xref: /openbmc/linux/drivers/dma/pl330.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30 
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN		8
33 #define PL330_MAX_IRQS		32
34 #define PL330_MAX_PERI		32
35 
36 enum pl330_srccachectrl {
37 	SCCTRL0,	/* Noncacheable and nonbufferable */
38 	SCCTRL1,	/* Bufferable only */
39 	SCCTRL2,	/* Cacheable, but do not allocate */
40 	SCCTRL3,	/* Cacheable and bufferable, but do not allocate */
41 	SINVALID1,
42 	SINVALID2,
43 	SCCTRL6,	/* Cacheable write-through, allocate on reads only */
44 	SCCTRL7,	/* Cacheable write-back, allocate on reads only */
45 };
46 
47 enum pl330_dstcachectrl {
48 	DCCTRL0,	/* Noncacheable and nonbufferable */
49 	DCCTRL1,	/* Bufferable only */
50 	DCCTRL2,	/* Cacheable, but do not allocate */
51 	DCCTRL3,	/* Cacheable and bufferable, but do not allocate */
52 	DINVALID1,	/* AWCACHE = 0x1000 */
53 	DINVALID2,
54 	DCCTRL6,	/* Cacheable write-through, allocate on writes only */
55 	DCCTRL7,	/* Cacheable write-back, allocate on writes only */
56 };
57 
58 enum pl330_byteswap {
59 	SWAP_NO,
60 	SWAP_2,
61 	SWAP_4,
62 	SWAP_8,
63 	SWAP_16,
64 };
65 
66 enum pl330_reqtype {
67 	MEMTOMEM,
68 	MEMTODEV,
69 	DEVTOMEM,
70 	DEVTODEV,
71 };
72 
73 /* Register and Bit field Definitions */
74 #define DS			0x0
75 #define DS_ST_STOP		0x0
76 #define DS_ST_EXEC		0x1
77 #define DS_ST_CMISS		0x2
78 #define DS_ST_UPDTPC		0x3
79 #define DS_ST_WFE		0x4
80 #define DS_ST_ATBRR		0x5
81 #define DS_ST_QBUSY		0x6
82 #define DS_ST_WFP		0x7
83 #define DS_ST_KILL		0x8
84 #define DS_ST_CMPLT		0x9
85 #define DS_ST_FLTCMP		0xe
86 #define DS_ST_FAULT		0xf
87 
88 #define DPC			0x4
89 #define INTEN			0x20
90 #define ES			0x24
91 #define INTSTATUS		0x28
92 #define INTCLR			0x2c
93 #define FSM			0x30
94 #define FSC			0x34
95 #define FTM			0x38
96 
97 #define _FTC			0x40
98 #define FTC(n)			(_FTC + (n)*0x4)
99 
100 #define _CS			0x100
101 #define CS(n)			(_CS + (n)*0x8)
102 #define CS_CNS			(1 << 21)
103 
104 #define _CPC			0x104
105 #define CPC(n)			(_CPC + (n)*0x8)
106 
107 #define _SA			0x400
108 #define SA(n)			(_SA + (n)*0x20)
109 
110 #define _DA			0x404
111 #define DA(n)			(_DA + (n)*0x20)
112 
113 #define _CC			0x408
114 #define CC(n)			(_CC + (n)*0x20)
115 
116 #define CC_SRCINC		(1 << 0)
117 #define CC_DSTINC		(1 << 14)
118 #define CC_SRCPRI		(1 << 8)
119 #define CC_DSTPRI		(1 << 22)
120 #define CC_SRCNS		(1 << 9)
121 #define CC_DSTNS		(1 << 23)
122 #define CC_SRCIA		(1 << 10)
123 #define CC_DSTIA		(1 << 24)
124 #define CC_SRCBRSTLEN_SHFT	4
125 #define CC_DSTBRSTLEN_SHFT	18
126 #define CC_SRCBRSTSIZE_SHFT	1
127 #define CC_DSTBRSTSIZE_SHFT	15
128 #define CC_SRCCCTRL_SHFT	11
129 #define CC_SRCCCTRL_MASK	0x7
130 #define CC_DSTCCTRL_SHFT	25
131 #define CC_DRCCCTRL_MASK	0x7
132 #define CC_SWAP_SHFT		28
133 
134 #define _LC0			0x40c
135 #define LC0(n)			(_LC0 + (n)*0x20)
136 
137 #define _LC1			0x410
138 #define LC1(n)			(_LC1 + (n)*0x20)
139 
140 #define DBGSTATUS		0xd00
141 #define DBG_BUSY		(1 << 0)
142 
143 #define DBGCMD			0xd04
144 #define DBGINST0		0xd08
145 #define DBGINST1		0xd0c
146 
147 #define CR0			0xe00
148 #define CR1			0xe04
149 #define CR2			0xe08
150 #define CR3			0xe0c
151 #define CR4			0xe10
152 #define CRD			0xe14
153 
154 #define PERIPH_ID		0xfe0
155 #define PERIPH_REV_SHIFT	20
156 #define PERIPH_REV_MASK		0xf
157 #define PERIPH_REV_R0P0		0
158 #define PERIPH_REV_R1P0		1
159 #define PERIPH_REV_R1P1		2
160 
161 #define CR0_PERIPH_REQ_SET	(1 << 0)
162 #define CR0_BOOT_EN_SET		(1 << 1)
163 #define CR0_BOOT_MAN_NS		(1 << 2)
164 #define CR0_NUM_CHANS_SHIFT	4
165 #define CR0_NUM_CHANS_MASK	0x7
166 #define CR0_NUM_PERIPH_SHIFT	12
167 #define CR0_NUM_PERIPH_MASK	0x1f
168 #define CR0_NUM_EVENTS_SHIFT	17
169 #define CR0_NUM_EVENTS_MASK	0x1f
170 
171 #define CR1_ICACHE_LEN_SHIFT	0
172 #define CR1_ICACHE_LEN_MASK	0x7
173 #define CR1_NUM_ICACHELINES_SHIFT	4
174 #define CR1_NUM_ICACHELINES_MASK	0xf
175 
176 #define CRD_DATA_WIDTH_SHIFT	0
177 #define CRD_DATA_WIDTH_MASK	0x7
178 #define CRD_WR_CAP_SHIFT	4
179 #define CRD_WR_CAP_MASK		0x7
180 #define CRD_WR_Q_DEP_SHIFT	8
181 #define CRD_WR_Q_DEP_MASK	0xf
182 #define CRD_RD_CAP_SHIFT	12
183 #define CRD_RD_CAP_MASK		0x7
184 #define CRD_RD_Q_DEP_SHIFT	16
185 #define CRD_RD_Q_DEP_MASK	0xf
186 #define CRD_DATA_BUFF_SHIFT	20
187 #define CRD_DATA_BUFF_MASK	0x3ff
188 
189 #define PART			0x330
190 #define DESIGNER		0x41
191 #define REVISION		0x0
192 #define INTEG_CFG		0x0
193 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
194 
195 #define PL330_STATE_STOPPED		(1 << 0)
196 #define PL330_STATE_EXECUTING		(1 << 1)
197 #define PL330_STATE_WFE			(1 << 2)
198 #define PL330_STATE_FAULTING		(1 << 3)
199 #define PL330_STATE_COMPLETING		(1 << 4)
200 #define PL330_STATE_WFP			(1 << 5)
201 #define PL330_STATE_KILLING		(1 << 6)
202 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
203 #define PL330_STATE_CACHEMISS		(1 << 8)
204 #define PL330_STATE_UPDTPC		(1 << 9)
205 #define PL330_STATE_ATBARRIER		(1 << 10)
206 #define PL330_STATE_QUEUEBUSY		(1 << 11)
207 #define PL330_STATE_INVALID		(1 << 15)
208 
209 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
210 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
211 
212 #define CMD_DMAADDH		0x54
213 #define CMD_DMAEND		0x00
214 #define CMD_DMAFLUSHP		0x35
215 #define CMD_DMAGO		0xa0
216 #define CMD_DMALD		0x04
217 #define CMD_DMALDP		0x25
218 #define CMD_DMALP		0x20
219 #define CMD_DMALPEND		0x28
220 #define CMD_DMAKILL		0x01
221 #define CMD_DMAMOV		0xbc
222 #define CMD_DMANOP		0x18
223 #define CMD_DMARMB		0x12
224 #define CMD_DMASEV		0x34
225 #define CMD_DMAST		0x08
226 #define CMD_DMASTP		0x29
227 #define CMD_DMASTZ		0x0c
228 #define CMD_DMAWFE		0x36
229 #define CMD_DMAWFP		0x30
230 #define CMD_DMAWMB		0x13
231 
232 #define SZ_DMAADDH		3
233 #define SZ_DMAEND		1
234 #define SZ_DMAFLUSHP		2
235 #define SZ_DMALD		1
236 #define SZ_DMALDP		2
237 #define SZ_DMALP		2
238 #define SZ_DMALPEND		2
239 #define SZ_DMAKILL		1
240 #define SZ_DMAMOV		6
241 #define SZ_DMANOP		1
242 #define SZ_DMARMB		1
243 #define SZ_DMASEV		2
244 #define SZ_DMAST		1
245 #define SZ_DMASTP		2
246 #define SZ_DMASTZ		1
247 #define SZ_DMAWFE		2
248 #define SZ_DMAWFP		2
249 #define SZ_DMAWMB		1
250 #define SZ_DMAGO		6
251 
252 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
253 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
254 
255 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
256 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
257 
258 /*
259  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
260  * at 1byte/burst for P<->M and M<->M respectively.
261  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
262  * should be enough for P<->M and M<->M respectively.
263  */
264 #define MCODE_BUFF_PER_REQ	256
265 
266 /* If the _pl330_req is available to the client */
267 #define IS_FREE(req)	(*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
268 
269 /* Use this _only_ to wait on transient states */
270 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
271 
272 #ifdef PL330_DEBUG_MCGEN
273 static unsigned cmd_line;
274 #define PL330_DBGCMD_DUMP(off, x...)	do { \
275 						printk("%x:", cmd_line); \
276 						printk(x); \
277 						cmd_line += off; \
278 					} while (0)
279 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
280 #else
281 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
282 #define PL330_DBGMC_START(addr)		do {} while (0)
283 #endif
284 
285 /* The number of default descriptors */
286 
287 #define NR_DEFAULT_DESC	16
288 
289 /* Populated by the PL330 core driver for DMA API driver's info */
290 struct pl330_config {
291 	u32	periph_id;
292 #define DMAC_MODE_NS	(1 << 0)
293 	unsigned int	mode;
294 	unsigned int	data_bus_width:10; /* In number of bits */
295 	unsigned int	data_buf_dep:10;
296 	unsigned int	num_chan:4;
297 	unsigned int	num_peri:6;
298 	u32		peri_ns;
299 	unsigned int	num_events:6;
300 	u32		irq_ns;
301 };
302 
303 /* Handle to the DMAC provided to the PL330 core */
304 struct pl330_info {
305 	/* Owning device */
306 	struct device *dev;
307 	/* Size of MicroCode buffers for each channel. */
308 	unsigned mcbufsz;
309 	/* ioremap'ed address of PL330 registers. */
310 	void __iomem	*base;
311 	/* Client can freely use it. */
312 	void	*client_data;
313 	/* PL330 core data, Client must not touch it. */
314 	void	*pl330_data;
315 	/* Populated by the PL330 core driver during pl330_add */
316 	struct pl330_config	pcfg;
317 	/*
318 	 * If the DMAC has some reset mechanism, then the
319 	 * client may want to provide pointer to the method.
320 	 */
321 	void (*dmac_reset)(struct pl330_info *pi);
322 };
323 
324 /**
325  * Request Configuration.
326  * The PL330 core does not modify this and uses the last
327  * working configuration if the request doesn't provide any.
328  *
329  * The Client may want to provide this info only for the
330  * first request and a request with new settings.
331  */
332 struct pl330_reqcfg {
333 	/* Address Incrementing */
334 	unsigned dst_inc:1;
335 	unsigned src_inc:1;
336 
337 	/*
338 	 * For now, the SRC & DST protection levels
339 	 * and burst size/length are assumed same.
