len; 2379 2380 burst_len = pl330->pcfg.data_bus_width / 8; 2381 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2382 burst_len >>= desc->rqcfg.brst_size; 2383 2384 /* src/dst_burst_len can't be more than 16 */ 2385 if (burst_len > 16) 2386 burst_len = 16; 2387 2388 while (burst_len > 1) { 2389 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2390 break; 2391 burst_len--; 2392 } 2393 2394 return burst_len; 2395 } 2396 2397 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2398 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2399 size_t period_len, enum dma_transfer_direction direction, 2400 unsigned long flags) 2401 { 2402 struct dma_pl330_desc *desc = NULL, *first = NULL; 2403 struct dma_pl330_chan *pch = to_pchan(chan); 2404 struct pl330_dmac *pl330 = pch->dmac; 2405 unsigned int i; 2406 dma_addr_t dst; 2407 dma_addr_t src; 2408 2409 if (len % period_len != 0) 2410 return NULL; 2411 2412 if (!is_slave_direction(direction)) { 2413 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2414 __func__, __LINE__); 2415 return NULL; 2416 } 2417 2418 for (i = 0; i < len / period_len; i++) { 2419 desc = pl330_get_desc(pch); 2420 if (!desc) { 2421 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2422 __func__, __LINE__); 2423 2424 if (!first) 2425 return NULL; 2426 2427 spin_lock_irqsave(&pl330->pool_lock, flags); 2428 2429 while (!list_empty(&first->node)) { 2430 desc = list_entry(first->node.next, 2431 struct dma_pl330_desc, node); 2432 list_move_tail(&desc->node, &pl330->desc_pool); 2433 } 2434 2435 list_move_tail(&first->node, &pl330->desc_pool); 2436 2437 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2438 2439 return NULL; 2440 } 2441 2442 switch (direction) { 2443 case DMA_MEM_TO_DEV: 2444 desc->rqcfg.src_inc = 1; 2445 desc->rqcfg.dst_inc = 0; 2446 src = dma_addr; 2447 dst = pch->fifo_addr; 2448 break; 2449 case DMA_DEV_TO_MEM: 2450 desc->rqcfg.src_inc = 0; 2451 desc->rqcfg.dst_inc = 1; 2452 src = pch->fifo_addr; 2453 dst = dma_addr; 2454 break; 2455 default: 2456 break; 2457 } 2458 2459 desc->rqtype = direction; 2460 desc->rqcfg.brst_size = pch->burst_sz; 2461 desc->rqcfg.brst_len = 1; 2462 fill_px(&desc->px, dst, src, period_len); 2463 2464 if (!first) 2465 first = desc; 2466 else 2467 list_add_tail(&desc->node, &first->node); 2468 2469 dma_addr += period_len; 2470 } 2471 2472 if (!desc) 2473 return NULL; 2474 2475 pch->cyclic = true; 2476 desc->txd.flags = flags; 2477 2478 return &desc->txd; 2479 } 2480 2481 static struct dma_async_tx_descriptor * 2482 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2483 dma_addr_t src, size_t len, unsigned long flags) 2484 { 2485 struct dma_pl330_desc *desc; 2486 struct dma_pl330_chan *pch = to_pchan(chan); 2487 struct pl330_dmac *pl330 = pch->dmac; 2488 int burst; 2489 2490 if (unlikely(!pch || !len)) 2491 return NULL; 2492 2493 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2494 if (!desc) 2495 return NULL; 2496 2497 desc->rqcfg.src_inc = 1; 2498 desc->rqcfg.dst_inc = 1; 2499 desc->rqtype = DMA_MEM_TO_MEM; 2500 2501 /* Select max possible burst size */ 2502 burst = pl330->pcfg.data_bus_width / 8; 2503 2504 /* 2505 * Make sure we use a burst size that aligns with all the memcpy 2506 * parameters because our DMA programming algorithm doesn't cope with 2507 * transfers which straddle an entry in the DMA device's MFIFO. 