xref: /openbmc/linux/drivers/dma/pl330.c (revision 65417d9f)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/scatterlist.h>
26 #include <linux/of.h>
27 #include <linux/of_dma.h>
28 #include <linux/err.h>
29 #include <linux/pm_runtime.h>
30 
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN		8
33 #define PL330_MAX_IRQS		32
34 #define PL330_MAX_PERI		32
35 #define PL330_MAX_BURST         16
36 
37 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
38 
39 enum pl330_cachectrl {
40 	CCTRL0,		/* Noncacheable and nonbufferable */
41 	CCTRL1,		/* Bufferable only */
42 	CCTRL2,		/* Cacheable, but do not allocate */
43 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
44 	INVALID1,	/* AWCACHE = 0x1000 */
45 	INVALID2,
46 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
47 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
48 };
49 
50 enum pl330_byteswap {
51 	SWAP_NO,
52 	SWAP_2,
53 	SWAP_4,
54 	SWAP_8,
55 	SWAP_16,
56 };
57 
58 /* Register and Bit field Definitions */
59 #define DS			0x0
60 #define DS_ST_STOP		0x0
61 #define DS_ST_EXEC		0x1
62 #define DS_ST_CMISS		0x2
63 #define DS_ST_UPDTPC		0x3
64 #define DS_ST_WFE		0x4
65 #define DS_ST_ATBRR		0x5
66 #define DS_ST_QBUSY		0x6
67 #define DS_ST_WFP		0x7
68 #define DS_ST_KILL		0x8
69 #define DS_ST_CMPLT		0x9
70 #define DS_ST_FLTCMP		0xe
71 #define DS_ST_FAULT		0xf
72 
73 #define DPC			0x4
74 #define INTEN			0x20
75 #define ES			0x24
76 #define INTSTATUS		0x28
77 #define INTCLR			0x2c
78 #define FSM			0x30
79 #define FSC			0x34
80 #define FTM			0x38
81 
82 #define _FTC			0x40
83 #define FTC(n)			(_FTC + (n)*0x4)
84 
85 #define _CS			0x100
86 #define CS(n)			(_CS + (n)*0x8)
87 #define CS_CNS			(1 << 21)
88 
89 #define _CPC			0x104
90 #define CPC(n)			(_CPC + (n)*0x8)
91 
92 #define _SA			0x400
93 #define SA(n)			(_SA + (n)*0x20)
94 
95 #define _DA			0x404
96 #define DA(n)			(_DA + (n)*0x20)
97 
98 #define _CC			0x408
99 #define CC(n)			(_CC + (n)*0x20)
100 
101 #define CC_SRCINC		(1 << 0)
102 #define CC_DSTINC		(1 << 14)
103 #define CC_SRCPRI		(1 << 8)
104 #define CC_DSTPRI		(1 << 22)
105 #define CC_SRCNS		(1 << 9)
106 #define CC_DSTNS		(1 << 23)
107 #define CC_SRCIA		(1 << 10)
108 #define CC_DSTIA		(1 << 24)
109 #define CC_SRCBRSTLEN_SHFT	4
110 #define CC_DSTBRSTLEN_SHFT	18
111 #define CC_SRCBRSTSIZE_SHFT	1
112 #define CC_DSTBRSTSIZE_SHFT	15
113 #define CC_SRCCCTRL_SHFT	11
114 #define CC_SRCCCTRL_MASK	0x7
115 #define CC_DSTCCTRL_SHFT	25
116 #define CC_DRCCCTRL_MASK	0x7
117 #define CC_SWAP_SHFT		28
118 
119 #define _LC0			0x40c
120 #define LC0(n)			(_LC0 + (n)*0x20)
121 
122 #define _LC1			0x410
123 #define LC1(n)			(_LC1 + (n)*0x20)
124 
125 #define DBGSTATUS		0xd00
126 #define DBG_BUSY		(1 << 0)
127 
128 #define DBGCMD			0xd04
129 #define DBGINST0		0xd08
130 #define DBGINST1		0xd0c
131 
132 #define CR0			0xe00
133 #define CR1			0xe04
134 #define CR2			0xe08
135 #define CR3			0xe0c
136 #define CR4			0xe10
137 #define CRD			0xe14
138 
139 #define PERIPH_ID		0xfe0
140 #define PERIPH_REV_SHIFT	20
141 #define PERIPH_REV_MASK		0xf
142 #define PERIPH_REV_R0P0		0
143 #define PERIPH_REV_R1P0		1
144 #define PERIPH_REV_R1P1		2
145 
146 #define CR0_PERIPH_REQ_SET	(1 << 0)
147 #define CR0_BOOT_EN_SET		(1 << 1)
148 #define CR0_BOOT_MAN_NS		(1 << 2)
149 #define CR0_NUM_CHANS_SHIFT	4
150 #define CR0_NUM_CHANS_MASK	0x7
151 #define CR0_NUM_PERIPH_SHIFT	12
152 #define CR0_NUM_PERIPH_MASK	0x1f
153 #define CR0_NUM_EVENTS_SHIFT	17
154 #define CR0_NUM_EVENTS_MASK	0x1f
155 
156 #define CR1_ICACHE_LEN_SHIFT	0
157 #define CR1_ICACHE_LEN_MASK	0x7
158 #define CR1_NUM_ICACHELINES_SHIFT	4
159 #define CR1_NUM_ICACHELINES_MASK	0xf
160 
161 #define CRD_DATA_WIDTH_SHIFT	0
162 #define CRD_DATA_WIDTH_MASK	0x7
163 #define CRD_WR_CAP_SHIFT	4
164 #define CRD_WR_CAP_MASK		0x7
165 #define CRD_WR_Q_DEP_SHIFT	8
166 #define CRD_WR_Q_DEP_MASK	0xf
167 #define CRD_RD_CAP_SHIFT	12
168 #define CRD_RD_CAP_MASK		0x7
169 #define CRD_RD_Q_DEP_SHIFT	16
170 #define CRD_RD_Q_DEP_MASK	0xf
171 #define CRD_DATA_BUFF_SHIFT	20
172 #define CRD_DATA_BUFF_MASK	0x3ff
173 
174 #define PART			0x330
175 #define DESIGNER		0x41
176 #define REVISION		0x0
177 #define INTEG_CFG		0x0
178 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
179 
180 #define PL330_STATE_STOPPED		(1 << 0)
181 #define PL330_STATE_EXECUTING		(1 << 1)
182 #define PL330_STATE_WFE			(1 << 2)
183 #define PL330_STATE_FAULTING		(1 << 3)
184 #define PL330_STATE_COMPLETING		(1 << 4)
185 #define PL330_STATE_WFP			(1 << 5)
186 #define PL330_STATE_KILLING		(1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
188 #define PL330_STATE_CACHEMISS		(1 << 8)
189 #define PL330_STATE_UPDTPC		(1 << 9)
190 #define PL330_STATE_ATBARRIER		(1 << 10)
191 #define PL330_STATE_QUEUEBUSY		(1 << 11)
192 #define PL330_STATE_INVALID		(1 << 15)
193 
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
196 
197 #define CMD_DMAADDH		0x54
198 #define CMD_DMAEND		0x00
199 #define CMD_DMAFLUSHP		0x35
200 #define CMD_DMAGO		0xa0
201 #define CMD_DMALD		0x04
202 #define CMD_DMALDP		0x25
203 #define CMD_DMALP		0x20
204 #define CMD_DMALPEND		0x28
205 #define CMD_DMAKILL		0x01
206 #define CMD_DMAMOV		0xbc
207 #define CMD_DMANOP		0x18
208 #define CMD_DMARMB		0x12
209 #define CMD_DMASEV		0x34
210 #define CMD_DMAST		0x08
211 #define CMD_DMASTP		0x29
212 #define CMD_DMASTZ		0x0c
213 #define CMD_DMAWFE		0x36
214 #define CMD_DMAWFP		0x30
215 #define CMD_DMAWMB		0x13
216 
217 #define SZ_DMAADDH		3
218 #define SZ_DMAEND		1
219 #define SZ_DMAFLUSHP		2
220 #define SZ_DMALD		1
221 #define SZ_DMALDP		2
222 #define SZ_DMALP		2
223 #define SZ_DMALPEND		2
224 #define SZ_DMAKILL		1
225 #define SZ_DMAMOV		6
226 #define SZ_DMANOP		1
227 #define SZ_DMARMB		1
228 #define SZ_DMASEV		2
229 #define SZ_DMAST		1
230 #define SZ_DMASTP		2
231 #define SZ_DMASTZ		1
232 #define SZ_DMAWFE		2
233 #define SZ_DMAWFP		2
234 #define SZ_DMAWMB		1
235 #define SZ_DMAGO		6
236 
237 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239 
240 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242 
243 /*
244  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
245  * at 1byte/burst for P<->M and M<->M respectively.
246  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
247  * should be enough for P<->M and M<->M respectively.
248  */
249 #define MCODE_BUFF_PER_REQ	256
250 
251 /* Use this _only_ to wait on transient states */
252 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
253 
254 #ifdef PL330_DEBUG_MCGEN
255 static unsigned cmd_line;
256 #define PL330_DBGCMD_DUMP(off, x...)	do { \
257 						printk("%x:", cmd_line); \
258 						printk(x); \
259 						cmd_line += off; \
260 					} while (0)
261 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
262 #else
263 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
264 #define PL330_DBGMC_START(addr)		do {} while (0)
265 #endif
266 
267 /* The number of default descriptors */
268 
269 #define NR_DEFAULT_DESC	16
270 
271 /* Delay for runtime PM autosuspend, ms */
272 #define PL330_AUTOSUSPEND_DELAY 20
273 
274 /* Populated by the PL330 core driver for DMA API driver's info */
275 struct pl330_config {
276 	u32	periph_id;
277 #define DMAC_MODE_NS	(1 << 0)
278 	unsigned int	mode;
279 	unsigned int	data_bus_width:10; /* In number of bits */
280 	unsigned int	data_buf_dep:11;
281 	unsigned int	num_chan:4;
282 	unsigned int	num_peri:6;
283 	u32		peri_ns;
284 	unsigned int	num_events:6;
285 	u32		irq_ns;
286 };
287 
288 /**
289  * Request Configuration.
290  * The PL330 core does not modify this and uses the last
291  * working configuration if the request doesn't provide any.
292  *
293  * The Client may want to provide this info only for the
294  * first request and a request with new settings.
295  */
296 struct pl330_reqcfg {
297 	/* Address Incrementing */
298 	unsigned dst_inc:1;
299 	unsigned src_inc:1;
300 
301 	/*
302 	 * For now, the SRC & DST protection levels
303 	 * and burst size/length are assumed same.
304 	 */
305 	bool nonsecure;
306 	bool privileged;
307 	bool insnaccess;
308 	unsigned brst_len:5;
309 	unsigned brst_size:3; /* in power of 2 */
310 
311 	enum pl330_cachectrl dcctl;
312 	enum pl330_cachectrl scctl;
313 	enum pl330_byteswap swap;
314 	struct pl330_config *pcfg;
315 };
316 
317 /*
318  * One cycle of DMAC operation.
319  * There may be more than one xfer in a request.