340 	 */
341 	bool nonsecure;
342 	bool privileged;
343 	bool insnaccess;
344 	unsigned brst_len:5;
345 	unsigned brst_size:3; /* in power of 2 */
346 
347 	enum pl330_dstcachectrl dcctl;
348 	enum pl330_srccachectrl scctl;
349 	enum pl330_byteswap swap;
350 	struct pl330_config *pcfg;
351 };
352 
353 /*
354  * One cycle of DMAC operation.
355  * There may be more than one xfer in a request.
356  */
357 struct pl330_xfer {
358 	u32 src_addr;
359 	u32 dst_addr;
360 	/* Size to xfer */
361 	u32 bytes;
362 	/*
363 	 * Pointer to next xfer in the list.
364 	 * The last xfer in the req must point to NULL.
365 	 */
366 	struct pl330_xfer *next;
367 };
368 
369 /* The xfer callbacks are made with one of these arguments. */
370 enum pl330_op_err {
371 	/* The all xfers in the request were success. */
372 	PL330_ERR_NONE,
373 	/* If req aborted due to global error. */
374 	PL330_ERR_ABORT,
375 	/* If req failed due to problem with Channel. */
376 	PL330_ERR_FAIL,
377 };
378 
379 /* A request defining Scatter-Gather List ending with NULL xfer. */
380 struct pl330_req {
381 	enum pl330_reqtype rqtype;
382 	/* Index of peripheral for the xfer. */
383 	unsigned peri:5;
384 	/* Unique token for this xfer, set by the client. */
385 	void *token;
386 	/* Callback to be called after xfer. */
387 	void (*xfer_cb)(void *token, enum pl330_op_err err);
388 	/* If NULL, req will be done at last set parameters. */
389 	struct pl330_reqcfg *cfg;
390 	/* Pointer to first xfer in the request. */
391 	struct pl330_xfer *x;
392 	/* Hook to attach to DMAC's list of reqs with due callback */
393 	struct list_head rqd;
394 };
395 
396 /*
397  * To know the status of the channel and DMAC, the client
398  * provides a pointer to this structure. The PL330 core
399  * fills it with current information.
400  */
401 struct pl330_chanstatus {
402 	/*
403 	 * If the DMAC engine halted due to some error,
404 	 * the client should remove-add DMAC.
405 	 */
406 	bool dmac_halted;
407 	/*
408 	 * If channel is halted due to some error,
409 	 * the client should ABORT/FLUSH and START the channel.
410 	 */
411 	bool faulting;
412 	/* Location of last load */
413 	u32 src_addr;
414 	/* Location of last store */
415 	u32 dst_addr;
416 	/*
417 	 * Pointer to the currently active req, NULL if channel is
418 	 * inactive, even though the requests may be present.
419 	 */
420 	struct pl330_req *top_req;
421 	/* Pointer to req waiting second in the queue if any. */
422 	struct pl330_req *wait_req;
423 };
424 
425 enum pl330_chan_op {
426 	/* Start the channel */
427 	PL330_OP_START,
428 	/* Abort the active xfer */
429 	PL330_OP_ABORT,
430 	/* Stop xfer and flush queue */
431 	PL330_OP_FLUSH,
432 };
433 
434 struct _xfer_spec {
435 	u32 ccr;
436 	struct pl330_req *r;
437 	struct pl330_xfer *x;
438 };
439 
440 enum dmamov_dst {
441 	SAR = 0,
442 	CCR,
443 	DAR,
444 };
445 
446 enum pl330_dst {
447 	SRC = 0,
448 	DST,
449 };
450 
451 enum pl330_cond {
452 	SINGLE,
453 	BURST,
454 	ALWAYS,
455 };
456 
457 struct _pl330_req {
458 	u32 mc_bus;
459 	void *mc_cpu;
460 	/* Number of bytes taken to setup MC for the req */
461 	u32 mc_len;
462 	struct pl330_req *r;
463 };
464 
465 /* ToBeDone for tasklet */
466 struct _pl330_tbd {
467 	bool reset_dmac;
468 	bool reset_mngr;
469 	u8 reset_chan;
470 };
471 
472 /* A DMAC Thread */
473 struct pl330_thread {
474 	u8 id;
475 	int ev;
476 	/* If the channel is not yet acquired by any client */
477 	bool free;
478 	/* Parent DMAC */
479 	struct pl330_dmac *dmac;
480 	/* Only two at a time */
481 	struct _pl330_req req[2];
482 	/* Index of the last enqueued request */
483 	unsigned lstenq;
484 	/* Index of the last submitted request or -1 if the DMA is stopped */
485 	int req_running;
486 };
487 
488 enum pl330_dmac_state {
489 	UNINIT,
490 	INIT,
491 	DYING,
492 };
493 
494 /* A DMAC */
495 struct pl330_dmac {
496 	spinlock_t		lock;
497 	/* Holds list of reqs with due callbacks */
498 	struct list_head	req_done;
499 	/* Pointer to platform specific stuff */
500 	struct pl330_info	*pinfo;
501 	/* Maximum possible events/irqs */
502 	int			events[32];
503 	/* BUS address of MicroCode buffer */
504 	dma_addr_t		mcode_bus;
505 	/* CPU address of MicroCode buffer */
506 	void			*mcode_cpu;
507 	/* List of all Channel threads */
508 	struct pl330_thread	*channels;
509 	/* Pointer to the MANAGER thread */
510 	struct pl330_thread	*manager;
511 	/* To handle bad news in interrupt */
512 	struct tasklet_struct	tasks;
513 	struct _pl330_tbd	dmac_tbd;
514 	/* State of DMAC operation */
515 	enum pl330_dmac_state	state;
516 };
517 
518 enum desc_status {
519 	/* In the DMAC pool */
520 	FREE,
521 	/*
522 	 * Allocated to some channel during prep_xxx
523 	 * Also may be sitting on the work_list.
524 	 */
525 	PREP,
526 	/*
527 	 * Sitting on the work_list and already submitted
528 	 * to the PL330 core. Not more than two descriptors
529 	 * of a channel can be BUSY at any time.
530 	 */
531 	BUSY,
532 	/*
533 	 * Sitting on the channel work_list but xfer done
534 	 * by PL330 core
535 	 */
536 	DONE,
537 };
538 
539 struct dma_pl330_chan {
540 	/* Schedule desc completion */
541 	struct tasklet_struct task;
542 
543 	/* DMA-Engine Channel */
544 	struct dma_chan chan;
545 
546 	/* List of submitted descriptors */
547 	struct list_head submitted_list;
548 	/* List of issued descriptors */
549 	struct list_head work_list;
550 	/* List of completed descriptors */
551 	struct list_head completed_list;
552 
553 	/* Pointer to the DMAC that manages this channel,
554 	 * NULL if the channel is available to be acquired.
555 	 * As the parent, this DMAC also provides descriptors
556 	 * to the channel.
557 	 */
558 	struct dma_pl330_dmac *dmac;
559 
560 	/* To protect channel manipulation */
561 	spinlock_t lock;
562 
563 	/* Token of a hardware channel thread of PL330 DMAC
564 	 * NULL if the channel is available to be acquired.
565 	 */
566 	void *pl330_chid;
567 
568 	/* For D-to-M and M-to-D channels */
569 	int burst_sz; /* the peripheral fifo width */
570 	int burst_len; /* the number of burst */
571 	dma_addr_t fifo_addr;
572 
573 	/* for cyclic capability */
574 	bool cyclic;
575 };
576 
577 struct dma_pl330_dmac {
578 	struct pl330_info pif;
579 
580 	/* DMA-Engine Device */
581 	struct dma_device ddma;
582 
583 	/* Holds info about sg limitations */
584 	struct device_dma_parameters dma_parms;
585 
586 	/* Pool of descriptors available for the DMAC's channels */
587 	struct list_head desc_pool;
588 	/* To protect desc_pool manipulation */
589 	spinlock_t pool_lock;
590 
591 	/* Peripheral channels connected to this DMAC */
592 	unsigned int num_peripherals;
593 	struct dma_pl330_chan *peripherals; /* keep at end */
594 };
595 
596 struct dma_pl330_desc {
597 	/* To attach to a queue as child */
598 	struct list_head node;
599 
600 	/* Descriptor for the DMA Engine API */
601 	struct dma_async_tx_descriptor txd;
602 
603 	/* Xfer for PL330 core */
604 	struct pl330_xfer px;
605 
606 	struct pl330_reqcfg rqcfg;
607 	struct pl330_req req;
608 
609 	enum desc_status status;
610 
611 	/* The channel which currently holds this desc */
612 	struct dma_pl330_chan *pchan;
613 };
614 
615 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
616 {
617 	if (r && r->xfer_cb)
618 		r->xfer_cb(r->token, err);
619 }
620 
621 static inline bool _queue_empty(struct pl330_thread *thrd)
622 {
623 	return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
624 		? true : false;
625 }
626 
627 static inline bool _queue_full(struct pl330_thread *thrd)
628 {
629 	return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
630 		? false : true;
631 }
632 
633 static inline bool is_manager(struct pl330_thread *thrd)
634 {
635 	struct pl330_dmac *pl330 = thrd->dmac;
636 
637 	/* MANAGER is indexed at the end */
638 	if (thrd->id == pl330->pinfo->pcfg.num_chan)
639 		return true;
640 	else
641 		return false;
642 }
643 
644 /* If manager of the thread is in Non-Secure mode */
645 static inline bool _manager_ns(struct pl330_thread *thrd)
646 {
647 	struct pl330_dmac *pl330 = thrd->dmac;
648 
649 	return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
650 }
651 
652 static inline u32 get_revision(u32 periph_id)
653 {
654 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
655 }
656 
657 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
658 		enum pl330_dst da, u16 val)
659 {
660 	if (dry_run)
661 		return SZ_DMAADDH;
662 
663 	buf[0] = CMD_DMAADDH;
664 	buf[0] |= (da << 1);
665 	*((u16 *)&buf[1]) = val;
666 
667 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
668 		da == 1 ? "DA" : "SA", val);
669 
670 	return SZ_DMAADDH;
671 }
672 
673 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
674 {
675 	if (dry_run)
676 		return SZ_DMAEND;
677 
678 	buf[0] = CMD_DMAEND;
679 
680 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
681 
682 	return SZ_DMAEND;
683 }
684 
685 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
686 {
687 	if (dry_run)
688 		return SZ_DMAFLUSHP;
689 
690 	buf[0] = CMD_DMAFLUSHP;
691 
692 	peri &= 0x1f;
693 	peri <<= 3;
694 	buf[1] = peri;
695 
696 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
697 
698 	return SZ_DMAFLUSHP;
699 }
700 
701 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
702 {
703 	if (dry_run)
704 		return SZ_DMALD;
705 
706 	buf[0] = CMD_DMALD;
707 
708 	if (cond == SINGLE)
709 		buf[0] |= (0 << 1) | (1 << 0);
710 	else if (cond == BURST)
711 		buf[0] |= (1 << 1) | (1 << 0);
712 
713 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
714 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
715 
716 	return SZ_DMALD;
717 }
718 
719 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
720 		enum pl330_cond cond, u8 peri)
721 {
722 	if (dry_run)
723 		return SZ_DMALDP;
724 
725 	buf[0] = CMD_DMALDP;
726 
727 	if (cond == BURST)