2508 */ 2509 while ((src | dst | len) & (burst - 1)) 2510 burst /= 2; 2511 2512 desc->rqcfg.brst_size = 0; 2513 while (burst != (1 << desc->rqcfg.brst_size)) 2514 desc->rqcfg.brst_size++; 2515 2516 /* 2517 * If burst size is smaller than bus width then make sure we only 2518 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2519 */ 2520 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2521 desc->rqcfg.brst_len = 1; 2522 2523 desc->rqcfg.brst_len = get_burst_len(desc, len); 2524 2525 desc->txd.flags = flags; 2526 2527 return &desc->txd; 2528 } 2529 2530 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2531 struct dma_pl330_desc *first) 2532 { 2533 unsigned long flags; 2534 struct dma_pl330_desc *desc; 2535 2536 if (!first) 2537 return; 2538 2539 spin_lock_irqsave(&pl330->pool_lock, flags); 2540 2541 while (!list_empty(&first->node)) { 2542 desc = list_entry(first->node.next, 2543 struct dma_pl330_desc, node); 2544 list_move_tail(&desc->node, &pl330->desc_pool); 2545 } 2546 2547 list_move_tail(&first->node, &pl330->desc_pool); 2548 2549 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2550 } 2551 2552 static struct dma_async_tx_descriptor * 2553 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2554 unsigned int sg_len, enum dma_transfer_direction direction, 2555 unsigned long flg, void *context) 2556 { 2557 struct dma_pl330_desc *first, *desc = NULL; 2558 struct dma_pl330_chan *pch = to_pchan(chan); 2559 struct scatterlist *sg; 2560 int i; 2561 dma_addr_t addr; 2562 2563 if (unlikely(!pch || !sgl || !sg_len)) 2564 return NULL; 2565 2566 addr = pch->fifo_addr; 2567 2568 first = NULL; 2569 2570 for_each_sg(sgl, sg, sg_len, i) { 2571 2572 desc = pl330_get_desc(pch); 2573 if (!desc) { 2574 struct pl330_dmac *pl330 = pch->dmac; 2575 2576 dev_err(pch->dmac->ddma.dev, 2577 "%s:%d Unable to fetch desc\n", 2578 __func__, __LINE__); 2579 __pl330_giveback_desc(pl330, first); 2580 2581 return NULL; 2582 } 2583 2584 if (!first) 2585 first = desc; 2586 else 2587 list_add_tail(&desc->node, &first->node); 2588 2589 if (direction == DMA_MEM_TO_DEV) { 2590 desc->rqcfg.src_inc = 1; 2591 desc->rqcfg.dst_inc = 0; 2592 fill_px(&desc->px, 2593 addr, sg_dma_address(sg), sg_dma_len(sg)); 2594 } else { 2595 desc->rqcfg.src_inc = 0; 2596 desc->rqcfg.dst_inc = 1; 2597 fill_px(&desc->px, 2598 sg_dma_address(sg), addr, sg_dma_len(sg)); 2599 } 2600 2601 desc->rqcfg.brst_size = pch->burst_sz; 2602 desc->rqcfg.brst_len = 1; 2603 desc->rqtype = direction; 2604 } 2605 2606 /* Return the last desc in the chain */ 2607 desc->txd.flags = flg; 2608 return &desc->txd; 2609 } 2610 2611 static irqreturn_t pl330_irq_handler(int irq, void *data) 2612 { 2613 if (pl330_update(data)) 2614 return IRQ_HANDLED; 2615 else 2616 return IRQ_NONE; 2617 } 2618 2619 #define PL330_DMA_BUSWIDTHS \ 2620 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2621 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2622 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2623 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2624 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2625 2626 static int pl330_dma_device_slave_caps(struct dma_chan *dchan, 2627 struct dma_slave_caps *caps) 2628 { 2629 caps->src_addr_widths = PL330_DMA_BUSWIDTHS; 2630 caps->dstn_addr_widths = PL330_DMA_BUSWIDTHS; 2631 caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2632 caps->cmd_pause = false; 2633 caps->cmd_terminate = true; 2634 caps->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 2635 2636 return 0; 2637 } 2638 2639 /* 2640 * Runtime PM callbacks are provided by amba/bus.c driver. 2641 * 2642 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2643 * bus driver will only disable/enable the clock in runtime PM callbacks. 