xref: /openbmc/linux/drivers/dma/pl330.c (revision 6d8e62c3)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30 #include <linux/pm_runtime.h>
31 
32 #include "dmaengine.h"
33 #define PL330_MAX_CHAN		8
34 #define PL330_MAX_IRQS		32
35 #define PL330_MAX_PERI		32
36 
37 enum pl330_cachectrl {
38 	CCTRL0,		/* Noncacheable and nonbufferable */
39 	CCTRL1,		/* Bufferable only */
40 	CCTRL2,		/* Cacheable, but do not allocate */
41 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
42 	INVALID1,	/* AWCACHE = 0x1000 */
43 	INVALID2,
44 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
45 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
46 };
47 
48 enum pl330_byteswap {
49 	SWAP_NO,
50 	SWAP_2,
51 	SWAP_4,
52 	SWAP_8,
53 	SWAP_16,
54 };
55 
56 /* Register and Bit field Definitions */
57 #define DS			0x0
58 #define DS_ST_STOP		0x0
59 #define DS_ST_EXEC		0x1
60 #define DS_ST_CMISS		0x2
61 #define DS_ST_UPDTPC		0x3
62 #define DS_ST_WFE		0x4
63 #define DS_ST_ATBRR		0x5
64 #define DS_ST_QBUSY		0x6
65 #define DS_ST_WFP		0x7
66 #define DS_ST_KILL		0x8
67 #define DS_ST_CMPLT		0x9
68 #define DS_ST_FLTCMP		0xe
69 #define DS_ST_FAULT		0xf
70 
71 #define DPC			0x4
72 #define INTEN			0x20
73 #define ES			0x24
74 #define INTSTATUS		0x28
75 #define INTCLR			0x2c
76 #define FSM			0x30
77 #define FSC			0x34
78 #define FTM			0x38
79 
80 #define _FTC			0x40
81 #define FTC(n)			(_FTC + (n)*0x4)
82 
83 #define _CS			0x100
84 #define CS(n)			(_CS + (n)*0x8)
85 #define CS_CNS			(1 << 21)
86 
87 #define _CPC			0x104
88 #define CPC(n)			(_CPC + (n)*0x8)
89 
90 #define _SA			0x400
91 #define SA(n)			(_SA + (n)*0x20)
92 
93 #define _DA			0x404
94 #define DA(n)			(_DA + (n)*0x20)
95 
96 #define _CC			0x408
97 #define CC(n)			(_CC + (n)*0x20)
98 
99 #define CC_SRCINC		(1 << 0)
100 #define CC_DSTINC		(1 << 14)
101 #define CC_SRCPRI		(1 << 8)
102 #define CC_DSTPRI		(1 << 22)
103 #define CC_SRCNS		(1 << 9)
104 #define CC_DSTNS		(1 << 23)
105 #define CC_SRCIA		(1 << 10)
106 #define CC_DSTIA		(1 << 24)
107 #define CC_SRCBRSTLEN_SHFT	4
108 #define CC_DSTBRSTLEN_SHFT	18
109 #define CC_SRCBRSTSIZE_SHFT	1
110 #define CC_DSTBRSTSIZE_SHFT	15
111 #define CC_SRCCCTRL_SHFT	11
112 #define CC_SRCCCTRL_MASK	0x7
113 #define CC_DSTCCTRL_SHFT	25
114 #define CC_DRCCCTRL_MASK	0x7
115 #define CC_SWAP_SHFT		28
116 
117 #define _LC0			0x40c
118 #define LC0(n)			(_LC0 + (n)*0x20)
119 
120 #define _LC1			0x410
121 #define LC1(n)			(_LC1 + (n)*0x20)
122 
123 #define DBGSTATUS		0xd00
124 #define DBG_BUSY		(1 << 0)
125 
126 #define DBGCMD			0xd04
127 #define DBGINST0		0xd08
128 #define DBGINST1		0xd0c
129 
130 #define CR0			0xe00
131 #define CR1			0xe04
132 #define CR2			0xe08
133 #define CR3			0xe0c
134 #define CR4			0xe10
135 #define CRD			0xe14
136 
137 #define PERIPH_ID		0xfe0
138 #define PERIPH_REV_SHIFT	20
139 #define PERIPH_REV_MASK		0xf
140 #define PERIPH_REV_R0P0		0
141 #define PERIPH_REV_R1P0		1
142 #define PERIPH_REV_R1P1		2
143 
144 #define CR0_PERIPH_REQ_SET	(1 << 0)
145 #define CR0_BOOT_EN_SET		(1 << 1)
146 #define CR0_BOOT_MAN_NS		(1 << 2)
147 #define CR0_NUM_CHANS_SHIFT	4
148 #define CR0_NUM_CHANS_MASK	0x7
149 #define CR0_NUM_PERIPH_SHIFT	12
150 #define CR0_NUM_PERIPH_MASK	0x1f
151 #define CR0_NUM_EVENTS_SHIFT	17
152 #define CR0_NUM_EVENTS_MASK	0x1f
153 
154 #define CR1_ICACHE_LEN_SHIFT	0
155 #define CR1_ICACHE_LEN_MASK	0x7
156 #define CR1_NUM_ICACHELINES_SHIFT	4
157 #define CR1_NUM_ICACHELINES_MASK	0xf
158 
159 #define CRD_DATA_WIDTH_SHIFT	0
160 #define CRD_DATA_WIDTH_MASK	0x7
161 #define CRD_WR_CAP_SHIFT	4
162 #define CRD_WR_CAP_MASK		0x7
163 #define CRD_WR_Q_DEP_SHIFT	8
164 #define CRD_WR_Q_DEP_MASK	0xf
165 #define CRD_RD_CAP_SHIFT	12
166 #define CRD_RD_CAP_MASK		0x7
167 #define CRD_RD_Q_DEP_SHIFT	16
168 #define CRD_RD_Q_DEP_MASK	0xf
169 #define CRD_DATA_BUFF_SHIFT	20
170 #define CRD_DATA_BUFF_MASK	0x3ff
171 
172 #define PART			0x330
173 #define DESIGNER		0x41
174 #define REVISION		0x0
175 #define INTEG_CFG		0x0
176 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
177 
178 #define PL330_STATE_STOPPED		(1 << 0)
179 #define PL330_STATE_EXECUTING		(1 << 1)
180 #define PL330_STATE_WFE			(1 << 2)
181 #define PL330_STATE_FAULTING		(1 << 3)
182 #define PL330_STATE_COMPLETING		(1 << 4)
183 #define PL330_STATE_WFP			(1 << 5)
184 #define PL330_STATE_KILLING		(1 << 6)
185 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
186 #define PL330_STATE_CACHEMISS		(1 << 8)
187 #define PL330_STATE_UPDTPC		(1 << 9)
188 #define PL330_STATE_ATBARRIER		(1 << 10)
189 #define PL330_STATE_QUEUEBUSY		(1 << 11)
190 #define PL330_STATE_INVALID		(1 << 15)
191 
192 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
193 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
194 
195 #define CMD_DMAADDH		0x54
196 #define CMD_DMAEND		0x00
197 #define CMD_DMAFLUSHP		0x35
198 #define CMD_DMAGO		0xa0
199 #define CMD_DMALD		0x04
200 #define CMD_DMALDP		0x25
201 #define CMD_DMALP		0x20
202 #define CMD_DMALPEND		0x28
203 #define CMD_DMAKILL		0x01
204 #define CMD_DMAMOV		0xbc
205 #define CMD_DMANOP		0x18
206 #define CMD_DMARMB		0x12
207 #define CMD_DMASEV		0x34
208 #define CMD_DMAST		0x08
209 #define CMD_DMASTP		0x29
210 #define CMD_DMASTZ		0x0c
211 #define CMD_DMAWFE		0x36
212 #define CMD_DMAWFP		0x30
213 #define CMD_DMAWMB		0x13
214 
215 #define SZ_DMAADDH		3
216 #define SZ_DMAEND		1
217 #define SZ_DMAFLUSHP		2
218 #define SZ_DMALD		1
219 #define SZ_DMALDP		2
220 #define SZ_DMALP		2
221 #define SZ_DMALPEND		2
222 #define SZ_DMAKILL		1
223 #define SZ_DMAMOV		6
224 #define SZ_DMANOP		1
225 #define SZ_DMARMB		1
226 #define SZ_DMASEV		2
227 #define SZ_DMAST		1
228 #define SZ_DMASTP		2
229 #define SZ_DMASTZ		1
230 #define SZ_DMAWFE		2
231 #define SZ_DMAWFP		2
232 #define SZ_DMAWMB		1
233 #define SZ_DMAGO		6
234 
235 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
236 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
237 
238 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
239 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
240 
241 /*
242  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
243  * at 1byte/burst for P<->M and M<->M respectively.
244  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
245  * should be enough for P<->M and M<->M respectively.
246  */
247 #define MCODE_BUFF_PER_REQ	256
248 
249 /* Use this _only_ to wait on transient states */
250 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
251 
252 #ifdef PL330_DEBUG_MCGEN
253 static unsigned cmd_line;
254 #define PL330_DBGCMD_DUMP(off, x...)	do { \
255 						printk("%x:", cmd_line); \
256 						printk(x); \
257 						cmd_line += off; \
258 					} while (0)
259 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
260 #else
261 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
262 #define PL330_DBGMC_START(addr)		do {} while (0)
263 #endif
264 
265 /* The number of default descriptors */
266 
267 #define NR_DEFAULT_DESC	16
268 
269 /* Delay for runtime PM autosuspend, ms */
270 #define PL330_AUTOSUSPEND_DELAY 20
271 
272 /* Populated by the PL330 core driver for DMA API driver's info */
273 struct pl330_config {
274 	u32	periph_id;
275 #define DMAC_MODE_NS	(1 << 0)
276 	unsigned int	mode;
277 	unsigned int	data_bus_width:10; /* In number of bits */
278 	unsigned int	data_buf_dep:11;
279 	unsigned int	num_chan:4;
280 	unsigned int	num_peri:6;
281 	u32		peri_ns;
282 	unsigned int	num_events:6;
283 	u32		irq_ns;
284 };
285 
286 /**
287  * Request Configuration.
288  * The PL330 core does not modify this and uses the last
289  * working configuration if the request doesn't provide any.
290  *
291  * The Client may want to provide this info only for the
292  * first request and a request with new settings.
293  */
294 struct pl330_reqcfg {
295 	/* Address Incrementing */
296 	unsigned dst_inc:1;
297 	unsigned src_inc:1;
298 
299 	/*
300 	 * For now, the SRC & DST protection levels
301 	 * and burst size/length are assumed same.
302 	 */
303 	bool nonsecure;
304 	bool privileged;
305 	bool insnaccess;
306 	unsigned brst_len:5;
307 	unsigned brst_size:3; /* in power of 2 */
308 
309 	enum pl330_cachectrl dcctl;
310 	enum pl330_cachectrl scctl;
311 	enum pl330_byteswap swap;
312 	struct pl330_config *pcfg;
313 };
314 
315 /*
316  * One cycle of DMAC operation.
317  * There may be more than one xfer in a request.