320  */
321 struct pl330_xfer {
322 	u32 src_addr;
323 	u32 dst_addr;
324 	/* Size to xfer */
325 	u32 bytes;
326 };
327 
328 /* The xfer callbacks are made with one of these arguments. */
329 enum pl330_op_err {
330 	/* The all xfers in the request were success. */
331 	PL330_ERR_NONE,
332 	/* If req aborted due to global error. */
333 	PL330_ERR_ABORT,
334 	/* If req failed due to problem with Channel. */
335 	PL330_ERR_FAIL,
336 };
337 
338 enum dmamov_dst {
339 	SAR = 0,
340 	CCR,
341 	DAR,
342 };
343 
344 enum pl330_dst {
345 	SRC = 0,
346 	DST,
347 };
348 
349 enum pl330_cond {
350 	SINGLE,
351 	BURST,
352 	ALWAYS,
353 };
354 
355 struct dma_pl330_desc;
356 
357 struct _pl330_req {
358 	u32 mc_bus;
359 	void *mc_cpu;
360 	struct dma_pl330_desc *desc;
361 };
362 
363 /* ToBeDone for tasklet */
364 struct _pl330_tbd {
365 	bool reset_dmac;
366 	bool reset_mngr;
367 	u8 reset_chan;
368 };
369 
370 /* A DMAC Thread */
371 struct pl330_thread {
372 	u8 id;
373 	int ev;
374 	/* If the channel is not yet acquired by any client */
375 	bool free;
376 	/* Parent DMAC */
377 	struct pl330_dmac *dmac;
378 	/* Only two at a time */
379 	struct _pl330_req req[2];
380 	/* Index of the last enqueued request */
381 	unsigned lstenq;
382 	/* Index of the last submitted request or -1 if the DMA is stopped */
383 	int req_running;
384 };
385 
386 enum pl330_dmac_state {
387 	UNINIT,
388 	INIT,
389 	DYING,
390 };
391 
392 enum desc_status {
393 	/* In the DMAC pool */
394 	FREE,
395 	/*
396 	 * Allocated to some channel during prep_xxx
397 	 * Also may be sitting on the work_list.
398 	 */
399 	PREP,
400 	/*
401 	 * Sitting on the work_list and already submitted
402 	 * to the PL330 core. Not more than two descriptors
403 	 * of a channel can be BUSY at any time.
404 	 */
405 	BUSY,
406 	/*
407 	 * Sitting on the channel work_list but xfer done
408 	 * by PL330 core
409 	 */
410 	DONE,
411 };
412 
413 struct dma_pl330_chan {
414 	/* Schedule desc completion */
415 	struct tasklet_struct task;
416 
417 	/* DMA-Engine Channel */
418 	struct dma_chan chan;
419 
420 	/* List of submitted descriptors */
421 	struct list_head submitted_list;
422 	/* List of issued descriptors */
423 	struct list_head work_list;
424 	/* List of completed descriptors */
425 	struct list_head completed_list;
426 
427 	/* Pointer to the DMAC that manages this channel,
428 	 * NULL if the channel is available to be acquired.
429 	 * As the parent, this DMAC also provides descriptors
430 	 * to the channel.
431 	 */
432 	struct pl330_dmac *dmac;
433 
434 	/* To protect channel manipulation */
435 	spinlock_t lock;
436 
437 	/*
438 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
439 	 * available.
440 	 */
441 	struct pl330_thread *thread;
442 
443 	/* For D-to-M and M-to-D channels */
444 	int burst_sz; /* the peripheral fifo width */
445 	int burst_len; /* the number of burst */
446 	phys_addr_t fifo_addr;
447 	/* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
448 	dma_addr_t fifo_dma;
449 	enum dma_data_direction dir;
450 
451 	/* for cyclic capability */
452 	bool cyclic;
453 
454 	/* for runtime pm tracking */
455 	bool active;
456 };
457 
458 struct pl330_dmac {
459 	/* DMA-Engine Device */
460 	struct dma_device ddma;
461 
462 	/* Holds info about sg limitations */
463 	struct device_dma_parameters dma_parms;
464 
465 	/* Pool of descriptors available for the DMAC's channels */
466 	struct list_head desc_pool;
467 	/* To protect desc_pool manipulation */
468 	spinlock_t pool_lock;
469 
470 	/* Size of MicroCode buffers for each channel. */
471 	unsigned mcbufsz;
472 	/* ioremap'ed address of PL330 registers. */
473 	void __iomem	*base;
474 	/* Populated by the PL330 core driver during pl330_add */
475 	struct pl330_config	pcfg;
476 
477 	spinlock_t		lock;
478 	/* Maximum possible events/irqs */
479 	int			events[32];
480 	/* BUS address of MicroCode buffer */
481 	dma_addr_t		mcode_bus;
482 	/* CPU address of MicroCode buffer */
483 	void			*mcode_cpu;
484 	/* List of all Channel threads */
485 	struct pl330_thread	*channels;
486 	/* Pointer to the MANAGER thread */
487 	struct pl330_thread	*manager;
488 	/* To handle bad news in interrupt */
489 	struct tasklet_struct	tasks;
490 	struct _pl330_tbd	dmac_tbd;
491 	/* State of DMAC operation */
492 	enum pl330_dmac_state	state;
493 	/* Holds list of reqs with due callbacks */
494 	struct list_head        req_done;
495 
496 	/* Peripheral channels connected to this DMAC */
497 	unsigned int num_peripherals;
498 	struct dma_pl330_chan *peripherals; /* keep at end */
499 	int quirks;
500 };
501 
502 static struct pl330_of_quirks {
503 	char *quirk;
504 	int id;
505 } of_quirks[] = {
506 	{
507 		.quirk = "arm,pl330-broken-no-flushp",
508 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
509 	}
510 };
511 
512 struct dma_pl330_desc {
513 	/* To attach to a queue as child */
514 	struct list_head node;
515 
516 	/* Descriptor for the DMA Engine API */
517 	struct dma_async_tx_descriptor txd;
518 
519 	/* Xfer for PL330 core */
520 	struct pl330_xfer px;
521 
522 	struct pl330_reqcfg rqcfg;
523 
524 	enum desc_status status;
525 
526 	int bytes_requested;
527 	bool last;
528 
529 	/* The channel which currently holds this desc */
530 	struct dma_pl330_chan *pchan;
531 
532 	enum dma_transfer_direction rqtype;
533 	/* Index of peripheral for the xfer. */
534 	unsigned peri:5;
535 	/* Hook to attach to DMAC's list of reqs with due callback */
536 	struct list_head rqd;
537 };
538 
539 struct _xfer_spec {
540 	u32 ccr;
541 	struct dma_pl330_desc *desc;
542 };
543 
544 static inline bool _queue_full(struct pl330_thread *thrd)
545 {
546 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
547 }
548 
549 static inline bool is_manager(struct pl330_thread *thrd)
550 {
551 	return thrd->dmac->manager == thrd;
552 }
553 
554 /* If manager of the thread is in Non-Secure mode */
555 static inline bool _manager_ns(struct pl330_thread *thrd)
556 {
557 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
558 }
559 
560 static inline u32 get_revision(u32 periph_id)
561 {
562 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
563 }
564 
565 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
566 {
567 	if (dry_run)
568 		return SZ_DMAEND;
569 
570 	buf[0] = CMD_DMAEND;
571 
572 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
573 
574 	return SZ_DMAEND;
575 }
576 
577 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
578 {
579 	if (dry_run)
580 		return SZ_DMAFLUSHP;
581 
582 	buf[0] = CMD_DMAFLUSHP;
583 
584 	peri &= 0x1f;
585 	peri <<= 3;
586 	buf[1] = peri;
587 
588 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
589 
590 	return SZ_DMAFLUSHP;
591 }
592 
593 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
594 {
595 	if (dry_run)
596 		return SZ_DMALD;
597 
598 	buf[0] = CMD_DMALD;
599 
600 	if (cond == SINGLE)
601 		buf[0] |= (0 << 1) | (1 << 0);
602 	else if (cond == BURST)
603 		buf[0] |= (1 << 1) | (1 << 0);
604 
605 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
606 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
607 
608 	return SZ_DMALD;
609 }
610 
611 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
612 		enum pl330_cond cond, u8 peri)
613 {
614 	if (dry_run)
615 		return SZ_DMALDP;
616 
617 	buf[0] = CMD_DMALDP;
618 
619 	if (cond == BURST)
620 		buf[0] |= (1 << 1);
621 
622 	peri &= 0x1f;
623 	peri <<= 3;
624 	buf[1] = peri;
625 
626 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
627 		cond == SINGLE ? 'S' : 'B', peri >> 3);
628 
629 	return SZ_DMALDP;
630 }
631 
632 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
633 		unsigned loop, u8 cnt)
634 {
635 	if (dry_run)
636 		return SZ_DMALP;
637 
638 	buf[0] = CMD_DMALP;
639 
640 	if (loop)
641 		buf[0] |= (1 << 1);
642 
643 	cnt--; /* DMAC increments by 1 internally */
644 	buf[1] = cnt;
645 
646 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
647 
648 	return SZ_DMALP;
649 }
650 
651 struct _arg_LPEND {
652 	enum pl330_cond cond;
653 	bool forever;
654 	unsigned loop;
655 	u8 bjump;
656 };
657 
658 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
659 		const struct _arg_LPEND *arg)
660 {
661 	enum pl330_cond cond = arg->cond;
662 	bool forever = arg->forever;
663 	unsigned loop = arg->loop;
664 	u8 bjump = arg->bjump;
665 
666 	if (dry_run)
667 		return SZ_DMALPEND;
668 
669 	buf[0] = CMD_DMALPEND;
670 
671 	if (loop)
672 		buf[0] |= (1 << 2);
673 
674 	if (!forever)
675 		buf[0] |= (1 << 4);
676 
677 	if (cond == SINGLE)
678 		buf[0] |= (0 << 1) | (1 << 0);
679 	else if (cond == BURST)
680 		buf[0] |= (1 << 1) | (1 << 0);
681 
682 	buf[1] = bjump;
683 
684 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
685 			forever ? "FE" : "END",
686 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
687 			loop ? '1' : '0',
688 			bjump);
689 
690 	return SZ_DMALPEND;
691 }
692 
693 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
694 {
695 	if (dry_run)
696 		return SZ_DMAKILL;
697 
698 	buf[0] = CMD_DMAKILL;
699 
700 	return SZ_DMAKILL;
701 }
702 
703 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
704 		enum dmamov_dst dst, u32 val)
705 {
706 	if (dry_run)
707 		return SZ_DMAMOV;
708 
709 	buf[0] = CMD_DMAMOV;
710 	buf[1] = dst;
711 	buf[2] = val;
712 	buf[3] = val >> 8;
713 	buf[4] = val >> 16;
714 	buf[5] = val >> 24;
715 
716 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
717 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
718 
719 	return SZ_DMAMOV;
720 }
721 
722 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
723 {
724 	if (dry_run)
725 		return SZ_DMARMB;
726 
727 	buf[0] = CMD_DMARMB;
728 
729 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
730 
731 	return SZ_DMARMB;
732 }
733 
734 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
735 {
736 	if (dry_run)
737 		return SZ_DMASEV;
738 
739 	buf[0] = CMD_DMASEV;
740 
741 	ev &= 0x1f;
742 	ev <<= 3;
743 	buf[1] = ev;
744 
745 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
746 
747 	return SZ_DMASEV;
748 }
749 
750 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
751 {
752 	if (dry_run)
753 		return SZ_DMAST;
754 
755 	buf[0] = CMD_DMAST;
756 
757 	if (cond == SINGLE)
758 		buf[0] |= (0 << 1) | (1 << 0);
759 	else if (cond == BURST)
760 		buf[0] |= (1 << 1) | (1 << 0);
761 
762 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
763 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
764 
765 	return SZ_DMAST;
766 }
767 
768 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
769 		enum pl330_cond cond, u8 peri)
770 {
771 	if (dry_run)
772 		return SZ_DMASTP;
773 
774 	buf[0] = CMD_DMASTP;
775 
776 	if (cond == BURST)
777 		buf[0] |= (1 << 1);
778 
779 	peri &= 0x1f;
780 	peri <<= 3;
781 	buf[1] = peri;
782 
783 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
784 		cond == SINGLE ? 'S' : 'B', peri >> 3);
785 
786 	return SZ_DMASTP;
787 }
788 
789 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
790 		enum pl330_cond cond, u8 peri)
791 {
792 	if (dry_run)
793 		return SZ_DMAWFP;
794 
795 	buf[0] = CMD_DMAWFP;
796 
797 	if (cond == SINGLE)
798 		buf[0] |= (0 << 1) | (0 << 0);
799 	else if (cond == BURST)
800 		buf[0] |= (1 << 1) | (0 << 0);
801 	else
802 		buf[0] |= (0 << 1) | (1 << 0);
803 
804 	peri &= 0x1f;
805 	peri <<= 3;
806 	buf[1] = peri;
807 
808 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
809 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
810 
811 	return SZ_DMAWFP;
812 }
813 
814 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
815 {
816 	if (dry_run)
817 		return SZ_DMAWMB;
818 
819 	buf[0] = CMD_DMAWMB;
820 
821 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
822 
823 	return SZ_DMAWMB;
824 }
825 
826 struct _arg_GO {
827 	u8 chan;
828 	u32 addr;
829 	unsigned ns;
830 };
831 
832 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
833 		const struct _arg_GO *arg)
834 {
835 	u8 chan = arg->chan;
836 	u32 addr = arg->addr;
837 	unsigned ns = arg->ns;
838 
839 	if (dry_run)
