xref: /openbmc/linux/drivers/dma/pl330.c (revision 80ecbd24)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30 
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN		8
33 #define PL330_MAX_IRQS		32
34 #define PL330_MAX_PERI		32
35 
36 enum pl330_srccachectrl {
37 	SCCTRL0,	/* Noncacheable and nonbufferable */
38 	SCCTRL1,	/* Bufferable only */
39 	SCCTRL2,	/* Cacheable, but do not allocate */
40 	SCCTRL3,	/* Cacheable and bufferable, but do not allocate */
41 	SINVALID1,
42 	SINVALID2,
43 	SCCTRL6,	/* Cacheable write-through, allocate on reads only */
44 	SCCTRL7,	/* Cacheable write-back, allocate on reads only */
45 };
46 
47 enum pl330_dstcachectrl {
48 	DCCTRL0,	/* Noncacheable and nonbufferable */
49 	DCCTRL1,	/* Bufferable only */
50 	DCCTRL2,	/* Cacheable, but do not allocate */
51 	DCCTRL3,	/* Cacheable and bufferable, but do not allocate */
52 	DINVALID1,	/* AWCACHE = 0x1000 */
53 	DINVALID2,
54 	DCCTRL6,	/* Cacheable write-through, allocate on writes only */
55 	DCCTRL7,	/* Cacheable write-back, allocate on writes only */
56 };
57 
58 enum pl330_byteswap {
59 	SWAP_NO,
60 	SWAP_2,
61 	SWAP_4,
62 	SWAP_8,
63 	SWAP_16,
64 };
65 
66 enum pl330_reqtype {
67 	MEMTOMEM,
68 	MEMTODEV,
69 	DEVTOMEM,
70 	DEVTODEV,
71 };
72 
73 /* Register and Bit field Definitions */
74 #define DS			0x0
75 #define DS_ST_STOP		0x0
76 #define DS_ST_EXEC		0x1
77 #define DS_ST_CMISS		0x2
78 #define DS_ST_UPDTPC		0x3
79 #define DS_ST_WFE		0x4
80 #define DS_ST_ATBRR		0x5
81 #define DS_ST_QBUSY		0x6
82 #define DS_ST_WFP		0x7
83 #define DS_ST_KILL		0x8
84 #define DS_ST_CMPLT		0x9
85 #define DS_ST_FLTCMP		0xe
86 #define DS_ST_FAULT		0xf
87 
88 #define DPC			0x4
89 #define INTEN			0x20
90 #define ES			0x24
91 #define INTSTATUS		0x28
92 #define INTCLR			0x2c
93 #define FSM			0x30
94 #define FSC			0x34
95 #define FTM			0x38
96 
97 #define _FTC			0x40
98 #define FTC(n)			(_FTC + (n)*0x4)
99 
100 #define _CS			0x100
101 #define CS(n)			(_CS + (n)*0x8)
102 #define CS_CNS			(1 << 21)
103 
104 #define _CPC			0x104
105 #define CPC(n)			(_CPC + (n)*0x8)
106 
107 #define _SA			0x400
108 #define SA(n)			(_SA + (n)*0x20)
109 
110 #define _DA			0x404
111 #define DA(n)			(_DA + (n)*0x20)
112 
113 #define _CC			0x408
114 #define CC(n)			(_CC + (n)*0x20)
115 
116 #define CC_SRCINC		(1 << 0)
117 #define CC_DSTINC		(1 << 14)
118 #define CC_SRCPRI		(1 << 8)
119 #define CC_DSTPRI		(1 << 22)
120 #define CC_SRCNS		(1 << 9)
121 #define CC_DSTNS		(1 << 23)
122 #define CC_SRCIA		(1 << 10)
123 #define CC_DSTIA		(1 << 24)
124 #define CC_SRCBRSTLEN_SHFT	4
125 #define CC_DSTBRSTLEN_SHFT	18
126 #define CC_SRCBRSTSIZE_SHFT	1
127 #define CC_DSTBRSTSIZE_SHFT	15
128 #define CC_SRCCCTRL_SHFT	11
129 #define CC_SRCCCTRL_MASK	0x7
130 #define CC_DSTCCTRL_SHFT	25
131 #define CC_DRCCCTRL_MASK	0x7
132 #define CC_SWAP_SHFT		28
133 
134 #define _LC0			0x40c
135 #define LC0(n)			(_LC0 + (n)*0x20)
136 
137 #define _LC1			0x410
138 #define LC1(n)			(_LC1 + (n)*0x20)
139 
140 #define DBGSTATUS		0xd00
141 #define DBG_BUSY		(1 << 0)
142 
143 #define DBGCMD			0xd04
144 #define DBGINST0		0xd08
145 #define DBGINST1		0xd0c
146 
147 #define CR0			0xe00
148 #define CR1			0xe04
149 #define CR2			0xe08
150 #define CR3			0xe0c
151 #define CR4			0xe10
152 #define CRD			0xe14
153 
154 #define PERIPH_ID		0xfe0
155 #define PERIPH_REV_SHIFT	20
156 #define PERIPH_REV_MASK		0xf
157 #define PERIPH_REV_R0P0		0
158 #define PERIPH_REV_R1P0		1
159 #define PERIPH_REV_R1P1		2
160 
161 #define CR0_PERIPH_REQ_SET	(1 << 0)
162 #define CR0_BOOT_EN_SET		(1 << 1)
163 #define CR0_BOOT_MAN_NS		(1 << 2)
164 #define CR0_NUM_CHANS_SHIFT	4
165 #define CR0_NUM_CHANS_MASK	0x7
166 #define CR0_NUM_PERIPH_SHIFT	12
167 #define CR0_NUM_PERIPH_MASK	0x1f
168 #define CR0_NUM_EVENTS_SHIFT	17
169 #define CR0_NUM_EVENTS_MASK	0x1f
170 
171 #define CR1_ICACHE_LEN_SHIFT	0
172 #define CR1_ICACHE_LEN_MASK	0x7
173 #define CR1_NUM_ICACHELINES_SHIFT	4
174 #define CR1_NUM_ICACHELINES_MASK	0xf
175 
176 #define CRD_DATA_WIDTH_SHIFT	0
177 #define CRD_DATA_WIDTH_MASK	0x7
178 #define CRD_WR_CAP_SHIFT	4
179 #define CRD_WR_CAP_MASK		0x7
180 #define CRD_WR_Q_DEP_SHIFT	8
181 #define CRD_WR_Q_DEP_MASK	0xf
182 #define CRD_RD_CAP_SHIFT	12
183 #define CRD_RD_CAP_MASK		0x7
184 #define CRD_RD_Q_DEP_SHIFT	16
185 #define CRD_RD_Q_DEP_MASK	0xf
186 #define CRD_DATA_BUFF_SHIFT	20
187 #define CRD_DATA_BUFF_MASK	0x3ff
188 
189 #define PART			0x330
190 #define DESIGNER		0x41
191 #define REVISION		0x0
192 #define INTEG_CFG		0x0
193 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
194 
195 #define PL330_STATE_STOPPED		(1 << 0)
196 #define PL330_STATE_EXECUTING		(1 << 1)
197 #define PL330_STATE_WFE			(1 << 2)
198 #define PL330_STATE_FAULTING		(1 << 3)
199 #define PL330_STATE_COMPLETING		(1 << 4)
200 #define PL330_STATE_WFP			(1 << 5)
201 #define PL330_STATE_KILLING		(1 << 6)
202 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
203 #define PL330_STATE_CACHEMISS		(1 << 8)
204 #define PL330_STATE_UPDTPC		(1 << 9)
205 #define PL330_STATE_ATBARRIER		(1 << 10)
206 #define PL330_STATE_QUEUEBUSY		(1 << 11)
207 #define PL330_STATE_INVALID		(1 << 15)
208 
209 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
210 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
211 
212 #define CMD_DMAADDH		0x54
213 #define CMD_DMAEND		0x00
214 #define CMD_DMAFLUSHP		0x35
215 #define CMD_DMAGO		0xa0
216 #define CMD_DMALD		0x04
217 #define CMD_DMALDP		0x25
218 #define CMD_DMALP		0x20
219 #define CMD_DMALPEND		0x28
220 #define CMD_DMAKILL		0x01
221 #define CMD_DMAMOV		0xbc
222 #define CMD_DMANOP		0x18
223 #define CMD_DMARMB		0x12
224 #define CMD_DMASEV		0x34
225 #define CMD_DMAST		0x08
226 #define CMD_DMASTP		0x29
227 #define CMD_DMASTZ		0x0c
228 #define CMD_DMAWFE		0x36
229 #define CMD_DMAWFP		0x30
230 #define CMD_DMAWMB		0x13
231 
232 #define SZ_DMAADDH		3
233 #define SZ_DMAEND		1
234 #define SZ_DMAFLUSHP		2
235 #define SZ_DMALD		1
236 #define SZ_DMALDP		2
237 #define SZ_DMALP		2
238 #define SZ_DMALPEND		2
239 #define SZ_DMAKILL		1
240 #define SZ_DMAMOV		6
241 #define SZ_DMANOP		1
242 #define SZ_DMARMB		1
243 #define SZ_DMASEV		2
244 #define SZ_DMAST		1
245 #define SZ_DMASTP		2
246 #define SZ_DMASTZ		1
247 #define SZ_DMAWFE		2
248 #define SZ_DMAWFP		2
249 #define SZ_DMAWMB		1
250 #define SZ_DMAGO		6
251 
252 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
253 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
254 
255 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
256 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
257 
258 /*
259  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
260  * at 1byte/burst for P<->M and M<->M respectively.
261  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
262  * should be enough for P<->M and M<->M respectively.
263  */
264 #define MCODE_BUFF_PER_REQ	256
265 
266 /* If the _pl330_req is available to the client */
267 #define IS_FREE(req)	(*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
268 
269 /* Use this _only_ to wait on transient states */
270 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
271 
272 #ifdef PL330_DEBUG_MCGEN
273 static unsigned cmd_line;
274 #define PL330_DBGCMD_DUMP(off, x...)	do { \
275 						printk("%x:", cmd_line); \
276 						printk(x); \
277 						cmd_line += off; \
278 					} while (0)
279 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
280 #else
281 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
282 #define PL330_DBGMC_START(addr)		do {} while (0)
283 #endif
284 
285 /* The number of default descriptors */
286 
287 #define NR_DEFAULT_DESC	16
288 
289 /* Populated by the PL330 core driver for DMA API driver's info */
290 struct pl330_config {
291 	u32	periph_id;
292 #define DMAC_MODE_NS	(1 << 0)
293 	unsigned int	mode;
294 	unsigned int	data_bus_width:10; /* In number of bits */
295 	unsigned int	data_buf_dep:10;
296 	unsigned int	num_chan:4;
297 	unsigned int	num_peri:6;
298 	u32		peri_ns;
299 	unsigned int	num_events:6;
300 	u32		irq_ns;
301 };
302 
303 /* Handle to the DMAC provided to the PL330 core */
304 struct pl330_info {
305 	/* Owning device */
306 	struct device *dev;
307 	/* Size of MicroCode buffers for each channel. */
308 	unsigned mcbufsz;
309 	/* ioremap'ed address of PL330 registers. */
310 	void __iomem	*base;
311 	/* Client can freely use it. */
312 	void	*client_data;
313 	/* PL330 core data, Client must not touch it. */
314 	void	*pl330_data;
315 	/* Populated by the PL330 core driver during pl330_add */
316 	struct pl330_config	pcfg;
317 	/*
318 	 * If the DMAC has some reset mechanism, then the
319 	 * client may want to provide pointer to the method.
320 	 */
321 	void (*dmac_reset)(struct pl330_info *pi);
322 };
323 
324 /**
325  * Request Configuration.
326  * The PL330 core does not modify this and uses the last
327  * working configuration if the request doesn't provide any.
328  *
329  * The Client may want to provide this info only for the
330  * first request and a request with new settings.
331  */
332 struct pl330_reqcfg {
333 	/* Address Incrementing */
334 	unsigned dst_inc:1;
335 	unsigned src_inc:1;
336 
337 	/*
338 	 * For now, the SRC & DST protection levels
339 	 * and burst size/length are assumed same.
