1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/err.h> 30 31 #include "dmaengine.h" 32 #define PL330_MAX_CHAN 8 33 #define PL330_MAX_IRQS 32 34 #define PL330_MAX_PERI 32 35 36 enum pl330_srccachectrl { 37 SCCTRL0, /* Noncacheable and nonbufferable */ 38 SCCTRL1, /* Bufferable only */ 39 SCCTRL2, /* Cacheable, but do not allocate */ 40 SCCTRL3, /* Cacheable and bufferable, but do not allocate */ 41 SINVALID1, 42 SINVALID2, 43 SCCTRL6, /* Cacheable write-through, allocate on reads only */ 44 SCCTRL7, /* Cacheable write-back, allocate on reads only */ 45 }; 46 47 enum pl330_dstcachectrl { 48 DCCTRL0, /* Noncacheable and nonbufferable */ 49 DCCTRL1, /* Bufferable only */ 50 DCCTRL2, /* Cacheable, but do not allocate */ 51 DCCTRL3, /* Cacheable and bufferable, but do not allocate */ 52 DINVALID1, /* AWCACHE = 0x1000 */ 53 DINVALID2, 54 DCCTRL6, /* Cacheable write-through, allocate on writes only */ 55 DCCTRL7, /* Cacheable write-back, allocate on writes only */ 56 }; 57 58 enum pl330_byteswap { 59 SWAP_NO, 60 SWAP_2, 61 SWAP_4, 62 SWAP_8, 63 SWAP_16, 64 }; 65 66 enum pl330_reqtype { 67 MEMTOMEM, 68 MEMTODEV, 69 DEVTOMEM, 70 DEVTODEV, 71 }; 72 73 /* Register and Bit field Definitions */ 74 #define DS 0x0 75 #define DS_ST_STOP 0x0 76 #define DS_ST_EXEC 0x1 77 #define DS_ST_CMISS 0x2 78 #define DS_ST_UPDTPC 0x3 79 #define DS_ST_WFE 0x4 80 #define DS_ST_ATBRR 0x5 81 #define DS_ST_QBUSY 0x6 82 #define DS_ST_WFP 0x7 83 #define DS_ST_KILL 0x8 84 #define DS_ST_CMPLT 0x9 85 #define DS_ST_FLTCMP 0xe 86 #define DS_ST_FAULT 0xf 87 88 #define DPC 0x4 89 #define INTEN 0x20 90 #define ES 0x24 91 #define INTSTATUS 0x28 92 #define INTCLR 0x2c 93 #define FSM 0x30 94 #define FSC 0x34 95 #define FTM 0x38 96 97 #define _FTC 0x40 98 #define FTC(n) (_FTC + (n)*0x4) 99 100 #define _CS 0x100 101 #define CS(n) (_CS + (n)*0x8) 102 #define CS_CNS (1 << 21) 103 104 #define _CPC 0x104 105 #define CPC(n) (_CPC + (n)*0x8) 106 107 #define _SA 0x400 108 #define SA(n) (_SA + (n)*0x20) 109 110 #define _DA 0x404 111 #define DA(n) (_DA + (n)*0x20) 112 113 #define _CC 0x408 114 #define CC(n) (_CC + (n)*0x20) 115 116 #define CC_SRCINC (1 << 0) 117 #define CC_DSTINC (1 << 14) 118 #define CC_SRCPRI (1 << 8) 119 #define CC_DSTPRI (1 << 22) 120 #define CC_SRCNS (1 << 9) 121 #define CC_DSTNS (1 << 23) 122 #define CC_SRCIA (1 << 10) 123 #define CC_DSTIA (1 << 24) 124 #define CC_SRCBRSTLEN_SHFT 4 125 #define CC_DSTBRSTLEN_SHFT 18 126 #define CC_SRCBRSTSIZE_SHFT 1 127 #define CC_DSTBRSTSIZE_SHFT 15 128 #define CC_SRCCCTRL_SHFT 11 129 #define CC_SRCCCTRL_MASK 0x7 130 #define CC_DSTCCTRL_SHFT 25 131 #define CC_DRCCCTRL_MASK 0x7 132 #define CC_SWAP_SHFT 28 133 134 #define _LC0 0x40c 135 #define LC0(n) (_LC0 + (n)*0x20) 136 137 #define _LC1 0x410 138 #define LC1(n) (_LC1 + (n)*0x20) 139 140 #define DBGSTATUS 0xd00 141 #define DBG_BUSY (1 << 0) 142 143 #define DBGCMD 0xd04 144 #define DBGINST0 0xd08 145 #define DBGINST1 0xd0c 146 147 #define CR0 0xe00 148 #define CR1 0xe04 149 #define CR2 0xe08 150 #define CR3 0xe0c 151 #define CR4 0xe10 152 #define CRD 0xe14 153 154 #define PERIPH_ID 0xfe0 155 #define PERIPH_REV_SHIFT 20 156 #define PERIPH_REV_MASK 0xf 157 #define PERIPH_REV_R0P0 0 158 #define PERIPH_REV_R1P0 1 159 #define PERIPH_REV_R1P1 2 160 161 #define CR0_PERIPH_REQ_SET (1 << 0) 162 #define CR0_BOOT_EN_SET (1 << 1) 163 #define CR0_BOOT_MAN_NS (1 << 2) 164 #define CR0_NUM_CHANS_SHIFT 4 165 #define CR0_NUM_CHANS_MASK 0x7 166 #define CR0_NUM_PERIPH_SHIFT 12 167 #define CR0_NUM_PERIPH_MASK 0x1f 168 #define CR0_NUM_EVENTS_SHIFT 17 169 #define CR0_NUM_EVENTS_MASK 0x1f 170 171 #define CR1_ICACHE_LEN_SHIFT 0 172 #define CR1_ICACHE_LEN_MASK 0x7 173 #define CR1_NUM_ICACHELINES_SHIFT 4 174 #define CR1_NUM_ICACHELINES_MASK 0xf 175 176 #define CRD_DATA_WIDTH_SHIFT 0 177 #define CRD_DATA_WIDTH_MASK 0x7 178 #define CRD_WR_CAP_SHIFT 4 179 #define CRD_WR_CAP_MASK 0x7 180 #define CRD_WR_Q_DEP_SHIFT 8 181 #define CRD_WR_Q_DEP_MASK 0xf 182 #define CRD_RD_CAP_SHIFT 12 183 #define CRD_RD_CAP_MASK 0x7 184 #define CRD_RD_Q_DEP_SHIFT 16 185 #define CRD_RD_Q_DEP_MASK 0xf 186 #define CRD_DATA_BUFF_SHIFT 20 187 #define CRD_DATA_BUFF_MASK 0x3ff 188 189 #define PART 0x330 190 #define DESIGNER 0x41 191 #define REVISION 0x0 192 #define INTEG_CFG 0x0 193 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 194 195 #define PL330_STATE_STOPPED (1 << 0) 196 #define PL330_STATE_EXECUTING (1 << 1) 197 #define PL330_STATE_WFE (1 << 2) 198 #define PL330_STATE_FAULTING (1 << 3) 199 #define PL330_STATE_COMPLETING (1 << 4) 200 #define PL330_STATE_WFP (1 << 5) 201 #define PL330_STATE_KILLING (1 << 6) 202 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 203 #define PL330_STATE_CACHEMISS (1 << 8) 204 #define PL330_STATE_UPDTPC (1 << 9) 205 #define PL330_STATE_ATBARRIER (1 << 10) 206 #define PL330_STATE_QUEUEBUSY (1 << 11) 207 #define PL330_STATE_INVALID (1 << 15) 208 209 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 210 | PL330_STATE_WFE | PL330_STATE_FAULTING) 211 212 #define CMD_DMAADDH 0x54 213 #define CMD_DMAEND 0x00 214 #define CMD_DMAFLUSHP 0x35 215 #define CMD_DMAGO 0xa0 216 #define CMD_DMALD 0x04 217 #define CMD_DMALDP 0x25 218 #define CMD_DMALP 0x20 219 #define CMD_DMALPEND 0x28 220 #define CMD_DMAKILL 0x01 221 #define CMD_DMAMOV 0xbc 222 #define CMD_DMANOP 0x18 223 #define CMD_DMARMB 0x12 224 #define CMD_DMASEV 0x34 225 #define CMD_DMAST 0x08 226 #define CMD_DMASTP 0x29 227 #define CMD_DMASTZ 0x0c 228 #define CMD_DMAWFE 0x36 229 #define CMD_DMAWFP 0x30 230 #define CMD_DMAWMB 0x13 231 232 #define SZ_DMAADDH 3 233 #define SZ_DMAEND 1 234 #define SZ_DMAFLUSHP 2 235 #define SZ_DMALD 1 236 #define SZ_DMALDP 2 237 #define SZ_DMALP 2 238 #define SZ_DMALPEND 2 239 #define SZ_DMAKILL 1 240 #define SZ_DMAMOV 6 241 #define SZ_DMANOP 1 242 #define SZ_DMARMB 1 243 #define SZ_DMASEV 2 244 #define SZ_DMAST 1 245 #define SZ_DMASTP 2 246 #define SZ_DMASTZ 1 247 #define SZ_DMAWFE 2 248 #define SZ_DMAWFP 2 249 #define SZ_DMAWMB 1 250 #define SZ_DMAGO 6 251 252 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 253 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 254 255 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 256 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 257 258 /* 259 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 260 * at 1byte/burst for P<->M and M<->M respectively. 261 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 262 * should be enough for P<->M and M<->M respectively. 263 */ 264 #define MCODE_BUFF_PER_REQ 256 265 266 /* If the _pl330_req is available to the client */ 267 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND) 268 269 /* Use this _only_ to wait on transient states */ 270 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 271 272 #ifdef PL330_DEBUG_MCGEN 273 static unsigned cmd_line; 274 #define PL330_DBGCMD_DUMP(off, x...) do { \ 275 printk("%x:", cmd_line); \ 276 printk(x); \ 277 cmd_line += off; \ 278 } while (0) 279 #define PL330_DBGMC_START(addr) (cmd_line = addr) 280 #else 281 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 282 #define PL330_DBGMC_START(addr) do {} while (0) 283 #endif 284 285 /* The number of default descriptors */ 286 287 #define NR_DEFAULT_DESC 16 288 289 /* Populated by the PL330 core driver for DMA API driver's info */ 290 struct pl330_config { 291 u32 periph_id; 292 #define DMAC_MODE_NS (1 << 0) 293 unsigned int mode; 294 unsigned int data_bus_width:10; /* In number of bits */ 295 unsigned int data_buf_dep:10; 296 unsigned int num_chan:4; 297 unsigned int num_peri:6; 298 u32 peri_ns; 299 unsigned int num_events:6; 300 u32 irq_ns; 301 }; 302 303 /* Handle to the DMAC provided to the PL330 core */ 304 struct pl330_info { 305 /* Owning device */ 306 struct device *dev; 307 /* Size of MicroCode buffers for each channel. */ 308 unsigned mcbufsz; 309 /* ioremap'ed address of PL330 registers. */ 310 void __iomem *base; 311 /* Client can freely use it. */ 312 void *client_data; 313 /* PL330 core data, Client must not touch it. */ 314 void *pl330_data; 315 /* Populated by the PL330 core driver during pl330_add */ 316 struct pl330_config pcfg; 317 /* 318 * If the DMAC has some reset mechanism, then the 319 * client may want to provide pointer to the method. 320 */ 321 void (*dmac_reset)(struct pl330_info *pi); 322 }; 323 324 /** 325 * Request Configuration. 326 * The PL330 core does not modify this and uses the last 327 * working configuration if the request doesn't provide any. 328 * 329 * The Client may want to provide this info only for the 330 * first request and a request with new settings. 331 */ 332 struct pl330_reqcfg { 333 /* Address Incrementing */ 334 unsigned dst_inc:1; 335 unsigned src_inc:1; 336 337 /* 338 * For now, the SRC & DST protection levels 339 * and burst size/length are assumed same. 340 */ 341 bool nonsecure; 342 bool privileged; 343 bool insnaccess; 344 unsigned brst_len:5; 345 unsigned brst_size:3; /* in power of 2 */ 346 347 enum pl330_dstcachectrl dcctl; 348 enum pl330_srccachectrl scctl; 349 enum pl330_byteswap swap; 350 struct pl330_config *pcfg; 351 }; 352 353 /* 354 * One cycle of DMAC operation. 355 * There may be more than one xfer in a request. 