840 		return SZ_DMAGO;
841 
842 	buf[0] = CMD_DMAGO;
843 	buf[0] |= (ns << 1);
844 	buf[1] = chan & 0x7;
845 	buf[2] = addr;
846 	buf[3] = addr >> 8;
847 	buf[4] = addr >> 16;
848 	buf[5] = addr >> 24;
849 
850 	return SZ_DMAGO;
851 }
852 
853 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
854 
855 /* Returns Time-Out */
856 static bool _until_dmac_idle(struct pl330_thread *thrd)
857 {
858 	void __iomem *regs = thrd->dmac->base;
859 	unsigned long loops = msecs_to_loops(5);
860 
861 	do {
862 		/* Until Manager is Idle */
863 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
864 			break;
865 
866 		cpu_relax();
867 	} while (--loops);
868 
869 	if (!loops)
870 		return true;
871 
872 	return false;
873 }
874 
875 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
876 		u8 insn[], bool as_manager)
877 {
878 	void __iomem *regs = thrd->dmac->base;
879 	u32 val;
880 
881 	val = (insn[0] << 16) | (insn[1] << 24);
882 	if (!as_manager) {
883 		val |= (1 << 0);
884 		val |= (thrd->id << 8); /* Channel Number */
885 	}
886 	writel(val, regs + DBGINST0);
887 
888 	val = le32_to_cpu(*((__le32 *)&insn[2]));
889 	writel(val, regs + DBGINST1);
890 
891 	/* If timed out due to halted state-machine */
892 	if (_until_dmac_idle(thrd)) {
893 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
894 		return;
895 	}
896 
897 	/* Get going */
898 	writel(0, regs + DBGCMD);
899 }
900 
901 static inline u32 _state(struct pl330_thread *thrd)
902 {
903 	void __iomem *regs = thrd->dmac->base;
904 	u32 val;
905 
906 	if (is_manager(thrd))
907 		val = readl(regs + DS) & 0xf;
908 	else
909 		val = readl(regs + CS(thrd->id)) & 0xf;
910 
911 	switch (val) {
912 	case DS_ST_STOP:
913 		return PL330_STATE_STOPPED;
914 	case DS_ST_EXEC:
915 		return PL330_STATE_EXECUTING;
916 	case DS_ST_CMISS:
917 		return PL330_STATE_CACHEMISS;
918 	case DS_ST_UPDTPC:
919 		return PL330_STATE_UPDTPC;
920 	case DS_ST_WFE:
921 		return PL330_STATE_WFE;
922 	case DS_ST_FAULT:
923 		return PL330_STATE_FAULTING;
924 	case DS_ST_ATBRR:
925 		if (is_manager(thrd))
926 			return PL330_STATE_INVALID;
927 		else
928 			return PL330_STATE_ATBARRIER;
929 	case DS_ST_QBUSY:
930 		if (is_manager(thrd))
931 			return PL330_STATE_INVALID;
932 		else
933 			return PL330_STATE_QUEUEBUSY;
934 	case DS_ST_WFP:
935 		if (is_manager(thrd))
936 			return PL330_STATE_INVALID;
937 		else
938 			return PL330_STATE_WFP;
939 	case DS_ST_KILL:
940 		if (is_manager(thrd))
941 			return PL330_STATE_INVALID;
942 		else
943 			return PL330_STATE_KILLING;
944 	case DS_ST_CMPLT:
945 		if (is_manager(thrd))
946 			return PL330_STATE_INVALID;
947 		else
948 			return PL330_STATE_COMPLETING;
949 	case DS_ST_FLTCMP:
950 		if (is_manager(thrd))
951 			return PL330_STATE_INVALID;
952 		else
953 			return PL330_STATE_FAULT_COMPLETING;
954 	default:
955 		return PL330_STATE_INVALID;
956 	}
957 }
958 
959 static void _stop(struct pl330_thread *thrd)
960 {
961 	void __iomem *regs = thrd->dmac->base;
962 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
963 
964 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
965 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
966 
967 	/* Return if nothing needs to be done */
968 	if (_state(thrd) == PL330_STATE_COMPLETING
969 		  || _state(thrd) == PL330_STATE_KILLING
970 		  || _state(thrd) == PL330_STATE_STOPPED)
971 		return;
972 
973 	_emit_KILL(0, insn);
974 
975 	/* Stop generating interrupts for SEV */
976 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
977 
978 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
979 }
980 
981 /* Start doing req 'idx' of thread 'thrd' */
982 static bool _trigger(struct pl330_thread *thrd)
983 {
984 	void __iomem *regs = thrd->dmac->base;
985 	struct _pl330_req *req;
986 	struct dma_pl330_desc *desc;
987 	struct _arg_GO go;
988 	unsigned ns;
989 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
990 	int idx;
991 
992 	/* Return if already ACTIVE */
993 	if (_state(thrd) != PL330_STATE_STOPPED)
994 		return true;
995 
996 	idx = 1 - thrd->lstenq;
997 	if (thrd->req[idx].desc != NULL) {
998 		req = &thrd->req[idx];
999 	} else {
1000 		idx = thrd->lstenq;
1001 		if (thrd->req[idx].desc != NULL)
1002 			req = &thrd->req[idx];
1003 		else
1004 			req = NULL;
1005 	}
1006 
1007 	/* Return if no request */
1008 	if (!req)
1009 		return true;
1010 
1011 	/* Return if req is running */
1012 	if (idx == thrd->req_running)
1013 		return true;
1014 
1015 	desc = req->desc;
1016 
1017 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1018 
1019 	/* See 'Abort Sources' point-4 at Page 2-25 */
1020 	if (_manager_ns(thrd) && !ns)
1021 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1022 			__func__, __LINE__);
1023 
1024 	go.chan = thrd->id;
1025 	go.addr = req->mc_bus;
1026 	go.ns = ns;
1027 	_emit_GO(0, insn, &go);
1028 
1029 	/* Set to generate interrupts for SEV */
1030 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1031 
1032 	/* Only manager can execute GO */
1033 	_execute_DBGINSN(thrd, insn, true);
1034 
1035 	thrd->req_running = idx;
1036 
1037 	return true;
1038 }
1039 
1040 static bool _start(struct pl330_thread *thrd)
1041 {
1042 	switch (_state(thrd)) {
1043 	case PL330_STATE_FAULT_COMPLETING:
1044 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1045 
1046 		if (_state(thrd) == PL330_STATE_KILLING)
1047 			UNTIL(thrd, PL330_STATE_STOPPED)
1048 
1049 	case PL330_STATE_FAULTING:
1050 		_stop(thrd);
1051 
1052 	case PL330_STATE_KILLING:
1053 	case PL330_STATE_COMPLETING:
1054 		UNTIL(thrd, PL330_STATE_STOPPED)
1055 
1056 	case PL330_STATE_STOPPED:
1057 		return _trigger(thrd);
1058 
1059 	case PL330_STATE_WFP:
1060 	case PL330_STATE_QUEUEBUSY:
1061 	case PL330_STATE_ATBARRIER:
1062 	case PL330_STATE_UPDTPC:
1063 	case PL330_STATE_CACHEMISS:
1064 	case PL330_STATE_EXECUTING:
1065 		return true;
1066 
1067 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1068 	default:
1069 		return false;
1070 	}
1071 }
1072 
1073 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1074 		const struct _xfer_spec *pxs, int cyc)
1075 {
1076 	int off = 0;
1077 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1078 
1079 	/* check lock-up free version */
1080 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1081 		while (cyc--) {
1082 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1083 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1084 		}
1085 	} else {
1086 		while (cyc--) {
1087 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1088 			off += _emit_RMB(dry_run, &buf[off]);
1089 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1090 			off += _emit_WMB(dry_run, &buf[off]);
1091 		}
1092 	}
1093 
1094 	return off;
1095 }
1096 
1097 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run,
1098 				 u8 buf[], const struct _xfer_spec *pxs,
1099 				 int cyc)
1100 {
1101 	int off = 0;
1102 	enum pl330_cond cond;
1103 
1104 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1105 		cond = BURST;
1106 	else
1107 		cond = SINGLE;
1108 
1109 	while (cyc--) {
1110 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1111 		off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri);
1112 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1113 
1114 		if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1115 			off += _emit_FLUSHP(dry_run, &buf[off],
1116 					    pxs->desc->peri);
1117 	}
1118 
1119 	return off;
1120 }
1121 
1122 static inline int _ldst_memtodev(struct pl330_dmac *pl330,
1123 				 unsigned dry_run, u8 buf[],
1124 				 const struct _xfer_spec *pxs, int cyc)
1125 {
1126 	int off = 0;
1127 	enum pl330_cond cond;
1128 
1129 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1130 		cond = BURST;
1131 	else
1132 		cond = SINGLE;
1133 
1134 	while (cyc--) {
1135 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1136 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1137 		off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri);
1138 
1139 		if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1140 			off += _emit_FLUSHP(dry_run, &buf[off],
1141 					    pxs->desc->peri);
1142 	}
1143 
1144 	return off;
1145 }
1146 
1147 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1148 		const struct _xfer_spec *pxs, int cyc)
1149 {
1150 	int off = 0;
1151 
1152 	switch (pxs->desc->rqtype) {
1153 	case DMA_MEM_TO_DEV:
1154 		off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc);
1155 		break;
1156 	case DMA_DEV_TO_MEM:
1157 		off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc);
1158 		break;
1159 	case DMA_MEM_TO_MEM:
1160 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1161 		break;
1162 	default:
1163 		off += 0x40000000; /* Scare off the Client */
1164 		break;
1165 	}
1166 
1167 	return off;
1168 }
1169 
1170 /* Returns bytes consumed and updates bursts */
1171 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1172 		unsigned long *bursts, const struct _xfer_spec *pxs)
1173 {
1174 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1175 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1176 	struct _arg_LPEND lpend;
1177 
1178 	if (*bursts == 1)
1179 		return _bursts(pl330, dry_run, buf, pxs, 1);
1180 
1181 	/* Max iterations possible in DMALP is 256 */
1182 	if (*bursts >= 256*256) {
1183 		lcnt1 = 256;
1184 		lcnt0 = 256;
1185 		cyc = *bursts / lcnt1 / lcnt0;
1186 	} else if (*bursts > 256) {
1187 		lcnt1 = 256;
1188 		lcnt0 = *bursts / lcnt1;
1189 		cyc = 1;
1190 	} else {
1191 		lcnt1 = *bursts;
1192 		lcnt0 = 0;
1193 		cyc = 1;
1194 	}
1195 
1196 	szlp = _emit_LP(1, buf, 0, 0);
1197 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1198 
1199 	lpend.cond = ALWAYS;
1200 	lpend.forever = false;
1201 	lpend.loop = 0;
1202 	lpend.bjump = 0;
1203 	szlpend = _emit_LPEND(1, buf, &lpend);
1204 
1205 	if (lcnt0) {
1206 		szlp *= 2;
1207 		szlpend *= 2;
1208 	}
1209 
1210 	/*
1211 	 * Max bursts that we can unroll due to limit on the
1212 	 * size of backward jump that can be encoded in DMALPEND
1213 	 * which is 8-bits and hence 255
1214 	 */
1215 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1216 
1217 	cyc = (cycmax < cyc) ? cycmax : cyc;
1218 
1219 	off = 0;
1220 
1221 	if (lcnt0) {
1222 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1223 		ljmp0 = off;
1224 	}
1225 
1226 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1227 	ljmp1 = off;
1228 
1229 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1230 
1231 	lpend.cond = ALWAYS;
1232 	lpend.forever = false;
1233 	lpend.loop = 1;
1234 	lpend.bjump = off - ljmp1;
1235 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1236 
1237 	if (lcnt0) {
1238 		lpend.cond = ALWAYS;
1239 		lpend.forever = false;
1240 		lpend.loop = 0;
1241 		lpend.bjump = off - ljmp0;
1242 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1243 	}
1244 
1245 	*bursts = lcnt1 * cyc;
1246 	if (lcnt0)
1247 		*bursts *= lcnt0;
1248 
1249 	return off;
1250 }
1251 
1252 static inline int _setup_loops(struct pl330_dmac *pl330,
1253 			       unsigned dry_run, u8 buf[],
1254 			       const struct _xfer_spec *pxs)
1255 {
1256 	struct pl330_xfer *x = &pxs->desc->px;
1257 	u32 ccr = pxs->ccr;
1258 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1259 	int off = 0;
1260 
1261 	while (bursts) {
1262 		c = bursts;
1263 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1264 		bursts -= c;
1265 	}
1266 
1267 	return off;
1268 }
1269 
1270 static inline int _setup_xfer(struct pl330_dmac *pl330,
1271 			      unsigned dry_run, u8 buf[],
1272 			      const struct _xfer_spec *pxs)
1273 {
1274 	struct pl330_xfer *x = &pxs->desc->px;
1275 	int off = 0;
1276 
1277 	/* DMAMOV SAR, x->src_addr */
1278 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1279 	/* DMAMOV DAR, x->dst_addr */
1280 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1281 
1282 	/* Setup Loop(s) */
1283 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1284 
1285 	return off;
1286 }
1287 
1288 /*
1289  * A req is a sequence of one or more xfer units.