340 	 */
341 	bool nonsecure;
342 	bool privileged;
343 	bool insnaccess;
344 	unsigned brst_len:5;
345 	unsigned brst_size:3; /* in power of 2 */
346 
347 	enum pl330_dstcachectrl dcctl;
348 	enum pl330_srccachectrl scctl;
349 	enum pl330_byteswap swap;
350 	struct pl330_config *pcfg;
351 };
352 
353 /*
354  * One cycle of DMAC operation.
355  * There may be more than one xfer in a request.
356  */
357 struct pl330_xfer {
358 	u32 src_addr;
359 	u32 dst_addr;
360 	/* Size to xfer */
361 	u32 bytes;
362 	/*
363 	 * Pointer to next xfer in the list.
364 	 * The last xfer in the req must point to NULL.
365 	 */
366 	struct pl330_xfer *next;
367 };
368 
369 /* The xfer callbacks are made with one of these arguments. */
370 enum pl330_op_err {
371 	/* The all xfers in the request were success. */
372 	PL330_ERR_NONE,
373 	/* If req aborted due to global error. */
374 	PL330_ERR_ABORT,
375 	/* If req failed due to problem with Channel. */
376 	PL330_ERR_FAIL,
377 };
378 
379 /* A request defining Scatter-Gather List ending with NULL xfer. */
380 struct pl330_req {
381 	enum pl330_reqtype rqtype;
382 	/* Index of peripheral for the xfer. */
383 	unsigned peri:5;
384 	/* Unique token for this xfer, set by the client. */
385 	void *token;
386 	/* Callback to be called after xfer. */
387 	void (*xfer_cb)(void *token, enum pl330_op_err err);
388 	/* If NULL, req will be done at last set parameters. */
389 	struct pl330_reqcfg *cfg;
390 	/* Pointer to first xfer in the request. */
391 	struct pl330_xfer *x;
392 	/* Hook to attach to DMAC's list of reqs with due callback */
393 	struct list_head rqd;
394 };
395 
396 /*
397  * To know the status of the channel and DMAC, the client
398  * provides a pointer to this structure. The PL330 core
399  * fills it with current information.
400  */
401 struct pl330_chanstatus {
402 	/*
403 	 * If the DMAC engine halted due to some error,
404 	 * the client should remove-add DMAC.
405 	 */
406 	bool dmac_halted;
407 	/*
408 	 * If channel is halted due to some error,
409 	 * the client should ABORT/FLUSH and START the channel.
410 	 */
411 	bool faulting;
412 	/* Location of last load */
413 	u32 src_addr;
414 	/* Location of last store */
415 	u32 dst_addr;
416 	/*
417 	 * Pointer to the currently active req, NULL if channel is
418 	 * inactive, even though the requests may be present.
419 	 */
420 	struct pl330_req *top_req;
421 	/* Pointer to req waiting second in the queue if any. */
422 	struct pl330_req *wait_req;
423 };
424 
425 enum pl330_chan_op {
426 	/* Start the channel */
427 	PL330_OP_START,
428 	/* Abort the active xfer */
429 	PL330_OP_ABORT,
430 	/* Stop xfer and flush queue */
431 	PL330_OP_FLUSH,
432 };
433 
434 struct _xfer_spec {
435 	u32 ccr;
436 	struct pl330_req *r;
437 	struct pl330_xfer *x;
438 };
439 
440 enum dmamov_dst {
441 	SAR = 0,
442 	CCR,
443 	DAR,
444 };
445 
446 enum pl330_dst {
447 	SRC = 0,
448 	DST,
449 };
450 
451 enum pl330_cond {
452 	SINGLE,
453 	BURST,
454 	ALWAYS,
455 };
456 
457 struct _pl330_req {
458 	u32 mc_bus;
459 	void *mc_cpu;
460 	/* Number of bytes taken to setup MC for the req */
461 	u32 mc_len;
462 	struct pl330_req *r;
463 };
464 
465 /* ToBeDone for tasklet */
466 struct _pl330_tbd {
467 	bool reset_dmac;
468 	bool reset_mngr;
469 	u8 reset_chan;
470 };
471 
472 /* A DMAC Thread */
473 struct pl330_thread {
474 	u8 id;
475 	int ev;
476 	/* If the channel is not yet acquired by any client */
477 	bool free;
478 	/* Parent DMAC */
479 	struct pl330_dmac *dmac;
480 	/* Only two at a time */
481 	struct _pl330_req req[2];
482 	/* Index of the last enqueued request */
483 	unsigned lstenq;
484 	/* Index of the last submitted request or -1 if the DMA is stopped */
485 	int req_running;
486 };
487 
488 enum pl330_dmac_state {
489 	UNINIT,
490 	INIT,
491 	DYING,
492 };
493 
494 /* A DMAC */
495 struct pl330_dmac {
496 	spinlock_t		lock;
497 	/* Holds list of reqs with due callbacks */
498 	struct list_head	req_done;
499 	/* Pointer to platform specific stuff */
500 	struct pl330_info	*pinfo;
501 	/* Maximum possible events/irqs */
502 	int			events[32];
503 	/* BUS address of MicroCode buffer */
504 	dma_addr_t		mcode_bus;
505 	/* CPU address of MicroCode buffer */
506 	void			*mcode_cpu;
507 	/* List of all Channel threads */
508 	struct pl330_thread	*channels;
509 	/* Pointer to the MANAGER thread */
510 	struct pl330_thread	*manager;
511 	/* To handle bad news in interrupt */
512 	struct tasklet_struct	tasks;
513 	struct _pl330_tbd	dmac_tbd;
514 	/* State of DMAC operation */
515 	enum pl330_dmac_state	state;
516 };
517 
518 enum desc_status {
519 	/* In the DMAC pool */
520 	FREE,
521 	/*
522 	 * Allocated to some channel during prep_xxx
523 	 * Also may be sitting on the work_list.
524 	 */
525 	PREP,
526 	/*
527 	 * Sitting on the work_list and already submitted
528 	 * to the PL330 core. Not more than two descriptors
529 	 * of a channel can be BUSY at any time.
530 	 */
531 	BUSY,
532 	/*
533 	 * Sitting on the channel work_list but xfer done
534 	 * by PL330 core
535 	 */
536 	DONE,
537 };
538 
539 struct dma_pl330_chan {
540 	/* Schedule desc completion */
541 	struct tasklet_struct task;
542 
543 	/* DMA-Engine Channel */
544 	struct dma_chan chan;
545 
546 	/* List of to be xfered descriptors */
547 	struct list_head work_list;
548 
549 	/* Pointer to the DMAC that manages this channel,
550 	 * NULL if the channel is available to be acquired.
551 	 * As the parent, this DMAC also provides descriptors
552 	 * to the channel.
553 	 */
554 	struct dma_pl330_dmac *dmac;
555 
556 	/* To protect channel manipulation */
557 	spinlock_t lock;
558 
559 	/* Token of a hardware channel thread of PL330 DMAC
560 	 * NULL if the channel is available to be acquired.
561 	 */
562 	void *pl330_chid;
563 
564 	/* For D-to-M and M-to-D channels */
565 	int burst_sz; /* the peripheral fifo width */
566 	int burst_len; /* the number of burst */
567 	dma_addr_t fifo_addr;
568 
569 	/* for cyclic capability */
570 	bool cyclic;
571 };
572 
573 struct dma_pl330_dmac {
574 	struct pl330_info pif;
575 
576 	/* DMA-Engine Device */
577 	struct dma_device ddma;
578 
579 	/* Pool of descriptors available for the DMAC's channels */
580 	struct list_head desc_pool;
581 	/* To protect desc_pool manipulation */
582 	spinlock_t pool_lock;
583 
584 	/* Peripheral channels connected to this DMAC */
585 	struct dma_pl330_chan *peripherals; /* keep at end */
586 };
587 
588 struct dma_pl330_desc {
589 	/* To attach to a queue as child */
590 	struct list_head node;
591 
592 	/* Descriptor for the DMA Engine API */
593 	struct dma_async_tx_descriptor txd;
594 
595 	/* Xfer for PL330 core */
596 	struct pl330_xfer px;
597 
598 	struct pl330_reqcfg rqcfg;
599 	struct pl330_req req;
600 
601 	enum desc_status status;
602 
603 	/* The channel which currently holds this desc */
604 	struct dma_pl330_chan *pchan;
605 };
606 
607 struct dma_pl330_filter_args {
608 	struct dma_pl330_dmac *pdmac;
609 	unsigned int chan_id;
610 };
611 
612 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
613 {
614 	if (r && r->xfer_cb)
615 		r->xfer_cb(r->token, err);
616 }
617 
618 static inline bool _queue_empty(struct pl330_thread *thrd)
619 {
620 	return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
621 		? true : false;
622 }
623 
624 static inline bool _queue_full(struct pl330_thread *thrd)
625 {
626 	return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
627 		? false : true;
628 }
629 
630 static inline bool is_manager(struct pl330_thread *thrd)
631 {
632 	struct pl330_dmac *pl330 = thrd->dmac;
633 
634 	/* MANAGER is indexed at the end */
635 	if (thrd->id == pl330->pinfo->pcfg.num_chan)
636 		return true;
637 	else
638 		return false;
639 }
640 
641 /* If manager of the thread is in Non-Secure mode */
642 static inline bool _manager_ns(struct pl330_thread *thrd)
643 {
644 	struct pl330_dmac *pl330 = thrd->dmac;
645 
646 	return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
647 }
648 
649 static inline u32 get_revision(u32 periph_id)
650 {
651 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
652 }
653 
654 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
655 		enum pl330_dst da, u16 val)
656 {
657 	if (dry_run)
658 		return SZ_DMAADDH;
659 
660 	buf[0] = CMD_DMAADDH;
661 	buf[0] |= (da << 1);
662 	*((u16 *)&buf[1]) = val;
663 
664 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
665 		da == 1 ? "DA" : "SA", val);
666 
667 	return SZ_DMAADDH;
668 }
669 
670 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
671 {
672 	if (dry_run)
673 		return SZ_DMAEND;
674 
675 	buf[0] = CMD_DMAEND;
676 
677 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
678 
679 	return SZ_DMAEND;
680 }
681 
682 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
683 {
684 	if (dry_run)
685 		return SZ_DMAFLUSHP;
686 
687 	buf[0] = CMD_DMAFLUSHP;
688 
689 	peri &= 0x1f;
690 	peri <<= 3;
691 	buf[1] = peri;
692 
693 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
694 
695 	return SZ_DMAFLUSHP;
696 }
697 
698 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
699 {
700 	if (dry_run)
701 		return SZ_DMALD;
702 
703 	buf[0] = CMD_DMALD;
704 
705 	if (cond == SINGLE)
706 		buf[0] |= (0 << 1) | (1 << 0);
707 	else if (cond == BURST)
708 		buf[0] |= (1 << 1) | (1 << 0);
709 
710 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
711 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
712 
713 	return SZ_DMALD;
714 }
715 
716 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
717 		enum pl330_cond cond, u8 peri)
718 {
719 	if (dry_run)
720 		return SZ_DMALDP;
721 
722 	buf[0] = CMD_DMALDP;
723 
724 	if (cond == BURST)
725 		buf[0] |= (1 << 1);
726 
727 	peri &= 0x1f;
728 	peri <<= 3;
729 	buf[1] = peri;
730 