728 		buf[0] |= (1 << 1);
729 
730 	peri &= 0x1f;
731 	peri <<= 3;
732 	buf[1] = peri;
733 
734 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
735 		cond == SINGLE ? 'S' : 'B', peri >> 3);
736 
737 	return SZ_DMALDP;
738 }
739 
740 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
741 		unsigned loop, u8 cnt)
742 {
743 	if (dry_run)
744 		return SZ_DMALP;
745 
746 	buf[0] = CMD_DMALP;
747 
748 	if (loop)
749 		buf[0] |= (1 << 1);
750 
751 	cnt--; /* DMAC increments by 1 internally */
752 	buf[1] = cnt;
753 
754 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
755 
756 	return SZ_DMALP;
757 }
758 
759 struct _arg_LPEND {
760 	enum pl330_cond cond;
761 	bool forever;
762 	unsigned loop;
763 	u8 bjump;
764 };
765 
766 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
767 		const struct _arg_LPEND *arg)
768 {
769 	enum pl330_cond cond = arg->cond;
770 	bool forever = arg->forever;
771 	unsigned loop = arg->loop;
772 	u8 bjump = arg->bjump;
773 
774 	if (dry_run)
775 		return SZ_DMALPEND;
776 
777 	buf[0] = CMD_DMALPEND;
778 
779 	if (loop)
780 		buf[0] |= (1 << 2);
781 
782 	if (!forever)
783 		buf[0] |= (1 << 4);
784 
785 	if (cond == SINGLE)
786 		buf[0] |= (0 << 1) | (1 << 0);
787 	else if (cond == BURST)
788 		buf[0] |= (1 << 1) | (1 << 0);
789 
790 	buf[1] = bjump;
791 
792 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
793 			forever ? "FE" : "END",
794 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
795 			loop ? '1' : '0',
796 			bjump);
797 
798 	return SZ_DMALPEND;
799 }
800 
801 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
802 {
803 	if (dry_run)
804 		return SZ_DMAKILL;
805 
806 	buf[0] = CMD_DMAKILL;
807 
808 	return SZ_DMAKILL;
809 }
810 
811 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
812 		enum dmamov_dst dst, u32 val)
813 {
814 	if (dry_run)
815 		return SZ_DMAMOV;
816 
817 	buf[0] = CMD_DMAMOV;
818 	buf[1] = dst;
819 	*((u32 *)&buf[2]) = val;
820 
821 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
822 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
823 
824 	return SZ_DMAMOV;
825 }
826 
827 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
828 {
829 	if (dry_run)
830 		return SZ_DMANOP;
831 
832 	buf[0] = CMD_DMANOP;
833 
834 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
835 
836 	return SZ_DMANOP;
837 }
838 
839 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
840 {
841 	if (dry_run)
842 		return SZ_DMARMB;
843 
844 	buf[0] = CMD_DMARMB;
845 
846 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
847 
848 	return SZ_DMARMB;
849 }
850 
851 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
852 {
853 	if (dry_run)
854 		return SZ_DMASEV;
855 
856 	buf[0] = CMD_DMASEV;
857 
858 	ev &= 0x1f;
859 	ev <<= 3;
860 	buf[1] = ev;
861 
862 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
863 
864 	return SZ_DMASEV;
865 }
866 
867 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
868 {
869 	if (dry_run)
870 		return SZ_DMAST;
871 
872 	buf[0] = CMD_DMAST;
873 
874 	if (cond == SINGLE)
875 		buf[0] |= (0 << 1) | (1 << 0);
876 	else if (cond == BURST)
877 		buf[0] |= (1 << 1) | (1 << 0);
878 
879 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
880 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
881 
882 	return SZ_DMAST;
883 }
884 
885 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
886 		enum pl330_cond cond, u8 peri)
887 {
888 	if (dry_run)
889 		return SZ_DMASTP;
890 
891 	buf[0] = CMD_DMASTP;
892 
893 	if (cond == BURST)
894 		buf[0] |= (1 << 1);
895 
896 	peri &= 0x1f;
897 	peri <<= 3;
898 	buf[1] = peri;
899 
900 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
901 		cond == SINGLE ? 'S' : 'B', peri >> 3);
902 
903 	return SZ_DMASTP;
904 }
905 
906 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
907 {
908 	if (dry_run)
909 		return SZ_DMASTZ;
910 
911 	buf[0] = CMD_DMASTZ;
912 
913 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
914 
915 	return SZ_DMASTZ;
916 }
917 
918 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
919 		unsigned invalidate)
920 {
921 	if (dry_run)
922 		return SZ_DMAWFE;
923 
924 	buf[0] = CMD_DMAWFE;
925 
926 	ev &= 0x1f;
927 	ev <<= 3;
928 	buf[1] = ev;
929 
930 	if (invalidate)
931 		buf[1] |= (1 << 1);
932 
933 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
934 		ev >> 3, invalidate ? ", I" : "");
935 
936 	return SZ_DMAWFE;
937 }
938 
939 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
940 		enum pl330_cond cond, u8 peri)
941 {
942 	if (dry_run)
943 		return SZ_DMAWFP;
944 
945 	buf[0] = CMD_DMAWFP;
946 
947 	if (cond == SINGLE)
948 		buf[0] |= (0 << 1) | (0 << 0);
949 	else if (cond == BURST)
950 		buf[0] |= (1 << 1) | (0 << 0);
951 	else
952 		buf[0] |= (0 << 1) | (1 << 0);
953 
954 	peri &= 0x1f;
955 	peri <<= 3;
956 	buf[1] = peri;
957 
958 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
959 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
960 
961 	return SZ_DMAWFP;
962 }
963 
964 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
965 {
966 	if (dry_run)
967 		return SZ_DMAWMB;
968 
969 	buf[0] = CMD_DMAWMB;
970 
971 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
972 
973 	return SZ_DMAWMB;
974 }
975 
976 struct _arg_GO {
977 	u8 chan;
978 	u32 addr;
979 	unsigned ns;
980 };
981 
982 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
983 		const struct _arg_GO *arg)
984 {
985 	u8 chan = arg->chan;
986 	u32 addr = arg->addr;
987 	unsigned ns = arg->ns;
988 
989 	if (dry_run)
990 		return SZ_DMAGO;
991 
992 	buf[0] = CMD_DMAGO;
993 	buf[0] |= (ns << 1);
994 
995 	buf[1] = chan & 0x7;
996 
997 	*((u32 *)&buf[2]) = addr;
998 
999 	return SZ_DMAGO;
1000 }
1001 
1002 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1003 
1004 /* Returns Time-Out */
1005 static bool _until_dmac_idle(struct pl330_thread *thrd)
1006 {
1007 	void __iomem *regs = thrd->dmac->pinfo->base;
1008 	unsigned long loops = msecs_to_loops(5);
1009 
1010 	do {
1011 		/* Until Manager is Idle */
1012 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1013 			break;
1014 
1015 		cpu_relax();
1016 	} while (--loops);
1017 
1018 	if (!loops)
1019 		return true;
1020 
1021 	return false;
1022 }
1023 
1024 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1025 		u8 insn[], bool as_manager)
1026 {
1027 	void __iomem *regs = thrd->dmac->pinfo->base;
1028 	u32 val;
1029 
1030 	val = (insn[0] << 16) | (insn[1] << 24);
1031 	if (!as_manager) {
1032 		val |= (1 << 0);
1033 		val |= (thrd->id << 8); /* Channel Number */
1034 	}
1035 	writel(val, regs + DBGINST0);
1036 
1037 	val = *((u32 *)&insn[2]);
1038 	writel(val, regs + DBGINST1);
1039 
1040 	/* If timed out due to halted state-machine */
1041 	if (_until_dmac_idle(thrd)) {
1042 		dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1043 		return;
1044 	}
1045 
1046 	/* Get going */
1047 	writel(0, regs + DBGCMD);
1048 }
1049 
1050 /*
1051  * Mark a _pl330_req as free.
1052  * We do it by writing DMAEND as the first instruction
1053  * because no valid request is going to have DMAEND as
1054  * its first instruction to execute.
1055  */
1056 static void mark_free(struct pl330_thread *thrd, int idx)
1057 {
1058 	struct _pl330_req *req = &thrd->req[idx];
1059 
1060 	_emit_END(0, req->mc_cpu);
1061 	req->mc_len = 0;
1062 
1063 	thrd->req_running = -1;
1064 }
1065 
1066 static inline u32 _state(struct pl330_thread *thrd)
1067 {
1068 	void __iomem *regs = thrd->dmac->pinfo->base;
1069 	u32 val;
1070 
1071 	if (is_manager(thrd))
1072 		val = readl(regs + DS) & 0xf;
1073 	else
1074 		val = readl(regs + CS(thrd->id)) & 0xf;
1075 
1076 	switch (val) {
1077 	case DS_ST_STOP:
1078 		return PL330_STATE_STOPPED;
1079 	case DS_ST_EXEC:
1080 		return PL330_STATE_EXECUTING;
1081 	case DS_ST_CMISS:
1082 		return PL330_STATE_CACHEMISS;
1083 	case DS_ST_UPDTPC:
1084 		return PL330_STATE_UPDTPC;
1085 	case DS_ST_WFE:
1086 		return PL330_STATE_WFE;
1087 	case DS_ST_FAULT:
1088 		return PL330_STATE_FAULTING;
1089 	case DS_ST_ATBRR:
1090 		if (is_manager(thrd))
1091 			return PL330_STATE_INVALID;
1092 		else
1093 			return PL330_STATE_ATBARRIER;
1094 	case DS_ST_QBUSY:
1095 		if (is_manager(thrd))
1096 			return PL330_STATE_INVALID;
1097 		else
1098 			return PL330_STATE_QUEUEBUSY;
1099 	case DS_ST_WFP:
1100 		if (is_manager(thrd))
1101 			return PL330_STATE_INVALID;
1102 		else
1103 			return PL330_STATE_WFP;
1104 	case DS_ST_KILL:
1105 		if (is_manager(thrd))
1106 			return PL330_STATE_INVALID;
1107 		else
1108 			return PL330_STATE_KILLING;
1109 	case DS_ST_CMPLT:
1110 		if (is_manager(thrd))
1111 			return PL330_STATE_INVALID;
1112 		else
1113 			return PL330_STATE_COMPLETING;
1114 	case DS_ST_FLTCMP:
1115 		if (is_manager(thrd))
1116 			return PL330_STATE_INVALID;
1117 		else
1118 			return PL330_STATE_FAULT_COMPLETING;
1119 	default:
1120 		return PL330_STATE_INVALID;
1121 	}
1122 }
1123 
1124 static void _stop(struct pl330_thread *thrd)
1125 {
1126 	void __iomem *regs = thrd->dmac->pinfo->base;
1127 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1128 
1129 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1130 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1131 
1132 	/* Return if nothing needs to be done */
1133 	if (_state(thrd) == PL330_STATE_COMPLETING
1134 		  || _state(thrd) == PL330_STATE_KILLING
1135 		  || _state(thrd) == PL330_STATE_STOPPED)
1136 		return;
1137 
1138 	_emit_KILL(0, insn);
1139 
1140 	/* Stop generating interrupts for SEV */
1141 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1142 
1143 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1144 }
1145 
1146 /* Start doing req 'idx' of thread 'thrd' */
1147 static bool _trigger(struct pl330_thread *thrd)
1148 {
1149 	void __iomem *regs = thrd->dmac->pinfo->base;
1150 	struct _pl330_req *req;
1151 	struct pl330_req *r;
1152 	struct _arg_GO go;
1153 	unsigned ns;
