1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/err.h> 30 #include <linux/pm_runtime.h> 31 32 #include "dmaengine.h" 33 #define PL330_MAX_CHAN 8 34 #define PL330_MAX_IRQS 32 35 #define PL330_MAX_PERI 32 36 #define PL330_MAX_BURST 16 37 38 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 39 40 enum pl330_cachectrl { 41 CCTRL0, /* Noncacheable and nonbufferable */ 42 CCTRL1, /* Bufferable only */ 43 CCTRL2, /* Cacheable, but do not allocate */ 44 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 45 INVALID1, /* AWCACHE = 0x1000 */ 46 INVALID2, 47 CCTRL6, /* Cacheable write-through, allocate on writes only */ 48 CCTRL7, /* Cacheable write-back, allocate on writes only */ 49 }; 50 51 enum pl330_byteswap { 52 SWAP_NO, 53 SWAP_2, 54 SWAP_4, 55 SWAP_8, 56 SWAP_16, 57 }; 58 59 /* Register and Bit field Definitions */ 60 #define DS 0x0 61 #define DS_ST_STOP 0x0 62 #define DS_ST_EXEC 0x1 63 #define DS_ST_CMISS 0x2 64 #define DS_ST_UPDTPC 0x3 65 #define DS_ST_WFE 0x4 66 #define DS_ST_ATBRR 0x5 67 #define DS_ST_QBUSY 0x6 68 #define DS_ST_WFP 0x7 69 #define DS_ST_KILL 0x8 70 #define DS_ST_CMPLT 0x9 71 #define DS_ST_FLTCMP 0xe 72 #define DS_ST_FAULT 0xf 73 74 #define DPC 0x4 75 #define INTEN 0x20 76 #define ES 0x24 77 #define INTSTATUS 0x28 78 #define INTCLR 0x2c 79 #define FSM 0x30 80 #define FSC 0x34 81 #define FTM 0x38 82 83 #define _FTC 0x40 84 #define FTC(n) (_FTC + (n)*0x4) 85 86 #define _CS 0x100 87 #define CS(n) (_CS + (n)*0x8) 88 #define CS_CNS (1 << 21) 89 90 #define _CPC 0x104 91 #define CPC(n) (_CPC + (n)*0x8) 92 93 #define _SA 0x400 94 #define SA(n) (_SA + (n)*0x20) 95 96 #define _DA 0x404 97 #define DA(n) (_DA + (n)*0x20) 98 99 #define _CC 0x408 100 #define CC(n) (_CC + (n)*0x20) 101 102 #define CC_SRCINC (1 << 0) 103 #define CC_DSTINC (1 << 14) 104 #define CC_SRCPRI (1 << 8) 105 #define CC_DSTPRI (1 << 22) 106 #define CC_SRCNS (1 << 9) 107 #define CC_DSTNS (1 << 23) 108 #define CC_SRCIA (1 << 10) 109 #define CC_DSTIA (1 << 24) 110 #define CC_SRCBRSTLEN_SHFT 4 111 #define CC_DSTBRSTLEN_SHFT 18 112 #define CC_SRCBRSTSIZE_SHFT 1 113 #define CC_DSTBRSTSIZE_SHFT 15 114 #define CC_SRCCCTRL_SHFT 11 115 #define CC_SRCCCTRL_MASK 0x7 116 #define CC_DSTCCTRL_SHFT 25 117 #define CC_DRCCCTRL_MASK 0x7 118 #define CC_SWAP_SHFT 28 119 120 #define _LC0 0x40c 121 #define LC0(n) (_LC0 + (n)*0x20) 122 123 #define _LC1 0x410 124 #define LC1(n) (_LC1 + (n)*0x20) 125 126 #define DBGSTATUS 0xd00 127 #define DBG_BUSY (1 << 0) 128 129 #define DBGCMD 0xd04 130 #define DBGINST0 0xd08 131 #define DBGINST1 0xd0c 132 133 #define CR0 0xe00 134 #define CR1 0xe04 135 #define CR2 0xe08 136 #define CR3 0xe0c 137 #define CR4 0xe10 138 #define CRD 0xe14 139 140 #define PERIPH_ID 0xfe0 141 #define PERIPH_REV_SHIFT 20 142 #define PERIPH_REV_MASK 0xf 143 #define PERIPH_REV_R0P0 0 144 #define PERIPH_REV_R1P0 1 145 #define PERIPH_REV_R1P1 2 146 147 #define CR0_PERIPH_REQ_SET (1 << 0) 148 #define CR0_BOOT_EN_SET (1 << 1) 149 #define CR0_BOOT_MAN_NS (1 << 2) 150 #define CR0_NUM_CHANS_SHIFT 4 151 #define CR0_NUM_CHANS_MASK 0x7 152 #define CR0_NUM_PERIPH_SHIFT 12 153 #define CR0_NUM_PERIPH_MASK 0x1f 154 #define CR0_NUM_EVENTS_SHIFT 17 155 #define CR0_NUM_EVENTS_MASK 0x1f 156 157 #define CR1_ICACHE_LEN_SHIFT 0 158 #define CR1_ICACHE_LEN_MASK 0x7 159 #define CR1_NUM_ICACHELINES_SHIFT 4 160 #define CR1_NUM_ICACHELINES_MASK 0xf 161 162 #define CRD_DATA_WIDTH_SHIFT 0 163 #define CRD_DATA_WIDTH_MASK 0x7 164 #define CRD_WR_CAP_SHIFT 4 165 #define CRD_WR_CAP_MASK 0x7 166 #define CRD_WR_Q_DEP_SHIFT 8 167 #define CRD_WR_Q_DEP_MASK 0xf 168 #define CRD_RD_CAP_SHIFT 12 169 #define CRD_RD_CAP_MASK 0x7 170 #define CRD_RD_Q_DEP_SHIFT 16 171 #define CRD_RD_Q_DEP_MASK 0xf 172 #define CRD_DATA_BUFF_SHIFT 20 173 #define CRD_DATA_BUFF_MASK 0x3ff 174 175 #define PART 0x330 176 #define DESIGNER 0x41 177 #define REVISION 0x0 178 #define INTEG_CFG 0x0 179 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 180 181 #define PL330_STATE_STOPPED (1 << 0) 182 #define PL330_STATE_EXECUTING (1 << 1) 183 #define PL330_STATE_WFE (1 << 2) 184 #define PL330_STATE_FAULTING (1 << 3) 185 #define PL330_STATE_COMPLETING (1 << 4) 186 #define PL330_STATE_WFP (1 << 5) 187 #define PL330_STATE_KILLING (1 << 6) 188 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 189 #define PL330_STATE_CACHEMISS (1 << 8) 190 #define PL330_STATE_UPDTPC (1 << 9) 191 #define PL330_STATE_ATBARRIER (1 << 10) 192 #define PL330_STATE_QUEUEBUSY (1 << 11) 193 #define PL330_STATE_INVALID (1 << 15) 194 195 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 196 | PL330_STATE_WFE | PL330_STATE_FAULTING) 197 198 #define CMD_DMAADDH 0x54 199 #define CMD_DMAEND 0x00 200 #define CMD_DMAFLUSHP 0x35 201 #define CMD_DMAGO 0xa0 202 #define CMD_DMALD 0x04 203 #define CMD_DMALDP 0x25 204 #define CMD_DMALP 0x20 205 #define CMD_DMALPEND 0x28 206 #define CMD_DMAKILL 0x01 207 #define CMD_DMAMOV 0xbc 208 #define CMD_DMANOP 0x18 209 #define CMD_DMARMB 0x12 210 #define CMD_DMASEV 0x34 211 #define CMD_DMAST 0x08 212 #define CMD_DMASTP 0x29 213 #define CMD_DMASTZ 0x0c 214 #define CMD_DMAWFE 0x36 215 #define CMD_DMAWFP 0x30 216 #define CMD_DMAWMB 0x13 217 218 #define SZ_DMAADDH 3 219 #define SZ_DMAEND 1 220 #define SZ_DMAFLUSHP 2 221 #define SZ_DMALD 1 222 #define SZ_DMALDP 2 223 #define SZ_DMALP 2 224 #define SZ_DMALPEND 2 225 #define SZ_DMAKILL 1 226 #define SZ_DMAMOV 6 227 #define SZ_DMANOP 1 228 #define SZ_DMARMB 1 229 #define SZ_DMASEV 2 230 #define SZ_DMAST 1 231 #define SZ_DMASTP 2 232 #define SZ_DMASTZ 1 233 #define SZ_DMAWFE 2 234 #define SZ_DMAWFP 2 235 #define SZ_DMAWMB 1 236 #define SZ_DMAGO 6 237 238 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 239 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 240 241 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 242 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 243 244 /* 245 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 246 * at 1byte/burst for P<->M and M<->M respectively. 247 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 248 * should be enough for P<->M and M<->M respectively. 249 */ 250 #define MCODE_BUFF_PER_REQ 256 251 252 /* Use this _only_ to wait on transient states */ 253 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 254 255 #ifdef PL330_DEBUG_MCGEN 256 static unsigned cmd_line; 257 #define PL330_DBGCMD_DUMP(off, x...) do { \ 258 printk("%x:", cmd_line); \ 259 printk(x); \ 260 cmd_line += off; \ 261 } while (0) 262 #define PL330_DBGMC_START(addr) (cmd_line = addr) 263 #else 264 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 265 #define PL330_DBGMC_START(addr) do {} while (0) 266 #endif 267 268 /* The number of default descriptors */ 269 270 #define NR_DEFAULT_DESC 16 271 272 /* Delay for runtime PM autosuspend, ms */ 273 #define PL330_AUTOSUSPEND_DELAY 20 274 275 /* Populated by the PL330 core driver for DMA API driver's info */ 276 struct pl330_config { 277 u32 periph_id; 278 #define DMAC_MODE_NS (1 << 0) 279 unsigned int mode; 280 unsigned int data_bus_width:10; /* In number of bits */ 281 unsigned int data_buf_dep:11; 282 unsigned int num_chan:4; 283 unsigned int num_peri:6; 284 u32 peri_ns; 285 unsigned int num_events:6; 286 u32 irq_ns; 287 }; 288 289 /** 290 * Request Configuration. 291 * The PL330 core does not modify this and uses the last 292 * working configuration if the request doesn't provide any. 293 * 294 * The Client may want to provide this info only for the 295 * first request and a request with new settings. 296 */ 297 struct pl330_reqcfg { 298 /* Address Incrementing */ 299 unsigned dst_inc:1; 300 unsigned src_inc:1; 301 302 /* 303 * For now, the SRC & DST protection levels 304 * and burst size/length are assumed same. 305 */ 306 bool nonsecure; 307 bool privileged; 308 bool insnaccess; 309 unsigned brst_len:5; 310 unsigned brst_size:3; /* in power of 2 */ 311 312 enum pl330_cachectrl dcctl; 313 enum pl330_cachectrl scctl; 314 enum pl330_byteswap swap; 315 struct pl330_config *pcfg; 316 }; 317 318 /* 319 * One cycle of DMAC operation. 320 * There may be more than one xfer in a request. 321 */ 322 struct pl330_xfer { 323 u32 src_addr; 324 u32 dst_addr; 325 /* Size to xfer */ 326 u32 bytes; 327 }; 328 329 /* The xfer callbacks are made with one of these arguments. */ 330 enum pl330_op_err { 331 /* The all xfers in the request were success. */ 332 PL330_ERR_NONE, 333 /* If req aborted due to global error. */ 334 PL330_ERR_ABORT, 335 /* If req failed due to problem with Channel. */ 336 PL330_ERR_FAIL, 337 }; 338 339 enum dmamov_dst { 340 SAR = 0, 341 CCR, 342 DAR, 343 }; 344 345 enum pl330_dst { 346 SRC = 0, 347 DST, 348 }; 349 350 enum pl330_cond { 351 SINGLE, 352 BURST, 353 ALWAYS, 354 }; 355 356 struct dma_pl330_desc; 357 358 struct _pl330_req { 359 u32 mc_bus; 360 void *mc_cpu; 361 struct dma_pl330_desc *desc; 362 }; 363 364 /* ToBeDone for tasklet */ 365 struct _pl330_tbd { 366 bool reset_dmac; 367 bool reset_mngr; 368 u8 reset_chan; 369 }; 370 371 /* A DMAC Thread */ 372 struct pl330_thread { 373 u8 id; 374 int ev; 375 /* If the channel is not yet acquired by any client */ 376 bool free; 377 /* Parent DMAC */ 378 struct pl330_dmac *dmac; 379 /* Only two at a time */ 380 struct _pl330_req req[2]; 381 /* Index of the last enqueued request */ 382 unsigned lstenq; 383 /* Index of the last submitted request or -1 if the DMA is stopped */ 384 int req_running; 385 }; 386 387 enum pl330_dmac_state { 388 UNINIT, 389 INIT, 390 DYING, 391 }; 392 393 enum desc_status { 394 /* In the DMAC pool */ 395 FREE, 396 /* 397 * Allocated to some channel during prep_xxx 398 * Also may be sitting on the work_list. 399 */ 400 PREP, 401 /* 402 * Sitting on the work_list and already submitted 403 * to the PL330 core. Not more than two descriptors 404 * of a channel can be BUSY at any time. 405 */ 406 BUSY, 407 /* 408 * Sitting on the channel work_list but xfer done 409 * by PL330 core 410 */ 411 DONE, 412 }; 413 414 struct dma_pl330_chan { 415 /* Schedule desc completion */ 416 struct tasklet_struct task; 417 418 /* DMA-Engine Channel */ 419 struct dma_chan chan; 420 421 /* List of submitted descriptors */ 422 struct list_head submitted_list; 423 /* List of issued descriptors */ 424 struct list_head work_list; 425 /* List of completed descriptors */ 426 struct list_head completed_list; 427 428 /* Pointer to the DMAC that manages this channel, 429 * NULL if the channel is available to be acquired. 