731 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
732 		cond == SINGLE ? 'S' : 'B', peri >> 3);
733 
734 	return SZ_DMALDP;
735 }
736 
737 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
738 		unsigned loop, u8 cnt)
739 {
740 	if (dry_run)
741 		return SZ_DMALP;
742 
743 	buf[0] = CMD_DMALP;
744 
745 	if (loop)
746 		buf[0] |= (1 << 1);
747 
748 	cnt--; /* DMAC increments by 1 internally */
749 	buf[1] = cnt;
750 
751 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
752 
753 	return SZ_DMALP;
754 }
755 
756 struct _arg_LPEND {
757 	enum pl330_cond cond;
758 	bool forever;
759 	unsigned loop;
760 	u8 bjump;
761 };
762 
763 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
764 		const struct _arg_LPEND *arg)
765 {
766 	enum pl330_cond cond = arg->cond;
767 	bool forever = arg->forever;
768 	unsigned loop = arg->loop;
769 	u8 bjump = arg->bjump;
770 
771 	if (dry_run)
772 		return SZ_DMALPEND;
773 
774 	buf[0] = CMD_DMALPEND;
775 
776 	if (loop)
777 		buf[0] |= (1 << 2);
778 
779 	if (!forever)
780 		buf[0] |= (1 << 4);
781 
782 	if (cond == SINGLE)
783 		buf[0] |= (0 << 1) | (1 << 0);
784 	else if (cond == BURST)
785 		buf[0] |= (1 << 1) | (1 << 0);
786 
787 	buf[1] = bjump;
788 
789 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
790 			forever ? "FE" : "END",
791 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
792 			loop ? '1' : '0',
793 			bjump);
794 
795 	return SZ_DMALPEND;
796 }
797 
798 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
799 {
800 	if (dry_run)
801 		return SZ_DMAKILL;
802 
803 	buf[0] = CMD_DMAKILL;
804 
805 	return SZ_DMAKILL;
806 }
807 
808 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
809 		enum dmamov_dst dst, u32 val)
810 {
811 	if (dry_run)
812 		return SZ_DMAMOV;
813 
814 	buf[0] = CMD_DMAMOV;
815 	buf[1] = dst;
816 	*((u32 *)&buf[2]) = val;
817 
818 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
819 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
820 
821 	return SZ_DMAMOV;
822 }
823 
824 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
825 {
826 	if (dry_run)
827 		return SZ_DMANOP;
828 
829 	buf[0] = CMD_DMANOP;
830 
831 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
832 
833 	return SZ_DMANOP;
834 }
835 
836 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
837 {
838 	if (dry_run)
839 		return SZ_DMARMB;
840 
841 	buf[0] = CMD_DMARMB;
842 
843 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
844 
845 	return SZ_DMARMB;
846 }
847 
848 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
849 {
850 	if (dry_run)
851 		return SZ_DMASEV;
852 
853 	buf[0] = CMD_DMASEV;
854 
855 	ev &= 0x1f;
856 	ev <<= 3;
857 	buf[1] = ev;
858 
859 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
860 
861 	return SZ_DMASEV;
862 }
863 
864 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
865 {
866 	if (dry_run)
867 		return SZ_DMAST;
868 
869 	buf[0] = CMD_DMAST;
870 
871 	if (cond == SINGLE)
872 		buf[0] |= (0 << 1) | (1 << 0);
873 	else if (cond == BURST)
874 		buf[0] |= (1 << 1) | (1 << 0);
875 
876 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
877 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
878 
879 	return SZ_DMAST;
880 }
881 
882 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
883 		enum pl330_cond cond, u8 peri)
884 {
885 	if (dry_run)
886 		return SZ_DMASTP;
887 
888 	buf[0] = CMD_DMASTP;
889 
890 	if (cond == BURST)
891 		buf[0] |= (1 << 1);
892 
893 	peri &= 0x1f;
894 	peri <<= 3;
895 	buf[1] = peri;
896 
897 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
898 		cond == SINGLE ? 'S' : 'B', peri >> 3);
899 
900 	return SZ_DMASTP;
901 }
902 
903 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
904 {
905 	if (dry_run)
906 		return SZ_DMASTZ;
907 
908 	buf[0] = CMD_DMASTZ;
909 
910 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
911 
912 	return SZ_DMASTZ;
913 }
914 
915 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
916 		unsigned invalidate)
917 {
918 	if (dry_run)
919 		return SZ_DMAWFE;
920 
921 	buf[0] = CMD_DMAWFE;
922 
923 	ev &= 0x1f;
924 	ev <<= 3;
925 	buf[1] = ev;
926 
927 	if (invalidate)
928 		buf[1] |= (1 << 1);
929 
930 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
931 		ev >> 3, invalidate ? ", I" : "");
932 
933 	return SZ_DMAWFE;
934 }
935 
936 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
937 		enum pl330_cond cond, u8 peri)
938 {
939 	if (dry_run)
940 		return SZ_DMAWFP;
941 
942 	buf[0] = CMD_DMAWFP;
943 
944 	if (cond == SINGLE)
945 		buf[0] |= (0 << 1) | (0 << 0);
946 	else if (cond == BURST)
947 		buf[0] |= (1 << 1) | (0 << 0);
948 	else
949 		buf[0] |= (0 << 1) | (1 << 0);
950 
951 	peri &= 0x1f;
952 	peri <<= 3;
953 	buf[1] = peri;
954 
955 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
956 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
957 
958 	return SZ_DMAWFP;
959 }
960 
961 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
962 {
963 	if (dry_run)
964 		return SZ_DMAWMB;
965 
966 	buf[0] = CMD_DMAWMB;
967 
968 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
969 
970 	return SZ_DMAWMB;
971 }
972 
973 struct _arg_GO {
974 	u8 chan;
975 	u32 addr;
976 	unsigned ns;
977 };
978 
979 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
980 		const struct _arg_GO *arg)
981 {
982 	u8 chan = arg->chan;
983 	u32 addr = arg->addr;
984 	unsigned ns = arg->ns;
985 
986 	if (dry_run)
987 		return SZ_DMAGO;
988 
989 	buf[0] = CMD_DMAGO;
990 	buf[0] |= (ns << 1);
991 
992 	buf[1] = chan & 0x7;
993 
994 	*((u32 *)&buf[2]) = addr;
995 
996 	return SZ_DMAGO;
997 }
998 
999 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1000 
1001 /* Returns Time-Out */
1002 static bool _until_dmac_idle(struct pl330_thread *thrd)
1003 {
1004 	void __iomem *regs = thrd->dmac->pinfo->base;
1005 	unsigned long loops = msecs_to_loops(5);
1006 
1007 	do {
1008 		/* Until Manager is Idle */
1009 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1010 			break;
1011 
1012 		cpu_relax();
1013 	} while (--loops);
1014 
1015 	if (!loops)
1016 		return true;
1017 
1018 	return false;
1019 }
1020 
1021 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1022 		u8 insn[], bool as_manager)
1023 {
1024 	void __iomem *regs = thrd->dmac->pinfo->base;
1025 	u32 val;
1026 
1027 	val = (insn[0] << 16) | (insn[1] << 24);
1028 	if (!as_manager) {
1029 		val |= (1 << 0);
1030 		val |= (thrd->id << 8); /* Channel Number */
1031 	}
1032 	writel(val, regs + DBGINST0);
1033 
1034 	val = *((u32 *)&insn[2]);
1035 	writel(val, regs + DBGINST1);
1036 
1037 	/* If timed out due to halted state-machine */
1038 	if (_until_dmac_idle(thrd)) {
1039 		dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1040 		return;
1041 	}
1042 
1043 	/* Get going */
1044 	writel(0, regs + DBGCMD);
1045 }
1046 
1047 /*
1048  * Mark a _pl330_req as free.
1049  * We do it by writing DMAEND as the first instruction
1050  * because no valid request is going to have DMAEND as
1051  * its first instruction to execute.
1052  */
1053 static void mark_free(struct pl330_thread *thrd, int idx)
1054 {
1055 	struct _pl330_req *req = &thrd->req[idx];
1056 
1057 	_emit_END(0, req->mc_cpu);
1058 	req->mc_len = 0;
1059 
1060 	thrd->req_running = -1;
1061 }
1062 
1063 static inline u32 _state(struct pl330_thread *thrd)
1064 {
1065 	void __iomem *regs = thrd->dmac->pinfo->base;
1066 	u32 val;
1067 
1068 	if (is_manager(thrd))
1069 		val = readl(regs + DS) & 0xf;
1070 	else
1071 		val = readl(regs + CS(thrd->id)) & 0xf;
1072 
1073 	switch (val) {
1074 	case DS_ST_STOP:
1075 		return PL330_STATE_STOPPED;
1076 	case DS_ST_EXEC:
1077 		return PL330_STATE_EXECUTING;
1078 	case DS_ST_CMISS:
1079 		return PL330_STATE_CACHEMISS;
1080 	case DS_ST_UPDTPC:
1081 		return PL330_STATE_UPDTPC;
1082 	case DS_ST_WFE:
1083 		return PL330_STATE_WFE;
1084 	case DS_ST_FAULT:
1085 		return PL330_STATE_FAULTING;
1086 	case DS_ST_ATBRR:
1087 		if (is_manager(thrd))
1088 			return PL330_STATE_INVALID;
1089 		else
1090 			return PL330_STATE_ATBARRIER;
1091 	case DS_ST_QBUSY:
1092 		if (is_manager(thrd))
1093 			return PL330_STATE_INVALID;
1094 		else
1095 			return PL330_STATE_QUEUEBUSY;
1096 	case DS_ST_WFP:
1097 		if (is_manager(thrd))
1098 			return PL330_STATE_INVALID;
1099 		else
1100 			return PL330_STATE_WFP;
1101 	case DS_ST_KILL:
1102 		if (is_manager(thrd))
1103 			return PL330_STATE_INVALID;
1104 		else
1105 			return PL330_STATE_KILLING;
1106 	case DS_ST_CMPLT:
1107 		if (is_manager(thrd))
1108 			return PL330_STATE_INVALID;
1109 		else
1110 			return PL330_STATE_COMPLETING;
1111 	case DS_ST_FLTCMP:
1112 		if (is_manager(thrd))
1113 			return PL330_STATE_INVALID;
1114 		else
1115 			return PL330_STATE_FAULT_COMPLETING;
1116 	default:
1117 		return PL330_STATE_INVALID;
1118 	}
1119 }
1120 
1121 static void _stop(struct pl330_thread *thrd)
1122 {
1123 	void __iomem *regs = thrd->dmac->pinfo->base;
1124 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1125 
1126 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1127 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1128 
1129 	/* Return if nothing needs to be done */
1130 	if (_state(thrd) == PL330_STATE_COMPLETING
1131 		  || _state(thrd) == PL330_STATE_KILLING
1132 		  || _state(thrd) == PL330_STATE_STOPPED)
1133 		return;
1134 
1135 	_emit_KILL(0, insn);
1136 
1137 	/* Stop generating interrupts for SEV */
1138 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1139 
1140 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1141 }
1142 
1143 /* Start doing req 'idx' of thread 'thrd' */
1144 static bool _trigger(struct pl330_thread *thrd)
1145 {
1146 	void __iomem *regs = thrd->dmac->pinfo->base;
1147 	struct _pl330_req *req;
1148 	struct pl330_req *r;
1149 	struct _arg_GO go;
1150 	unsigned ns;
1151 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1152 	int idx;