2644 */ 2645 static int __maybe_unused pl330_suspend(struct device *dev) 2646 { 2647 struct amba_device *pcdev = to_amba_device(dev); 2648 2649 pm_runtime_disable(dev); 2650 2651 if (!pm_runtime_status_suspended(dev)) { 2652 /* amba did not disable the clock */ 2653 amba_pclk_disable(pcdev); 2654 } 2655 amba_pclk_unprepare(pcdev); 2656 2657 return 0; 2658 } 2659 2660 static int __maybe_unused pl330_resume(struct device *dev) 2661 { 2662 struct amba_device *pcdev = to_amba_device(dev); 2663 int ret; 2664 2665 ret = amba_pclk_prepare(pcdev); 2666 if (ret) 2667 return ret; 2668 2669 if (!pm_runtime_status_suspended(dev)) 2670 ret = amba_pclk_enable(pcdev); 2671 2672 pm_runtime_enable(dev); 2673 2674 return ret; 2675 } 2676 2677 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume); 2678 2679 static int 2680 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2681 { 2682 struct dma_pl330_platdata *pdat; 2683 struct pl330_config *pcfg; 2684 struct pl330_dmac *pl330; 2685 struct dma_pl330_chan *pch, *_p; 2686 struct dma_device *pd; 2687 struct resource *res; 2688 int i, ret, irq; 2689 int num_chan; 2690 2691 pdat = dev_get_platdata(&adev->dev); 2692 2693 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 2694 if (ret) 2695 return ret; 2696 2697 /* Allocate a new DMAC and its Channels */ 2698 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 2699 if (!pl330) { 2700 dev_err(&adev->dev, "unable to allocate mem\n"); 2701 return -ENOMEM; 2702 } 2703 2704 pd = &pl330->ddma; 2705 pd->dev = &adev->dev; 2706 2707 pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2708 2709 res = &adev->res; 2710 pl330->base = devm_ioremap_resource(&adev->dev, res); 2711 if (IS_ERR(pl330->base)) 2712 return PTR_ERR(pl330->base); 2713 2714 amba_set_drvdata(adev, pl330); 2715 2716 for (i = 0; i < AMBA_NR_IRQS; i++) { 2717 irq = adev->irq[i]; 2718 if (irq) { 2719 ret = devm_request_irq(&adev->dev, irq, 2720 pl330_irq_handler, 0, 2721 dev_name(&adev->dev), pl330); 2722 if (ret) 2723 return ret; 2724 } else { 2725 break; 2726 } 2727 } 2728 2729 pcfg = &pl330->pcfg; 2730 2731 pcfg->periph_id = adev->periphid; 2732 ret = pl330_add(pl330); 2733 if (ret) 2734 return ret; 2735 2736 INIT_LIST_HEAD(&pl330->desc_pool); 2737 spin_lock_init(&pl330->pool_lock); 2738 2739 /* Create a descriptor pool of default size */ 2740 if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC)) 2741 dev_warn(&adev->dev, "unable to allocate desc\n"); 2742 2743 INIT_LIST_HEAD(&pd->channels); 2744 2745 /* Initialize channel parameters */ 2746 if (pdat) 2747 num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan); 2748 else 2749 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 2750 2751 pl330->num_peripherals = num_chan; 2752 2753 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2754 if (!pl330->peripherals) { 2755 ret = -ENOMEM; 2756 dev_err(&adev->dev, "unable to allocate pl330->peripherals\n"); 2757 goto probe_err2; 2758 } 2759 2760 for (i = 0; i < num_chan; i++) { 2761 pch = &pl330->peripherals[i]; 2762 if (!adev->dev.of_node) 2763 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2764 else 2765 pch->chan.private = adev->dev.of_node; 2766 2767 INIT_LIST_HEAD(&pch->submitted_list); 2768 INIT_LIST_HEAD(&pch->work_list); 2769 INIT_LIST_HEAD(&pch->completed_list); 2770 spin_lock_init(&pch->lock); 2771 pch->thread = NULL; 2772 pch->chan.device = pd; 2773 pch->dmac = pl330; 2774 2775 /* Add the channel to the DMAC list */ 2776 list_add_tail(&pch->chan.device_node, &pd->channels); 2777 } 2778 2779 if (pdat) { 2780 pd->cap_mask = pdat->cap_mask; 2781 } else { 2782 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2783 if (pcfg->num_peri) { 2784 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2785 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2786 