356 */ 357 struct pl330_xfer { 358 u32 src_addr; 359 u32 dst_addr; 360 /* Size to xfer */ 361 u32 bytes; 362 /* 363 * Pointer to next xfer in the list. 364 * The last xfer in the req must point to NULL. 365 */ 366 struct pl330_xfer *next; 367 }; 368 369 /* The xfer callbacks are made with one of these arguments. */ 370 enum pl330_op_err { 371 /* The all xfers in the request were success. */ 372 PL330_ERR_NONE, 373 /* If req aborted due to global error. */ 374 PL330_ERR_ABORT, 375 /* If req failed due to problem with Channel. */ 376 PL330_ERR_FAIL, 377 }; 378 379 /* A request defining Scatter-Gather List ending with NULL xfer. */ 380 struct pl330_req { 381 enum pl330_reqtype rqtype; 382 /* Index of peripheral for the xfer. */ 383 unsigned peri:5; 384 /* Unique token for this xfer, set by the client. */ 385 void *token; 386 /* Callback to be called after xfer. */ 387 void (*xfer_cb)(void *token, enum pl330_op_err err); 388 /* If NULL, req will be done at last set parameters. */ 389 struct pl330_reqcfg *cfg; 390 /* Pointer to first xfer in the request. */ 391 struct pl330_xfer *x; 392 /* Hook to attach to DMAC's list of reqs with due callback */ 393 struct list_head rqd; 394 }; 395 396 /* 397 * To know the status of the channel and DMAC, the client 398 * provides a pointer to this structure. The PL330 core 399 * fills it with current information. 400 */ 401 struct pl330_chanstatus { 402 /* 403 * If the DMAC engine halted due to some error, 404 * the client should remove-add DMAC. 405 */ 406 bool dmac_halted; 407 /* 408 * If channel is halted due to some error, 409 * the client should ABORT/FLUSH and START the channel. 410 */ 411 bool faulting; 412 /* Location of last load */ 413 u32 src_addr; 414 /* Location of last store */ 415 u32 dst_addr; 416 /* 417 * Pointer to the currently active req, NULL if channel is 418 * inactive, even though the requests may be present. 419 */ 420 struct pl330_req *top_req; 421 /* Pointer to req waiting second in the queue if any. */ 422 struct pl330_req *wait_req; 423 }; 424 425 enum pl330_chan_op { 426 /* Start the channel */ 427 PL330_OP_START, 428 /* Abort the active xfer */ 429 PL330_OP_ABORT, 430 /* Stop xfer and flush queue */ 431 PL330_OP_FLUSH, 432 }; 433 434 struct _xfer_spec { 435 u32 ccr; 436 struct pl330_req *r; 437 struct pl330_xfer *x; 438 }; 439 440 enum dmamov_dst { 441 SAR = 0, 442 CCR, 443 DAR, 444 }; 445 446 enum pl330_dst { 447 SRC = 0, 448 DST, 449 }; 450 451 enum pl330_cond { 452 SINGLE, 453 BURST, 454 ALWAYS, 455 }; 456 457 struct _pl330_req { 458 u32 mc_bus; 459 void *mc_cpu; 460 /* Number of bytes taken to setup MC for the req */ 461 u32 mc_len; 462 struct pl330_req *r; 463 }; 464 465 /* ToBeDone for tasklet */ 466 struct _pl330_tbd { 467 bool reset_dmac; 468 bool reset_mngr; 469 u8 reset_chan; 470 }; 471 472 /* A DMAC Thread */ 473 struct pl330_thread { 474 u8 id; 475 int ev; 476 /* If the channel is not yet acquired by any client */ 477 bool free; 478 /* Parent DMAC */ 479 struct pl330_dmac *dmac; 480 /* Only two at a time */ 481 struct _pl330_req req[2]; 482 /* Index of the last enqueued request */ 483 unsigned lstenq; 484 /* Index of the last submitted request or -1 if the DMA is stopped */ 485 int req_running; 486 }; 487 488 enum pl330_dmac_state { 489 UNINIT, 490 INIT, 491 DYING, 492 }; 493 494 /* A DMAC */ 495 struct pl330_dmac { 496 spinlock_t lock; 497 /* Holds list of reqs with due callbacks */ 498 struct list_head req_done; 499 /* Pointer to platform specific stuff */ 500 struct pl330_info *pinfo; 501 /* Maximum possible events/irqs */ 502 int events[32]; 503 /* BUS address of MicroCode buffer */ 504 dma_addr_t mcode_bus; 505 /* CPU address of MicroCode buffer */ 506 void *mcode_cpu; 507 /* List of all Channel threads */ 508 struct pl330_thread *channels; 509 /* Pointer to the MANAGER thread */ 510 struct pl330_thread *manager; 511 /* To handle bad news in interrupt */ 512 struct tasklet_struct tasks; 513 struct _pl330_tbd dmac_tbd; 514 /* State of DMAC operation */ 515 enum pl330_dmac_state state; 516 }; 517 518 enum desc_status { 519 /* In the DMAC pool */ 520 FREE, 521 /* 522 * Allocated to some channel during prep_xxx 523 * Also may be sitting on the work_list. 524 */ 525 PREP, 526 /* 527 * Sitting on the work_list and already submitted 528 * to the PL330 core. Not more than two descriptors 529 * of a channel can be BUSY at any time. 530 */ 531 BUSY, 532 /* 533 * Sitting on the channel work_list but xfer done 534 * by PL330 core 535 */ 536 DONE, 537 }; 538 539 struct dma_pl330_chan { 540 /* Schedule desc completion */ 541 struct tasklet_struct task; 542 543 /* DMA-Engine Channel */ 544 struct dma_chan chan; 545 546 /* List of to be xfered descriptors */ 547 struct list_head work_list; 548 549 /* Pointer to the DMAC that manages this channel, 550 * NULL if the channel is available to be acquired. 551 * As the parent, this DMAC also provides descriptors 552 * to the channel. 553 */ 554 struct dma_pl330_dmac *dmac; 555 556 /* To protect channel manipulation */ 557 spinlock_t lock; 558 559 /* Token of a hardware channel thread of PL330 DMAC 560 * NULL if the channel is available to be acquired. 561 */ 562 void *pl330_chid; 563 564 /* For D-to-M and M-to-D channels */ 565 int burst_sz; /* the peripheral fifo width */ 566 int burst_len; /* the number of burst */ 567 dma_addr_t fifo_addr; 568 569 /* for cyclic capability */ 570 bool cyclic; 571 }; 572 573 struct dma_pl330_dmac { 574 struct pl330_info pif; 575 576 /* DMA-Engine Device */ 577 struct dma_device ddma; 578 579 /* Pool of descriptors available for the DMAC's channels */ 580 struct list_head desc_pool; 581 /* To protect desc_pool manipulation */ 582 spinlock_t pool_lock; 583 584 /* Peripheral channels connected to this DMAC */ 585 struct dma_pl330_chan *peripherals; /* keep at end */ 586 }; 587 588 struct dma_pl330_desc { 589 /* To attach to a queue as child */ 590 struct list_head node; 591 592 /* Descriptor for the DMA Engine API */ 593 struct dma_async_tx_descriptor txd; 594 595 /* Xfer for PL330 core */ 596 struct pl330_xfer px; 597 598 struct pl330_reqcfg rqcfg; 599 struct pl330_req req; 600 601 enum desc_status status; 602 603 /* The channel which currently holds this desc */ 604 struct dma_pl330_chan *pchan; 605 }; 606 607 struct dma_pl330_filter_args { 608 struct dma_pl330_dmac *pdmac; 609 unsigned int chan_id; 610 }; 611 612 static inline void _callback(struct pl330_req *r, enum pl330_op_err err) 613 { 614 if (r && r->xfer_cb) 615 r->xfer_cb(r->token, err); 616 } 617 618 static inline bool _queue_empty(struct pl330_thread *thrd) 619 { 620 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1])) 621 ? true : false; 622 } 623 624 static inline bool _queue_full(struct pl330_thread *thrd) 625 { 626 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1])) 627 ? false : true; 628 } 629 630 static inline bool is_manager(struct pl330_thread *thrd) 631 { 632 struct pl330_dmac *pl330 = thrd->dmac; 633 634 /* MANAGER is indexed at the end */ 635 if (thrd->id == pl330->pinfo->pcfg.num_chan) 636 return true; 637 else 638 return false; 639 } 640 641 /* If manager of the thread is in Non-Secure mode */ 642 static inline bool _manager_ns(struct pl330_thread *thrd) 643 { 644 struct pl330_dmac *pl330 = thrd->dmac; 645 646 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false; 647 } 648 649 static inline u32 get_revision(u32 periph_id) 650 { 651 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 652 } 653 654 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 655 enum pl330_dst da, u16 val) 656 { 657 if (dry_run) 658 return SZ_DMAADDH; 659 660 buf[0] = CMD_DMAADDH; 661 buf[0] |= (da << 1); 662 *((u16 *)&buf[1]) = val; 663 664 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 665 da == 1 ? "DA" : "SA", val); 666 667 return SZ_DMAADDH; 668 } 669 670 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 671 { 672 if (dry_run) 673 return SZ_DMAEND; 674 675 buf[0] = CMD_DMAEND; 676 677 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 678 679 return SZ_DMAEND; 680 } 681 682 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 683 { 684 if (dry_run) 685 return SZ_DMAFLUSHP; 686 687 buf[0] = CMD_DMAFLUSHP; 688 689 peri &= 0x1f; 690 peri <<= 3; 691 buf[1] = peri; 692 693 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 694 695 return SZ_DMAFLUSHP; 696 } 697 698 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 699 { 700 if (dry_run) 701 return SZ_DMALD; 702 703 buf[0] = CMD_DMALD; 704 705 if (cond == SINGLE) 706 buf[0] |= (0 << 1) | (1 << 0); 707 else if (cond == BURST) 708 buf[0] |= (1 << 1) | (1 << 0); 709 710 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 711 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 712 713 return SZ_DMALD; 714 } 715 716 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 717 enum pl330_cond cond, u8 peri) 718 { 719 if (dry_run) 720 return SZ_DMALDP; 721 722 buf[0] = CMD_DMALDP; 723 724 if (cond == BURST) 725 buf[0] |= (1 << 1); 726 727 peri &= 0x1f; 728 peri <<= 3; 729 buf[1] = peri; 730 731 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 732 cond == SINGLE ? 