1153 
1154 	/* Return if already ACTIVE */
1155 	if (_state(thrd) != PL330_STATE_STOPPED)
1156 		return true;
1157 
1158 	idx = 1 - thrd->lstenq;
1159 	if (!IS_FREE(&thrd->req[idx]))
1160 		req = &thrd->req[idx];
1161 	else {
1162 		idx = thrd->lstenq;
1163 		if (!IS_FREE(&thrd->req[idx]))
1164 			req = &thrd->req[idx];
1165 		else
1166 			req = NULL;
1167 	}
1168 
1169 	/* Return if no request */
1170 	if (!req || !req->r)
1171 		return true;
1172 
1173 	r = req->r;
1174 
1175 	if (r->cfg)
1176 		ns = r->cfg->nonsecure ? 1 : 0;
1177 	else if (readl(regs + CS(thrd->id)) & CS_CNS)
1178 		ns = 1;
1179 	else
1180 		ns = 0;
1181 
1182 	/* See 'Abort Sources' point-4 at Page 2-25 */
1183 	if (_manager_ns(thrd) && !ns)
1184 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1185 			__func__, __LINE__);
1186 
1187 	go.chan = thrd->id;
1188 	go.addr = req->mc_bus;
1189 	go.ns = ns;
1190 	_emit_GO(0, insn, &go);
1191 
1192 	/* Set to generate interrupts for SEV */
1193 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1194 
1195 	/* Only manager can execute GO */
1196 	_execute_DBGINSN(thrd, insn, true);
1197 
1198 	thrd->req_running = idx;
1199 
1200 	return true;
1201 }
1202 
1203 static bool _start(struct pl330_thread *thrd)
1204 {
1205 	switch (_state(thrd)) {
1206 	case PL330_STATE_FAULT_COMPLETING:
1207 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1208 
1209 		if (_state(thrd) == PL330_STATE_KILLING)
1210 			UNTIL(thrd, PL330_STATE_STOPPED)
1211 
1212 	case PL330_STATE_FAULTING:
1213 		_stop(thrd);
1214 
1215 	case PL330_STATE_KILLING:
1216 	case PL330_STATE_COMPLETING:
1217 		UNTIL(thrd, PL330_STATE_STOPPED)
1218 
1219 	case PL330_STATE_STOPPED:
1220 		return _trigger(thrd);
1221 
1222 	case PL330_STATE_WFP:
1223 	case PL330_STATE_QUEUEBUSY:
1224 	case PL330_STATE_ATBARRIER:
1225 	case PL330_STATE_UPDTPC:
1226 	case PL330_STATE_CACHEMISS:
1227 	case PL330_STATE_EXECUTING:
1228 		return true;
1229 
1230 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1231 	default:
1232 		return false;
1233 	}
1234 }
1235 
1236 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1237 		const struct _xfer_spec *pxs, int cyc)
1238 {
1239 	int off = 0;
1240 	struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1241 
1242 	/* check lock-up free version */
1243 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1244 		while (cyc--) {
1245 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1246 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1247 		}
1248 	} else {
1249 		while (cyc--) {
1250 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1251 			off += _emit_RMB(dry_run, &buf[off]);
1252 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1253 			off += _emit_WMB(dry_run, &buf[off]);
1254 		}
1255 	}
1256 
1257 	return off;
1258 }
1259 
1260 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1261 		const struct _xfer_spec *pxs, int cyc)
1262 {
1263 	int off = 0;
1264 
1265 	while (cyc--) {
1266 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1267 		off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1268 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1269 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1270 	}
1271 
1272 	return off;
1273 }
1274 
1275 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1276 		const struct _xfer_spec *pxs, int cyc)
1277 {
1278 	int off = 0;
1279 
1280 	while (cyc--) {
1281 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1282 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1283 		off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1284 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1285 	}
1286 
1287 	return off;
1288 }
1289 
1290 static int _bursts(unsigned dry_run, u8 buf[],
1291 		const struct _xfer_spec *pxs, int cyc)
1292 {
1293 	int off = 0;
1294 
1295 	switch (pxs->r->rqtype) {
1296 	case MEMTODEV:
1297 		off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1298 		break;
1299 	case DEVTOMEM:
1300 		off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1301 		break;
1302 	case MEMTOMEM:
1303 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1304 		break;
1305 	default:
1306 		off += 0x40000000; /* Scare off the Client */
1307 		break;
1308 	}
1309 
1310 	return off;
1311 }
1312 
1313 /* Returns bytes consumed and updates bursts */
1314 static inline int _loop(unsigned dry_run, u8 buf[],
1315 		unsigned long *bursts, const struct _xfer_spec *pxs)
1316 {
1317 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1318 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1319 	struct _arg_LPEND lpend;
1320 
1321 	/* Max iterations possible in DMALP is 256 */
1322 	if (*bursts >= 256*256) {
1323 		lcnt1 = 256;
1324 		lcnt0 = 256;
1325 		cyc = *bursts / lcnt1 / lcnt0;
1326 	} else if (*bursts > 256) {
1327 		lcnt1 = 256;
1328 		lcnt0 = *bursts / lcnt1;
1329 		cyc = 1;
1330 	} else {
1331 		lcnt1 = *bursts;
1332 		lcnt0 = 0;
1333 		cyc = 1;
1334 	}
1335 
1336 	szlp = _emit_LP(1, buf, 0, 0);
1337 	szbrst = _bursts(1, buf, pxs, 1);
1338 
1339 	lpend.cond = ALWAYS;
1340 	lpend.forever = false;
1341 	lpend.loop = 0;
1342 	lpend.bjump = 0;
1343 	szlpend = _emit_LPEND(1, buf, &lpend);
1344 
1345 	if (lcnt0) {
1346 		szlp *= 2;
1347 		szlpend *= 2;
1348 	}
1349 
1350 	/*
1351 	 * Max bursts that we can unroll due to limit on the
1352 	 * size of backward jump that can be encoded in DMALPEND
1353 	 * which is 8-bits and hence 255
1354 	 */
1355 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1356 
1357 	cyc = (cycmax < cyc) ? cycmax : cyc;
1358 
1359 	off = 0;
1360 
1361 	if (lcnt0) {
1362 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1363 		ljmp0 = off;
1364 	}
1365 
1366 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1367 	ljmp1 = off;
1368 
1369 	off += _bursts(dry_run, &buf[off], pxs, cyc);
1370 
1371 	lpend.cond = ALWAYS;
1372 	lpend.forever = false;
1373 	lpend.loop = 1;
1374 	lpend.bjump = off - ljmp1;
1375 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1376 
1377 	if (lcnt0) {
1378 		lpend.cond = ALWAYS;
1379 		lpend.forever = false;
1380 		lpend.loop = 0;
1381 		lpend.bjump = off - ljmp0;
1382 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1383 	}
1384 
1385 	*bursts = lcnt1 * cyc;
1386 	if (lcnt0)
1387 		*bursts *= lcnt0;
1388 
1389 	return off;
1390 }
1391 
1392 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1393 		const struct _xfer_spec *pxs)
1394 {
1395 	struct pl330_xfer *x = pxs->x;
1396 	u32 ccr = pxs->ccr;
1397 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1398 	int off = 0;
1399 
1400 	while (bursts) {
1401 		c = bursts;
1402 		off += _loop(dry_run, &buf[off], &c, pxs);
1403 		bursts -= c;
1404 	}
1405 
1406 	return off;
1407 }
1408 
1409 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1410 		const struct _xfer_spec *pxs)
1411 {
1412 	struct pl330_xfer *x = pxs->x;
1413 	int off = 0;
1414 
1415 	/* DMAMOV SAR, x->src_addr */
1416 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1417 	/* DMAMOV DAR, x->dst_addr */
1418 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1419 
1420 	/* Setup Loop(s) */
1421 	off += _setup_loops(dry_run, &buf[off], pxs);
1422 
1423 	return off;
1424 }
1425 
1426 /*
1427  * A req is a sequence of one or more xfer units.
1428  * Returns the number of bytes taken to setup the MC for the req.
1429  */
1430 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1431 		unsigned index, struct _xfer_spec *pxs)
1432 {
1433 	struct _pl330_req *req = &thrd->req[index];
1434 	struct pl330_xfer *x;
1435 	u8 *buf = req->mc_cpu;
1436 	int off = 0;
1437 
1438 	PL330_DBGMC_START(req->mc_bus);
1439 
1440 	/* DMAMOV CCR, ccr */
1441 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1442 
1443 	x = pxs->r->x;
1444 	do {
1445 		/* Error if xfer length is not aligned at burst size */
1446 		if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1447 			return -EINVAL;
1448 
1449 		pxs->x = x;
1450 		off += _setup_xfer(dry_run, &buf[off], pxs);
1451 
1452 		x = x->next;
1453 	} while (x);
1454 
1455 	/* DMASEV peripheral/event */
1456 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1457 	/* DMAEND */
1458 	off += _emit_END(dry_run, &buf[off]);
1459 
1460 	return off;
1461 }
1462 
1463 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1464 {
1465 	u32 ccr = 0;
1466 
1467 	if (rqc->src_inc)
1468 		ccr |= CC_SRCINC;
1469 
1470 	if (rqc->dst_inc)
1471 		ccr |= CC_DSTINC;
1472 
1473 	/* We set same protection levels for Src and DST for now */
1474 	if (rqc->privileged)
1475 		ccr |= CC_SRCPRI | CC_DSTPRI;
1476 	if (rqc->nonsecure)
1477 		ccr |= CC_SRCNS | CC_DSTNS;
1478 	if (rqc->insnaccess)
1479 		ccr |= CC_SRCIA | CC_DSTIA;
1480 
1481 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1482 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1483 
1484 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1485 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1486 
1487 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1488 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1489 
1490 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1491 
1492 	return ccr;
1493 }
1494 
1495 static inline bool _is_valid(u32 ccr)
1496 {
1497 	enum pl330_dstcachectrl dcctl;
1498 	enum pl330_srccachectrl scctl;
1499 
1500 	dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1501 	scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1502 
1503 	if (dcctl == DINVALID1 || dcctl == DINVALID2
1504 			|| scctl == SINVALID1 || scctl == SINVALID2)
1505 		return false;
1506 	else
1507 		return true;
1508 }
1509 
1510 /*
1511  * Submit a list of xfers after which the client wants notification.
1512  * Client is not notified after each xfer unit, just once after all
1513  * xfer units are done or some error occurs.