1290  * Returns the number of bytes taken to setup the MC for the req.
1291  */
1292 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1293 		      struct pl330_thread *thrd, unsigned index,
1294 		      struct _xfer_spec *pxs)
1295 {
1296 	struct _pl330_req *req = &thrd->req[index];
1297 	struct pl330_xfer *x;
1298 	u8 *buf = req->mc_cpu;
1299 	int off = 0;
1300 
1301 	PL330_DBGMC_START(req->mc_bus);
1302 
1303 	/* DMAMOV CCR, ccr */
1304 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1305 
1306 	x = &pxs->desc->px;
1307 	/* Error if xfer length is not aligned at burst size */
1308 	if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1309 		return -EINVAL;
1310 
1311 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1312 
1313 	/* DMASEV peripheral/event */
1314 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1315 	/* DMAEND */
1316 	off += _emit_END(dry_run, &buf[off]);
1317 
1318 	return off;
1319 }
1320 
1321 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1322 {
1323 	u32 ccr = 0;
1324 
1325 	if (rqc->src_inc)
1326 		ccr |= CC_SRCINC;
1327 
1328 	if (rqc->dst_inc)
1329 		ccr |= CC_DSTINC;
1330 
1331 	/* We set same protection levels for Src and DST for now */
1332 	if (rqc->privileged)
1333 		ccr |= CC_SRCPRI | CC_DSTPRI;
1334 	if (rqc->nonsecure)
1335 		ccr |= CC_SRCNS | CC_DSTNS;
1336 	if (rqc->insnaccess)
1337 		ccr |= CC_SRCIA | CC_DSTIA;
1338 
1339 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1340 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1341 
1342 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1343 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1344 
1345 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1346 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1347 
1348 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1349 
1350 	return ccr;
1351 }
1352 
1353 /*
1354  * Submit a list of xfers after which the client wants notification.
1355  * Client is not notified after each xfer unit, just once after all
1356  * xfer units are done or some error occurs.
1357  */
1358 static int pl330_submit_req(struct pl330_thread *thrd,
1359 	struct dma_pl330_desc *desc)
1360 {
1361 	struct pl330_dmac *pl330 = thrd->dmac;
1362 	struct _xfer_spec xs;
1363 	unsigned long flags;
1364 	unsigned idx;
1365 	u32 ccr;
1366 	int ret = 0;
1367 
1368 	if (pl330->state == DYING
1369 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1370 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1371 			__func__, __LINE__);
1372 		return -EAGAIN;
1373 	}
1374 
1375 	/* If request for non-existing peripheral */
1376 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1377 	    desc->peri >= pl330->pcfg.num_peri) {
1378 		dev_info(thrd->dmac->ddma.dev,
1379 				"%s:%d Invalid peripheral(%u)!\n",
1380 				__func__, __LINE__, desc->peri);
1381 		return -EINVAL;
1382 	}
1383 
1384 	spin_lock_irqsave(&pl330->lock, flags);
1385 
1386 	if (_queue_full(thrd)) {
1387 		ret = -EAGAIN;
1388 		goto xfer_exit;
1389 	}
1390 
1391 	/* Prefer Secure Channel */
1392 	if (!_manager_ns(thrd))
1393 		desc->rqcfg.nonsecure = 0;
1394 	else
1395 		desc->rqcfg.nonsecure = 1;
1396 
1397 	ccr = _prepare_ccr(&desc->rqcfg);
1398 
1399 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1400 
1401 	xs.ccr = ccr;
1402 	xs.desc = desc;
1403 
1404 	/* First dry run to check if req is acceptable */
1405 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1406 	if (ret < 0)
1407 		goto xfer_exit;
1408 
1409 	if (ret > pl330->mcbufsz / 2) {
1410 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1411 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1412 		ret = -ENOMEM;
1413 		goto xfer_exit;
1414 	}
1415 
1416 	/* Hook the request */
1417 	thrd->lstenq = idx;
1418 	thrd->req[idx].desc = desc;
1419 	_setup_req(pl330, 0, thrd, idx, &xs);
1420 
1421 	ret = 0;
1422 
1423 xfer_exit:
1424 	spin_unlock_irqrestore(&pl330->lock, flags);
1425 
1426 	return ret;
1427 }
1428 
1429 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1430 {
1431 	struct dma_pl330_chan *pch;
1432 	unsigned long flags;
1433 
1434 	if (!desc)
1435 		return;
1436 
1437 	pch = desc->pchan;
1438 
1439 	/* If desc aborted */
1440 	if (!pch)
1441 		return;
1442 
1443 	spin_lock_irqsave(&pch->lock, flags);
1444 
1445 	desc->status = DONE;
1446 
1447 	spin_unlock_irqrestore(&pch->lock, flags);
1448 
1449 	tasklet_schedule(&pch->task);
1450 }
1451 
1452 static void pl330_dotask(unsigned long data)
1453 {
1454 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1455 	unsigned long flags;
1456 	int i;
1457 
1458 	spin_lock_irqsave(&pl330->lock, flags);
1459 
1460 	/* The DMAC itself gone nuts */
1461 	if (pl330->dmac_tbd.reset_dmac) {
1462 		pl330->state = DYING;
1463 		/* Reset the manager too */
1464 		pl330->dmac_tbd.reset_mngr = true;
1465 		/* Clear the reset flag */
1466 		pl330->dmac_tbd.reset_dmac = false;
1467 	}
1468 
1469 	if (pl330->dmac_tbd.reset_mngr) {
1470 		_stop(pl330->manager);
1471 		/* Reset all channels */
1472 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1473 		/* Clear the reset flag */
1474 		pl330->dmac_tbd.reset_mngr = false;
1475 	}
1476 
1477 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1478 
1479 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1480 			struct pl330_thread *thrd = &pl330->channels[i];
1481 			void __iomem *regs = pl330->base;
1482 			enum pl330_op_err err;
1483 
1484 			_stop(thrd);
1485 
1486 			if (readl(regs + FSC) & (1 << thrd->id))
1487 				err = PL330_ERR_FAIL;
1488 			else
1489 				err = PL330_ERR_ABORT;
1490 
1491 			spin_unlock_irqrestore(&pl330->lock, flags);
1492 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1493 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1494 			spin_lock_irqsave(&pl330->lock, flags);
1495 
1496 			thrd->req[0].desc = NULL;
1497 			thrd->req[1].desc = NULL;
1498 			thrd->req_running = -1;
1499 
1500 			/* Clear the reset flag */
1501 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1502 		}
1503 	}
1504 
1505 	spin_unlock_irqrestore(&pl330->lock, flags);
1506 
1507 	return;
1508 }
1509 
1510 /* Returns 1 if state was updated, 0 otherwise */
1511 static int pl330_update(struct pl330_dmac *pl330)
1512 {
1513 	struct dma_pl330_desc *descdone, *tmp;
1514 	unsigned long flags;
1515 	void __iomem *regs;
1516 	u32 val;
1517 	int id, ev, ret = 0;
1518 
1519 	regs = pl330->base;
1520 
1521 	spin_lock_irqsave(&pl330->lock, flags);
1522 
1523 	val = readl(regs + FSM) & 0x1;
1524 	if (val)
1525 		pl330->dmac_tbd.reset_mngr = true;
1526 	else
1527 		pl330->dmac_tbd.reset_mngr = false;
1528 
1529 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1530 	pl330->dmac_tbd.reset_chan |= val;
1531 	if (val) {
1532 		int i = 0;
1533 		while (i < pl330->pcfg.num_chan) {
1534 			if (val & (1 << i)) {
1535 				dev_info(pl330->ddma.dev,
1536 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1537 						i, readl(regs + CS(i)),
1538 						readl(regs + FTC(i)));
1539 				_stop(&pl330->channels[i]);
1540 			}
1541 			i++;
1542 		}
1543 	}
1544 
1545 	/* Check which event happened i.e, thread notified */
1546 	val = readl(regs + ES);
1547 	if (pl330->pcfg.num_events < 32
1548 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1549 		pl330->dmac_tbd.reset_dmac = true;
1550 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1551 			__LINE__);
1552 		ret = 1;
1553 		goto updt_exit;
1554 	}
1555 
1556 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1557 		if (val & (1 << ev)) { /* Event occurred */
1558 			struct pl330_thread *thrd;
1559 			u32 inten = readl(regs + INTEN);
1560 			int active;
1561 
1562 			/* Clear the event */
1563 			if (inten & (1 << ev))
1564 				writel(1 << ev, regs + INTCLR);
1565 
1566 			ret = 1;
1567 
1568 			id = pl330->events[ev];
1569 
1570 			thrd = &pl330->channels[id];
1571 
1572 			active = thrd->req_running;
1573 			if (active == -1) /* Aborted */
1574 				continue;
1575 
1576 			/* Detach the req */
1577 			descdone = thrd->req[active].desc;
1578 			thrd->req[active].desc = NULL;
1579 
1580 			thrd->req_running = -1;
1581 
1582 			/* Get going again ASAP */
1583 			_start(thrd);
1584 
1585 			/* For now, just make a list of callbacks to be done */
1586 			list_add_tail(&descdone->rqd, &pl330->req_done);
1587 		}
1588 	}
1589 
1590 	/* Now that we are in no hurry, do the callbacks */
1591 	list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) {
1592 		list_del(&descdone->rqd);
1593 		spin_unlock_irqrestore(&pl330->lock, flags);
1594 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1595 		spin_lock_irqsave(&pl330->lock, flags);
1596 	}
1597 
1598 updt_exit:
1599 	spin_unlock_irqrestore(&pl330->lock, flags);
1600 
1601 	if (pl330->dmac_tbd.reset_dmac
1602 			|| pl330->dmac_tbd.reset_mngr
1603 			|| pl330->dmac_tbd.reset_chan) {
1604 		ret = 1;
1605 		tasklet_schedule(&pl330->tasks);
1606 	}
1607 
1608 	return ret;
1609 }
1610 
1611 /* Reserve an event */
1612 static inline int _alloc_event(struct pl330_thread *thrd)
1613 {
1614 	struct pl330_dmac *pl330 = thrd->dmac;
1615 	int ev;
1616 
1617 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1618 		if (pl330->events[ev] == -1) {
1619 			pl330->events[ev] = thrd->id;
1620 			return ev;
1621 		}
1622 
1623 	return -1;
1624 }
1625 
1626 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1627 {
1628 	return pl330->pcfg.irq_ns & (1 << i);
1629 }
1630 
1631 /* Upon success, returns IdentityToken for the
1632  * allocated channel, NULL otherwise.