318  */
319 struct pl330_xfer {
320 	u32 src_addr;
321 	u32 dst_addr;
322 	/* Size to xfer */
323 	u32 bytes;
324 };
325 
326 /* The xfer callbacks are made with one of these arguments. */
327 enum pl330_op_err {
328 	/* The all xfers in the request were success. */
329 	PL330_ERR_NONE,
330 	/* If req aborted due to global error. */
331 	PL330_ERR_ABORT,
332 	/* If req failed due to problem with Channel. */
333 	PL330_ERR_FAIL,
334 };
335 
336 enum dmamov_dst {
337 	SAR = 0,
338 	CCR,
339 	DAR,
340 };
341 
342 enum pl330_dst {
343 	SRC = 0,
344 	DST,
345 };
346 
347 enum pl330_cond {
348 	SINGLE,
349 	BURST,
350 	ALWAYS,
351 };
352 
353 struct dma_pl330_desc;
354 
355 struct _pl330_req {
356 	u32 mc_bus;
357 	void *mc_cpu;
358 	struct dma_pl330_desc *desc;
359 };
360 
361 /* ToBeDone for tasklet */
362 struct _pl330_tbd {
363 	bool reset_dmac;
364 	bool reset_mngr;
365 	u8 reset_chan;
366 };
367 
368 /* A DMAC Thread */
369 struct pl330_thread {
370 	u8 id;
371 	int ev;
372 	/* If the channel is not yet acquired by any client */
373 	bool free;
374 	/* Parent DMAC */
375 	struct pl330_dmac *dmac;
376 	/* Only two at a time */
377 	struct _pl330_req req[2];
378 	/* Index of the last enqueued request */
379 	unsigned lstenq;
380 	/* Index of the last submitted request or -1 if the DMA is stopped */
381 	int req_running;
382 };
383 
384 enum pl330_dmac_state {
385 	UNINIT,
386 	INIT,
387 	DYING,
388 };
389 
390 enum desc_status {
391 	/* In the DMAC pool */
392 	FREE,
393 	/*
394 	 * Allocated to some channel during prep_xxx
395 	 * Also may be sitting on the work_list.
396 	 */
397 	PREP,
398 	/*
399 	 * Sitting on the work_list and already submitted
400 	 * to the PL330 core. Not more than two descriptors
401 	 * of a channel can be BUSY at any time.
402 	 */
403 	BUSY,
404 	/*
405 	 * Sitting on the channel work_list but xfer done
406 	 * by PL330 core
407 	 */
408 	DONE,
409 };
410 
411 struct dma_pl330_chan {
412 	/* Schedule desc completion */
413 	struct tasklet_struct task;
414 
415 	/* DMA-Engine Channel */
416 	struct dma_chan chan;
417 
418 	/* List of submitted descriptors */
419 	struct list_head submitted_list;
420 	/* List of issued descriptors */
421 	struct list_head work_list;
422 	/* List of completed descriptors */
423 	struct list_head completed_list;
424 
425 	/* Pointer to the DMAC that manages this channel,
426 	 * NULL if the channel is available to be acquired.
427 	 * As the parent, this DMAC also provides descriptors
428 	 * to the channel.
429 	 */
430 	struct pl330_dmac *dmac;
431 
432 	/* To protect channel manipulation */
433 	spinlock_t lock;
434 
435 	/*
436 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
437 	 * available.
438 	 */
439 	struct pl330_thread *thread;
440 
441 	/* For D-to-M and M-to-D channels */
442 	int burst_sz; /* the peripheral fifo width */
443 	int burst_len; /* the number of burst */
444 	dma_addr_t fifo_addr;
445 
446 	/* for cyclic capability */
447 	bool cyclic;
448 };
449 
450 struct pl330_dmac {
451 	/* DMA-Engine Device */
452 	struct dma_device ddma;
453 
454 	/* Holds info about sg limitations */
455 	struct device_dma_parameters dma_parms;
456 
457 	/* Pool of descriptors available for the DMAC's channels */
458 	struct list_head desc_pool;
459 	/* To protect desc_pool manipulation */
460 	spinlock_t pool_lock;
461 
462 	/* Size of MicroCode buffers for each channel. */
463 	unsigned mcbufsz;
464 	/* ioremap'ed address of PL330 registers. */
465 	void __iomem	*base;
466 	/* Populated by the PL330 core driver during pl330_add */
467 	struct pl330_config	pcfg;
468 
469 	spinlock_t		lock;
470 	/* Maximum possible events/irqs */
471 	int			events[32];
472 	/* BUS address of MicroCode buffer */
473 	dma_addr_t		mcode_bus;
474 	/* CPU address of MicroCode buffer */
475 	void			*mcode_cpu;
476 	/* List of all Channel threads */
477 	struct pl330_thread	*channels;
478 	/* Pointer to the MANAGER thread */
479 	struct pl330_thread	*manager;
480 	/* To handle bad news in interrupt */
481 	struct tasklet_struct	tasks;
482 	struct _pl330_tbd	dmac_tbd;
483 	/* State of DMAC operation */
484 	enum pl330_dmac_state	state;
485 	/* Holds list of reqs with due callbacks */
486 	struct list_head        req_done;
487 
488 	/* Peripheral channels connected to this DMAC */
489 	unsigned int num_peripherals;
490 	struct dma_pl330_chan *peripherals; /* keep at end */
491 };
492 
493 struct dma_pl330_desc {
494 	/* To attach to a queue as child */
495 	struct list_head node;
496 
497 	/* Descriptor for the DMA Engine API */
498 	struct dma_async_tx_descriptor txd;
499 
500 	/* Xfer for PL330 core */
501 	struct pl330_xfer px;
502 
503 	struct pl330_reqcfg rqcfg;
504 
505 	enum desc_status status;
506 
507 	/* The channel which currently holds this desc */
508 	struct dma_pl330_chan *pchan;
509 
510 	enum dma_transfer_direction rqtype;
511 	/* Index of peripheral for the xfer. */
512 	unsigned peri:5;
513 	/* Hook to attach to DMAC's list of reqs with due callback */
514 	struct list_head rqd;
515 };
516 
517 struct _xfer_spec {
518 	u32 ccr;
519 	struct dma_pl330_desc *desc;
520 };
521 
522 static inline bool _queue_empty(struct pl330_thread *thrd)
523 {
524 	return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL;
525 }
526 
527 static inline bool _queue_full(struct pl330_thread *thrd)
528 {
529 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
530 }
531 
532 static inline bool is_manager(struct pl330_thread *thrd)
533 {
534 	return thrd->dmac->manager == thrd;
535 }
536 
537 /* If manager of the thread is in Non-Secure mode */
538 static inline bool _manager_ns(struct pl330_thread *thrd)
539 {
540 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
541 }
542 
543 static inline u32 get_revision(u32 periph_id)
544 {
545 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
546 }
547 
548 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
549 		enum pl330_dst da, u16 val)
550 {
551 	if (dry_run)
552 		return SZ_DMAADDH;
553 
554 	buf[0] = CMD_DMAADDH;
555 	buf[0] |= (da << 1);
556 	*((u16 *)&buf[1]) = val;
557 
558 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
559 		da == 1 ? "DA" : "SA", val);
560 
561 	return SZ_DMAADDH;
562 }
563 
564 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
565 {
566 	if (dry_run)
567 		return SZ_DMAEND;
568 
569 	buf[0] = CMD_DMAEND;
570 
571 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
572 
573 	return SZ_DMAEND;
574 }
575 
576 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
577 {
578 	if (dry_run)
579 		return SZ_DMAFLUSHP;
580 
581 	buf[0] = CMD_DMAFLUSHP;
582 
583 	peri &= 0x1f;
584 	peri <<= 3;
585 	buf[1] = peri;
586 
587 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
588 
589 	return SZ_DMAFLUSHP;
590 }
591 
592 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
593 {
594 	if (dry_run)
595 		return SZ_DMALD;
596 
597 	buf[0] = CMD_DMALD;
598 
599 	if (cond == SINGLE)
600 		buf[0] |= (0 << 1) | (1 << 0);
601 	else if (cond == BURST)
602 		buf[0] |= (1 << 1) | (1 << 0);
603 
604 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
605 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
606 
607 	return SZ_DMALD;
608 }
609 
610 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
611 		enum pl330_cond cond, u8 peri)
612 {
613 	if (dry_run)
614 		return SZ_DMALDP;
615 
616 	buf[0] = CMD_DMALDP;
617 
618 	if (cond == BURST)
619 		buf[0] |= (1 << 1);
620 
621 	peri &= 0x1f;
622 	peri <<= 3;
623 	buf[1] = peri;
624 
625 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
626 		cond == SINGLE ? 'S' : 'B', peri >> 3);
627 
628 	return SZ_DMALDP;
629 }
630 
631 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
632 		unsigned loop, u8 cnt)
633 {
634 	if (dry_run)
635 		return SZ_DMALP;
636 
637 	buf[0] = CMD_DMALP;
638 
639 	if (loop)
640 		buf[0] |= (1 << 1);
641 
642 	cnt--; /* DMAC increments by 1 internally */
643 	buf[1] = cnt;
644 
645 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
646 
647 	return SZ_DMALP;
648 }
649 
650 struct _arg_LPEND {
651 	enum pl330_cond cond;
652 	bool forever;
653 	unsigned loop;
654 	u8 bjump;
655 };
656 
657 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
658 		const struct _arg_LPEND *arg)
659 {
660 	enum pl330_cond cond = arg->cond;
661 	bool forever = arg->forever;
662 	unsigned loop = arg->loop;
663 	u8 bjump = arg->bjump;
664 
665 	if (dry_run)
666 		return SZ_DMALPEND;
667 
668 	buf[0] = CMD_DMALPEND;
669 
670 	if (loop)
671 		buf[0] |= (1 << 2);
672 
673 	if (!forever)
674 		buf[0] |= (1 << 4);
675 
676 	if (cond == SINGLE)
677 		buf[0] |= (0 << 1) | (1 << 0);
678 	else if (cond == BURST)
679 		buf[0] |= (1 << 1) | (1 << 0);
680 
681 	buf[1] = bjump;
682 
683 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
684 			forever ? "FE" : "END",
685 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
686 			loop ? '1' : '0',
687 			bjump);
688 
689 	return SZ_DMALPEND;
690 }
691 
692 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
693 {
694 	if (dry_run)
695 		return SZ_DMAKILL;
696 
697 	buf[0] = CMD_DMAKILL;
698 
699 	return SZ_DMAKILL;
700 }
701 
702 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
703 		enum dmamov_dst dst, u32 val)
704 {
705 	if (dry_run)
706 		return SZ_DMAMOV;
707 
708 	buf[0] = CMD_DMAMOV;
709 	buf[1] = dst;
710 	*((u32 *)&buf[2]) = val;
711 
712 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
713 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
714 
715 	return SZ_DMAMOV;
716 }
717 
718 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
719 {
720 	if (dry_run)
721 		return SZ_DMANOP;
722 
723 	buf[0] = CMD_DMANOP;
724 
725 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
726 
727 	return SZ_DMANOP;
728 }
729 
730 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
731 {
732 	if (dry_run)
733 		return SZ_DMARMB;
734 
735 	buf[0] = CMD_DMARMB;
736 