430 * As the parent, this DMAC also provides descriptors 431 * to the channel. 432 */ 433 struct pl330_dmac *dmac; 434 435 /* To protect channel manipulation */ 436 spinlock_t lock; 437 438 /* 439 * Hardware channel thread of PL330 DMAC. NULL if the channel is 440 * available. 441 */ 442 struct pl330_thread *thread; 443 444 /* For D-to-M and M-to-D channels */ 445 int burst_sz; /* the peripheral fifo width */ 446 int burst_len; /* the number of burst */ 447 dma_addr_t fifo_addr; 448 449 /* for cyclic capability */ 450 bool cyclic; 451 }; 452 453 struct pl330_dmac { 454 /* DMA-Engine Device */ 455 struct dma_device ddma; 456 457 /* Holds info about sg limitations */ 458 struct device_dma_parameters dma_parms; 459 460 /* Pool of descriptors available for the DMAC's channels */ 461 struct list_head desc_pool; 462 /* To protect desc_pool manipulation */ 463 spinlock_t pool_lock; 464 465 /* Size of MicroCode buffers for each channel. */ 466 unsigned mcbufsz; 467 /* ioremap'ed address of PL330 registers. */ 468 void __iomem *base; 469 /* Populated by the PL330 core driver during pl330_add */ 470 struct pl330_config pcfg; 471 472 spinlock_t lock; 473 /* Maximum possible events/irqs */ 474 int events[32]; 475 /* BUS address of MicroCode buffer */ 476 dma_addr_t mcode_bus; 477 /* CPU address of MicroCode buffer */ 478 void *mcode_cpu; 479 /* List of all Channel threads */ 480 struct pl330_thread *channels; 481 /* Pointer to the MANAGER thread */ 482 struct pl330_thread *manager; 483 /* To handle bad news in interrupt */ 484 struct tasklet_struct tasks; 485 struct _pl330_tbd dmac_tbd; 486 /* State of DMAC operation */ 487 enum pl330_dmac_state state; 488 /* Holds list of reqs with due callbacks */ 489 struct list_head req_done; 490 491 /* Peripheral channels connected to this DMAC */ 492 unsigned int num_peripherals; 493 struct dma_pl330_chan *peripherals; /* keep at end */ 494 int quirks; 495 }; 496 497 static struct pl330_of_quirks { 498 char *quirk; 499 int id; 500 } of_quirks[] = { 501 { 502 .quirk = "arm,pl330-broken-no-flushp", 503 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 504 } 505 }; 506 507 struct dma_pl330_desc { 508 /* To attach to a queue as child */ 509 struct list_head node; 510 511 /* Descriptor for the DMA Engine API */ 512 struct dma_async_tx_descriptor txd; 513 514 /* Xfer for PL330 core */ 515 struct pl330_xfer px; 516 517 struct pl330_reqcfg rqcfg; 518 519 enum desc_status status; 520 521 int bytes_requested; 522 bool last; 523 524 /* The channel which currently holds this desc */ 525 struct dma_pl330_chan *pchan; 526 527 enum dma_transfer_direction rqtype; 528 /* Index of peripheral for the xfer. */ 529 unsigned peri:5; 530 /* Hook to attach to DMAC's list of reqs with due callback */ 531 struct list_head rqd; 532 }; 533 534 struct _xfer_spec { 535 u32 ccr; 536 struct dma_pl330_desc *desc; 537 }; 538 539 static inline bool _queue_empty(struct pl330_thread *thrd) 540 { 541 return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL; 542 } 543 544 static inline bool _queue_full(struct pl330_thread *thrd) 545 { 546 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 547 } 548 549 static inline bool is_manager(struct pl330_thread *thrd) 550 { 551 return thrd->dmac->manager == thrd; 552 } 553 554 /* If manager of the thread is in Non-Secure mode */ 555 static inline bool _manager_ns(struct pl330_thread *thrd) 556 { 557 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 558 } 559 560 static inline u32 get_revision(u32 periph_id) 561 { 562 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 563 } 564 565 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 566 enum pl330_dst da, u16 val) 567 { 568 if (dry_run) 569 return SZ_DMAADDH; 570 571 buf[0] = CMD_DMAADDH; 572 buf[0] |= (da << 1); 573 *((__le16 *)&buf[1]) = cpu_to_le16(val); 574 575 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 576 da == 1 ? "DA" : "SA", val); 577 578 return SZ_DMAADDH; 579 } 580 581 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 582 { 583 if (dry_run) 584 return SZ_DMAEND; 585 586 buf[0] = CMD_DMAEND; 587 588 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 589 590 return SZ_DMAEND; 591 } 592 593 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 594 { 595 if (dry_run) 596 return SZ_DMAFLUSHP; 597 598 buf[0] = CMD_DMAFLUSHP; 599 600 peri &= 0x1f; 601 peri <<= 3; 602 buf[1] = peri; 603 604 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 605 606 return SZ_DMAFLUSHP; 607 } 608 609 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 610 { 611 if (dry_run) 612 return SZ_DMALD; 613 614 buf[0] = CMD_DMALD; 615 616 if (cond == SINGLE) 617 buf[0] |= (0 << 1) | (1 << 0); 618 else if (cond == BURST) 619 buf[0] |= (1 << 1) | (1 << 0); 620 621 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 622 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 623 624 return SZ_DMALD; 625 } 626 627 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 628 enum pl330_cond cond, u8 peri) 629 { 630 if (dry_run) 631 return SZ_DMALDP; 632 633 buf[0] = CMD_DMALDP; 634 635 if (cond == BURST) 636 buf[0] |= (1 << 1); 637 638 peri &= 0x1f; 639 peri <<= 3; 640 buf[1] = peri; 641 642 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 643 cond == SINGLE ? 'S' : 'B', peri >> 3); 644 645 return SZ_DMALDP; 646 } 647 648 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 649 unsigned loop, u8 cnt) 650 { 651 if (dry_run) 652 return SZ_DMALP; 653 654 buf[0] = CMD_DMALP; 655 656 if (loop) 657 buf[0] |= (1 << 1); 658 659 cnt--; /* DMAC increments by 1 internally */ 660 buf[1] = cnt; 661 662 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 663 664 return SZ_DMALP; 665 } 666 667 struct _arg_LPEND { 668 enum pl330_cond cond; 669 bool forever; 670 unsigned loop; 671 u8 bjump; 672 }; 673 674 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 675 const struct _arg_LPEND *arg) 676 { 677 enum pl330_cond cond = arg->cond; 678 bool forever = arg->forever; 679 unsigned loop = arg->loop; 680 u8 bjump = arg->bjump; 681 682 if (dry_run) 683 return SZ_DMALPEND; 684 685 buf[0] = CMD_DMALPEND; 686 687 if (loop) 688 buf[0] |= (1 << 2); 689 690 if (!forever) 691 buf[0] |= (1 << 4); 692 693 if (cond == SINGLE) 694 buf[0] |= (0 << 1) | (1 << 0); 695 else if (cond == BURST) 696 buf[0] |= (1 << 1) | (1 << 0); 697 698 buf[1] = bjump; 699 700 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 701 forever ? "FE" : "END", 702 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 703 loop ? '1' : '0', 704 bjump); 705 706 return SZ_DMALPEND; 707 } 708 709 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 710 { 711 if (dry_run) 712 return SZ_DMAKILL; 713 714 buf[0] = CMD_DMAKILL; 715 716 return SZ_DMAKILL; 717 } 718 719 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 720 enum dmamov_dst dst, u32 val) 721 { 722 if (dry_run) 723 return SZ_DMAMOV; 724 725 buf[0] = CMD_DMAMOV; 726 buf[1] = dst; 727 *((__le32 *)&buf[2]) = cpu_to_le32(val); 728 729 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 730 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 731 732 return SZ_DMAMOV; 733 } 734 735 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 736 { 737 if (dry_run) 738 return SZ_DMANOP; 739 740 buf[0] = CMD_DMANOP; 741 742 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 743 744 return SZ_DMANOP; 745 } 746 747 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 748 { 749 if (dry_run) 750 return SZ_DMARMB; 751 752 buf[0] = CMD_DMARMB; 753 754 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 755 756 return SZ_DMARMB; 757 } 758 759 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 760 { 761 if (dry_run) 762 return SZ_DMASEV; 763 764 buf[0] = CMD_DMASEV; 765 766 ev &= 0x1f; 767 ev <<= 3; 768 buf[1] = ev; 769 770 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 771 772 return SZ_DMASEV; 773 } 774 775 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 776 { 777 if (dry_run) 778 return SZ_DMAST; 779 780 buf[0] = CMD_DMAST; 781 782 if (cond == SINGLE) 783 buf[0] |= (0 << 1) | (1 << 0); 784 else if (cond == BURST) 785 buf[0] |= (1 << 1) | (1 << 0); 786 787 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 788 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 789 790 return SZ_DMAST; 791 } 792 793 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 794 enum pl330_cond cond, u8 peri) 795 { 796 if (dry_run) 797 return SZ_DMASTP; 798 799 buf[0] = CMD_DMASTP; 800 801 if (cond == BURST) 802 buf[0] |= (1 << 1); 803 804 peri &= 0x1f; 805 peri <<= 3; 806 buf[1] = peri; 807 808 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 809 cond == SINGLE ? 