1154 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1155 	int idx;
1156 
1157 	/* Return if already ACTIVE */
1158 	if (_state(thrd) != PL330_STATE_STOPPED)
1159 		return true;
1160 
1161 	idx = 1 - thrd->lstenq;
1162 	if (!IS_FREE(&thrd->req[idx]))
1163 		req = &thrd->req[idx];
1164 	else {
1165 		idx = thrd->lstenq;
1166 		if (!IS_FREE(&thrd->req[idx]))
1167 			req = &thrd->req[idx];
1168 		else
1169 			req = NULL;
1170 	}
1171 
1172 	/* Return if no request */
1173 	if (!req || !req->r)
1174 		return true;
1175 
1176 	r = req->r;
1177 
1178 	if (r->cfg)
1179 		ns = r->cfg->nonsecure ? 1 : 0;
1180 	else if (readl(regs + CS(thrd->id)) & CS_CNS)
1181 		ns = 1;
1182 	else
1183 		ns = 0;
1184 
1185 	/* See 'Abort Sources' point-4 at Page 2-25 */
1186 	if (_manager_ns(thrd) && !ns)
1187 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1188 			__func__, __LINE__);
1189 
1190 	go.chan = thrd->id;
1191 	go.addr = req->mc_bus;
1192 	go.ns = ns;
1193 	_emit_GO(0, insn, &go);
1194 
1195 	/* Set to generate interrupts for SEV */
1196 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1197 
1198 	/* Only manager can execute GO */
1199 	_execute_DBGINSN(thrd, insn, true);
1200 
1201 	thrd->req_running = idx;
1202 
1203 	return true;
1204 }
1205 
1206 static bool _start(struct pl330_thread *thrd)
1207 {
1208 	switch (_state(thrd)) {
1209 	case PL330_STATE_FAULT_COMPLETING:
1210 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1211 
1212 		if (_state(thrd) == PL330_STATE_KILLING)
1213 			UNTIL(thrd, PL330_STATE_STOPPED)
1214 
1215 	case PL330_STATE_FAULTING:
1216 		_stop(thrd);
1217 
1218 	case PL330_STATE_KILLING:
1219 	case PL330_STATE_COMPLETING:
1220 		UNTIL(thrd, PL330_STATE_STOPPED)
1221 
1222 	case PL330_STATE_STOPPED:
1223 		return _trigger(thrd);
1224 
1225 	case PL330_STATE_WFP:
1226 	case PL330_STATE_QUEUEBUSY:
1227 	case PL330_STATE_ATBARRIER:
1228 	case PL330_STATE_UPDTPC:
1229 	case PL330_STATE_CACHEMISS:
1230 	case PL330_STATE_EXECUTING:
1231 		return true;
1232 
1233 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1234 	default:
1235 		return false;
1236 	}
1237 }
1238 
1239 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1240 		const struct _xfer_spec *pxs, int cyc)
1241 {
1242 	int off = 0;
1243 	struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1244 
1245 	/* check lock-up free version */
1246 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1247 		while (cyc--) {
1248 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1249 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1250 		}
1251 	} else {
1252 		while (cyc--) {
1253 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1254 			off += _emit_RMB(dry_run, &buf[off]);
1255 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1256 			off += _emit_WMB(dry_run, &buf[off]);
1257 		}
1258 	}
1259 
1260 	return off;
1261 }
1262 
1263 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1264 		const struct _xfer_spec *pxs, int cyc)
1265 {
1266 	int off = 0;
1267 
1268 	while (cyc--) {
1269 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1270 		off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1271 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1272 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1273 	}
1274 
1275 	return off;
1276 }
1277 
1278 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1279 		const struct _xfer_spec *pxs, int cyc)
1280 {
1281 	int off = 0;
1282 
1283 	while (cyc--) {
1284 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1285 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1286 		off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1287 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1288 	}
1289 
1290 	return off;
1291 }
1292 
1293 static int _bursts(unsigned dry_run, u8 buf[],
1294 		const struct _xfer_spec *pxs, int cyc)
1295 {
1296 	int off = 0;
1297 
1298 	switch (pxs->r->rqtype) {
1299 	case MEMTODEV:
1300 		off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1301 		break;
1302 	case DEVTOMEM:
1303 		off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1304 		break;
1305 	case MEMTOMEM:
1306 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1307 		break;
1308 	default:
1309 		off += 0x40000000; /* Scare off the Client */
1310 		break;
1311 	}
1312 
1313 	return off;
1314 }
1315 
1316 /* Returns bytes consumed and updates bursts */
1317 static inline int _loop(unsigned dry_run, u8 buf[],
1318 		unsigned long *bursts, const struct _xfer_spec *pxs)
1319 {
1320 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1321 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1322 	struct _arg_LPEND lpend;
1323 
1324 	/* Max iterations possible in DMALP is 256 */
1325 	if (*bursts >= 256*256) {
1326 		lcnt1 = 256;
1327 		lcnt0 = 256;
1328 		cyc = *bursts / lcnt1 / lcnt0;
1329 	} else if (*bursts > 256) {
1330 		lcnt1 = 256;
1331 		lcnt0 = *bursts / lcnt1;
1332 		cyc = 1;
1333 	} else {
1334 		lcnt1 = *bursts;
1335 		lcnt0 = 0;
1336 		cyc = 1;
1337 	}
1338 
1339 	szlp = _emit_LP(1, buf, 0, 0);
1340 	szbrst = _bursts(1, buf, pxs, 1);
1341 
1342 	lpend.cond = ALWAYS;
1343 	lpend.forever = false;
1344 	lpend.loop = 0;
1345 	lpend.bjump = 0;
1346 	szlpend = _emit_LPEND(1, buf, &lpend);
1347 
1348 	if (lcnt0) {
1349 		szlp *= 2;
1350 		szlpend *= 2;
1351 	}
1352 
1353 	/*
1354 	 * Max bursts that we can unroll due to limit on the
1355 	 * size of backward jump that can be encoded in DMALPEND
1356 	 * which is 8-bits and hence 255
1357 	 */
1358 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1359 
1360 	cyc = (cycmax < cyc) ? cycmax : cyc;
1361 
1362 	off = 0;
1363 
1364 	if (lcnt0) {
1365 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1366 		ljmp0 = off;
1367 	}
1368 
1369 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1370 	ljmp1 = off;
1371 
1372 	off += _bursts(dry_run, &buf[off], pxs, cyc);
1373 
1374 	lpend.cond = ALWAYS;
1375 	lpend.forever = false;
1376 	lpend.loop = 1;
1377 	lpend.bjump = off - ljmp1;
1378 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1379 
1380 	if (lcnt0) {
1381 		lpend.cond = ALWAYS;
1382 		lpend.forever = false;
1383 		lpend.loop = 0;
1384 		lpend.bjump = off - ljmp0;
1385 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1386 	}
1387 
1388 	*bursts = lcnt1 * cyc;
1389 	if (lcnt0)
1390 		*bursts *= lcnt0;
1391 
1392 	return off;
1393 }
1394 
1395 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1396 		const struct _xfer_spec *pxs)
1397 {
1398 	struct pl330_xfer *x = pxs->x;
1399 	u32 ccr = pxs->ccr;
1400 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1401 	int off = 0;
1402 
1403 	while (bursts) {
1404 		c = bursts;
1405 		off += _loop(dry_run, &buf[off], &c, pxs);
1406 		bursts -= c;
1407 	}
1408 
1409 	return off;
1410 }
1411 
1412 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1413 		const struct _xfer_spec *pxs)
1414 {
1415 	struct pl330_xfer *x = pxs->x;
1416 	int off = 0;
1417 
1418 	/* DMAMOV SAR, x->src_addr */
1419 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1420 	/* DMAMOV DAR, x->dst_addr */
1421 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1422 
1423 	/* Setup Loop(s) */
1424 	off += _setup_loops(dry_run, &buf[off], pxs);
1425 
1426 	return off;
1427 }
1428 
1429 /*
1430  * A req is a sequence of one or more xfer units.
1431  * Returns the number of bytes taken to setup the MC for the req.
1432  */
1433 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1434 		unsigned index, struct _xfer_spec *pxs)
1435 {
1436 	struct _pl330_req *req = &thrd->req[index];
1437 	struct pl330_xfer *x;
1438 	u8 *buf = req->mc_cpu;
1439 	int off = 0;
1440 
1441 	PL330_DBGMC_START(req->mc_bus);
1442 
1443 	/* DMAMOV CCR, ccr */
1444 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1445 
1446 	x = pxs->r->x;
1447 	do {
1448 		/* Error if xfer length is not aligned at burst size */
1449 		if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1450 			return -EINVAL;
1451 
1452 		pxs->x = x;
1453 		off += _setup_xfer(dry_run, &buf[off], pxs);
1454 
1455 		x = x->next;
1456 	} while (x);
1457 
1458 	/* DMASEV peripheral/event */
1459 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1460 	/* DMAEND */
1461 	off += _emit_END(dry_run, &buf[off]);
1462 
1463 	return off;
1464 }
1465 
1466 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1467 {
1468 	u32 ccr = 0;
1469 
1470 	if (rqc->src_inc)
1471 		ccr |= CC_SRCINC;
1472 
1473 	if (rqc->dst_inc)
1474 		ccr |= CC_DSTINC;
1475 
1476 	/* We set same protection levels for Src and DST for now */
1477 	if (rqc->privileged)
1478 		ccr |= CC_SRCPRI | CC_DSTPRI;
1479 	if (rqc->nonsecure)
1480 		ccr |= CC_SRCNS | CC_DSTNS;
1481 	if (rqc->insnaccess)
1482 		ccr |= CC_SRCIA | CC_DSTIA;
1483 
1484 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1485 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1486 
1487 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1488 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1489 
1490 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1491 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1492 
1493 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1494 
1495 	return ccr;
1496 }
1497 
1498 static inline bool _is_valid(u32 ccr)
1499 {
1500 	enum pl330_dstcachectrl dcctl;
1501 	enum pl330_srccachectrl scctl;
1502 
1503 	dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1504 	scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1505 
1506 	if (dcctl == DINVALID1 || dcctl == DINVALID2
1507 			|| scctl == SINVALID1 || scctl == SINVALID2)
1508 		return false;
1509 	else
1510 		return true;
1511 }
1512 
1513 /*
1514  * Submit a list of xfers after which the client wants notification.
1515  * Client is not notified after each xfer unit, just once after all
1516  * xfer units are done or some error occurs.
