1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/scatterlist.h> 26 #include <linux/of.h> 27 #include <linux/of_dma.h> 28 #include <linux/err.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/bug.h> 31 32 #include "dmaengine.h" 33 #define PL330_MAX_CHAN 8 34 #define PL330_MAX_IRQS 32 35 #define PL330_MAX_PERI 32 36 #define PL330_MAX_BURST 16 37 38 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 39 40 enum pl330_cachectrl { 41 CCTRL0, /* Noncacheable and nonbufferable */ 42 CCTRL1, /* Bufferable only */ 43 CCTRL2, /* Cacheable, but do not allocate */ 44 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 45 INVALID1, /* AWCACHE = 0x1000 */ 46 INVALID2, 47 CCTRL6, /* Cacheable write-through, allocate on writes only */ 48 CCTRL7, /* Cacheable write-back, allocate on writes only */ 49 }; 50 51 enum pl330_byteswap { 52 SWAP_NO, 53 SWAP_2, 54 SWAP_4, 55 SWAP_8, 56 SWAP_16, 57 }; 58 59 /* Register and Bit field Definitions */ 60 #define DS 0x0 61 #define DS_ST_STOP 0x0 62 #define DS_ST_EXEC 0x1 63 #define DS_ST_CMISS 0x2 64 #define DS_ST_UPDTPC 0x3 65 #define DS_ST_WFE 0x4 66 #define DS_ST_ATBRR 0x5 67 #define DS_ST_QBUSY 0x6 68 #define DS_ST_WFP 0x7 69 #define DS_ST_KILL 0x8 70 #define DS_ST_CMPLT 0x9 71 #define DS_ST_FLTCMP 0xe 72 #define DS_ST_FAULT 0xf 73 74 #define DPC 0x4 75 #define INTEN 0x20 76 #define ES 0x24 77 #define INTSTATUS 0x28 78 #define INTCLR 0x2c 79 #define FSM 0x30 80 #define FSC 0x34 81 #define FTM 0x38 82 83 #define _FTC 0x40 84 #define FTC(n) (_FTC + (n)*0x4) 85 86 #define _CS 0x100 87 #define CS(n) (_CS + (n)*0x8) 88 #define CS_CNS (1 << 21) 89 90 #define _CPC 0x104 91 #define CPC(n) (_CPC + (n)*0x8) 92 93 #define _SA 0x400 94 #define SA(n) (_SA + (n)*0x20) 95 96 #define _DA 0x404 97 #define DA(n) (_DA + (n)*0x20) 98 99 #define _CC 0x408 100 #define CC(n) (_CC + (n)*0x20) 101 102 #define CC_SRCINC (1 << 0) 103 #define CC_DSTINC (1 << 14) 104 #define CC_SRCPRI (1 << 8) 105 #define CC_DSTPRI (1 << 22) 106 #define CC_SRCNS (1 << 9) 107 #define CC_DSTNS (1 << 23) 108 #define CC_SRCIA (1 << 10) 109 #define CC_DSTIA (1 << 24) 110 #define CC_SRCBRSTLEN_SHFT 4 111 #define CC_DSTBRSTLEN_SHFT 18 112 #define CC_SRCBRSTSIZE_SHFT 1 113 #define CC_DSTBRSTSIZE_SHFT 15 114 #define CC_SRCCCTRL_SHFT 11 115 #define CC_SRCCCTRL_MASK 0x7 116 #define CC_DSTCCTRL_SHFT 25 117 #define CC_DRCCCTRL_MASK 0x7 118 #define CC_SWAP_SHFT 28 119 120 #define _LC0 0x40c 121 #define LC0(n) (_LC0 + (n)*0x20) 122 123 #define _LC1 0x410 124 #define LC1(n) (_LC1 + (n)*0x20) 125 126 #define DBGSTATUS 0xd00 127 #define DBG_BUSY (1 << 0) 128 129 #define DBGCMD 0xd04 130 #define DBGINST0 0xd08 131 #define DBGINST1 0xd0c 132 133 #define CR0 0xe00 134 #define CR1 0xe04 135 #define CR2 0xe08 136 #define CR3 0xe0c 137 #define CR4 0xe10 138 #define CRD 0xe14 139 140 #define PERIPH_ID 0xfe0 141 #define PERIPH_REV_SHIFT 20 142 #define PERIPH_REV_MASK 0xf 143 #define PERIPH_REV_R0P0 0 144 #define PERIPH_REV_R1P0 1 145 #define PERIPH_REV_R1P1 2 146 147 #define CR0_PERIPH_REQ_SET (1 << 0) 148 #define CR0_BOOT_EN_SET (1 << 1) 149 #define CR0_BOOT_MAN_NS (1 << 2) 150 #define CR0_NUM_CHANS_SHIFT 4 151 #define CR0_NUM_CHANS_MASK 0x7 152 #define CR0_NUM_PERIPH_SHIFT 12 153 #define CR0_NUM_PERIPH_MASK 0x1f 154 #define CR0_NUM_EVENTS_SHIFT 17 155 #define CR0_NUM_EVENTS_MASK 0x1f 156 157 #define CR1_ICACHE_LEN_SHIFT 0 158 #define CR1_ICACHE_LEN_MASK 0x7 159 #define CR1_NUM_ICACHELINES_SHIFT 4 160 #define CR1_NUM_ICACHELINES_MASK 0xf 161 162 #define CRD_DATA_WIDTH_SHIFT 0 163 #define CRD_DATA_WIDTH_MASK 0x7 164 #define CRD_WR_CAP_SHIFT 4 165 #define CRD_WR_CAP_MASK 0x7 166 #define CRD_WR_Q_DEP_SHIFT 8 167 #define CRD_WR_Q_DEP_MASK 0xf 168 #define CRD_RD_CAP_SHIFT 12 169 #define CRD_RD_CAP_MASK 0x7 170 #define CRD_RD_Q_DEP_SHIFT 16 171 #define CRD_RD_Q_DEP_MASK 0xf 172 #define CRD_DATA_BUFF_SHIFT 20 173 #define CRD_DATA_BUFF_MASK 0x3ff 174 175 #define PART 0x330 176 #define DESIGNER 0x41 177 #define REVISION 0x0 178 #define INTEG_CFG 0x0 179 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 180 181 #define PL330_STATE_STOPPED (1 << 0) 182 #define PL330_STATE_EXECUTING (1 << 1) 183 #define PL330_STATE_WFE (1 << 2) 184 #define PL330_STATE_FAULTING (1 << 3) 185 #define PL330_STATE_COMPLETING (1 << 4) 186 #define PL330_STATE_WFP (1 << 5) 187 #define PL330_STATE_KILLING (1 << 6) 188 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 189 #define PL330_STATE_CACHEMISS (1 << 8) 190 #define PL330_STATE_UPDTPC (1 << 9) 191 #define PL330_STATE_ATBARRIER (1 << 10) 192 #define PL330_STATE_QUEUEBUSY (1 << 11) 193 #define PL330_STATE_INVALID (1 << 15) 194 195 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 196 | PL330_STATE_WFE | PL330_STATE_FAULTING) 197 198 #define CMD_DMAADDH 0x54 199 #define CMD_DMAEND 0x00 200 #define CMD_DMAFLUSHP 0x35 201 #define CMD_DMAGO 0xa0 202 #define CMD_DMALD 0x04 203 #define CMD_DMALDP 0x25 204 #define CMD_DMALP 0x20 205 #define CMD_DMALPEND 0x28 206 #define CMD_DMAKILL 0x01 207 #define CMD_DMAMOV 0xbc 208 #define CMD_DMANOP 0x18 209 #define CMD_DMARMB 0x12 210 #define CMD_DMASEV 0x34 211 #define CMD_DMAST 0x08 212 #define CMD_DMASTP 0x29 213 #define CMD_DMASTZ 0x0c 214 #define CMD_DMAWFE 0x36 215 #define CMD_DMAWFP 0x30 216 #define CMD_DMAWMB 0x13 217 218 #define SZ_DMAADDH 3 219 #define SZ_DMAEND 1 220 #define SZ_DMAFLUSHP 2 221 #define SZ_DMALD 1 222 #define SZ_DMALDP 2 223 #define SZ_DMALP 2 224 #define SZ_DMALPEND 2 225 #define SZ_DMAKILL 1 226 #define SZ_DMAMOV 6 227 #define SZ_DMANOP 1 228 #define SZ_DMARMB 1 229 #define SZ_DMASEV 2 230 #define SZ_DMAST 1 231 #define SZ_DMASTP 2 232 #define SZ_DMASTZ 1 233 #define SZ_DMAWFE 2 234 #define SZ_DMAWFP 2 235 #define SZ_DMAWMB 1 236 #define SZ_DMAGO 6 237 238 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 239 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 240 241 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 242 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 243 244 /* 245 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 246 * at 1byte/burst for P<->M and M<->M respectively. 247 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 248 * should be enough for P<->M and M<->M respectively. 249 */ 250 #define MCODE_BUFF_PER_REQ 256 251 252 /* Use this _only_ to wait on transient states */ 253 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 254 255 #ifdef PL330_DEBUG_MCGEN 256 static unsigned cmd_line; 257 #define PL330_DBGCMD_DUMP(off, x...) do { \ 258 printk("%x:", cmd_line); \ 259 printk(x); \ 260 cmd_line += off; \ 261 } while (0) 262 #define PL330_DBGMC_START(addr) (cmd_line = addr) 263 #else 264 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 265 #define PL330_DBGMC_START(addr) do {} while (0) 266 #endif 267 268 /* The number of default descriptors */ 269 270 #define NR_DEFAULT_DESC 16 271 272 /* Delay for runtime PM autosuspend, ms */ 273 #define PL330_AUTOSUSPEND_DELAY 20 274 275 /* Populated by the PL330 core driver for DMA API driver's info */ 276 struct pl330_config { 277 u32 periph_id; 278 #define DMAC_MODE_NS (1 << 0) 279 unsigned int mode; 280 unsigned int data_bus_width:10; /* In number of bits */ 281 unsigned int data_buf_dep:11; 282 unsigned int num_chan:4; 283 unsigned int num_peri:6; 284 u32 peri_ns; 285 unsigned int num_events:6; 286 u32 irq_ns; 287 }; 288 289 /** 290 * Request Configuration. 291 * The PL330 core does not modify this and uses the last 292 * working configuration if the request doesn't provide any. 293 * 294 * The Client may want to provide this info only for the 295 * first request and a request with new settings. 296 */ 297 struct pl330_reqcfg { 298 /* Address Incrementing */ 299 unsigned dst_inc:1; 300 unsigned src_inc:1; 301 302 /* 303 * For now, the SRC & DST protection levels 304 * and burst size/length are assumed same. 305 */ 306 bool nonsecure; 307 bool privileged; 308 bool insnaccess; 309 unsigned brst_len:5; 310 unsigned brst_size:3; /* in power of 2 */ 311 312 enum pl330_cachectrl dcctl; 313 enum pl330_cachectrl scctl; 314 enum pl330_byteswap swap; 315 struct pl330_config *pcfg; 316 }; 317 318 /* 319 * One cycle of DMAC operation. 320 * There may be more than one xfer in a request. 321 */ 322 struct pl330_xfer { 323 u32 src_addr; 324 u32 dst_addr; 325 /* Size to xfer */ 326 u32 bytes; 327 }; 328 329 /* The xfer callbacks are made with one of these arguments. */ 330 enum pl330_op_err { 331 /* The all xfers in the request were success. */ 332 PL330_ERR_NONE, 333 /* If req aborted due to global error. */ 334 PL330_ERR_ABORT, 335 /* If req failed due to problem with Channel. */ 336 PL330_ERR_FAIL, 337 }; 338 339 enum dmamov_dst { 340 SAR = 0, 341 CCR, 342 DAR, 343 }; 344 345 enum pl330_dst { 346 SRC = 0, 347 DST, 348 }; 349 350 enum pl330_cond { 351 SINGLE, 352 BURST, 353 ALWAYS, 354 }; 355 356 struct dma_pl330_desc; 357 358 struct _pl330_req { 359 u32 mc_bus; 360 void *mc_cpu; 361 struct dma_pl330_desc *desc; 362 }; 363 364 /* ToBeDone for tasklet */ 365 struct _pl330_tbd { 366 bool reset_dmac; 367 bool reset_mngr; 368 u8 reset_chan; 369 }; 370 371 /* A DMAC Thread */ 372 struct pl330_thread { 373 u8 id; 374 int ev; 375 /* If the channel is not yet acquired by any client */ 376 bool free; 377 /* Parent DMAC */ 378 struct pl330_dmac *dmac; 379 /* Only two at a time */ 380 struct _pl330_req req[2]; 381 /* Index of the last enqueued request */ 382 unsigned lstenq; 383 /* Index of the last submitted request or -1 if the DMA is stopped */ 384 int req_running; 385 }; 386 387 enum pl330_dmac_state { 388 UNINIT, 389 INIT, 390 DYING, 391 }; 392 393 enum desc_status { 394 /* In the DMAC pool */ 395 FREE, 396 /* 397 * Allocated to some channel during prep_xxx 398 * Also may be sitting on the work_list. 399 */ 400 PREP, 401 /* 402 * Sitting on the work_list and already submitted 403 * to the PL330 core. Not more than two descriptors 404 * of a channel can be BUSY at any time. 405 */ 406 BUSY, 407 /* 408 * Sitting on the channel work_list but xfer done 409 * by PL330 core 410 */ 411 DONE, 412 }; 413 414 struct dma_pl330_chan { 415 /* Schedule desc completion */ 416 struct tasklet_struct task; 417 418 /* DMA-Engine Channel */ 419 struct dma_chan chan; 420 421 /* List of submitted descriptors */ 422 struct list_head submitted_list; 423 /* List of issued descriptors */ 424 struct list_head work_list; 425 /* List of completed descriptors */ 426 struct list_head completed_list; 427 428 /* Pointer to the DMAC that manages this channel, 429 * NULL if the channel is available to be acquired. 