1514  */
1515 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1516 {
1517 	struct pl330_thread *thrd = ch_id;
1518 	struct pl330_dmac *pl330;
1519 	struct pl330_info *pi;
1520 	struct _xfer_spec xs;
1521 	unsigned long flags;
1522 	void __iomem *regs;
1523 	unsigned idx;
1524 	u32 ccr;
1525 	int ret = 0;
1526 
1527 	/* No Req or Unacquired Channel or DMAC */
1528 	if (!r || !thrd || thrd->free)
1529 		return -EINVAL;
1530 
1531 	pl330 = thrd->dmac;
1532 	pi = pl330->pinfo;
1533 	regs = pi->base;
1534 
1535 	if (pl330->state == DYING
1536 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1537 		dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1538 			__func__, __LINE__);
1539 		return -EAGAIN;
1540 	}
1541 
1542 	/* If request for non-existing peripheral */
1543 	if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1544 		dev_info(thrd->dmac->pinfo->dev,
1545 				"%s:%d Invalid peripheral(%u)!\n",
1546 				__func__, __LINE__, r->peri);
1547 		return -EINVAL;
1548 	}
1549 
1550 	spin_lock_irqsave(&pl330->lock, flags);
1551 
1552 	if (_queue_full(thrd)) {
1553 		ret = -EAGAIN;
1554 		goto xfer_exit;
1555 	}
1556 
1557 
1558 	/* Use last settings, if not provided */
1559 	if (r->cfg) {
1560 		/* Prefer Secure Channel */
1561 		if (!_manager_ns(thrd))
1562 			r->cfg->nonsecure = 0;
1563 		else
1564 			r->cfg->nonsecure = 1;
1565 
1566 		ccr = _prepare_ccr(r->cfg);
1567 	} else {
1568 		ccr = readl(regs + CC(thrd->id));
1569 	}
1570 
1571 	/* If this req doesn't have valid xfer settings */
1572 	if (!_is_valid(ccr)) {
1573 		ret = -EINVAL;
1574 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1575 			__func__, __LINE__, ccr);
1576 		goto xfer_exit;
1577 	}
1578 
1579 	idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1580 
1581 	xs.ccr = ccr;
1582 	xs.r = r;
1583 
1584 	/* First dry run to check if req is acceptable */
1585 	ret = _setup_req(1, thrd, idx, &xs);
1586 	if (ret < 0)
1587 		goto xfer_exit;
1588 
1589 	if (ret > pi->mcbufsz / 2) {
1590 		dev_info(thrd->dmac->pinfo->dev,
1591 			"%s:%d Trying increasing mcbufsz\n",
1592 				__func__, __LINE__);
1593 		ret = -ENOMEM;
1594 		goto xfer_exit;
1595 	}
1596 
1597 	/* Hook the request */
1598 	thrd->lstenq = idx;
1599 	thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1600 	thrd->req[idx].r = r;
1601 
1602 	ret = 0;
1603 
1604 xfer_exit:
1605 	spin_unlock_irqrestore(&pl330->lock, flags);
1606 
1607 	return ret;
1608 }
1609 
1610 static void pl330_dotask(unsigned long data)
1611 {
1612 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1613 	struct pl330_info *pi = pl330->pinfo;
1614 	unsigned long flags;
1615 	int i;
1616 
1617 	spin_lock_irqsave(&pl330->lock, flags);
1618 
1619 	/* The DMAC itself gone nuts */
1620 	if (pl330->dmac_tbd.reset_dmac) {
1621 		pl330->state = DYING;
1622 		/* Reset the manager too */
1623 		pl330->dmac_tbd.reset_mngr = true;
1624 		/* Clear the reset flag */
1625 		pl330->dmac_tbd.reset_dmac = false;
1626 	}
1627 
1628 	if (pl330->dmac_tbd.reset_mngr) {
1629 		_stop(pl330->manager);
1630 		/* Reset all channels */
1631 		pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1632 		/* Clear the reset flag */
1633 		pl330->dmac_tbd.reset_mngr = false;
1634 	}
1635 
1636 	for (i = 0; i < pi->pcfg.num_chan; i++) {
1637 
1638 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1639 			struct pl330_thread *thrd = &pl330->channels[i];
1640 			void __iomem *regs = pi->base;
1641 			enum pl330_op_err err;
1642 
1643 			_stop(thrd);
1644 
1645 			if (readl(regs + FSC) & (1 << thrd->id))
1646 				err = PL330_ERR_FAIL;
1647 			else
1648 				err = PL330_ERR_ABORT;
1649 
1650 			spin_unlock_irqrestore(&pl330->lock, flags);
1651 
1652 			_callback(thrd->req[1 - thrd->lstenq].r, err);
1653 			_callback(thrd->req[thrd->lstenq].r, err);
1654 
1655 			spin_lock_irqsave(&pl330->lock, flags);
1656 
1657 			thrd->req[0].r = NULL;
1658 			thrd->req[1].r = NULL;
1659 			mark_free(thrd, 0);
1660 			mark_free(thrd, 1);
1661 
1662 			/* Clear the reset flag */
1663 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1664 		}
1665 	}
1666 
1667 	spin_unlock_irqrestore(&pl330->lock, flags);
1668 
1669 	return;
1670 }
1671 
1672 /* Returns 1 if state was updated, 0 otherwise */
1673 static int pl330_update(const struct pl330_info *pi)
1674 {
1675 	struct pl330_req *rqdone, *tmp;
1676 	struct pl330_dmac *pl330;
1677 	unsigned long flags;
1678 	void __iomem *regs;
1679 	u32 val;
1680 	int id, ev, ret = 0;
1681 
1682 	if (!pi || !pi->pl330_data)
1683 		return 0;
1684 
1685 	regs = pi->base;
1686 	pl330 = pi->pl330_data;
1687 
1688 	spin_lock_irqsave(&pl330->lock, flags);
1689 
1690 	val = readl(regs + FSM) & 0x1;
1691 	if (val)
1692 		pl330->dmac_tbd.reset_mngr = true;
1693 	else
1694 		pl330->dmac_tbd.reset_mngr = false;
1695 
1696 	val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1697 	pl330->dmac_tbd.reset_chan |= val;
1698 	if (val) {
1699 		int i = 0;
1700 		while (i < pi->pcfg.num_chan) {
1701 			if (val & (1 << i)) {
1702 				dev_info(pi->dev,
1703 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1704 						i, readl(regs + CS(i)),
1705 						readl(regs + FTC(i)));
1706 				_stop(&pl330->channels[i]);
1707 			}
1708 			i++;
1709 		}
1710 	}
1711 
1712 	/* Check which event happened i.e, thread notified */
1713 	val = readl(regs + ES);
1714 	if (pi->pcfg.num_events < 32
1715 			&& val & ~((1 << pi->pcfg.num_events) - 1)) {
1716 		pl330->dmac_tbd.reset_dmac = true;
1717 		dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1718 		ret = 1;
1719 		goto updt_exit;
1720 	}
1721 
1722 	for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1723 		if (val & (1 << ev)) { /* Event occurred */
1724 			struct pl330_thread *thrd;
1725 			u32 inten = readl(regs + INTEN);
1726 			int active;
1727 
1728 			/* Clear the event */
1729 			if (inten & (1 << ev))
1730 				writel(1 << ev, regs + INTCLR);
1731 
1732 			ret = 1;
1733 
1734 			id = pl330->events[ev];
1735 
1736 			thrd = &pl330->channels[id];
1737 
1738 			active = thrd->req_running;
1739 			if (active == -1) /* Aborted */
1740 				continue;
1741 
1742 			/* Detach the req */
1743 			rqdone = thrd->req[active].r;
1744 			thrd->req[active].r = NULL;
1745 
1746 			mark_free(thrd, active);
1747 
1748 			/* Get going again ASAP */
1749 			_start(thrd);
1750 
1751 			/* For now, just make a list of callbacks to be done */
1752 			list_add_tail(&rqdone->rqd, &pl330->req_done);
1753 		}
1754 	}
1755 
1756 	/* Now that we are in no hurry, do the callbacks */
1757 	list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) {
1758 		list_del(&rqdone->rqd);
1759 
1760 		spin_unlock_irqrestore(&pl330->lock, flags);
1761 		_callback(rqdone, PL330_ERR_NONE);
1762 		spin_lock_irqsave(&pl330->lock, flags);
1763 	}
1764 
1765 updt_exit:
1766 	spin_unlock_irqrestore(&pl330->lock, flags);
1767 
1768 	if (pl330->dmac_tbd.reset_dmac
1769 			|| pl330->dmac_tbd.reset_mngr
1770 			|| pl330->dmac_tbd.reset_chan) {
1771 		ret = 1;
1772 		tasklet_schedule(&pl330->tasks);
1773 	}
1774 
1775 	return ret;
1776 }
1777 
1778 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1779 {
1780 	struct pl330_thread *thrd = ch_id;
1781 	struct pl330_dmac *pl330;
1782 	unsigned long flags;
1783 	int ret = 0, active;
1784 
1785 	if (!thrd || thrd->free || thrd->dmac->state == DYING)
1786 		return -EINVAL;
1787 
1788 	pl330 = thrd->dmac;
1789 	active = thrd->req_running;
1790 
1791 	spin_lock_irqsave(&pl330->lock, flags);
1792 
1793 	switch (op) {
1794 	case PL330_OP_FLUSH:
1795 		/* Make sure the channel is stopped */
1796 		_stop(thrd);
1797 
1798 		thrd->req[0].r = NULL;
1799 		thrd->req[1].r = NULL;
1800 		mark_free(thrd, 0);
1801 		mark_free(thrd, 1);
1802 		break;
1803 
1804 	case PL330_OP_ABORT:
1805 		/* Make sure the channel is stopped */
1806 		_stop(thrd);
1807 
1808 		/* ABORT is only for the active req */
1809 		if (active == -1)
1810 			break;
1811 
1812 		thrd->req[active].r = NULL;
1813 		mark_free(thrd, active);
1814 
1815 		/* Start the next */
1816 	case PL330_OP_START:
1817 		if ((active == -1) && !_start(thrd))
1818 			ret = -EIO;
1819 		break;
1820 
1821 	default:
1822 		ret = -EINVAL;
1823 	}
1824 
1825 	spin_unlock_irqrestore(&pl330->lock, flags);
1826 	return ret;
1827 }
1828 
1829 /* Reserve an event */
1830 static inline int _alloc_event(struct pl330_thread *thrd)
1831 {
1832 	struct pl330_dmac *pl330 = thrd->dmac;
1833 	struct pl330_info *pi = pl330->pinfo;
1834 	int ev;
1835 
1836 	for (ev = 0; ev < pi->pcfg.num_events; ev++)
1837 		if (pl330->events[ev] == -1) {
1838 			pl330->events[ev] = thrd->id;
1839 			return ev;
1840 		}
1841 
1842 	return -1;
1843 }
1844 
1845 static bool _chan_ns(const struct pl330_info *pi, int i)
1846 {
1847 	return pi->pcfg.irq_ns & (1 << i);
1848 }
1849 
1850 /* Upon success, returns IdentityToken for the
1851  * allocated channel, NULL otherwise.
1852  */
1853 static void *pl330_request_channel(const struct pl330_info *pi)
1854 {
1855 	struct pl330_thread *thrd = NULL;
1856 	struct pl330_dmac *pl330;
1857 	unsigned long flags;
1858 	int chans, i;
1859 
1860 	if (!pi || !pi->pl330_data)
1861 		return NULL;
1862 
1863 	pl330 = pi->pl330_data;
1864 
1865 	if (pl330->state == DYING)
1866 		return NULL;
1867 
1868 	chans = pi->pcfg.num_chan;
1869 
1870 	spin_lock_irqsave(&pl330->lock, flags);
1871 
1872 	for (i = 0; i < chans; i++) {
1873 		thrd = &pl330->channels[i];
1874 		if ((thrd->free) && (!_manager_ns(thrd) ||
1875 					_chan_ns(pi, i))) {
1876 			thrd->ev = _alloc_event(thrd);
1877 			if (thrd->ev >= 0) {
1878 				thrd->free = false;
1879 				thrd->lstenq = 1;
1880 				thrd->req[0].r = NULL;
1881 				mark_free(thrd, 0);
1882 				thrd->req[1].r = NULL;
1883 				mark_free(thrd, 1);
1884 				break;
1885 			}
1886 		}
1887 		thrd = NULL;
1888 	}
1889 
1890 	spin_unlock_irqrestore(&pl330->lock, flags);
1891 
1892 	return thrd;
1893 }
1894 
1895 /* Release an event */
1896 static inline void _free_event(struct pl330_thread *thrd, int ev)
1897 {
1898 	struct pl330_dmac *pl330 = thrd->dmac;
1899 	struct pl330_info *pi = pl330->pinfo;
1900 
1901 	/* If the event is valid and was held by the thread */
1902 	if (ev >= 0 && ev < pi->pcfg.num_events
1903 			&& pl330->events[ev] == thrd->id)
1904 		pl330->events[ev] = -1;
1905 }
1906 
1907 static void pl330_release_channel(void *ch_id)
1908 {
1909 	struct pl330_thread *thrd = ch_id;
1910 	struct pl330_dmac *pl330;
1911 	unsigned long flags;
1912 
1913 	if (!thrd || thrd->free)
1914 		return;
1915 
1916 	_stop(thrd);
1917 
1918 	_callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1919 	_callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1920 
1921 	pl330 = thrd->dmac;
1922 
1923 	spin_lock_irqsave(&pl330->lock, flags);
1924 	_free_event(thrd, thrd->ev);
1925 	thrd->free = true;
1926 	spin_unlock_irqrestore(&pl330->lock, flags);
1927 }
1928 
1929 /* Initialize the structure for PL330 configuration, that can be used
1930  * by the client driver the make best use of the DMAC
1931  */
1932 static void read_dmac_config(struct pl330_info *pi)
1933 {
1934 	void __iomem *regs = pi->base;
1935 	u32 val;
1936 
1937 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1938 	val &= CRD_DATA_WIDTH_MASK;
1939 	pi->pcfg.data_bus_width = 8 * (1 << val);
1940 
1941 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1942 	val &= CRD_DATA_BUFF_MASK;
1943 	pi->pcfg.data_buf_dep = val + 1;
1944 
1945 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1946 	val &= CR0_NUM_CHANS_MASK;
1947 	val += 1;
1948 	pi->pcfg.num_chan = val;
1949 
1950 	val = readl(regs + CR0);
1951 	if (val & CR0_PERIPH_REQ_SET) {
1952 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1953 		val += 1;
1954 		pi->pcfg.num_peri = val;
1955 		pi->pcfg.peri_ns = readl(regs + CR4);
1956 	} else {
1957 		pi->pcfg.num_peri = 0;
1958 	}
1959 
1960 	val = readl(regs + CR0);
1961 	if (val & CR0_BOOT_MAN_NS)
1962 		pi->pcfg.mode |= DMAC_MODE_NS;
1963 	else
1964 		pi->pcfg.mode &= ~DMAC_MODE_NS;
1965 
1966 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1967 	val &= CR0_NUM_EVENTS_MASK;
1968 	val += 1;
1969 	pi->pcfg.num_events = val;
1970 
1971 	pi->pcfg.irq_ns = readl(regs + CR3);
1972 }
1973 
1974 static inline void _reset_thread(struct pl330_thread *thrd)
1975 {
1976 	struct pl330_dmac *pl330 = thrd->dmac;
1977 	struct pl330_info *pi = pl330->pinfo;
1978 
1979 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1980 				+ (thrd->id * pi->mcbufsz);
1981 	thrd->req[0].mc_bus = pl330->mcode_bus
1982 				+ (thrd->id * pi->mcbufsz);
1983 	thrd->req[0].r = NULL;
1984 	mark_free(thrd, 0);
1985 
1986 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1987 				+ pi->mcbufsz / 2;
1988 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1989 				+ pi->mcbufsz / 2;
1990 	thrd->req[1].r = NULL;
1991 	mark_free(thrd, 1);
1992 }
1993 
1994 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1995 {
1996 	struct pl330_info *pi = pl330->pinfo;
1997 	int chans = pi->pcfg.num_chan;
1998 	struct pl330_thread *thrd;
1999 	int i;
2000 
2001 	/* Allocate 1 Manager and 'chans' Channel threads */
2002 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2003 					GFP_KERNEL);
2004 	if (!pl330->channels)
2005 		return -ENOMEM;
2006 
2007 	/* Init Channel threads */
2008 	for (i = 0; i < chans; i++) {
2009 		thrd = &pl330->channels[i];
2010 		thrd->id = i;
2011 		thrd->dmac = pl330;
2012 		_reset_thread(thrd);
2013 		thrd->free = true;
2014 	}
2015 
2016 	/* MANAGER is indexed at the end */
2017 	thrd = &pl330->channels[chans];
2018 	thrd->id = chans;
2019 	thrd->dmac = pl330;
2020 	thrd->free = false;
2021 	pl330->manager = thrd;
2022 
2023 	return 0;
2024 }
2025 
2026 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2027 {
2028 	struct pl330_info *pi = pl330->pinfo;
2029 	int chans = pi->pcfg.num_chan;
2030 	int ret;
2031 
2032 	/*
2033 	 * Alloc MicroCode buffer for 'chans' Channel threads.