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2787 } 2788 } 2789 2790 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2791 pd->device_free_chan_resources = pl330_free_chan_resources; 2792 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2793 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2794 pd->device_tx_status = pl330_tx_status; 2795 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2796 pd->device_control = pl330_control; 2797 pd->device_issue_pending = pl330_issue_pending; 2798 pd->device_slave_caps = pl330_dma_device_slave_caps; 2799 2800 ret = dma_async_device_register(pd); 2801 if (ret) { 2802 dev_err(&adev->dev, "unable to register DMAC\n"); 2803 goto probe_err3; 2804 } 2805 2806 if (adev->dev.of_node) { 2807 ret = of_dma_controller_register(adev->dev.of_node, 2808 of_dma_pl330_xlate, pl330); 2809 if (ret) { 2810 dev_err(&adev->dev, 2811 "unable to register DMA to the generic DT DMA helpers\n"); 2812 } 2813 } 2814 2815 adev->dev.dma_parms = &pl330->dma_parms; 2816 2817 /* 2818 * This is the limit for transfers with a buswidth of 1, larger 2819 * buswidths will have larger limits. 2820 */ 2821 ret = dma_set_max_seg_size(&adev->dev, 1900800); 2822 if (ret) 2823 dev_err(&adev->dev, "unable to set the seg size\n"); 2824 2825 2826 dev_info(&adev->dev, 2827 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 2828 dev_info(&adev->dev, 2829 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2830 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 2831 pcfg->num_peri, pcfg->num_events); 2832 2833 pm_runtime_irq_safe(&adev->dev); 2834 pm_runtime_use_autosuspend(&adev->dev); 2835 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 2836 pm_runtime_mark_last_busy(&adev->dev); 2837 pm_runtime_put_autosuspend(&adev->dev); 2838 2839 return 0; 2840 probe_err3: 2841 /* Idle the DMAC */ 2842 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 2843 chan.device_node) { 2844 2845 /* Remove the channel */ 2846 list_del(&pch->chan.device_node); 2847 2848 /* Flush the channel */ 2849 if (pch->thread) { 2850 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 2851 pl330_free_chan_resources(&pch->chan); 2852 } 2853 } 2854 probe_err2: 2855 pl330_del(pl330); 2856 2857 return ret; 2858 } 2859 2860 static int pl330_remove(struct amba_device *adev) 2861 { 2862 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 2863 struct dma_pl330_chan *pch, *_p; 2864 2865 pm_runtime_get_noresume(pl330->ddma.dev); 2866 2867 if (adev->dev.of_node) 2868 of_dma_controller_free(adev->dev.of_node); 2869 2870 dma_async_device_unregister(&pl330->ddma); 2871 2872 /* Idle the DMAC */ 2873 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 2874 chan.device_node) { 2875 2876 /* Remove the channel */ 2877 list_del(&pch->chan.device_node); 2878 2879 /* Flush the channel */ 2880 if (pch->thread) { 2881 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 2882 pl330_free_chan_resources(&pch->chan); 2883 } 2884 } 2885 2886 pl330_del(pl330); 2887 2888 return 0; 2889 } 2890 2891 static struct amba_id pl330_ids[] = { 2892 { 2893 .id = 0x00041330, 2894 .mask = 0x000fffff, 2895 }, 2896 { 0, 0 }, 2897 }; 2898 2899 MODULE_DEVICE_TABLE(amba, pl330_ids); 2900 2901 static struct amba_driver pl330_driver = { 2902 .drv = { 2903 .owner = THIS_MODULE, 2904 .name = "dma-pl330", 2905 .pm = &pl330_pm, 2906 }, 2907 .id_table = pl330_ids, 2908 .probe = pl330_probe, 2909 .remove = pl330_remove, 2910 }; 2911 2912 module_amba_driver(pl330_driver); 2913 2914 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 2915 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 2916 MODULE_LICENSE("GPL"); 2917