430 * As the parent, this DMAC also provides descriptors 431 * to the channel. 432 */ 433 struct pl330_dmac *dmac; 434 435 /* To protect channel manipulation */ 436 spinlock_t lock; 437 438 /* 439 * Hardware channel thread of PL330 DMAC. NULL if the channel is 440 * available. 441 */ 442 struct pl330_thread *thread; 443 444 /* For D-to-M and M-to-D channels */ 445 int burst_sz; /* the peripheral fifo width */ 446 int burst_len; /* the number of burst */ 447 phys_addr_t fifo_addr; 448 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ 449 dma_addr_t fifo_dma; 450 enum dma_data_direction dir; 451 452 /* for cyclic capability */ 453 bool cyclic; 454 455 /* for runtime pm tracking */ 456 bool active; 457 }; 458 459 struct pl330_dmac { 460 /* DMA-Engine Device */ 461 struct dma_device ddma; 462 463 /* Holds info about sg limitations */ 464 struct device_dma_parameters dma_parms; 465 466 /* Pool of descriptors available for the DMAC's channels */ 467 struct list_head desc_pool; 468 /* To protect desc_pool manipulation */ 469 spinlock_t pool_lock; 470 471 /* Size of MicroCode buffers for each channel. */ 472 unsigned mcbufsz; 473 /* ioremap'ed address of PL330 registers. */ 474 void __iomem *base; 475 /* Populated by the PL330 core driver during pl330_add */ 476 struct pl330_config pcfg; 477 478 spinlock_t lock; 479 /* Maximum possible events/irqs */ 480 int events[32]; 481 /* BUS address of MicroCode buffer */ 482 dma_addr_t mcode_bus; 483 /* CPU address of MicroCode buffer */ 484 void *mcode_cpu; 485 /* List of all Channel threads */ 486 struct pl330_thread *channels; 487 /* Pointer to the MANAGER thread */ 488 struct pl330_thread *manager; 489 /* To handle bad news in interrupt */ 490 struct tasklet_struct tasks; 491 struct _pl330_tbd dmac_tbd; 492 /* State of DMAC operation */ 493 enum pl330_dmac_state state; 494 /* Holds list of reqs with due callbacks */ 495 struct list_head req_done; 496 497 /* Peripheral channels connected to this DMAC */ 498 unsigned int num_peripherals; 499 struct dma_pl330_chan *peripherals; /* keep at end */ 500 int quirks; 501 }; 502 503 static struct pl330_of_quirks { 504 char *quirk; 505 int id; 506 } of_quirks[] = { 507 { 508 .quirk = "arm,pl330-broken-no-flushp", 509 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 510 } 511 }; 512 513 struct dma_pl330_desc { 514 /* To attach to a queue as child */ 515 struct list_head node; 516 517 /* Descriptor for the DMA Engine API */ 518 struct dma_async_tx_descriptor txd; 519 520 /* Xfer for PL330 core */ 521 struct pl330_xfer px; 522 523 struct pl330_reqcfg rqcfg; 524 525 enum desc_status status; 526 527 int bytes_requested; 528 bool last; 529 530 /* The channel which currently holds this desc */ 531 struct dma_pl330_chan *pchan; 532 533 enum dma_transfer_direction rqtype; 534 /* Index of peripheral for the xfer. */ 535 unsigned peri:5; 536 /* Hook to attach to DMAC's list of reqs with due callback */ 537 struct list_head rqd; 538 }; 539 540 struct _xfer_spec { 541 u32 ccr; 542 struct dma_pl330_desc *desc; 543 }; 544 545 static inline bool _queue_full(struct pl330_thread *thrd) 546 { 547 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 548 } 549 550 static inline bool is_manager(struct pl330_thread *thrd) 551 { 552 return thrd->dmac->manager == thrd; 553 } 554 555 /* If manager of the thread is in Non-Secure mode */ 556 static inline bool _manager_ns(struct pl330_thread *thrd) 557 { 558 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 559 } 560 561 static inline u32 get_revision(u32 periph_id) 562 { 563 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 564 } 565 566 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 567 { 568 if (dry_run) 569 return SZ_DMAEND; 570 571 buf[0] = CMD_DMAEND; 572 573 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 574 575 return SZ_DMAEND; 576 } 577 578 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 579 { 580 if (dry_run) 581 return SZ_DMAFLUSHP; 582 583 buf[0] = CMD_DMAFLUSHP; 584 585 peri &= 0x1f; 586 peri <<= 3; 587 buf[1] = peri; 588 589 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 590 591 return SZ_DMAFLUSHP; 592 } 593 594 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 595 { 596 if (dry_run) 597 return SZ_DMALD; 598 599 buf[0] = CMD_DMALD; 600 601 if (cond == SINGLE) 602 buf[0] |= (0 << 1) | (1 << 0); 603 else if (cond == BURST) 604 buf[0] |= (1 << 1) | (1 << 0); 605 606 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 607 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 608 609 return SZ_DMALD; 610 } 611 612 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 613 enum pl330_cond cond, u8 peri) 614 { 615 if (dry_run) 616 return SZ_DMALDP; 617 618 buf[0] = CMD_DMALDP; 619 620 if (cond == BURST) 621 buf[0] |= (1 << 1); 622 623 peri &= 0x1f; 624 peri <<= 3; 625 buf[1] = peri; 626 627 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 628 cond == SINGLE ? 'S' : 'B', peri >> 3); 629 630 return SZ_DMALDP; 631 } 632 633 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 634 unsigned loop, u8 cnt) 635 { 636 if (dry_run) 637 return SZ_DMALP; 638 639 buf[0] = CMD_DMALP; 640 641 if (loop) 642 buf[0] |= (1 << 1); 643 644 cnt--; /* DMAC increments by 1 internally */ 645 buf[1] = cnt; 646 647 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 648 649 return SZ_DMALP; 650 } 651 652 struct _arg_LPEND { 653 enum pl330_cond cond; 654 bool forever; 655 unsigned loop; 656 u8 bjump; 657 }; 658 659 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 660 const struct _arg_LPEND *arg) 661 { 662 enum pl330_cond cond = arg->cond; 663 bool forever = arg->forever; 664 unsigned loop = arg->loop; 665 u8 bjump = arg->bjump; 666 667 if (dry_run) 668 return SZ_DMALPEND; 669 670 buf[0] = CMD_DMALPEND; 671 672 if (loop) 673 buf[0] |= (1 << 2); 674 675 if (!forever) 676 buf[0] |= (1 << 4); 677 678 if (cond == SINGLE) 679 buf[0] |= (0 << 1) | (1 << 0); 680 else if (cond == BURST) 681 buf[0] |= (1 << 1) | (1 << 0); 682 683 buf[1] = bjump; 684 685 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 686 forever ? "FE" : "END", 687 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 688 loop ? '1' : '0', 689 bjump); 690 691 return SZ_DMALPEND; 692 } 693 694 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 695 { 696 if (dry_run) 697 return SZ_DMAKILL; 698 699 buf[0] = CMD_DMAKILL; 700 701 return SZ_DMAKILL; 702 } 703 704 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 705 enum dmamov_dst dst, u32 val) 706 { 707 if (dry_run) 708 return SZ_DMAMOV; 709 710 buf[0] = CMD_DMAMOV; 711 buf[1] = dst; 712 buf[2] = val; 713 buf[3] = val >> 8; 714 buf[4] = val >> 16; 715 buf[5] = val >> 24; 716 717 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 718 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 719 720 return SZ_DMAMOV; 721 } 722 723 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 724 { 725 if (dry_run) 726 return SZ_DMARMB; 727 728 buf[0] = CMD_DMARMB; 729 730 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 731 732 return SZ_DMARMB; 733 } 734 735 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 736 { 737 if (dry_run) 738 return SZ_DMASEV; 739 740 buf[0] = CMD_DMASEV; 741 742 ev &= 0x1f; 743 ev <<= 3; 744 buf[1] = ev; 745 746 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 747 748 return SZ_DMASEV; 749 } 750 751 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 752 { 753 if (dry_run) 754 return SZ_DMAST; 755 756 buf[0] = CMD_DMAST; 757 758 if (cond == SINGLE) 759 buf[0] |= (0 << 1) | (1 << 0); 760 else if (cond == BURST) 761 buf[0] |= (1 << 1) | (1 << 0); 762 763 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 764 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 765 766 return SZ_DMAST; 767 } 768 769 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 770 enum pl330_cond cond, u8 peri) 771 { 772 if (dry_run) 773 return SZ_DMASTP; 774 775 buf[0] = CMD_DMASTP; 776 777 if (cond == BURST) 778 buf[0] |= (1 << 1); 779 780 peri &= 0x1f; 781 peri <<= 3; 782 buf[1] = peri; 783 784 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 785 cond == SINGLE ? 'S' : 'B', peri >> 3); 786 787 return SZ_DMASTP; 788 } 789 790 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 791 enum pl330_cond cond, u8 peri) 792 { 793 if (dry_run) 794 return SZ_DMAWFP; 795 796 buf[0] = CMD_DMAWFP; 797 798 if (cond == SINGLE) 799 buf[0] |= (0 << 1) | (0 << 0); 800 else if (cond == BURST) 801 buf[0] |= (1 << 1) | (0 << 0); 802 else 803 buf[0] |= (0 << 1) | (1 << 0); 804 805 peri &= 0x1f; 806 peri <<= 3; 807 buf[1] = peri; 808 809 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 810 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 811 812 return SZ_DMAWFP; 813 } 814 815 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 816 { 817 if (dry_run) 818 return SZ_DMAWMB; 819 820 buf[0] = CMD_DMAWMB; 821 822 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 823 824 return SZ_DMAWMB; 825 } 826 827 struct _arg_GO { 828 u8 chan; 829 u32 addr; 830 unsigned ns; 831 }; 832 833 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 834 const struct _arg_GO *arg) 835 { 836 u8 chan = arg->chan; 837 u32 addr = arg->addr; 838 unsigned ns = arg->ns; 839 840 if (dry_run) 841 return SZ_DMAGO; 842 843 buf[0] = CMD_DMAGO; 844 buf[0] |= (ns << 1); 845 buf[1] = chan & 0x7; 846 buf[2] = addr; 847 buf[3] = addr >> 8; 848 buf[4] = addr >> 16; 849 buf[5] = addr >> 24; 850 851 return SZ_DMAGO; 852 } 853 854 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 855 856 /* Returns Time-Out */ 857 static bool _until_dmac_idle(struct pl330_thread *thrd) 858 { 859 void __iomem *regs = thrd->dmac->base; 860 unsigned long loops = msecs_to_loops(5); 861 862 do { 863 /* Until Manager is Idle */ 864 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 865 break; 866 867 cpu_relax(); 868 } while (--loops); 869 