'S' : 'B', peri >> 3); 733 734 return SZ_DMALDP; 735 } 736 737 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 738 unsigned loop, u8 cnt) 739 { 740 if (dry_run) 741 return SZ_DMALP; 742 743 buf[0] = CMD_DMALP; 744 745 if (loop) 746 buf[0] |= (1 << 1); 747 748 cnt--; /* DMAC increments by 1 internally */ 749 buf[1] = cnt; 750 751 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 752 753 return SZ_DMALP; 754 } 755 756 struct _arg_LPEND { 757 enum pl330_cond cond; 758 bool forever; 759 unsigned loop; 760 u8 bjump; 761 }; 762 763 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 764 const struct _arg_LPEND *arg) 765 { 766 enum pl330_cond cond = arg->cond; 767 bool forever = arg->forever; 768 unsigned loop = arg->loop; 769 u8 bjump = arg->bjump; 770 771 if (dry_run) 772 return SZ_DMALPEND; 773 774 buf[0] = CMD_DMALPEND; 775 776 if (loop) 777 buf[0] |= (1 << 2); 778 779 if (!forever) 780 buf[0] |= (1 << 4); 781 782 if (cond == SINGLE) 783 buf[0] |= (0 << 1) | (1 << 0); 784 else if (cond == BURST) 785 buf[0] |= (1 << 1) | (1 << 0); 786 787 buf[1] = bjump; 788 789 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 790 forever ? "FE" : "END", 791 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 792 loop ? '1' : '0', 793 bjump); 794 795 return SZ_DMALPEND; 796 } 797 798 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 799 { 800 if (dry_run) 801 return SZ_DMAKILL; 802 803 buf[0] = CMD_DMAKILL; 804 805 return SZ_DMAKILL; 806 } 807 808 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 809 enum dmamov_dst dst, u32 val) 810 { 811 if (dry_run) 812 return SZ_DMAMOV; 813 814 buf[0] = CMD_DMAMOV; 815 buf[1] = dst; 816 *((u32 *)&buf[2]) = val; 817 818 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 819 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 820 821 return SZ_DMAMOV; 822 } 823 824 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 825 { 826 if (dry_run) 827 return SZ_DMANOP; 828 829 buf[0] = CMD_DMANOP; 830 831 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 832 833 return SZ_DMANOP; 834 } 835 836 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 837 { 838 if (dry_run) 839 return SZ_DMARMB; 840 841 buf[0] = CMD_DMARMB; 842 843 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 844 845 return SZ_DMARMB; 846 } 847 848 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 849 { 850 if (dry_run) 851 return SZ_DMASEV; 852 853 buf[0] = CMD_DMASEV; 854 855 ev &= 0x1f; 856 ev <<= 3; 857 buf[1] = ev; 858 859 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 860 861 return SZ_DMASEV; 862 } 863 864 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 865 { 866 if (dry_run) 867 return SZ_DMAST; 868 869 buf[0] = CMD_DMAST; 870 871 if (cond == SINGLE) 872 buf[0] |= (0 << 1) | (1 << 0); 873 else if (cond == BURST) 874 buf[0] |= (1 << 1) | (1 << 0); 875 876 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 877 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 878 879 return SZ_DMAST; 880 } 881 882 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 883 enum pl330_cond cond, u8 peri) 884 { 885 if (dry_run) 886 return SZ_DMASTP; 887 888 buf[0] = CMD_DMASTP; 889 890 if (cond == BURST) 891 buf[0] |= (1 << 1); 892 893 peri &= 0x1f; 894 peri <<= 3; 895 buf[1] = peri; 896 897 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 898 cond == SINGLE ? 'S' : 'B', peri >> 3); 899 900 return SZ_DMASTP; 901 } 902 903 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 904 { 905 if (dry_run) 906 return SZ_DMASTZ; 907 908 buf[0] = CMD_DMASTZ; 909 910 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 911 912 return SZ_DMASTZ; 913 } 914 915 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 916 unsigned invalidate) 917 { 918 if (dry_run) 919 return SZ_DMAWFE; 920 921 buf[0] = CMD_DMAWFE; 922 923 ev &= 0x1f; 924 ev <<= 3; 925 buf[1] = ev; 926 927 if (invalidate) 928 buf[1] |= (1 << 1); 929 930 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 931 ev >> 3, invalidate ? ", I" : ""); 932 933 return SZ_DMAWFE; 934 } 935 936 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 937 enum pl330_cond cond, u8 peri) 938 { 939 if (dry_run) 940 return SZ_DMAWFP; 941 942 buf[0] = CMD_DMAWFP; 943 944 if (cond == SINGLE) 945 buf[0] |= (0 << 1) | (0 << 0); 946 else if (cond == BURST) 947 buf[0] |= (1 << 1) | (0 << 0); 948 else 949 buf[0] |= (0 << 1) | (1 << 0); 950 951 peri &= 0x1f; 952 peri <<= 3; 953 buf[1] = peri; 954 955 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 956 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 957 958 return SZ_DMAWFP; 959 } 960 961 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 962 { 963 if (dry_run) 964 return SZ_DMAWMB; 965 966 buf[0] = CMD_DMAWMB; 967 968 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 969 970 return SZ_DMAWMB; 971 } 972 973 struct _arg_GO { 974 u8 chan; 975 u32 addr; 976 unsigned ns; 977 }; 978 979 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 980 const struct _arg_GO *arg) 981 { 982 u8 chan = arg->chan; 983 u32 addr = arg->addr; 984 unsigned ns = arg->ns; 985 986 if (dry_run) 987 return SZ_DMAGO; 988 989 buf[0] = CMD_DMAGO; 990 buf[0] |= (ns << 1); 991 992 buf[1] = chan & 0x7; 993 994 *((u32 *)&buf[2]) = addr; 995 996 return SZ_DMAGO; 997 } 998 999 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 1000 1001 /* Returns Time-Out */ 1002 static bool _until_dmac_idle(struct pl330_thread *thrd) 1003 { 1004 void __iomem *regs = thrd->dmac->pinfo->base; 1005 unsigned long loops = msecs_to_loops(5); 1006 1007 do { 1008 /* Until Manager is Idle */ 1009 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 1010 break; 1011 1012 cpu_relax(); 1013 } while (--loops); 1014 1015 if (!loops) 1016 return true; 1017 1018 return false; 1019 } 1020 1021 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 1022 u8 insn[], bool as_manager) 1023 { 1024 void __iomem *regs = thrd->dmac->pinfo->base; 1025 u32 val; 1026 1027 val = (insn[0] << 16) | (insn[1] << 24); 1028 if (!as_manager) { 1029 val |= (1 << 0); 1030 val |= (thrd->id << 8); /* Channel Number */ 1031 } 1032 writel(val, regs + DBGINST0); 1033 1034 val = *((u32 *)&insn[2]); 1035 writel(val, regs + DBGINST1); 1036 1037 /* If timed out due to halted state-machine */ 1038 if (_until_dmac_idle(thrd)) { 1039 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n"); 1040 return; 1041 } 1042 1043 /* Get going */ 1044 writel(0, regs + DBGCMD); 1045 } 1046 1047 /* 1048 * Mark a _pl330_req as free. 1049 * We do it by writing DMAEND as the first instruction 1050 * because no valid request is going to have DMAEND as 1051 * its first instruction to execute. 1052 */ 1053 static void mark_free(struct pl330_thread *thrd, int idx) 1054 { 1055 struct _pl330_req *req = &thrd->req[idx]; 1056 1057 _emit_END(0, req->mc_cpu); 1058 req->mc_len = 0; 1059 1060 thrd->req_running = -1; 1061 } 1062 1063 static inline u32 _state(struct pl330_thread *thrd) 1064 { 1065 void __iomem *regs = thrd->dmac->pinfo->base; 1066 u32 val; 1067 1068 if (is_manager(thrd)) 1069 val = readl(regs + DS) & 0xf; 1070 else 1071 val = readl(regs + CS(thrd->id)) & 0xf; 1072 1073 switch (val) { 1074 case DS_ST_STOP: 1075 return PL330_STATE_STOPPED; 1076 case DS_ST_EXEC: 1077 return PL330_STATE_EXECUTING; 1078 case DS_ST_CMISS: 1079 return PL330_STATE_CACHEMISS; 1080 case DS_ST_UPDTPC: 1081 return PL330_STATE_UPDTPC; 1082 case DS_ST_WFE: 1083 return PL330_STATE_WFE; 1084 case DS_ST_FAULT: 1085 return PL330_STATE_FAULTING; 1086 case DS_ST_ATBRR: 1087 if (is_manager(thrd)) 1088 return PL330_STATE_INVALID; 1089 else 1090 return PL330_STATE_ATBARRIER; 1091 case DS_ST_QBUSY: 1092 if (is_manager(thrd)) 1093 return PL330_STATE_INVALID; 1094 else 1095 return PL330_STATE_QUEUEBUSY; 1096 case DS_ST_WFP: 1097 if (is_manager(thrd)) 1098 return PL330_STATE_INVALID; 1099 else 1100 return PL330_STATE_WFP; 1101 case DS_ST_KILL: 1102 if (is_manager(thrd)) 1103 return PL330_STATE_INVALID; 1104 else 1105 return PL330_STATE_KILLING; 1106 case DS_ST_CMPLT: 1107 if (is_manager(thrd)) 1108 return PL330_STATE_INVALID; 1109 else 1110 return PL330_STATE_COMPLETING; 1111 case DS_ST_FLTCMP: 1112 if (is_manager(thrd)) 1113 return PL330_STATE_INVALID; 1114 else 1115 return PL330_STATE_FAULT_COMPLETING; 1116 default: 1117 return PL330_STATE_INVALID; 1118 } 1119 } 1120 1121 static void _stop(struct pl330_thread *thrd) 1122 { 1123 void __iomem *regs = thrd->dmac->pinfo->base; 1124 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1125 1126 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1127 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1128 1129 /* Return if nothing needs to be done */ 1130 if (_state(thrd) == PL330_STATE_COMPLETING 1131 || _state(thrd) == PL330_STATE_KILLING 1132 || _state(thrd) == PL330_STATE_STOPPED) 1133 return; 1134 1135 _emit_KILL(0, insn); 1136 1137 /* Stop generating interrupts for SEV */ 1138 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1139 1140 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1141 } 1142 1143 /* Start doing req 'idx' of thread 'thrd' */ 1144 static bool _trigger(struct pl330_thread *thrd) 1145 { 1146 void __iomem *regs = thrd->dmac->pinfo->base; 1147 struct _pl330_req *req; 1148 struct pl330_req *r; 1149 struct _arg_GO go; 1150 unsigned ns; 1151 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1152 int idx; 1153 1154 /* Return if already ACTIVE */ 1155 if (_state(thrd) != PL330_STATE_STOPPED) 1156 return true; 1157 1158 idx = 1 - thrd->lstenq; 1159 if (!IS_FREE(&thrd->req[idx])) 1160 req = &thrd->req[idx]; 1161 else { 1162 idx = thrd->lstenq; 1163 if (!IS_FREE(&thrd->req[idx])) 1164 req = &thrd->req[idx]; 1165 else 1166 req = NULL; 1167 } 1168 1169 /* Return if no request */ 1170 if (!req || !req->r) 1171 return true; 1172 1173 r = req->r; 1174 1175 if (r->cfg) 1176 ns = r->cfg->nonsecure ? 