1633  */
1634 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1635 {
1636 	struct pl330_thread *thrd = NULL;
1637 	int chans, i;
1638 
1639 	if (pl330->state == DYING)
1640 		return NULL;
1641 
1642 	chans = pl330->pcfg.num_chan;
1643 
1644 	for (i = 0; i < chans; i++) {
1645 		thrd = &pl330->channels[i];
1646 		if ((thrd->free) && (!_manager_ns(thrd) ||
1647 					_chan_ns(pl330, i))) {
1648 			thrd->ev = _alloc_event(thrd);
1649 			if (thrd->ev >= 0) {
1650 				thrd->free = false;
1651 				thrd->lstenq = 1;
1652 				thrd->req[0].desc = NULL;
1653 				thrd->req[1].desc = NULL;
1654 				thrd->req_running = -1;
1655 				break;
1656 			}
1657 		}
1658 		thrd = NULL;
1659 	}
1660 
1661 	return thrd;
1662 }
1663 
1664 /* Release an event */
1665 static inline void _free_event(struct pl330_thread *thrd, int ev)
1666 {
1667 	struct pl330_dmac *pl330 = thrd->dmac;
1668 
1669 	/* If the event is valid and was held by the thread */
1670 	if (ev >= 0 && ev < pl330->pcfg.num_events
1671 			&& pl330->events[ev] == thrd->id)
1672 		pl330->events[ev] = -1;
1673 }
1674 
1675 static void pl330_release_channel(struct pl330_thread *thrd)
1676 {
1677 	struct pl330_dmac *pl330;
1678 
1679 	if (!thrd || thrd->free)
1680 		return;
1681 
1682 	_stop(thrd);
1683 
1684 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1685 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1686 
1687 	pl330 = thrd->dmac;
1688 
1689 	_free_event(thrd, thrd->ev);
1690 	thrd->free = true;
1691 }
1692 
1693 /* Initialize the structure for PL330 configuration, that can be used
1694  * by the client driver the make best use of the DMAC
1695  */
1696 static void read_dmac_config(struct pl330_dmac *pl330)
1697 {
1698 	void __iomem *regs = pl330->base;
1699 	u32 val;
1700 
1701 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1702 	val &= CRD_DATA_WIDTH_MASK;
1703 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1704 
1705 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1706 	val &= CRD_DATA_BUFF_MASK;
1707 	pl330->pcfg.data_buf_dep = val + 1;
1708 
1709 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1710 	val &= CR0_NUM_CHANS_MASK;
1711 	val += 1;
1712 	pl330->pcfg.num_chan = val;
1713 
1714 	val = readl(regs + CR0);
1715 	if (val & CR0_PERIPH_REQ_SET) {
1716 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1717 		val += 1;
1718 		pl330->pcfg.num_peri = val;
1719 		pl330->pcfg.peri_ns = readl(regs + CR4);
1720 	} else {
1721 		pl330->pcfg.num_peri = 0;
1722 	}
1723 
1724 	val = readl(regs + CR0);
1725 	if (val & CR0_BOOT_MAN_NS)
1726 		pl330->pcfg.mode |= DMAC_MODE_NS;
1727 	else
1728 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1729 
1730 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1731 	val &= CR0_NUM_EVENTS_MASK;
1732 	val += 1;
1733 	pl330->pcfg.num_events = val;
1734 
1735 	pl330->pcfg.irq_ns = readl(regs + CR3);
1736 }
1737 
1738 static inline void _reset_thread(struct pl330_thread *thrd)
1739 {
1740 	struct pl330_dmac *pl330 = thrd->dmac;
1741 
1742 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1743 				+ (thrd->id * pl330->mcbufsz);
1744 	thrd->req[0].mc_bus = pl330->mcode_bus
1745 				+ (thrd->id * pl330->mcbufsz);
1746 	thrd->req[0].desc = NULL;
1747 
1748 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1749 				+ pl330->mcbufsz / 2;
1750 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1751 				+ pl330->mcbufsz / 2;
1752 	thrd->req[1].desc = NULL;
1753 
1754 	thrd->req_running = -1;
1755 }
1756 
1757 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1758 {
1759 	int chans = pl330->pcfg.num_chan;
1760 	struct pl330_thread *thrd;
1761 	int i;
1762 
1763 	/* Allocate 1 Manager and 'chans' Channel threads */
1764 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1765 					GFP_KERNEL);
1766 	if (!pl330->channels)
1767 		return -ENOMEM;
1768 
1769 	/* Init Channel threads */
1770 	for (i = 0; i < chans; i++) {
1771 		thrd = &pl330->channels[i];
1772 		thrd->id = i;
1773 		thrd->dmac = pl330;
1774 		_reset_thread(thrd);
1775 		thrd->free = true;
1776 	}
1777 
1778 	/* MANAGER is indexed at the end */
1779 	thrd = &pl330->channels[chans];
1780 	thrd->id = chans;
1781 	thrd->dmac = pl330;
1782 	thrd->free = false;
1783 	pl330->manager = thrd;
1784 
1785 	return 0;
1786 }
1787 
1788 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1789 {
1790 	int chans = pl330->pcfg.num_chan;
1791 	int ret;
1792 
1793 	/*
1794 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1795 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1796 	 */
1797 	pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1798 				chans * pl330->mcbufsz,
1799 				&pl330->mcode_bus, GFP_KERNEL,
1800 				DMA_ATTR_PRIVILEGED);
1801 	if (!pl330->mcode_cpu) {
1802 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1803 			__func__, __LINE__);
1804 		return -ENOMEM;
1805 	}
1806 
1807 	ret = dmac_alloc_threads(pl330);
1808 	if (ret) {
1809 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1810 			__func__, __LINE__);
1811 		dma_free_coherent(pl330->ddma.dev,
1812 				chans * pl330->mcbufsz,
1813 				pl330->mcode_cpu, pl330->mcode_bus);
1814 		return ret;
1815 	}
1816 
1817 	return 0;
1818 }
1819 
1820 static int pl330_add(struct pl330_dmac *pl330)
1821 {
1822 	int i, ret;
1823 
1824 	/* Check if we can handle this DMAC */
1825 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1826 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1827 			pl330->pcfg.periph_id);
1828 		return -EINVAL;
1829 	}
1830 
1831 	/* Read the configuration of the DMAC */
1832 	read_dmac_config(pl330);
1833 
1834 	if (pl330->pcfg.num_events == 0) {
1835 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1836 			__func__, __LINE__);
1837 		return -EINVAL;
1838 	}
1839 
1840 	spin_lock_init(&pl330->lock);
1841 
1842 	INIT_LIST_HEAD(&pl330->req_done);
1843 
1844 	/* Use default MC buffer size if not provided */
1845 	if (!pl330->mcbufsz)
1846 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1847 
1848 	/* Mark all events as free */
1849 	for (i = 0; i < pl330->pcfg.num_events; i++)
1850 		pl330->events[i] = -1;
1851 
1852 	/* Allocate resources needed by the DMAC */
1853 	ret = dmac_alloc_resources(pl330);
1854 	if (ret) {
1855 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1856 		return ret;
1857 	}
1858 
1859 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1860 
1861 	pl330->state = INIT;
1862 
1863 	return 0;
1864 }
1865 
1866 static int dmac_free_threads(struct pl330_dmac *pl330)
1867 {
1868 	struct pl330_thread *thrd;
1869 	int i;
1870 
1871 	/* Release Channel threads */
1872 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1873 		thrd = &pl330->channels[i];
1874 		pl330_release_channel(thrd);
1875 	}
1876 
1877 	/* Free memory */
1878 	kfree(pl330->channels);
1879 
1880 	return 0;
1881 }
1882 
1883 static void pl330_del(struct pl330_dmac *pl330)
1884 {
1885 	pl330->state = UNINIT;
1886 
1887 	tasklet_kill(&pl330->tasks);
1888 
1889 	/* Free DMAC resources */
1890 	dmac_free_threads(pl330);
1891 
1892 	dma_free_coherent(pl330->ddma.dev,
1893 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1894 		pl330->mcode_bus);
1895 }
1896 
1897 /* forward declaration */
1898 static struct amba_driver pl330_driver;
1899 
1900 static inline struct dma_pl330_chan *
1901 to_pchan(struct dma_chan *ch)
1902 {
1903 	if (!ch)
1904 		return NULL;
1905 
1906 	return container_of(ch, struct dma_pl330_chan, chan);
1907 }
1908 
1909 static inline struct dma_pl330_desc *
1910 to_desc(struct dma_async_tx_descriptor *tx)
1911 {
1912 	return container_of(tx, struct dma_pl330_desc, txd);
1913 }
1914 
1915 static inline void fill_queue(struct dma_pl330_chan *pch)
1916 {
1917 	struct dma_pl330_desc *desc;
1918 	int ret;
1919 
1920 	list_for_each_entry(desc, &pch->work_list, node) {
1921 
1922 		/* If already submitted */
1923 		if (desc->status == BUSY)
1924 			continue;
1925 
1926 		ret = pl330_submit_req(pch->thread, desc);
1927 		if (!ret) {
1928 			desc->status = BUSY;
1929 		} else if (ret == -EAGAIN) {
1930 			/* QFull or DMAC Dying */
1931 			break;
1932 		} else {
1933 			/* Unacceptable request */
1934 			desc->status = DONE;
1935 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
1936 					__func__, __LINE__, desc->txd.cookie);
1937 			tasklet_schedule(&pch->task);
1938 		}
1939 	}
1940 }
1941 
1942 static void pl330_tasklet(unsigned long data)
1943 {
1944 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
1945 	struct dma_pl330_desc *desc, *_dt;
1946 	unsigned long flags;
1947 	bool power_down = false;
1948 
1949 	spin_lock_irqsave(&pch->lock, flags);
1950 
1951 	/* Pick up ripe tomatoes */
1952 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
1953 		if (desc->status == DONE) {
1954 			if (!pch->cyclic)
1955 				dma_cookie_complete(&desc->txd);
1956 			list_move_tail(&desc->node, &pch->completed_list);
1957 		}
1958 
1959 	/* Try to submit a req imm. next to the last completed cookie */
1960 	fill_queue(pch);
1961 
1962 	if (list_empty(&pch->work_list)) {
1963 		spin_lock(&pch->thread->dmac->lock);
1964 		_stop(pch->thread);
1965 		spin_unlock(&pch->thread->dmac->lock);
1966 		power_down = true;
1967 		pch->active = false;
1968 	} else {
1969 		/* Make sure the PL330 Channel thread is active */
1970 		spin_lock(&pch->thread->dmac->lock);
1971 		_start(pch->thread);
1972 		spin_unlock(&pch->thread->dmac->lock);
1973 	}
1974 
1975 	while (!list_empty(&pch->completed_list)) {
1976 		struct dmaengine_desc_callback cb;
1977 
1978 		desc = list_first_entry(&pch->completed_list,
1979 					struct dma_pl330_desc, node);
1980 
1981 		dmaengine_desc_get_callback(&desc->txd, &cb);
1982 
1983 		if (pch->cyclic) {
1984 			desc->status = PREP;
1985 			list_move_tail(&desc->node, &pch->work_list);
1986 			if (power_down) {
1987 				pch->active = true;
1988 				spin_lock(&pch->thread->dmac->lock);
1989 				_start(pch->thread);
1990 				spin_unlock(&pch->thread->dmac->lock);
1991 				power_down = false;
1992 			}
1993 		} else {
1994 			desc->status = FREE;
1995 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
1996 		}
1997 
1998 		dma_descriptor_unmap(&desc->txd);
