1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/err.h> 30 31 #include "dmaengine.h" 32 #define PL330_MAX_CHAN 8 33 #define PL330_MAX_IRQS 32 34 #define PL330_MAX_PERI 32 35 36 enum pl330_cachectrl { 37 CCTRL0, /* Noncacheable and nonbufferable */ 38 CCTRL1, /* Bufferable only */ 39 CCTRL2, /* Cacheable, but do not allocate */ 40 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 41 INVALID1, /* AWCACHE = 0x1000 */ 42 INVALID2, 43 CCTRL6, /* Cacheable write-through, allocate on writes only */ 44 CCTRL7, /* Cacheable write-back, allocate on writes only */ 45 }; 46 47 enum pl330_byteswap { 48 SWAP_NO, 49 SWAP_2, 50 SWAP_4, 51 SWAP_8, 52 SWAP_16, 53 }; 54 55 /* Register and Bit field Definitions */ 56 #define DS 0x0 57 #define DS_ST_STOP 0x0 58 #define DS_ST_EXEC 0x1 59 #define DS_ST_CMISS 0x2 60 #define DS_ST_UPDTPC 0x3 61 #define DS_ST_WFE 0x4 62 #define DS_ST_ATBRR 0x5 63 #define DS_ST_QBUSY 0x6 64 #define DS_ST_WFP 0x7 65 #define DS_ST_KILL 0x8 66 #define DS_ST_CMPLT 0x9 67 #define DS_ST_FLTCMP 0xe 68 #define DS_ST_FAULT 0xf 69 70 #define DPC 0x4 71 #define INTEN 0x20 72 #define ES 0x24 73 #define INTSTATUS 0x28 74 #define INTCLR 0x2c 75 #define FSM 0x30 76 #define FSC 0x34 77 #define FTM 0x38 78 79 #define _FTC 0x40 80 #define FTC(n) (_FTC + (n)*0x4) 81 82 #define _CS 0x100 83 #define CS(n) (_CS + (n)*0x8) 84 #define CS_CNS (1 << 21) 85 86 #define _CPC 0x104 87 #define CPC(n) (_CPC + (n)*0x8) 88 89 #define _SA 0x400 90 #define SA(n) (_SA + (n)*0x20) 91 92 #define _DA 0x404 93 #define DA(n) (_DA + (n)*0x20) 94 95 #define _CC 0x408 96 #define CC(n) (_CC + (n)*0x20) 97 98 #define CC_SRCINC (1 << 0) 99 #define CC_DSTINC (1 << 14) 100 #define CC_SRCPRI (1 << 8) 101 #define CC_DSTPRI (1 << 22) 102 #define CC_SRCNS (1 << 9) 103 #define CC_DSTNS (1 << 23) 104 #define CC_SRCIA (1 << 10) 105 #define CC_DSTIA (1 << 24) 106 #define CC_SRCBRSTLEN_SHFT 4 107 #define CC_DSTBRSTLEN_SHFT 18 108 #define CC_SRCBRSTSIZE_SHFT 1 109 #define CC_DSTBRSTSIZE_SHFT 15 110 #define CC_SRCCCTRL_SHFT 11 111 #define CC_SRCCCTRL_MASK 0x7 112 #define CC_DSTCCTRL_SHFT 25 113 #define CC_DRCCCTRL_MASK 0x7 114 #define CC_SWAP_SHFT 28 115 116 #define _LC0 0x40c 117 #define LC0(n) (_LC0 + (n)*0x20) 118 119 #define _LC1 0x410 120 #define LC1(n) (_LC1 + (n)*0x20) 121 122 #define DBGSTATUS 0xd00 123 #define DBG_BUSY (1 << 0) 124 125 #define DBGCMD 0xd04 126 #define DBGINST0 0xd08 127 #define DBGINST1 0xd0c 128 129 #define CR0 0xe00 130 #define CR1 0xe04 131 #define CR2 0xe08 132 #define CR3 0xe0c 133 #define CR4 0xe10 134 #define CRD 0xe14 135 136 #define PERIPH_ID 0xfe0 137 #define PERIPH_REV_SHIFT 20 138 #define PERIPH_REV_MASK 0xf 139 #define PERIPH_REV_R0P0 0 140 #define PERIPH_REV_R1P0 1 141 #define PERIPH_REV_R1P1 2 142 143 #define CR0_PERIPH_REQ_SET (1 << 0) 144 #define CR0_BOOT_EN_SET (1 << 1) 145 #define CR0_BOOT_MAN_NS (1 << 2) 146 #define CR0_NUM_CHANS_SHIFT 4 147 #define CR0_NUM_CHANS_MASK 0x7 148 #define CR0_NUM_PERIPH_SHIFT 12 149 #define CR0_NUM_PERIPH_MASK 0x1f 150 #define CR0_NUM_EVENTS_SHIFT 17 151 #define CR0_NUM_EVENTS_MASK 0x1f 152 153 #define CR1_ICACHE_LEN_SHIFT 0 154 #define CR1_ICACHE_LEN_MASK 0x7 155 #define CR1_NUM_ICACHELINES_SHIFT 4 156 #define CR1_NUM_ICACHELINES_MASK 0xf 157 158 #define CRD_DATA_WIDTH_SHIFT 0 159 #define CRD_DATA_WIDTH_MASK 0x7 160 #define CRD_WR_CAP_SHIFT 4 161 #define CRD_WR_CAP_MASK 0x7 162 #define CRD_WR_Q_DEP_SHIFT 8 163 #define CRD_WR_Q_DEP_MASK 0xf 164 #define CRD_RD_CAP_SHIFT 12 165 #define CRD_RD_CAP_MASK 0x7 166 #define CRD_RD_Q_DEP_SHIFT 16 167 #define CRD_RD_Q_DEP_MASK 0xf 168 #define CRD_DATA_BUFF_SHIFT 20 169 #define CRD_DATA_BUFF_MASK 0x3ff 170 171 #define PART 0x330 172 #define DESIGNER 0x41 173 #define REVISION 0x0 174 #define INTEG_CFG 0x0 175 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 176 177 #define PL330_STATE_STOPPED (1 << 0) 178 #define PL330_STATE_EXECUTING (1 << 1) 179 #define PL330_STATE_WFE (1 << 2) 180 #define PL330_STATE_FAULTING (1 << 3) 181 #define PL330_STATE_COMPLETING (1 << 4) 182 #define PL330_STATE_WFP (1 << 5) 183 #define PL330_STATE_KILLING (1 << 6) 184 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 185 #define PL330_STATE_CACHEMISS (1 << 8) 186 #define PL330_STATE_UPDTPC (1 << 9) 187 #define PL330_STATE_ATBARRIER (1 << 10) 188 #define PL330_STATE_QUEUEBUSY (1 << 11) 189 #define PL330_STATE_INVALID (1 << 15) 190 191 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 192 | PL330_STATE_WFE | PL330_STATE_FAULTING) 193 194 #define CMD_DMAADDH 0x54 195 #define CMD_DMAEND 0x00 196 #define CMD_DMAFLUSHP 0x35 197 #define CMD_DMAGO 0xa0 198 #define CMD_DMALD 0x04 199 #define CMD_DMALDP 0x25 200 #define CMD_DMALP 0x20 201 #define CMD_DMALPEND 0x28 202 #define CMD_DMAKILL 0x01 203 #define CMD_DMAMOV 0xbc 204 #define CMD_DMANOP 0x18 205 #define CMD_DMARMB 0x12 206 #define CMD_DMASEV 0x34 207 #define CMD_DMAST 0x08 208 #define CMD_DMASTP 0x29 209 #define CMD_DMASTZ 0x0c 210 #define CMD_DMAWFE 0x36 211 #define CMD_DMAWFP 0x30 212 #define CMD_DMAWMB 0x13 213 214 #define SZ_DMAADDH 3 215 #define SZ_DMAEND 1 216 #define SZ_DMAFLUSHP 2 217 #define SZ_DMALD 1 218 #define SZ_DMALDP 2 219 #define SZ_DMALP 2 220 #define SZ_DMALPEND 2 221 #define SZ_DMAKILL 1 222 #define SZ_DMAMOV 6 223 #define SZ_DMANOP 1 224 #define SZ_DMARMB 1 225 #define SZ_DMASEV 2 226 #define SZ_DMAST 1 227 #define SZ_DMASTP 2 228 #define SZ_DMASTZ 1 229 #define SZ_DMAWFE 2 230 #define SZ_DMAWFP 2 231 #define SZ_DMAWMB 1 232 #define SZ_DMAGO 6 233 234 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 235 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 236 237 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 238 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 239 240 /* 241 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 242 * at 1byte/burst for P<->M and M<->M respectively. 