870 if (!loops) 871 return true; 872 873 return false; 874 } 875 876 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 877 u8 insn[], bool as_manager) 878 { 879 void __iomem *regs = thrd->dmac->base; 880 u32 val; 881 882 val = (insn[0] << 16) | (insn[1] << 24); 883 if (!as_manager) { 884 val |= (1 << 0); 885 val |= (thrd->id << 8); /* Channel Number */ 886 } 887 writel(val, regs + DBGINST0); 888 889 val = le32_to_cpu(*((__le32 *)&insn[2])); 890 writel(val, regs + DBGINST1); 891 892 /* If timed out due to halted state-machine */ 893 if (_until_dmac_idle(thrd)) { 894 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 895 return; 896 } 897 898 /* Get going */ 899 writel(0, regs + DBGCMD); 900 } 901 902 static inline u32 _state(struct pl330_thread *thrd) 903 { 904 void __iomem *regs = thrd->dmac->base; 905 u32 val; 906 907 if (is_manager(thrd)) 908 val = readl(regs + DS) & 0xf; 909 else 910 val = readl(regs + CS(thrd->id)) & 0xf; 911 912 switch (val) { 913 case DS_ST_STOP: 914 return PL330_STATE_STOPPED; 915 case DS_ST_EXEC: 916 return PL330_STATE_EXECUTING; 917 case DS_ST_CMISS: 918 return PL330_STATE_CACHEMISS; 919 case DS_ST_UPDTPC: 920 return PL330_STATE_UPDTPC; 921 case DS_ST_WFE: 922 return PL330_STATE_WFE; 923 case DS_ST_FAULT: 924 return PL330_STATE_FAULTING; 925 case DS_ST_ATBRR: 926 if (is_manager(thrd)) 927 return PL330_STATE_INVALID; 928 else 929 return PL330_STATE_ATBARRIER; 930 case DS_ST_QBUSY: 931 if (is_manager(thrd)) 932 return PL330_STATE_INVALID; 933 else 934 return PL330_STATE_QUEUEBUSY; 935 case DS_ST_WFP: 936 if (is_manager(thrd)) 937 return PL330_STATE_INVALID; 938 else 939 return PL330_STATE_WFP; 940 case DS_ST_KILL: 941 if (is_manager(thrd)) 942 return PL330_STATE_INVALID; 943 else 944 return PL330_STATE_KILLING; 945 case DS_ST_CMPLT: 946 if (is_manager(thrd)) 947 return PL330_STATE_INVALID; 948 else 949 return PL330_STATE_COMPLETING; 950 case DS_ST_FLTCMP: 951 if (is_manager(thrd)) 952 return PL330_STATE_INVALID; 953 else 954 return PL330_STATE_FAULT_COMPLETING; 955 default: 956 return PL330_STATE_INVALID; 957 } 958 } 959 960 static void _stop(struct pl330_thread *thrd) 961 { 962 void __iomem *regs = thrd->dmac->base; 963 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 964 965 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 966 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 967 968 /* Return if nothing needs to be done */ 969 if (_state(thrd) == PL330_STATE_COMPLETING 970 || _state(thrd) == PL330_STATE_KILLING 971 || _state(thrd) == PL330_STATE_STOPPED) 972 return; 973 974 _emit_KILL(0, insn); 975 976 /* Stop generating interrupts for SEV */ 977 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 978 979 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 980 } 981 982 /* Start doing req 'idx' of thread 'thrd' */ 983 static bool _trigger(struct pl330_thread *thrd) 984 { 985 void __iomem *regs = thrd->dmac->base; 986 struct _pl330_req *req; 987 struct dma_pl330_desc *desc; 988 struct _arg_GO go; 989 unsigned ns; 990 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 991 int idx; 992 993 /* Return if already ACTIVE */ 994 if (_state(thrd) != PL330_STATE_STOPPED) 995 return true; 996 997 idx = 1 - thrd->lstenq; 998 if (thrd->req[idx].desc != NULL) { 999 req = &thrd->req[idx]; 1000 } else { 1001 idx = thrd->lstenq; 1002 if (thrd->req[idx].desc != NULL) 1003 req = &thrd->req[idx]; 1004 else 1005 req = NULL; 1006 } 1007 1008 /* Return if no request */ 1009 if (!req) 1010 return true; 1011 1012 /* Return if req is running */ 1013 if (idx == thrd->req_running) 1014 return true; 1015 1016 desc = req->desc; 1017 1018 ns = desc->rqcfg.nonsecure ? 1 : 0; 1019 1020 /* See 'Abort Sources' point-4 at Page 2-25 */ 1021 if (_manager_ns(thrd) && !ns) 1022 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1023 __func__, __LINE__); 1024 1025 go.chan = thrd->id; 1026 go.addr = req->mc_bus; 1027 go.ns = ns; 1028 _emit_GO(0, insn, &go); 1029 1030 /* Set to generate interrupts for SEV */ 1031 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1032 1033 /* Only manager can execute GO */ 1034 _execute_DBGINSN(thrd, insn, true); 1035 1036 thrd->req_running = idx; 1037 1038 return true; 1039 } 1040 1041 static bool _start(struct pl330_thread *thrd) 1042 { 1043 switch (_state(thrd)) { 1044 case PL330_STATE_FAULT_COMPLETING: 1045 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1046 1047 if (_state(thrd) == PL330_STATE_KILLING) 1048 UNTIL(thrd, PL330_STATE_STOPPED) 1049 /* fall through */ 1050 1051 case PL330_STATE_FAULTING: 1052 _stop(thrd); 1053 /* fall through */ 1054 1055 case PL330_STATE_KILLING: 1056 case PL330_STATE_COMPLETING: 1057 UNTIL(thrd, PL330_STATE_STOPPED) 1058 /* fall through */ 1059 1060 case PL330_STATE_STOPPED: 1061 return _trigger(thrd); 1062 1063 case PL330_STATE_WFP: 1064 case PL330_STATE_QUEUEBUSY: 1065 case PL330_STATE_ATBARRIER: 1066 case PL330_STATE_UPDTPC: 1067 case PL330_STATE_CACHEMISS: 1068 case PL330_STATE_EXECUTING: 1069 return true; 1070 1071 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1072 default: 1073 return false; 1074 } 1075 } 1076 1077 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1078 const struct _xfer_spec *pxs, int cyc) 1079 { 1080 int off = 0; 1081 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1082 1083 /* check lock-up free version */ 1084 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1085 while (cyc--) { 1086 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1087 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1088 } 1089 } else { 1090 while (cyc--) { 1091 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1092 off += _emit_RMB(dry_run, &buf[off]); 1093 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1094 off += _emit_WMB(dry_run, &buf[off]); 1095 } 1096 } 1097 1098 return off; 1099 } 1100 1101 static u32 _emit_load(unsigned int dry_run, u8 buf[], 1102 enum pl330_cond cond, enum dma_transfer_direction direction, 1103 u8 peri) 1104 { 1105 int off = 0; 1106 1107 switch (direction) { 1108 case DMA_MEM_TO_MEM: 1109 /* fall through */ 1110 case DMA_MEM_TO_DEV: 1111 off += _emit_LD(dry_run, &buf[off], cond); 1112 break; 1113 1114 case DMA_DEV_TO_MEM: 1115 if (cond == ALWAYS) { 1116 off += _emit_LDP(dry_run, &buf[off], SINGLE, 1117 peri); 1118 off += _emit_LDP(dry_run, &buf[off], BURST, 1119 peri); 1120 } else { 1121 off += _emit_LDP(dry_run, &buf[off], cond, 1122 peri); 1123 } 1124 break; 1125 1126 default: 1127 /* this code should be unreachable */ 1128 WARN_ON(1); 1129 break; 1130 } 1131 1132 return off; 1133 } 1134 1135 static inline u32 _emit_store(unsigned int dry_run, u8 buf[], 1136 enum pl330_cond cond, enum dma_transfer_direction direction, 1137 u8 peri) 1138 { 1139 int off = 0; 1140 1141 switch (direction) { 1142 case DMA_MEM_TO_MEM: 1143 /* fall through */ 1144 case DMA_DEV_TO_MEM: 1145 off += _emit_ST(dry_run, &buf[off], cond); 1146 break; 1147 1148 case DMA_MEM_TO_DEV: 1149 if (cond == ALWAYS) { 1150 off += _emit_STP(dry_run, &buf[off], SINGLE, 1151 peri); 1152 off += _emit_STP(dry_run, &buf[off], BURST, 1153 peri); 1154 } else { 1155 off += _emit_STP(dry_run, &buf[off], cond, 1156 peri); 1157 } 1158 break; 1159 1160 default: 1161 /* this code should be unreachable */ 1162 WARN_ON(1); 1163 break; 1164 } 1165 1166 return off; 1167 } 1168 1169 static inline int _ldst_peripheral(struct pl330_dmac *pl330, 1170 unsigned dry_run, u8 buf[], 1171 const struct _xfer_spec *pxs, int cyc, 1172 enum pl330_cond cond) 1173 { 1174 int off = 0; 1175 1176 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 1177 cond = BURST; 1178 1179 /* 1180 * do FLUSHP at beginning to clear any stale dma requests before the 1181 * first WFP. 1182 */ 1183 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1184 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1185 while (cyc--) { 1186 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1187 off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype, 1188 pxs->desc->peri); 1189 off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype, 1190 pxs->desc->peri); 1191 } 1192 1193 return off; 1194 } 1195 1196 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1197 const struct _xfer_spec *pxs, int cyc) 1198 { 1199 int off = 0; 1200 enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE; 1201 1202 switch (pxs->desc->rqtype) { 1203 case DMA_MEM_TO_DEV: 1204 /* fall through */ 1205 case DMA_DEV_TO_MEM: 1206 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc, 1207 cond); 1208 break; 1209 1210 case DMA_MEM_TO_MEM: 1211 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1212 break; 1213 1214 default: 1215 /* this code should be unreachable */ 1216 WARN_ON(1); 1217 break; 1218 } 1219 1220 return off; 1221 } 1222 1223 /* 1224 * transfer dregs with single transfers to peripheral, or a reduced size burst 1225 * for mem-to-mem. 1226 */ 1227 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[], 1228 const struct _xfer_spec *pxs, int transfer_length) 1229 { 1230 int off = 0; 1231 int dregs_ccr; 1232 1233 if (transfer_length == 0) 1234 return off; 1235 1236 switch (pxs->desc->rqtype) { 1237 case DMA_MEM_TO_DEV: 1238 /* fall through */ 1239 case DMA_DEV_TO_MEM: 1240 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1241 transfer_length, SINGLE); 1242 break; 1243 1244 case DMA_MEM_TO_MEM: 1245 dregs_ccr = pxs->ccr; 1246 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) | 1247 (0xf << CC_DSTBRSTLEN_SHFT)); 1248 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1249 CC_SRCBRSTLEN_SHFT); 1250 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1251 CC_DSTBRSTLEN_SHFT); 1252 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1253 off += _ldst_memtomem(dry_run, &buf[off], pxs, 1); 1254 break; 1255 1256 default: 1257 /* this code should be unreachable */ 1258 WARN_ON(1); 1259 break; 1260 } 1261 1262 return off; 1263 } 1264 1265 /* Returns bytes consumed and updates bursts */ 1266 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1267 unsigned long *bursts, const struct _xfer_spec *pxs) 1268 { 1269 int cyc, cycmax, szlp, szlpend, szbrst, off; 1270 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1271 struct _arg_LPEND