737 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
738 
739 	return SZ_DMARMB;
740 }
741 
742 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
743 {
744 	if (dry_run)
745 		return SZ_DMASEV;
746 
747 	buf[0] = CMD_DMASEV;
748 
749 	ev &= 0x1f;
750 	ev <<= 3;
751 	buf[1] = ev;
752 
753 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
754 
755 	return SZ_DMASEV;
756 }
757 
758 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
759 {
760 	if (dry_run)
761 		return SZ_DMAST;
762 
763 	buf[0] = CMD_DMAST;
764 
765 	if (cond == SINGLE)
766 		buf[0] |= (0 << 1) | (1 << 0);
767 	else if (cond == BURST)
768 		buf[0] |= (1 << 1) | (1 << 0);
769 
770 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
771 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
772 
773 	return SZ_DMAST;
774 }
775 
776 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
777 		enum pl330_cond cond, u8 peri)
778 {
779 	if (dry_run)
780 		return SZ_DMASTP;
781 
782 	buf[0] = CMD_DMASTP;
783 
784 	if (cond == BURST)
785 		buf[0] |= (1 << 1);
786 
787 	peri &= 0x1f;
788 	peri <<= 3;
789 	buf[1] = peri;
790 
791 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
792 		cond == SINGLE ? 'S' : 'B', peri >> 3);
793 
794 	return SZ_DMASTP;
795 }
796 
797 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
798 {
799 	if (dry_run)
800 		return SZ_DMASTZ;
801 
802 	buf[0] = CMD_DMASTZ;
803 
804 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
805 
806 	return SZ_DMASTZ;
807 }
808 
809 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
810 		unsigned invalidate)
811 {
812 	if (dry_run)
813 		return SZ_DMAWFE;
814 
815 	buf[0] = CMD_DMAWFE;
816 
817 	ev &= 0x1f;
818 	ev <<= 3;
819 	buf[1] = ev;
820 
821 	if (invalidate)
822 		buf[1] |= (1 << 1);
823 
824 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
825 		ev >> 3, invalidate ? ", I" : "");
826 
827 	return SZ_DMAWFE;
828 }
829 
830 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
831 		enum pl330_cond cond, u8 peri)
832 {
833 	if (dry_run)
834 		return SZ_DMAWFP;
835 
836 	buf[0] = CMD_DMAWFP;
837 
838 	if (cond == SINGLE)
839 		buf[0] |= (0 << 1) | (0 << 0);
840 	else if (cond == BURST)
841 		buf[0] |= (1 << 1) | (0 << 0);
842 	else
843 		buf[0] |= (0 << 1) | (1 << 0);
844 
845 	peri &= 0x1f;
846 	peri <<= 3;
847 	buf[1] = peri;
848 
849 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
850 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
851 
852 	return SZ_DMAWFP;
853 }
854 
855 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
856 {
857 	if (dry_run)
858 		return SZ_DMAWMB;
859 
860 	buf[0] = CMD_DMAWMB;
861 
862 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
863 
864 	return SZ_DMAWMB;
865 }
866 
867 struct _arg_GO {
868 	u8 chan;
869 	u32 addr;
870 	unsigned ns;
871 };
872 
873 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
874 		const struct _arg_GO *arg)
875 {
876 	u8 chan = arg->chan;
877 	u32 addr = arg->addr;
878 	unsigned ns = arg->ns;
879 
880 	if (dry_run)
881 		return SZ_DMAGO;
882 
883 	buf[0] = CMD_DMAGO;
884 	buf[0] |= (ns << 1);
885 
886 	buf[1] = chan & 0x7;
887 
888 	*((u32 *)&buf[2]) = addr;
889 
890 	return SZ_DMAGO;
891 }
892 
893 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
894 
895 /* Returns Time-Out */
896 static bool _until_dmac_idle(struct pl330_thread *thrd)
897 {
898 	void __iomem *regs = thrd->dmac->base;
899 	unsigned long loops = msecs_to_loops(5);
900 
901 	do {
902 		/* Until Manager is Idle */
903 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
904 			break;
905 
906 		cpu_relax();
907 	} while (--loops);
908 
909 	if (!loops)
910 		return true;
911 
912 	return false;
913 }
914 
915 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
916 		u8 insn[], bool as_manager)
917 {
918 	void __iomem *regs = thrd->dmac->base;
919 	u32 val;
920 
921 	val = (insn[0] << 16) | (insn[1] << 24);
922 	if (!as_manager) {
923 		val |= (1 << 0);
924 		val |= (thrd->id << 8); /* Channel Number */
925 	}
926 	writel(val, regs + DBGINST0);
927 
928 	val = *((u32 *)&insn[2]);
929 	writel(val, regs + DBGINST1);
930 
931 	/* If timed out due to halted state-machine */
932 	if (_until_dmac_idle(thrd)) {
933 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
934 		return;
935 	}
936 
937 	/* Get going */
938 	writel(0, regs + DBGCMD);
939 }
940 
941 static inline u32 _state(struct pl330_thread *thrd)
942 {
943 	void __iomem *regs = thrd->dmac->base;
944 	u32 val;
945 
946 	if (is_manager(thrd))
947 		val = readl(regs + DS) & 0xf;
948 	else
949 		val = readl(regs + CS(thrd->id)) & 0xf;
950 
951 	switch (val) {
952 	case DS_ST_STOP:
953 		return PL330_STATE_STOPPED;
954 	case DS_ST_EXEC:
955 		return PL330_STATE_EXECUTING;
956 	case DS_ST_CMISS:
957 		return PL330_STATE_CACHEMISS;
958 	case DS_ST_UPDTPC:
959 		return PL330_STATE_UPDTPC;
960 	case DS_ST_WFE:
961 		return PL330_STATE_WFE;
962 	case DS_ST_FAULT:
963 		return PL330_STATE_FAULTING;
964 	case DS_ST_ATBRR:
965 		if (is_manager(thrd))
966 			return PL330_STATE_INVALID;
967 		else
968 			return PL330_STATE_ATBARRIER;
969 	case DS_ST_QBUSY:
970 		if (is_manager(thrd))
971 			return PL330_STATE_INVALID;
972 		else
973 			return PL330_STATE_QUEUEBUSY;
974 	case DS_ST_WFP:
975 		if (is_manager(thrd))
976 			return PL330_STATE_INVALID;
977 		else
978 			return PL330_STATE_WFP;
979 	case DS_ST_KILL:
980 		if (is_manager(thrd))
981 			return PL330_STATE_INVALID;
982 		else
983 			return PL330_STATE_KILLING;
984 	case DS_ST_CMPLT:
985 		if (is_manager(thrd))
986 			return PL330_STATE_INVALID;
987 		else
988 			return PL330_STATE_COMPLETING;
989 	case DS_ST_FLTCMP:
990 		if (is_manager(thrd))
991 			return PL330_STATE_INVALID;
992 		else
993 			return PL330_STATE_FAULT_COMPLETING;
994 	default:
995 		return PL330_STATE_INVALID;
996 	}
997 }
998 
999 static void _stop(struct pl330_thread *thrd)
1000 {
1001 	void __iomem *regs = thrd->dmac->base;
1002 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1003 
1004 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1005 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1006 
1007 	/* Return if nothing needs to be done */
1008 	if (_state(thrd) == PL330_STATE_COMPLETING
1009 		  || _state(thrd) == PL330_STATE_KILLING
1010 		  || _state(thrd) == PL330_STATE_STOPPED)
1011 		return;
1012 
1013 	_emit_KILL(0, insn);
1014 
1015 	/* Stop generating interrupts for SEV */
1016 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1017 
1018 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1019 }
1020 
1021 /* Start doing req 'idx' of thread 'thrd' */
1022 static bool _trigger(struct pl330_thread *thrd)
1023 {
1024 	void __iomem *regs = thrd->dmac->base;
1025 	struct _pl330_req *req;
1026 	struct dma_pl330_desc *desc;
1027 	struct _arg_GO go;
1028 	unsigned ns;
1029 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1030 	int idx;
1031 
1032 	/* Return if already ACTIVE */
1033 	if (_state(thrd) != PL330_STATE_STOPPED)
1034 		return true;
1035 
1036 	idx = 1 - thrd->lstenq;
1037 	if (thrd->req[idx].desc != NULL) {
1038 		req = &thrd->req[idx];
1039 	} else {
1040 		idx = thrd->lstenq;
1041 		if (thrd->req[idx].desc != NULL)
1042 			req = &thrd->req[idx];
1043 		else
1044 			req = NULL;
1045 	}
1046 
1047 	/* Return if no request */
1048 	if (!req)
1049 		return true;
1050 
1051 	desc = req->desc;
1052 
1053 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1054 
1055 	/* See 'Abort Sources' point-4 at Page 2-25 */
1056 	if (_manager_ns(thrd) && !ns)
1057 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1058 			__func__, __LINE__);
1059 
1060 	go.chan = thrd->id;
1061 	go.addr = req->mc_bus;
1062 	go.ns = ns;
1063 	_emit_GO(0, insn, &go);
1064 
1065 	/* Set to generate interrupts for SEV */
1066 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1067 
1068 	/* Only manager can execute GO */
1069 	_execute_DBGINSN(thrd, insn, true);
1070 
1071 	thrd->req_running = idx;
1072 
1073 	return true;
1074 }
1075 
1076 static bool _start(struct pl330_thread *thrd)
1077 {
1078 	switch (_state(thrd)) {
1079 	case PL330_STATE_FAULT_COMPLETING:
1080 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1081 
1082 		if (_state(thrd) == PL330_STATE_KILLING)
1083 			UNTIL(thrd, PL330_STATE_STOPPED)
1084 
1085 	case PL330_STATE_FAULTING:
1086 		_stop(thrd);
1087 
1088 	case PL330_STATE_KILLING:
1089 	case PL330_STATE_COMPLETING:
1090 		UNTIL(thrd, PL330_STATE_STOPPED)
1091 
1092 	case PL330_STATE_STOPPED:
1093 		return _trigger(thrd);
1094 
1095 	case PL330_STATE_WFP:
1096 	case PL330_STATE_QUEUEBUSY:
1097 	case PL330_STATE_ATBARRIER:
1098 	case PL330_STATE_UPDTPC:
1099 	case PL330_STATE_CACHEMISS:
1100 	case PL330_STATE_EXECUTING:
1101 		return true;
1102 
1103 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1104 	default:
1105 		return false;
1106 	}
1107 }
1108 
1109 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1110 		const struct _xfer_spec *pxs, int cyc)
1111 {
1112 	int off = 0;
1113 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1114 
1115 	/* check lock-up free version */
1116 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1117 		while (cyc--) {
1118 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1119 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1120 		}
1121 	} else {
1122 		while (cyc--) {
1123 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1124 			off += _emit_RMB(dry_run, &buf[off]);
1125 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1126 			off += _emit_WMB(dry_run, &buf[off]);
1127 		}
1128 	}
1129 
1130 	return off;
1131 }
1132 
1133 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1134 		const struct _xfer_spec *pxs, int cyc)
1135 {
1136 	int off = 0;
1137 
1138 	while (cyc--) {
1139 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1140 		off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1141 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1142 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1143 	}