243 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 244 * should be enough for P<->M and M<->M respectively. 245 */ 246 #define MCODE_BUFF_PER_REQ 256 247 248 /* Use this _only_ to wait on transient states */ 249 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 250 251 #ifdef PL330_DEBUG_MCGEN 252 static unsigned cmd_line; 253 #define PL330_DBGCMD_DUMP(off, x...) do { \ 254 printk("%x:", cmd_line); \ 255 printk(x); \ 256 cmd_line += off; \ 257 } while (0) 258 #define PL330_DBGMC_START(addr) (cmd_line = addr) 259 #else 260 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 261 #define PL330_DBGMC_START(addr) do {} while (0) 262 #endif 263 264 /* The number of default descriptors */ 265 266 #define NR_DEFAULT_DESC 16 267 268 /* Populated by the PL330 core driver for DMA API driver's info */ 269 struct pl330_config { 270 u32 periph_id; 271 #define DMAC_MODE_NS (1 << 0) 272 unsigned int mode; 273 unsigned int data_bus_width:10; /* In number of bits */ 274 unsigned int data_buf_dep:10; 275 unsigned int num_chan:4; 276 unsigned int num_peri:6; 277 u32 peri_ns; 278 unsigned int num_events:6; 279 u32 irq_ns; 280 }; 281 282 /** 283 * Request Configuration. 284 * The PL330 core does not modify this and uses the last 285 * working configuration if the request doesn't provide any. 286 * 287 * The Client may want to provide this info only for the 288 * first request and a request with new settings. 289 */ 290 struct pl330_reqcfg { 291 /* Address Incrementing */ 292 unsigned dst_inc:1; 293 unsigned src_inc:1; 294 295 /* 296 * For now, the SRC & DST protection levels 297 * and burst size/length are assumed same. 298 */ 299 bool nonsecure; 300 bool privileged; 301 bool insnaccess; 302 unsigned brst_len:5; 303 unsigned brst_size:3; /* in power of 2 */ 304 305 enum pl330_cachectrl dcctl; 306 enum pl330_cachectrl scctl; 307 enum pl330_byteswap swap; 308 struct pl330_config *pcfg; 309 }; 310 311 /* 312 * One cycle of DMAC operation. 313 * There may be more than one xfer in a request. 314 */ 315 struct pl330_xfer { 316 u32 src_addr; 317 u32 dst_addr; 318 /* Size to xfer */ 319 u32 bytes; 320 }; 321 322 /* The xfer callbacks are made with one of these arguments. */ 323 enum pl330_op_err { 324 /* The all xfers in the request were success. */ 325 PL330_ERR_NONE, 326 /* If req aborted due to global error. */ 327 PL330_ERR_ABORT, 328 /* If req failed due to problem with Channel. */ 329 PL330_ERR_FAIL, 330 }; 331 332 enum dmamov_dst { 333 SAR = 0, 334 CCR, 335 DAR, 336 }; 337 338 enum pl330_dst { 339 SRC = 0, 340 DST, 341 }; 342 343 enum pl330_cond { 344 SINGLE, 345 BURST, 346 ALWAYS, 347 }; 348 349 struct dma_pl330_desc; 350 351 struct _pl330_req { 352 u32 mc_bus; 353 void *mc_cpu; 354 struct dma_pl330_desc *desc; 355 }; 356 357 /* ToBeDone for tasklet */ 358 struct _pl330_tbd { 359 bool reset_dmac; 360 bool reset_mngr; 361 u8 reset_chan; 362 }; 363 364 /* A DMAC Thread */ 365 struct pl330_thread { 366 u8 id; 367 int ev; 368 /* If the channel is not yet acquired by any client */ 369 bool free; 370 /* Parent DMAC */ 371 struct pl330_dmac *dmac; 372 /* Only two at a time */ 373 struct _pl330_req req[2]; 374 /* Index of the last enqueued request */ 375 unsigned lstenq; 376 /* Index of the last submitted request or -1 if the DMA is stopped */ 377 int req_running; 378 }; 379 380 enum pl330_dmac_state { 381 UNINIT, 382 INIT, 383 DYING, 384 }; 385 386 enum desc_status { 387 /* In the DMAC pool */ 388 FREE, 389 /* 390 * Allocated to some channel during prep_xxx 391 * Also may be sitting on the work_list. 392 */ 393 PREP, 394 /* 395 * Sitting on the work_list and already submitted 396 * to the PL330 core. Not more than two descriptors 397 * of a channel can be BUSY at any time. 398 */ 399 BUSY, 400 /* 401 * Sitting on the channel work_list but xfer done 402 * by PL330 core 403 */ 404 DONE, 405 }; 406 407 struct dma_pl330_chan { 408 /* Schedule desc completion */ 409 struct tasklet_struct task; 410 411 /* DMA-Engine Channel */ 412 struct dma_chan chan; 413 414 /* List of submitted descriptors */ 415 struct list_head submitted_list; 416 /* List of issued descriptors */ 417 struct list_head work_list; 418 /* List of completed descriptors */ 419 struct list_head completed_list; 420 421 /* Pointer to the DMAC that manages this channel, 422 * NULL if the channel is available to be acquired. 423 * As the parent, this DMAC also provides descriptors 424 * to the channel. 425 */ 426 struct pl330_dmac *dmac; 427 428 /* To protect channel manipulation */ 429 spinlock_t lock; 430 431 /* 432 * Hardware channel thread of PL330 DMAC. NULL if the channel is 433 * available. 