lpend; 1272 1273 if (*bursts == 1) 1274 return _bursts(pl330, dry_run, buf, pxs, 1); 1275 1276 /* Max iterations possible in DMALP is 256 */ 1277 if (*bursts >= 256*256) { 1278 lcnt1 = 256; 1279 lcnt0 = 256; 1280 cyc = *bursts / lcnt1 / lcnt0; 1281 } else if (*bursts > 256) { 1282 lcnt1 = 256; 1283 lcnt0 = *bursts / lcnt1; 1284 cyc = 1; 1285 } else { 1286 lcnt1 = *bursts; 1287 lcnt0 = 0; 1288 cyc = 1; 1289 } 1290 1291 szlp = _emit_LP(1, buf, 0, 0); 1292 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1293 1294 lpend.cond = ALWAYS; 1295 lpend.forever = false; 1296 lpend.loop = 0; 1297 lpend.bjump = 0; 1298 szlpend = _emit_LPEND(1, buf, &lpend); 1299 1300 if (lcnt0) { 1301 szlp *= 2; 1302 szlpend *= 2; 1303 } 1304 1305 /* 1306 * Max bursts that we can unroll due to limit on the 1307 * size of backward jump that can be encoded in DMALPEND 1308 * which is 8-bits and hence 255 1309 */ 1310 cycmax = (255 - (szlp + szlpend)) / szbrst; 1311 1312 cyc = (cycmax < cyc) ? cycmax : cyc; 1313 1314 off = 0; 1315 1316 if (lcnt0) { 1317 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1318 ljmp0 = off; 1319 } 1320 1321 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1322 ljmp1 = off; 1323 1324 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1325 1326 lpend.cond = ALWAYS; 1327 lpend.forever = false; 1328 lpend.loop = 1; 1329 lpend.bjump = off - ljmp1; 1330 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1331 1332 if (lcnt0) { 1333 lpend.cond = ALWAYS; 1334 lpend.forever = false; 1335 lpend.loop = 0; 1336 lpend.bjump = off - ljmp0; 1337 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1338 } 1339 1340 *bursts = lcnt1 * cyc; 1341 if (lcnt0) 1342 *bursts *= lcnt0; 1343 1344 return off; 1345 } 1346 1347 static inline int _setup_loops(struct pl330_dmac *pl330, 1348 unsigned dry_run, u8 buf[], 1349 const struct _xfer_spec *pxs) 1350 { 1351 struct pl330_xfer *x = &pxs->desc->px; 1352 u32 ccr = pxs->ccr; 1353 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1354 int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) / 1355 BRST_SIZE(ccr); 1356 int off = 0; 1357 1358 while (bursts) { 1359 c = bursts; 1360 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1361 bursts -= c; 1362 } 1363 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs); 1364 1365 return off; 1366 } 1367 1368 static inline int _setup_xfer(struct pl330_dmac *pl330, 1369 unsigned dry_run, u8 buf[], 1370 const struct _xfer_spec *pxs) 1371 { 1372 struct pl330_xfer *x = &pxs->desc->px; 1373 int off = 0; 1374 1375 /* DMAMOV SAR, x->src_addr */ 1376 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1377 /* DMAMOV DAR, x->dst_addr */ 1378 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1379 1380 /* Setup Loop(s) */ 1381 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1382 1383 return off; 1384 } 1385 1386 /* 1387 * A req is a sequence of one or more xfer units. 1388 * Returns the number of bytes taken to setup the MC for the req. 1389 */ 1390 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1391 struct pl330_thread *thrd, unsigned index, 1392 struct _xfer_spec *pxs) 1393 { 1394 struct _pl330_req *req = &thrd->req[index]; 1395 u8 *buf = req->mc_cpu; 1396 int off = 0; 1397 1398 PL330_DBGMC_START(req->mc_bus); 1399 1400 /* DMAMOV CCR, ccr */ 1401 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1402 1403 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1404 1405 /* DMASEV peripheral/event */ 1406 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1407 /* DMAEND */ 1408 off += _emit_END(dry_run, &buf[off]); 1409 1410 return off; 1411 } 1412 1413 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1414 { 1415 u32 ccr = 0; 1416 1417 if (rqc->src_inc) 1418 ccr |= CC_SRCINC; 1419 1420 if (rqc->dst_inc) 1421 ccr |= CC_DSTINC; 1422 1423 /* We set same protection levels for Src and DST for now */ 1424 if (rqc->privileged) 1425 ccr |= CC_SRCPRI | CC_DSTPRI; 1426 if (rqc->nonsecure) 1427 ccr |= CC_SRCNS | CC_DSTNS; 1428 if (rqc->insnaccess) 1429 ccr |= CC_SRCIA | CC_DSTIA; 1430 1431 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1432 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1433 1434 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1435 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1436 1437 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1438 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1439 1440 ccr |= (rqc->swap << CC_SWAP_SHFT); 1441 1442 return ccr; 1443 } 1444 1445 /* 1446 * Submit a list of xfers after which the client wants notification. 1447 * Client is not notified after each xfer unit, just once after all 1448 * xfer units are done or some error occurs. 1449 */ 1450 static int pl330_submit_req(struct pl330_thread *thrd, 1451 struct dma_pl330_desc *desc) 1452 { 1453 struct pl330_dmac *pl330 = thrd->dmac; 1454 struct _xfer_spec xs; 1455 unsigned long flags; 1456 unsigned idx; 1457 u32 ccr; 1458 int ret = 0; 1459 1460 switch (desc->rqtype) { 1461 case DMA_MEM_TO_DEV: 1462 break; 1463 1464 case DMA_DEV_TO_MEM: 1465 break; 1466 1467 case DMA_MEM_TO_MEM: 1468 break; 1469 1470 default: 1471 return -ENOTSUPP; 1472 } 1473 1474 if (pl330->state == DYING 1475 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1476 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1477 __func__, __LINE__); 1478 return -EAGAIN; 1479 } 1480 1481 /* If request for non-existing peripheral */ 1482 if (desc->rqtype != DMA_MEM_TO_MEM && 1483 desc->peri >= pl330->pcfg.num_peri) { 1484 dev_info(thrd->dmac->ddma.dev, 1485 "%s:%d Invalid peripheral(%u)!\n", 1486 __func__, __LINE__, desc->peri); 1487 return -EINVAL; 1488 } 1489 1490 spin_lock_irqsave(&pl330->lock, flags); 1491 1492 if (_queue_full(thrd)) { 1493 ret = -EAGAIN; 1494 goto xfer_exit; 1495 } 1496 1497 /* Prefer Secure Channel */ 1498 if (!_manager_ns(thrd)) 1499 desc->rqcfg.nonsecure = 0; 1500 else 1501 desc->rqcfg.nonsecure = 1; 1502 1503 ccr = _prepare_ccr(&desc->rqcfg); 1504 1505 idx = thrd->req[0].desc == NULL ? 0 : 1; 1506 1507 xs.ccr = ccr; 1508 xs.desc = desc; 1509 1510 /* First dry run to check if req is acceptable */ 1511 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1512 if (ret < 0) 1513 goto xfer_exit; 1514 1515 if (ret > pl330->mcbufsz / 2) { 1516 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1517 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1518 ret = -ENOMEM; 1519 goto xfer_exit; 1520 } 1521 1522 /* Hook the request */ 1523 thrd->lstenq = idx; 1524 thrd->req[idx].desc = desc; 1525 _setup_req(pl330, 0, thrd, idx, &xs); 1526 1527 ret = 0; 1528 1529 xfer_exit: 1530 spin_unlock_irqrestore(&pl330->lock, flags); 1531 1532 return ret; 1533 } 1534 1535 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1536 { 1537 struct dma_pl330_chan *pch; 1538 unsigned long flags; 1539 1540 if (!desc) 1541 return; 1542 1543 pch = desc->pchan; 1544 1545 /* If desc aborted */ 1546 if (!pch) 1547 return; 1548 1549 spin_lock_irqsave(&pch->lock, flags); 1550 1551 desc->status = DONE; 1552 1553 spin_unlock_irqrestore(&pch->lock, flags); 1554 1555 tasklet_schedule(&pch->task); 1556 } 1557 1558 static void pl330_dotask(unsigned long data) 1559 { 1560 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1561 unsigned long flags; 1562 int i; 1563 1564 spin_lock_irqsave(&pl330->lock, flags); 1565 1566 /* The DMAC itself gone nuts */ 1567 if (pl330->dmac_tbd.reset_dmac) { 1568 pl330->state = DYING; 1569 /* Reset the manager too */ 1570 pl330->dmac_tbd.reset_mngr = true; 1571 /* Clear the reset flag */ 1572 pl330->dmac_tbd.reset_dmac = false; 1573 } 1574 1575 if (pl330->dmac_tbd.reset_mngr) { 1576 _stop(pl330->manager); 1577 /* Reset all channels */ 1578 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1579 /* Clear the reset flag */ 1580 pl330->dmac_tbd.reset_mngr = false; 1581 } 1582 1583 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1584 1585 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1586 struct pl330_thread *thrd = &pl330->channels[i]; 1587 void __iomem *regs = pl330->base; 1588 enum pl330_op_err err; 1589 1590 _stop(thrd); 1591 1592 if (readl(regs + FSC) & (1 << thrd->id)) 1593 err = PL330_ERR_FAIL; 1594 else 1595 err = PL330_ERR_ABORT; 1596 1597 spin_unlock_irqrestore(&pl330->lock, flags); 1598 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1599 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1600 spin_lock_irqsave(&pl330->lock, flags); 1601 1602 thrd->req[0].desc = NULL; 1603 thrd->req[1].desc = NULL; 1604 thrd->req_running = -1; 1605 1606 /* Clear the reset flag */ 1607 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1608 } 1609 } 1610 1611 spin_unlock_irqrestore(&pl330->lock, flags); 1612 1613 return; 1614 } 1615 1616 /* Returns 1 if state was updated, 0 otherwise */ 1617 static int pl330_update(struct pl330_dmac *pl330) 1618 { 1619 struct dma_pl330_desc *descdone; 1620 unsigned long flags; 1621 void __iomem *regs; 1622 u32 val; 1623 int id, ev, ret = 0; 1624 1625 regs = pl330->base; 1626 1627 spin_lock_irqsave(&pl330->lock, flags); 1628 1629 val = readl(regs + FSM) & 0x1; 1630 if (val) 1631 pl330->dmac_tbd.reset_mngr = true; 1632 else 1633 pl330->dmac_tbd.reset_mngr = false; 1634 1635 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1636 pl330->dmac_tbd.reset_chan |= val; 1637 if (val) { 1638 int i = 0; 1639 while (i < pl330->pcfg.num_chan) { 1640 if (val & (1 << i)) { 1641 dev_info(pl330->ddma.dev, 1642 "Reset Channel-%d\t CS-%x FTC-%x\n", 1643 i, readl(regs + CS(i)), 1644 readl(regs + FTC(i))); 1645 _stop(&pl330->channels[i]); 1646 } 1647 i++; 1648 } 1649 } 1650 1651 /* Check which event happened i.e, thread notified */ 1652 val = readl(regs + ES); 1653 if (pl330->pcfg.num_events < 32 1654 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1655 pl330->dmac_tbd.reset_dmac = true; 1656 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1657 __LINE__); 1658 ret = 1; 1659 goto updt_exit; 1660 } 1661 1662 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1663 if (val & (1 << ev)) { /* Event occurred */ 1664 struct pl330_thread *thrd; 1665 u32 inten = readl(regs + INTEN); 1666 int active; 1667 1668 /* Clear the event */ 1669 if (inten & (1 << ev)) 1670 