2034 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2035 	 */
2036 	pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2037 				chans * pi->mcbufsz,
2038 				&pl330->mcode_bus, GFP_KERNEL);
2039 	if (!pl330->mcode_cpu) {
2040 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2041 			__func__, __LINE__);
2042 		return -ENOMEM;
2043 	}
2044 
2045 	ret = dmac_alloc_threads(pl330);
2046 	if (ret) {
2047 		dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2048 			__func__, __LINE__);
2049 		dma_free_coherent(pi->dev,
2050 				chans * pi->mcbufsz,
2051 				pl330->mcode_cpu, pl330->mcode_bus);
2052 		return ret;
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 static int pl330_add(struct pl330_info *pi)
2059 {
2060 	struct pl330_dmac *pl330;
2061 	void __iomem *regs;
2062 	int i, ret;
2063 
2064 	if (!pi || !pi->dev)
2065 		return -EINVAL;
2066 
2067 	/* If already added */
2068 	if (pi->pl330_data)
2069 		return -EINVAL;
2070 
2071 	/*
2072 	 * If the SoC can perform reset on the DMAC, then do it
2073 	 * before reading its configuration.
2074 	 */
2075 	if (pi->dmac_reset)
2076 		pi->dmac_reset(pi);
2077 
2078 	regs = pi->base;
2079 
2080 	/* Check if we can handle this DMAC */
2081 	if ((pi->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
2082 		dev_err(pi->dev, "PERIPH_ID 0x%x !\n", pi->pcfg.periph_id);
2083 		return -EINVAL;
2084 	}
2085 
2086 	/* Read the configuration of the DMAC */
2087 	read_dmac_config(pi);
2088 
2089 	if (pi->pcfg.num_events == 0) {
2090 		dev_err(pi->dev, "%s:%d Can't work without events!\n",
2091 			__func__, __LINE__);
2092 		return -EINVAL;
2093 	}
2094 
2095 	pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2096 	if (!pl330) {
2097 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2098 			__func__, __LINE__);
2099 		return -ENOMEM;
2100 	}
2101 
2102 	/* Assign the info structure and private data */
2103 	pl330->pinfo = pi;
2104 	pi->pl330_data = pl330;
2105 
2106 	spin_lock_init(&pl330->lock);
2107 
2108 	INIT_LIST_HEAD(&pl330->req_done);
2109 
2110 	/* Use default MC buffer size if not provided */
2111 	if (!pi->mcbufsz)
2112 		pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2113 
2114 	/* Mark all events as free */
2115 	for (i = 0; i < pi->pcfg.num_events; i++)
2116 		pl330->events[i] = -1;
2117 
2118 	/* Allocate resources needed by the DMAC */
2119 	ret = dmac_alloc_resources(pl330);
2120 	if (ret) {
2121 		dev_err(pi->dev, "Unable to create channels for DMAC\n");
2122 		kfree(pl330);
2123 		return ret;
2124 	}
2125 
2126 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2127 
2128 	pl330->state = INIT;
2129 
2130 	return 0;
2131 }
2132 
2133 static int dmac_free_threads(struct pl330_dmac *pl330)
2134 {
2135 	struct pl330_info *pi = pl330->pinfo;
2136 	int chans = pi->pcfg.num_chan;
2137 	struct pl330_thread *thrd;
2138 	int i;
2139 
2140 	/* Release Channel threads */
2141 	for (i = 0; i < chans; i++) {
2142 		thrd = &pl330->channels[i];
2143 		pl330_release_channel((void *)thrd);
2144 	}
2145 
2146 	/* Free memory */
2147 	kfree(pl330->channels);
2148 
2149 	return 0;
2150 }
2151 
2152 static void dmac_free_resources(struct pl330_dmac *pl330)
2153 {
2154 	struct pl330_info *pi = pl330->pinfo;
2155 	int chans = pi->pcfg.num_chan;
2156 
2157 	dmac_free_threads(pl330);
2158 
2159 	dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2160 				pl330->mcode_cpu, pl330->mcode_bus);
2161 }
2162 
2163 static void pl330_del(struct pl330_info *pi)
2164 {
2165 	struct pl330_dmac *pl330;
2166 
2167 	if (!pi || !pi->pl330_data)
2168 		return;
2169 
2170 	pl330 = pi->pl330_data;
2171 
2172 	pl330->state = UNINIT;
2173 
2174 	tasklet_kill(&pl330->tasks);
2175 
2176 	/* Free DMAC resources */
2177 	dmac_free_resources(pl330);
2178 
2179 	kfree(pl330);
2180 	pi->pl330_data = NULL;
2181 }
2182 
2183 /* forward declaration */
2184 static struct amba_driver pl330_driver;
2185 
2186 static inline struct dma_pl330_chan *
2187 to_pchan(struct dma_chan *ch)
2188 {
2189 	if (!ch)
2190 		return NULL;
2191 
2192 	return container_of(ch, struct dma_pl330_chan, chan);
2193 }
2194 
2195 static inline struct dma_pl330_desc *
2196 to_desc(struct dma_async_tx_descriptor *tx)
2197 {
2198 	return container_of(tx, struct dma_pl330_desc, txd);
2199 }
2200 
2201 static inline void free_desc_list(struct list_head *list)
2202 {
2203 	struct dma_pl330_dmac *pdmac;
2204 	struct dma_pl330_desc *desc;
2205 	struct dma_pl330_chan *pch = NULL;
2206 	unsigned long flags;
2207 
2208 	/* Finish off the work list */
2209 	list_for_each_entry(desc, list, node) {
2210 		dma_async_tx_callback callback;
2211 		void *param;
2212 
2213 		/* All desc in a list belong to same channel */
2214 		pch = desc->pchan;
2215 		callback = desc->txd.callback;
2216 		param = desc->txd.callback_param;
2217 
2218 		if (callback)
2219 			callback(param);
2220 
2221 		desc->pchan = NULL;
2222 	}
2223 
2224 	/* pch will be unset if list was empty */
2225 	if (!pch)
2226 		return;
2227 
2228 	pdmac = pch->dmac;
2229 
2230 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2231 	list_splice_tail_init(list, &pdmac->desc_pool);
2232 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2233 }
2234 
2235 static inline void handle_cyclic_desc_list(struct list_head *list)
2236 {
2237 	struct dma_pl330_desc *desc;
2238 	struct dma_pl330_chan *pch = NULL;
2239 	unsigned long flags;
2240 
2241 	list_for_each_entry(desc, list, node) {
2242 		dma_async_tx_callback callback;
2243 
2244 		/* Change status to reload it */
2245 		desc->status = PREP;
2246 		pch = desc->pchan;
2247 		callback = desc->txd.callback;
2248 		if (callback)
2249 			callback(desc->txd.callback_param);
2250 	}
2251 
2252 	/* pch will be unset if list was empty */
2253 	if (!pch)
2254 		return;
2255 
2256 	spin_lock_irqsave(&pch->lock, flags);
2257 	list_splice_tail_init(list, &pch->work_list);
2258 	spin_unlock_irqrestore(&pch->lock, flags);
2259 }
2260 
2261 static inline void fill_queue(struct dma_pl330_chan *pch)
2262 {
2263 	struct dma_pl330_desc *desc;
2264 	int ret;
2265 
2266 	list_for_each_entry(desc, &pch->work_list, node) {
2267 
2268 		/* If already submitted */
2269 		if (desc->status == BUSY)
2270 			continue;
2271 
2272 		ret = pl330_submit_req(pch->pl330_chid,
2273 						&desc->req);
2274 		if (!ret) {
2275 			desc->status = BUSY;
2276 		} else if (ret == -EAGAIN) {
2277 			/* QFull or DMAC Dying */
2278 			break;
2279 		} else {
2280 			/* Unacceptable request */
2281 			desc->status = DONE;
2282 			dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2283 					__func__, __LINE__, desc->txd.cookie);
2284 			tasklet_schedule(&pch->task);
2285 		}
2286 	}
2287 }
2288 
2289 static void pl330_tasklet(unsigned long data)
2290 {
2291 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2292 	struct dma_pl330_desc *desc, *_dt;
2293 	unsigned long flags;
2294 	LIST_HEAD(list);
2295 
2296 	spin_lock_irqsave(&pch->lock, flags);
2297 
2298 	/* Pick up ripe tomatoes */
2299 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2300 		if (desc->status == DONE) {
2301 			if (!pch->cyclic)
2302 				dma_cookie_complete(&desc->txd);
2303 			list_move_tail(&desc->node, &list);
2304 		}
2305 
2306 	/* Try to submit a req imm. next to the last completed cookie */
2307 	fill_queue(pch);
2308 
2309 	/* Make sure the PL330 Channel thread is active */
2310 	pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2311 
2312 	spin_unlock_irqrestore(&pch->lock, flags);
2313 
2314 	if (pch->cyclic)
2315 		handle_cyclic_desc_list(&list);
2316 	else
2317 		free_desc_list(&list);
2318 }
2319 
2320 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2321 {
2322 	struct dma_pl330_desc *desc = token;
2323 	struct dma_pl330_chan *pch = desc->pchan;
2324 	unsigned long flags;
2325 
2326 	/* If desc aborted */
2327 	if (!pch)
2328 		return;
2329 
2330 	spin_lock_irqsave(&pch->lock, flags);
2331 
2332 	desc->status = DONE;
2333 
2334 	spin_unlock_irqrestore(&pch->lock, flags);
2335 
2336 	tasklet_schedule(&pch->task);
2337 }
2338 
2339 static bool pl330_dt_filter(struct dma_chan *chan, void *param)
2340 {
2341 	struct dma_pl330_filter_args *fargs = param;
2342 
2343 	if (chan->device != &fargs->pdmac->ddma)
2344 		return false;
2345 
2346 	return (chan->chan_id == fargs->chan_id);
2347 }
2348 
2349 bool pl330_filter(struct dma_chan *chan, void *param)
2350 {
2351 	u8 *peri_id;
2352 
2353 	if (chan->device->dev->driver != &pl330_driver.drv)
2354 		return false;
2355 
2356 	peri_id = chan->private;
2357 	return *peri_id == (unsigned)param;
2358 }
2359 EXPORT_SYMBOL(pl330_filter);
2360 