1144 
1145 	return off;
1146 }
1147 
1148 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1149 		const struct _xfer_spec *pxs, int cyc)
1150 {
1151 	int off = 0;
1152 
1153 	while (cyc--) {
1154 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1155 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1156 		off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->desc->peri);
1157 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1158 	}
1159 
1160 	return off;
1161 }
1162 
1163 static int _bursts(unsigned dry_run, u8 buf[],
1164 		const struct _xfer_spec *pxs, int cyc)
1165 {
1166 	int off = 0;
1167 
1168 	switch (pxs->desc->rqtype) {
1169 	case DMA_MEM_TO_DEV:
1170 		off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1171 		break;
1172 	case DMA_DEV_TO_MEM:
1173 		off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1174 		break;
1175 	case DMA_MEM_TO_MEM:
1176 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1177 		break;
1178 	default:
1179 		off += 0x40000000; /* Scare off the Client */
1180 		break;
1181 	}
1182 
1183 	return off;
1184 }
1185 
1186 /* Returns bytes consumed and updates bursts */
1187 static inline int _loop(unsigned dry_run, u8 buf[],
1188 		unsigned long *bursts, const struct _xfer_spec *pxs)
1189 {
1190 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1191 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1192 	struct _arg_LPEND lpend;
1193 
1194 	/* Max iterations possible in DMALP is 256 */
1195 	if (*bursts >= 256*256) {
1196 		lcnt1 = 256;
1197 		lcnt0 = 256;
1198 		cyc = *bursts / lcnt1 / lcnt0;
1199 	} else if (*bursts > 256) {
1200 		lcnt1 = 256;
1201 		lcnt0 = *bursts / lcnt1;
1202 		cyc = 1;
1203 	} else {
1204 		lcnt1 = *bursts;
1205 		lcnt0 = 0;
1206 		cyc = 1;
1207 	}
1208 
1209 	szlp = _emit_LP(1, buf, 0, 0);
1210 	szbrst = _bursts(1, buf, pxs, 1);
1211 
1212 	lpend.cond = ALWAYS;
1213 	lpend.forever = false;
1214 	lpend.loop = 0;
1215 	lpend.bjump = 0;
1216 	szlpend = _emit_LPEND(1, buf, &lpend);
1217 
1218 	if (lcnt0) {
1219 		szlp *= 2;
1220 		szlpend *= 2;
1221 	}
1222 
1223 	/*
1224 	 * Max bursts that we can unroll due to limit on the
1225 	 * size of backward jump that can be encoded in DMALPEND
1226 	 * which is 8-bits and hence 255
1227 	 */
1228 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1229 
1230 	cyc = (cycmax < cyc) ? cycmax : cyc;
1231 
1232 	off = 0;
1233 
1234 	if (lcnt0) {
1235 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1236 		ljmp0 = off;
1237 	}
1238 
1239 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1240 	ljmp1 = off;
1241 
1242 	off += _bursts(dry_run, &buf[off], pxs, cyc);
1243 
1244 	lpend.cond = ALWAYS;
1245 	lpend.forever = false;
1246 	lpend.loop = 1;
1247 	lpend.bjump = off - ljmp1;
1248 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1249 
1250 	if (lcnt0) {
1251 		lpend.cond = ALWAYS;
1252 		lpend.forever = false;
1253 		lpend.loop = 0;
1254 		lpend.bjump = off - ljmp0;
1255 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1256 	}
1257 
1258 	*bursts = lcnt1 * cyc;
1259 	if (lcnt0)
1260 		*bursts *= lcnt0;
1261 
1262 	return off;
1263 }
1264 
1265 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1266 		const struct _xfer_spec *pxs)
1267 {
1268 	struct pl330_xfer *x = &pxs->desc->px;
1269 	u32 ccr = pxs->ccr;
1270 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1271 	int off = 0;
1272 
1273 	while (bursts) {
1274 		c = bursts;
1275 		off += _loop(dry_run, &buf[off], &c, pxs);
1276 		bursts -= c;
1277 	}
1278 
1279 	return off;
1280 }
1281 
1282 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1283 		const struct _xfer_spec *pxs)
1284 {
1285 	struct pl330_xfer *x = &pxs->desc->px;
1286 	int off = 0;
1287 
1288 	/* DMAMOV SAR, x->src_addr */
1289 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1290 	/* DMAMOV DAR, x->dst_addr */
1291 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1292 
1293 	/* Setup Loop(s) */
1294 	off += _setup_loops(dry_run, &buf[off], pxs);
1295 
1296 	return off;
1297 }
1298 
1299 /*
1300  * A req is a sequence of one or more xfer units.
1301  * Returns the number of bytes taken to setup the MC for the req.
1302  */
1303 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1304 		unsigned index, struct _xfer_spec *pxs)
1305 {
1306 	struct _pl330_req *req = &thrd->req[index];
1307 	struct pl330_xfer *x;
1308 	u8 *buf = req->mc_cpu;
1309 	int off = 0;
1310 
1311 	PL330_DBGMC_START(req->mc_bus);
1312 
1313 	/* DMAMOV CCR, ccr */
1314 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1315 
1316 	x = &pxs->desc->px;
1317 	/* Error if xfer length is not aligned at burst size */
1318 	if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1319 		return -EINVAL;
1320 
1321 	off += _setup_xfer(dry_run, &buf[off], pxs);
1322 
1323 	/* DMASEV peripheral/event */
1324 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1325 	/* DMAEND */
1326 	off += _emit_END(dry_run, &buf[off]);
1327 
1328 	return off;
1329 }
1330 
1331 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1332 {
1333 	u32 ccr = 0;
1334 
1335 	if (rqc->src_inc)
1336 		ccr |= CC_SRCINC;
1337 
1338 	if (rqc->dst_inc)
1339 		ccr |= CC_DSTINC;
1340 
1341 	/* We set same protection levels for Src and DST for now */
1342 	if (rqc->privileged)
1343 		ccr |= CC_SRCPRI | CC_DSTPRI;
1344 	if (rqc->nonsecure)
1345 		ccr |= CC_SRCNS | CC_DSTNS;
1346 	if (rqc->insnaccess)
1347 		ccr |= CC_SRCIA | CC_DSTIA;
1348 
1349 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1350 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1351 
1352 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1353 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1354 
1355 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1356 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1357 
1358 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1359 
1360 	return ccr;
1361 }
1362 
1363 /*
1364  * Submit a list of xfers after which the client wants notification.
1365  * Client is not notified after each xfer unit, just once after all
1366  * xfer units are done or some error occurs.
1367  */
1368 static int pl330_submit_req(struct pl330_thread *thrd,
1369 	struct dma_pl330_desc *desc)
1370 {
1371 	struct pl330_dmac *pl330 = thrd->dmac;
1372 	struct _xfer_spec xs;
1373 	unsigned long flags;
1374 	unsigned idx;
1375 	u32 ccr;
1376 	int ret = 0;
1377 
1378 	if (pl330->state == DYING
1379 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1380 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1381 			__func__, __LINE__);
1382 		return -EAGAIN;
1383 	}
1384 
1385 	/* If request for non-existing peripheral */
1386 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1387 	    desc->peri >= pl330->pcfg.num_peri) {
1388 		dev_info(thrd->dmac->ddma.dev,
1389 				"%s:%d Invalid peripheral(%u)!\n",
1390 				__func__, __LINE__, desc->peri);
1391 		return -EINVAL;
1392 	}
1393 
1394 	spin_lock_irqsave(&pl330->lock, flags);
1395 
1396 	if (_queue_full(thrd)) {
1397 		ret = -EAGAIN;
1398 		goto xfer_exit;
1399 	}
1400 
1401 	/* Prefer Secure Channel */
1402 	if (!_manager_ns(thrd))
1403 		desc->rqcfg.nonsecure = 0;
1404 	else
1405 		desc->rqcfg.nonsecure = 1;
1406 
1407 	ccr = _prepare_ccr(&desc->rqcfg);
1408 
1409 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1410 
1411 	xs.ccr = ccr;
1412 	xs.desc = desc;
1413 
1414 	/* First dry run to check if req is acceptable */
1415 	ret = _setup_req(1, thrd, idx, &xs);
1416 	if (ret < 0)
1417 		goto xfer_exit;
1418 
1419 	if (ret > pl330->mcbufsz / 2) {
1420 		dev_info(pl330->ddma.dev, "%s:%d Trying increasing mcbufsz\n",
1421 				__func__, __LINE__);
1422 		ret = -ENOMEM;
1423 		goto xfer_exit;
1424 	}
1425 
1426 	/* Hook the request */
1427 	thrd->lstenq = idx;
1428 	thrd->req[idx].desc = desc;
1429 	_setup_req(0, thrd, idx, &xs);
1430 
1431 	ret = 0;
1432 
1433 xfer_exit:
1434 	spin_unlock_irqrestore(&pl330->lock, flags);
1435 
1436 	return ret;
1437 }
1438 
1439 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1440 {
1441 	struct dma_pl330_chan *pch;
1442 	unsigned long flags;
1443 
1444 	if (!desc)
1445 		return;
1446 
1447 	pch = desc->pchan;
1448 
1449 	/* If desc aborted */
1450 	if (!pch)
1451 		return;
1452 
1453 	spin_lock_irqsave(&pch->lock, flags);
1454 
1455 	desc->status = DONE;
1456 
1457 	spin_unlock_irqrestore(&pch->lock, flags);
1458 
1459 	tasklet_schedule(&pch->task);
1460 }
1461 
1462 static void pl330_dotask(unsigned long data)
1463 {
1464 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1465 	unsigned long flags;
1466 	int i;
1467 
1468 	spin_lock_irqsave(&pl330->lock, flags);
1469 
1470 	/* The DMAC itself gone nuts */
1471 	if (pl330->dmac_tbd.reset_dmac) {
1472 		pl330->state = DYING;
1473 		/* Reset the manager too */
1474 		pl330->dmac_tbd.reset_mngr = true;
1475 		/* Clear the reset flag */
1476 		pl330->dmac_tbd.reset_dmac = false;
1477 	}
1478 
1479 	if (pl330->dmac_tbd.reset_mngr) {
1480 		_stop(pl330->manager);
1481 		/* Reset all channels */
1482 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1483 		/* Clear the reset flag */
1484 		pl330->dmac_tbd.reset_mngr = false;
1485 	}
1486 
1487 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1488 
1489 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1490 			struct pl330_thread *thrd = &pl330->channels[i];
1491 			void __iomem *regs = pl330->base;
1492 			enum pl330_op_err err;
1493 
1494 			_stop(thrd);
1495 
1496 			if (readl(regs + FSC) & (1 << thrd->id))
1497 				err = PL330_ERR_FAIL;
1498 			else
1499 				err = PL330_ERR_ABORT;
1500 
1501 			spin_unlock_irqrestore(&pl330->lock, flags);
1502 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1503 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1504 			spin_lock_irqsave(&pl330->lock, flags);