writel(1 << ev, regs + INTCLR); 1671 1672 ret = 1; 1673 1674 id = pl330->events[ev]; 1675 1676 thrd = &pl330->channels[id]; 1677 1678 active = thrd->req_running; 1679 if (active == -1) /* Aborted */ 1680 continue; 1681 1682 /* Detach the req */ 1683 descdone = thrd->req[active].desc; 1684 thrd->req[active].desc = NULL; 1685 1686 thrd->req_running = -1; 1687 1688 /* Get going again ASAP */ 1689 _start(thrd); 1690 1691 /* For now, just make a list of callbacks to be done */ 1692 list_add_tail(&descdone->rqd, &pl330->req_done); 1693 } 1694 } 1695 1696 /* Now that we are in no hurry, do the callbacks */ 1697 while (!list_empty(&pl330->req_done)) { 1698 descdone = list_first_entry(&pl330->req_done, 1699 struct dma_pl330_desc, rqd); 1700 list_del(&descdone->rqd); 1701 spin_unlock_irqrestore(&pl330->lock, flags); 1702 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1703 spin_lock_irqsave(&pl330->lock, flags); 1704 } 1705 1706 updt_exit: 1707 spin_unlock_irqrestore(&pl330->lock, flags); 1708 1709 if (pl330->dmac_tbd.reset_dmac 1710 || pl330->dmac_tbd.reset_mngr 1711 || pl330->dmac_tbd.reset_chan) { 1712 ret = 1; 1713 tasklet_schedule(&pl330->tasks); 1714 } 1715 1716 return ret; 1717 } 1718 1719 /* Reserve an event */ 1720 static inline int _alloc_event(struct pl330_thread *thrd) 1721 { 1722 struct pl330_dmac *pl330 = thrd->dmac; 1723 int ev; 1724 1725 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1726 if (pl330->events[ev] == -1) { 1727 pl330->events[ev] = thrd->id; 1728 return ev; 1729 } 1730 1731 return -1; 1732 } 1733 1734 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1735 { 1736 return pl330->pcfg.irq_ns & (1 << i); 1737 } 1738 1739 /* Upon success, returns IdentityToken for the 1740 * allocated channel, NULL otherwise. 1741 */ 1742 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1743 { 1744 struct pl330_thread *thrd = NULL; 1745 int chans, i; 1746 1747 if (pl330->state == DYING) 1748 return NULL; 1749 1750 chans = pl330->pcfg.num_chan; 1751 1752 for (i = 0; i < chans; i++) { 1753 thrd = &pl330->channels[i]; 1754 if ((thrd->free) && (!_manager_ns(thrd) || 1755 _chan_ns(pl330, i))) { 1756 thrd->ev = _alloc_event(thrd); 1757 if (thrd->ev >= 0) { 1758 thrd->free = false; 1759 thrd->lstenq = 1; 1760 thrd->req[0].desc = NULL; 1761 thrd->req[1].desc = NULL; 1762 thrd->req_running = -1; 1763 break; 1764 } 1765 } 1766 thrd = NULL; 1767 } 1768 1769 return thrd; 1770 } 1771 1772 /* Release an event */ 1773 static inline void _free_event(struct pl330_thread *thrd, int ev) 1774 { 1775 struct pl330_dmac *pl330 = thrd->dmac; 1776 1777 /* If the event is valid and was held by the thread */ 1778 if (ev >= 0 && ev < pl330->pcfg.num_events 1779 && pl330->events[ev] == thrd->id) 1780 pl330->events[ev] = -1; 1781 } 1782 1783 static void pl330_release_channel(struct pl330_thread *thrd) 1784 { 1785 if (!thrd || thrd->free) 1786 return; 1787 1788 _stop(thrd); 1789 1790 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1791 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1792 1793 _free_event(thrd, thrd->ev); 1794 thrd->free = true; 1795 } 1796 1797 /* Initialize the structure for PL330 configuration, that can be used 1798 * by the client driver the make best use of the DMAC 1799 */ 1800 static void read_dmac_config(struct pl330_dmac *pl330) 1801 { 1802 void __iomem *regs = pl330->base; 1803 u32 val; 1804 1805 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1806 val &= CRD_DATA_WIDTH_MASK; 1807 pl330->pcfg.data_bus_width = 8 * (1 << val); 1808 1809 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1810 val &= CRD_DATA_BUFF_MASK; 1811 pl330->pcfg.data_buf_dep = val + 1; 1812 1813 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1814 val &= CR0_NUM_CHANS_MASK; 1815 val += 1; 1816 pl330->pcfg.num_chan = val; 1817 1818 val = readl(regs + CR0); 1819 if (val & CR0_PERIPH_REQ_SET) { 1820 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1821 val += 1; 1822 pl330->pcfg.num_peri = val; 1823 pl330->pcfg.peri_ns = readl(regs + CR4); 1824 } else { 1825 pl330->pcfg.num_peri = 0; 1826 } 1827 1828 val = readl(regs + CR0); 1829 if (val & CR0_BOOT_MAN_NS) 1830 pl330->pcfg.mode |= DMAC_MODE_NS; 1831 else 1832 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1833 1834 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1835 val &= CR0_NUM_EVENTS_MASK; 1836 val += 1; 1837 pl330->pcfg.num_events = val; 1838 1839 pl330->pcfg.irq_ns = readl(regs + CR3); 1840 } 1841 1842 static inline void _reset_thread(struct pl330_thread *thrd) 1843 { 1844 struct pl330_dmac *pl330 = thrd->dmac; 1845 1846 thrd->req[0].mc_cpu = pl330->mcode_cpu 1847 + (thrd->id * pl330->mcbufsz); 1848 thrd->req[0].mc_bus = pl330->mcode_bus 1849 + (thrd->id * pl330->mcbufsz); 1850 thrd->req[0].desc = NULL; 1851 1852 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1853 + pl330->mcbufsz / 2; 1854 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1855 + pl330->mcbufsz / 2; 1856 thrd->req[1].desc = NULL; 1857 1858 thrd->req_running = -1; 1859 } 1860 1861 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1862 { 1863 int chans = pl330->pcfg.num_chan; 1864 struct pl330_thread *thrd; 1865 int i; 1866 1867 /* Allocate 1 Manager and 'chans' Channel threads */ 1868 pl330->channels = kcalloc(1 + chans, sizeof(*thrd), 1869 GFP_KERNEL); 1870 if (!pl330->channels) 1871 return -ENOMEM; 1872 1873 /* Init Channel threads */ 1874 for (i = 0; i < chans; i++) { 1875 thrd = &pl330->channels[i]; 1876 thrd->id = i; 1877 thrd->dmac = pl330; 1878 _reset_thread(thrd); 1879 thrd->free = true; 1880 } 1881 1882 /* MANAGER is indexed at the end */ 1883 thrd = &pl330->channels[chans]; 1884 thrd->id = chans; 1885 thrd->dmac = pl330; 1886 thrd->free = false; 1887 pl330->manager = thrd; 1888 1889 return 0; 1890 } 1891 1892 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1893 { 1894 int chans = pl330->pcfg.num_chan; 1895 int ret; 1896 1897 /* 1898 * Alloc MicroCode buffer for 'chans' Channel threads. 1899 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1900 */ 1901 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, 1902 chans * pl330->mcbufsz, 1903 &pl330->mcode_bus, GFP_KERNEL, 1904 DMA_ATTR_PRIVILEGED); 1905 if (!pl330->mcode_cpu) { 1906 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1907 __func__, __LINE__); 1908 return -ENOMEM; 1909 } 1910 1911 ret = dmac_alloc_threads(pl330); 1912 if (ret) { 1913 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1914 __func__, __LINE__); 1915 dma_free_coherent(pl330->ddma.dev, 1916 chans * pl330->mcbufsz, 1917 pl330->mcode_cpu, pl330->mcode_bus); 1918 return ret; 1919 } 1920 1921 return 0; 1922 } 1923 1924 static int pl330_add(struct pl330_dmac *pl330) 1925 { 1926 int i, ret; 1927 1928 /* Check if we can handle this DMAC */ 1929 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1930 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1931 pl330->pcfg.periph_id); 1932 return -EINVAL; 1933 } 1934 1935 /* Read the configuration of the DMAC */ 1936 read_dmac_config(pl330); 1937 1938 if (pl330->pcfg.num_events == 0) { 1939 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1940 __func__, __LINE__); 1941 return -EINVAL; 1942 } 1943 1944 spin_lock_init(&pl330->lock); 1945 1946 INIT_LIST_HEAD(&pl330->req_done); 1947 1948 /* Use default MC buffer size if not provided */ 1949 if (!pl330->mcbufsz) 1950 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1951 1952 /* Mark all events as free */ 1953 for (i = 0; i < pl330->pcfg.num_events; i++) 1954 pl330->events[i] = -1; 1955 1956 /* Allocate resources needed by the DMAC */ 1957 ret = dmac_alloc_resources(pl330); 1958 if (ret) { 1959 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1960 return ret; 1961 } 1962 1963 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1964 1965 pl330->state = INIT; 1966 1967 return 0; 1968 } 1969 1970 static int dmac_free_threads(struct pl330_dmac *pl330) 1971 { 1972 struct pl330_thread *thrd; 1973 int i; 1974 1975 /* Release Channel threads */ 1976 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1977 thrd = &pl330->channels[i]; 1978 pl330_release_channel(thrd); 1979 } 1980 1981 /* Free memory */ 1982 kfree(pl330->channels); 1983 1984 return 0; 1985 } 1986 1987 static void pl330_del(struct pl330_dmac *pl330) 1988 { 1989 pl330->state = UNINIT; 1990 1991 tasklet_kill(&pl330->tasks); 1992 1993 /* Free DMAC resources */ 1994 dmac_free_threads(pl330); 1995 1996 dma_free_coherent(pl330->ddma.dev, 1997 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 1998 pl330->mcode_bus); 1999 } 2000 2001 /* forward declaration */ 2002 static struct amba_driver pl330_driver; 2003 2004 static inline struct dma_pl330_chan * 2005 to_pchan(struct dma_chan *ch) 2006 { 2007 if (!ch) 2008 return NULL; 2009 2010 return container_of(ch, struct dma_pl330_chan, chan); 2011 } 2012 2013 static inline struct dma_pl330_desc * 2014 to_desc(struct dma_async_tx_descriptor *tx) 2015 { 2016 return container_of(tx, struct dma_pl330_desc, txd); 2017 } 2018 2019 static inline void fill_queue(struct dma_pl330_chan *pch) 2020 { 2021 struct dma_pl330_desc *desc; 2022 int ret; 2023 2024 list_for_each_entry(desc, &pch->work_list, node) { 2025 2026 /* If already submitted */ 2027 if (desc->status == BUSY) 2028 continue; 2029 2030 ret = pl330_submit_req(pch->thread, desc); 2031 if (!ret) { 2032 desc->status = BUSY; 2033 } else if (ret == -EAGAIN) { 2034 /* QFull or DMAC Dying */ 2035 break; 2036 } else { 2037 /* Unacceptable request */ 2038 desc->status = DONE; 2039 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 2040 __func__, __LINE__, desc->txd.cookie); 2041 tasklet_schedule(&pch->task); 2042 } 2043 } 2044 } 2045 2046 static void pl330_tasklet(unsigned long data) 2047 { 2048 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2049 struct dma_pl330_desc *desc, *_dt; 2050 unsigned long flags; 2051 bool power_down = false; 2052 2053 spin_lock_irqsave(&pch->lock, flags); 2054 2055 /* Pick up ripe tomatoes */ 2056 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2057 if (desc->status == DONE) { 2058 if (!pch->cyclic) 2059 dma_cookie_complete(&desc->txd); 2060 list_move_tail(&desc->node, &pch->completed_list); 2061 } 2062 2063 /* Try to submit a req imm. next to the last completed cookie */ 2064 fill_queue(pch); 2065 2066 if (list_empty(&pch->work_list)) { 2067 spin_lock(&pch->thread->dmac->lock); 2068 _stop(pch->thread); 2069 spin_unlock(&pch->thread->dmac->lock); 2070 power_down = true; 2071 pch->active = false; 2072 } else { 2073 /* Make sure the PL330 Channel thread is active */ 2074 spin_lock(&pch->thread->dmac->lock); 2075 _start(pch->thread); 2076 spin_unlock(&pch->thread->dmac->lock); 2077 } 2078 2079 while (!list_empty(&pch->completed_list)) { 2080 struct dmaengine_desc_callback cb; 2081 2082 desc = list_first_entry(&pch->completed_list, 2083 struct dma_pl330_desc, node); 2084 2085 dmaengine_desc_get_callback(&desc->txd, &cb); 2086 2087 if (pch->cyclic) { 2088 desc->status = PREP; 2089 list_move_tail(&desc->node, &pch->work_list); 2090 if (power_down) { 2091 pch->active = true; 2092 spin_lock(&pch->thread->dmac->lock); 2093 _start(pch->thread); 2094 spin_unlock(&pch->thread->dmac->lock); 2095 power_down = false; 2096 } 2097 } else { 2098 desc->status = FREE; 2099 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2100 } 2101 2102 dma_descriptor_unmap(&desc->txd); 2103 2104 if (dmaengine_desc_callback_valid(&cb)) { 2105 spin_unlock_irqrestore(&pch->lock, flags); 2106 dmaengine_desc_callback_invoke(&cb, NULL); 2107 spin_lock_irqsave(&pch->lock, flags); 2108 } 2109 } 2110 spin_unlock_irqrestore(&pch->lock, flags); 2111 2112 /* If work list empty, power down */ 2113 if (power_down) { 2114 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2115 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2116 } 2117 } 2118 2119 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2120 struct of_dma *ofdma) 2121 { 2122 int count = dma_spec->args_count; 2123 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2124 unsigned int chan_id; 2125 2126 if (!pl330) 2127 return NULL; 2128 2129 if (count != 1) 2130 return NULL; 2131 2132 chan_id = dma_spec->args[0]; 2133 if (chan_id >= pl330->num_peripherals) 2134 return NULL; 2135 2136 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2137 } 2138 2139 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2140 { 2141 struct dma_pl330_chan *pch = to_pchan(chan); 2142 struct pl330_dmac *pl330 = pch->dmac; 2143 unsigned long flags; 2144 2145 spin_lock_irqsave(&pl330->lock, flags); 2146 2147 dma_cookie_init(chan); 2148 pch->cyclic = false; 2149 2150 pch->thread = pl330_request_channel(pl330); 2151 if (!pch->thread) { 2152 spin_unlock_irqrestore(&pl330->lock, flags); 2153 return -ENOMEM; 2154 } 2155 2156 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2157 2158 spin_unlock_irqrestore(&pl330->lock, flags); 2159 2160 return 1; 2161 } 2162 2163 /* 2164 * We need the data direction between the DMAC (the dma-mapping "device") and 2165 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! 2166 */ 2167 static enum dma_data_direction 2168 pl330_dma_slave_map_dir(enum dma_transfer_direction dir) 2169 { 2170 switch (dir) { 2171 case DMA_MEM_TO_DEV: 2172 return DMA_FROM_DEVICE; 2173 case DMA_DEV_TO_MEM: 2174 return DMA_TO_DEVICE; 2175 case DMA_DEV_TO_DEV: 2176 return DMA_BIDIRECTIONAL; 2177 default: 2178 return DMA_NONE; 2179 } 2180 } 2181 2182 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) 2183 { 2184 if (pch->dir != DMA_NONE) 2185 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 2186 1 << pch->burst_sz, pch->dir, 0); 2187 pch->dir = DMA_NONE; 2188 } 2189 2190 2191 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, 2192 enum dma_transfer_direction dir) 2193 { 2194 struct device *dev = pch->chan.device->dev; 2195 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); 2196 2197 /* Already mapped for this config? */ 2198 if (pch->dir == dma_dir) 2199 return true; 2200 2201 pl330_unprep_slave_fifo(pch); 2202 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 2203 1 << pch->burst_sz, dma_dir, 0); 2204 if (dma_mapping_error(dev, pch->fifo_dma)) 2205 return false; 2206 2207 pch->dir = dma_dir; 2208 return true; 2209 } 2210 2211 static int fixup_burst_len(int max_burst_len, int quirks) 2212 { 2213 if (quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 2214 return 1; 2215 else if (max_burst_len > PL330_MAX_BURST) 2216 return PL330_MAX_BURST; 2217 else if (max_burst_len < 1) 2218 return 1; 2219 else 2220 return max_burst_len; 2221 } 2222 2223 static int pl330_config(struct dma_chan *chan, 2224 struct dma_slave_config *slave_config) 2225 { 2226 struct dma_pl330_chan *pch = to_pchan(chan); 2227 2228 pl330_unprep_slave_fifo(pch); 2229 if (slave_config->direction == DMA_MEM_TO_DEV) { 2230 if (slave_config->dst_addr) 2231 pch->fifo_addr = slave_config->dst_addr; 2232 if (slave_config->dst_addr_width) 2233 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2234 pch->burst_len = fixup_burst_len(slave_config->dst_maxburst, 2235 pch->dmac->quirks); 2236 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2237 if (slave_config->src_addr) 2238 pch->fifo_addr = slave_config->src_addr; 2239 if (slave_config->src_addr_width) 2240 pch->burst_sz = __ffs(slave_config->src_addr_width); 2241 pch->burst_len = fixup_burst_len(slave_config->src_maxburst, 2242 pch->dmac->quirks); 2243 } 2244 2245 return 0; 2246 } 2247 2248 static int pl330_terminate_all(struct dma_chan *chan) 2249 { 2250 struct dma_pl330_chan *pch = to_pchan(chan); 2251 struct dma_pl330_desc *desc; 2252 unsigned long flags; 2253 struct pl330_dmac *pl330 = pch->dmac; 2254 LIST_HEAD(list); 2255 bool power_down = false; 2256 2257 pm_runtime_get_sync(pl330->ddma.dev); 2258 spin_lock_irqsave(&pch->lock, flags); 2259 2260 spin_lock(&pl330->lock); 2261 _stop(pch->thread); 2262 pch->thread->req[0].desc = NULL; 2263 pch->thread->req[1].desc = NULL; 2264 pch->thread->req_running = -1; 2265 spin_unlock(&pl330->lock); 2266 2267 power_down = pch->active; 2268 pch->active = false; 2269 2270 /* Mark all desc done */ 2271 list_for_each_entry(desc, &pch->submitted_list, node) { 2272 desc->status = FREE; 2273 dma_cookie_complete(&desc->txd); 2274 } 2275 2276 list_for_each_entry(desc, &pch->work_list , node) { 2277 desc->status = FREE; 2278 dma_cookie_complete(&desc->txd); 2279 } 2280 2281 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2282 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2283 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2284 spin_unlock_irqrestore(&pch->lock, flags); 2285 pm_runtime_mark_last_busy(pl330->ddma.dev); 2286 if (power_down) 2287 pm_runtime_put_autosuspend(pl330->ddma.dev); 2288 pm_runtime_put_autosuspend(pl330->ddma.dev); 2289 2290 return 0; 2291 } 2292 2293 /* 2294 * We don't support DMA_RESUME command because of hardware 2295 * limitations, so after pausing the channel we cannot restore 2296 * it to active state. We have to terminate channel and setup 2297 * DMA transfer again. This pause feature was implemented to 2298 * allow safely read residue before channel termination. 2299 */ 2300 static int pl330_pause(struct dma_chan *chan) 2301 { 2302 struct dma_pl330_chan *pch = to_pchan(chan); 2303 struct pl330_dmac *pl330 = pch->dmac; 2304 unsigned long flags; 2305 2306 pm_runtime_get_sync(pl330->ddma.dev); 2307 spin_lock_irqsave(&pch->lock, flags); 2308 2309 spin_lock(&pl330->lock); 2310 _stop(pch->thread); 2311 spin_unlock(&pl330->lock); 2312 2313 spin_unlock_irqrestore(&pch->lock, flags); 2314 pm_runtime_mark_last_busy(pl330->ddma.dev); 2315 pm_runtime_put_autosuspend(pl330->ddma.dev); 2316 2317 return 0; 2318 } 2319 2320 static void pl330_free_chan_resources(struct dma_chan *chan) 2321 { 2322 struct dma_pl330_chan *pch = to_pchan(chan); 2323 struct pl330_dmac *pl330 = pch->dmac; 2324 unsigned long flags; 2325 2326 tasklet_kill(&pch->task); 2327 2328 pm_runtime_get_sync(pch->dmac->ddma.dev); 2329 spin_lock_irqsave(&pl330->lock, flags); 2330 2331 pl330_release_channel(pch->thread); 2332 pch->thread = NULL; 2333 2334 if (pch->cyclic) 2335 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2336 2337 spin_unlock_irqrestore(&pl330->lock, flags); 2338 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2339 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2340 pl330_unprep_slave_fifo(pch); 2341 } 2342 2343 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2344 struct dma_pl330_desc *desc) 2345 { 2346 struct pl330_thread *thrd = pch->thread; 2347 struct pl330_dmac *pl330 = pch->dmac; 2348 void __iomem *regs = thrd->dmac->base; 2349 u32 val, addr; 2350 2351 pm_runtime_get_sync(pl330->ddma.dev); 2352 val = addr = 0; 2353 if (desc->rqcfg.src_inc) { 2354 val = readl(regs + SA(thrd->id)); 2355 addr = desc->px.src_addr; 2356 } else { 2357 val = readl(regs + DA(thrd->id)); 2358 addr = desc->px.dst_addr; 2359 } 2360 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2361 pm_runtime_put_autosuspend(pl330->ddma.dev); 2362 2363 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ 2364 if (!val) 2365 return 0; 2366 2367 return val - addr; 2368 } 2369 2370 static enum dma_status 2371 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2372 struct dma_tx_state *txstate) 2373 { 2374 enum dma_status ret; 2375 unsigned long flags; 2376 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; 2377 struct dma_pl330_chan *pch = to_pchan(chan); 2378 unsigned int transferred, residual = 0; 2379 2380 ret = dma_cookie_status(chan, cookie, txstate); 2381 2382 if (!txstate) 2383 return ret; 2384 2385 if (ret == DMA_COMPLETE) 2386 goto out; 2387 2388 spin_lock_irqsave(&pch->lock, flags); 2389 spin_lock(&pch->thread->dmac->lock); 2390 2391 if (pch->thread->req_running != -1) 2392 running = pch->thread->req[pch->thread->req_running].desc; 2393 2394 last_enq = pch->thread->req[pch->thread->lstenq].desc; 2395 2396 /* Check in pending list */ 2397 list_for_each_entry(desc, &pch->work_list, node) { 2398 if (desc->status == DONE) 2399 transferred = desc->bytes_requested; 2400 else if (running && desc == running) 2401 transferred = 2402 pl330_get_current_xferred_count(pch, desc); 2403 else if (desc->status == BUSY) 2404 /* 2405 * Busy but not running means either just enqueued, 2406 * or finished and not yet marked done 2407 */ 2408 if (desc == last_enq) 2409 transferred = 0; 2410 else 2411 transferred = desc->bytes_requested; 2412 else 2413 transferred = 0; 2414 residual += desc->bytes_requested - transferred; 2415 if (desc->txd.cookie == cookie) { 2416 switch (desc->status) { 2417 case DONE: 2418 ret = DMA_COMPLETE; 2419 break; 2420 case PREP: 2421 case BUSY: 2422 ret = DMA_IN_PROGRESS; 2423 break; 2424 default: 2425 WARN_ON(1); 2426 } 2427 break; 2428 } 2429 if (desc->last) 2430 residual = 0; 2431 } 2432 spin_unlock(&pch->thread->dmac->lock); 2433 spin_unlock_irqrestore(&pch->lock, flags); 2434 2435 out: 2436 dma_set_residue(txstate, residual); 2437 2438 return ret; 2439 } 2440 2441 static void pl330_issue_pending(struct dma_chan *chan) 2442 { 2443 struct dma_pl330_chan *pch = to_pchan(chan); 2444 unsigned long flags; 2445 2446 spin_lock_irqsave(&pch->lock, flags); 2447 if (list_empty(&pch->work_list)) { 2448 /* 2449 * Warn on nothing pending. Empty submitted_list may 2450 * break our pm_runtime usage counter as it is 2451 * updated on work_list emptiness status. 