2361 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2362 						struct of_dma *ofdma)
2363 {
2364 	int count = dma_spec->args_count;
2365 	struct dma_pl330_dmac *pdmac = ofdma->of_dma_data;
2366 	struct dma_pl330_filter_args fargs;
2367 	dma_cap_mask_t cap;
2368 
2369 	if (!pdmac)
2370 		return NULL;
2371 
2372 	if (count != 1)
2373 		return NULL;
2374 
2375 	fargs.pdmac = pdmac;
2376 	fargs.chan_id = dma_spec->args[0];
2377 
2378 	dma_cap_zero(cap);
2379 	dma_cap_set(DMA_SLAVE, cap);
2380 	dma_cap_set(DMA_CYCLIC, cap);
2381 
2382 	return dma_request_channel(cap, pl330_dt_filter, &fargs);
2383 }
2384 
2385 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2386 {
2387 	struct dma_pl330_chan *pch = to_pchan(chan);
2388 	struct dma_pl330_dmac *pdmac = pch->dmac;
2389 	unsigned long flags;
2390 
2391 	spin_lock_irqsave(&pch->lock, flags);
2392 
2393 	dma_cookie_init(chan);
2394 	pch->cyclic = false;
2395 
2396 	pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2397 	if (!pch->pl330_chid) {
2398 		spin_unlock_irqrestore(&pch->lock, flags);
2399 		return -ENOMEM;
2400 	}
2401 
2402 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2403 
2404 	spin_unlock_irqrestore(&pch->lock, flags);
2405 
2406 	return 1;
2407 }
2408 
2409 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2410 {
2411 	struct dma_pl330_chan *pch = to_pchan(chan);
2412 	struct dma_pl330_desc *desc, *_dt;
2413 	unsigned long flags;
2414 	struct dma_pl330_dmac *pdmac = pch->dmac;
2415 	struct dma_slave_config *slave_config;
2416 	LIST_HEAD(list);
2417 
2418 	switch (cmd) {
2419 	case DMA_TERMINATE_ALL:
2420 		spin_lock_irqsave(&pch->lock, flags);
2421 
2422 		/* FLUSH the PL330 Channel thread */
2423 		pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2424 
2425 		/* Mark all desc done */
2426 		list_for_each_entry_safe(desc, _dt, &pch->work_list , node) {
2427 			desc->status = DONE;
2428 			list_move_tail(&desc->node, &list);
2429 		}
2430 
2431 		list_splice_tail_init(&list, &pdmac->desc_pool);
2432 		spin_unlock_irqrestore(&pch->lock, flags);
2433 		break;
2434 	case DMA_SLAVE_CONFIG:
2435 		slave_config = (struct dma_slave_config *)arg;
2436 
2437 		if (slave_config->direction == DMA_MEM_TO_DEV) {
2438 			if (slave_config->dst_addr)
2439 				pch->fifo_addr = slave_config->dst_addr;
2440 			if (slave_config->dst_addr_width)
2441 				pch->burst_sz = __ffs(slave_config->dst_addr_width);
2442 			if (slave_config->dst_maxburst)
2443 				pch->burst_len = slave_config->dst_maxburst;
2444 		} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2445 			if (slave_config->src_addr)
2446 				pch->fifo_addr = slave_config->src_addr;
2447 			if (slave_config->src_addr_width)
2448 				pch->burst_sz = __ffs(slave_config->src_addr_width);
2449 			if (slave_config->src_maxburst)
2450 				pch->burst_len = slave_config->src_maxburst;
2451 		}
2452 		break;
2453 	default:
2454 		dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2455 		return -ENXIO;
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static void pl330_free_chan_resources(struct dma_chan *chan)
2462 {
2463 	struct dma_pl330_chan *pch = to_pchan(chan);
2464 	unsigned long flags;
2465 
2466 	tasklet_kill(&pch->task);
2467 
2468 	spin_lock_irqsave(&pch->lock, flags);
2469 
2470 	pl330_release_channel(pch->pl330_chid);
2471 	pch->pl330_chid = NULL;
2472 
2473 	if (pch->cyclic)
2474 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2475 
2476 	spin_unlock_irqrestore(&pch->lock, flags);
2477 }
2478 
2479 static enum dma_status
2480 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2481 		 struct dma_tx_state *txstate)
2482 {
2483 	return dma_cookie_status(chan, cookie, txstate);
2484 }
2485 
2486 static void pl330_issue_pending(struct dma_chan *chan)
2487 {
2488 	pl330_tasklet((unsigned long) to_pchan(chan));
2489 }
2490 
2491 /*
2492  * We returned the last one of the circular list of descriptor(s)
2493  * from prep_xxx, so the argument to submit corresponds to the last
2494  * descriptor of the list.
2495  */
2496 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2497 {
2498 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2499 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2500 	dma_cookie_t cookie;
2501 	unsigned long flags;
2502 
2503 	spin_lock_irqsave(&pch->lock, flags);
2504 
2505 	/* Assign cookies to all nodes */
2506 	while (!list_empty(&last->node)) {
2507 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2508 		if (pch->cyclic) {
2509 			desc->txd.callback = last->txd.callback;
2510 			desc->txd.callback_param = last->txd.callback_param;
2511 		}
2512 
2513 		dma_cookie_assign(&desc->txd);
2514 
2515 		list_move_tail(&desc->node, &pch->work_list);
2516 	}
2517 
2518 	cookie = dma_cookie_assign(&last->txd);
2519 	list_add_tail(&last->node, &pch->work_list);
2520 	spin_unlock_irqrestore(&pch->lock, flags);
2521 
2522 	return cookie;
2523 }
2524 
2525 static inline void _init_desc(struct dma_pl330_desc *desc)
2526 {
2527 	desc->pchan = NULL;
2528 	desc->req.x = &desc->px;
2529 	desc->req.token = desc;
2530 	desc->rqcfg.swap = SWAP_NO;
2531 	desc->rqcfg.privileged = 0;
2532 	desc->rqcfg.insnaccess = 0;
2533 	desc->rqcfg.scctl = SCCTRL0;
2534 	desc->rqcfg.dcctl = DCCTRL0;
2535 	desc->req.cfg = &desc->rqcfg;
2536 	desc->req.xfer_cb = dma_pl330_rqcb;
2537 	desc->txd.tx_submit = pl330_tx_submit;
2538 
2539 	INIT_LIST_HEAD(&desc->node);
2540 }
2541 
2542 /* Returns the number of descriptors added to the DMAC pool */
2543 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2544 {
2545 	struct dma_pl330_desc *desc;
2546 	unsigned long flags;
2547 	int i;
2548 
2549 	if (!pdmac)
2550 		return 0;
2551 
2552 	desc = kmalloc(count * sizeof(*desc), flg);
2553 	if (!desc)
2554 		return 0;
2555 
2556 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2557 
2558 	for (i = 0; i < count; i++) {
2559 		_init_desc(&desc[i]);
2560 		list_add_tail(&desc[i].node, &pdmac->desc_pool);
2561 	}
2562 
2563 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2564 
2565 	return count;
2566 }
2567 
2568 static struct dma_pl330_desc *
2569 pluck_desc(struct dma_pl330_dmac *pdmac)
2570 {
2571 	struct dma_pl330_desc *desc = NULL;
2572 	unsigned long flags;
2573 
2574 	if (!pdmac)
2575 		return NULL;
2576 
2577 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2578 
2579 	if (!list_empty(&pdmac->desc_pool)) {
2580 		desc = list_entry(pdmac->desc_pool.next,
2581 				struct dma_pl330_desc, node);
2582 
2583 		list_del_init(&desc->node);
2584 
2585 		desc->status = PREP;
2586 		desc->txd.callback = NULL;
2587 	}
2588 
2589 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2590 
2591 	return desc;
2592 }
2593 
2594 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2595 {
2596 	struct dma_pl330_dmac *pdmac = pch->dmac;
2597 	u8 *peri_id = pch->chan.private;
2598 	struct dma_pl330_desc *desc;
2599 
2600 	/* Pluck one desc from the pool of DMAC */
2601 	desc = pluck_desc(pdmac);
2602 
2603 	/* If the DMAC pool is empty, alloc new */
2604 	if (!desc) {
2605 		if (!add_desc(pdmac, GFP_ATOMIC, 1))
2606 			return NULL;
2607 
2608 		/* Try again */
2609 		desc = pluck_desc(pdmac);
2610 		if (!desc) {
2611 			dev_err(pch->dmac->pif.dev,
2612 				"%s:%d ALERT!\n", __func__, __LINE__);
2613 			return NULL;
2614 		}
2615 	}
2616 
2617 	/* Initialize the descriptor */
2618 	desc->pchan = pch;
2619 	desc->txd.cookie = 0;
2620 	async_tx_ack(&desc->txd);
2621 
2622 	desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2623 	desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2624 
2625 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2626 
2627 	return desc;
2628 }
2629 
2630 static inline void fill_px(struct pl330_xfer *px,
2631 		dma_addr_t dst, dma_addr_t src, size_t len)
2632 {
2633 	px->next = NULL;
2634 	px->bytes = len;
2635 	px->dst_addr = dst;
2636 	px->src_addr = src;
2637 }
2638 
2639 static struct dma_pl330_desc *
2640 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2641 		dma_addr_t src, size_t len)
2642 {
2643 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2644 
2645 	if (!desc) {
2646 		dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2647 			__func__, __LINE__);
2648 		return NULL;
2649 	}
2650 
2651 	/*
2652 	 * Ideally we should lookout for reqs bigger than
2653 	 * those that can be programmed with 256 bytes of
2654 	 * MC buffer, but considering a req size is seldom
2655 	 * going to be word-unaligned and more than 200MB,
2656 	 * we take it easy.
2657 	 * Also, should the limit is reached we'd rather
2658 	 * have the platform increase MC buffer size than
2659 	 * complicating this API driver.