'S' : 'B', peri >> 3); 810 811 return SZ_DMASTP; 812 } 813 814 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 815 { 816 if (dry_run) 817 return SZ_DMASTZ; 818 819 buf[0] = CMD_DMASTZ; 820 821 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 822 823 return SZ_DMASTZ; 824 } 825 826 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 827 unsigned invalidate) 828 { 829 if (dry_run) 830 return SZ_DMAWFE; 831 832 buf[0] = CMD_DMAWFE; 833 834 ev &= 0x1f; 835 ev <<= 3; 836 buf[1] = ev; 837 838 if (invalidate) 839 buf[1] |= (1 << 1); 840 841 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 842 ev >> 3, invalidate ? ", I" : ""); 843 844 return SZ_DMAWFE; 845 } 846 847 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 848 enum pl330_cond cond, u8 peri) 849 { 850 if (dry_run) 851 return SZ_DMAWFP; 852 853 buf[0] = CMD_DMAWFP; 854 855 if (cond == SINGLE) 856 buf[0] |= (0 << 1) | (0 << 0); 857 else if (cond == BURST) 858 buf[0] |= (1 << 1) | (0 << 0); 859 else 860 buf[0] |= (0 << 1) | (1 << 0); 861 862 peri &= 0x1f; 863 peri <<= 3; 864 buf[1] = peri; 865 866 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 867 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 868 869 return SZ_DMAWFP; 870 } 871 872 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 873 { 874 if (dry_run) 875 return SZ_DMAWMB; 876 877 buf[0] = CMD_DMAWMB; 878 879 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 880 881 return SZ_DMAWMB; 882 } 883 884 struct _arg_GO { 885 u8 chan; 886 u32 addr; 887 unsigned ns; 888 }; 889 890 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 891 const struct _arg_GO *arg) 892 { 893 u8 chan = arg->chan; 894 u32 addr = arg->addr; 895 unsigned ns = arg->ns; 896 897 if (dry_run) 898 return SZ_DMAGO; 899 900 buf[0] = CMD_DMAGO; 901 buf[0] |= (ns << 1); 902 903 buf[1] = chan & 0x7; 904 905 *((__le32 *)&buf[2]) = cpu_to_le32(addr); 906 907 return SZ_DMAGO; 908 } 909 910 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 911 912 /* Returns Time-Out */ 913 static bool _until_dmac_idle(struct pl330_thread *thrd) 914 { 915 void __iomem *regs = thrd->dmac->base; 916 unsigned long loops = msecs_to_loops(5); 917 918 do { 919 /* Until Manager is Idle */ 920 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 921 break; 922 923 cpu_relax(); 924 } while (--loops); 925 926 if (!loops) 927 return true; 928 929 return false; 930 } 931 932 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 933 u8 insn[], bool as_manager) 934 { 935 void __iomem *regs = thrd->dmac->base; 936 u32 val; 937 938 val = (insn[0] << 16) | (insn[1] << 24); 939 if (!as_manager) { 940 val |= (1 << 0); 941 val |= (thrd->id << 8); /* Channel Number */ 942 } 943 writel(val, regs + DBGINST0); 944 945 val = le32_to_cpu(*((__le32 *)&insn[2])); 946 writel(val, regs + DBGINST1); 947 948 /* If timed out due to halted state-machine */ 949 if (_until_dmac_idle(thrd)) { 950 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 951 return; 952 } 953 954 /* Get going */ 955 writel(0, regs + DBGCMD); 956 } 957 958 static inline u32 _state(struct pl330_thread *thrd) 959 { 960 void __iomem *regs = thrd->dmac->base; 961 u32 val; 962 963 if (is_manager(thrd)) 964 val = readl(regs + DS) & 0xf; 965 else 966 val = readl(regs + CS(thrd->id)) & 0xf; 967 968 switch (val) { 969 case DS_ST_STOP: 970 return PL330_STATE_STOPPED; 971 case DS_ST_EXEC: 972 return PL330_STATE_EXECUTING; 973 case DS_ST_CMISS: 974 return PL330_STATE_CACHEMISS; 975 case DS_ST_UPDTPC: 976 return PL330_STATE_UPDTPC; 977 case DS_ST_WFE: 978 return PL330_STATE_WFE; 979 case DS_ST_FAULT: 980 return PL330_STATE_FAULTING; 981 case DS_ST_ATBRR: 982 if (is_manager(thrd)) 983 return PL330_STATE_INVALID; 984 else 985 return PL330_STATE_ATBARRIER; 986 case DS_ST_QBUSY: 987 if (is_manager(thrd)) 988 return PL330_STATE_INVALID; 989 else 990 return PL330_STATE_QUEUEBUSY; 991 case DS_ST_WFP: 992 if (is_manager(thrd)) 993 return PL330_STATE_INVALID; 994 else 995 return PL330_STATE_WFP; 996 case DS_ST_KILL: 997 if (is_manager(thrd)) 998 return PL330_STATE_INVALID; 999 else 1000 return PL330_STATE_KILLING; 1001 case DS_ST_CMPLT: 1002 if (is_manager(thrd)) 1003 return PL330_STATE_INVALID; 1004 else 1005 return PL330_STATE_COMPLETING; 1006 case DS_ST_FLTCMP: 1007 if (is_manager(thrd)) 1008 return PL330_STATE_INVALID; 1009 else 1010 return PL330_STATE_FAULT_COMPLETING; 1011 default: 1012 return PL330_STATE_INVALID; 1013 } 1014 } 1015 1016 static void _stop(struct pl330_thread *thrd) 1017 { 1018 void __iomem *regs = thrd->dmac->base; 1019 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1020 1021 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1022 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1023 1024 /* Return if nothing needs to be done */ 1025 if (_state(thrd) == PL330_STATE_COMPLETING 1026 || _state(thrd) == PL330_STATE_KILLING 1027 || _state(thrd) == PL330_STATE_STOPPED) 1028 return; 1029 1030 _emit_KILL(0, insn); 1031 1032 /* Stop generating interrupts for SEV */ 1033 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1034 1035 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1036 } 1037 1038 /* Start doing req 'idx' of thread 'thrd' */ 1039 static bool _trigger(struct pl330_thread *thrd) 1040 { 1041 void __iomem *regs = thrd->dmac->base; 1042 struct _pl330_req *req; 1043 struct dma_pl330_desc *desc; 1044 struct _arg_GO go; 1045 unsigned ns; 1046 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1047 int idx; 1048 1049 /* Return if already ACTIVE */ 1050 if (_state(thrd) != PL330_STATE_STOPPED) 1051 return true; 1052 1053 idx = 1 - thrd->lstenq; 1054 if (thrd->req[idx].desc != NULL) { 1055 req = &thrd->req[idx]; 1056 } else { 1057 idx = thrd->lstenq; 1058 if (thrd->req[idx].desc != NULL) 1059 req = &thrd->req[idx]; 1060 else 1061 req = NULL; 1062 } 1063 1064 /* Return if no request */ 1065 if (!req) 1066 return true; 1067 1068 /* Return if req is running */ 1069 if (idx == thrd->req_running) 1070 return true; 1071 1072 desc = req->desc; 1073 1074 ns = desc->rqcfg.nonsecure ? 1 : 0; 1075 1076 /* See 'Abort Sources' point-4 at Page 2-25 */ 1077 if (_manager_ns(thrd) && !ns) 1078 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1079 __func__, __LINE__); 1080 1081 go.chan = thrd->id; 1082 go.addr = req->mc_bus; 1083 go.ns = ns; 1084 _emit_GO(0, insn, &go); 1085 1086 /* Set to generate interrupts for SEV */ 1087 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1088 1089 /* Only manager can execute GO */ 1090 _execute_DBGINSN(thrd, insn, true); 1091 1092 thrd->req_running = idx; 1093 1094 return true; 1095 } 1096 1097 static bool _start(struct pl330_thread *thrd) 1098 { 1099 switch (_state(thrd)) { 1100 case PL330_STATE_FAULT_COMPLETING: 1101 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1102 1103 if (_state(thrd) == PL330_STATE_KILLING) 1104 UNTIL(thrd, PL330_STATE_STOPPED) 1105 1106 case PL330_STATE_FAULTING: 1107 _stop(thrd); 1108 1109 case PL330_STATE_KILLING: 1110 case PL330_STATE_COMPLETING: 1111 UNTIL(thrd, PL330_STATE_STOPPED) 1112 1113 case PL330_STATE_STOPPED: 1114 return _trigger(thrd); 1115 1116 case PL330_STATE_WFP: 1117 case PL330_STATE_QUEUEBUSY: 1118 case PL330_STATE_ATBARRIER: 1119 case PL330_STATE_UPDTPC: 1120 case PL330_STATE_CACHEMISS: 1121 case PL330_STATE_EXECUTING: 1122 return true; 1123 1124 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1125 default: 1126 return false; 1127 } 1128 } 1129 1130 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1131 const struct _xfer_spec *pxs, int cyc) 1132 { 1133 int off = 0; 1134 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1135 1136 /* check lock-up free version */ 1137 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1138 while (cyc--) { 1139 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1140 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1141 } 1142 } else { 1143 while (cyc--) { 1144 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1145 off += _emit_RMB(dry_run, &buf[off]); 1146 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1147 off += _emit_WMB(dry_run, &buf[off]); 1148 } 1149 } 1150 1151 return off; 1152 } 1153 1154 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run, 1155 u8 buf[], const struct _xfer_spec *pxs, 1156 int cyc) 1157 { 1158 int off = 0; 1159 enum pl330_cond cond; 1160 1161 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 1162 cond = BURST; 1163 else 1164 cond = SINGLE; 1165 1166 while (cyc--) { 1167 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1168 off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri); 1169 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1170 1171 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1172 off += _emit_FLUSHP(dry_run, &buf[off], 1173 pxs->desc->peri); 1174 } 1175 1176 return off; 1177 } 1178 1179 static inline int _ldst_memtodev(struct pl330_dmac *pl330, 1180 unsigned dry_run, u8 buf[], 1181 const struct _xfer_spec *pxs, int cyc) 1182 { 1183 int off = 0; 1184 enum pl330_cond cond; 1185 1186 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 1187 cond = BURST; 1188 else 1189 cond = SINGLE; 1190 1191 while (cyc--) { 1192 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1193 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1194 off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri); 1195 1196 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1197 off += _emit_FLUSHP(dry_run, &buf[off], 1198 pxs->desc->peri); 1199 } 1200 1201 return off; 1202 } 1203 1204 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1205 const struct _xfer_spec *pxs, int cyc) 1206 { 1207 int off = 0; 1208 1209 switch (pxs->desc->rqtype) { 1210 case DMA_MEM_TO_DEV: 1211 off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc); 1212 break; 1213 case DMA_DEV_TO_MEM: 1214 off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc); 1215 break; 1216 case DMA_MEM_TO_MEM: 1217 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1218 break; 1219 default: 1220 off += 0x40000000; /* Scare off the Client */ 1221 break; 1222 } 1223 1224 return off; 1225 } 1226 1227 /* Returns bytes consumed and updates bursts */ 1228 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1229 unsigned long *bursts, const struct _xfer_spec *pxs) 1230 { 1231 int cyc, cycmax, szlp, szlpend, szbrst, off; 1232 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1233 struct _arg_LPEND lpend; 1234 1235 if (*bursts == 