1517  */
1518 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1519 {
1520 	struct pl330_thread *thrd = ch_id;
1521 	struct pl330_dmac *pl330;
1522 	struct pl330_info *pi;
1523 	struct _xfer_spec xs;
1524 	unsigned long flags;
1525 	void __iomem *regs;
1526 	unsigned idx;
1527 	u32 ccr;
1528 	int ret = 0;
1529 
1530 	/* No Req or Unacquired Channel or DMAC */
1531 	if (!r || !thrd || thrd->free)
1532 		return -EINVAL;
1533 
1534 	pl330 = thrd->dmac;
1535 	pi = pl330->pinfo;
1536 	regs = pi->base;
1537 
1538 	if (pl330->state == DYING
1539 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1540 		dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1541 			__func__, __LINE__);
1542 		return -EAGAIN;
1543 	}
1544 
1545 	/* If request for non-existing peripheral */
1546 	if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1547 		dev_info(thrd->dmac->pinfo->dev,
1548 				"%s:%d Invalid peripheral(%u)!\n",
1549 				__func__, __LINE__, r->peri);
1550 		return -EINVAL;
1551 	}
1552 
1553 	spin_lock_irqsave(&pl330->lock, flags);
1554 
1555 	if (_queue_full(thrd)) {
1556 		ret = -EAGAIN;
1557 		goto xfer_exit;
1558 	}
1559 
1560 
1561 	/* Use last settings, if not provided */
1562 	if (r->cfg) {
1563 		/* Prefer Secure Channel */
1564 		if (!_manager_ns(thrd))
1565 			r->cfg->nonsecure = 0;
1566 		else
1567 			r->cfg->nonsecure = 1;
1568 
1569 		ccr = _prepare_ccr(r->cfg);
1570 	} else {
1571 		ccr = readl(regs + CC(thrd->id));
1572 	}
1573 
1574 	/* If this req doesn't have valid xfer settings */
1575 	if (!_is_valid(ccr)) {
1576 		ret = -EINVAL;
1577 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1578 			__func__, __LINE__, ccr);
1579 		goto xfer_exit;
1580 	}
1581 
1582 	idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1583 
1584 	xs.ccr = ccr;
1585 	xs.r = r;
1586 
1587 	/* First dry run to check if req is acceptable */
1588 	ret = _setup_req(1, thrd, idx, &xs);
1589 	if (ret < 0)
1590 		goto xfer_exit;
1591 
1592 	if (ret > pi->mcbufsz / 2) {
1593 		dev_info(thrd->dmac->pinfo->dev,
1594 			"%s:%d Trying increasing mcbufsz\n",
1595 				__func__, __LINE__);
1596 		ret = -ENOMEM;
1597 		goto xfer_exit;
1598 	}
1599 
1600 	/* Hook the request */
1601 	thrd->lstenq = idx;
1602 	thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1603 	thrd->req[idx].r = r;
1604 
1605 	ret = 0;
1606 
1607 xfer_exit:
1608 	spin_unlock_irqrestore(&pl330->lock, flags);
1609 
1610 	return ret;
1611 }
1612 
1613 static void pl330_dotask(unsigned long data)
1614 {
1615 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1616 	struct pl330_info *pi = pl330->pinfo;
1617 	unsigned long flags;
1618 	int i;
1619 
1620 	spin_lock_irqsave(&pl330->lock, flags);
1621 
1622 	/* The DMAC itself gone nuts */
1623 	if (pl330->dmac_tbd.reset_dmac) {
1624 		pl330->state = DYING;
1625 		/* Reset the manager too */
1626 		pl330->dmac_tbd.reset_mngr = true;
1627 		/* Clear the reset flag */
1628 		pl330->dmac_tbd.reset_dmac = false;
1629 	}
1630 
1631 	if (pl330->dmac_tbd.reset_mngr) {
1632 		_stop(pl330->manager);
1633 		/* Reset all channels */
1634 		pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1635 		/* Clear the reset flag */
1636 		pl330->dmac_tbd.reset_mngr = false;
1637 	}
1638 
1639 	for (i = 0; i < pi->pcfg.num_chan; i++) {
1640 
1641 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1642 			struct pl330_thread *thrd = &pl330->channels[i];
1643 			void __iomem *regs = pi->base;
1644 			enum pl330_op_err err;
1645 
1646 			_stop(thrd);
1647 
1648 			if (readl(regs + FSC) & (1 << thrd->id))
1649 				err = PL330_ERR_FAIL;
1650 			else
1651 				err = PL330_ERR_ABORT;
1652 
1653 			spin_unlock_irqrestore(&pl330->lock, flags);
1654 
1655 			_callback(thrd->req[1 - thrd->lstenq].r, err);
1656 			_callback(thrd->req[thrd->lstenq].r, err);
1657 
1658 			spin_lock_irqsave(&pl330->lock, flags);
1659 
1660 			thrd->req[0].r = NULL;
1661 			thrd->req[1].r = NULL;
1662 			mark_free(thrd, 0);
1663 			mark_free(thrd, 1);
1664 
1665 			/* Clear the reset flag */
1666 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1667 		}
1668 	}
1669 
1670 	spin_unlock_irqrestore(&pl330->lock, flags);
1671 
1672 	return;
1673 }
1674 
1675 /* Returns 1 if state was updated, 0 otherwise */
1676 static int pl330_update(const struct pl330_info *pi)
1677 {
1678 	struct pl330_req *rqdone, *tmp;
1679 	struct pl330_dmac *pl330;
1680 	unsigned long flags;
1681 	void __iomem *regs;
1682 	u32 val;
1683 	int id, ev, ret = 0;
1684 
1685 	if (!pi || !pi->pl330_data)
1686 		return 0;
1687 
1688 	regs = pi->base;
1689 	pl330 = pi->pl330_data;
1690 
1691 	spin_lock_irqsave(&pl330->lock, flags);
1692 
1693 	val = readl(regs + FSM) & 0x1;
1694 	if (val)
1695 		pl330->dmac_tbd.reset_mngr = true;
1696 	else
1697 		pl330->dmac_tbd.reset_mngr = false;
1698 
1699 	val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1700 	pl330->dmac_tbd.reset_chan |= val;
1701 	if (val) {
1702 		int i = 0;
1703 		while (i < pi->pcfg.num_chan) {
1704 			if (val & (1 << i)) {
1705 				dev_info(pi->dev,
1706 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1707 						i, readl(regs + CS(i)),
1708 						readl(regs + FTC(i)));
1709 				_stop(&pl330->channels[i]);
1710 			}
1711 			i++;
1712 		}
1713 	}
1714 
1715 	/* Check which event happened i.e, thread notified */
1716 	val = readl(regs + ES);
1717 	if (pi->pcfg.num_events < 32
1718 			&& val & ~((1 << pi->pcfg.num_events) - 1)) {
1719 		pl330->dmac_tbd.reset_dmac = true;
1720 		dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1721 		ret = 1;
1722 		goto updt_exit;
1723 	}
1724 
1725 	for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1726 		if (val & (1 << ev)) { /* Event occurred */
1727 			struct pl330_thread *thrd;
1728 			u32 inten = readl(regs + INTEN);
1729 			int active;
1730 
1731 			/* Clear the event */
1732 			if (inten & (1 << ev))
1733 				writel(1 << ev, regs + INTCLR);
1734 
1735 			ret = 1;
1736 
1737 			id = pl330->events[ev];
1738 
1739 			thrd = &pl330->channels[id];
1740 
1741 			active = thrd->req_running;
1742 			if (active == -1) /* Aborted */
1743 				continue;
1744 
1745 			/* Detach the req */
1746 			rqdone = thrd->req[active].r;
1747 			thrd->req[active].r = NULL;
1748 
1749 			mark_free(thrd, active);
1750 
1751 			/* Get going again ASAP */
1752 			_start(thrd);
1753 
1754 			/* For now, just make a list of callbacks to be done */
1755 			list_add_tail(&rqdone->rqd, &pl330->req_done);
1756 		}
1757 	}
1758 
1759 	/* Now that we are in no hurry, do the callbacks */
1760 	list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) {
1761 		list_del(&rqdone->rqd);
1762 
1763 		spin_unlock_irqrestore(&pl330->lock, flags);
1764 		_callback(rqdone, PL330_ERR_NONE);
1765 		spin_lock_irqsave(&pl330->lock, flags);
1766 	}
1767 
1768 updt_exit:
1769 	spin_unlock_irqrestore(&pl330->lock, flags);
1770 
1771 	if (pl330->dmac_tbd.reset_dmac
1772 			|| pl330->dmac_tbd.reset_mngr
1773 			|| pl330->dmac_tbd.reset_chan) {
1774 		ret = 1;
1775 		tasklet_schedule(&pl330->tasks);
1776 	}
1777 
1778 	return ret;
1779 }
1780 
1781 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1782 {
1783 	struct pl330_thread *thrd = ch_id;
1784 	struct pl330_dmac *pl330;
1785 	unsigned long flags;
1786 	int ret = 0, active;
1787 
1788 	if (!thrd || thrd->free || thrd->dmac->state == DYING)
1789 		return -EINVAL;
1790 
1791 	pl330 = thrd->dmac;
1792 	active = thrd->req_running;
1793 
1794 	spin_lock_irqsave(&pl330->lock, flags);
1795 
1796 	switch (op) {
1797 	case PL330_OP_FLUSH:
1798 		/* Make sure the channel is stopped */
1799 		_stop(thrd);
1800 
1801 		thrd->req[0].r = NULL;
1802 		thrd->req[1].r = NULL;
1803 		mark_free(thrd, 0);
1804 		mark_free(thrd, 1);
1805 		break;
1806 
1807 	case PL330_OP_ABORT:
1808 		/* Make sure the channel is stopped */
1809 		_stop(thrd);
1810 
1811 		/* ABORT is only for the active req */
1812 		if (active == -1)
1813 			break;
1814 
1815 		thrd->req[active].r = NULL;
1816 		mark_free(thrd, active);
1817 
1818 		/* Start the next */
1819 	case PL330_OP_START:
1820 		if ((active == -1) && !_start(thrd))
1821 			ret = -EIO;
1822 		break;
1823 
1824 	default:
1825 		ret = -EINVAL;
1826 	}
1827 
1828 	spin_unlock_irqrestore(&pl330->lock, flags);
1829 	return ret;
1830 }
1831 
1832 /* Reserve an event */
1833 static inline int _alloc_event(struct pl330_thread *thrd)
1834 {
1835 	struct pl330_dmac *pl330 = thrd->dmac;
1836 	struct pl330_info *pi = pl330->pinfo;
1837 	int ev;
1838 
1839 	for (ev = 0; ev < pi->pcfg.num_events; ev++)
1840 		if (pl330->events[ev] == -1) {
1841 			pl330->events[ev] = thrd->id;
1842 			return ev;
1843 		}
1844 
1845 	return -1;
1846 }
1847 
1848 static bool _chan_ns(const struct pl330_info *pi, int i)
1849 {
1850 	return pi->pcfg.irq_ns & (1 << i);
1851 }
1852 
1853 /* Upon success, returns IdentityToken for the
1854  * allocated channel, NULL otherwise.
1855  */
1856 static void *pl330_request_channel(const struct pl330_info *pi)
1857 {
1858 	struct pl330_thread *thrd = NULL;
1859 	struct pl330_dmac *pl330;
1860 	unsigned long flags;
1861 	int chans, i;
1862 
1863 	if (!pi || !pi->pl330_data)
1864 		return NULL;
1865 
1866 	pl330 = pi->pl330_data;
1867 
1868 	if (pl330->state == DYING)
1869 		return NULL;
1870 
1871 	chans = pi->pcfg.num_chan;
1872 
1873 	spin_lock_irqsave(&pl330->lock, flags);
1874 
1875 	for (i = 0; i < chans; i++) {
1876 		thrd = &pl330->channels[i];
1877 		if ((thrd->free) && (!_manager_ns(thrd) ||
1878 					_chan_ns(pi, i))) {
1879 			thrd->ev = _alloc_event(thrd);
1880 			if (thrd->ev >= 0) {
1881 				thrd->free = false;
1882 				thrd->lstenq = 1;
1883 				thrd->req[0].r = NULL;
1884 				mark_free(thrd, 0);
1885 				thrd->req[1].r = NULL;
1886 				mark_free(thrd, 1);
1887 				break;
1888 			}
1889 		}
1890 		thrd = NULL;
1891 	}
1892 
1893 	spin_unlock_irqrestore(&pl330->lock, flags);
1894 
1895 	return thrd;
1896 }
1897 
1898 /* Release an event */
1899 static inline void _free_event(struct pl330_thread *thrd, int ev)
1900 {
1901 	struct pl330_dmac *pl330 = thrd->dmac;
1902 	struct pl330_info *pi = pl330->pinfo;
1903 
1904 	/* If the event is valid and was held by the thread */
1905 	if (ev >= 0 && ev < pi->pcfg.num_events
1906 			&& pl330->events[ev] == thrd->id)
1907 		pl330->events[ev] = -1;
1908 }
1909 
1910 static void pl330_release_channel(void *ch_id)
1911 {
1912 	struct pl330_thread *thrd = ch_id;
1913 	struct pl330_dmac *pl330;
1914 	unsigned long flags;
1915 
1916 	if (!thrd || thrd->free)
1917 		return;
1918 
1919 	_stop(thrd);
1920 
1921 	_callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1922 	_callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1923 
1924 	pl330 = thrd->dmac;
1925 
1926 	spin_lock_irqsave(&pl330->lock, flags);
1927 	_free_event(thrd, thrd->ev);
1928 	thrd->free = true;
1929 	spin_unlock_irqrestore(&pl330->lock, flags);
1930 }
1931 
1932 /* Initialize the structure for PL330 configuration, that can be used
1933  * by the client driver the make best use of the DMAC
1934  */
1935 static void read_dmac_config(struct pl330_info *pi)
1936 {
1937 	void __iomem *regs = pi->base;
1938 	u32 val;
1939 
1940 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1941 	val &= CRD_DATA_WIDTH_MASK;
1942 	pi->pcfg.data_bus_width = 8 * (1 << val);
1943 
1944 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1945 	val &= CRD_DATA_BUFF_MASK;
1946 	pi->pcfg.data_buf_dep = val + 1;
1947 
1948 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1949 	val &= CR0_NUM_CHANS_MASK;
1950 	val += 1;
1951 	pi->pcfg.num_chan = val;
1952 
1953 	val = readl(regs + CR0);
1954 	if (val & CR0_PERIPH_REQ_SET) {
1955 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1956 		val += 1;
1957 		pi->pcfg.num_peri = val;
1958 		pi->pcfg.peri_ns = readl(regs + CR4);
1959 	} else {
1960 		pi->pcfg.num_peri = 0;
1961 	}
1962 
1963 	val = readl(regs + CR0);
1964 	if (val & CR0_BOOT_MAN_NS)
1965 		pi->pcfg.mode |= DMAC_MODE_NS;
1966 	else
1967 		pi->pcfg.mode &= ~DMAC_MODE_NS;
1968 
1969 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1970 	val &= CR0_NUM_EVENTS_MASK;
1971 	val += 1;
1972 	pi->pcfg.num_events = val;
1973 
1974 	pi->pcfg.irq_ns = readl(regs + CR3);
1975 }
1976 
1977 static inline void _reset_thread(struct pl330_thread *thrd)
1978 {
1979 	struct pl330_dmac *pl330 = thrd->dmac;
1980 	struct pl330_info *pi = pl330->pinfo;
1981 
1982 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1983 				+ (thrd->id * pi->mcbufsz);
1984 	thrd->req[0].mc_bus = pl330->mcode_bus
1985 				+ (thrd->id * pi->mcbufsz);
1986 	thrd->req[0].r = NULL;
1987 	mark_free(thrd, 0);
1988 
1989 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1990 				+ pi->mcbufsz / 2;
1991 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1992 				+ pi->mcbufsz / 2;
1993 	thrd->req[1].r = NULL;
1994 	mark_free(thrd, 1);
1995 }
1996 
1997 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1998 {
1999 	struct pl330_info *pi = pl330->pinfo;
2000 	int chans = pi->pcfg.num_chan;
2001 	struct pl330_thread *thrd;
2002 	int i;
2003 
2004 	/* Allocate 1 Manager and 'chans' Channel threads */
2005 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2006 					GFP_KERNEL);
2007 	if (!pl330->channels)
2008 		return -ENOMEM;
2009 
2010 	/* Init Channel threads */
2011 	for (i = 0; i < chans; i++) {
2012 		thrd = &pl330->channels[i];
2013 		thrd->id = i;
2014 		thrd->dmac = pl330;
2015 		_reset_thread(thrd);
2016 		thrd->free = true;
2017 	}
2018 
2019 	/* MANAGER is indexed at the end */
2020 	thrd = &pl330->channels[chans];
2021 	thrd->id = chans;
2022 	thrd->dmac = pl330;
2023 	thrd->free = false;
2024 	pl330->manager = thrd;
2025 
2026 	return 0;
2027 }
2028 
2029 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2030 {
2031 	struct pl330_info *pi = pl330->pinfo;
2032 	int chans = pi->pcfg.num_chan;
2033 	int ret;
2034 
2035 	/*
2036 	 * Alloc MicroCode buffer for 'chans' Channel threads.