1505 
1506 			thrd->req[0].desc = NULL;
1507 			thrd->req[1].desc = NULL;
1508 			thrd->req_running = -1;
1509 
1510 			/* Clear the reset flag */
1511 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1512 		}
1513 	}
1514 
1515 	spin_unlock_irqrestore(&pl330->lock, flags);
1516 
1517 	return;
1518 }
1519 
1520 /* Returns 1 if state was updated, 0 otherwise */
1521 static int pl330_update(struct pl330_dmac *pl330)
1522 {
1523 	struct dma_pl330_desc *descdone, *tmp;
1524 	unsigned long flags;
1525 	void __iomem *regs;
1526 	u32 val;
1527 	int id, ev, ret = 0;
1528 
1529 	regs = pl330->base;
1530 
1531 	spin_lock_irqsave(&pl330->lock, flags);
1532 
1533 	val = readl(regs + FSM) & 0x1;
1534 	if (val)
1535 		pl330->dmac_tbd.reset_mngr = true;
1536 	else
1537 		pl330->dmac_tbd.reset_mngr = false;
1538 
1539 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1540 	pl330->dmac_tbd.reset_chan |= val;
1541 	if (val) {
1542 		int i = 0;
1543 		while (i < pl330->pcfg.num_chan) {
1544 			if (val & (1 << i)) {
1545 				dev_info(pl330->ddma.dev,
1546 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1547 						i, readl(regs + CS(i)),
1548 						readl(regs + FTC(i)));
1549 				_stop(&pl330->channels[i]);
1550 			}
1551 			i++;
1552 		}
1553 	}
1554 
1555 	/* Check which event happened i.e, thread notified */
1556 	val = readl(regs + ES);
1557 	if (pl330->pcfg.num_events < 32
1558 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1559 		pl330->dmac_tbd.reset_dmac = true;
1560 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1561 			__LINE__);
1562 		ret = 1;
1563 		goto updt_exit;
1564 	}
1565 
1566 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1567 		if (val & (1 << ev)) { /* Event occurred */
1568 			struct pl330_thread *thrd;
1569 			u32 inten = readl(regs + INTEN);
1570 			int active;
1571 
1572 			/* Clear the event */
1573 			if (inten & (1 << ev))
1574 				writel(1 << ev, regs + INTCLR);
1575 
1576 			ret = 1;
1577 
1578 			id = pl330->events[ev];
1579 
1580 			thrd = &pl330->channels[id];
1581 
1582 			active = thrd->req_running;
1583 			if (active == -1) /* Aborted */
1584 				continue;
1585 
1586 			/* Detach the req */
1587 			descdone = thrd->req[active].desc;
1588 			thrd->req[active].desc = NULL;
1589 
1590 			/* Get going again ASAP */
1591 			_start(thrd);
1592 
1593 			/* For now, just make a list of callbacks to be done */
1594 			list_add_tail(&descdone->rqd, &pl330->req_done);
1595 		}
1596 	}
1597 
1598 	/* Now that we are in no hurry, do the callbacks */
1599 	list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) {
1600 		list_del(&descdone->rqd);
1601 		spin_unlock_irqrestore(&pl330->lock, flags);
1602 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1603 		spin_lock_irqsave(&pl330->lock, flags);
1604 	}
1605 
1606 updt_exit:
1607 	spin_unlock_irqrestore(&pl330->lock, flags);
1608 
1609 	if (pl330->dmac_tbd.reset_dmac
1610 			|| pl330->dmac_tbd.reset_mngr
1611 			|| pl330->dmac_tbd.reset_chan) {
1612 		ret = 1;
1613 		tasklet_schedule(&pl330->tasks);
1614 	}
1615 
1616 	return ret;
1617 }
1618 
1619 /* Reserve an event */
1620 static inline int _alloc_event(struct pl330_thread *thrd)
1621 {
1622 	struct pl330_dmac *pl330 = thrd->dmac;
1623 	int ev;
1624 
1625 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1626 		if (pl330->events[ev] == -1) {
1627 			pl330->events[ev] = thrd->id;
1628 			return ev;
1629 		}
1630 
1631 	return -1;
1632 }
1633 
1634 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1635 {
1636 	return pl330->pcfg.irq_ns & (1 << i);
1637 }
1638 
1639 /* Upon success, returns IdentityToken for the
1640  * allocated channel, NULL otherwise.
1641  */
1642 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1643 {
1644 	struct pl330_thread *thrd = NULL;
1645 	unsigned long flags;
1646 	int chans, i;
1647 
1648 	if (pl330->state == DYING)
1649 		return NULL;
1650 
1651 	chans = pl330->pcfg.num_chan;
1652 
1653 	spin_lock_irqsave(&pl330->lock, flags);
1654 
1655 	for (i = 0; i < chans; i++) {
1656 		thrd = &pl330->channels[i];
1657 		if ((thrd->free) && (!_manager_ns(thrd) ||
1658 					_chan_ns(pl330, i))) {
1659 			thrd->ev = _alloc_event(thrd);
1660 			if (thrd->ev >= 0) {
1661 				thrd->free = false;
1662 				thrd->lstenq = 1;
1663 				thrd->req[0].desc = NULL;
1664 				thrd->req[1].desc = NULL;
1665 				thrd->req_running = -1;
1666 				break;
1667 			}
1668 		}
1669 		thrd = NULL;
1670 	}
1671 
1672 	spin_unlock_irqrestore(&pl330->lock, flags);
1673 
1674 	return thrd;
1675 }
1676 
1677 /* Release an event */
1678 static inline void _free_event(struct pl330_thread *thrd, int ev)
1679 {
1680 	struct pl330_dmac *pl330 = thrd->dmac;
1681 
1682 	/* If the event is valid and was held by the thread */
1683 	if (ev >= 0 && ev < pl330->pcfg.num_events
1684 			&& pl330->events[ev] == thrd->id)
1685 		pl330->events[ev] = -1;
1686 }
1687 
1688 static void pl330_release_channel(struct pl330_thread *thrd)
1689 {
1690 	struct pl330_dmac *pl330;
1691 	unsigned long flags;
1692 
1693 	if (!thrd || thrd->free)
1694 		return;
1695 
1696 	_stop(thrd);
1697 
1698 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1699 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1700 
1701 	pl330 = thrd->dmac;
1702 
1703 	spin_lock_irqsave(&pl330->lock, flags);
1704 	_free_event(thrd, thrd->ev);
1705 	thrd->free = true;
1706 	spin_unlock_irqrestore(&pl330->lock, flags);
1707 }
1708 
1709 /* Initialize the structure for PL330 configuration, that can be used
1710  * by the client driver the make best use of the DMAC
1711  */
1712 static void read_dmac_config(struct pl330_dmac *pl330)
1713 {
1714 	void __iomem *regs = pl330->base;
1715 	u32 val;
1716 
1717 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1718 	val &= CRD_DATA_WIDTH_MASK;
1719 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1720 
1721 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1722 	val &= CRD_DATA_BUFF_MASK;
1723 	pl330->pcfg.data_buf_dep = val + 1;
1724 
1725 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1726 	val &= CR0_NUM_CHANS_MASK;
1727 	val += 1;
1728 	pl330->pcfg.num_chan = val;
1729 
1730 	val = readl(regs + CR0);
1731 	if (val & CR0_PERIPH_REQ_SET) {
1732 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1733 		val += 1;
1734 		pl330->pcfg.num_peri = val;
1735 		pl330->pcfg.peri_ns = readl(regs + CR4);
1736 	} else {
1737 		pl330->pcfg.num_peri = 0;
1738 	}
1739 
1740 	val = readl(regs + CR0);
1741 	if (val & CR0_BOOT_MAN_NS)
1742 		pl330->pcfg.mode |= DMAC_MODE_NS;
1743 	else
1744 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1745 
1746 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1747 	val &= CR0_NUM_EVENTS_MASK;
1748 	val += 1;
1749 	pl330->pcfg.num_events = val;
1750 
1751 	pl330->pcfg.irq_ns = readl(regs + CR3);
1752 }
1753 
1754 static inline void _reset_thread(struct pl330_thread *thrd)
1755 {
1756 	struct pl330_dmac *pl330 = thrd->dmac;
1757 
1758 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1759 				+ (thrd->id * pl330->mcbufsz);
1760 	thrd->req[0].mc_bus = pl330->mcode_bus
1761 				+ (thrd->id * pl330->mcbufsz);
1762 	thrd->req[0].desc = NULL;
1763 
1764 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1765 				+ pl330->mcbufsz / 2;
1766 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1767 				+ pl330->mcbufsz / 2;
1768 	thrd->req[1].desc = NULL;
1769 
1770 	thrd->req_running = -1;
1771 }
1772 
1773 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1774 {
1775 	int chans = pl330->pcfg.num_chan;
1776 	struct pl330_thread *thrd;
1777 	int i;
1778 
1779 	/* Allocate 1 Manager and 'chans' Channel threads */
1780 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1781 					GFP_KERNEL);
1782 	if (!pl330->channels)
1783 		return -ENOMEM;
1784 
1785 	/* Init Channel threads */
1786 	for (i = 0; i < chans; i++) {
1787 		thrd = &pl330->channels[i];
1788 		thrd->id = i;
1789 		thrd->dmac = pl330;
1790 		_reset_thread(thrd);
1791 		thrd->free = true;
1792 	}
1793 
1794 	/* MANAGER is indexed at the end */
1795 	thrd = &pl330->channels[chans];
1796 	thrd->id = chans;
1797 	thrd->dmac = pl330;
1798 	thrd->free = false;
1799 	pl330->manager = thrd;
1800 
1801 	return 0;
1802 }
1803 
1804 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1805 {
1806 	int chans = pl330->pcfg.num_chan;
1807 	int ret;
1808 
1809 	/*
1810 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1811 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1812 	 */
1813 	pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev,
1814 				chans * pl330->mcbufsz,
1815 				&pl330->mcode_bus, GFP_KERNEL);
1816 	if (!pl330->mcode_cpu) {
1817 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1818 			__func__, __LINE__);
1819 		return -ENOMEM;
1820 	}
1821 
1822 	ret = dmac_alloc_threads(pl330);
1823 	if (ret) {
1824 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1825 			__func__, __LINE__);
1826 		dma_free_coherent(pl330->ddma.dev,
1827 				chans * pl330->mcbufsz,
1828 				pl330->mcode_cpu, pl330->mcode_bus);
1829 		return ret;
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 static int pl330_add(struct pl330_dmac *pl330)
1836 {
1837 	void __iomem *regs;
1838 	int i, ret;
1839 
1840 	regs = pl330->base;
1841 
1842 	/* Check if we can handle this DMAC */
1843 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1844 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1845 			pl330->pcfg.periph_id);
1846 		return -EINVAL;
1847 	}
1848 
1849 	/* Read the configuration of the DMAC */
1850 	read_dmac_config(pl330);
1851 
1852 	if (pl330->pcfg.num_events == 0) {
1853 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1854 			__func__, __LINE__);
1855 		return -EINVAL;
1856 	}
1857 
1858 	spin_lock_init(&pl330->lock);
1859 
1860 	INIT_LIST_HEAD(&pl330->req_done);
1861 
1862 	/* Use default MC buffer size if not provided */