434 */ 435 struct pl330_thread *thread; 436 437 /* For D-to-M and M-to-D channels */ 438 int burst_sz; /* the peripheral fifo width */ 439 int burst_len; /* the number of burst */ 440 dma_addr_t fifo_addr; 441 442 /* for cyclic capability */ 443 bool cyclic; 444 }; 445 446 struct pl330_dmac { 447 /* DMA-Engine Device */ 448 struct dma_device ddma; 449 450 /* Holds info about sg limitations */ 451 struct device_dma_parameters dma_parms; 452 453 /* Pool of descriptors available for the DMAC's channels */ 454 struct list_head desc_pool; 455 /* To protect desc_pool manipulation */ 456 spinlock_t pool_lock; 457 458 /* Size of MicroCode buffers for each channel. */ 459 unsigned mcbufsz; 460 /* ioremap'ed address of PL330 registers. */ 461 void __iomem *base; 462 /* Populated by the PL330 core driver during pl330_add */ 463 struct pl330_config pcfg; 464 465 spinlock_t lock; 466 /* Maximum possible events/irqs */ 467 int events[32]; 468 /* BUS address of MicroCode buffer */ 469 dma_addr_t mcode_bus; 470 /* CPU address of MicroCode buffer */ 471 void *mcode_cpu; 472 /* List of all Channel threads */ 473 struct pl330_thread *channels; 474 /* Pointer to the MANAGER thread */ 475 struct pl330_thread *manager; 476 /* To handle bad news in interrupt */ 477 struct tasklet_struct tasks; 478 struct _pl330_tbd dmac_tbd; 479 /* State of DMAC operation */ 480 enum pl330_dmac_state state; 481 /* Holds list of reqs with due callbacks */ 482 struct list_head req_done; 483 484 /* Peripheral channels connected to this DMAC */ 485 unsigned int num_peripherals; 486 struct dma_pl330_chan *peripherals; /* keep at end */ 487 }; 488 489 struct dma_pl330_desc { 490 /* To attach to a queue as child */ 491 struct list_head node; 492 493 /* Descriptor for the DMA Engine API */ 494 struct dma_async_tx_descriptor txd; 495 496 /* Xfer for PL330 core */ 497 struct pl330_xfer px; 498 499 struct pl330_reqcfg rqcfg; 500 501 enum desc_status status; 502 503 /* The channel which currently holds this desc */ 504 struct dma_pl330_chan *pchan; 505 506 enum dma_transfer_direction rqtype; 507 /* Index of peripheral for the xfer. */ 508 unsigned peri:5; 509 /* Hook to attach to DMAC's list of reqs with due callback */ 510 struct list_head rqd; 511 }; 512 513 struct _xfer_spec { 514 u32 ccr; 515 struct dma_pl330_desc *desc; 516 }; 517 518 static inline bool _queue_empty(struct pl330_thread *thrd) 519 { 520 return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL; 521 } 522 523 static inline bool _queue_full(struct pl330_thread *thrd) 524 { 525 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 526 } 527 528 static inline bool is_manager(struct pl330_thread *thrd) 529 { 530 return thrd->dmac->manager == thrd; 531 } 532 533 /* If manager of the thread is in Non-Secure mode */ 534 static inline bool _manager_ns(struct pl330_thread *thrd) 535 { 536 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 537 } 538 539 static inline u32 get_revision(u32 periph_id) 540 { 541 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 542 } 543 544 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 545 enum pl330_dst da, u16 val) 546 { 547 if (dry_run) 548 return SZ_DMAADDH; 549 550 buf[0] = CMD_DMAADDH; 551 buf[0] |= (da << 1); 552 *((u16 *)&buf[1]) = val; 553 554 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 555 da == 1 ? "DA" : "SA", val); 556 557 return SZ_DMAADDH; 558 } 559 560 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 561 { 562 if (dry_run) 563 return SZ_DMAEND; 564 565 buf[0] = CMD_DMAEND; 566 567 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 568 569 return SZ_DMAEND; 570 } 571 572 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 573 { 574 if (dry_run) 575 return SZ_DMAFLUSHP; 576 577 buf[0] = CMD_DMAFLUSHP; 578 579 peri &= 0x1f; 580 peri <<= 3; 581 buf[1] = peri; 582 583 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 584 585 return SZ_DMAFLUSHP; 586 } 587 588 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 589 { 590 if (dry_run) 591 return SZ_DMALD; 592 593 buf[0] = CMD_DMALD; 594 595 if (cond == SINGLE) 596 buf[0] |= (0 << 1) | (1 << 0); 597 else if (cond == BURST) 598 buf[0] |= (1 << 1) | (1 << 0); 599 600 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 601 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 602 603 return SZ_DMALD; 604 } 605 606 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 607 enum pl330_cond cond, u8 peri) 608 { 609 if (dry_run) 610 return SZ_DMALDP; 611 612 buf[0] = CMD_DMALDP; 613 614 if (cond == BURST) 615 buf[0] |= (1 << 1); 616 617 peri &= 0x1f; 618 peri <<= 3; 619 buf[1] = peri; 620 621 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 622 cond == SINGLE ? 'S' : 'B', peri >> 3); 623 624 return SZ_DMALDP; 625 } 626 627 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 628 unsigned loop, u8 cnt) 629 { 630 if (dry_run) 631 return SZ_DMALP; 632 633 buf[0] = CMD_DMALP; 634 635 if (loop) 636 buf[0] |= (1 << 1); 637 638 cnt--; /* DMAC increments by 1 internally */ 639 buf[1] = cnt; 640 641 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 642 643 return SZ_DMALP; 644 } 645 646 struct _arg_LPEND { 647 enum pl330_cond cond; 648 bool forever; 649 unsigned loop; 650 u8 bjump; 651 }; 652 653 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 654 const struct _arg_LPEND *arg) 655 { 656 enum pl330_cond cond = arg->cond; 657 bool forever = arg->forever; 658 unsigned loop = arg->loop; 659 u8 bjump = arg->bjump; 660 661 if (dry_run) 662 return SZ_DMALPEND; 663 664 buf[0] = CMD_DMALPEND; 665 666 if (loop) 667 buf[0] |= (1 << 2); 668 669 if (!forever) 670 buf[0] |= (1 << 4); 671 672 if (cond == SINGLE) 673 buf[0] |= (0 << 1) | (1 << 0); 674 else if (cond == BURST) 675 buf[0] |= (1 << 1) | (1 << 0); 676 677 buf[1] = bjump; 678 679 