2037 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2038 	 */
2039 	pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2040 				chans * pi->mcbufsz,
2041 				&pl330->mcode_bus, GFP_KERNEL);
2042 	if (!pl330->mcode_cpu) {
2043 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2044 			__func__, __LINE__);
2045 		return -ENOMEM;
2046 	}
2047 
2048 	ret = dmac_alloc_threads(pl330);
2049 	if (ret) {
2050 		dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2051 			__func__, __LINE__);
2052 		dma_free_coherent(pi->dev,
2053 				chans * pi->mcbufsz,
2054 				pl330->mcode_cpu, pl330->mcode_bus);
2055 		return ret;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 static int pl330_add(struct pl330_info *pi)
2062 {
2063 	struct pl330_dmac *pl330;
2064 	void __iomem *regs;
2065 	int i, ret;
2066 
2067 	if (!pi || !pi->dev)
2068 		return -EINVAL;
2069 
2070 	/* If already added */
2071 	if (pi->pl330_data)
2072 		return -EINVAL;
2073 
2074 	/*
2075 	 * If the SoC can perform reset on the DMAC, then do it
2076 	 * before reading its configuration.
2077 	 */
2078 	if (pi->dmac_reset)
2079 		pi->dmac_reset(pi);
2080 
2081 	regs = pi->base;
2082 
2083 	/* Check if we can handle this DMAC */
2084 	if ((pi->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
2085 		dev_err(pi->dev, "PERIPH_ID 0x%x !\n", pi->pcfg.periph_id);
2086 		return -EINVAL;
2087 	}
2088 
2089 	/* Read the configuration of the DMAC */
2090 	read_dmac_config(pi);
2091 
2092 	if (pi->pcfg.num_events == 0) {
2093 		dev_err(pi->dev, "%s:%d Can't work without events!\n",
2094 			__func__, __LINE__);
2095 		return -EINVAL;
2096 	}
2097 
2098 	pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2099 	if (!pl330) {
2100 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2101 			__func__, __LINE__);
2102 		return -ENOMEM;
2103 	}
2104 
2105 	/* Assign the info structure and private data */
2106 	pl330->pinfo = pi;
2107 	pi->pl330_data = pl330;
2108 
2109 	spin_lock_init(&pl330->lock);
2110 
2111 	INIT_LIST_HEAD(&pl330->req_done);
2112 
2113 	/* Use default MC buffer size if not provided */
2114 	if (!pi->mcbufsz)
2115 		pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2116 
2117 	/* Mark all events as free */
2118 	for (i = 0; i < pi->pcfg.num_events; i++)
2119 		pl330->events[i] = -1;
2120 
2121 	/* Allocate resources needed by the DMAC */
2122 	ret = dmac_alloc_resources(pl330);
2123 	if (ret) {
2124 		dev_err(pi->dev, "Unable to create channels for DMAC\n");
2125 		kfree(pl330);
2126 		return ret;
2127 	}
2128 
2129 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2130 
2131 	pl330->state = INIT;
2132 
2133 	return 0;
2134 }
2135 
2136 static int dmac_free_threads(struct pl330_dmac *pl330)
2137 {
2138 	struct pl330_info *pi = pl330->pinfo;
2139 	int chans = pi->pcfg.num_chan;
2140 	struct pl330_thread *thrd;
2141 	int i;
2142 
2143 	/* Release Channel threads */
2144 	for (i = 0; i < chans; i++) {
2145 		thrd = &pl330->channels[i];
2146 		pl330_release_channel((void *)thrd);
2147 	}
2148 
2149 	/* Free memory */
2150 	kfree(pl330->channels);
2151 
2152 	return 0;
2153 }
2154 
2155 static void dmac_free_resources(struct pl330_dmac *pl330)
2156 {
2157 	struct pl330_info *pi = pl330->pinfo;
2158 	int chans = pi->pcfg.num_chan;
2159 
2160 	dmac_free_threads(pl330);
2161 
2162 	dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2163 				pl330->mcode_cpu, pl330->mcode_bus);
2164 }
2165 
2166 static void pl330_del(struct pl330_info *pi)
2167 {
2168 	struct pl330_dmac *pl330;
2169 
2170 	if (!pi || !pi->pl330_data)
2171 		return;
2172 
2173 	pl330 = pi->pl330_data;
2174 
2175 	pl330->state = UNINIT;
2176 
2177 	tasklet_kill(&pl330->tasks);
2178 
2179 	/* Free DMAC resources */
2180 	dmac_free_resources(pl330);
2181 
2182 	kfree(pl330);
2183 	pi->pl330_data = NULL;
2184 }
2185 
2186 /* forward declaration */
2187 static struct amba_driver pl330_driver;
2188 
2189 static inline struct dma_pl330_chan *
2190 to_pchan(struct dma_chan *ch)
2191 {
2192 	if (!ch)
2193 		return NULL;
2194 
2195 	return container_of(ch, struct dma_pl330_chan, chan);
2196 }
2197 
2198 static inline struct dma_pl330_desc *
2199 to_desc(struct dma_async_tx_descriptor *tx)
2200 {
2201 	return container_of(tx, struct dma_pl330_desc, txd);
2202 }
2203 
2204 static inline void fill_queue(struct dma_pl330_chan *pch)
2205 {
2206 	struct dma_pl330_desc *desc;
2207 	int ret;
2208 
2209 	list_for_each_entry(desc, &pch->work_list, node) {
2210 
2211 		/* If already submitted */
2212 		if (desc->status == BUSY)
2213 			continue;
2214 
2215 		ret = pl330_submit_req(pch->pl330_chid,
2216 						&desc->req);
2217 		if (!ret) {
2218 			desc->status = BUSY;
2219 		} else if (ret == -EAGAIN) {
2220 			/* QFull or DMAC Dying */
2221 			break;
2222 		} else {
2223 			/* Unacceptable request */
2224 			desc->status = DONE;
2225 			dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2226 					__func__, __LINE__, desc->txd.cookie);
2227 			tasklet_schedule(&pch->task);
2228 		}
2229 	}
2230 }
2231 
2232 static void pl330_tasklet(unsigned long data)
2233 {
2234 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2235 	struct dma_pl330_desc *desc, *_dt;
2236 	unsigned long flags;
2237 
2238 	spin_lock_irqsave(&pch->lock, flags);
2239 
2240 	/* Pick up ripe tomatoes */
2241 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2242 		if (desc->status == DONE) {
2243 			if (!pch->cyclic)
2244 				dma_cookie_complete(&desc->txd);
2245 			list_move_tail(&desc->node, &pch->completed_list);
2246 		}
2247 
2248 	/* Try to submit a req imm. next to the last completed cookie */
2249 	fill_queue(pch);
2250 
2251 	/* Make sure the PL330 Channel thread is active */
2252 	pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2253 
2254 	while (!list_empty(&pch->completed_list)) {
2255 		dma_async_tx_callback callback;
2256 		void *callback_param;
2257 
2258 		desc = list_first_entry(&pch->completed_list,
2259 					struct dma_pl330_desc, node);
2260 
2261 		callback = desc->txd.callback;
2262 		callback_param = desc->txd.callback_param;
2263 
2264 		if (pch->cyclic) {
2265 			desc->status = PREP;
2266 			list_move_tail(&desc->node, &pch->work_list);
2267 		} else {
2268 			desc->status = FREE;
2269 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2270 		}
2271 
2272 		dma_descriptor_unmap(&desc->txd);
2273 
2274 		if (callback) {
2275 			spin_unlock_irqrestore(&pch->lock, flags);
2276 			callback(callback_param);
2277 			spin_lock_irqsave(&pch->lock, flags);
2278 		}
2279 	}
2280 	spin_unlock_irqrestore(&pch->lock, flags);
2281 }
2282 
2283 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2284 {
2285 	struct dma_pl330_desc *desc = token;
2286 	struct dma_pl330_chan *pch = desc->pchan;
2287 	unsigned long flags;
2288 
2289 	/* If desc aborted */
2290 	if (!pch)
2291 		return;
2292 
2293 	spin_lock_irqsave(&pch->lock, flags);
2294 
2295 	desc->status = DONE;
2296 
2297 	spin_unlock_irqrestore(&pch->lock, flags);
2298 
2299 	tasklet_schedule(&pch->task);
2300 }
2301 
2302 bool pl330_filter(struct dma_chan *chan, void *param)
2303 {
2304 	u8 *peri_id;
2305 
2306 	if (chan->device->dev->driver != &pl330_driver.drv)
2307 		return false;
2308 
2309 	peri_id = chan->private;
2310 	return *peri_id == (unsigned long)param;
2311 }
2312 EXPORT_SYMBOL(pl330_filter);
2313 
2314 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2315 						struct of_dma *ofdma)
2316 {
2317 	int count = dma_spec->args_count;
2318 	struct dma_pl330_dmac *pdmac = ofdma->of_dma_data;
2319 	unsigned int chan_id;
2320 
2321 	if (count != 1)
2322 		return NULL;
2323 
2324 	chan_id = dma_spec->args[0];
2325 	if (chan_id >= pdmac->num_peripherals)
2326 		return NULL;
2327 
2328 	return dma_get_slave_channel(&pdmac->peripherals[chan_id].chan);
2329 }
2330 
2331 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2332 {
2333 	struct dma_pl330_chan *pch = to_pchan(chan);
2334 	struct dma_pl330_dmac *pdmac = pch->dmac;
2335 	unsigned long flags;
2336 
2337 	spin_lock_irqsave(&pch->lock, flags);
2338 
2339 	dma_cookie_init(chan);
2340 	pch->cyclic = false;
2341 
2342 	pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2343 	if (!pch->pl330_chid) {
2344 		spin_unlock_irqrestore(&pch->lock, flags);
2345 		return -ENOMEM;
2346 	}
2347 
2348 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2349 
2350 	spin_unlock_irqrestore(&pch->lock, flags);
2351 
2352 	return 1;
2353 }
2354 
2355 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2356 {
2357 	struct dma_pl330_chan *pch = to_pchan(chan);
2358 	struct dma_pl330_desc *desc;
2359 	unsigned long flags;
2360 	struct dma_pl330_dmac *pdmac = pch->dmac;
2361 	struct dma_slave_config *slave_config;
2362 	LIST_HEAD(list);
2363 
2364 	switch (cmd) {
2365 	case DMA_TERMINATE_ALL:
2366 		spin_lock_irqsave(&pch->lock, flags);
2367 
2368 		/* FLUSH the PL330 Channel thread */
2369 		pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2370 
2371 		/* Mark all desc done */
2372 		list_for_each_entry(desc, &pch->submitted_list, node) {
2373 			desc->status = FREE;
2374 			dma_cookie_complete(&desc->txd);
2375 		}
2376 
2377 		list_for_each_entry(desc, &pch->work_list , node) {
2378 			desc->status = FREE;
2379 			dma_cookie_complete(&desc->txd);
2380 		}
2381 
2382 		list_for_each_entry(desc, &pch->completed_list , node) {
2383 			desc->status = FREE;
2384 			dma_cookie_complete(&desc->txd);
2385 		}
2386 
2387 		list_splice_tail_init(&pch->submitted_list, &pdmac->desc_pool);
2388 		list_splice_tail_init(&pch->work_list, &pdmac->desc_pool);
2389 		list_splice_tail_init(&pch->completed_list, &pdmac->desc_pool);
2390 		spin_unlock_irqrestore(&pch->lock, flags);
2391 		break;
2392 	case DMA_SLAVE_CONFIG:
2393 		slave_config = (struct dma_slave_config *)arg;
2394 
2395 		if (slave_config->direction == DMA_MEM_TO_DEV) {
2396 			if (slave_config->dst_addr)
2397 				pch->fifo_addr = slave_config->dst_addr;
2398 			if (slave_config->dst_addr_width)
2399 				pch->burst_sz = __ffs(slave_config->dst_addr_width);
2400 			if (slave_config->dst_maxburst)
2401 				pch->burst_len = slave_config->dst_maxburst;
2402 		} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2403 			if (slave_config->src_addr)
2404 				pch->fifo_addr = slave_config->src_addr;
2405 			if (slave_config->src_addr_width)
2406 				pch->burst_sz = __ffs(slave_config->src_addr_width);
2407 			if (slave_config->src_maxburst)
2408 				pch->burst_len = slave_config->src_maxburst;
2409 		}
2410 		break;
2411 	default:
2412 		dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2413 		return -ENXIO;
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 static void pl330_free_chan_resources(struct dma_chan *chan)
2420 {
2421 	struct dma_pl330_chan *pch = to_pchan(chan);
2422 	unsigned long flags;
2423 
2424 	tasklet_kill(&pch->task);
2425 
2426 	spin_lock_irqsave(&pch->lock, flags);
2427 
2428 	pl330_release_channel(pch->pl330_chid);
2429 	pch->pl330_chid = NULL;
2430 
2431 	if (pch->cyclic)
2432 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2433 
2434 	spin_unlock_irqrestore(&pch->lock, flags);
2435 }
2436 
2437 static enum dma_status
2438 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2439 		 struct dma_tx_state *txstate)
2440 {
2441 	return dma_cookie_status(chan, cookie, txstate);
2442 }
2443 
2444 static void pl330_issue_pending(struct dma_chan *chan)
2445 {
2446 	struct dma_pl330_chan *pch = to_pchan(chan);
2447 	unsigned long flags;
2448 
2449 	spin_lock_irqsave(&pch->lock, flags);
2450 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2451 	spin_unlock_irqrestore(&pch->lock, flags);
2452 
2453 	pl330_tasklet((unsigned long)pch);
2454 }
2455 
2456 /*
2457  * We returned the last one of the circular list of descriptor(s)
2458  * from prep_xxx, so the argument to submit corresponds to the last
2459  * descriptor of the list.