1 : 0; 1177 else if (readl(regs + CS(thrd->id)) & CS_CNS) 1178 ns = 1; 1179 else 1180 ns = 0; 1181 1182 /* See 'Abort Sources' point-4 at Page 2-25 */ 1183 if (_manager_ns(thrd) && !ns) 1184 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n", 1185 __func__, __LINE__); 1186 1187 go.chan = thrd->id; 1188 go.addr = req->mc_bus; 1189 go.ns = ns; 1190 _emit_GO(0, insn, &go); 1191 1192 /* Set to generate interrupts for SEV */ 1193 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1194 1195 /* Only manager can execute GO */ 1196 _execute_DBGINSN(thrd, insn, true); 1197 1198 thrd->req_running = idx; 1199 1200 return true; 1201 } 1202 1203 static bool _start(struct pl330_thread *thrd) 1204 { 1205 switch (_state(thrd)) { 1206 case PL330_STATE_FAULT_COMPLETING: 1207 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1208 1209 if (_state(thrd) == PL330_STATE_KILLING) 1210 UNTIL(thrd, PL330_STATE_STOPPED) 1211 1212 case PL330_STATE_FAULTING: 1213 _stop(thrd); 1214 1215 case PL330_STATE_KILLING: 1216 case PL330_STATE_COMPLETING: 1217 UNTIL(thrd, PL330_STATE_STOPPED) 1218 1219 case PL330_STATE_STOPPED: 1220 return _trigger(thrd); 1221 1222 case PL330_STATE_WFP: 1223 case PL330_STATE_QUEUEBUSY: 1224 case PL330_STATE_ATBARRIER: 1225 case PL330_STATE_UPDTPC: 1226 case PL330_STATE_CACHEMISS: 1227 case PL330_STATE_EXECUTING: 1228 return true; 1229 1230 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1231 default: 1232 return false; 1233 } 1234 } 1235 1236 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1237 const struct _xfer_spec *pxs, int cyc) 1238 { 1239 int off = 0; 1240 struct pl330_config *pcfg = pxs->r->cfg->pcfg; 1241 1242 /* check lock-up free version */ 1243 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1244 while (cyc--) { 1245 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1246 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1247 } 1248 } else { 1249 while (cyc--) { 1250 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1251 off += _emit_RMB(dry_run, &buf[off]); 1252 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1253 off += _emit_WMB(dry_run, &buf[off]); 1254 } 1255 } 1256 1257 return off; 1258 } 1259 1260 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1261 const struct _xfer_spec *pxs, int cyc) 1262 { 1263 int off = 0; 1264 1265 while (cyc--) { 1266 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1267 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1268 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1269 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1270 } 1271 1272 return off; 1273 } 1274 1275 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1276 const struct _xfer_spec *pxs, int cyc) 1277 { 1278 int off = 0; 1279 1280 while (cyc--) { 1281 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1282 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1283 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1284 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1285 } 1286 1287 return off; 1288 } 1289 1290 static int _bursts(unsigned dry_run, u8 buf[], 1291 const struct _xfer_spec *pxs, int cyc) 1292 { 1293 int off = 0; 1294 1295 switch (pxs->r->rqtype) { 1296 case MEMTODEV: 1297 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1298 break; 1299 case DEVTOMEM: 1300 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1301 break; 1302 case MEMTOMEM: 1303 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1304 break; 1305 default: 1306 off += 0x40000000; /* Scare off the Client */ 1307 break; 1308 } 1309 1310 return off; 1311 } 1312 1313 /* Returns bytes consumed and updates bursts */ 1314 static inline int _loop(unsigned dry_run, u8 buf[], 1315 unsigned long *bursts, const struct _xfer_spec *pxs) 1316 { 1317 int cyc, cycmax, szlp, szlpend, szbrst, off; 1318 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1319 struct _arg_LPEND lpend; 1320 1321 /* Max iterations possible in DMALP is 256 */ 1322 if (*bursts >= 256*256) { 1323 lcnt1 = 256; 1324 lcnt0 = 256; 1325 cyc = *bursts / lcnt1 / lcnt0; 1326 } else if (*bursts > 256) { 1327 lcnt1 = 256; 1328 lcnt0 = *bursts / lcnt1; 1329 cyc = 1; 1330 } else { 1331 lcnt1 = *bursts; 1332 lcnt0 = 0; 1333 cyc = 1; 1334 } 1335 1336 szlp = _emit_LP(1, buf, 0, 0); 1337 szbrst = _bursts(1, buf, pxs, 1); 1338 1339 lpend.cond = ALWAYS; 1340 lpend.forever = false; 1341 lpend.loop = 0; 1342 lpend.bjump = 0; 1343 szlpend = _emit_LPEND(1, buf, &lpend); 1344 1345 if (lcnt0) { 1346 szlp *= 2; 1347 szlpend *= 2; 1348 } 1349 1350 /* 1351 * Max bursts that we can unroll due to limit on the 1352 * size of backward jump that can be encoded in DMALPEND 1353 * which is 8-bits and hence 255 1354 */ 1355 cycmax = (255 - (szlp + szlpend)) / szbrst; 1356 1357 cyc = (cycmax < cyc) ? cycmax : cyc; 1358 1359 off = 0; 1360 1361 if (lcnt0) { 1362 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1363 ljmp0 = off; 1364 } 1365 1366 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1367 ljmp1 = off; 1368 1369 off += _bursts(dry_run, &buf[off], pxs, cyc); 1370 1371 lpend.cond = ALWAYS; 1372 lpend.forever = false; 1373 lpend.loop = 1; 1374 lpend.bjump = off - ljmp1; 1375 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1376 1377 if (lcnt0) { 1378 lpend.cond = ALWAYS; 1379 lpend.forever = false; 1380 lpend.loop = 0; 1381 lpend.bjump = off - ljmp0; 1382 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1383 } 1384 1385 *bursts = lcnt1 * cyc; 1386 if (lcnt0) 1387 *bursts *= lcnt0; 1388 1389 return off; 1390 } 1391 1392 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1393 const struct _xfer_spec *pxs) 1394 { 1395 struct pl330_xfer *x = pxs->x; 1396 u32 ccr = pxs->ccr; 1397 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1398 int off = 0; 1399 1400 while (bursts) { 1401 c = bursts; 1402 off += _loop(dry_run, &buf[off], &c, pxs); 1403 bursts -= c; 1404 } 1405 1406 return off; 1407 } 1408 1409 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1410 const struct _xfer_spec *pxs) 1411 { 1412 struct pl330_xfer *x = pxs->x; 1413 int off = 0; 1414 1415 /* DMAMOV SAR, x->src_addr */ 1416 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1417 /* DMAMOV DAR, x->dst_addr */ 1418 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1419 1420 /* Setup Loop(s) */ 1421 off += _setup_loops(dry_run, &buf[off], pxs); 1422 1423 return off; 1424 } 1425 1426 /* 1427 * A req is a sequence of one or more xfer units. 1428 * Returns the number of bytes taken to setup the MC for the req. 1429 */ 1430 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1431 unsigned index, struct _xfer_spec *pxs) 1432 { 1433 struct _pl330_req *req = &thrd->req[index]; 1434 struct pl330_xfer *x; 1435 u8 *buf = req->mc_cpu; 1436 int off = 0; 1437 1438 PL330_DBGMC_START(req->mc_bus); 1439 1440 /* DMAMOV CCR, ccr */ 1441 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1442 1443 x = pxs->r->x; 1444 do { 1445 /* Error if xfer length is not aligned at burst size */ 1446 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1447 return -EINVAL; 1448 1449 pxs->x = x; 1450 off += _setup_xfer(dry_run, &buf[off], pxs); 1451 1452 x = x->next; 1453 } while (x); 1454 1455 /* DMASEV peripheral/event */ 1456 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1457 /* DMAEND */ 1458 off += _emit_END(dry_run, &buf[off]); 1459 1460 return off; 1461 } 1462 1463 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1464 { 1465 u32 ccr = 0; 1466 1467 if (rqc->src_inc) 1468 ccr |= CC_SRCINC; 1469 1470 if (rqc->dst_inc) 1471 ccr |= CC_DSTINC; 1472 1473 /* We set same protection levels for Src and DST for now */ 1474 if (rqc->privileged) 1475 ccr |= CC_SRCPRI | CC_DSTPRI; 1476 if (rqc->nonsecure) 1477 ccr |= CC_SRCNS | CC_DSTNS; 1478 if (rqc->insnaccess) 1479 ccr |= CC_SRCIA | CC_DSTIA; 1480 1481 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1482 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1483 1484 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1485 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1486 1487 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1488 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1489 1490 ccr |= (rqc->swap << CC_SWAP_SHFT); 1491 1492 return ccr; 1493 } 1494 1495 static inline bool _is_valid(u32 ccr) 1496 { 1497 enum pl330_dstcachectrl dcctl; 1498 enum pl330_srccachectrl scctl; 1499 1500 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK; 1501 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK; 1502 1503 if (dcctl == DINVALID1 || dcctl == DINVALID2 1504 || scctl == SINVALID1 || scctl == SINVALID2) 1505 return false; 1506 else 1507 return true; 1508 } 1509 1510 /* 1511 * Submit a list of xfers after which the client wants notification. 1512 * Client is not notified after each xfer unit, just once after all 1513 * xfer units are done or some error occurs. 1514 */ 1515 static int pl330_submit_req(void *ch_id, struct pl330_req *r) 1516 { 1517 struct pl330_thread *thrd = ch_id; 1518 struct pl330_dmac *pl330; 1519 struct pl330_info *pi; 1520 struct _xfer_spec xs; 1521 unsigned long flags; 1522 void __iomem *regs; 1523 unsigned idx; 1524 u32 ccr; 1525 int ret = 0; 1526 1527 /* No Req or Unacquired Channel or DMAC */ 1528 if (!r || !thrd || thrd->free) 1529 return -EINVAL; 1530 1531 pl330 = thrd->dmac; 1532 pi = pl330->pinfo; 1533 regs = pi->base; 1534 1535 if (pl330->state == DYING 1536 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1537 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n", 1538 __func__, __LINE__); 1539 return -EAGAIN; 1540 } 1541 1542 /* If request for non-existing peripheral */ 1543 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) { 1544 dev_info(thrd->dmac->pinfo->dev, 1545 "%s:%d Invalid peripheral(%u)!\n", 1546 __func__, __LINE__, r->peri); 1547 return -EINVAL; 1548 } 1549 1550 spin_lock_irqsave(&pl330->lock, flags); 1551 1552 if (_queue_full(thrd)) { 1553 ret = -EAGAIN; 1554 goto xfer_exit; 1555 } 1556 1557 1558 /* Use last settings, if not provided */ 1559 if (r->cfg) { 1560 /* Prefer Secure Channel */ 1561 if (!_manager_ns(thrd)) 1562 r->cfg->nonsecure = 0; 1563 else 1564 r->cfg->nonsecure = 1; 1565 1566 ccr = _prepare_ccr(r->cfg); 1567 } else { 1568 ccr = readl(regs + CC(thrd->id)); 1569 } 1570 1571 /* If this req doesn't have valid xfer settings */ 1572 if (!_is_valid(ccr)) { 1573 ret = -EINVAL; 1574 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n", 1575 __func__, __LINE__, ccr); 1576 goto xfer_exit; 1577 } 1578 1579 idx = IS_FREE(&thrd->req[0]) ? 