1999 
2000 		if (dmaengine_desc_callback_valid(&cb)) {
2001 			spin_unlock_irqrestore(&pch->lock, flags);
2002 			dmaengine_desc_callback_invoke(&cb, NULL);
2003 			spin_lock_irqsave(&pch->lock, flags);
2004 		}
2005 	}
2006 	spin_unlock_irqrestore(&pch->lock, flags);
2007 
2008 	/* If work list empty, power down */
2009 	if (power_down) {
2010 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2011 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2012 	}
2013 }
2014 
2015 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2016 						struct of_dma *ofdma)
2017 {
2018 	int count = dma_spec->args_count;
2019 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2020 	unsigned int chan_id;
2021 
2022 	if (!pl330)
2023 		return NULL;
2024 
2025 	if (count != 1)
2026 		return NULL;
2027 
2028 	chan_id = dma_spec->args[0];
2029 	if (chan_id >= pl330->num_peripherals)
2030 		return NULL;
2031 
2032 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2033 }
2034 
2035 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2036 {
2037 	struct dma_pl330_chan *pch = to_pchan(chan);
2038 	struct pl330_dmac *pl330 = pch->dmac;
2039 	unsigned long flags;
2040 
2041 	spin_lock_irqsave(&pl330->lock, flags);
2042 
2043 	dma_cookie_init(chan);
2044 	pch->cyclic = false;
2045 
2046 	pch->thread = pl330_request_channel(pl330);
2047 	if (!pch->thread) {
2048 		spin_unlock_irqrestore(&pl330->lock, flags);
2049 		return -ENOMEM;
2050 	}
2051 
2052 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2053 
2054 	spin_unlock_irqrestore(&pl330->lock, flags);
2055 
2056 	return 1;
2057 }
2058 
2059 /*
2060  * We need the data direction between the DMAC (the dma-mapping "device") and
2061  * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2062  */
2063 static enum dma_data_direction
2064 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2065 {
2066 	switch (dir) {
2067 	case DMA_MEM_TO_DEV:
2068 		return DMA_FROM_DEVICE;
2069 	case DMA_DEV_TO_MEM:
2070 		return DMA_TO_DEVICE;
2071 	case DMA_DEV_TO_DEV:
2072 		return DMA_BIDIRECTIONAL;
2073 	default:
2074 		return DMA_NONE;
2075 	}
2076 }
2077 
2078 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2079 {
2080 	if (pch->dir != DMA_NONE)
2081 		dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2082 				   1 << pch->burst_sz, pch->dir, 0);
2083 	pch->dir = DMA_NONE;
2084 }
2085 
2086 
2087 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2088 				  enum dma_transfer_direction dir)
2089 {
2090 	struct device *dev = pch->chan.device->dev;
2091 	enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2092 
2093 	/* Already mapped for this config? */
2094 	if (pch->dir == dma_dir)
2095 		return true;
2096 
2097 	pl330_unprep_slave_fifo(pch);
2098 	pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2099 					 1 << pch->burst_sz, dma_dir, 0);
2100 	if (dma_mapping_error(dev, pch->fifo_dma))
2101 		return false;
2102 
2103 	pch->dir = dma_dir;
2104 	return true;
2105 }
2106 
2107 static int pl330_config(struct dma_chan *chan,
2108 			struct dma_slave_config *slave_config)
2109 {
2110 	struct dma_pl330_chan *pch = to_pchan(chan);
2111 
2112 	pl330_unprep_slave_fifo(pch);
2113 	if (slave_config->direction == DMA_MEM_TO_DEV) {
2114 		if (slave_config->dst_addr)
2115 			pch->fifo_addr = slave_config->dst_addr;
2116 		if (slave_config->dst_addr_width)
2117 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2118 		if (slave_config->dst_maxburst)
2119 			pch->burst_len = slave_config->dst_maxburst;
2120 	} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2121 		if (slave_config->src_addr)
2122 			pch->fifo_addr = slave_config->src_addr;
2123 		if (slave_config->src_addr_width)
2124 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2125 		if (slave_config->src_maxburst)
2126 			pch->burst_len = slave_config->src_maxburst;
2127 	}
2128 
2129 	return 0;
2130 }
2131 
2132 static int pl330_terminate_all(struct dma_chan *chan)
2133 {
2134 	struct dma_pl330_chan *pch = to_pchan(chan);
2135 	struct dma_pl330_desc *desc;
2136 	unsigned long flags;
2137 	struct pl330_dmac *pl330 = pch->dmac;
2138 	LIST_HEAD(list);
2139 	bool power_down = false;
2140 
2141 	pm_runtime_get_sync(pl330->ddma.dev);
2142 	spin_lock_irqsave(&pch->lock, flags);
2143 	spin_lock(&pl330->lock);
2144 	_stop(pch->thread);
2145 	spin_unlock(&pl330->lock);
2146 
2147 	pch->thread->req[0].desc = NULL;
2148 	pch->thread->req[1].desc = NULL;
2149 	pch->thread->req_running = -1;
2150 	power_down = pch->active;
2151 	pch->active = false;
2152 
2153 	/* Mark all desc done */
2154 	list_for_each_entry(desc, &pch->submitted_list, node) {
2155 		desc->status = FREE;
2156 		dma_cookie_complete(&desc->txd);
2157 	}
2158 
2159 	list_for_each_entry(desc, &pch->work_list , node) {
2160 		desc->status = FREE;
2161 		dma_cookie_complete(&desc->txd);
2162 	}
2163 
2164 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2165 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2166 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2167 	spin_unlock_irqrestore(&pch->lock, flags);
2168 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2169 	if (power_down)
2170 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2171 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2172 
2173 	return 0;
2174 }
2175 
2176 /*
2177  * We don't support DMA_RESUME command because of hardware
2178  * limitations, so after pausing the channel we cannot restore
2179  * it to active state. We have to terminate channel and setup
2180  * DMA transfer again. This pause feature was implemented to
2181  * allow safely read residue before channel termination.
2182  */
2183 static int pl330_pause(struct dma_chan *chan)
2184 {
2185 	struct dma_pl330_chan *pch = to_pchan(chan);
2186 	struct pl330_dmac *pl330 = pch->dmac;
2187 	unsigned long flags;
2188 
2189 	pm_runtime_get_sync(pl330->ddma.dev);
2190 	spin_lock_irqsave(&pch->lock, flags);
2191 
2192 	spin_lock(&pl330->lock);
2193 	_stop(pch->thread);
2194 	spin_unlock(&pl330->lock);
2195 
2196 	spin_unlock_irqrestore(&pch->lock, flags);
2197 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2198 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2199 
2200 	return 0;
2201 }
2202 
2203 static void pl330_free_chan_resources(struct dma_chan *chan)
2204 {
2205 	struct dma_pl330_chan *pch = to_pchan(chan);
2206 	struct pl330_dmac *pl330 = pch->dmac;
2207 	unsigned long flags;
2208 
2209 	tasklet_kill(&pch->task);
2210 
2211 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2212 	spin_lock_irqsave(&pl330->lock, flags);
2213 
2214 	pl330_release_channel(pch->thread);
2215 	pch->thread = NULL;
2216 
2217 	if (pch->cyclic)
2218 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2219 
2220 	spin_unlock_irqrestore(&pl330->lock, flags);
2221 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2222 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2223 	pl330_unprep_slave_fifo(pch);
2224 }
2225 
2226 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2227 					   struct dma_pl330_desc *desc)
2228 {
2229 	struct pl330_thread *thrd = pch->thread;
2230 	struct pl330_dmac *pl330 = pch->dmac;
2231 	void __iomem *regs = thrd->dmac->base;
2232 	u32 val, addr;
2233 
2234 	pm_runtime_get_sync(pl330->ddma.dev);
2235 	val = addr = 0;
2236 	if (desc->rqcfg.src_inc) {
2237 		val = readl(regs + SA(thrd->id));
2238 		addr = desc->px.src_addr;
2239 	} else {
2240 		val = readl(regs + DA(thrd->id));
2241 		addr = desc->px.dst_addr;
2242 	}
2243 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2244 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2245 
2246 	/* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2247 	if (!val)
2248 		return 0;
2249 
2250 	return val - addr;
2251 }
2252 
2253 static enum dma_status
2254 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2255 		 struct dma_tx_state *txstate)
2256 {
2257 	enum dma_status ret;
2258 	unsigned long flags;
2259 	struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2260 	struct dma_pl330_chan *pch = to_pchan(chan);
2261 	unsigned int transferred, residual = 0;
2262 
2263 	ret = dma_cookie_status(chan, cookie, txstate);
2264 
2265 	if (!txstate)
2266 		return ret;
2267 
2268 	if (ret == DMA_COMPLETE)
2269 		goto out;
2270 
2271 	spin_lock_irqsave(&pch->lock, flags);
2272 	spin_lock(&pch->thread->dmac->lock);
2273 
2274 	if (pch->thread->req_running != -1)
2275 		running = pch->thread->req[pch->thread->req_running].desc;
2276 
2277 	last_enq = pch->thread->req[pch->thread->lstenq].desc;
2278 
2279 	/* Check in pending list */
2280 	list_for_each_entry(desc, &pch->work_list, node) {
2281 		if (desc->status == DONE)
2282 			transferred = desc->bytes_requested;
2283 		else if (running && desc == running)
2284 			transferred =
2285 				pl330_get_current_xferred_count(pch, desc);
2286 		else if (desc->status == BUSY)
2287 			/*
2288 			 * Busy but not running means either just enqueued,
2289 			 * or finished and not yet marked done
2290 			 */
2291 			if (desc == last_enq)
2292 				transferred = 0;
2293 			else
2294 				transferred = desc->bytes_requested;
2295 		else
2296 			transferred = 0;
2297 		residual += desc->bytes_requested - transferred;
2298 		if (desc->txd.cookie == cookie) {
2299 			switch (desc->status) {
2300 			case DONE:
2301 				ret = DMA_COMPLETE;
2302 				break;
2303 			case PREP:
2304 			case BUSY:
2305 				ret = DMA_IN_PROGRESS;
2306 				break;
2307 			default:
2308 				WARN_ON(1);
2309 			}
2310 			break;
2311 		}
2312 		if (desc->last)
2313 			residual = 0;
2314 	}
2315 	spin_unlock(&pch->thread->dmac->lock);
2316 	spin_unlock_irqrestore(&pch->lock, flags);
2317 
2318 out:
2319 	dma_set_residue(txstate, residual);
2320 
2321 	return ret;
2322 }
2323 
2324 static void pl330_issue_pending(struct dma_chan *chan)
2325 {
2326 	struct dma_pl330_chan *pch = to_pchan(chan);
2327 	unsigned long flags;
2328 
2329 	spin_lock_irqsave(&pch->lock, flags);
2330 	if (list_empty(&pch->work_list)) {
2331 		/*
2332 		 * Warn on nothing pending. Empty submitted_list may
2333 		 * break our pm_runtime usage counter as it is
2334 		 * updated on work_list emptiness status.