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 680 forever ? "FE" : "END", 681 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 682 loop ? '1' : '0', 683 bjump); 684 685 return SZ_DMALPEND; 686 } 687 688 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 689 { 690 if (dry_run) 691 return SZ_DMAKILL; 692 693 buf[0] = CMD_DMAKILL; 694 695 return SZ_DMAKILL; 696 } 697 698 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 699 enum dmamov_dst dst, u32 val) 700 { 701 if (dry_run) 702 return SZ_DMAMOV; 703 704 buf[0] = CMD_DMAMOV; 705 buf[1] = dst; 706 *((u32 *)&buf[2]) = val; 707 708 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 709 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 710 711 return SZ_DMAMOV; 712 } 713 714 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 715 { 716 if (dry_run) 717 return SZ_DMANOP; 718 719 buf[0] = CMD_DMANOP; 720 721 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 722 723 return SZ_DMANOP; 724 } 725 726 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 727 { 728 if (dry_run) 729 return SZ_DMARMB; 730 731 buf[0] = CMD_DMARMB; 732 733 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 734 735 return SZ_DMARMB; 736 } 737 738 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 739 { 740 if (dry_run) 741 return SZ_DMASEV; 742 743 buf[0] = CMD_DMASEV; 744 745 ev &= 0x1f; 746 ev <<= 3; 747 buf[1] = ev; 748 749 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 750 751 return SZ_DMASEV; 752 } 753 754 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 755 { 756 if (dry_run) 757 return SZ_DMAST; 758 759 buf[0] = CMD_DMAST; 760 761 if (cond == SINGLE) 762 buf[0] |= (0 << 1) | (1 << 0); 763 else if (cond == BURST) 764 buf[0] |= (1 << 1) | (1 << 0); 765 766 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 767 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 768 769 return SZ_DMAST; 770 } 771 772 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 773 enum pl330_cond cond, u8 peri) 774 { 775 if (dry_run) 776 return SZ_DMASTP; 777 778 buf[0] = CMD_DMASTP; 779 780 if (cond == BURST) 781 buf[0] |= (1 << 1); 782 783 peri &= 0x1f; 784 peri <<= 3; 785 buf[1] = peri; 786 787 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 788 cond == SINGLE ? 'S' : 'B', peri >> 3); 789 790 return SZ_DMASTP; 791 } 792 793 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 794 { 795 if (dry_run) 796 return SZ_DMASTZ; 797 798 buf[0] = CMD_DMASTZ; 799 800 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 801 802 return SZ_DMASTZ; 803 } 804 805 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 806 unsigned invalidate) 807 { 808 if (dry_run) 809 return SZ_DMAWFE; 810 811 buf[0] = CMD_DMAWFE; 812 813 ev &= 0x1f; 814 ev <<= 3; 815 buf[1] = ev; 816 817 if (invalidate) 818 buf[1] |= (1 << 1); 819 820 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 821 ev >> 3, invalidate ? ", I" : ""); 822 823 return SZ_DMAWFE; 824 } 825 826 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 827 enum pl330_cond cond, u8 peri) 828 { 829 if (dry_run) 830 return SZ_DMAWFP; 831 832 buf[0] = CMD_DMAWFP; 833 834 if (cond == SINGLE) 835 buf[0] |= (0 << 1) | (0 << 0); 836 else if (cond == BURST) 837 buf[0] |= (1 << 1) | (0 << 0); 838 else 839 buf[0] |= (0 << 1) | (1 << 0); 840 841 peri &= 0x1f; 842 peri <<= 3; 843 buf[1] = peri; 844 845 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 846 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 847 848 return SZ_DMAWFP; 849 } 850 851 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 852 { 853 if (dry_run) 854 return SZ_DMAWMB; 855 856 buf[0] = CMD_DMAWMB; 857 858 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 859 860 return SZ_DMAWMB; 861 } 862 863 struct _arg_GO { 864 u8 chan; 865 u32 addr; 866 unsigned ns; 867 }; 868 869 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 870 const struct _arg_GO *arg) 871 { 872 u8 chan = arg->chan; 873 u32 addr = arg->addr; 874 unsigned ns = arg->ns; 875 876 if (dry_run) 877 return SZ_DMAGO; 878 879 buf[0] = CMD_DMAGO; 880 buf[0] |= (ns << 1); 881 882 buf[1] = chan & 0x7; 883 884 *((u32 *)&buf[2]) = addr; 885 886 return SZ_DMAGO; 887 } 888 889 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 890 891 /* Returns Time-Out */ 892 static bool _until_dmac_idle(struct pl330_thread *thrd) 893 { 894 void __iomem *regs = thrd->dmac->base; 895 unsigned long loops = msecs_to_loops(5); 896 897 do { 898 /* Until Manager is Idle */ 899 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 900 break; 901 902 cpu_relax(); 903 } while (--loops); 904 905 if (!loops) 906 return true; 907 908 return false; 909 } 910 911 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 912 u8 insn[], bool as_manager) 913 { 914 void __iomem *regs = thrd->dmac->base; 915 u32 val; 916 917 val = (insn[0] << 16) | (insn[1] << 24); 918 if (!as_manager) { 919 val |= (1 << 0); 920 val |= (thrd->id << 8); /* Channel Number */ 921 } 922 writel(val, regs + DBGINST0); 923 924 val = *((u32 *)&insn[2]); 925 writel(val, regs + DBGINST1); 926 927 /* If timed out due to halted state-machine */ 928 if (_until_dmac_idle(thrd)) { 929 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 930 return; 931 } 932 933 /* Get going */ 934 writel(0, regs + DBGCMD); 935 } 936 937 static inline u32 _state(struct pl330_thread *thrd) 938 { 939 void __iomem *regs = thrd->dmac->base; 940 u32 val; 941 942 if (is_manager(thrd)) 943 