1) 1236 return _bursts(pl330, dry_run, buf, pxs, 1); 1237 1238 /* Max iterations possible in DMALP is 256 */ 1239 if (*bursts >= 256*256) { 1240 lcnt1 = 256; 1241 lcnt0 = 256; 1242 cyc = *bursts / lcnt1 / lcnt0; 1243 } else if (*bursts > 256) { 1244 lcnt1 = 256; 1245 lcnt0 = *bursts / lcnt1; 1246 cyc = 1; 1247 } else { 1248 lcnt1 = *bursts; 1249 lcnt0 = 0; 1250 cyc = 1; 1251 } 1252 1253 szlp = _emit_LP(1, buf, 0, 0); 1254 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1255 1256 lpend.cond = ALWAYS; 1257 lpend.forever = false; 1258 lpend.loop = 0; 1259 lpend.bjump = 0; 1260 szlpend = _emit_LPEND(1, buf, &lpend); 1261 1262 if (lcnt0) { 1263 szlp *= 2; 1264 szlpend *= 2; 1265 } 1266 1267 /* 1268 * Max bursts that we can unroll due to limit on the 1269 * size of backward jump that can be encoded in DMALPEND 1270 * which is 8-bits and hence 255 1271 */ 1272 cycmax = (255 - (szlp + szlpend)) / szbrst; 1273 1274 cyc = (cycmax < cyc) ? cycmax : cyc; 1275 1276 off = 0; 1277 1278 if (lcnt0) { 1279 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1280 ljmp0 = off; 1281 } 1282 1283 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1284 ljmp1 = off; 1285 1286 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1287 1288 lpend.cond = ALWAYS; 1289 lpend.forever = false; 1290 lpend.loop = 1; 1291 lpend.bjump = off - ljmp1; 1292 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1293 1294 if (lcnt0) { 1295 lpend.cond = ALWAYS; 1296 lpend.forever = false; 1297 lpend.loop = 0; 1298 lpend.bjump = off - ljmp0; 1299 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1300 } 1301 1302 *bursts = lcnt1 * cyc; 1303 if (lcnt0) 1304 *bursts *= lcnt0; 1305 1306 return off; 1307 } 1308 1309 static inline int _setup_loops(struct pl330_dmac *pl330, 1310 unsigned dry_run, u8 buf[], 1311 const struct _xfer_spec *pxs) 1312 { 1313 struct pl330_xfer *x = &pxs->desc->px; 1314 u32 ccr = pxs->ccr; 1315 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1316 int off = 0; 1317 1318 while (bursts) { 1319 c = bursts; 1320 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1321 bursts -= c; 1322 } 1323 1324 return off; 1325 } 1326 1327 static inline int _setup_xfer(struct pl330_dmac *pl330, 1328 unsigned dry_run, u8 buf[], 1329 const struct _xfer_spec *pxs) 1330 { 1331 struct pl330_xfer *x = &pxs->desc->px; 1332 int off = 0; 1333 1334 /* DMAMOV SAR, x->src_addr */ 1335 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1336 /* DMAMOV DAR, x->dst_addr */ 1337 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1338 1339 /* Setup Loop(s) */ 1340 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1341 1342 return off; 1343 } 1344 1345 /* 1346 * A req is a sequence of one or more xfer units. 1347 * Returns the number of bytes taken to setup the MC for the req. 1348 */ 1349 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1350 struct pl330_thread *thrd, unsigned index, 1351 struct _xfer_spec *pxs) 1352 { 1353 struct _pl330_req *req = &thrd->req[index]; 1354 struct pl330_xfer *x; 1355 u8 *buf = req->mc_cpu; 1356 int off = 0; 1357 1358 PL330_DBGMC_START(req->mc_bus); 1359 1360 /* DMAMOV CCR, ccr */ 1361 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1362 1363 x = &pxs->desc->px; 1364 /* Error if xfer length is not aligned at burst size */ 1365 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1366 return -EINVAL; 1367 1368 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1369 1370 /* DMASEV peripheral/event */ 1371 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1372 /* DMAEND */ 1373 off += _emit_END(dry_run, &buf[off]); 1374 1375 return off; 1376 } 1377 1378 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1379 { 1380 u32 ccr = 0; 1381 1382 if (rqc->src_inc) 1383 ccr |= CC_SRCINC; 1384 1385 if (rqc->dst_inc) 1386 ccr |= CC_DSTINC; 1387 1388 /* We set same protection levels for Src and DST for now */ 1389 if (rqc->privileged) 1390 ccr |= CC_SRCPRI | CC_DSTPRI; 1391 if (rqc->nonsecure) 1392 ccr |= CC_SRCNS | CC_DSTNS; 1393 if (rqc->insnaccess) 1394 ccr |= CC_SRCIA | CC_DSTIA; 1395 1396 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1397 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1398 1399 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1400 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1401 1402 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1403 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1404 1405 ccr |= (rqc->swap << CC_SWAP_SHFT); 1406 1407 return ccr; 1408 } 1409 1410 /* 1411 * Submit a list of xfers after which the client wants notification. 1412 * Client is not notified after each xfer unit, just once after all 1413 * xfer units are done or some error occurs. 1414 */ 1415 static int pl330_submit_req(struct pl330_thread *thrd, 1416 struct dma_pl330_desc *desc) 1417 { 1418 struct pl330_dmac *pl330 = thrd->dmac; 1419 struct _xfer_spec xs; 1420 unsigned long flags; 1421 unsigned idx; 1422 u32 ccr; 1423 int ret = 0; 1424 1425 if (pl330->state == DYING 1426 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1427 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1428 __func__, __LINE__); 1429 return -EAGAIN; 1430 } 1431 1432 /* If request for non-existing peripheral */ 1433 if (desc->rqtype != DMA_MEM_TO_MEM && 1434 desc->peri >= pl330->pcfg.num_peri) { 1435 dev_info(thrd->dmac->ddma.dev, 1436 "%s:%d Invalid peripheral(%u)!\n", 1437 __func__, __LINE__, desc->peri); 1438 return -EINVAL; 1439 } 1440 1441 spin_lock_irqsave(&pl330->lock, flags); 1442 1443 if (_queue_full(thrd)) { 1444 ret = -EAGAIN; 1445 goto xfer_exit; 1446 } 1447 1448 /* Prefer Secure Channel */ 1449 if (!_manager_ns(thrd)) 1450 desc->rqcfg.nonsecure = 0; 1451 else 1452 desc->rqcfg.nonsecure = 1; 1453 1454 ccr = _prepare_ccr(&desc->rqcfg); 1455 1456 idx = thrd->req[0].desc == NULL ? 0 : 1; 1457 1458 xs.ccr = ccr; 1459 xs.desc = desc; 1460 1461 /* First dry run to check if req is acceptable */ 1462 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1463 if (ret < 0) 1464 goto xfer_exit; 1465 1466 if (ret > pl330->mcbufsz / 2) { 1467 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1468 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1469 ret = -ENOMEM; 1470 goto xfer_exit; 1471 } 1472 1473 /* Hook the request */ 1474 thrd->lstenq = idx; 1475 thrd->req[idx].desc = desc; 1476 _setup_req(pl330, 0, thrd, idx, &xs); 1477 1478 ret = 0; 1479 1480 xfer_exit: 1481 spin_unlock_irqrestore(&pl330->lock, flags); 1482 1483 return ret; 1484 } 1485 1486 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1487 { 1488 struct dma_pl330_chan *pch; 1489 unsigned long flags; 1490 1491 if (!desc) 1492 return; 1493 1494 pch = desc->pchan; 1495 1496 /* If desc aborted */ 1497 if (!pch) 1498 return; 1499 1500 spin_lock_irqsave(&pch->lock, flags); 1501 1502 desc->status = DONE; 1503 1504 spin_unlock_irqrestore(&pch->lock, flags); 1505 1506 tasklet_schedule(&pch->task); 1507 } 1508 1509 static void pl330_dotask(unsigned long data) 1510 { 1511 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1512 unsigned long flags; 1513 int i; 1514 1515 spin_lock_irqsave(&pl330->lock, flags); 1516 1517 /* The DMAC itself gone nuts */ 1518 if (pl330->dmac_tbd.reset_dmac) { 1519 pl330->state = DYING; 1520 /* Reset the manager too */ 1521 pl330->dmac_tbd.reset_mngr = true; 1522 /* Clear the reset flag */ 1523 pl330->dmac_tbd.reset_dmac = false; 1524 } 1525 1526 if (pl330->dmac_tbd.reset_mngr) { 1527 _stop(pl330->manager); 1528 /* Reset all channels */ 1529 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1530 /* Clear the reset flag */ 1531 pl330->dmac_tbd.reset_mngr = false; 1532 } 1533 1534 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1535 1536 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1537 struct pl330_thread *thrd = &pl330->channels[i]; 1538 void __iomem *regs = pl330->base; 1539 enum pl330_op_err err; 1540 1541 _stop(thrd); 1542 1543 if (readl(regs + FSC) & (1 << thrd->id)) 1544 err = PL330_ERR_FAIL; 1545 else 1546 err = PL330_ERR_ABORT; 1547 1548 spin_unlock_irqrestore(&pl330->lock, flags); 1549 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1550 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1551 spin_lock_irqsave(&pl330->lock, flags); 1552 1553 thrd->req[0].desc = NULL; 1554 thrd->req[1].desc = NULL; 1555 thrd->req_running = -1; 1556 1557 /* Clear the reset flag */ 1558 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1559 } 1560 } 1561 1562 spin_unlock_irqrestore(&pl330->lock, flags); 1563 1564 return; 1565 } 1566 1567 /* Returns 1 if state was updated, 0 otherwise */ 1568 static int pl330_update(struct pl330_dmac *pl330) 1569 { 1570 struct dma_pl330_desc *descdone, *tmp; 1571 unsigned long flags; 1572 void __iomem *regs; 1573 u32 val; 1574 int id, ev, ret = 0; 1575 1576 regs = pl330->base; 1577 1578 spin_lock_irqsave(&pl330->lock, flags); 1579 1580 val = readl(regs + FSM) & 0x1; 1581 if (val) 1582 pl330->dmac_tbd.reset_mngr = true; 1583 else 1584 pl330->dmac_tbd.reset_mngr = false; 1585 1586 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1587 pl330->dmac_tbd.reset_chan |= val; 1588 if (val) { 1589 int i = 0; 1590 while (i < pl330->pcfg.num_chan) { 1591 if (val & (1 << i)) { 1592 dev_info(pl330->ddma.dev, 1593 "Reset Channel-%d\t CS-%x FTC-%x\n", 1594 i, readl(regs + CS(i)), 1595 readl(regs + FTC(i))); 1596 _stop(&pl330->channels[i]); 1597 } 1598 i++; 1599 } 1600 } 1601 1602 /* Check which event happened i.e, thread notified */ 1603 val = readl(regs + ES); 1604 if (pl330->pcfg.num_events < 32 1605 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1606 pl330->dmac_tbd.reset_dmac = true; 1607 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1608 __LINE__); 1609 ret = 1; 1610 goto updt_exit; 1611 } 1612 1613 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1614 if (val & (1 << ev)) { /* Event occurred */ 1615 struct pl330_thread *thrd; 1616 u32 inten = readl(regs + INTEN); 1617 int active; 1618 1619 /* Clear the event */ 1620 if (inten & (1 << ev)) 1621 writel(1 << ev, regs + INTCLR); 1622 1623 ret = 1; 1624 1625 id = pl330->events[ev]; 1626 1627 thrd = &pl330->channels[id]; 1628 1629 active = thrd->req_running; 1630 if (active == -1) /* Aborted */ 1631 continue; 1632 1633 /* Detach the req */ 1634 descdone = thrd->req[active].desc; 1635 thrd->req[active].desc = NULL; 1636 1637 thrd->req_running = -1; 1638 1639 /* Get going again ASAP */ 1640 _start(thrd); 1641 1642 /* For now, just make a list of callbacks to be done */ 1643 list_add_tail(&descdone->rqd, &pl330->req_done); 1644 } 1645 } 1646 1647 /* Now that we are in no hurry, do the callbacks */ 1648 list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) { 1649 list_del(&descdone->rqd); 1650 spin_unlock_irqrestore(&pl330->lock, flags); 1651 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1652 spin_lock_irqsave(&pl330->lock, flags); 1653 } 1654 1655 updt_exit: 1656 spin_unlock_irqrestore(&pl330->lock, flags); 1657 1658 if (pl330->dmac_tbd.reset_dmac 1659 || pl330->dmac_tbd.reset_mngr 1660 || pl330->dmac_tbd.reset_chan) { 1661 ret = 1; 1662 tasklet_schedule(&pl330->tasks); 1663 } 1664 1665 return ret; 1666 } 1667 1668 /* Reserve an event */ 1669 static inline int _alloc_event(struct pl330_thread *thrd) 1670 { 1671 struct pl330_dmac *pl330 = thrd->dmac; 1672 int ev; 1673 1674 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1675 if (pl330->events[ev] == -1) { 1676 pl330->events[ev] = thrd->id; 1677 return ev; 1678 } 1679 1680 return -1; 1681 } 1682 1683 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1684 { 1685 return pl330->pcfg.irq_ns & (1 << i); 1686 } 1687 1688 /* Upon success, returns IdentityToken for the 1689 * allocated channel, NULL otherwise. 1690 */ 1691 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1692 { 1693 struct pl330_thread *thrd = NULL; 1694 unsigned long flags; 1695 int chans, i; 1696 1697 if (pl330->state == DYING) 1698 return NULL; 1699 1700 chans = pl330->pcfg.num_chan; 1701 1702 spin_lock_irqsave(&pl330->lock, flags); 1703 1704 for (i = 0; i < chans; i++) { 1705 thrd = &pl330->channels[i]; 1706 if ((thrd->free) && (!_manager_ns(thrd) || 1707 _chan_ns(pl330, i))) { 1708 thrd->ev = _alloc_event(thrd); 1709 if (thrd->ev >= 0) { 1710 thrd->free = false; 1711 thrd->lstenq = 1; 1712 thrd->req[0].desc = NULL; 1713 thrd->req[1].desc = NULL; 1714 thrd->req_running = -1; 1715 break; 1716 } 1717 } 1718 thrd = NULL; 1719 } 1720 1721 spin_unlock_irqrestore(&pl330->lock, flags); 1722 1723 return thrd; 1724 } 1725 1726 /* Release an event */ 1727 static inline void _free_event(struct pl330_thread *thrd, int ev) 1728 { 1729 struct pl330_dmac *pl330 = thrd->dmac; 1730 1731 /* If the event is valid and was held by the thread */ 1732 if (ev >= 0 && ev < pl330->pcfg.num_events 1733 && pl330->events[ev] == thrd->id) 1734 pl330->events[ev] = -1; 1735 } 1736 1737 static void pl330_release_channel(struct pl330_thread *thrd) 1738 { 1739 struct pl330_dmac *pl330; 1740 unsigned long flags; 1741 1742 if (!thrd || thrd->free) 1743 return; 1744 1745 _stop(thrd); 1746 1747 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1748 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1749 1750 pl330 = thrd->dmac; 1751 1752 spin_lock_irqsave(&pl330->lock, flags); 1753 _free_event(thrd, thrd->ev); 1754 thrd->free = true; 1755 spin_unlock_irqrestore(&pl330->lock, flags); 1756 } 1757 1758 /* Initialize the structure for PL330 configuration, that can be used 1759 * by the client driver the make best use of the DMAC 1760 */ 1761 static void read_dmac_config(struct pl330_dmac *pl330) 1762 { 1763 void __iomem *regs = pl330->base; 1764 u32 val; 1765 1766 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1767 val &= CRD_DATA_WIDTH_MASK; 1768 pl330->pcfg.data_bus_width = 8 * (1 << val); 1769 1770 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1771 val &= CRD_DATA_BUFF_MASK; 1772 pl330->pcfg.data_buf_dep = val + 1; 1773 1774 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1775 val &= CR0_NUM_CHANS_MASK; 1776 val += 1; 1777 pl330->pcfg.num_chan = val; 1778 1779 val = readl(regs + CR0); 1780 if (val & CR0_PERIPH_REQ_SET) { 1781 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1782 val += 1; 1783 pl330->pcfg.num_peri = val; 1784 pl330->pcfg.peri_ns = readl(regs + CR4); 1785 } else { 1786 pl330->pcfg.num_peri = 0; 1787 } 1788 1789 val = readl(regs + CR0); 1790 if (val & CR0_BOOT_MAN_NS) 1791 pl330->pcfg.mode |= DMAC_MODE_NS; 1792 else 1793 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1794 1795 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1796 val &= CR0_NUM_EVENTS_MASK; 1797 val += 1; 1798 pl330->pcfg.num_events = val; 1799 1800 pl330->pcfg.irq_ns = readl(regs + CR3); 1801 } 1802 1803 static inline void _reset_thread(struct pl330_thread *thrd) 1804 { 1805 struct pl330_dmac *pl330 = thrd->dmac; 1806 1807 thrd->req[0].mc_cpu = pl330->mcode_cpu 1808 + (thrd->id * pl330->mcbufsz); 1809 thrd->req[0].mc_bus = pl330->mcode_bus 1810 + (thrd->id * pl330->mcbufsz); 1811 thrd->req[0].desc = NULL; 1812 1813 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1814 + pl330->mcbufsz / 2; 1815 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1816 + pl330->mcbufsz / 2; 1817 thrd->req[1].desc = NULL; 1818 1819 thrd->req_running = -1; 1820 } 1821 1822 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1823 { 1824 int chans = pl330->pcfg.num_chan; 1825 struct pl330_thread *thrd; 1826 int i; 1827 1828 /* Allocate 1 Manager and 'chans' Channel threads */ 1829 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 1830 GFP_KERNEL); 1831 if (!pl330->channels) 1832 return -ENOMEM; 1833 1834 /* Init Channel threads */ 1835 for (i = 0; i < chans; i++) { 1836 thrd = &pl330->channels[i]; 1837 thrd->id = i; 1838 thrd->dmac = pl330; 1839 _reset_thread(thrd); 1840 thrd->free = true; 1841 } 1842 1843 /* MANAGER is indexed at the end */ 1844 thrd = &pl330->channels[chans]; 1845 thrd->id = chans; 1846 thrd->dmac = pl330; 1847 thrd->free = false; 1848 pl330->manager = thrd; 1849 1850 return 0; 1851 } 1852 1853 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1854 { 1855 int chans = pl330->pcfg.num_chan; 1856 int ret; 1857 1858 /* 1859 * Alloc MicroCode buffer for 'chans' Channel threads. 1860 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1861 */ 1862 pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev, 1863 chans * pl330->mcbufsz, 1864 &pl330->mcode_bus, GFP_KERNEL); 1865 if (!pl330->mcode_cpu) { 1866 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1867 __func__, __LINE__); 1868 return -ENOMEM; 1869 } 1870 1871 ret = dmac_alloc_threads(pl330); 1872 if (ret) { 1873 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1874 __func__, __LINE__); 1875 dma_free_coherent(pl330->ddma.dev, 1876 chans * pl330->mcbufsz, 1877 pl330->mcode_cpu, pl330->mcode_bus); 1878 return ret; 1879 } 1880 1881 return 0; 1882 } 1883 1884 static int pl330_add(struct pl330_dmac *pl330) 1885 { 1886 void __iomem *regs; 1887 int i, ret; 1888 1889 regs = pl330->base; 1890 1891 /* Check if we can handle this DMAC */ 1892 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1893 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1894 pl330->pcfg.periph_id); 1895 return -EINVAL; 1896 } 1897 1898 /* Read the configuration of the DMAC */ 1899 read_dmac_config(pl330); 1900 1901 if (pl330->pcfg.num_events == 0) { 1902 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1903 __func__, __LINE__); 1904 return -EINVAL; 1905 } 1906 1907 spin_lock_init(&pl330->lock); 1908 1909 INIT_LIST_HEAD(&pl330->req_done); 1910 1911 /* Use default MC buffer size if not provided */ 1912 if (!pl330->mcbufsz) 1913 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1914 1915 /* Mark all events as free */ 1916 for (i = 0; i < pl330->pcfg.num_events; i++) 1917 pl330->events[i] = -1; 1918 1919 /* Allocate resources needed by the DMAC */ 1920 ret = dmac_alloc_resources(pl330); 1921 if (ret) { 1922 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1923 return ret; 1924 } 1925 1926 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1927 1928 pl330->state = INIT; 1929 1930 return 0; 1931 } 1932 1933 static int dmac_free_threads(struct pl330_dmac *pl330) 1934 { 1935 struct pl330_thread *thrd; 1936 int i; 1937 1938 /* Release Channel threads */ 1939 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1940 thrd = &pl330->channels[i]; 1941 pl330_release_channel(thrd); 1942 } 1943 1944 /* Free memory */ 1945 kfree(pl330->channels); 1946 1947 return 0; 1948 } 1949 1950 static void pl330_del(struct pl330_dmac *pl330) 1951 { 1952 pl330->state = UNINIT; 1953 1954 tasklet_kill(&pl330->tasks); 1955 1956 /* Free DMAC resources */ 1957 dmac_free_threads(pl330); 1958 1959 dma_free_coherent(pl330->ddma.dev, 1960 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 1961 pl330->mcode_bus); 1962 } 1963 1964 /* forward declaration */ 1965 static struct amba_driver pl330_driver; 1966 1967 static inline struct dma_pl330_chan * 1968 to_pchan(struct dma_chan *ch) 1969 { 1970 if (!ch) 1971 return NULL; 1972 1973 return container_of(ch, struct dma_pl330_chan, chan); 1974 } 1975 1976 static inline struct dma_pl330_desc * 1977 to_desc(struct dma_async_tx_descriptor *tx) 1978 { 1979 return container_of(tx, struct dma_pl330_desc, txd); 1980 } 1981 1982 static inline void fill_queue(struct dma_pl330_chan *pch) 1983 { 1984 struct dma_pl330_desc *desc; 1985 int ret; 1986 1987 list_for_each_entry(desc, &pch->work_list, node) { 1988 1989 /* If already submitted */ 1990 if (desc->status == BUSY) 1991 continue; 1992 1993 ret = pl330_submit_req(pch->thread, desc); 1994 if (!ret) { 1995 desc->status = BUSY; 1996 } else if (ret == -EAGAIN) { 1997 /* QFull or DMAC Dying */ 1998 break; 1999 } else { 2000 /* Unacceptable request */ 2001 desc->status = DONE; 2002 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 2003 __func__, __LINE__, desc->txd.cookie); 2004 tasklet_schedule(&pch->task); 2005 } 2006 } 2007 } 2008 2009 static void pl330_tasklet(unsigned long data) 2010 { 2011 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2012 struct dma_pl330_desc *desc, *_dt; 2013 unsigned long flags; 2014 bool power_down = false; 2015 2016 spin_lock_irqsave(&pch->lock, flags); 2017 2018 /* Pick up ripe tomatoes */ 2019 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2020 if (desc->status == DONE) { 2021 if (!pch->cyclic) 2022 dma_cookie_complete(&desc->txd); 2023 list_move_tail(&desc->node, &pch->completed_list); 2024 } 2025 2026 /* Try to submit a req imm. next to the last completed cookie */ 2027 fill_queue(pch); 2028 2029 if (list_empty(&pch->work_list)) { 2030 spin_lock(&pch->thread->dmac->lock); 2031 _stop(pch->thread); 2032 spin_unlock(&pch->thread->dmac->lock); 2033 power_down = true; 2034 } else { 2035 /* Make sure the PL330 Channel thread is active */ 2036 spin_lock(&pch->thread->dmac->lock); 2037 _start(pch->thread); 2038 spin_unlock(&pch->thread->dmac->lock); 2039 } 2040 2041 while (!list_empty(&pch->completed_list)) { 2042 dma_async_tx_callback callback; 2043 void *callback_param; 2044 2045 desc = list_first_entry(&pch->completed_list, 2046 struct dma_pl330_desc, node); 2047 2048 callback = desc->txd.callback; 2049 callback_param = desc->txd.callback_param; 2050 2051 if (pch->cyclic) { 2052 desc->status = PREP; 2053 list_move_tail(&desc->node, &pch->work_list); 2054 if (power_down) { 2055 spin_lock(&pch->thread->dmac->lock); 2056 _start(pch->thread); 2057 spin_unlock(&pch->thread->dmac->lock); 2058 power_down = false; 2059 } 2060 } else { 2061 desc->status = FREE; 2062 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2063 } 2064 2065 dma_descriptor_unmap(&desc->txd); 2066 2067 if (callback) { 2068 spin_unlock_irqrestore(&pch->lock, flags); 2069 callback(callback_param); 2070 spin_lock_irqsave(&pch->lock, flags); 2071 } 2072 } 2073 spin_unlock_irqrestore(&pch->lock, flags); 2074 2075 /* If work list empty, power down */ 2076 if (power_down) { 2077 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2078 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2079 } 2080 } 2081 2082 bool pl330_filter(struct dma_chan *chan, void *param) 2083 { 2084 u8 *peri_id; 2085 2086 if (chan->device->dev->driver != &pl330_driver.drv) 2087 return false; 2088 2089 peri_id = chan->private; 2090 return *peri_id == (unsigned long)param; 2091 } 2092 EXPORT_SYMBOL(pl330_filter); 2093 2094 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2095 struct of_dma *ofdma) 2096 { 2097 int count = dma_spec->args_count; 2098 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2099 unsigned int chan_id; 2100 2101 if (!pl330) 2102 return NULL; 2103 2104 if (count != 1) 2105 return NULL; 2106 2107 chan_id = dma_spec->args[0]; 2108 if (chan_id >= pl330->num_peripherals) 2109 return NULL; 2110 2111 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2112 } 2113 2114 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2115 { 2116 struct dma_pl330_chan *pch = to_pchan(chan); 2117 struct pl330_dmac *pl330 = pch->dmac; 2118 unsigned long flags; 2119 2120 spin_lock_irqsave(&pch->lock, flags); 2121 2122 dma_cookie_init(chan); 2123 pch->cyclic = false; 2124 2125 pch->thread = pl330_request_channel(pl330); 2126 if (!pch->thread) { 2127 spin_unlock_irqrestore(&pch->lock, flags); 2128 return -ENOMEM; 2129 } 2130 2131 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2132 2133 spin_unlock_irqrestore(&pch->lock, flags); 2134 2135 return 1; 2136 } 2137 2138 static int pl330_config(struct dma_chan *chan, 2139 struct dma_slave_config *slave_config) 2140 { 2141 struct dma_pl330_chan *pch = to_pchan(chan); 2142 2143 if (slave_config->direction == DMA_MEM_TO_DEV) { 2144 if (slave_config->dst_addr) 2145 pch->fifo_addr = slave_config->dst_addr; 2146 if (slave_config->dst_addr_width) 2147 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2148 if (slave_config->dst_maxburst) 2149 pch->burst_len = slave_config->dst_maxburst; 2150 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2151 if (slave_config->src_addr) 2152 pch->fifo_addr = slave_config->src_addr; 2153 if (slave_config->src_addr_width) 2154 pch->burst_sz = __ffs(slave_config->src_addr_width); 2155 if (slave_config->src_maxburst) 2156 pch->burst_len = slave_config->src_maxburst; 2157 } 2158 2159 return 0; 2160 } 2161 2162 static int pl330_terminate_all(struct dma_chan *chan) 2163 { 2164 struct dma_pl330_chan *pch = to_pchan(chan); 2165 struct dma_pl330_desc *desc; 2166 unsigned long flags; 2167 struct pl330_dmac *pl330 = pch->dmac; 2168 LIST_HEAD(list); 2169 2170 pm_runtime_get_sync(pl330->ddma.dev); 2171 spin_lock_irqsave(&pch->lock, flags); 2172 spin_lock(&pl330->lock); 2173 _stop(pch->thread); 2174 spin_unlock(&pl330->lock); 2175 2176 pch->thread->req[0].desc = NULL; 2177 pch->thread->req[1].desc = NULL; 2178 pch->thread->req_running = -1; 2179 2180 /* Mark all desc done */ 2181 list_for_each_entry(desc, &pch->submitted_list, node) { 2182 desc->status = FREE; 2183 dma_cookie_complete(&desc->txd); 2184 } 2185 2186 list_for_each_entry(desc, &pch->work_list , node) { 2187 desc->status = FREE; 2188 dma_cookie_complete(&desc->txd); 2189 } 2190 2191 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2192 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2193 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2194 spin_unlock_irqrestore(&pch->lock, flags); 2195 pm_runtime_mark_last_busy(pl330->ddma.dev); 2196 pm_runtime_put_autosuspend(pl330->ddma.dev); 2197 2198 return 0; 2199 } 2200 2201 /* 2202 * We don't support DMA_RESUME command because of hardware 2203 * limitations, so after pausing the channel we cannot restore 2204 * it to active state. We have to terminate channel and setup 2205 * DMA transfer again. This pause feature was implemented to 2206 * allow safely read residue before channel termination. 2207 */ 2208 static int pl330_pause(struct dma_chan *chan) 2209 { 2210 struct dma_pl330_chan *pch = to_pchan(chan); 2211 struct pl330_dmac *pl330 = pch->dmac; 2212 unsigned long flags; 2213 2214 pm_runtime_get_sync(pl330->ddma.dev); 2215 spin_lock_irqsave(&pch->lock, flags); 2216 2217 spin_lock(&pl330->lock); 2218 _stop(pch->thread); 2219 spin_unlock(&pl330->lock); 2220 2221 spin_unlock_irqrestore(&pch->lock, flags); 2222 pm_runtime_mark_last_busy(pl330->ddma.dev); 2223 pm_runtime_put_autosuspend(pl330->ddma.dev); 2224 2225 return 0; 2226 } 2227 2228 static void pl330_free_chan_resources(struct dma_chan *chan) 2229 { 2230 struct dma_pl330_chan *pch = to_pchan(chan); 2231 unsigned long flags; 2232 2233 tasklet_kill(&pch->task); 2234 2235 pm_runtime_get_sync(pch->dmac->ddma.dev); 2236 spin_lock_irqsave(&pch->lock, flags); 2237 2238 pl330_release_channel(pch->thread); 2239 pch->thread = NULL; 2240 2241 if (pch->cyclic) 2242 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2243 2244 spin_unlock_irqrestore(&pch->lock, flags); 2245 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2246 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2247 } 2248 2249 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2250 struct dma_pl330_desc *desc) 2251 { 2252 struct pl330_thread *thrd = pch->thread; 2253 struct pl330_dmac *pl330 = pch->dmac; 2254 void __iomem *regs = thrd->dmac->base; 2255 u32 val, addr; 2256 2257 pm_runtime_get_sync(pl330->ddma.dev); 2258 val = addr = 0; 2259 if (desc->rqcfg.src_inc) { 2260 val = readl(regs + SA(thrd->id)); 2261 addr = desc->px.src_addr; 2262 } else { 2263 val = readl(regs + DA(thrd->id)); 2264 addr = desc->px.dst_addr; 2265 } 2266 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2267 pm_runtime_put_autosuspend(pl330->ddma.dev); 2268 return val - addr; 2269 } 2270 2271 static enum dma_status 2272 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2273 struct dma_tx_state *txstate) 2274 { 2275 enum dma_status ret; 2276 unsigned long flags; 2277 struct dma_pl330_desc *desc, *running = NULL; 2278 struct dma_pl330_chan *pch = to_pchan(chan); 2279 unsigned int transferred, residual = 0; 2280 2281 ret = dma_cookie_status(chan, cookie, txstate); 2282 2283 if (!txstate) 2284 return ret; 2285 2286 if (ret == DMA_COMPLETE) 2287 goto out; 2288 2289 spin_lock_irqsave(&pch->lock, flags); 2290 2291 if (pch->thread->req_running != -1) 2292 running = pch->thread->req[pch->thread->req_running].desc; 2293 2294 /* Check in pending list */ 2295 list_for_each_entry(desc, &pch->work_list, node) { 2296 if (desc->status == DONE) 2297 transferred = desc->bytes_requested; 2298 else if (running && desc == running) 2299 transferred = 2300 pl330_get_current_xferred_count(pch, desc); 2301 else 2302 transferred = 0; 2303 residual += desc->bytes_requested - transferred; 2304 if (desc->txd.cookie == cookie) { 2305 switch (desc->status) { 2306 case DONE: 2307 ret = DMA_COMPLETE; 2308 break; 2309 case PREP: 2310 case BUSY: 2311 ret = DMA_IN_PROGRESS; 2312 break; 2313 default: 2314 WARN_ON(1); 2315 } 2316 break; 2317 } 2318 if (desc->last) 2319 residual = 0; 2320 } 2321 spin_unlock_irqrestore(&pch->lock, flags); 2322 2323 out: 2324 dma_set_residue(txstate, residual); 2325 2326 return ret; 2327 } 2328 2329 static void pl330_issue_pending(struct dma_chan *chan) 2330 { 2331 struct dma_pl330_chan *pch = to_pchan(chan); 2332 unsigned long flags; 2333 2334 spin_lock_irqsave(&pch->lock, flags); 2335 if (list_empty(&pch->work_list)) { 2336 /* 2337 * Warn on nothing pending. Empty submitted_list may 2338 * break our pm_runtime usage counter as it is 2339 * updated on work_list emptiness status. 