1863 	if (!pl330->mcbufsz)
1864 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1865 
1866 	/* Mark all events as free */
1867 	for (i = 0; i < pl330->pcfg.num_events; i++)
1868 		pl330->events[i] = -1;
1869 
1870 	/* Allocate resources needed by the DMAC */
1871 	ret = dmac_alloc_resources(pl330);
1872 	if (ret) {
1873 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1874 		return ret;
1875 	}
1876 
1877 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1878 
1879 	pl330->state = INIT;
1880 
1881 	return 0;
1882 }
1883 
1884 static int dmac_free_threads(struct pl330_dmac *pl330)
1885 {
1886 	struct pl330_thread *thrd;
1887 	int i;
1888 
1889 	/* Release Channel threads */
1890 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1891 		thrd = &pl330->channels[i];
1892 		pl330_release_channel(thrd);
1893 	}
1894 
1895 	/* Free memory */
1896 	kfree(pl330->channels);
1897 
1898 	return 0;
1899 }
1900 
1901 static void pl330_del(struct pl330_dmac *pl330)
1902 {
1903 	pl330->state = UNINIT;
1904 
1905 	tasklet_kill(&pl330->tasks);
1906 
1907 	/* Free DMAC resources */
1908 	dmac_free_threads(pl330);
1909 
1910 	dma_free_coherent(pl330->ddma.dev,
1911 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1912 		pl330->mcode_bus);
1913 }
1914 
1915 /* forward declaration */
1916 static struct amba_driver pl330_driver;
1917 
1918 static inline struct dma_pl330_chan *
1919 to_pchan(struct dma_chan *ch)
1920 {
1921 	if (!ch)
1922 		return NULL;
1923 
1924 	return container_of(ch, struct dma_pl330_chan, chan);
1925 }
1926 
1927 static inline struct dma_pl330_desc *
1928 to_desc(struct dma_async_tx_descriptor *tx)
1929 {
1930 	return container_of(tx, struct dma_pl330_desc, txd);
1931 }
1932 
1933 static inline void fill_queue(struct dma_pl330_chan *pch)
1934 {
1935 	struct dma_pl330_desc *desc;
1936 	int ret;
1937 
1938 	list_for_each_entry(desc, &pch->work_list, node) {
1939 
1940 		/* If already submitted */
1941 		if (desc->status == BUSY)
1942 			continue;
1943 
1944 		ret = pl330_submit_req(pch->thread, desc);
1945 		if (!ret) {
1946 			desc->status = BUSY;
1947 		} else if (ret == -EAGAIN) {
1948 			/* QFull or DMAC Dying */
1949 			break;
1950 		} else {
1951 			/* Unacceptable request */
1952 			desc->status = DONE;
1953 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
1954 					__func__, __LINE__, desc->txd.cookie);
1955 			tasklet_schedule(&pch->task);
1956 		}
1957 	}
1958 }
1959 
1960 static void pl330_tasklet(unsigned long data)
1961 {
1962 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
1963 	struct dma_pl330_desc *desc, *_dt;
1964 	unsigned long flags;
1965 	bool power_down = false;
1966 
1967 	spin_lock_irqsave(&pch->lock, flags);
1968 
1969 	/* Pick up ripe tomatoes */
1970 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
1971 		if (desc->status == DONE) {
1972 			if (!pch->cyclic)
1973 				dma_cookie_complete(&desc->txd);
1974 			list_move_tail(&desc->node, &pch->completed_list);
1975 		}
1976 
1977 	/* Try to submit a req imm. next to the last completed cookie */
1978 	fill_queue(pch);
1979 
1980 	if (list_empty(&pch->work_list)) {
1981 		spin_lock(&pch->thread->dmac->lock);
1982 		_stop(pch->thread);
1983 		spin_unlock(&pch->thread->dmac->lock);
1984 		power_down = true;
1985 	} else {
1986 		/* Make sure the PL330 Channel thread is active */
1987 		spin_lock(&pch->thread->dmac->lock);
1988 		_start(pch->thread);
1989 		spin_unlock(&pch->thread->dmac->lock);
1990 	}
1991 
1992 	while (!list_empty(&pch->completed_list)) {
1993 		dma_async_tx_callback callback;
1994 		void *callback_param;
1995 
1996 		desc = list_first_entry(&pch->completed_list,
1997 					struct dma_pl330_desc, node);
1998 
1999 		callback = desc->txd.callback;
2000 		callback_param = desc->txd.callback_param;
2001 
2002 		if (pch->cyclic) {
2003 			desc->status = PREP;
2004 			list_move_tail(&desc->node, &pch->work_list);
2005 			if (power_down) {
2006 				spin_lock(&pch->thread->dmac->lock);
2007 				_start(pch->thread);
2008 				spin_unlock(&pch->thread->dmac->lock);
2009 				power_down = false;
2010 			}
2011 		} else {
2012 			desc->status = FREE;
2013 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2014 		}
2015 
2016 		dma_descriptor_unmap(&desc->txd);
2017 
2018 		if (callback) {
2019 			spin_unlock_irqrestore(&pch->lock, flags);
2020 			callback(callback_param);
2021 			spin_lock_irqsave(&pch->lock, flags);
2022 		}
2023 	}
2024 	spin_unlock_irqrestore(&pch->lock, flags);
2025 
2026 	/* If work list empty, power down */
2027 	if (power_down) {
2028 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2029 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2030 	}
2031 }
2032 
2033 bool pl330_filter(struct dma_chan *chan, void *param)
2034 {
2035 	u8 *peri_id;
2036 
2037 	if (chan->device->dev->driver != &pl330_driver.drv)
2038 		return false;
2039 
2040 	peri_id = chan->private;
2041 	return *peri_id == (unsigned long)param;
2042 }
2043 EXPORT_SYMBOL(pl330_filter);
2044 
2045 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2046 						struct of_dma *ofdma)
2047 {
2048 	int count = dma_spec->args_count;
2049 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2050 	unsigned int chan_id;
2051 
2052 	if (!pl330)
2053 		return NULL;
2054 
2055 	if (count != 1)
2056 		return NULL;
2057 
2058 	chan_id = dma_spec->args[0];
2059 	if (chan_id >= pl330->num_peripherals)
2060 		return NULL;
2061 
2062 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2063 }
2064 
2065 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2066 {
2067 	struct dma_pl330_chan *pch = to_pchan(chan);
2068 	struct pl330_dmac *pl330 = pch->dmac;
2069 	unsigned long flags;
2070 
2071 	spin_lock_irqsave(&pch->lock, flags);
2072 
2073 	dma_cookie_init(chan);
2074 	pch->cyclic = false;
2075 
2076 	pch->thread = pl330_request_channel(pl330);
2077 	if (!pch->thread) {
2078 		spin_unlock_irqrestore(&pch->lock, flags);
2079 		return -ENOMEM;
2080 	}
2081 
2082 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2083 
2084 	spin_unlock_irqrestore(&pch->lock, flags);
2085 
2086 	return 1;
2087 }
2088 
2089 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2090 {
2091 	struct dma_pl330_chan *pch = to_pchan(chan);
2092 	struct dma_pl330_desc *desc;
2093 	unsigned long flags;
2094 	struct pl330_dmac *pl330 = pch->dmac;
2095 	struct dma_slave_config *slave_config;
2096 	LIST_HEAD(list);
2097 
2098 	switch (cmd) {
2099 	case DMA_TERMINATE_ALL:
2100 		pm_runtime_get_sync(pl330->ddma.dev);
2101 		spin_lock_irqsave(&pch->lock, flags);
2102 
2103 		spin_lock(&pl330->lock);
2104 		_stop(pch->thread);
2105 		spin_unlock(&pl330->lock);
2106 
2107 		pch->thread->req[0].desc = NULL;
2108 		pch->thread->req[1].desc = NULL;
2109 		pch->thread->req_running = -1;
2110 
2111 		/* Mark all desc done */
2112 		list_for_each_entry(desc, &pch->submitted_list, node) {
2113 			desc->status = FREE;
2114 			dma_cookie_complete(&desc->txd);
2115 		}
2116 
2117 		list_for_each_entry(desc, &pch->work_list , node) {
2118 			desc->status = FREE;
2119 			dma_cookie_complete(&desc->txd);
2120 		}
2121 
2122 		list_for_each_entry(desc, &pch->completed_list , node) {
2123 			desc->status = FREE;
2124 			dma_cookie_complete(&desc->txd);
2125 		}
2126 
2127 		if (!list_empty(&pch->work_list))
2128 			pm_runtime_put(pl330->ddma.dev);
2129 
2130 		list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2131 		list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2132 		list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2133 		spin_unlock_irqrestore(&pch->lock, flags);
2134 		pm_runtime_mark_last_busy(pl330->ddma.dev);
2135 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2136 		break;
2137 	case DMA_SLAVE_CONFIG:
2138 		slave_config = (struct dma_slave_config *)arg;
2139 
2140 		if (slave_config->direction == DMA_MEM_TO_DEV) {
2141 			if (slave_config->dst_addr)
2142 				pch->fifo_addr = slave_config->dst_addr;
2143 			if (slave_config->dst_addr_width)
2144 				pch->burst_sz = __ffs(slave_config->dst_addr_width);
2145 			if (slave_config->dst_maxburst)
2146 				pch->burst_len = slave_config->dst_maxburst;
2147 		} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2148 			if (slave_config->src_addr)
2149 				pch->fifo_addr = slave_config->src_addr;
2150 			if (slave_config->src_addr_width)
2151 				pch->burst_sz = __ffs(slave_config->src_addr_width);
2152 			if (slave_config->src_maxburst)
2153 				pch->burst_len = slave_config->src_maxburst;
2154 		}
2155 		break;
2156 	default:
2157 		dev_err(pch->dmac->ddma.dev, "Not supported command.\n");
2158 		return -ENXIO;
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 static void pl330_free_chan_resources(struct dma_chan *chan)
2165 {
2166 	struct dma_pl330_chan *pch = to_pchan(chan);
2167 	unsigned long flags;
2168 
2169 	tasklet_kill(&pch->task);
2170 
2171 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2172 	spin_lock_irqsave(&pch->lock, flags);
2173 
2174 	pl330_release_channel(pch->thread);
2175 	pch->thread = NULL;
2176 
2177 	if (pch->cyclic)
2178 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2179 
2180 	spin_unlock_irqrestore(&pch->lock, flags);
2181 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2182 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2183 }
2184 
2185 static enum dma_status
2186 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2187 		 struct dma_tx_state *txstate)
2188 {
2189 	return dma_cookie_status(chan, cookie, txstate);
2190 }
2191 
2192 static void pl330_issue_pending(struct dma_chan *chan)
2193 {
2194 	struct dma_pl330_chan *pch = to_pchan(chan);
2195 	unsigned long flags;
2196 
2197 	spin_lock_irqsave(&pch->lock, flags);
2198 	if (list_empty(&pch->work_list)) {
2199 		/*
2200 		 * Warn on nothing pending. Empty submitted_list may
2201 		 * break our pm_runtime usage counter as it is
2202 		 * updated on work_list emptiness status.