2452 */ 2453 WARN_ON(list_empty(&pch->submitted_list)); 2454 pch->active = true; 2455 pm_runtime_get_sync(pch->dmac->ddma.dev); 2456 } 2457 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2458 spin_unlock_irqrestore(&pch->lock, flags); 2459 2460 pl330_tasklet((unsigned long)pch); 2461 } 2462 2463 /* 2464 * We returned the last one of the circular list of descriptor(s) 2465 * from prep_xxx, so the argument to submit corresponds to the last 2466 * descriptor of the list. 2467 */ 2468 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2469 { 2470 struct dma_pl330_desc *desc, *last = to_desc(tx); 2471 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2472 dma_cookie_t cookie; 2473 unsigned long flags; 2474 2475 spin_lock_irqsave(&pch->lock, flags); 2476 2477 /* Assign cookies to all nodes */ 2478 while (!list_empty(&last->node)) { 2479 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2480 if (pch->cyclic) { 2481 desc->txd.callback = last->txd.callback; 2482 desc->txd.callback_param = last->txd.callback_param; 2483 } 2484 desc->last = false; 2485 2486 dma_cookie_assign(&desc->txd); 2487 2488 list_move_tail(&desc->node, &pch->submitted_list); 2489 } 2490 2491 last->last = true; 2492 cookie = dma_cookie_assign(&last->txd); 2493 list_add_tail(&last->node, &pch->submitted_list); 2494 spin_unlock_irqrestore(&pch->lock, flags); 2495 2496 return cookie; 2497 } 2498 2499 static inline void _init_desc(struct dma_pl330_desc *desc) 2500 { 2501 desc->rqcfg.swap = SWAP_NO; 2502 desc->rqcfg.scctl = CCTRL0; 2503 desc->rqcfg.dcctl = CCTRL0; 2504 desc->txd.tx_submit = pl330_tx_submit; 2505 2506 INIT_LIST_HEAD(&desc->node); 2507 } 2508 2509 /* Returns the number of descriptors added to the DMAC pool */ 2510 static int add_desc(struct list_head *pool, spinlock_t *lock, 2511 gfp_t flg, int count) 2512 { 2513 struct dma_pl330_desc *desc; 2514 unsigned long flags; 2515 int i; 2516 2517 desc = kcalloc(count, sizeof(*desc), flg); 2518 if (!desc) 2519 return 0; 2520 2521 spin_lock_irqsave(lock, flags); 2522 2523 for (i = 0; i < count; i++) { 2524 _init_desc(&desc[i]); 2525 list_add_tail(&desc[i].node, pool); 2526 } 2527 2528 spin_unlock_irqrestore(lock, flags); 2529 2530 return count; 2531 } 2532 2533 static struct dma_pl330_desc *pluck_desc(struct list_head *pool, 2534 spinlock_t *lock) 2535 { 2536 struct dma_pl330_desc *desc = NULL; 2537 unsigned long flags; 2538 2539 spin_lock_irqsave(lock, flags); 2540 2541 if (!list_empty(pool)) { 2542 desc = list_entry(pool->next, 2543 struct dma_pl330_desc, node); 2544 2545 list_del_init(&desc->node); 2546 2547 desc->status = PREP; 2548 desc->txd.callback = NULL; 2549 } 2550 2551 spin_unlock_irqrestore(lock, flags); 2552 2553 return desc; 2554 } 2555 2556 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2557 { 2558 struct pl330_dmac *pl330 = pch->dmac; 2559 u8 *peri_id = pch->chan.private; 2560 struct dma_pl330_desc *desc; 2561 2562 /* Pluck one desc from the pool of DMAC */ 2563 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock); 2564 2565 /* If the DMAC pool is empty, alloc new */ 2566 if (!desc) { 2567 DEFINE_SPINLOCK(lock); 2568 LIST_HEAD(pool); 2569 2570 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1)) 2571 return NULL; 2572 2573 desc = pluck_desc(&pool, &lock); 2574 WARN_ON(!desc || !list_empty(&pool)); 2575 } 2576 2577 /* Initialize the descriptor */ 2578 desc->pchan = pch; 2579 desc->txd.cookie = 0; 2580 async_tx_ack(&desc->txd); 2581 2582 desc->peri = peri_id ? pch->chan.chan_id : 0; 2583 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2584 2585 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2586 2587 return desc; 2588 } 2589 2590 static inline void fill_px(struct pl330_xfer *px, 2591 dma_addr_t dst, dma_addr_t src, size_t len) 2592 { 2593 px->bytes = len; 2594 px->dst_addr = dst; 2595 px->src_addr = src; 2596 } 2597 2598 static struct dma_pl330_desc * 2599 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2600 dma_addr_t src, size_t len) 2601 { 2602 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2603 2604 if (!desc) { 2605 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2606 __func__, __LINE__); 2607 return NULL; 2608 } 2609 2610 /* 2611 * Ideally we should lookout for reqs bigger than 2612 * those that can be programmed with 256 bytes of 2613 * MC buffer, but considering a req size is seldom 2614 * going to be word-unaligned and more than 200MB, 2615 * we take it easy. 2616 * Also, should the limit is reached we'd rather 2617 * have the platform increase MC buffer size than 2618 * complicating this API driver. 2619 */ 2620 fill_px(&desc->px, dst, src, len); 2621 2622 return desc; 2623 } 2624 2625 /* Call after fixing burst size */ 2626 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2627 { 2628 struct dma_pl330_chan *pch = desc->pchan; 2629 struct pl330_dmac *pl330 = pch->dmac; 2630 int burst_len; 2631 2632 burst_len = pl330->pcfg.data_bus_width / 8; 2633 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2634 burst_len >>= desc->rqcfg.brst_size; 2635 2636 /* src/dst_burst_len can't be more than 16 */ 2637 if (burst_len > PL330_MAX_BURST) 2638 burst_len = PL330_MAX_BURST; 2639 2640 return burst_len; 2641 } 2642 2643 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2644 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2645 size_t period_len, enum dma_transfer_direction direction, 2646 unsigned long flags) 2647 { 2648 struct dma_pl330_desc *desc = NULL, *first = NULL; 2649 struct dma_pl330_chan *pch = to_pchan(chan); 2650 struct pl330_dmac *pl330 = pch->dmac; 2651 unsigned int i; 2652 dma_addr_t dst; 2653 dma_addr_t src; 2654 2655 if (len % period_len != 0) 2656 return NULL; 2657 2658 if (!is_slave_direction(direction)) { 2659 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2660 __func__, __LINE__); 2661 return NULL; 2662 } 2663 2664 if (!pl330_prep_slave_fifo(pch, direction)) 2665 return NULL; 2666 2667 for (i = 0; i < len / period_len; i++) { 2668 desc = pl330_get_desc(pch); 2669 if (!desc) { 2670 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2671 __func__, __LINE__); 2672 2673 if (!first) 2674 return NULL; 2675 2676 spin_lock_irqsave(&pl330->pool_lock, flags); 2677 2678 while (!list_empty(&first->node)) { 2679 desc = list_entry(first->node.next, 2680 struct dma_pl330_desc, node); 2681 list_move_tail(&desc->node, &pl330->desc_pool); 2682 } 2683 2684 list_move_tail(&first->node, &pl330->desc_pool); 2685 2686 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2687 2688 return NULL; 2689 } 2690 2691 switch (direction) { 2692 case DMA_MEM_TO_DEV: 2693 desc->rqcfg.src_inc = 1; 2694 desc->rqcfg.dst_inc = 0; 2695 src = dma_addr; 2696 dst = pch->fifo_dma; 2697 break; 2698 case DMA_DEV_TO_MEM: 2699 desc->rqcfg.src_inc = 0; 2700 desc->rqcfg.dst_inc = 1; 2701 src = pch->fifo_dma; 2702 dst = dma_addr; 2703 break; 2704 default: 2705 break; 2706 } 2707 2708 desc->rqtype = direction; 2709 desc->rqcfg.brst_size = pch->burst_sz; 2710 desc->rqcfg.brst_len = pch->burst_len; 2711 desc->bytes_requested = period_len; 2712 fill_px(&desc->px, dst, src, period_len); 2713 2714 if (!first) 2715 first = desc; 2716 else 2717 list_add_tail(&desc->node, &first->node); 2718 2719 dma_addr += period_len; 2720 } 2721 2722 if (!desc) 2723 return NULL; 2724 2725 pch->cyclic = true; 2726 desc->txd.flags = flags; 2727 2728 return &desc->txd; 2729 } 2730 2731 static struct dma_async_tx_descriptor * 2732 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2733 dma_addr_t src, size_t len, unsigned long flags) 2734 { 2735 struct dma_pl330_desc *desc; 2736 struct dma_pl330_chan *pch = to_pchan(chan); 2737 struct pl330_dmac *pl330; 2738 int burst; 2739 2740 if (unlikely(!pch || !len)) 2741 return NULL; 2742 2743 pl330 = pch->dmac; 2744 2745 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2746 if (!desc) 2747 return NULL; 2748 2749 desc->rqcfg.src_inc = 1; 2750 desc->rqcfg.dst_inc = 1; 2751 desc->rqtype = DMA_MEM_TO_MEM; 2752 2753 /* Select max possible burst size */ 2754 burst = pl330->pcfg.data_bus_width / 8; 2755 2756 /* 2757 * Make sure we use a burst size that aligns with all the memcpy 2758 * parameters because our DMA programming algorithm doesn't cope with 2759 * transfers which straddle an entry in the DMA device's MFIFO. 