2340 */ 2341 WARN_ON(list_empty(&pch->submitted_list)); 2342 pm_runtime_get_sync(pch->dmac->ddma.dev); 2343 } 2344 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2345 spin_unlock_irqrestore(&pch->lock, flags); 2346 2347 pl330_tasklet((unsigned long)pch); 2348 } 2349 2350 /* 2351 * We returned the last one of the circular list of descriptor(s) 2352 * from prep_xxx, so the argument to submit corresponds to the last 2353 * descriptor of the list. 2354 */ 2355 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2356 { 2357 struct dma_pl330_desc *desc, *last = to_desc(tx); 2358 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2359 dma_cookie_t cookie; 2360 unsigned long flags; 2361 2362 spin_lock_irqsave(&pch->lock, flags); 2363 2364 /* Assign cookies to all nodes */ 2365 while (!list_empty(&last->node)) { 2366 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2367 if (pch->cyclic) { 2368 desc->txd.callback = last->txd.callback; 2369 desc->txd.callback_param = last->txd.callback_param; 2370 } 2371 desc->last = false; 2372 2373 dma_cookie_assign(&desc->txd); 2374 2375 list_move_tail(&desc->node, &pch->submitted_list); 2376 } 2377 2378 last->last = true; 2379 cookie = dma_cookie_assign(&last->txd); 2380 list_add_tail(&last->node, &pch->submitted_list); 2381 spin_unlock_irqrestore(&pch->lock, flags); 2382 2383 return cookie; 2384 } 2385 2386 static inline void _init_desc(struct dma_pl330_desc *desc) 2387 { 2388 desc->rqcfg.swap = SWAP_NO; 2389 desc->rqcfg.scctl = CCTRL0; 2390 desc->rqcfg.dcctl = CCTRL0; 2391 desc->txd.tx_submit = pl330_tx_submit; 2392 2393 INIT_LIST_HEAD(&desc->node); 2394 } 2395 2396 /* Returns the number of descriptors added to the DMAC pool */ 2397 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count) 2398 { 2399 struct dma_pl330_desc *desc; 2400 unsigned long flags; 2401 int i; 2402 2403 desc = kcalloc(count, sizeof(*desc), flg); 2404 if (!desc) 2405 return 0; 2406 2407 spin_lock_irqsave(&pl330->pool_lock, flags); 2408 2409 for (i = 0; i < count; i++) { 2410 _init_desc(&desc[i]); 2411 list_add_tail(&desc[i].node, &pl330->desc_pool); 2412 } 2413 2414 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2415 2416 return count; 2417 } 2418 2419 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330) 2420 { 2421 struct dma_pl330_desc *desc = NULL; 2422 unsigned long flags; 2423 2424 spin_lock_irqsave(&pl330->pool_lock, flags); 2425 2426 if (!list_empty(&pl330->desc_pool)) { 2427 desc = list_entry(pl330->desc_pool.next, 2428 struct dma_pl330_desc, node); 2429 2430 list_del_init(&desc->node); 2431 2432 desc->status = PREP; 2433 desc->txd.callback = NULL; 2434 } 2435 2436 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2437 2438 return desc; 2439 } 2440 2441 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2442 { 2443 struct pl330_dmac *pl330 = pch->dmac; 2444 u8 *peri_id = pch->chan.private; 2445 struct dma_pl330_desc *desc; 2446 2447 /* Pluck one desc from the pool of DMAC */ 2448 desc = pluck_desc(pl330); 2449 2450 /* If the DMAC pool is empty, alloc new */ 2451 if (!desc) { 2452 if (!add_desc(pl330, GFP_ATOMIC, 1)) 2453 return NULL; 2454 2455 /* Try again */ 2456 desc = pluck_desc(pl330); 2457 if (!desc) { 2458 dev_err(pch->dmac->ddma.dev, 2459 "%s:%d ALERT!\n", __func__, __LINE__); 2460 return NULL; 2461 } 2462 } 2463 2464 /* Initialize the descriptor */ 2465 desc->pchan = pch; 2466 desc->txd.cookie = 0; 2467 async_tx_ack(&desc->txd); 2468 2469 desc->peri = peri_id ? pch->chan.chan_id : 0; 2470 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2471 2472 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2473 2474 return desc; 2475 } 2476 2477 static inline void fill_px(struct pl330_xfer *px, 2478 dma_addr_t dst, dma_addr_t src, size_t len) 2479 { 2480 px->bytes = len; 2481 px->dst_addr = dst; 2482 px->src_addr = src; 2483 } 2484 2485 static struct dma_pl330_desc * 2486 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2487 dma_addr_t src, size_t len) 2488 { 2489 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2490 2491 if (!desc) { 2492 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2493 __func__, __LINE__); 2494 return NULL; 2495 } 2496 2497 /* 2498 * Ideally we should lookout for reqs bigger than 2499 * those that can be programmed with 256 bytes of 2500 * MC buffer, but considering a req size is seldom 2501 * going to be word-unaligned and more than 200MB, 2502 * we take it easy. 2503 * Also, should the limit is reached we'd rather 2504 * have the platform increase MC buffer size than 2505 * complicating this API driver. 2506 */ 2507 fill_px(&desc->px, dst, src, len); 2508 2509 return desc; 2510 } 2511 2512 /* Call after fixing burst size */ 2513 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2514 { 2515 struct dma_pl330_chan *pch = desc->pchan; 2516 struct pl330_dmac *pl330 = pch->dmac; 2517 int burst_len; 2518 2519 burst_len = pl330->pcfg.data_bus_width / 8; 2520 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2521 burst_len >>= desc->rqcfg.brst_size; 2522 2523 /* src/dst_burst_len can't be more than 16 */ 2524 if (burst_len > 16) 2525 burst_len = 16; 2526 2527 while (burst_len > 1) { 2528 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2529 break; 2530 burst_len--; 2531 } 2532 2533 return burst_len; 2534 } 2535 2536 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2537 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2538 size_t period_len, enum dma_transfer_direction direction, 2539 unsigned long flags) 2540 { 2541 struct dma_pl330_desc *desc = NULL, *first = NULL; 2542 struct dma_pl330_chan *pch = to_pchan(chan); 2543 struct pl330_dmac *pl330 = pch->dmac; 2544 unsigned int i; 2545 dma_addr_t dst; 2546 dma_addr_t src; 2547 2548 if (len % period_len != 0) 2549 return NULL; 2550 2551 if (!is_slave_direction(direction)) { 2552 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2553 __func__, __LINE__); 2554 return NULL; 2555 } 2556 2557 for (i = 0; i < len / period_len; i++) { 2558 desc = pl330_get_desc(pch); 2559 if (!desc) { 2560 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2561 __func__, __LINE__); 2562 2563 if (!first) 2564 return NULL; 2565 2566 spin_lock_irqsave(&pl330->pool_lock, flags); 2567 2568 while (!list_empty(&first->node)) { 2569 desc = list_entry(first->node.next, 2570 struct dma_pl330_desc, node); 2571 list_move_tail(&desc->node, &pl330->desc_pool); 2572 } 2573 2574 list_move_tail(&first->node, &pl330->desc_pool); 2575 2576 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2577 2578 return NULL; 2579 } 2580 2581 switch (direction) { 2582 case DMA_MEM_TO_DEV: 2583 desc->rqcfg.src_inc = 1; 2584 desc->rqcfg.dst_inc = 0; 2585 src = dma_addr; 2586 dst = pch->fifo_addr; 2587 break; 2588 case DMA_DEV_TO_MEM: 2589 desc->rqcfg.src_inc = 0; 2590 desc->rqcfg.dst_inc = 1; 2591 src = pch->fifo_addr; 2592 dst = dma_addr; 2593 break; 2594 default: 2595 break; 2596 } 2597 2598 desc->rqtype = direction; 2599 desc->rqcfg.brst_size = pch->burst_sz; 2600 desc->rqcfg.brst_len = 1; 2601 desc->bytes_requested = period_len; 2602 fill_px(&desc->px, dst, src, period_len); 2603 2604 if (!first) 2605 first = desc; 2606 else 2607 list_add_tail(&desc->node, &first->node); 2608 2609 dma_addr += period_len; 2610 } 2611 2612 if (!desc) 2613 return NULL; 2614 2615 pch->cyclic = true; 2616 desc->txd.flags = flags; 2617 2618 return &desc->txd; 2619 } 2620 2621 static struct dma_async_tx_descriptor * 2622 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2623 dma_addr_t src, size_t len, unsigned long flags) 2624 { 2625 struct dma_pl330_desc *desc; 2626 struct dma_pl330_chan *pch = to_pchan(chan); 2627 struct pl330_dmac *pl330; 2628 int burst; 2629 2630 if (unlikely(!pch || !len)) 2631 return NULL; 2632 2633 pl330 = pch->dmac; 2634 2635 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2636 if (!desc) 2637 return NULL; 2638 2639 desc->rqcfg.src_inc = 1; 2640 desc->rqcfg.dst_inc = 1; 2641 desc->rqtype = DMA_MEM_TO_MEM; 2642 2643 /* Select max possible burst size */ 2644 burst = pl330->pcfg.data_bus_width / 8; 2645 2646 /* 2647 * Make sure we use a burst size that aligns with all the memcpy 2648 * parameters because our DMA programming algorithm doesn't cope with 2649 * transfers which straddle an entry in the DMA device's MFIFO. 2650 */ 2651 while ((src | dst | len) & (burst - 1)) 2652 burst /= 2; 2653 2654 desc->rqcfg.brst_size = 0; 2655 while (burst != (1 << desc->rqcfg.brst_size)) 2656 desc->rqcfg.brst_size++; 2657 2658 /* 2659 * If burst size is smaller than bus width then make sure we only 2660 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2661 */ 2662 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2663 desc->rqcfg.brst_len = 1; 2664 2665 desc->rqcfg.brst_len = get_burst_len(desc, len); 2666 desc->bytes_requested = len; 2667 2668 desc->txd.flags = flags; 2669 2670 return &desc->txd; 2671 } 2672 2673 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2674 struct dma_pl330_desc *first) 2675 { 2676 unsigned long flags; 2677 struct dma_pl330_desc *desc; 2678 2679 if (!first) 2680 return; 2681 2682 spin_lock_irqsave(&pl330->pool_lock, flags); 2683 2684 while (!list_empty(&first->node)) { 2685 desc = list_entry(first->node.next, 2686 struct dma_pl330_desc, node); 2687 list_move_tail(&desc->node, &pl330->desc_pool); 2688 } 2689 2690 list_move_tail(&first->node, &pl330->desc_pool); 2691 2692 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2693 } 2694 2695 static struct dma_async_tx_descriptor * 2696 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2697 unsigned int sg_len, enum dma_transfer_direction direction, 2698 unsigned long flg, void *context) 2699 { 2700 struct dma_pl330_desc *first, *desc = NULL; 2701 struct dma_pl330_chan *pch = to_pchan(chan); 2702 struct scatterlist *sg; 2703 int i; 2704 dma_addr_t addr; 2705 2706 