val = readl(regs + DS) & 0xf; 944 else 945 val = readl(regs + CS(thrd->id)) & 0xf; 946 947 switch (val) { 948 case DS_ST_STOP: 949 return PL330_STATE_STOPPED; 950 case DS_ST_EXEC: 951 return PL330_STATE_EXECUTING; 952 case DS_ST_CMISS: 953 return PL330_STATE_CACHEMISS; 954 case DS_ST_UPDTPC: 955 return PL330_STATE_UPDTPC; 956 case DS_ST_WFE: 957 return PL330_STATE_WFE; 958 case DS_ST_FAULT: 959 return PL330_STATE_FAULTING; 960 case DS_ST_ATBRR: 961 if (is_manager(thrd)) 962 return PL330_STATE_INVALID; 963 else 964 return PL330_STATE_ATBARRIER; 965 case DS_ST_QBUSY: 966 if (is_manager(thrd)) 967 return PL330_STATE_INVALID; 968 else 969 return PL330_STATE_QUEUEBUSY; 970 case DS_ST_WFP: 971 if (is_manager(thrd)) 972 return PL330_STATE_INVALID; 973 else 974 return PL330_STATE_WFP; 975 case DS_ST_KILL: 976 if (is_manager(thrd)) 977 return PL330_STATE_INVALID; 978 else 979 return PL330_STATE_KILLING; 980 case DS_ST_CMPLT: 981 if (is_manager(thrd)) 982 return PL330_STATE_INVALID; 983 else 984 return PL330_STATE_COMPLETING; 985 case DS_ST_FLTCMP: 986 if (is_manager(thrd)) 987 return PL330_STATE_INVALID; 988 else 989 return PL330_STATE_FAULT_COMPLETING; 990 default: 991 return PL330_STATE_INVALID; 992 } 993 } 994 995 static void _stop(struct pl330_thread *thrd) 996 { 997 void __iomem *regs = thrd->dmac->base; 998 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 999 1000 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1001 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1002 1003 /* Return if nothing needs to be done */ 1004 if (_state(thrd) == PL330_STATE_COMPLETING 1005 || _state(thrd) == PL330_STATE_KILLING 1006 || _state(thrd) == PL330_STATE_STOPPED) 1007 return; 1008 1009 _emit_KILL(0, insn); 1010 1011 /* Stop generating interrupts for SEV */ 1012 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1013 1014 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1015 } 1016 1017 /* Start doing req 'idx' of thread 'thrd' */ 1018 static bool _trigger(struct pl330_thread *thrd) 1019 { 1020 void __iomem *regs = thrd->dmac->base; 1021 struct _pl330_req *req; 1022 struct dma_pl330_desc *desc; 1023 struct _arg_GO go; 1024 unsigned ns; 1025 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1026 int idx; 1027 1028 /* Return if already ACTIVE */ 1029 if (_state(thrd) != PL330_STATE_STOPPED) 1030 return true; 1031 1032 idx = 1 - thrd->lstenq; 1033 if (thrd->req[idx].desc != NULL) { 1034 req = &thrd->req[idx]; 1035 } else { 1036 idx = thrd->lstenq; 1037 if (thrd->req[idx].desc != NULL) 1038 req = &thrd->req[idx]; 1039 else 1040 req = NULL; 1041 } 1042 1043 /* Return if no request */ 1044 if (!req) 1045 return true; 1046 1047 desc = req->desc; 1048 1049 ns = desc->rqcfg.nonsecure ? 1 : 0; 1050 1051 /* See 'Abort Sources' point-4 at Page 2-25 */ 1052 if (_manager_ns(thrd) && !ns) 1053 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1054 __func__, __LINE__); 1055 1056 go.chan = thrd->id; 1057 go.addr = req->mc_bus; 1058 go.ns = ns; 1059 _emit_GO(0, insn, &go); 1060 1061 /* Set to generate interrupts for SEV */ 1062 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1063 1064 /* Only manager can execute GO */ 1065 _execute_DBGINSN(thrd, insn, true); 1066 1067 thrd->req_running = idx; 1068 1069 return true; 1070 } 1071 1072 static bool _start(struct pl330_thread *thrd) 1073 { 1074 switch (_state(thrd)) { 1075 case PL330_STATE_FAULT_COMPLETING: 1076 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1077 1078 if (_state(thrd) == PL330_STATE_KILLING) 1079 UNTIL(thrd, PL330_STATE_STOPPED) 1080 1081 case PL330_STATE_FAULTING: 1082 _stop(thrd); 1083 1084 case PL330_STATE_KILLING: 1085 case PL330_STATE_COMPLETING: 1086 UNTIL(thrd, PL330_STATE_STOPPED) 1087 1088 case PL330_STATE_STOPPED: 1089 return _trigger(thrd); 1090 1091 case PL330_STATE_WFP: 1092 case PL330_STATE_QUEUEBUSY: 1093 case PL330_STATE_ATBARRIER: 1094 case PL330_STATE_UPDTPC: 1095 case PL330_STATE_CACHEMISS: 1096 case PL330_STATE_EXECUTING: 1097 return true; 1098 1099 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1100 default: 1101 return false; 1102 } 1103 } 1104 1105 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1106 const struct _xfer_spec *pxs, int cyc) 1107 { 1108 int off = 0; 1109 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1110 1111 /* check lock-up free version */ 1112 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1113 while (cyc--) { 1114 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1115 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1116 } 1117 } else { 1118 while (cyc--) { 1119 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1120 off += _emit_RMB(dry_run, &buf[off]); 1121 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1122 off += _emit_WMB(dry_run, &buf[off]); 1123 } 1124 } 1125 1126 return off; 1127 } 1128 1129 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1130 const struct _xfer_spec *pxs, int cyc) 1131 { 1132 int off = 0; 1133 1134 while (cyc--) { 1135 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1136 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1137 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1138 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1139 } 1140 1141 return off; 1142 } 1143 1144 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1145 const struct _xfer_spec *pxs, int cyc) 1146 { 1147 int off = 0; 1148 1149 while (cyc--) { 1150 