0 : 1; 1580 1581 xs.ccr = ccr; 1582 xs.r = r; 1583 1584 /* First dry run to check if req is acceptable */ 1585 ret = _setup_req(1, thrd, idx, &xs); 1586 if (ret < 0) 1587 goto xfer_exit; 1588 1589 if (ret > pi->mcbufsz / 2) { 1590 dev_info(thrd->dmac->pinfo->dev, 1591 "%s:%d Trying increasing mcbufsz\n", 1592 __func__, __LINE__); 1593 ret = -ENOMEM; 1594 goto xfer_exit; 1595 } 1596 1597 /* Hook the request */ 1598 thrd->lstenq = idx; 1599 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs); 1600 thrd->req[idx].r = r; 1601 1602 ret = 0; 1603 1604 xfer_exit: 1605 spin_unlock_irqrestore(&pl330->lock, flags); 1606 1607 return ret; 1608 } 1609 1610 static void pl330_dotask(unsigned long data) 1611 { 1612 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1613 struct pl330_info *pi = pl330->pinfo; 1614 unsigned long flags; 1615 int i; 1616 1617 spin_lock_irqsave(&pl330->lock, flags); 1618 1619 /* The DMAC itself gone nuts */ 1620 if (pl330->dmac_tbd.reset_dmac) { 1621 pl330->state = DYING; 1622 /* Reset the manager too */ 1623 pl330->dmac_tbd.reset_mngr = true; 1624 /* Clear the reset flag */ 1625 pl330->dmac_tbd.reset_dmac = false; 1626 } 1627 1628 if (pl330->dmac_tbd.reset_mngr) { 1629 _stop(pl330->manager); 1630 /* Reset all channels */ 1631 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1; 1632 /* Clear the reset flag */ 1633 pl330->dmac_tbd.reset_mngr = false; 1634 } 1635 1636 for (i = 0; i < pi->pcfg.num_chan; i++) { 1637 1638 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1639 struct pl330_thread *thrd = &pl330->channels[i]; 1640 void __iomem *regs = pi->base; 1641 enum pl330_op_err err; 1642 1643 _stop(thrd); 1644 1645 if (readl(regs + FSC) & (1 << thrd->id)) 1646 err = PL330_ERR_FAIL; 1647 else 1648 err = PL330_ERR_ABORT; 1649 1650 spin_unlock_irqrestore(&pl330->lock, flags); 1651 1652 _callback(thrd->req[1 - thrd->lstenq].r, err); 1653 _callback(thrd->req[thrd->lstenq].r, err); 1654 1655 spin_lock_irqsave(&pl330->lock, flags); 1656 1657 thrd->req[0].r = NULL; 1658 thrd->req[1].r = NULL; 1659 mark_free(thrd, 0); 1660 mark_free(thrd, 1); 1661 1662 /* Clear the reset flag */ 1663 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1664 } 1665 } 1666 1667 spin_unlock_irqrestore(&pl330->lock, flags); 1668 1669 return; 1670 } 1671 1672 /* Returns 1 if state was updated, 0 otherwise */ 1673 static int pl330_update(const struct pl330_info *pi) 1674 { 1675 struct pl330_req *rqdone, *tmp; 1676 struct pl330_dmac *pl330; 1677 unsigned long flags; 1678 void __iomem *regs; 1679 u32 val; 1680 int id, ev, ret = 0; 1681 1682 if (!pi || !pi->pl330_data) 1683 return 0; 1684 1685 regs = pi->base; 1686 pl330 = pi->pl330_data; 1687 1688 spin_lock_irqsave(&pl330->lock, flags); 1689 1690 val = readl(regs + FSM) & 0x1; 1691 if (val) 1692 pl330->dmac_tbd.reset_mngr = true; 1693 else 1694 pl330->dmac_tbd.reset_mngr = false; 1695 1696 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1); 1697 pl330->dmac_tbd.reset_chan |= val; 1698 if (val) { 1699 int i = 0; 1700 while (i < pi->pcfg.num_chan) { 1701 if (val & (1 << i)) { 1702 dev_info(pi->dev, 1703 "Reset Channel-%d\t CS-%x FTC-%x\n", 1704 i, readl(regs + CS(i)), 1705 readl(regs + FTC(i))); 1706 _stop(&pl330->channels[i]); 1707 } 1708 i++; 1709 } 1710 } 1711 1712 /* Check which event happened i.e, thread notified */ 1713 val = readl(regs + ES); 1714 if (pi->pcfg.num_events < 32 1715 && val & ~((1 << pi->pcfg.num_events) - 1)) { 1716 pl330->dmac_tbd.reset_dmac = true; 1717 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__); 1718 ret = 1; 1719 goto updt_exit; 1720 } 1721 1722 for (ev = 0; ev < pi->pcfg.num_events; ev++) { 1723 if (val & (1 << ev)) { /* Event occurred */ 1724 struct pl330_thread *thrd; 1725 u32 inten = readl(regs + INTEN); 1726 int active; 1727 1728 /* Clear the event */ 1729 if (inten & (1 << ev)) 1730 writel(1 << ev, regs + INTCLR); 1731 1732 ret = 1; 1733 1734 id = pl330->events[ev]; 1735 1736 thrd = &pl330->channels[id]; 1737 1738 active = thrd->req_running; 1739 if (active == -1) /* Aborted */ 1740 continue; 1741 1742 /* Detach the req */ 1743 rqdone = thrd->req[active].r; 1744 thrd->req[active].r = NULL; 1745 1746 mark_free(thrd, active); 1747 1748 /* Get going again ASAP */ 1749 _start(thrd); 1750 1751 /* For now, just make a list of callbacks to be done */ 1752 list_add_tail(&rqdone->rqd, &pl330->req_done); 1753 } 1754 } 1755 1756 /* Now that we are in no hurry, do the callbacks */ 1757 list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) { 1758 list_del(&rqdone->rqd); 1759 1760 spin_unlock_irqrestore(&pl330->lock, flags); 1761 _callback(rqdone, PL330_ERR_NONE); 1762 spin_lock_irqsave(&pl330->lock, flags); 1763 } 1764 1765 updt_exit: 1766 spin_unlock_irqrestore(&pl330->lock, flags); 1767 1768 if (pl330->dmac_tbd.reset_dmac 1769 || pl330->dmac_tbd.reset_mngr 1770 || pl330->dmac_tbd.reset_chan) { 1771 ret = 1; 1772 tasklet_schedule(&pl330->tasks); 1773 } 1774 1775 return ret; 1776 } 1777 1778 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op) 1779 { 1780 struct pl330_thread *thrd = ch_id; 1781 struct pl330_dmac *pl330; 1782 unsigned long flags; 1783 int ret = 0, active; 1784 1785 if (!thrd || thrd->free || thrd->dmac->state == DYING) 1786 return -EINVAL; 1787 1788 pl330 = thrd->dmac; 1789 active = thrd->req_running; 1790 1791 spin_lock_irqsave(&pl330->lock, flags); 1792 1793 switch (op) { 1794 case PL330_OP_FLUSH: 1795 /* Make sure the channel is stopped */ 1796 _stop(thrd); 1797 1798 thrd->req[0].r = NULL; 1799 thrd->req[1].r = NULL; 1800 mark_free(thrd, 0); 1801 mark_free(thrd, 1); 1802 break; 1803 1804 case PL330_OP_ABORT: 1805 /* Make sure the channel is stopped */ 1806 _stop(thrd); 1807 1808 /* ABORT is only for the active req */ 1809 if (active == -1) 1810 break; 1811 1812 thrd->req[active].r = NULL; 1813 mark_free(thrd, active); 1814 1815 /* Start the next */ 1816 case PL330_OP_START: 1817 if ((active == -1) && !_start(thrd)) 1818 ret = -EIO; 1819 break; 1820 1821 default: 1822 ret = -EINVAL; 1823 } 1824 1825 spin_unlock_irqrestore(&pl330->lock, flags); 1826 return ret; 1827 } 1828 1829 /* Reserve an event */ 1830 static inline int _alloc_event(struct pl330_thread *thrd) 1831 { 1832 struct pl330_dmac *pl330 = thrd->dmac; 1833 struct pl330_info *pi = pl330->pinfo; 1834 int ev; 1835 1836 for (ev = 0; ev < pi->pcfg.num_events; ev++) 1837 if (pl330->events[ev] == -1) { 1838 pl330->events[ev] = thrd->id; 1839 return ev; 1840 } 1841 1842 return -1; 1843 } 1844 1845 static bool _chan_ns(const struct pl330_info *pi, int i) 1846 { 1847 return pi->pcfg.irq_ns & (1 << i); 1848 } 1849 1850 /* Upon success, returns IdentityToken for the 1851 * allocated channel, NULL otherwise. 1852 */ 1853 static void *pl330_request_channel(const struct pl330_info *pi) 1854 { 1855 struct pl330_thread *thrd = NULL; 1856 struct pl330_dmac *pl330; 1857 unsigned long flags; 1858 int chans, i; 1859 1860 if (!pi || !pi->pl330_data) 1861 return NULL; 1862 1863 pl330 = pi->pl330_data; 1864 1865 if (pl330->state == DYING) 1866 return NULL; 1867 1868 chans = pi->pcfg.num_chan; 1869 1870 spin_lock_irqsave(&pl330->lock, flags); 1871 1872 for (i = 0; i < chans; i++) { 1873 thrd = &pl330->channels[i]; 1874 if ((thrd->free) && (!_manager_ns(thrd) || 1875 _chan_ns(pi, i))) { 1876 thrd->ev = _alloc_event(thrd); 1877 if (thrd->ev >= 0) { 1878 thrd->free = false; 1879 thrd->lstenq = 1; 1880 thrd->req[0].r = NULL; 1881 mark_free(thrd, 0); 1882 thrd->req[1].r = NULL; 1883 mark_free(thrd, 1); 1884 break; 1885 } 1886 } 1887 thrd = NULL; 1888 } 1889 1890 spin_unlock_irqrestore(&pl330->lock, flags); 1891 1892 return thrd; 1893 } 1894 1895 /* Release an event */ 1896 static inline void _free_event(struct pl330_thread *thrd, int ev) 1897 { 1898 struct pl330_dmac *pl330 = thrd->dmac; 1899 struct pl330_info *pi = pl330->pinfo; 1900 1901 /* If the event is valid and was held by the thread */ 1902 if (ev >= 0 && ev < pi->pcfg.num_events 1903 && pl330->events[ev] == thrd->id) 1904 pl330->events[ev] = -1; 1905 } 1906 1907 static void pl330_release_channel(void *ch_id) 1908 { 1909 struct pl330_thread *thrd = ch_id; 1910 struct pl330_dmac *pl330; 1911 unsigned long flags; 1912 1913 if (!thrd || thrd->free) 1914 return; 1915 1916 _stop(thrd); 1917 1918 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT); 1919 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT); 1920 1921 pl330 = thrd->dmac; 1922 1923 spin_lock_irqsave(&pl330->lock, flags); 1924 _free_event(thrd, thrd->ev); 1925 thrd->free = true; 1926 spin_unlock_irqrestore(&pl330->lock, flags); 1927 } 1928 1929 /* Initialize the structure for PL330 configuration, that can be used 1930 * by the client driver the make best use of the DMAC 1931 */ 1932 static void read_dmac_config(struct pl330_info *pi) 1933 { 1934 void __iomem *regs = pi->base; 1935 u32 val; 1936 1937 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1938 val &= CRD_DATA_WIDTH_MASK; 1939 pi->pcfg.data_bus_width = 8 * (1 << val); 1940 1941 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1942 val &= CRD_DATA_BUFF_MASK; 1943 pi->pcfg.data_buf_dep = val + 1; 1944 1945 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1946 val &= CR0_NUM_CHANS_MASK; 1947 val += 1; 1948 pi->pcfg.num_chan = val; 1949 1950 val = readl(regs + CR0); 1951 if (val & CR0_PERIPH_REQ_SET) { 1952 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1953 val += 1; 1954 pi->pcfg.num_peri = val; 1955 pi->pcfg.peri_ns = readl(regs + CR4); 1956 } else { 1957 pi->pcfg.num_peri = 0; 1958 } 1959 1960 val = readl(regs + CR0); 1961 if (val & CR0_BOOT_MAN_NS) 1962 pi->pcfg.mode |= DMAC_MODE_NS; 1963 else 1964 pi->pcfg.mode &= ~DMAC_MODE_NS; 1965 1966 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1967 val &= CR0_NUM_EVENTS_MASK; 1968 val += 1; 1969 pi->pcfg.num_events = val; 1970 1971 pi->pcfg.irq_ns = readl(regs + CR3); 1972 } 1973 1974 static inline void _reset_thread(struct pl330_thread *thrd) 1975 { 1976 struct pl330_dmac *pl330 = thrd->dmac; 1977 struct pl330_info *pi = pl330->pinfo; 1978 1979 thrd->req[0].mc_cpu = pl330->mcode_cpu 1980 + (thrd->id * pi->mcbufsz); 1981 thrd->req[0].mc_bus = pl330->mcode_bus 1982 + (thrd->id * pi->mcbufsz); 1983 thrd->req[0].r = NULL; 1984 mark_free(thrd, 0); 1985 1986 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1987 + pi->mcbufsz / 2; 1988 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1989 + pi->mcbufsz / 2; 1990 thrd->req[1].r = NULL; 1991 mark_free(thrd, 1); 1992 } 1993 1994 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1995 { 1996 struct pl330_info *pi = pl330->pinfo; 1997 int chans = pi->pcfg.num_chan; 1998 struct pl330_thread *thrd; 1999 int i; 2000 2001 /* Allocate 1 Manager and 'chans' Channel threads */ 2002 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 2003 GFP_KERNEL); 2004 if (!pl330->channels) 2005 return -ENOMEM; 2006 2007 /* Init Channel threads */ 2008 for (i = 0; i < chans; i++) { 2009 thrd = &pl330->channels[i]; 2010 thrd->id = i; 2011 thrd->dmac = pl330; 2012 _reset_thread(thrd); 2013 thrd->free = true; 2014 } 2015 2016 /* MANAGER is indexed at the end */ 2017 thrd = &pl330->channels[chans]; 2018 thrd->id = chans; 2019 thrd->dmac = pl330; 2020 thrd->free = false; 2021 pl330->manager = thrd; 2022 2023 return 0; 2024 } 2025 2026 static int dmac_alloc_resources(struct pl330_dmac *pl330) 2027 { 2028 struct pl330_info *pi = pl330->pinfo; 2029 int chans = pi->pcfg.num_chan; 2030 int ret; 2031 2032 /* 2033 * Alloc MicroCode buffer for 'chans' Channel threads. 