2460  */
2461 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2462 {
2463 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2464 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2465 	dma_cookie_t cookie;
2466 	unsigned long flags;
2467 
2468 	spin_lock_irqsave(&pch->lock, flags);
2469 
2470 	/* Assign cookies to all nodes */
2471 	while (!list_empty(&last->node)) {
2472 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2473 		if (pch->cyclic) {
2474 			desc->txd.callback = last->txd.callback;
2475 			desc->txd.callback_param = last->txd.callback_param;
2476 		}
2477 
2478 		dma_cookie_assign(&desc->txd);
2479 
2480 		list_move_tail(&desc->node, &pch->submitted_list);
2481 	}
2482 
2483 	cookie = dma_cookie_assign(&last->txd);
2484 	list_add_tail(&last->node, &pch->submitted_list);
2485 	spin_unlock_irqrestore(&pch->lock, flags);
2486 
2487 	return cookie;
2488 }
2489 
2490 static inline void _init_desc(struct dma_pl330_desc *desc)
2491 {
2492 	desc->req.x = &desc->px;
2493 	desc->req.token = desc;
2494 	desc->rqcfg.swap = SWAP_NO;
2495 	desc->rqcfg.scctl = SCCTRL0;
2496 	desc->rqcfg.dcctl = DCCTRL0;
2497 	desc->req.cfg = &desc->rqcfg;
2498 	desc->req.xfer_cb = dma_pl330_rqcb;
2499 	desc->txd.tx_submit = pl330_tx_submit;
2500 
2501 	INIT_LIST_HEAD(&desc->node);
2502 }
2503 
2504 /* Returns the number of descriptors added to the DMAC pool */
2505 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2506 {
2507 	struct dma_pl330_desc *desc;
2508 	unsigned long flags;
2509 	int i;
2510 
2511 	if (!pdmac)
2512 		return 0;
2513 
2514 	desc = kcalloc(count, sizeof(*desc), flg);
2515 	if (!desc)
2516 		return 0;
2517 
2518 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2519 
2520 	for (i = 0; i < count; i++) {
2521 		_init_desc(&desc[i]);
2522 		list_add_tail(&desc[i].node, &pdmac->desc_pool);
2523 	}
2524 
2525 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2526 
2527 	return count;
2528 }
2529 
2530 static struct dma_pl330_desc *
2531 pluck_desc(struct dma_pl330_dmac *pdmac)
2532 {
2533 	struct dma_pl330_desc *desc = NULL;
2534 	unsigned long flags;
2535 
2536 	if (!pdmac)
2537 		return NULL;
2538 
2539 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2540 
2541 	if (!list_empty(&pdmac->desc_pool)) {
2542 		desc = list_entry(pdmac->desc_pool.next,
2543 				struct dma_pl330_desc, node);
2544 
2545 		list_del_init(&desc->node);
2546 
2547 		desc->status = PREP;
2548 		desc->txd.callback = NULL;
2549 	}
2550 
2551 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2552 
2553 	return desc;
2554 }
2555 
2556 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2557 {
2558 	struct dma_pl330_dmac *pdmac = pch->dmac;
2559 	u8 *peri_id = pch->chan.private;
2560 	struct dma_pl330_desc *desc;
2561 
2562 	/* Pluck one desc from the pool of DMAC */
2563 	desc = pluck_desc(pdmac);
2564 
2565 	/* If the DMAC pool is empty, alloc new */
2566 	if (!desc) {
2567 		if (!add_desc(pdmac, GFP_ATOMIC, 1))
2568 			return NULL;
2569 
2570 		/* Try again */
2571 		desc = pluck_desc(pdmac);
2572 		if (!desc) {
2573 			dev_err(pch->dmac->pif.dev,
2574 				"%s:%d ALERT!\n", __func__, __LINE__);
2575 			return NULL;
2576 		}
2577 	}
2578 
2579 	/* Initialize the descriptor */
2580 	desc->pchan = pch;
2581 	desc->txd.cookie = 0;
2582 	async_tx_ack(&desc->txd);
2583 
2584 	desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2585 	desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2586 
2587 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2588 
2589 	return desc;
2590 }
2591 
2592 static inline void fill_px(struct pl330_xfer *px,
2593 		dma_addr_t dst, dma_addr_t src, size_t len)
2594 {
2595 	px->next = NULL;
2596 	px->bytes = len;
2597 	px->dst_addr = dst;
2598 	px->src_addr = src;
2599 }
2600 
2601 static struct dma_pl330_desc *
2602 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2603 		dma_addr_t src, size_t len)
2604 {
2605 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2606 
2607 	if (!desc) {
2608 		dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2609 			__func__, __LINE__);
2610 		return NULL;
2611 	}
2612 
2613 	/*
2614 	 * Ideally we should lookout for reqs bigger than
2615 	 * those that can be programmed with 256 bytes of
2616 	 * MC buffer, but considering a req size is seldom
2617 	 * going to be word-unaligned and more than 200MB,
2618 	 * we take it easy.
2619 	 * Also, should the limit is reached we'd rather
2620 	 * have the platform increase MC buffer size than
2621 	 * complicating this API driver.
2622 	 */
2623 	fill_px(&desc->px, dst, src, len);
2624 
2625 	return desc;
2626 }
2627 
2628 /* Call after fixing burst size */
2629 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2630 {
2631 	struct dma_pl330_chan *pch = desc->pchan;
2632 	struct pl330_info *pi = &pch->dmac->pif;
2633 	int burst_len;
2634 
2635 	burst_len = pi->pcfg.data_bus_width / 8;
2636 	burst_len *= pi->pcfg.data_buf_dep;
2637 	burst_len >>= desc->rqcfg.brst_size;
2638 
2639 	/* src/dst_burst_len can't be more than 16 */
2640 	if (burst_len > 16)
2641 		burst_len = 16;
2642 
2643 	while (burst_len > 1) {
2644 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2645 			break;
2646 		burst_len--;
2647 	}
2648 
2649 	return burst_len;
2650 }
2651 
2652 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2653 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2654 		size_t period_len, enum dma_transfer_direction direction,
2655 		unsigned long flags, void *context)
2656 {
2657 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2658 	struct dma_pl330_chan *pch = to_pchan(chan);
2659 	struct dma_pl330_dmac *pdmac = pch->dmac;
2660 	unsigned int i;
2661 	dma_addr_t dst;
2662 	dma_addr_t src;
2663 
2664 	if (len % period_len != 0)
2665 		return NULL;
2666 
2667 	if (!is_slave_direction(direction)) {
2668 		dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2669 		__func__, __LINE__);
2670 		return NULL;
2671 	}
2672 
2673 	for (i = 0; i < len / period_len; i++) {
2674 		desc = pl330_get_desc(pch);
2675 		if (!desc) {
2676 			dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2677 				__func__, __LINE__);
2678 
2679 			if (!first)
2680 				return NULL;
2681 
2682 			spin_lock_irqsave(&pdmac->pool_lock, flags);
2683 
2684 			while (!list_empty(&first->node)) {
2685 				desc = list_entry(first->node.next,
2686 						struct dma_pl330_desc, node);
2687 				list_move_tail(&desc->node, &pdmac->desc_pool);
2688 			}
2689 
2690 			list_move_tail(&first->node, &pdmac->desc_pool);
2691 
2692 			spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2693 
2694 			return NULL;
2695 		}
2696 
2697 		switch (direction) {
2698 		case DMA_MEM_TO_DEV:
2699 			desc->rqcfg.src_inc = 1;
2700 			desc->rqcfg.dst_inc = 0;
2701 			desc->req.rqtype = MEMTODEV;
2702 			src = dma_addr;
2703 			dst = pch->fifo_addr;
2704 			break;
2705 		case DMA_DEV_TO_MEM:
2706 			desc->rqcfg.src_inc = 0;
2707 			desc->rqcfg.dst_inc = 1;
2708 			desc->req.rqtype = DEVTOMEM;
2709 			src = pch->fifo_addr;
2710 			dst = dma_addr;
2711 			break;
2712 		default:
2713 			break;
2714 		}
2715 
2716 		desc->rqcfg.brst_size = pch->burst_sz;
2717 		desc->rqcfg.brst_len = 1;
2718 		fill_px(&desc->px, dst, src, period_len);
2719 
2720 		if (!first)
2721 			first = desc;
2722 		else
2723 			list_add_tail(&desc->node, &first->node);
2724 
2725 		dma_addr += period_len;
2726 	}
2727 
2728 	if (!desc)
2729 		return NULL;
2730 
2731 	pch->cyclic = true;
2732 	desc->txd.flags = flags;
2733 
2734 	return &desc->txd;
2735 }
2736 
2737 static struct dma_async_tx_descriptor *
2738 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2739 		dma_addr_t src, size_t len, unsigned long flags)
2740 {
2741 	struct dma_pl330_desc *desc;
2742 	struct dma_pl330_chan *pch = to_pchan(chan);
2743 	struct pl330_info *pi;
2744 	int burst;
2745 
2746 	if (unlikely(!pch || !len))
2747 		return NULL;
2748 
2749 	pi = &pch->dmac->pif;
2750 
2751 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2752 	if (!desc)
2753 		return NULL;
2754 
2755 	desc->rqcfg.src_inc = 1;
2756 	desc->rqcfg.dst_inc = 1;
2757 	desc->req.rqtype = MEMTOMEM;
2758 
2759 	/* Select max possible burst size */
2760 	burst = pi->pcfg.data_bus_width / 8;
2761 
2762 	while (burst > 1) {
2763 		if (!(len % burst))
2764 			break;
2765 		burst /= 2;
2766 	}
2767 
2768 	desc->rqcfg.brst_size = 0;
2769 	while (burst != (1 << desc->rqcfg.brst_size))
2770 		desc->rqcfg.brst_size++;
2771 
2772 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2773 
2774 	desc->txd.flags = flags;
2775 
2776 	return &desc->txd;
2777 }
2778 
2779 static void __pl330_giveback_desc(struct dma_pl330_dmac *pdmac,
2780 				  struct dma_pl330_desc *first)
2781 {
2782 	unsigned long flags;
2783 	struct dma_pl330_desc *desc;
2784 
2785 	if (!first)
2786 		return;
2787 
2788 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2789 
2790 	while (!list_empty(&first->node)) {
2791 		desc = list_entry(first->node.next,
2792 				struct dma_pl330_desc, node);
2793 		list_move_tail(&desc->node, &pdmac->desc_pool);
2794 	}
2795 
2796 	list_move_tail(&first->node, &pdmac->desc_pool);
2797 
2798 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2799 }
2800 
2801 static struct dma_async_tx_descriptor *