2660 	 */
2661 	fill_px(&desc->px, dst, src, len);
2662 
2663 	return desc;
2664 }
2665 
2666 /* Call after fixing burst size */
2667 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2668 {
2669 	struct dma_pl330_chan *pch = desc->pchan;
2670 	struct pl330_info *pi = &pch->dmac->pif;
2671 	int burst_len;
2672 
2673 	burst_len = pi->pcfg.data_bus_width / 8;
2674 	burst_len *= pi->pcfg.data_buf_dep;
2675 	burst_len >>= desc->rqcfg.brst_size;
2676 
2677 	/* src/dst_burst_len can't be more than 16 */
2678 	if (burst_len > 16)
2679 		burst_len = 16;
2680 
2681 	while (burst_len > 1) {
2682 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2683 			break;
2684 		burst_len--;
2685 	}
2686 
2687 	return burst_len;
2688 }
2689 
2690 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2691 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2692 		size_t period_len, enum dma_transfer_direction direction,
2693 		unsigned long flags, void *context)
2694 {
2695 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2696 	struct dma_pl330_chan *pch = to_pchan(chan);
2697 	struct dma_pl330_dmac *pdmac = pch->dmac;
2698 	unsigned int i;
2699 	dma_addr_t dst;
2700 	dma_addr_t src;
2701 
2702 	if (len % period_len != 0)
2703 		return NULL;
2704 
2705 	if (!is_slave_direction(direction)) {
2706 		dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2707 		__func__, __LINE__);
2708 		return NULL;
2709 	}
2710 
2711 	for (i = 0; i < len / period_len; i++) {
2712 		desc = pl330_get_desc(pch);
2713 		if (!desc) {
2714 			dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2715 				__func__, __LINE__);
2716 
2717 			if (!first)
2718 				return NULL;
2719 
2720 			spin_lock_irqsave(&pdmac->pool_lock, flags);
2721 
2722 			while (!list_empty(&first->node)) {
2723 				desc = list_entry(first->node.next,
2724 						struct dma_pl330_desc, node);
2725 				list_move_tail(&desc->node, &pdmac->desc_pool);
2726 			}
2727 
2728 			list_move_tail(&first->node, &pdmac->desc_pool);
2729 
2730 			spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2731 
2732 			return NULL;
2733 		}
2734 
2735 		switch (direction) {
2736 		case DMA_MEM_TO_DEV:
2737 			desc->rqcfg.src_inc = 1;
2738 			desc->rqcfg.dst_inc = 0;
2739 			desc->req.rqtype = MEMTODEV;
2740 			src = dma_addr;
2741 			dst = pch->fifo_addr;
2742 			break;
2743 		case DMA_DEV_TO_MEM:
2744 			desc->rqcfg.src_inc = 0;
2745 			desc->rqcfg.dst_inc = 1;
2746 			desc->req.rqtype = DEVTOMEM;
2747 			src = pch->fifo_addr;
2748 			dst = dma_addr;
2749 			break;
2750 		default:
2751 			break;
2752 		}
2753 
2754 		desc->rqcfg.brst_size = pch->burst_sz;
2755 		desc->rqcfg.brst_len = 1;
2756 		fill_px(&desc->px, dst, src, period_len);
2757 
2758 		if (!first)
2759 			first = desc;
2760 		else
2761 			list_add_tail(&desc->node, &first->node);
2762 
2763 		dma_addr += period_len;
2764 	}
2765 
2766 	if (!desc)
2767 		return NULL;
2768 
2769 	pch->cyclic = true;
2770 	desc->txd.flags = flags;
2771 
2772 	return &desc->txd;
2773 }
2774 
2775 static struct dma_async_tx_descriptor *
2776 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2777 		dma_addr_t src, size_t len, unsigned long flags)
2778 {
2779 	struct dma_pl330_desc *desc;
2780 	struct dma_pl330_chan *pch = to_pchan(chan);
2781 	struct pl330_info *pi;
2782 	int burst;
2783 
2784 	if (unlikely(!pch || !len))
2785 		return NULL;
2786 
2787 	pi = &pch->dmac->pif;
2788 
2789 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2790 	if (!desc)
2791 		return NULL;
2792 
2793 	desc->rqcfg.src_inc = 1;
2794 	desc->rqcfg.dst_inc = 1;
2795 	desc->req.rqtype = MEMTOMEM;
2796 
2797 	/* Select max possible burst size */
2798 	burst = pi->pcfg.data_bus_width / 8;
2799 
2800 	while (burst > 1) {
2801 		if (!(len % burst))
2802 			break;
2803 		burst /= 2;
2804 	}
2805 
2806 	desc->rqcfg.brst_size = 0;
2807 	while (burst != (1 << desc->rqcfg.brst_size))
2808 		desc->rqcfg.brst_size++;
2809 
2810 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2811 
2812 	desc->txd.flags = flags;
2813 
2814 	return &desc->txd;
2815 }
2816 
2817 static struct dma_async_tx_descriptor *
2818 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2819 		unsigned int sg_len, enum dma_transfer_direction direction,
2820 		unsigned long flg, void *context)
2821 {
2822 	struct dma_pl330_desc *first, *desc = NULL;
2823 	struct dma_pl330_chan *pch = to_pchan(chan);
2824 	struct scatterlist *sg;
2825 	unsigned long flags;
2826 	int i;
2827 	dma_addr_t addr;
2828 
2829 	if (unlikely(!pch || !sgl || !sg_len))
2830 		return NULL;
2831 
2832 	addr = pch->fifo_addr;
2833 
2834 	first = NULL;
2835 
2836 	for_each_sg(sgl, sg, sg_len, i) {
2837 
2838 		desc = pl330_get_desc(pch);
2839 		if (!desc) {
2840 			struct dma_pl330_dmac *pdmac = pch->dmac;
2841 
2842 			dev_err(pch->dmac->pif.dev,
2843 				"%s:%d Unable to fetch desc\n",
2844 				__func__, __LINE__);
2845 			if (!first)
2846 				return NULL;
2847 
2848 			spin_lock_irqsave(&pdmac->pool_lock, flags);
2849 
2850 			while (!list_empty(&first->node)) {
2851 				desc = list_entry(first->node.next,
2852 						struct dma_pl330_desc, node);
2853 				list_move_tail(&desc->node, &pdmac->desc_pool);
2854 			}
2855 
2856 			list_move_tail(&first->node, &pdmac->desc_pool);
2857 
2858 			spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2859 
2860 			return NULL;
2861 		}
2862 
2863 		if (!first)
2864 			first = desc;
2865 		else
2866 			list_add_tail(&desc->node, &first->node);
2867 
2868 		if (direction == DMA_MEM_TO_DEV) {
2869 			desc->rqcfg.src_inc = 1;
2870 			desc->rqcfg.dst_inc = 0;
2871 			desc->req.rqtype = MEMTODEV;
2872 			fill_px(&desc->px,
2873 				addr, sg_dma_address(sg), sg_dma_len(sg));
2874 		} else {
2875 			desc->rqcfg.src_inc = 0;
2876 			desc->rqcfg.dst_inc = 1;
2877 			desc->req.rqtype = DEVTOMEM;
2878 			fill_px(&desc->px,
2879 				sg_dma_address(sg), addr, sg_dma_len(sg));
2880 		}
2881 
2882 		desc->rqcfg.brst_size = pch->burst_sz;
2883 		desc->rqcfg.brst_len = 1;
2884 	}
2885 
2886 	/* Return the last desc in the chain */
2887 	desc->txd.flags = flg;
2888 	return &desc->txd;
2889 }
2890 
2891 static irqreturn_t pl330_irq_handler(int irq, void *data)
2892 {
2893 	if (pl330_update(data))
2894 		return IRQ_HANDLED;
2895 	else
2896 		return IRQ_NONE;
2897 }
2898 
2899 static int
2900 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2901 {
2902 	struct dma_pl330_platdata *pdat;
2903 	struct dma_pl330_dmac *pdmac;
2904 	struct dma_pl330_chan *pch, *_p;
2905 	struct pl330_info *pi;
2906 	struct dma_device *pd;
2907 	struct resource *res;
2908 	int i, ret, irq;
2909 	int num_chan;
2910 
2911 	pdat = adev->dev.platform_data;
2912 
2913 	/* Allocate a new DMAC and its Channels */
2914 	pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL);
2915 	if (!pdmac) {
2916 		dev_err(&adev->dev, "unable to allocate mem\n");
2917 		return -ENOMEM;
2918 	}
2919 
2920 	pi = &pdmac->pif;
2921 	pi->dev = &adev->dev;
2922 	pi->pl330_data = NULL;
2923 	pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2924 
2925 	res = &adev->res;
2926 	pi->base = devm_ioremap_resource(&adev->dev, res);
2927 	if (IS_ERR(pi->base))
2928 		return PTR_ERR(pi->base);
2929 
2930 	amba_set_drvdata(adev, pdmac);
2931 
2932 	irq = adev->irq[0];
2933 	ret = request_irq(irq, pl330_irq_handler, 0,
2934 			dev_name(&adev->dev), pi);
2935 	if (ret)
2936 		return ret;
2937 
2938 	pi->pcfg.periph_id = adev->periphid;
2939 	ret = pl330_add(pi);
2940 	if (ret)
2941 		goto probe_err1;
2942 
2943 	INIT_LIST_HEAD(&pdmac->desc_pool);
2944 	spin_lock_init(&pdmac->pool_lock);
2945 
2946 	/* Create a descriptor pool of default size */
2947 	if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2948 		dev_warn(&adev->dev, "unable to allocate desc\n");
2949 
2950 	pd = &pdmac->ddma;
2951 	INIT_LIST_HEAD(&pd->channels);
2952 
2953 	/* Initialize channel parameters */
2954 	if (pdat)
2955 		num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan);
2956 	else
2957 		num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan);
2958 
2959 	pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2960 	if (!pdmac->peripherals) {
2961 		ret = -ENOMEM;
2962 		dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n");
2963 		goto probe_err2;
2964 	}
2965 
2966 	for (i = 0; i < num_chan; i++) {
2967 		pch = &pdmac->peripherals[i];
2968 		if (!adev->dev.of_node)
2969 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2970 		else
2971 			pch->chan.private = adev->dev.of_node;
2972 
2973 		INIT_LIST_HEAD(&pch->work_list);
2974 		spin_lock_init(&pch->lock);
2975 		pch->pl330_chid = NULL;
2976 		pch->chan.device = pd;
2977 		pch->dmac = pdmac;
2978 
2979 		/* Add the channel to the DMAC list */
2980 		list_add_tail(&pch->chan.device_node, &pd->channels);
2981 	}
2982 
2983 	pd->dev = &adev->dev;
2984 	if (pdat) {
2985 		pd->cap_mask = pdat->cap_mask;
2986 	} else {
2987 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2988 		if (pi->pcfg.num_peri) {
2989 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2990 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2991 			dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2992 		}
2993 	}
2994 
2995 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2996 	pd->device_free_chan_resources = pl330_free_chan_resources;
2997 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2998 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2999 	pd->device_tx_status = pl330_tx_status;
3000 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
3001 	pd->device_control = pl330_control;
3002 	pd->device_issue_pending = pl330_issue_pending;
3003 
3004 	ret = dma_async_device_register(pd);
3005 	if (ret) {
3006 		dev_err(&adev->dev, "unable to register DMAC\n");
3007 		goto probe_err3;
3008 	}
3009 
3010 	if (adev->dev.of_node) {
3011 		ret = of_dma_controller_register(adev->dev.of_node,
3012 					 of_dma_pl330_xlate, pdmac);
3013 		if (ret) {
3014 			dev_err(&adev->dev,
3015 			"unable to register DMA to the generic DT DMA helpers\n");
3016 		}
3017 	}
3018 
3019 	dev_info(&adev->dev,
3020 		"Loaded driver for PL330 DMAC-%d\n", adev->periphid);
3021 	dev_info(&adev->dev,
3022 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3023 		pi->pcfg.data_buf_dep,
3024 		pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
3025 		pi->pcfg.num_peri, pi->pcfg.num_events);
3026 
3027 	return 0;
3028 probe_err3:
3029 	amba_set_drvdata(adev, NULL);
3030 
3031 	/* Idle the DMAC */
3032 	list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3033 			chan.device_node) {
3034 
3035 		/* Remove the channel */
3036 		list_del(&pch->chan.device_node);
3037 
3038 		/* Flush the channel */
3039 		pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3040 		pl330_free_chan_resources(&pch->chan);
3041 	}
3042 probe_err2:
3043 	pl330_del(pi);
3044 probe_err1:
3045 	free_irq(irq, pi);
3046 
3047 	return ret;
3048 }
3049 
3050 static int pl330_remove(struct amba_device *adev)
3051 {
3052 	struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
3053 	struct dma_pl330_chan *pch, *_p;
3054 	struct pl330_info *pi;
3055 	int irq;
3056 
3057 	if (!pdmac)
3058 		return 0;
3059 
3060 	if (adev->dev.of_node)
3061 		of_dma_controller_free(adev->dev.of_node);
3062 
3063 	dma_async_device_unregister(&pdmac->ddma);
3064 	amba_set_drvdata(adev, NULL);
3065 
3066 	/* Idle the DMAC */
3067 	list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3068 			chan.device_node) {
3069 
3070 		/* Remove the channel */
3071 		list_del(&pch->chan.device_node);
3072 
3073 		/* Flush the channel */
3074 		pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3075 		pl330_free_chan_resources(&pch->chan);
3076 	}
3077 
3078 	pi = &pdmac->pif;
3079 
3080 	pl330_del(pi);
3081 
3082 	irq = adev->irq[0];
3083 	free_irq(irq, pi);
3084 
3085 	return 0;
3086 }
3087 
3088 static struct amba_id pl330_ids[] = {
3089 	{
3090 		.id	= 0x00041330,
3091 		.mask	= 0x000fffff,
3092 	},
3093 	{ 0, 0 },
3094 };
3095 
3096 MODULE_DEVICE_TABLE(amba, pl330_ids);
3097 
3098 static struct amba_driver pl330_driver = {
3099 	.drv = {
3100 		.owner = THIS_MODULE,
3101 		.name = "dma-pl330",
3102 	},
3103 	.id_table = pl330_ids,
3104 	.probe = pl330_probe,
3105 	.remove = pl330_remove,
3106 };
3107 
3108 module_amba_driver(pl330_driver);
3109 
3110 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3111 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3112 MODULE_LICENSE("GPL");
3113