2034 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 2035 */ 2036 pl330->mcode_cpu = dma_alloc_coherent(pi->dev, 2037 chans * pi->mcbufsz, 2038 &pl330->mcode_bus, GFP_KERNEL); 2039 if (!pl330->mcode_cpu) { 2040 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2041 __func__, __LINE__); 2042 return -ENOMEM; 2043 } 2044 2045 ret = dmac_alloc_threads(pl330); 2046 if (ret) { 2047 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n", 2048 __func__, __LINE__); 2049 dma_free_coherent(pi->dev, 2050 chans * pi->mcbufsz, 2051 pl330->mcode_cpu, pl330->mcode_bus); 2052 return ret; 2053 } 2054 2055 return 0; 2056 } 2057 2058 static int pl330_add(struct pl330_info *pi) 2059 { 2060 struct pl330_dmac *pl330; 2061 void __iomem *regs; 2062 int i, ret; 2063 2064 if (!pi || !pi->dev) 2065 return -EINVAL; 2066 2067 /* If already added */ 2068 if (pi->pl330_data) 2069 return -EINVAL; 2070 2071 /* 2072 * If the SoC can perform reset on the DMAC, then do it 2073 * before reading its configuration. 2074 */ 2075 if (pi->dmac_reset) 2076 pi->dmac_reset(pi); 2077 2078 regs = pi->base; 2079 2080 /* Check if we can handle this DMAC */ 2081 if ((pi->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 2082 dev_err(pi->dev, "PERIPH_ID 0x%x !\n", pi->pcfg.periph_id); 2083 return -EINVAL; 2084 } 2085 2086 /* Read the configuration of the DMAC */ 2087 read_dmac_config(pi); 2088 2089 if (pi->pcfg.num_events == 0) { 2090 dev_err(pi->dev, "%s:%d Can't work without events!\n", 2091 __func__, __LINE__); 2092 return -EINVAL; 2093 } 2094 2095 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL); 2096 if (!pl330) { 2097 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2098 __func__, __LINE__); 2099 return -ENOMEM; 2100 } 2101 2102 /* Assign the info structure and private data */ 2103 pl330->pinfo = pi; 2104 pi->pl330_data = pl330; 2105 2106 spin_lock_init(&pl330->lock); 2107 2108 INIT_LIST_HEAD(&pl330->req_done); 2109 2110 /* Use default MC buffer size if not provided */ 2111 if (!pi->mcbufsz) 2112 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2; 2113 2114 /* Mark all events as free */ 2115 for (i = 0; i < pi->pcfg.num_events; i++) 2116 pl330->events[i] = -1; 2117 2118 /* Allocate resources needed by the DMAC */ 2119 ret = dmac_alloc_resources(pl330); 2120 if (ret) { 2121 dev_err(pi->dev, "Unable to create channels for DMAC\n"); 2122 kfree(pl330); 2123 return ret; 2124 } 2125 2126 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 2127 2128 pl330->state = INIT; 2129 2130 return 0; 2131 } 2132 2133 static int dmac_free_threads(struct pl330_dmac *pl330) 2134 { 2135 struct pl330_info *pi = pl330->pinfo; 2136 int chans = pi->pcfg.num_chan; 2137 struct pl330_thread *thrd; 2138 int i; 2139 2140 /* Release Channel threads */ 2141 for (i = 0; i < chans; i++) { 2142 thrd = &pl330->channels[i]; 2143 pl330_release_channel((void *)thrd); 2144 } 2145 2146 /* Free memory */ 2147 kfree(pl330->channels); 2148 2149 return 0; 2150 } 2151 2152 static void dmac_free_resources(struct pl330_dmac *pl330) 2153 { 2154 struct pl330_info *pi = pl330->pinfo; 2155 int chans = pi->pcfg.num_chan; 2156 2157 dmac_free_threads(pl330); 2158 2159 dma_free_coherent(pi->dev, chans * pi->mcbufsz, 2160 pl330->mcode_cpu, pl330->mcode_bus); 2161 } 2162 2163 static void pl330_del(struct pl330_info *pi) 2164 { 2165 struct pl330_dmac *pl330; 2166 2167 if (!pi || !pi->pl330_data) 2168 return; 2169 2170 pl330 = pi->pl330_data; 2171 2172 pl330->state = UNINIT; 2173 2174 tasklet_kill(&pl330->tasks); 2175 2176 /* Free DMAC resources */ 2177 dmac_free_resources(pl330); 2178 2179 kfree(pl330); 2180 pi->pl330_data = NULL; 2181 } 2182 2183 /* forward declaration */ 2184 static struct amba_driver pl330_driver; 2185 2186 static inline struct dma_pl330_chan * 2187 to_pchan(struct dma_chan *ch) 2188 { 2189 if (!ch) 2190 return NULL; 2191 2192 return container_of(ch, struct dma_pl330_chan, chan); 2193 } 2194 2195 static inline struct dma_pl330_desc * 2196 to_desc(struct dma_async_tx_descriptor *tx) 2197 { 2198 return container_of(tx, struct dma_pl330_desc, txd); 2199 } 2200 2201 static inline void free_desc_list(struct list_head *list) 2202 { 2203 struct dma_pl330_dmac *pdmac; 2204 struct dma_pl330_desc *desc; 2205 struct dma_pl330_chan *pch = NULL; 2206 unsigned long flags; 2207 2208 /* Finish off the work list */ 2209 list_for_each_entry(desc, list, node) { 2210 dma_async_tx_callback callback; 2211 void *param; 2212 2213 /* All desc in a list belong to same channel */ 2214 pch = desc->pchan; 2215 callback = desc->txd.callback; 2216 param = desc->txd.callback_param; 2217 2218 if (callback) 2219 callback(param); 2220 2221 desc->pchan = NULL; 2222 } 2223 2224 /* pch will be unset if list was empty */ 2225 if (!pch) 2226 return; 2227 2228 pdmac = pch->dmac; 2229 2230 spin_lock_irqsave(&pdmac->pool_lock, flags); 2231 list_splice_tail_init(list, &pdmac->desc_pool); 2232 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2233 } 2234 2235 static inline void handle_cyclic_desc_list(struct list_head *list) 2236 { 2237 struct dma_pl330_desc *desc; 2238 struct dma_pl330_chan *pch = NULL; 2239 unsigned long flags; 2240 2241 list_for_each_entry(desc, list, node) { 2242 dma_async_tx_callback callback; 2243 2244 /* Change status to reload it */ 2245 desc->status = PREP; 2246 pch = desc->pchan; 2247 callback = desc->txd.callback; 2248 if (callback) 2249 callback(desc->txd.callback_param); 2250 } 2251 2252 /* pch will be unset if list was empty */ 2253 if (!pch) 2254 return; 2255 2256 spin_lock_irqsave(&pch->lock, flags); 2257 list_splice_tail_init(list, &pch->work_list); 2258 spin_unlock_irqrestore(&pch->lock, flags); 2259 } 2260 2261 static inline void fill_queue(struct dma_pl330_chan *pch) 2262 { 2263 struct dma_pl330_desc *desc; 2264 int ret; 2265 2266 list_for_each_entry(desc, &pch->work_list, node) { 2267 2268 /* If already submitted */ 2269 if (desc->status == BUSY) 2270 continue; 2271 2272 ret = pl330_submit_req(pch->pl330_chid, 2273 &desc->req); 2274 if (!ret) { 2275 desc->status = BUSY; 2276 } else if (ret == -EAGAIN) { 2277 /* QFull or DMAC Dying */ 2278 break; 2279 } else { 2280 /* Unacceptable request */ 2281 desc->status = DONE; 2282 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n", 2283 __func__, __LINE__, desc->txd.cookie); 2284 tasklet_schedule(&pch->task); 2285 } 2286 } 2287 } 2288 2289 static void pl330_tasklet(unsigned long data) 2290 { 2291 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2292 struct dma_pl330_desc *desc, *_dt; 2293 unsigned long flags; 2294 LIST_HEAD(list); 2295 2296 spin_lock_irqsave(&pch->lock, flags); 2297 2298 /* Pick up ripe tomatoes */ 2299 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2300 if (desc->status == DONE) { 2301 if (!pch->cyclic) 2302 dma_cookie_complete(&desc->txd); 2303 list_move_tail(&desc->node, &list); 2304 } 2305 2306 /* Try to submit a req imm. next to the last completed cookie */ 2307 fill_queue(pch); 2308 2309 /* Make sure the PL330 Channel thread is active */ 2310 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START); 2311 2312 spin_unlock_irqrestore(&pch->lock, flags); 2313 2314 if (pch->cyclic) 2315 handle_cyclic_desc_list(&list); 2316 else 2317 free_desc_list(&list); 2318 } 2319 2320 static void dma_pl330_rqcb(void *token, enum pl330_op_err err) 2321 { 2322 struct dma_pl330_desc *desc = token; 2323 struct dma_pl330_chan *pch = desc->pchan; 2324 unsigned long flags; 2325 2326 /* If desc aborted */ 2327 if (!pch) 2328 return; 2329 2330 spin_lock_irqsave(&pch->lock, flags); 2331 2332 desc->status = DONE; 2333 2334 spin_unlock_irqrestore(&pch->lock, flags); 2335 2336 tasklet_schedule(&pch->task); 2337 } 2338 2339 static bool pl330_dt_filter(struct dma_chan *chan, void *param) 2340 { 2341 struct dma_pl330_filter_args *fargs = param; 2342 2343 if (chan->device != &fargs->pdmac->ddma) 2344 return false; 2345 2346 return (chan->chan_id == fargs->chan_id); 2347 } 2348 2349 bool pl330_filter(struct dma_chan *chan, void *param) 2350 { 2351 u8 *peri_id; 2352 2353 if (chan->device->dev->driver != &pl330_driver.drv) 2354 return false; 2355 2356 peri_id = chan->private; 2357 return *peri_id == (unsigned)param; 2358 } 2359 EXPORT_SYMBOL(pl330_filter); 2360 2361 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2362 struct of_dma *ofdma) 2363 { 2364 int count = dma_spec->args_count; 2365 struct dma_pl330_dmac *pdmac = ofdma->of_dma_data; 2366 struct dma_pl330_filter_args fargs; 2367 dma_cap_mask_t cap; 2368 2369 if (!pdmac) 2370 return NULL; 2371 2372 if (count != 1) 2373 return NULL; 2374 2375 fargs.pdmac = pdmac; 2376 fargs.chan_id = dma_spec->args[0]; 2377 2378 