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1151 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1152 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1153 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1154 } 1155 1156 return off; 1157 } 1158 1159 static int _bursts(unsigned dry_run, u8 buf[], 1160 const struct _xfer_spec *pxs, int cyc) 1161 { 1162 int off = 0; 1163 1164 switch (pxs->desc->rqtype) { 1165 case DMA_MEM_TO_DEV: 1166 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1167 break; 1168 case DMA_DEV_TO_MEM: 1169 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1170 break; 1171 case DMA_MEM_TO_MEM: 1172 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1173 break; 1174 default: 1175 off += 0x40000000; /* Scare off the Client */ 1176 break; 1177 } 1178 1179 return off; 1180 } 1181 1182 /* Returns bytes consumed and updates bursts */ 1183 static inline int _loop(unsigned dry_run, u8 buf[], 1184 unsigned long *bursts, const struct _xfer_spec *pxs) 1185 { 1186 int cyc, cycmax, szlp, szlpend, szbrst, off; 1187 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1188 struct _arg_LPEND lpend; 1189 1190 /* Max iterations possible in DMALP is 256 */ 1191 if (*bursts >= 256*256) { 1192 lcnt1 = 256; 1193 lcnt0 = 256; 1194 cyc = *bursts / lcnt1 / lcnt0; 1195 } else if (*bursts > 256) { 1196 lcnt1 = 256; 1197 lcnt0 = *bursts / lcnt1; 1198 cyc = 1; 1199 } else { 1200 lcnt1 = *bursts; 1201 lcnt0 = 0; 1202 cyc = 1; 1203 } 1204 1205 szlp = _emit_LP(1, buf, 0, 0); 1206 szbrst = _bursts(1, buf, pxs, 1); 1207 1208 lpend.cond = ALWAYS; 1209 lpend.forever = false; 1210 lpend.loop = 0; 1211 lpend.bjump = 0; 1212 szlpend = _emit_LPEND(1, buf, &lpend); 1213 1214 if (lcnt0) { 1215 szlp *= 2; 1216 szlpend *= 2; 1217 } 1218 1219 /* 1220 * Max bursts that we can unroll due to limit on the 1221 * size of backward jump that can be encoded in DMALPEND 1222 * which is 8-bits and hence 255 1223 */ 1224 cycmax = (255 - (szlp + szlpend)) / szbrst; 1225 1226 cyc = (cycmax < cyc) ? cycmax : cyc; 1227 1228 off = 0; 1229 1230 if (lcnt0) { 1231 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1232 ljmp0 = off; 1233 } 1234 1235 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1236 ljmp1 = off; 1237 1238 off += _bursts(dry_run, &buf[off], pxs, cyc); 1239 1240 lpend.cond = ALWAYS; 1241 lpend.forever = false; 1242 lpend.loop = 1; 1243 lpend.bjump = off - ljmp1; 1244 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1245 1246 if (lcnt0) { 1247 lpend.cond = ALWAYS; 1248 lpend.forever = false; 1249 lpend.loop = 0; 1250 lpend.bjump = off - ljmp0; 1251 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1252 } 1253 1254 *bursts = lcnt1 * cyc; 1255 if (lcnt0) 1256 *bursts *= lcnt0; 1257 1258 return off; 1259 } 1260 1261 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1262 const struct _xfer_spec *pxs) 1263 { 1264 struct pl330_xfer *x = &pxs->desc->px; 1265 u32 ccr = pxs->ccr; 1266 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1267 int off = 0; 1268 1269 while (bursts) { 1270 c = bursts; 1271 off += _loop(dry_run, &buf[off], &c, pxs); 1272 bursts -= c; 1273 } 1274 1275 return off; 1276 } 1277 1278 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1279 const struct _xfer_spec *pxs) 1280 { 1281 struct pl330_xfer *x = &pxs->desc->px; 1282 int off = 0; 1283 1284 /* DMAMOV SAR, x->src_addr */ 1285 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1286 /* DMAMOV DAR, x->dst_addr */ 1287 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1288 1289 /* Setup Loop(s) */ 1290 off += _setup_loops(dry_run, &buf[off], pxs); 1291 1292 return off; 1293 } 1294 1295 /* 1296 * A req is a sequence of one or more xfer units. 1297 * Returns the number of bytes taken to setup the MC for the req. 1298 */ 1299 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1300 unsigned index, struct _xfer_spec *pxs) 1301 { 1302 struct _pl330_req *req = &thrd->req[index]; 1303 struct pl330_xfer *x; 1304 u8 *buf = req->mc_cpu; 1305 int off = 0; 1306 1307 PL330_DBGMC_START(req->mc_bus); 1308 1309 /* DMAMOV CCR, ccr */ 1310 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1311 1312 x = &pxs->desc->px; 1313 /* Error if xfer length is not aligned at burst size */ 1314 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1315 return -EINVAL; 1316 1317 off += _setup_xfer(dry_run, &buf[off], pxs); 1318 1319 /* DMASEV peripheral/event */ 1320 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1321 /* DMAEND */ 1322 off += _emit_END(dry_run, &buf[off]); 1323 1324 return off; 1325 } 1326 1327 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1328 { 1329 u32 ccr = 0; 1330 1331 if (rqc->src_inc) 1332 ccr |= CC_SRCINC; 1333 1334 if (rqc->dst_inc) 1335 ccr |= CC_DSTINC; 1336 1337 /* We set same protection levels for Src and DST for now */ 1338 if (rqc->privileged) 1339 ccr |= CC_SRCPRI | CC_DSTPRI; 1340 if (rqc->nonsecure) 1341 ccr |= CC_SRCNS | CC_DSTNS; 1342 if (rqc->insnaccess) 1343 ccr |= CC_SRCIA | CC_DSTIA; 1344 1345 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1346 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1347 1348 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1349 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1350 1351 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1352 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1353 1354 ccr |= (rqc->swap << CC_SWAP_SHFT); 1355 1356 return ccr; 1357 } 1358 1359 /* 1360 * Submit a list of xfers after which the client wants notification. 