2203 		 */
2204 		WARN_ON(list_empty(&pch->submitted_list));
2205 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2206 	}
2207 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2208 	spin_unlock_irqrestore(&pch->lock, flags);
2209 
2210 	pl330_tasklet((unsigned long)pch);
2211 }
2212 
2213 /*
2214  * We returned the last one of the circular list of descriptor(s)
2215  * from prep_xxx, so the argument to submit corresponds to the last
2216  * descriptor of the list.
2217  */
2218 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2219 {
2220 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2221 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2222 	dma_cookie_t cookie;
2223 	unsigned long flags;
2224 
2225 	spin_lock_irqsave(&pch->lock, flags);
2226 
2227 	/* Assign cookies to all nodes */
2228 	while (!list_empty(&last->node)) {
2229 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2230 		if (pch->cyclic) {
2231 			desc->txd.callback = last->txd.callback;
2232 			desc->txd.callback_param = last->txd.callback_param;
2233 		}
2234 
2235 		dma_cookie_assign(&desc->txd);
2236 
2237 		list_move_tail(&desc->node, &pch->submitted_list);
2238 	}
2239 
2240 	cookie = dma_cookie_assign(&last->txd);
2241 	list_add_tail(&last->node, &pch->submitted_list);
2242 	spin_unlock_irqrestore(&pch->lock, flags);
2243 
2244 	return cookie;
2245 }
2246 
2247 static inline void _init_desc(struct dma_pl330_desc *desc)
2248 {
2249 	desc->rqcfg.swap = SWAP_NO;
2250 	desc->rqcfg.scctl = CCTRL0;
2251 	desc->rqcfg.dcctl = CCTRL0;
2252 	desc->txd.tx_submit = pl330_tx_submit;
2253 
2254 	INIT_LIST_HEAD(&desc->node);
2255 }
2256 
2257 /* Returns the number of descriptors added to the DMAC pool */
2258 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
2259 {
2260 	struct dma_pl330_desc *desc;
2261 	unsigned long flags;
2262 	int i;
2263 
2264 	desc = kcalloc(count, sizeof(*desc), flg);
2265 	if (!desc)
2266 		return 0;
2267 
2268 	spin_lock_irqsave(&pl330->pool_lock, flags);
2269 
2270 	for (i = 0; i < count; i++) {
2271 		_init_desc(&desc[i]);
2272 		list_add_tail(&desc[i].node, &pl330->desc_pool);
2273 	}
2274 
2275 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2276 
2277 	return count;
2278 }
2279 
2280 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
2281 {
2282 	struct dma_pl330_desc *desc = NULL;
2283 	unsigned long flags;
2284 
2285 	spin_lock_irqsave(&pl330->pool_lock, flags);
2286 
2287 	if (!list_empty(&pl330->desc_pool)) {
2288 		desc = list_entry(pl330->desc_pool.next,
2289 				struct dma_pl330_desc, node);
2290 
2291 		list_del_init(&desc->node);
2292 
2293 		desc->status = PREP;
2294 		desc->txd.callback = NULL;
2295 	}
2296 
2297 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2298 
2299 	return desc;
2300 }
2301 
2302 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2303 {
2304 	struct pl330_dmac *pl330 = pch->dmac;
2305 	u8 *peri_id = pch->chan.private;
2306 	struct dma_pl330_desc *desc;
2307 
2308 	/* Pluck one desc from the pool of DMAC */
2309 	desc = pluck_desc(pl330);
2310 
2311 	/* If the DMAC pool is empty, alloc new */
2312 	if (!desc) {
2313 		if (!add_desc(pl330, GFP_ATOMIC, 1))
2314 			return NULL;
2315 
2316 		/* Try again */
2317 		desc = pluck_desc(pl330);
2318 		if (!desc) {
2319 			dev_err(pch->dmac->ddma.dev,
2320 				"%s:%d ALERT!\n", __func__, __LINE__);
2321 			return NULL;
2322 		}
2323 	}
2324 
2325 	/* Initialize the descriptor */
2326 	desc->pchan = pch;
2327 	desc->txd.cookie = 0;
2328 	async_tx_ack(&desc->txd);
2329 
2330 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2331 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2332 
2333 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2334 
2335 	return desc;
2336 }
2337 
2338 static inline void fill_px(struct pl330_xfer *px,
2339 		dma_addr_t dst, dma_addr_t src, size_t len)
2340 {
2341 	px->bytes = len;
2342 	px->dst_addr = dst;
2343 	px->src_addr = src;
2344 }
2345 
2346 static struct dma_pl330_desc *
2347 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2348 		dma_addr_t src, size_t len)
2349 {
2350 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2351 
2352 	if (!desc) {
2353 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2354 			__func__, __LINE__);
2355 		return NULL;
2356 	}
2357 
2358 	/*
2359 	 * Ideally we should lookout for reqs bigger than
2360 	 * those that can be programmed with 256 bytes of
2361 	 * MC buffer, but considering a req size is seldom
2362 	 * going to be word-unaligned and more than 200MB,
2363 	 * we take it easy.
2364 	 * Also, should the limit is reached we'd rather
2365 	 * have the platform increase MC buffer size than
2366 	 * complicating this API driver.
2367 	 */
2368 	fill_px(&desc->px, dst, src, len);
2369 
2370 	return desc;
2371 }
2372 
2373 /* Call after fixing burst size */
2374 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2375 {
2376 	struct dma_pl330_chan *pch = desc->pchan;
2377 	struct pl330_dmac *pl330 = pch->dmac;
2378 	int burst_len;
2379 
2380 	burst_len = pl330->pcfg.data_bus_width / 8;
2381 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2382 	burst_len >>= desc->rqcfg.brst_size;
2383 
2384 	/* src/dst_burst_len can't be more than 16 */
2385 	if (burst_len > 16)
2386 		burst_len = 16;
2387 
2388 	while (burst_len > 1) {
2389 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2390 			break;
2391 		burst_len--;
2392 	}
2393 
2394 	return burst_len;
2395 }
2396 
2397 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2398 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2399 		size_t period_len, enum dma_transfer_direction direction,
2400 		unsigned long flags)
2401 {
2402 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2403 	struct dma_pl330_chan *pch = to_pchan(chan);
2404 	struct pl330_dmac *pl330 = pch->dmac;
2405 	unsigned int i;
2406 	dma_addr_t dst;
2407 	dma_addr_t src;
2408 
2409 	if (len % period_len != 0)
2410 		return NULL;
2411 
2412 	if (!is_slave_direction(direction)) {
2413 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2414 		__func__, __LINE__);
2415 		return NULL;
2416 	}
2417 
2418 	for (i = 0; i < len / period_len; i++) {
2419 		desc = pl330_get_desc(pch);
2420 		if (!desc) {
2421 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2422 				__func__, __LINE__);
2423 
2424 			if (!first)
2425 				return NULL;
2426 
2427 			spin_lock_irqsave(&pl330->pool_lock, flags);
2428 
2429 			while (!list_empty(&first->node)) {
2430 				desc = list_entry(first->node.next,
2431 						struct dma_pl330_desc, node);
2432 				list_move_tail(&desc->node, &pl330->desc_pool);
2433 			}
2434 
2435 			list_move_tail(&first->node, &pl330->desc_pool);
2436 
2437 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2438 
2439 			return NULL;
2440 		}
2441 
2442 		switch (direction) {
2443 		case DMA_MEM_TO_DEV:
2444 			desc->rqcfg.src_inc = 1;
2445 			desc->rqcfg.dst_inc = 0;
2446 			src = dma_addr;
2447 			dst = pch->fifo_addr;
2448 			break;
2449 		case DMA_DEV_TO_MEM:
2450 			desc->rqcfg.src_inc = 0;
2451 			desc->rqcfg.dst_inc = 1;
2452 			src = pch->fifo_addr;
2453 			dst = dma_addr;
2454 			break;
2455 		default:
2456 			break;
2457 		}
2458 
2459 		desc->rqtype = direction;
2460 		desc->rqcfg.brst_size = pch->burst_sz;
2461 		desc->rqcfg.brst_len = 1;
2462 		fill_px(&desc->px, dst, src, period_len);
2463 
2464 		if (!first)
2465 			first = desc;
2466 		else
2467 			list_add_tail(&desc->node, &first->node);
2468 
2469 		dma_addr += period_len;
2470 	}
2471 
2472 	if (!desc)
2473 		return NULL;
2474 
2475 	pch->cyclic = true;
2476 	desc->txd.flags = flags;
2477 
2478 	return &desc->txd;
2479 }
2480 
2481 static struct dma_async_tx_descriptor *
2482 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2483 		dma_addr_t src, size_t len, unsigned long flags)
2484 {
2485 	struct dma_pl330_desc *desc;
2486 	struct dma_pl330_chan *pch = to_pchan(chan);
2487 	struct pl330_dmac *pl330 = pch->dmac;
2488 	int burst;
2489 
2490 	if (unlikely(!pch || !len))
2491 		return NULL;
2492 
2493 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2494 	if (!desc)
2495 		return NULL;
2496 
2497 	desc->rqcfg.src_inc = 1;
2498 	desc->rqcfg.dst_inc = 1;
2499 	desc->rqtype = DMA_MEM_TO_MEM;
2500 
2501 	/* Select max possible burst size */
2502 	burst = pl330->pcfg.data_bus_width / 8;
2503 
2504 	/*
2505 	 * Make sure we use a burst size that aligns with all the memcpy
2506 	 * parameters because our DMA programming algorithm doesn't cope with
2507 	 * transfers which straddle an entry in the DMA device's MFIFO.