dma_cap_zero(cap); 2379 dma_cap_set(DMA_SLAVE, cap); 2380 dma_cap_set(DMA_CYCLIC, cap); 2381 2382 return dma_request_channel(cap, pl330_dt_filter, &fargs); 2383 } 2384 2385 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2386 { 2387 struct dma_pl330_chan *pch = to_pchan(chan); 2388 struct dma_pl330_dmac *pdmac = pch->dmac; 2389 unsigned long flags; 2390 2391 spin_lock_irqsave(&pch->lock, flags); 2392 2393 dma_cookie_init(chan); 2394 pch->cyclic = false; 2395 2396 pch->pl330_chid = pl330_request_channel(&pdmac->pif); 2397 if (!pch->pl330_chid) { 2398 spin_unlock_irqrestore(&pch->lock, flags); 2399 return -ENOMEM; 2400 } 2401 2402 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2403 2404 spin_unlock_irqrestore(&pch->lock, flags); 2405 2406 return 1; 2407 } 2408 2409 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2410 { 2411 struct dma_pl330_chan *pch = to_pchan(chan); 2412 struct dma_pl330_desc *desc, *_dt; 2413 unsigned long flags; 2414 struct dma_pl330_dmac *pdmac = pch->dmac; 2415 struct dma_slave_config *slave_config; 2416 LIST_HEAD(list); 2417 2418 switch (cmd) { 2419 case DMA_TERMINATE_ALL: 2420 spin_lock_irqsave(&pch->lock, flags); 2421 2422 /* FLUSH the PL330 Channel thread */ 2423 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH); 2424 2425 /* Mark all desc done */ 2426 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) { 2427 desc->status = DONE; 2428 list_move_tail(&desc->node, &list); 2429 } 2430 2431 list_splice_tail_init(&list, &pdmac->desc_pool); 2432 spin_unlock_irqrestore(&pch->lock, flags); 2433 break; 2434 case DMA_SLAVE_CONFIG: 2435 slave_config = (struct dma_slave_config *)arg; 2436 2437 if (slave_config->direction == DMA_MEM_TO_DEV) { 2438 if (slave_config->dst_addr) 2439 pch->fifo_addr = slave_config->dst_addr; 2440 if (slave_config->dst_addr_width) 2441 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2442 if (slave_config->dst_maxburst) 2443 pch->burst_len = slave_config->dst_maxburst; 2444 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2445 if (slave_config->src_addr) 2446 pch->fifo_addr = slave_config->src_addr; 2447 if (slave_config->src_addr_width) 2448 pch->burst_sz = __ffs(slave_config->src_addr_width); 2449 if (slave_config->src_maxburst) 2450 pch->burst_len = slave_config->src_maxburst; 2451 } 2452 break; 2453 default: 2454 dev_err(pch->dmac->pif.dev, "Not supported command.\n"); 2455 return -ENXIO; 2456 } 2457 2458 return 0; 2459 } 2460 2461 static void pl330_free_chan_resources(struct dma_chan *chan) 2462 { 2463 struct dma_pl330_chan *pch = to_pchan(chan); 2464 unsigned long flags; 2465 2466 tasklet_kill(&pch->task); 2467 2468 spin_lock_irqsave(&pch->lock, flags); 2469 2470 pl330_release_channel(pch->pl330_chid); 2471 pch->pl330_chid = NULL; 2472 2473 if (pch->cyclic) 2474 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2475 2476 spin_unlock_irqrestore(&pch->lock, flags); 2477 } 2478 2479 static enum dma_status 2480 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2481 struct dma_tx_state *txstate) 2482 { 2483 return dma_cookie_status(chan, cookie, txstate); 2484 } 2485 2486 static void pl330_issue_pending(struct dma_chan *chan) 2487 { 2488 pl330_tasklet((unsigned long) to_pchan(chan)); 2489 } 2490 2491 /* 2492 * We returned the last one of the circular list of descriptor(s) 2493 * from prep_xxx, so the argument to submit corresponds to the last 2494 * descriptor of the list. 2495 */ 2496 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2497 { 2498 struct dma_pl330_desc *desc, *last = to_desc(tx); 2499 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2500 dma_cookie_t cookie; 2501 unsigned long flags; 2502 2503 spin_lock_irqsave(&pch->lock, flags); 2504 2505 /* Assign cookies to all nodes */ 2506 while (!list_empty(&last->node)) { 2507 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2508 if (pch->cyclic) { 2509 desc->txd.callback = last->txd.callback; 2510 desc->txd.callback_param = last->txd.callback_param; 2511 } 2512 2513 dma_cookie_assign(&desc->txd); 2514 2515 list_move_tail(&desc->node, &pch->work_list); 2516 } 2517 2518 cookie = dma_cookie_assign(&last->txd); 2519 list_add_tail(&last->node, &pch->work_list); 2520 spin_unlock_irqrestore(&pch->lock, flags); 2521 2522 return cookie; 2523 } 2524 2525 static inline void _init_desc(struct dma_pl330_desc *desc) 2526 { 2527 desc->pchan = NULL; 2528 desc->req.x = &desc->px; 2529 desc->req.token = desc; 2530 desc->rqcfg.swap = SWAP_NO; 2531 desc->rqcfg.privileged = 0; 2532 desc->rqcfg.insnaccess = 0; 2533 desc->rqcfg.scctl = SCCTRL0; 2534 desc->rqcfg.dcctl = DCCTRL0; 2535 desc->req.cfg = &desc->rqcfg; 2536 desc->req.xfer_cb = dma_pl330_rqcb; 2537 desc->txd.tx_submit = pl330_tx_submit; 2538 2539 INIT_LIST_HEAD(&desc->node); 2540 } 2541 2542 /* Returns the number of descriptors added to the DMAC pool */ 2543 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count) 2544 { 2545 struct dma_pl330_desc *desc; 2546 unsigned long flags; 2547 int i; 2548 2549 if (!pdmac) 2550 return 0; 2551 2552 desc = kmalloc(count * sizeof(*desc), flg); 2553 if (!desc) 2554 return 0; 2555 2556 spin_lock_irqsave(&pdmac->pool_lock, flags); 2557 2558 for (i = 0; i < count; i++) { 2559 _init_desc(&desc[i]); 2560 list_add_tail(&desc[i].node, &pdmac->desc_pool); 2561 } 2562 2563 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2564 2565 return count; 2566 } 2567 2568 static struct dma_pl330_desc * 2569 pluck_desc(struct dma_pl330_dmac *pdmac) 2570 { 2571 struct dma_pl330_desc *desc = NULL; 2572 unsigned long flags; 2573 2574 if (!pdmac) 2575 return NULL; 2576 2577 spin_lock_irqsave(&pdmac->pool_lock, flags); 2578 2579 if (!list_empty(&pdmac->desc_pool)) { 2580 desc = list_entry(pdmac->desc_pool.next, 2581 struct dma_pl330_desc, node); 2582 2583 list_del_init(&desc->node); 2584 2585 desc->status = PREP; 2586 desc->txd.callback = NULL; 2587 } 2588 2589 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2590 2591 return desc; 2592 } 2593 2594 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2595 { 2596 struct dma_pl330_dmac *pdmac = pch->dmac; 2597 u8 *peri_id = pch->chan.private; 2598 struct dma_pl330_desc *desc; 2599 2600 /* Pluck one desc from the pool of DMAC */ 2601 desc = pluck_desc(pdmac); 2602 2603 /* If the DMAC pool is empty, alloc new */ 2604 if (!desc) { 2605 if (!add_desc(pdmac, GFP_ATOMIC, 1)) 2606 return NULL; 2607 2608 /* Try again */ 2609 desc = pluck_desc(pdmac); 2610 if (!desc) { 2611 dev_err(pch->dmac->pif.dev, 2612 "%s:%d ALERT!\n", __func__, __LINE__); 2613 return NULL; 2614 } 2615 } 2616 2617 /* Initialize the descriptor */ 2618 desc->pchan = pch; 2619 desc->txd.cookie = 0; 2620 async_tx_ack(&desc->txd); 2621 2622 desc->req.peri = peri_id ? pch->chan.chan_id : 0; 2623 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg; 2624 2625 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2626 2627 return desc; 2628 } 2629 2630 static inline void fill_px(struct pl330_xfer *px, 2631 dma_addr_t dst, dma_addr_t src, size_t len) 2632 { 2633 px->next = NULL; 2634 px->bytes = len; 2635 px->dst_addr = dst; 2636 px->src_addr = src; 2637 } 2638 2639 static struct dma_pl330_desc * 2640 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2641 dma_addr_t src, size_t len) 2642 { 2643 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2644 2645 if (!desc) { 2646 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2647 __func__, __LINE__); 2648 return NULL; 2649 } 2650 2651 /* 2652 * Ideally we should lookout for reqs bigger than 2653 * those that can be programmed with 256 bytes of 2654 * MC buffer, but considering a req size is seldom 2655 * going to be word-unaligned and more than 200MB, 2656 * we take it easy. 2657 * Also, should the limit is reached we'd rather 2658 * have the platform increase MC buffer size than 2659 * complicating this API driver. 2660 */ 2661 fill_px(&desc->px, dst, src, len); 2662 2663 return desc; 2664 } 2665 2666 /* Call after fixing burst size */ 2667 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2668 { 2669 struct dma_pl330_chan *pch = desc->pchan; 2670 struct pl330_info *pi = &pch->dmac->pif; 2671 int burst_len; 2672 2673 burst_len = pi->pcfg.data_bus_width / 8; 2674 burst_len *= pi->pcfg.data_buf_dep; 2675 burst_len >>= desc->rqcfg.brst_size; 2676 2677 /* src/dst_burst_len can't be more than 16 */ 2678 if (burst_len > 16) 2679 burst_len = 16; 2680 2681 while (burst_len > 1) { 2682 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2683 break; 2684 burst_len--; 2685 } 2686 2687 return burst_len; 2688 } 2689 2690 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2691 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2692 size_t period_len, enum dma_transfer_direction direction, 2693 unsigned long flags, void *context) 2694 { 2695 struct dma_pl330_desc *desc = NULL, *first = NULL; 2696 struct dma_pl330_chan *pch = to_pchan(chan); 2697 struct dma_pl330_dmac *pdmac = pch->dmac; 2698 unsigned int i; 2699 dma_addr_t dst; 2700 dma_addr_t src; 2701 2702 if (len % period_len != 0) 2703 return NULL; 2704 2705 if (!is_slave_direction(direction)) { 2706 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n", 2707 __func__, __LINE__); 2708 return NULL; 2709 } 2710 2711 for (i = 0; i < len / period_len; i++) { 2712 desc = pl330_get_desc(pch); 2713 if (!desc) { 2714 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2715 __func__, __LINE__); 2716 2717 if (!first) 2718 return NULL; 2719 2720 spin_lock_irqsave(&pdmac->pool_lock, flags); 2721 2722 while (!list_empty(&first->node)) { 2723 desc = list_entry(first->node.next, 2724 struct dma_pl330_desc, node); 2725 list_move_tail(&desc->node, &pdmac->desc_pool); 2726 } 2727 2728 list_move_tail(&first->node, &pdmac->desc_pool); 2729 2730 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2731 2732 return