2760 */ 2761 while ((src | dst | len) & (burst - 1)) 2762 burst /= 2; 2763 2764 desc->rqcfg.brst_size = 0; 2765 while (burst != (1 << desc->rqcfg.brst_size)) 2766 desc->rqcfg.brst_size++; 2767 2768 /* 2769 * If burst size is smaller than bus width then make sure we only 2770 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2771 */ 2772 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2773 desc->rqcfg.brst_len = 1; 2774 2775 desc->rqcfg.brst_len = get_burst_len(desc, len); 2776 desc->bytes_requested = len; 2777 2778 desc->txd.flags = flags; 2779 2780 return &desc->txd; 2781 } 2782 2783 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2784 struct dma_pl330_desc *first) 2785 { 2786 unsigned long flags; 2787 struct dma_pl330_desc *desc; 2788 2789 if (!first) 2790 return; 2791 2792 spin_lock_irqsave(&pl330->pool_lock, flags); 2793 2794 while (!list_empty(&first->node)) { 2795 desc = list_entry(first->node.next, 2796 struct dma_pl330_desc, node); 2797 list_move_tail(&desc->node, &pl330->desc_pool); 2798 } 2799 2800 list_move_tail(&first->node, &pl330->desc_pool); 2801 2802 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2803 } 2804 2805 static struct dma_async_tx_descriptor * 2806 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2807 unsigned int sg_len, enum dma_transfer_direction direction, 2808 unsigned long flg, void *context) 2809 { 2810 struct dma_pl330_desc *first, *desc = NULL; 2811 struct dma_pl330_chan *pch = to_pchan(chan); 2812 struct scatterlist *sg; 2813 int i; 2814 2815 if (unlikely(!pch || !sgl || !sg_len)) 2816 return NULL; 2817 2818 if (!pl330_prep_slave_fifo(pch, direction)) 2819 return NULL; 2820 2821 first = NULL; 2822 2823 for_each_sg(sgl, sg, sg_len, i) { 2824 2825 desc = pl330_get_desc(pch); 2826 if (!desc) { 2827 struct pl330_dmac *pl330 = pch->dmac; 2828 2829 dev_err(pch->dmac->ddma.dev, 2830 "%s:%d Unable to fetch desc\n", 2831 __func__, __LINE__); 2832 __pl330_giveback_desc(pl330, first); 2833 2834 return NULL; 2835 } 2836 2837 if (!first) 2838 first = desc; 2839 else 2840 list_add_tail(&desc->node, &first->node); 2841 2842 if (direction == DMA_MEM_TO_DEV) { 2843 desc->rqcfg.src_inc = 1; 2844 desc->rqcfg.dst_inc = 0; 2845 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), 2846 sg_dma_len(sg)); 2847 } else { 2848 desc->rqcfg.src_inc = 0; 2849 desc->rqcfg.dst_inc = 1; 2850 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, 2851 sg_dma_len(sg)); 2852 } 2853 2854 desc->rqcfg.brst_size = pch->burst_sz; 2855 desc->rqcfg.brst_len = pch->burst_len; 2856 desc->rqtype = direction; 2857 desc->bytes_requested = sg_dma_len(sg); 2858 } 2859 2860 /* Return the last desc in the chain */ 2861 desc->txd.flags = flg; 2862 return &desc->txd; 2863 } 2864 2865 static irqreturn_t pl330_irq_handler(int irq, void *data) 2866 { 2867 if (pl330_update(data)) 2868 return IRQ_HANDLED; 2869 else 2870 return IRQ_NONE; 2871 } 2872 2873 #define PL330_DMA_BUSWIDTHS \ 2874 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2875 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2876 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2877 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2878 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2879 2880 /* 2881 * Runtime PM callbacks are provided by amba/bus.c driver. 2882 * 2883 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2884 * bus driver will only disable/enable the clock in runtime PM callbacks. 2885 */ 2886 static int __maybe_unused pl330_suspend(struct device *dev) 2887 { 2888 struct amba_device *pcdev = to_amba_device(dev); 2889 2890 pm_runtime_disable(dev); 2891 2892 if (!pm_runtime_status_suspended(dev)) { 2893 /* amba did not disable the clock */ 2894 amba_pclk_disable(pcdev); 2895 } 2896 amba_pclk_unprepare(pcdev); 2897 2898 return 0; 2899 } 2900 2901 static int __maybe_unused pl330_resume(struct device *dev) 2902 { 2903 struct amba_device *pcdev = to_amba_device(dev); 2904 int ret; 2905 2906 ret = amba_pclk_prepare(pcdev); 2907 if (ret) 2908 return ret; 2909 2910 if (!pm_runtime_status_suspended(dev)) 2911 ret = amba_pclk_enable(pcdev); 2912 2913 pm_runtime_enable(dev); 2914 2915 return ret; 2916 } 2917 2918 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume); 2919 2920 static int 2921 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2922 { 2923 struct pl330_config *pcfg; 2924 struct pl330_dmac *pl330; 2925 struct dma_pl330_chan *pch, *_p; 2926 struct dma_device *pd; 2927 struct resource *res; 2928 int i, ret, irq; 2929 int num_chan; 2930 struct device_node *np = adev->dev.of_node; 2931 2932 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 2933 if (ret) 2934 return ret; 2935 2936 /* Allocate a new DMAC and its Channels */ 2937 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 2938 if (!pl330) 2939 return -ENOMEM; 2940 2941 pd = &pl330->ddma; 2942 pd->dev = &adev->dev; 2943 2944 pl330->mcbufsz = 0; 2945 2946 /* get quirk */ 2947 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 2948 if (of_property_read_bool(np, of_quirks[i].quirk)) 2949 pl330->quirks |= of_quirks[i].id; 2950 2951 res = &adev->res; 2952 pl330->base = devm_ioremap_resource(&adev->dev, res); 2953 if (IS_ERR(pl330->base)) 2954 return PTR_ERR(pl330->base); 2955 2956 amba_set_drvdata(adev, pl330); 2957 2958 for (i = 0; i < AMBA_NR_IRQS; i++) { 2959 irq = adev->irq[i]; 2960 if (irq) { 2961 ret = devm_request_irq(&adev->dev, irq, 2962 pl330_irq_handler, 0, 2963 dev_name(&adev->dev), pl330); 2964 if (ret) 2965 return ret; 2966 } else { 2967 break; 2968 } 2969 } 2970 2971 pcfg = &pl330->pcfg; 2972 2973 pcfg->periph_id = adev->periphid; 2974 ret = pl330_add(pl330); 2975 if (ret) 2976 return ret; 2977 2978 INIT_LIST_HEAD(&pl330->desc_pool); 2979 spin_lock_init(&pl330->pool_lock); 2980 2981 /* Create a descriptor pool of default size */ 2982 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock, 2983 GFP_KERNEL, NR_DEFAULT_DESC)) 2984 dev_warn(&adev->dev, "unable to allocate desc\n"); 2985 2986 INIT_LIST_HEAD(&pd->channels); 2987 2988 /* Initialize channel parameters */ 2989 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 2990 2991 pl330->num_peripherals = num_chan; 2992 2993 pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL); 2994 if (!pl330->peripherals) { 2995 ret = -ENOMEM; 2996 goto probe_err2; 2997 } 2998 2999 for (i = 0; i < num_chan; i++) { 3000 pch = &pl330->peripherals[i]; 3001 3002 pch->chan.private = adev->dev.of_node; 3003 INIT_LIST_HEAD(&pch->submitted_list); 3004 INIT_LIST_HEAD(&pch->work_list); 3005 INIT_LIST_HEAD(&pch->completed_list); 3006 spin_lock_init(&pch->lock); 3007 pch->thread = NULL; 3008 pch->chan.device = pd; 3009 pch->dmac = pl330; 3010 pch->dir = DMA_NONE; 3011 3012 /* Add the channel to the DMAC list */ 3013 list_add_tail(&pch->chan.device_node, &pd->channels); 3014 } 3015 3016 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 3017 if (pcfg->num_peri) { 3018 dma_cap_set(DMA_SLAVE, pd->cap_mask); 3019 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 3020 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 3021 } 3022 3023 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 3024 pd->device_free_chan_resources = pl330_free_chan_resources; 3025 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 3026 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 3027 pd->device_tx_status = pl330_tx_status; 3028 pd->device_prep_slave_sg = pl330_prep_slave_sg; 3029 pd->device_config = pl330_config; 3030 pd->device_pause = pl330_pause; 3031 pd->device_terminate_all = pl330_terminate_all; 3032 pd->device_issue_pending = pl330_issue_pending; 3033 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 3034 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 3035 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 3036 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 3037 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ? 3038 1 : PL330_MAX_BURST); 3039 3040 ret = dma_async_device_register(pd); 3041 if (ret) { 3042 dev_err(&adev->dev, "unable to register DMAC\n"); 3043 goto probe_err3; 3044 } 3045 3046 if (adev->dev.of_node) { 3047 ret = of_dma_controller_register(adev->dev.of_node, 3048 of_dma_pl330_xlate, pl330); 3049 if (ret) { 3050 dev_err(&adev->dev, 3051 "unable to register DMA to the generic DT DMA helpers\n"); 3052 } 3053 } 3054 3055 adev->dev.dma_parms = &pl330->dma_parms; 3056 3057 /* 3058 * This is the limit for transfers with a buswidth of 1, larger 3059 * buswidths will have larger limits. 3060 */ 3061 ret = dma_set_max_seg_size(&adev->dev, 1900800); 3062 if (ret) 3063 dev_err(&adev->dev, "unable to set the seg size\n"); 3064 3065 3066 dev_info(&adev->dev, 3067 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 3068 dev_info(&adev->dev, 3069 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3070 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 3071 pcfg->num_peri, pcfg->num_events); 3072 3073 pm_runtime_irq_safe(&adev->dev); 3074 pm_runtime_use_autosuspend(&adev->dev); 3075 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 3076 pm_runtime_mark_last_busy(&adev->dev); 3077 pm_runtime_put_autosuspend(&adev->dev); 3078 3079 return 0; 3080 probe_err3: 3081 /* Idle the DMAC */ 3082 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3083 chan.device_node) { 3084 3085 /* Remove the channel */ 3086 list_del(&pch->chan.device_node); 3087 3088 /* Flush the channel */ 3089 if (pch->thread) { 3090 pl330_terminate_all(&pch->chan); 3091 pl330_free_chan_resources(&pch->chan); 3092 } 3093 } 3094 probe_err2: 3095 pl330_del(pl330); 3096 3097 return ret; 3098 } 3099 3100 static int pl330_remove(struct amba_device *adev) 3101 { 3102 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 3103 struct dma_pl330_chan *pch, *_p; 3104 int i, irq; 3105 3106 pm_runtime_get_noresume(pl330->ddma.dev); 3107 3108 if (adev->dev.of_node) 3109 of_dma_controller_free(adev->dev.of_node); 3110 3111 for (i = 0; i < AMBA_NR_IRQS; i++) { 3112 irq = adev->irq[i]; 3113 if (irq) 3114 devm_free_irq(&adev->dev, irq, pl330); 3115 } 3116 3117 dma_async_device_unregister(&pl330->ddma); 3118 3119 /* Idle the DMAC */ 3120 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3121 chan.device_node) { 3122 3123 /* Remove the channel */ 3124 list_del(&pch->chan.device_node); 3125 3126 /* Flush the channel */ 3127 if (pch->thread) { 3128 pl330_terminate_all(&pch->chan); 3129 pl330_free_chan_resources(&pch->chan); 3130 } 3131 } 3132 3133 pl330_del(pl330); 3134 3135 return 0; 3136 } 3137 3138 static const struct amba_id pl330_ids[] = { 3139 { 3140 .id = 0x00041330, 3141 .mask = 0x000fffff, 3142 }, 3143 { 0, 0 }, 3144 }; 3145 3146 MODULE_DEVICE_TABLE(amba, pl330_ids); 3147 3148 static struct amba_driver pl330_driver = { 3149 .drv = { 3150 .owner = THIS_MODULE, 3151 .name = "dma-pl330", 3152 .pm = &pl330_pm, 3153 }, 3154 .id_table = pl330_ids, 3155 .probe = pl330_probe, 3156 .remove = pl330_remove, 3157 }; 3158 3159 module_amba_driver(pl330_driver); 3160 3161 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3162 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3163 MODULE_LICENSE("GPL"); 3164