1361 * Client is not notified after each xfer unit, just once after all 1362 * xfer units are done or some error occurs. 1363 */ 1364 static int pl330_submit_req(struct pl330_thread *thrd, 1365 struct dma_pl330_desc *desc) 1366 { 1367 struct pl330_dmac *pl330 = thrd->dmac; 1368 struct _xfer_spec xs; 1369 unsigned long flags; 1370 unsigned idx; 1371 u32 ccr; 1372 int ret = 0; 1373 1374 if (pl330->state == DYING 1375 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1376 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1377 __func__, __LINE__); 1378 return -EAGAIN; 1379 } 1380 1381 /* If request for non-existing peripheral */ 1382 if (desc->rqtype != DMA_MEM_TO_MEM && 1383 desc->peri >= pl330->pcfg.num_peri) { 1384 dev_info(thrd->dmac->ddma.dev, 1385 "%s:%d Invalid peripheral(%u)!\n", 1386 __func__, __LINE__, desc->peri); 1387 return -EINVAL; 1388 } 1389 1390 spin_lock_irqsave(&pl330->lock, flags); 1391 1392 if (_queue_full(thrd)) { 1393 ret = -EAGAIN; 1394 goto xfer_exit; 1395 } 1396 1397 /* Prefer Secure Channel */ 1398 if (!_manager_ns(thrd)) 1399 desc->rqcfg.nonsecure = 0; 1400 else 1401 desc->rqcfg.nonsecure = 1; 1402 1403 ccr = _prepare_ccr(&desc->rqcfg); 1404 1405 idx = thrd->req[0].desc == NULL ? 0 : 1; 1406 1407 xs.ccr = ccr; 1408 xs.desc = desc; 1409 1410 /* First dry run to check if req is acceptable */ 1411 ret = _setup_req(1, thrd, idx, &xs); 1412 if (ret < 0) 1413 goto xfer_exit; 1414 1415 if (ret > pl330->mcbufsz / 2) { 1416 dev_info(pl330->ddma.dev, "%s:%d Trying increasing mcbufsz\n", 1417 __func__, __LINE__); 1418 ret = -ENOMEM; 1419 goto xfer_exit; 1420 } 1421 1422 /* Hook the request */ 1423 thrd->lstenq = idx; 1424 thrd->req[idx].desc = desc; 1425 _setup_req(0, thrd, idx, &xs); 1426 1427 ret = 0; 1428 1429 xfer_exit: 1430 spin_unlock_irqrestore(&pl330->lock, flags); 1431 1432 return ret; 1433 } 1434 1435 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1436 { 1437 struct dma_pl330_chan *pch; 1438 unsigned long flags; 1439 1440 if (!desc) 1441 return; 1442 1443 pch = desc->pchan; 1444 1445 /* If desc aborted */ 1446 if (!pch) 1447 return; 1448 1449 spin_lock_irqsave(&pch->lock, flags); 1450 1451 desc->status = DONE; 1452 1453 spin_unlock_irqrestore(&pch->lock, flags); 1454 1455 tasklet_schedule(&pch->task); 1456 } 1457 1458 static void pl330_dotask(unsigned long data) 1459 { 1460 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1461 unsigned long flags; 1462 int i; 1463 1464 spin_lock_irqsave(&pl330->lock, flags); 1465 1466 /* The DMAC itself gone nuts */ 1467 if (pl330->dmac_tbd.reset_dmac) { 1468 pl330->state = DYING; 1469 /* Reset the manager too */ 1470 pl330->dmac_tbd.reset_mngr = true; 1471 /* Clear the reset flag */ 1472 pl330->dmac_tbd.reset_dmac = false; 1473 } 1474 1475 if (pl330->dmac_tbd.reset_mngr) { 1476 _stop(pl330->manager); 1477 /* Reset all channels */ 1478 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1479 /* Clear the reset flag */ 1480 pl330->dmac_tbd.reset_mngr = false; 1481 } 1482 1483 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1484 1485 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1486 struct pl330_thread *thrd = &pl330->channels[i]; 1487 void __iomem *regs = pl330->base; 1488 enum pl330_op_err err; 1489 1490 _stop(thrd); 1491 1492 if (readl(regs + FSC) & (1 << thrd->id)) 1493 err = PL330_ERR_FAIL; 1494 else 1495 err = PL330_ERR_ABORT; 1496 1497 spin_unlock_irqrestore(&pl330->lock, flags); 1498 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1499 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1500 spin_lock_irqsave(&pl330->lock, flags); 1501 1502 thrd->req[0].desc = NULL; 1503 thrd->req[1].desc = NULL; 1504 thrd->req_running = -1; 1505 1506 /* Clear the reset flag */ 1507 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1508 } 1509 } 1510 1511 spin_unlock_irqrestore(&pl330->lock, flags); 1512 1513 return; 1514 } 1515 1516 /* Returns 1 if state was updated, 0 otherwise */ 1517 static int pl330_update(struct pl330_dmac *pl330) 1518 { 1519 struct dma_pl330_desc *descdone, *tmp; 1520 unsigned long flags; 1521 void __iomem *regs; 1522 u32 val; 1523 int id, ev, ret = 0; 1524 1525 regs = pl330->base; 1526 1527 spin_lock_irqsave(&pl330->lock, flags); 1528 1529 val = readl(regs + FSM) & 0x1; 1530 if (val) 1531 pl330->dmac_tbd.reset_mngr = true; 1532 else 1533 pl330->dmac_tbd.reset_mngr = false; 1534 1535 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1536 pl330->dmac_tbd.reset_chan |= val; 1537 if (val) { 1538 int i = 0; 1539 while (i < pl330->pcfg.num_chan) { 1540 if (val & (1 << i)) { 1541 dev_info(pl330->ddma.dev, 1542 "Reset Channel-%d\t CS-%x FTC-%x\n", 1543 i, readl(regs + CS(i)), 1544 readl(regs + FTC(i))); 1545 _stop(&pl330->channels[i]); 1546 } 1547 i++; 1548 } 1549 } 1550 1551 /* Check which event happened i.e, thread notified */ 1552 val = readl(regs + ES); 1553 if (pl330->pcfg.num_events < 32 1554 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1555 pl330->dmac_tbd.reset_dmac = true; 1556 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1557 __LINE__); 1558 ret = 1; 1559 goto updt_exit; 1560 } 1561 1562 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1563 if (val & (1 << ev)) { /* Event occurred */ 1564 struct pl330_thread *thrd; 1565 u32 inten = readl(regs + INTEN); 1566 int active; 1567 1568 /* Clear