if (unlikely(!pch || !sgl || !sg_len)) 2707 return NULL; 2708 2709 addr = pch->fifo_addr; 2710 2711 first = NULL; 2712 2713 for_each_sg(sgl, sg, sg_len, i) { 2714 2715 desc = pl330_get_desc(pch); 2716 if (!desc) { 2717 struct pl330_dmac *pl330 = pch->dmac; 2718 2719 dev_err(pch->dmac->ddma.dev, 2720 "%s:%d Unable to fetch desc\n", 2721 __func__, __LINE__); 2722 __pl330_giveback_desc(pl330, first); 2723 2724 return NULL; 2725 } 2726 2727 if (!first) 2728 first = desc; 2729 else 2730 list_add_tail(&desc->node, &first->node); 2731 2732 if (direction == DMA_MEM_TO_DEV) { 2733 desc->rqcfg.src_inc = 1; 2734 desc->rqcfg.dst_inc = 0; 2735 fill_px(&desc->px, 2736 addr, sg_dma_address(sg), sg_dma_len(sg)); 2737 } else { 2738 desc->rqcfg.src_inc = 0; 2739 desc->rqcfg.dst_inc = 1; 2740 fill_px(&desc->px, 2741 sg_dma_address(sg), addr, sg_dma_len(sg)); 2742 } 2743 2744 desc->rqcfg.brst_size = pch->burst_sz; 2745 desc->rqcfg.brst_len = 1; 2746 desc->rqtype = direction; 2747 desc->bytes_requested = sg_dma_len(sg); 2748 } 2749 2750 /* Return the last desc in the chain */ 2751 desc->txd.flags = flg; 2752 return &desc->txd; 2753 } 2754 2755 static irqreturn_t pl330_irq_handler(int irq, void *data) 2756 { 2757 if (pl330_update(data)) 2758 return IRQ_HANDLED; 2759 else 2760 return IRQ_NONE; 2761 } 2762 2763 #define PL330_DMA_BUSWIDTHS \ 2764 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2765 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2766 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2767 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2768 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2769 2770 /* 2771 * Runtime PM callbacks are provided by amba/bus.c driver. 2772 * 2773 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2774 * bus driver will only disable/enable the clock in runtime PM callbacks. 2775 */ 2776 static int __maybe_unused pl330_suspend(struct device *dev) 2777 { 2778 struct amba_device *pcdev = to_amba_device(dev); 2779 2780 pm_runtime_disable(dev); 2781 2782 if (!pm_runtime_status_suspended(dev)) { 2783 /* amba did not disable the clock */ 2784 amba_pclk_disable(pcdev); 2785 } 2786 amba_pclk_unprepare(pcdev); 2787 2788 return 0; 2789 } 2790 2791 static int __maybe_unused pl330_resume(struct device *dev) 2792 { 2793 struct amba_device *pcdev = to_amba_device(dev); 2794 int ret; 2795 2796 ret = amba_pclk_prepare(pcdev); 2797 if (ret) 2798 return ret; 2799 2800 if (!pm_runtime_status_suspended(dev)) 2801 ret = amba_pclk_enable(pcdev); 2802 2803 pm_runtime_enable(dev); 2804 2805 return ret; 2806 } 2807 2808 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume); 2809 2810 static int 2811 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2812 { 2813 struct dma_pl330_platdata *pdat; 2814 struct pl330_config *pcfg; 2815 struct pl330_dmac *pl330; 2816 struct dma_pl330_chan *pch, *_p; 2817 struct dma_device *pd; 2818 struct resource *res; 2819 int i, ret, irq; 2820 int num_chan; 2821 struct device_node *np = adev->dev.of_node; 2822 2823 pdat = dev_get_platdata(&adev->dev); 2824 2825 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 2826 if (ret) 2827 return ret; 2828 2829 /* Allocate a new DMAC and its Channels */ 2830 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 2831 if (!pl330) { 2832 dev_err(&adev->dev, "unable to allocate mem\n"); 2833 return -ENOMEM; 2834 } 2835 2836 pd = &pl330->ddma; 2837 pd->dev = &adev->dev; 2838 2839 pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2840 2841 /* get quirk */ 2842 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 2843 if (of_property_read_bool(np, of_quirks[i].quirk)) 2844 pl330->quirks |= of_quirks[i].id; 2845 2846 res = &adev->res; 2847 pl330->base = devm_ioremap_resource(&adev->dev, res); 2848 if (IS_ERR(pl330->base)) 2849 return PTR_ERR(pl330->base); 2850 2851 amba_set_drvdata(adev, pl330); 2852 2853 for (i = 0; i < AMBA_NR_IRQS; i++) { 2854 irq = adev->irq[i]; 2855 if (irq) { 2856 ret = devm_request_irq(&adev->dev, irq, 2857 pl330_irq_handler, 0, 2858 dev_name(&adev->dev), pl330); 2859 if (ret) 2860 return ret; 2861 } else { 2862 break; 2863 } 2864 } 2865 2866 pcfg = &pl330->pcfg; 2867 2868 pcfg->periph_id = adev->periphid; 2869 ret = pl330_add(pl330); 2870 if (ret) 2871 return ret; 2872 2873 INIT_LIST_HEAD(&pl330->desc_pool); 2874 spin_lock_init(&pl330->pool_lock); 2875 2876 /* Create a descriptor pool of default size */ 2877 if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC)) 2878 dev_warn(&adev->dev, "unable to allocate desc\n"); 2879 2880 INIT_LIST_HEAD(&pd->channels); 2881 2882 /* Initialize channel parameters */ 2883 if (pdat) 2884 num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan); 2885 else 2886 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 2887 2888 pl330->num_peripherals = num_chan; 2889 2890 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2891 if (!pl330->peripherals) { 2892 ret = -ENOMEM; 2893 dev_err(&adev->dev, "unable to allocate pl330->peripherals\n"); 2894 goto probe_err2; 2895 } 2896 2897 for (i = 0; i < num_chan; i++) { 2898 pch = &pl330->peripherals[i]; 2899 if (!adev->dev.of_node) 2900 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2901 else 2902 pch->chan.private = adev->dev.of_node; 2903 2904 INIT_LIST_HEAD(&pch->submitted_list); 2905 INIT_LIST_HEAD(&pch->work_list); 2906 INIT_LIST_HEAD(&pch->completed_list); 2907 spin_lock_init(&pch->lock); 2908 pch->thread = NULL; 2909 pch->chan.device = pd; 2910 pch->dmac = pl330; 2911 2912 /* Add the channel to the DMAC list */ 2913 list_add_tail(&pch->chan.device_node, &pd->channels); 2914 } 2915 2916 if (pdat) { 2917 pd->cap_mask = pdat->cap_mask; 2918 } else { 2919 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2920 if (pcfg->num_peri) { 2921 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2922 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2923 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2924 } 2925 } 2926 2927 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2928 pd->device_free_chan_resources = pl330_free_chan_resources; 2929 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2930 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2931 pd->device_tx_status = pl330_tx_status; 2932 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2933 pd->device_config = pl330_config; 2934 pd->device_pause = pl330_pause; 2935 pd->device_terminate_all = pl330_terminate_all; 2936 pd->device_issue_pending = pl330_issue_pending; 2937 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 2938 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 2939 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2940 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2941 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ? 2942 1 : PL330_MAX_BURST); 2943 2944 ret = dma_async_device_register(pd); 2945 if (ret) { 2946 dev_err(&adev->dev, "unable to register DMAC\n"); 2947 goto probe_err3; 2948 } 2949 2950 if (adev->dev.of_node) { 2951 ret = of_dma_controller_register(adev->dev.of_node, 2952 of_dma_pl330_xlate, pl330); 2953 if (ret) { 2954 dev_err(&adev->dev, 2955 "unable to register DMA to the generic DT DMA helpers\n"); 2956 } 2957 } 2958 2959 adev->dev.dma_parms = &pl330->dma_parms; 2960 2961 /* 2962 * This is the limit for transfers with a buswidth of 1, larger 2963 * buswidths will have larger limits. 2964 */ 2965 ret = dma_set_max_seg_size(&adev->dev, 1900800); 2966 if (ret) 2967 dev_err(&adev->dev, "unable to set the seg size\n"); 2968 2969 2970 dev_info(&adev->dev, 2971 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 2972 dev_info(&adev->dev, 2973 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2974 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 2975 pcfg->num_peri, pcfg->num_events); 2976 2977 pm_runtime_irq_safe(&adev->dev); 2978 pm_runtime_use_autosuspend(&adev->dev); 2979 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 2980 pm_runtime_mark_last_busy(&adev->dev); 2981 pm_runtime_put_autosuspend(&adev->dev); 2982 2983 return 0; 2984 probe_err3: 2985 /* Idle the DMAC */ 2986 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 2987 chan.device_node) { 2988 2989 /* Remove the channel */ 2990 list_del(&pch->chan.device_node); 2991 2992 /* Flush the channel */ 2993 if (pch->thread) { 2994 pl330_terminate_all(&pch->chan); 2995 pl330_free_chan_resources(&pch->chan); 2996 } 2997 } 2998 probe_err2: 2999 pl330_del(pl330); 3000 3001 return ret; 3002 } 3003 3004 static int pl330_remove(struct amba_device *adev) 3005 { 3006 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 3007 struct dma_pl330_chan *pch, *_p; 3008 3009 pm_runtime_get_noresume(pl330->ddma.dev); 3010 3011 if (adev->dev.of_node) 3012 of_dma_controller_free(adev->dev.of_node); 3013 3014 dma_async_device_unregister(&pl330->ddma); 3015 3016 /* Idle the DMAC */ 3017 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3018 chan.device_node) { 3019 3020 /* Remove the channel */ 3021 list_del(&pch->chan.device_node); 3022 3023 /* Flush the channel */ 3024 if (pch->thread) { 3025 pl330_terminate_all(&pch->chan); 3026 pl330_free_chan_resources(&pch->chan); 3027 } 3028 } 3029 3030 pl330_del(pl330); 3031 3032 return 0; 3033 } 3034 3035 static struct amba_id pl330_ids[] = { 3036 { 3037 .id = 0x00041330, 3038 .mask = 0x000fffff, 3039 }, 3040 { 0, 0 }, 3041 }; 3042 3043 MODULE_DEVICE_TABLE(amba, pl330_ids); 3044 3045 static struct amba_driver pl330_driver = { 3046 .drv = { 3047 .owner = THIS_MODULE, 3048 .name = "dma-pl330", 3049 .pm = &pl330_pm, 3050 }, 3051 .id_table = pl330_ids, 3052 .probe = pl330_probe, 3053 .remove = pl330_remove, 3054 }; 3055 3056 module_amba_driver(pl330_driver); 3057 3058 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3059 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3060 MODULE_LICENSE("GPL"); 3061