2335 		 */
2336 		WARN_ON(list_empty(&pch->submitted_list));
2337 		pch->active = true;
2338 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2339 	}
2340 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2341 	spin_unlock_irqrestore(&pch->lock, flags);
2342 
2343 	pl330_tasklet((unsigned long)pch);
2344 }
2345 
2346 /*
2347  * We returned the last one of the circular list of descriptor(s)
2348  * from prep_xxx, so the argument to submit corresponds to the last
2349  * descriptor of the list.
2350  */
2351 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2352 {
2353 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2354 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2355 	dma_cookie_t cookie;
2356 	unsigned long flags;
2357 
2358 	spin_lock_irqsave(&pch->lock, flags);
2359 
2360 	/* Assign cookies to all nodes */
2361 	while (!list_empty(&last->node)) {
2362 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2363 		if (pch->cyclic) {
2364 			desc->txd.callback = last->txd.callback;
2365 			desc->txd.callback_param = last->txd.callback_param;
2366 		}
2367 		desc->last = false;
2368 
2369 		dma_cookie_assign(&desc->txd);
2370 
2371 		list_move_tail(&desc->node, &pch->submitted_list);
2372 	}
2373 
2374 	last->last = true;
2375 	cookie = dma_cookie_assign(&last->txd);
2376 	list_add_tail(&last->node, &pch->submitted_list);
2377 	spin_unlock_irqrestore(&pch->lock, flags);
2378 
2379 	return cookie;
2380 }
2381 
2382 static inline void _init_desc(struct dma_pl330_desc *desc)
2383 {
2384 	desc->rqcfg.swap = SWAP_NO;
2385 	desc->rqcfg.scctl = CCTRL0;
2386 	desc->rqcfg.dcctl = CCTRL0;
2387 	desc->txd.tx_submit = pl330_tx_submit;
2388 
2389 	INIT_LIST_HEAD(&desc->node);
2390 }
2391 
2392 /* Returns the number of descriptors added to the DMAC pool */
2393 static int add_desc(struct list_head *pool, spinlock_t *lock,
2394 		    gfp_t flg, int count)
2395 {
2396 	struct dma_pl330_desc *desc;
2397 	unsigned long flags;
2398 	int i;
2399 
2400 	desc = kcalloc(count, sizeof(*desc), flg);
2401 	if (!desc)
2402 		return 0;
2403 
2404 	spin_lock_irqsave(lock, flags);
2405 
2406 	for (i = 0; i < count; i++) {
2407 		_init_desc(&desc[i]);
2408 		list_add_tail(&desc[i].node, pool);
2409 	}
2410 
2411 	spin_unlock_irqrestore(lock, flags);
2412 
2413 	return count;
2414 }
2415 
2416 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2417 					 spinlock_t *lock)
2418 {
2419 	struct dma_pl330_desc *desc = NULL;
2420 	unsigned long flags;
2421 
2422 	spin_lock_irqsave(lock, flags);
2423 
2424 	if (!list_empty(pool)) {
2425 		desc = list_entry(pool->next,
2426 				struct dma_pl330_desc, node);
2427 
2428 		list_del_init(&desc->node);
2429 
2430 		desc->status = PREP;
2431 		desc->txd.callback = NULL;
2432 	}
2433 
2434 	spin_unlock_irqrestore(lock, flags);
2435 
2436 	return desc;
2437 }
2438 
2439 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2440 {
2441 	struct pl330_dmac *pl330 = pch->dmac;
2442 	u8 *peri_id = pch->chan.private;
2443 	struct dma_pl330_desc *desc;
2444 
2445 	/* Pluck one desc from the pool of DMAC */
2446 	desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2447 
2448 	/* If the DMAC pool is empty, alloc new */
2449 	if (!desc) {
2450 		DEFINE_SPINLOCK(lock);
2451 		LIST_HEAD(pool);
2452 
2453 		if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2454 			return NULL;
2455 
2456 		desc = pluck_desc(&pool, &lock);
2457 		WARN_ON(!desc || !list_empty(&pool));
2458 	}
2459 
2460 	/* Initialize the descriptor */
2461 	desc->pchan = pch;
2462 	desc->txd.cookie = 0;
2463 	async_tx_ack(&desc->txd);
2464 
2465 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2466 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2467 
2468 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2469 
2470 	return desc;
2471 }
2472 
2473 static inline void fill_px(struct pl330_xfer *px,
2474 		dma_addr_t dst, dma_addr_t src, size_t len)
2475 {
2476 	px->bytes = len;
2477 	px->dst_addr = dst;
2478 	px->src_addr = src;
2479 }
2480 
2481 static struct dma_pl330_desc *
2482 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2483 		dma_addr_t src, size_t len)
2484 {
2485 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2486 
2487 	if (!desc) {
2488 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2489 			__func__, __LINE__);
2490 		return NULL;
2491 	}
2492 
2493 	/*
2494 	 * Ideally we should lookout for reqs bigger than
2495 	 * those that can be programmed with 256 bytes of
2496 	 * MC buffer, but considering a req size is seldom
2497 	 * going to be word-unaligned and more than 200MB,
2498 	 * we take it easy.
2499 	 * Also, should the limit is reached we'd rather
2500 	 * have the platform increase MC buffer size than
2501 	 * complicating this API driver.
2502 	 */
2503 	fill_px(&desc->px, dst, src, len);
2504 
2505 	return desc;
2506 }
2507 
2508 /* Call after fixing burst size */
2509 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2510 {
2511 	struct dma_pl330_chan *pch = desc->pchan;
2512 	struct pl330_dmac *pl330 = pch->dmac;
2513 	int burst_len;
2514 
2515 	burst_len = pl330->pcfg.data_bus_width / 8;
2516 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2517 	burst_len >>= desc->rqcfg.brst_size;
2518 
2519 	/* src/dst_burst_len can't be more than 16 */
2520 	if (burst_len > 16)
2521 		burst_len = 16;
2522 
2523 	while (burst_len > 1) {
2524 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2525 			break;
2526 		burst_len--;
2527 	}
2528 
2529 	return burst_len;
2530 }
2531 
2532 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2533 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2534 		size_t period_len, enum dma_transfer_direction direction,
2535 		unsigned long flags)
2536 {
2537 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2538 	struct dma_pl330_chan *pch = to_pchan(chan);
2539 	struct pl330_dmac *pl330 = pch->dmac;
2540 	unsigned int i;
2541 	dma_addr_t dst;
2542 	dma_addr_t src;
2543 
2544 	if (len % period_len != 0)
2545 		return NULL;
2546 
2547 	if (!is_slave_direction(direction)) {
2548 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2549 		__func__, __LINE__);
2550 		return NULL;
2551 	}
2552 
2553 	if (!pl330_prep_slave_fifo(pch, direction))
2554 		return NULL;
2555 
2556 	for (i = 0; i < len / period_len; i++) {
2557 		desc = pl330_get_desc(pch);
2558 		if (!desc) {
2559 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2560 				__func__, __LINE__);
2561 
2562 			if (!first)
2563 				return NULL;
2564 
2565 			spin_lock_irqsave(&pl330->pool_lock, flags);
2566 
2567 			while (!list_empty(&first->node)) {
2568 				desc = list_entry(first->node.next,
2569 						struct dma_pl330_desc, node);
2570 				list_move_tail(&desc->node, &pl330->desc_pool);
2571 			}
2572 
2573 			list_move_tail(&first->node, &pl330->desc_pool);
2574 
2575 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2576 
2577 			return NULL;
2578 		}
2579 
2580 		switch (direction) {
2581 		case DMA_MEM_TO_DEV:
2582 			desc->rqcfg.src_inc = 1;
2583 			desc->rqcfg.dst_inc = 0;
2584 			src = dma_addr;
2585 			dst = pch->fifo_dma;
2586 			break;
2587 		case DMA_DEV_TO_MEM:
2588 			desc->rqcfg.src_inc = 0;
2589 			desc->rqcfg.dst_inc = 1;
2590 			src = pch->fifo_dma;
2591 			dst = dma_addr;
2592 			break;
2593 		default:
2594 			break;
2595 		}
2596 
2597 		desc->rqtype = direction;
2598 		desc->rqcfg.brst_size = pch->burst_sz;
2599 		desc->rqcfg.brst_len = 1;
2600 		desc->bytes_requested = period_len;
2601 		fill_px(&desc->px, dst, src, period_len);
2602 
2603 		if (!first)
2604 			first = desc;
2605 		else
2606 			list_add_tail(&desc->node, &first->node);
2607 
2608 		dma_addr += period_len;
2609 	}
2610 
2611 	if (!desc)
2612 		return NULL;
2613 
2614 	pch->cyclic = true;
2615 	desc->txd.flags = flags;
2616 
2617 	return &desc->txd;
2618 }
2619 
2620 static struct dma_async_tx_descriptor *
2621 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2622 		dma_addr_t src, size_t len, unsigned long flags)
2623 {
2624 	struct dma_pl330_desc *desc;
2625 	struct dma_pl330_chan *pch = to_pchan(chan);
2626 	struct pl330_dmac *pl330;
2627 	int burst;
2628 
2629 	if (unlikely(!pch || !len))
2630 		return NULL;
2631 
2632 	pl330 = pch->dmac;
2633 
2634 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2635 	if (!desc)
2636 		return NULL;
2637 
2638 	desc->rqcfg.src_inc = 1;
2639 	desc->rqcfg.dst_inc = 1;
2640 	desc->rqtype = DMA_MEM_TO_MEM;
2641 
2642 	/* Select max possible burst size */
2643 	burst = pl330->pcfg.data_bus_width / 8;
2644 
2645 	/*
2646 	 * Make sure we use a burst size that aligns with all the memcpy
2647 	 * parameters because our DMA programming algorithm doesn't cope with
2648 	 * transfers which straddle an entry in the DMA device's MFIFO.