2508 	 */
2509 	while ((src | dst | len) & (burst - 1))
2510 		burst /= 2;
2511 
2512 	desc->rqcfg.brst_size = 0;
2513 	while (burst != (1 << desc->rqcfg.brst_size))
2514 		desc->rqcfg.brst_size++;
2515 
2516 	/*
2517 	 * If burst size is smaller than bus width then make sure we only
2518 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2519 	 */
2520 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2521 		desc->rqcfg.brst_len = 1;
2522 
2523 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2524 
2525 	desc->txd.flags = flags;
2526 
2527 	return &desc->txd;
2528 }
2529 
2530 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2531 				  struct dma_pl330_desc *first)
2532 {
2533 	unsigned long flags;
2534 	struct dma_pl330_desc *desc;
2535 
2536 	if (!first)
2537 		return;
2538 
2539 	spin_lock_irqsave(&pl330->pool_lock, flags);
2540 
2541 	while (!list_empty(&first->node)) {
2542 		desc = list_entry(first->node.next,
2543 				struct dma_pl330_desc, node);
2544 		list_move_tail(&desc->node, &pl330->desc_pool);
2545 	}
2546 
2547 	list_move_tail(&first->node, &pl330->desc_pool);
2548 
2549 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2550 }
2551 
2552 static struct dma_async_tx_descriptor *
2553 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2554 		unsigned int sg_len, enum dma_transfer_direction direction,
2555 		unsigned long flg, void *context)
2556 {
2557 	struct dma_pl330_desc *first, *desc = NULL;
2558 	struct dma_pl330_chan *pch = to_pchan(chan);
2559 	struct scatterlist *sg;
2560 	int i;
2561 	dma_addr_t addr;
2562 
2563 	if (unlikely(!pch || !sgl || !sg_len))
2564 		return NULL;
2565 
2566 	addr = pch->fifo_addr;
2567 
2568 	first = NULL;
2569 
2570 	for_each_sg(sgl, sg, sg_len, i) {
2571 
2572 		desc = pl330_get_desc(pch);
2573 		if (!desc) {
2574 			struct pl330_dmac *pl330 = pch->dmac;
2575 
2576 			dev_err(pch->dmac->ddma.dev,
2577 				"%s:%d Unable to fetch desc\n",
2578 				__func__, __LINE__);
2579 			__pl330_giveback_desc(pl330, first);
2580 
2581 			return NULL;
2582 		}
2583 
2584 		if (!first)
2585 			first = desc;
2586 		else
2587 			list_add_tail(&desc->node, &first->node);
2588 
2589 		if (direction == DMA_MEM_TO_DEV) {
2590 			desc->rqcfg.src_inc = 1;
2591 			desc->rqcfg.dst_inc = 0;
2592 			fill_px(&desc->px,
2593 				addr, sg_dma_address(sg), sg_dma_len(sg));
2594 		} else {
2595 			desc->rqcfg.src_inc = 0;
2596 			desc->rqcfg.dst_inc = 1;
2597 			fill_px(&desc->px,
2598 				sg_dma_address(sg), addr, sg_dma_len(sg));
2599 		}
2600 
2601 		desc->rqcfg.brst_size = pch->burst_sz;
2602 		desc->rqcfg.brst_len = 1;
2603 		desc->rqtype = direction;
2604 	}
2605 
2606 	/* Return the last desc in the chain */
2607 	desc->txd.flags = flg;
2608 	return &desc->txd;
2609 }
2610 
2611 static irqreturn_t pl330_irq_handler(int irq, void *data)
2612 {
2613 	if (pl330_update(data))
2614 		return IRQ_HANDLED;
2615 	else
2616 		return IRQ_NONE;
2617 }
2618 
2619 #define PL330_DMA_BUSWIDTHS \
2620 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2621 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2622 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2623 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2624 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2625 
2626 static int pl330_dma_device_slave_caps(struct dma_chan *dchan,
2627 	struct dma_slave_caps *caps)
2628 {
2629 	caps->src_addr_widths = PL330_DMA_BUSWIDTHS;
2630 	caps->dstn_addr_widths = PL330_DMA_BUSWIDTHS;
2631 	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2632 	caps->cmd_pause = false;
2633 	caps->cmd_terminate = true;
2634 	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2635 
2636 	return 0;
2637 }
2638 
2639 /*
2640  * Runtime PM callbacks are provided by amba/bus.c driver.
2641  *
2642  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2643  * bus driver will only disable/enable the clock in runtime PM callbacks.
2644  */
2645 static int __maybe_unused pl330_suspend(struct device *dev)
2646 {
2647 	struct amba_device *pcdev = to_amba_device(dev);
2648 
2649 	pm_runtime_disable(dev);
2650 
2651 	if (!pm_runtime_status_suspended(dev)) {
2652 		/* amba did not disable the clock */
2653 		amba_pclk_disable(pcdev);
2654 	}
2655 	amba_pclk_unprepare(pcdev);
2656 
2657 	return 0;
2658 }
2659 
2660 static int __maybe_unused pl330_resume(struct device *dev)
2661 {
2662 	struct amba_device *pcdev = to_amba_device(dev);
2663 	int ret;
2664 
2665 	ret = amba_pclk_prepare(pcdev);
2666 	if (ret)
2667 		return ret;
2668 
2669 	if (!pm_runtime_status_suspended(dev))
2670 		ret = amba_pclk_enable(pcdev);
2671 
2672 	pm_runtime_enable(dev);
2673 
2674 	return ret;
2675 }
2676 
2677 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2678 
2679 static int
2680 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2681 {
2682 	struct dma_pl330_platdata *pdat;
2683 	struct pl330_config *pcfg;
2684 	struct pl330_dmac *pl330;
2685 	struct dma_pl330_chan *pch, *_p;
2686 	struct dma_device *pd;
2687 	struct resource *res;
2688 	int i, ret, irq;
2689 	int num_chan;
2690 
2691 	pdat = dev_get_platdata(&adev->dev);
2692 
2693 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2694 	if (ret)
2695 		return ret;
2696 
2697 	/* Allocate a new DMAC and its Channels */
2698 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2699 	if (!pl330) {
2700 		dev_err(&adev->dev, "unable to allocate mem\n");
2701 		return -ENOMEM;
2702 	}
2703 
2704 	pd = &pl330->ddma;
2705 	pd->dev = &adev->dev;
2706 
2707 	pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2708 
2709 	res = &adev->res;
2710 	pl330->base = devm_ioremap_resource(&adev->dev, res);
2711 	if (IS_ERR(pl330->base))
2712 		return PTR_ERR(pl330->base);
2713 
2714 	amba_set_drvdata(adev, pl330);
2715 
2716 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2717 		irq = adev->irq[i];
2718 		if (irq) {
2719 			ret = devm_request_irq(&adev->dev, irq,
2720 					       pl330_irq_handler, 0,
2721 					       dev_name(&adev->dev), pl330);
2722 			if (ret)
2723 				return ret;
2724 		} else {
2725 			break;
2726 		}
2727 	}
2728 
2729 	pcfg = &pl330->pcfg;
2730 
2731 	pcfg->periph_id = adev->periphid;
2732 	ret = pl330_add(pl330);
2733 	if (ret)
2734 		return ret;
2735 
2736 	INIT_LIST_HEAD(&pl330->desc_pool);
2737 	spin_lock_init(&pl330->pool_lock);
2738 
2739 	/* Create a descriptor pool of default size */
2740 	if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC))
2741 		dev_warn(&adev->dev, "unable to allocate desc\n");
2742 
2743 	INIT_LIST_HEAD(&pd->channels);
2744 
2745 	/* Initialize channel parameters */
2746 	if (pdat)
2747 		num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan);
2748 	else
2749 		num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2750 
2751 	pl330->num_peripherals = num_chan;
2752 
2753 	pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2754 	if (!pl330->peripherals) {
2755 		ret = -ENOMEM;
2756 		dev_err(&adev->dev, "unable to allocate pl330->peripherals\n");
2757 		goto probe_err2;
2758 	}
2759 
2760 	for (i = 0; i < num_chan; i++) {
2761 		pch = &pl330->peripherals[i];
2762 		if (!adev->dev.of_node)
2763 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2764 		else
2765 			pch->chan.private = adev->dev.of_node;
2766 
2767 		INIT_LIST_HEAD(&pch->submitted_list);
2768 		INIT_LIST_HEAD(&pch->work_list);
2769 		INIT_LIST_HEAD(&pch->completed_list);
2770 		spin_lock_init(&pch->lock);
2771 		pch->thread = NULL;
2772 		pch->chan.device = pd;
2773 		pch->dmac = pl330;
2774 
2775 		/* Add the channel to the DMAC list */
2776 		list_add_tail(&pch->chan.device_node, &pd->channels);
2777 	}
2778 
2779 	if (pdat) {
2780 		pd->cap_mask = pdat->cap_mask;
2781 	} else {
2782 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2783 		if (pcfg->num_peri) {
2784 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2785 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2786 			dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2787 		}
2788 	}
2789 
2790 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2791 	pd->device_free_chan_resources = pl330_free_chan_resources;
2792 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2793 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2794 	pd->device_tx_status = pl330_tx_status;
2795 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2796 	pd->device_control = pl330_control;
2797 	pd->device_issue_pending = pl330_issue_pending;
2798 	pd->device_slave_caps = pl330_dma_device_slave_caps;
2799 
2800 	ret = dma_async_device_register(pd);
2801 	if (ret) {
2802 		dev_err(&adev->dev, "unable to register DMAC\n");
2803 		goto probe_err3;
2804 	}
2805 
2806 	if (adev->dev.of_node) {
2807 		ret = of_dma_controller_register(adev->dev.of_node,
2808 					 of_dma_pl330_xlate, pl330);
2809 		if (ret) {
2810 			dev_err(&adev->dev,
2811 			"unable to register DMA to the generic DT DMA helpers\n");
2812 		}
2813 	}
2814 
2815 	adev->dev.dma_parms = &pl330->dma_parms;
2816 
2817 	/*
2818 	 * This is the limit for transfers with a buswidth of 1, larger
2819 	 * buswidths will have larger limits.
2820 	 */
2821 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
2822 	if (ret)
2823 		dev_err(&adev->dev, "unable to set the seg size\n");
2824 
2825 
2826 	dev_info(&adev->dev,
2827 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2828 	dev_info(&adev->dev,
2829 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2830 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2831 		pcfg->num_peri, pcfg->num_events);
2832 
2833 	pm_runtime_irq_safe(&adev->dev);
2834 	pm_runtime_use_autosuspend(&adev->dev);
2835 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2836 	pm_runtime_mark_last_busy(&adev->dev);
2837 	pm_runtime_put_autosuspend(&adev->dev);
2838 
2839 	return 0;
2840 probe_err3:
2841 	/* Idle the DMAC */
2842 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2843 			chan.device_node) {
2844 
2845 		/* Remove the channel */
2846 		list_del(&pch->chan.device_node);
2847 
2848 		/* Flush the channel */
2849 		if (pch->thread) {
2850 			pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
2851 			pl330_free_chan_resources(&pch->chan);
2852 		}
2853 	}
2854 probe_err2:
2855 	pl330_del(pl330);
2856 
2857 	return ret;
2858 }
2859 
2860 static int pl330_remove(struct amba_device *adev)
2861 {
2862 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
2863 	struct dma_pl330_chan *pch, *_p;
2864 
2865 	pm_runtime_get_noresume(pl330->ddma.dev);
2866 
2867 	if (adev->dev.of_node)
2868 		of_dma_controller_free(adev->dev.of_node);
2869 
2870 	dma_async_device_unregister(&pl330->ddma);
2871 
2872 	/* Idle the DMAC */
2873 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2874 			chan.device_node) {
2875 
2876 		/* Remove the channel */
2877 		list_del(&pch->chan.device_node);
2878 
2879 		/* Flush the channel */
2880 		if (pch->thread) {
2881 			pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
2882 			pl330_free_chan_resources(&pch->chan);
2883 		}
2884 	}
2885 
2886 	pl330_del(pl330);
2887 
2888 	return 0;
2889 }
2890 
2891 static struct amba_id pl330_ids[] = {
2892 	{
2893 		.id	= 0x00041330,
2894 		.mask	= 0x000fffff,
2895 	},
2896 	{ 0, 0 },
2897 };
2898 
2899 MODULE_DEVICE_TABLE(amba, pl330_ids);
2900 
2901 static struct amba_driver pl330_driver = {
2902 	.drv = {
2903 		.owner = THIS_MODULE,
2904 		.name = "dma-pl330",
2905 		.pm = &pl330_pm,
2906 	},
2907 	.id_table = pl330_ids,
2908 	.probe = pl330_probe,
2909 	.remove = pl330_remove,
2910 };
2911 
2912 module_amba_driver(pl330_driver);
2913 
2914 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
2915 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
2916 MODULE_LICENSE("GPL");
2917