NULL; 2733 } 2734 2735 switch (direction) { 2736 case DMA_MEM_TO_DEV: 2737 desc->rqcfg.src_inc = 1; 2738 desc->rqcfg.dst_inc = 0; 2739 desc->req.rqtype = MEMTODEV; 2740 src = dma_addr; 2741 dst = pch->fifo_addr; 2742 break; 2743 case DMA_DEV_TO_MEM: 2744 desc->rqcfg.src_inc = 0; 2745 desc->rqcfg.dst_inc = 1; 2746 desc->req.rqtype = DEVTOMEM; 2747 src = pch->fifo_addr; 2748 dst = dma_addr; 2749 break; 2750 default: 2751 break; 2752 } 2753 2754 desc->rqcfg.brst_size = pch->burst_sz; 2755 desc->rqcfg.brst_len = 1; 2756 fill_px(&desc->px, dst, src, period_len); 2757 2758 if (!first) 2759 first = desc; 2760 else 2761 list_add_tail(&desc->node, &first->node); 2762 2763 dma_addr += period_len; 2764 } 2765 2766 if (!desc) 2767 return NULL; 2768 2769 pch->cyclic = true; 2770 desc->txd.flags = flags; 2771 2772 return &desc->txd; 2773 } 2774 2775 static struct dma_async_tx_descriptor * 2776 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2777 dma_addr_t src, size_t len, unsigned long flags) 2778 { 2779 struct dma_pl330_desc *desc; 2780 struct dma_pl330_chan *pch = to_pchan(chan); 2781 struct pl330_info *pi; 2782 int burst; 2783 2784 if (unlikely(!pch || !len)) 2785 return NULL; 2786 2787 pi = &pch->dmac->pif; 2788 2789 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2790 if (!desc) 2791 return NULL; 2792 2793 desc->rqcfg.src_inc = 1; 2794 desc->rqcfg.dst_inc = 1; 2795 desc->req.rqtype = MEMTOMEM; 2796 2797 /* Select max possible burst size */ 2798 burst = pi->pcfg.data_bus_width / 8; 2799 2800 while (burst > 1) { 2801 if (!(len % burst)) 2802 break; 2803 burst /= 2; 2804 } 2805 2806 desc->rqcfg.brst_size = 0; 2807 while (burst != (1 << desc->rqcfg.brst_size)) 2808 desc->rqcfg.brst_size++; 2809 2810 desc->rqcfg.brst_len = get_burst_len(desc, len); 2811 2812 desc->txd.flags = flags; 2813 2814 return &desc->txd; 2815 } 2816 2817 static struct dma_async_tx_descriptor * 2818 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2819 unsigned int sg_len, enum dma_transfer_direction direction, 2820 unsigned long flg, void *context) 2821 { 2822 struct dma_pl330_desc *first, *desc = NULL; 2823 struct dma_pl330_chan *pch = to_pchan(chan); 2824 struct scatterlist *sg; 2825 unsigned long flags; 2826 int i; 2827 dma_addr_t addr; 2828 2829 if (unlikely(!pch || !sgl || !sg_len)) 2830 return NULL; 2831 2832 addr = pch->fifo_addr; 2833 2834 first = NULL; 2835 2836 for_each_sg(sgl, sg, sg_len, i) { 2837 2838 desc = pl330_get_desc(pch); 2839 if (!desc) { 2840 struct dma_pl330_dmac *pdmac = pch->dmac; 2841 2842 dev_err(pch->dmac->pif.dev, 2843 "%s:%d Unable to fetch desc\n", 2844 __func__, __LINE__); 2845 if (!first) 2846 return NULL; 2847 2848 spin_lock_irqsave(&pdmac->pool_lock, flags); 2849 2850 while (!list_empty(&first->node)) { 2851 desc = list_entry(first->node.next, 2852 struct dma_pl330_desc, node); 2853 list_move_tail(&desc->node, &pdmac->desc_pool); 2854 } 2855 2856 list_move_tail(&first->node, &pdmac->desc_pool); 2857 2858 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2859 2860 return NULL; 2861 } 2862 2863 if (!first) 2864 first = desc; 2865 else 2866 list_add_tail(&desc->node, &first->node); 2867 2868 if (direction == DMA_MEM_TO_DEV) { 2869 desc->rqcfg.src_inc = 1; 2870 desc->rqcfg.dst_inc = 0; 2871 desc->req.rqtype = MEMTODEV; 2872 fill_px(&desc->px, 2873 addr, sg_dma_address(sg), sg_dma_len(sg)); 2874 } else { 2875 desc->rqcfg.src_inc = 0; 2876 desc->rqcfg.dst_inc = 1; 2877 desc->req.rqtype = DEVTOMEM; 2878 fill_px(&desc->px, 2879 sg_dma_address(sg), addr, sg_dma_len(sg)); 2880 } 2881 2882 desc->rqcfg.brst_size = pch->burst_sz; 2883 desc->rqcfg.brst_len = 1; 2884 } 2885 2886 /* Return the last desc in the chain */ 2887 desc->txd.flags = flg; 2888 return &desc->txd; 2889 } 2890 2891 static irqreturn_t pl330_irq_handler(int irq, void *data) 2892 { 2893 if (pl330_update(data)) 2894 return IRQ_HANDLED; 2895 else 2896 return IRQ_NONE; 2897 } 2898 2899 static int 2900 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2901 { 2902 struct dma_pl330_platdata *pdat; 2903 struct dma_pl330_dmac *pdmac; 2904 struct dma_pl330_chan *pch, *_p; 2905 struct pl330_info *pi; 2906 struct dma_device *pd; 2907 struct resource *res; 2908 int i, ret, irq; 2909 int num_chan; 2910 2911 pdat = adev->dev.platform_data; 2912 2913 /* Allocate a new DMAC and its Channels */ 2914 pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL); 2915 if (!pdmac) { 2916 dev_err(&adev->dev, "unable to allocate mem\n"); 2917 return -ENOMEM; 2918 } 2919 2920 pi = &pdmac->pif; 2921 pi->dev = &adev->dev; 2922 pi->pl330_data = NULL; 2923 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2924 2925 res = &adev->res; 2926 pi->base = devm_ioremap_resource(&adev->dev, res); 2927 if (IS_ERR(pi->base)) 2928 return PTR_ERR(pi->base); 2929 2930 amba_set_drvdata(adev, pdmac); 2931 2932 irq = adev->irq[0]; 2933 ret = request_irq(irq, pl330_irq_handler, 0, 2934 dev_name(&adev->dev), pi); 2935 if (ret) 2936 return ret; 2937 2938 pi->pcfg.periph_id = adev->periphid; 2939 ret = pl330_add(pi); 2940 if (ret) 2941 goto probe_err1; 2942 2943 INIT_LIST_HEAD(&pdmac->desc_pool); 2944 spin_lock_init(&pdmac->pool_lock); 2945 2946 /* Create a descriptor pool of default size */ 2947 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC)) 2948 dev_warn(&adev->dev, "unable to allocate desc\n"); 2949 2950 pd = &pdmac->ddma; 2951 INIT_LIST_HEAD(&pd->channels); 2952 2953 /* Initialize channel parameters */ 2954 if (pdat) 2955 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan); 2956 else 2957 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan); 2958 2959 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2960 if (!pdmac->peripherals) { 2961 ret = -ENOMEM; 2962 dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n"); 2963 goto probe_err2; 2964 } 2965 2966 for (i = 0; i < num_chan; i++) { 2967 pch = &pdmac->peripherals[i]; 2968 if (!adev->dev.of_node) 2969 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2970 else 2971 pch->chan.private = adev->dev.of_node; 2972 2973 INIT_LIST_HEAD(&pch->work_list); 2974 spin_lock_init(&pch->lock); 2975 pch->pl330_chid = NULL; 2976 pch->chan.device = pd; 2977 pch->dmac = pdmac; 2978 2979 /* Add the channel to the DMAC list */ 2980 list_add_tail(&pch->chan.device_node, &pd->channels); 2981 } 2982 2983 pd->dev = &adev->dev; 2984 if (pdat) { 2985 pd->cap_mask = pdat->cap_mask; 2986 } else { 2987 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2988 if (pi->pcfg.num_peri) { 2989 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2990 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2991 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2992 } 2993 } 2994 2995 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2996 pd->device_free_chan_resources = pl330_free_chan_resources; 2997 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2998 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2999 pd->device_tx_status = pl330_tx_status; 3000 pd->device_prep_slave_sg = pl330_prep_slave_sg; 3001 pd->device_control = pl330_control; 3002 pd->device_issue_pending = pl330_issue_pending; 3003 3004 ret = dma_async_device_register(pd); 3005 if (ret) { 3006 dev_err(&adev->dev, "unable to register DMAC\n"); 3007 goto probe_err3; 3008 } 3009 3010 if (adev->dev.of_node) { 3011 ret = of_dma_controller_register(adev->dev.of_node, 3012 of_dma_pl330_xlate, pdmac); 3013 if (ret) { 3014 dev_err(&adev->dev, 3015 "unable to register DMA to the generic DT DMA helpers\n"); 3016 } 3017 } 3018 3019 dev_info(&adev->dev, 3020 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 3021 dev_info(&adev->dev, 3022 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3023 pi->pcfg.data_buf_dep, 3024 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan, 3025 pi->pcfg.num_peri, pi->pcfg.num_events); 3026 3027 return 0; 3028 probe_err3: 3029 amba_set_drvdata(adev, NULL); 3030 3031 /* Idle the DMAC */ 3032 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3033 chan.device_node) { 3034 3035 /* Remove the channel */ 3036 list_del(&pch->chan.device_node); 3037 3038 /* Flush the channel */ 3039 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3040 pl330_free_chan_resources(&pch->chan); 3041 } 3042 probe_err2: 3043 pl330_del(pi); 3044 probe_err1: 3045 free_irq(irq, pi); 3046 3047 return ret; 3048 } 3049 3050 static int pl330_remove(struct amba_device *adev) 3051 { 3052 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev); 3053 struct dma_pl330_chan *pch, *_p; 3054 struct pl330_info *pi; 3055 int irq; 3056 3057 if (!pdmac) 3058 return 0; 3059 3060 if (adev->dev.of_node) 3061 of_dma_controller_free(adev->dev.of_node); 3062 3063 dma_async_device_unregister(&pdmac->ddma); 3064 amba_set_drvdata(adev, NULL); 3065 3066 /* Idle the DMAC */ 3067 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3068 chan.device_node) { 3069 3070 /* Remove the channel */ 3071 list_del(&pch->chan.device_node); 3072 3073 /* Flush the channel */ 3074 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3075 pl330_free_chan_resources(&pch->chan); 3076 } 3077 3078 pi = &pdmac->pif; 3079 3080 pl330_del(pi); 3081 3082 irq = adev->irq[0]; 3083 free_irq(irq, pi); 3084 3085 return 0; 3086 } 3087 3088 static struct amba_id pl330_ids[] = { 3089 { 3090 .id = 0x00041330, 3091 .mask = 0x000fffff, 3092 }, 3093 { 0, 0 }, 3094 }; 3095 3096 MODULE_DEVICE_TABLE(amba, pl330_ids); 3097 3098 static struct amba_driver pl330_driver = { 3099 .drv = { 3100 .owner = THIS_MODULE, 3101 .name = "dma-pl330", 3102 }, 3103 .id_table = pl330_ids, 3104 .probe = pl330_probe, 3105 .remove = pl330_remove, 3106 }; 3107 3108 module_amba_driver(pl330_driver); 3109 3110 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 3111 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3112 MODULE_LICENSE("GPL"); 3113