2649 	 */
2650 	while ((src | dst | len) & (burst - 1))
2651 		burst /= 2;
2652 
2653 	desc->rqcfg.brst_size = 0;
2654 	while (burst != (1 << desc->rqcfg.brst_size))
2655 		desc->rqcfg.brst_size++;
2656 
2657 	/*
2658 	 * If burst size is smaller than bus width then make sure we only
2659 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2660 	 */
2661 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2662 		desc->rqcfg.brst_len = 1;
2663 
2664 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2665 	desc->bytes_requested = len;
2666 
2667 	desc->txd.flags = flags;
2668 
2669 	return &desc->txd;
2670 }
2671 
2672 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2673 				  struct dma_pl330_desc *first)
2674 {
2675 	unsigned long flags;
2676 	struct dma_pl330_desc *desc;
2677 
2678 	if (!first)
2679 		return;
2680 
2681 	spin_lock_irqsave(&pl330->pool_lock, flags);
2682 
2683 	while (!list_empty(&first->node)) {
2684 		desc = list_entry(first->node.next,
2685 				struct dma_pl330_desc, node);
2686 		list_move_tail(&desc->node, &pl330->desc_pool);
2687 	}
2688 
2689 	list_move_tail(&first->node, &pl330->desc_pool);
2690 
2691 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2692 }
2693 
2694 static struct dma_async_tx_descriptor *
2695 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2696 		unsigned int sg_len, enum dma_transfer_direction direction,
2697 		unsigned long flg, void *context)
2698 {
2699 	struct dma_pl330_desc *first, *desc = NULL;
2700 	struct dma_pl330_chan *pch = to_pchan(chan);
2701 	struct scatterlist *sg;
2702 	int i;
2703 
2704 	if (unlikely(!pch || !sgl || !sg_len))
2705 		return NULL;
2706 
2707 	if (!pl330_prep_slave_fifo(pch, direction))
2708 		return NULL;
2709 
2710 	first = NULL;
2711 
2712 	for_each_sg(sgl, sg, sg_len, i) {
2713 
2714 		desc = pl330_get_desc(pch);
2715 		if (!desc) {
2716 			struct pl330_dmac *pl330 = pch->dmac;
2717 
2718 			dev_err(pch->dmac->ddma.dev,
2719 				"%s:%d Unable to fetch desc\n",
2720 				__func__, __LINE__);
2721 			__pl330_giveback_desc(pl330, first);
2722 
2723 			return NULL;
2724 		}
2725 
2726 		if (!first)
2727 			first = desc;
2728 		else
2729 			list_add_tail(&desc->node, &first->node);
2730 
2731 		if (direction == DMA_MEM_TO_DEV) {
2732 			desc->rqcfg.src_inc = 1;
2733 			desc->rqcfg.dst_inc = 0;
2734 			fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2735 				sg_dma_len(sg));
2736 		} else {
2737 			desc->rqcfg.src_inc = 0;
2738 			desc->rqcfg.dst_inc = 1;
2739 			fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2740 				sg_dma_len(sg));
2741 		}
2742 
2743 		desc->rqcfg.brst_size = pch->burst_sz;
2744 		desc->rqcfg.brst_len = 1;
2745 		desc->rqtype = direction;
2746 		desc->bytes_requested = sg_dma_len(sg);
2747 	}
2748 
2749 	/* Return the last desc in the chain */
2750 	desc->txd.flags = flg;
2751 	return &desc->txd;
2752 }
2753 
2754 static irqreturn_t pl330_irq_handler(int irq, void *data)
2755 {
2756 	if (pl330_update(data))
2757 		return IRQ_HANDLED;
2758 	else
2759 		return IRQ_NONE;
2760 }
2761 
2762 #define PL330_DMA_BUSWIDTHS \
2763 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2764 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2765 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2766 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2767 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2768 
2769 /*
2770  * Runtime PM callbacks are provided by amba/bus.c driver.
2771  *
2772  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2773  * bus driver will only disable/enable the clock in runtime PM callbacks.
2774  */
2775 static int __maybe_unused pl330_suspend(struct device *dev)
2776 {
2777 	struct amba_device *pcdev = to_amba_device(dev);
2778 
2779 	pm_runtime_disable(dev);
2780 
2781 	if (!pm_runtime_status_suspended(dev)) {
2782 		/* amba did not disable the clock */
2783 		amba_pclk_disable(pcdev);
2784 	}
2785 	amba_pclk_unprepare(pcdev);
2786 
2787 	return 0;
2788 }
2789 
2790 static int __maybe_unused pl330_resume(struct device *dev)
2791 {
2792 	struct amba_device *pcdev = to_amba_device(dev);
2793 	int ret;
2794 
2795 	ret = amba_pclk_prepare(pcdev);
2796 	if (ret)
2797 		return ret;
2798 
2799 	if (!pm_runtime_status_suspended(dev))
2800 		ret = amba_pclk_enable(pcdev);
2801 
2802 	pm_runtime_enable(dev);
2803 
2804 	return ret;
2805 }
2806 
2807 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2808 
2809 static int
2810 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2811 {
2812 	struct pl330_config *pcfg;
2813 	struct pl330_dmac *pl330;
2814 	struct dma_pl330_chan *pch, *_p;
2815 	struct dma_device *pd;
2816 	struct resource *res;
2817 	int i, ret, irq;
2818 	int num_chan;
2819 	struct device_node *np = adev->dev.of_node;
2820 
2821 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2822 	if (ret)
2823 		return ret;
2824 
2825 	/* Allocate a new DMAC and its Channels */
2826 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2827 	if (!pl330)
2828 		return -ENOMEM;
2829 
2830 	pd = &pl330->ddma;
2831 	pd->dev = &adev->dev;
2832 
2833 	pl330->mcbufsz = 0;
2834 
2835 	/* get quirk */
2836 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2837 		if (of_property_read_bool(np, of_quirks[i].quirk))
2838 			pl330->quirks |= of_quirks[i].id;
2839 
2840 	res = &adev->res;
2841 	pl330->base = devm_ioremap_resource(&adev->dev, res);
2842 	if (IS_ERR(pl330->base))
2843 		return PTR_ERR(pl330->base);
2844 
2845 	amba_set_drvdata(adev, pl330);
2846 
2847 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2848 		irq = adev->irq[i];
2849 		if (irq) {
2850 			ret = devm_request_irq(&adev->dev, irq,
2851 					       pl330_irq_handler, 0,
2852 					       dev_name(&adev->dev), pl330);
2853 			if (ret)
2854 				return ret;
2855 		} else {
2856 			break;
2857 		}
2858 	}
2859 
2860 	pcfg = &pl330->pcfg;
2861 
2862 	pcfg->periph_id = adev->periphid;
2863 	ret = pl330_add(pl330);
2864 	if (ret)
2865 		return ret;
2866 
2867 	INIT_LIST_HEAD(&pl330->desc_pool);
2868 	spin_lock_init(&pl330->pool_lock);
2869 
2870 	/* Create a descriptor pool of default size */
2871 	if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
2872 		      GFP_KERNEL, NR_DEFAULT_DESC))
2873 		dev_warn(&adev->dev, "unable to allocate desc\n");
2874 
2875 	INIT_LIST_HEAD(&pd->channels);
2876 
2877 	/* Initialize channel parameters */
2878 	num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2879 
2880 	pl330->num_peripherals = num_chan;
2881 
2882 	pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2883 	if (!pl330->peripherals) {
2884 		ret = -ENOMEM;
2885 		goto probe_err2;
2886 	}
2887 
2888 	for (i = 0; i < num_chan; i++) {
2889 		pch = &pl330->peripherals[i];
2890 
2891 		pch->chan.private = adev->dev.of_node;
2892 		INIT_LIST_HEAD(&pch->submitted_list);
2893 		INIT_LIST_HEAD(&pch->work_list);
2894 		INIT_LIST_HEAD(&pch->completed_list);
2895 		spin_lock_init(&pch->lock);
2896 		pch->thread = NULL;
2897 		pch->chan.device = pd;
2898 		pch->dmac = pl330;
2899 		pch->dir = DMA_NONE;
2900 
2901 		/* Add the channel to the DMAC list */
2902 		list_add_tail(&pch->chan.device_node, &pd->channels);
2903 	}
2904 
2905 	dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2906 	if (pcfg->num_peri) {
2907 		dma_cap_set(DMA_SLAVE, pd->cap_mask);
2908 		dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2909 		dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2910 	}
2911 
2912 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2913 	pd->device_free_chan_resources = pl330_free_chan_resources;
2914 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2915 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2916 	pd->device_tx_status = pl330_tx_status;
2917 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2918 	pd->device_config = pl330_config;
2919 	pd->device_pause = pl330_pause;
2920 	pd->device_terminate_all = pl330_terminate_all;
2921 	pd->device_issue_pending = pl330_issue_pending;
2922 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2923 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2924 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2925 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2926 	pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
2927 			 1 : PL330_MAX_BURST);
2928 
2929 	ret = dma_async_device_register(pd);
2930 	if (ret) {
2931 		dev_err(&adev->dev, "unable to register DMAC\n");
2932 		goto probe_err3;
2933 	}
2934 
2935 	if (adev->dev.of_node) {
2936 		ret = of_dma_controller_register(adev->dev.of_node,
2937 					 of_dma_pl330_xlate, pl330);
2938 		if (ret) {
2939 			dev_err(&adev->dev,
2940 			"unable to register DMA to the generic DT DMA helpers\n");
2941 		}
2942 	}
2943 
2944 	adev->dev.dma_parms = &pl330->dma_parms;
2945 
2946 	/*
2947 	 * This is the limit for transfers with a buswidth of 1, larger
2948 	 * buswidths will have larger limits.
2949 	 */
2950 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
2951 	if (ret)
2952 		dev_err(&adev->dev, "unable to set the seg size\n");
2953 
2954 
2955 	dev_info(&adev->dev,
2956 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2957 	dev_info(&adev->dev,
2958 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2959 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2960 		pcfg->num_peri, pcfg->num_events);
2961 
2962 	pm_runtime_irq_safe(&adev->dev);
2963 	pm_runtime_use_autosuspend(&adev->dev);
2964 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2965 	pm_runtime_mark_last_busy(&adev->dev);
2966 	pm_runtime_put_autosuspend(&adev->dev);
2967 
2968 	return 0;
2969 probe_err3:
2970 	/* Idle the DMAC */
2971 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2972 			chan.device_node) {
2973 
2974 		/* Remove the channel */
2975 		list_del(&pch->chan.device_node);
2976 
2977 		/* Flush the channel */
2978 		if (pch->thread) {
2979 			pl330_terminate_all(&pch->chan);
2980 			pl330_free_chan_resources(&pch->chan);
2981 		}
2982 	}
2983 probe_err2:
2984 	pl330_del(pl330);
2985 
2986 	return ret;
2987 }
2988 
2989 static int pl330_remove(struct amba_device *adev)
2990 {
2991 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
2992 	struct dma_pl330_chan *pch, *_p;
2993 	int i, irq;
2994 
2995 	pm_runtime_get_noresume(pl330->ddma.dev);
2996 
2997 	if (adev->dev.of_node)
2998 		of_dma_controller_free(adev->dev.of_node);
2999 
3000 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3001 		irq = adev->irq[i];
3002 		if (irq)
3003 			devm_free_irq(&adev->dev, irq, pl330);
3004 	}
3005 
3006 	dma_async_device_unregister(&pl330->ddma);
3007 
3008 	/* Idle the DMAC */
3009 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3010 			chan.device_node) {
3011 
3012 		/* Remove the channel */
3013 		list_del(&pch->chan.device_node);
3014 
3015 		/* Flush the channel */
3016 		if (pch->thread) {
3017 			pl330_terminate_all(&pch->chan);
3018 			pl330_free_chan_resources(&pch->chan);
3019 		}
3020 	}
3021 
3022 	pl330_del(pl330);
3023 
3024 	return 0;
3025 }
3026 
3027 static const struct amba_id pl330_ids[] = {
3028 	{
3029 		.id	= 0x00041330,
3030 		.mask	= 0x000fffff,
3031 	},
3032 	{ 0, 0 },
3033 };
3034 
3035 MODULE_DEVICE_TABLE(amba, pl330_ids);
3036 
3037 static struct amba_driver pl330_driver = {
3038 	.drv = {
3039 		.owner = THIS_MODULE,
3040 		.name = "dma-pl330",
3041 		.pm = &pl330_pm,
3042 	},
3043 	.id_table = pl330_ids,
3044 	.probe = pl330_probe,
3045 	.remove = pl330_remove,
3046 };
3047 
3048 module_amba_driver(pl330_driver);
3049 
3050 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3051 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3052 MODULE_LICENSE("GPL");
3053