2802 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2803 		unsigned int sg_len, enum dma_transfer_direction direction,
2804 		unsigned long flg, void *context)
2805 {
2806 	struct dma_pl330_desc *first, *desc = NULL;
2807 	struct dma_pl330_chan *pch = to_pchan(chan);
2808 	struct scatterlist *sg;
2809 	int i;
2810 	dma_addr_t addr;
2811 
2812 	if (unlikely(!pch || !sgl || !sg_len))
2813 		return NULL;
2814 
2815 	addr = pch->fifo_addr;
2816 
2817 	first = NULL;
2818 
2819 	for_each_sg(sgl, sg, sg_len, i) {
2820 
2821 		desc = pl330_get_desc(pch);
2822 		if (!desc) {
2823 			struct dma_pl330_dmac *pdmac = pch->dmac;
2824 
2825 			dev_err(pch->dmac->pif.dev,
2826 				"%s:%d Unable to fetch desc\n",
2827 				__func__, __LINE__);
2828 			__pl330_giveback_desc(pdmac, first);
2829 
2830 			return NULL;
2831 		}
2832 
2833 		if (!first)
2834 			first = desc;
2835 		else
2836 			list_add_tail(&desc->node, &first->node);
2837 
2838 		if (direction == DMA_MEM_TO_DEV) {
2839 			desc->rqcfg.src_inc = 1;
2840 			desc->rqcfg.dst_inc = 0;
2841 			desc->req.rqtype = MEMTODEV;
2842 			fill_px(&desc->px,
2843 				addr, sg_dma_address(sg), sg_dma_len(sg));
2844 		} else {
2845 			desc->rqcfg.src_inc = 0;
2846 			desc->rqcfg.dst_inc = 1;
2847 			desc->req.rqtype = DEVTOMEM;
2848 			fill_px(&desc->px,
2849 				sg_dma_address(sg), addr, sg_dma_len(sg));
2850 		}
2851 
2852 		desc->rqcfg.brst_size = pch->burst_sz;
2853 		desc->rqcfg.brst_len = 1;
2854 	}
2855 
2856 	/* Return the last desc in the chain */
2857 	desc->txd.flags = flg;
2858 	return &desc->txd;
2859 }
2860 
2861 static irqreturn_t pl330_irq_handler(int irq, void *data)
2862 {
2863 	if (pl330_update(data))
2864 		return IRQ_HANDLED;
2865 	else
2866 		return IRQ_NONE;
2867 }
2868 
2869 #define PL330_DMA_BUSWIDTHS \
2870 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2871 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2872 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2873 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2874 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2875 
2876 static int pl330_dma_device_slave_caps(struct dma_chan *dchan,
2877 	struct dma_slave_caps *caps)
2878 {
2879 	caps->src_addr_widths = PL330_DMA_BUSWIDTHS;
2880 	caps->dstn_addr_widths = PL330_DMA_BUSWIDTHS;
2881 	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2882 	caps->cmd_pause = false;
2883 	caps->cmd_terminate = true;
2884 	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2885 
2886 	return 0;
2887 }
2888 
2889 static int
2890 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2891 {
2892 	struct dma_pl330_platdata *pdat;
2893 	struct dma_pl330_dmac *pdmac;
2894 	struct dma_pl330_chan *pch, *_p;
2895 	struct pl330_info *pi;
2896 	struct dma_device *pd;
2897 	struct resource *res;
2898 	int i, ret, irq;
2899 	int num_chan;
2900 
2901 	pdat = dev_get_platdata(&adev->dev);
2902 
2903 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2904 	if (ret)
2905 		return ret;
2906 
2907 	/* Allocate a new DMAC and its Channels */
2908 	pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL);
2909 	if (!pdmac) {
2910 		dev_err(&adev->dev, "unable to allocate mem\n");
2911 		return -ENOMEM;
2912 	}
2913 
2914 	pi = &pdmac->pif;
2915 	pi->dev = &adev->dev;
2916 	pi->pl330_data = NULL;
2917 	pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2918 
2919 	res = &adev->res;
2920 	pi->base = devm_ioremap_resource(&adev->dev, res);
2921 	if (IS_ERR(pi->base))
2922 		return PTR_ERR(pi->base);
2923 
2924 	amba_set_drvdata(adev, pdmac);
2925 
2926 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2927 		irq = adev->irq[i];
2928 		if (irq) {
2929 			ret = devm_request_irq(&adev->dev, irq,
2930 					       pl330_irq_handler, 0,
2931 					       dev_name(&adev->dev), pi);
2932 			if (ret)
2933 				return ret;
2934 		} else {
2935 			break;
2936 		}
2937 	}
2938 
2939 	pi->pcfg.periph_id = adev->periphid;
2940 	ret = pl330_add(pi);
2941 	if (ret)
2942 		return ret;
2943 
2944 	INIT_LIST_HEAD(&pdmac->desc_pool);
2945 	spin_lock_init(&pdmac->pool_lock);
2946 
2947 	/* Create a descriptor pool of default size */
2948 	if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2949 		dev_warn(&adev->dev, "unable to allocate desc\n");
2950 
2951 	pd = &pdmac->ddma;
2952 	INIT_LIST_HEAD(&pd->channels);
2953 
2954 	/* Initialize channel parameters */
2955 	if (pdat)
2956 		num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan);
2957 	else
2958 		num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan);
2959 
2960 	pdmac->num_peripherals = num_chan;
2961 
2962 	pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2963 	if (!pdmac->peripherals) {
2964 		ret = -ENOMEM;
2965 		dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n");
2966 		goto probe_err2;
2967 	}
2968 
2969 	for (i = 0; i < num_chan; i++) {
2970 		pch = &pdmac->peripherals[i];
2971 		if (!adev->dev.of_node)
2972 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2973 		else
2974 			pch->chan.private = adev->dev.of_node;
2975 
2976 		INIT_LIST_HEAD(&pch->submitted_list);
2977 		INIT_LIST_HEAD(&pch->work_list);
2978 		INIT_LIST_HEAD(&pch->completed_list);
2979 		spin_lock_init(&pch->lock);
2980 		pch->pl330_chid = NULL;
2981 		pch->chan.device = pd;
2982 		pch->dmac = pdmac;
2983 
2984 		/* Add the channel to the DMAC list */
2985 		list_add_tail(&pch->chan.device_node, &pd->channels);
2986 	}
2987 
2988 	pd->dev = &adev->dev;
2989 	if (pdat) {
2990 		pd->cap_mask = pdat->cap_mask;
2991 	} else {
2992 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2993 		if (pi->pcfg.num_peri) {
2994 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2995 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2996 			dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2997 		}
2998 	}
2999 
3000 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3001 	pd->device_free_chan_resources = pl330_free_chan_resources;
3002 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3003 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3004 	pd->device_tx_status = pl330_tx_status;
3005 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
3006 	pd->device_control = pl330_control;
3007 	pd->device_issue_pending = pl330_issue_pending;
3008 	pd->device_slave_caps = pl330_dma_device_slave_caps;
3009 
3010 	ret = dma_async_device_register(pd);
3011 	if (ret) {
3012 		dev_err(&adev->dev, "unable to register DMAC\n");
3013 		goto probe_err3;
3014 	}
3015 
3016 	if (adev->dev.of_node) {
3017 		ret = of_dma_controller_register(adev->dev.of_node,
3018 					 of_dma_pl330_xlate, pdmac);
3019 		if (ret) {
3020 			dev_err(&adev->dev,
3021 			"unable to register DMA to the generic DT DMA helpers\n");
3022 		}
3023 	}
3024 
3025 	adev->dev.dma_parms = &pdmac->dma_parms;
3026 
3027 	/*
3028 	 * This is the limit for transfers with a buswidth of 1, larger
3029 	 * buswidths will have larger limits.
3030 	 */
3031 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
3032 	if (ret)
3033 		dev_err(&adev->dev, "unable to set the seg size\n");
3034 
3035 
3036 	dev_info(&adev->dev,
3037 		"Loaded driver for PL330 DMAC-%d\n", adev->periphid);
3038 	dev_info(&adev->dev,
3039 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3040 		pi->pcfg.data_buf_dep,
3041 		pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
3042 		pi->pcfg.num_peri, pi->pcfg.num_events);
3043 
3044 	return 0;
3045 probe_err3:
3046 	/* Idle the DMAC */
3047 	list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3048 			chan.device_node) {
3049 
3050 		/* Remove the channel */
3051 		list_del(&pch->chan.device_node);
3052 
3053 		/* Flush the channel */
3054 		pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3055 		pl330_free_chan_resources(&pch->chan);
3056 	}
3057 probe_err2:
3058 	pl330_del(pi);
3059 
3060 	return ret;
3061 }
3062 
3063 static int pl330_remove(struct amba_device *adev)
3064 {
3065 	struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
3066 	struct dma_pl330_chan *pch, *_p;
3067 	struct pl330_info *pi;
3068 
3069 	if (!pdmac)
3070 		return 0;
3071 
3072 	if (adev->dev.of_node)
3073 		of_dma_controller_free(adev->dev.of_node);
3074 
3075 	dma_async_device_unregister(&pdmac->ddma);
3076 
3077 	/* Idle the DMAC */
3078 	list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3079 			chan.device_node) {
3080 
3081 		/* Remove the channel */
3082 		list_del(&pch->chan.device_node);
3083 
3084 		/* Flush the channel */
3085 		pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3086 		pl330_free_chan_resources(&pch->chan);
3087 	}
3088 
3089 	pi = &pdmac->pif;
3090 
3091 	pl330_del(pi);
3092 
3093 	return 0;
3094 }
3095 
3096 static struct amba_id pl330_ids[] = {
3097 	{
3098 		.id	= 0x00041330,
3099 		.mask	= 0x000fffff,
3100 	},
3101 	{ 0, 0 },
3102 };
3103 
3104 MODULE_DEVICE_TABLE(amba, pl330_ids);
3105 
3106 static struct amba_driver pl330_driver = {
3107 	.drv = {
3108 		.owner = THIS_MODULE,
3109 		.name = "dma-pl330",
3110 	},
3111 	.id_table = pl330_ids,
3112 	.probe = pl330_probe,
3113 	.remove = pl330_remove,
3114 };
3115 
3116 module_amba_driver(pl330_driver);
3117 
3118 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3119 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3120 MODULE_LICENSE("GPL");
3121