the event */ 1569 if (inten & (1 << ev)) 1570 writel(1 << ev, regs + INTCLR); 1571 1572 ret = 1; 1573 1574 id = pl330->events[ev]; 1575 1576 thrd = &pl330->channels[id]; 1577 1578 active = thrd->req_running; 1579 if (active == -1) /* Aborted */ 1580 continue; 1581 1582 /* Detach the req */ 1583 descdone = thrd->req[active].desc; 1584 thrd->req[active].desc = NULL; 1585 1586 /* Get going again ASAP */ 1587 _start(thrd); 1588 1589 /* For now, just make a list of callbacks to be done */ 1590 list_add_tail(&descdone->rqd, &pl330->req_done); 1591 } 1592 } 1593 1594 /* Now that we are in no hurry, do the callbacks */ 1595 list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) { 1596 list_del(&descdone->rqd); 1597 spin_unlock_irqrestore(&pl330->lock, flags); 1598 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1599 spin_lock_irqsave(&pl330->lock, flags); 1600 } 1601 1602 updt_exit: 1603 spin_unlock_irqrestore(&pl330->lock, flags); 1604 1605 if (pl330->dmac_tbd.reset_dmac 1606 || pl330->dmac_tbd.reset_mngr 1607 || pl330->dmac_tbd.reset_chan) { 1608 ret = 1; 1609 tasklet_schedule(&pl330->tasks); 1610 } 1611 1612 return ret; 1613 } 1614 1615 /* Reserve an event */ 1616 static inline int _alloc_event(struct pl330_thread *thrd) 1617 { 1618 struct pl330_dmac *pl330 = thrd->dmac; 1619 int ev; 1620 1621 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1622 if (pl330->events[ev] == -1) { 1623 pl330->events[ev] = thrd->id; 1624 return ev; 1625 } 1626 1627 return -1; 1628 } 1629 1630 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1631 { 1632 return pl330->pcfg.irq_ns & (1 << i); 1633 } 1634 1635 /* Upon success, returns IdentityToken for the 1636 * allocated channel, NULL otherwise. 1637 */ 1638 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1639 { 1640 struct pl330_thread *thrd = NULL; 1641 unsigned long flags; 1642 int chans, i; 1643 1644 if (pl330->state == DYING) 1645 return NULL; 1646 1647 chans = pl330->pcfg.num_chan; 1648 1649 spin_lock_irqsave(&pl330->lock, flags); 1650 1651 for (i = 0; i < chans; i++) { 1652 thrd = &pl330->channels[i]; 1653 if ((thrd->free) && (!_manager_ns(thrd) || 1654 _chan_ns(pl330, i))) { 1655 thrd->ev = _alloc_event(thrd); 1656 if (thrd->ev >= 0) { 1657 thrd->free = false; 1658 thrd->lstenq = 1; 1659 thrd->req[0].desc = NULL; 1660 thrd->req[1].desc = NULL; 1661 thrd->req_running = -1; 1662 break; 1663 } 1664 } 1665 thrd = NULL; 1666 } 1667 1668 spin_unlock_irqrestore(&pl330->lock, flags); 1669 1670 return thrd; 1671 } 1672 1673 /* Release an event */ 1674 static inline void _free_event(struct pl330_thread *thrd, int ev) 1675 { 1676 struct pl330_dmac *pl330 = thrd->dmac; 1677 1678 /* If the event is valid and was held by the thread */ 1679 if (ev >= 0 && ev < pl330->pcfg.num_events 1680 && pl330->events[ev] == thrd->id) 1681 pl330->events[ev] = -1; 1682 } 1683 1684 static void pl330_release_channel(struct pl330_thread *thrd) 1685 { 1686 struct pl330_dmac *pl330; 1687 unsigned long flags; 1688 1689 if (!thrd || thrd->free) 1690 return; 1691 1692 _stop(thrd); 1693 1694 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1695 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1696 1697 pl330 = thrd->dmac; 1698 1699 spin_lock_irqsave(&pl330->lock, flags); 1700 _free_event(thrd, thrd->ev); 1701 thrd->free = true; 1702 spin_unlock_irqrestore(&pl330->lock, flags); 1703 } 1704 1705 /* Initialize the structure for PL330 configuration, that can be used 1706 * by the client driver the make best use of the DMAC 1707 */ 1708 static void read_dmac_config(struct pl330_dmac *pl330) 1709 { 1710 void __iomem *regs = pl330->base; 1711 u32 val; 1712 1713 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1714 val &= CRD_DATA_WIDTH_MASK; 1715 pl330->pcfg.data_bus_width = 8 * (1 << val); 1716 1717 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1718 val &= CRD_DATA_BUFF_MASK; 1719 pl330->pcfg.data_buf_dep = val + 1; 1720 1721 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1722 val &= CR0_NUM_CHANS_MASK; 1723 val += 1; 1724 pl330->pcfg.num_chan = val; 1725 1726 val = readl(regs + CR0); 1727 if (val & CR0_PERIPH_REQ_SET) { 1728 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1729 val += 1; 1730 pl330->pcfg.num_peri = val; 1731 pl330->pcfg.peri_ns = readl(regs + CR4); 1732 } else { 1733 pl330->pcfg.num_peri = 0; 1734 } 1735 1736 val = readl(regs + CR0); 1737 if (val & CR0_BOOT_MAN_NS) 1738 pl330->pcfg.mode |= DMAC_MODE_NS; 1739 else 1740 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1741 1742 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1743 val &= CR0_NUM_EVENTS_MASK; 1744 val += 1; 1745 pl330->pcfg.num_events = val; 1746 1747 pl330->pcfg.irq_ns = readl(regs + CR3); 1748 } 1749 1750 static inline void _reset_thread(struct pl330_thread *thrd) 1751 { 1752 struct pl330_dmac *pl330 = thrd->dmac; 1753 1754 thrd->req[0].mc_cpu = pl330->mcode_cpu 1755 + (thrd->id * pl330->mcbufsz); 1756 thrd->req[0].mc_bus = pl330->mcode_bus 1757 + (thrd->id * pl330->mcbufsz); 1758 thrd->req[0].desc = NULL; 1759 1760 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1761 + pl330->mcbufsz / 2; 1762 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1763 + pl330->mcbufsz / 2; 1764 thrd->req[1].desc = NULL; 1765 1766 thrd->req_running = -1; 1767 } 1768 1769 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1770 { 1771 int chans = pl330->pcfg.num_chan; 1772 struct pl330_thread *thrd; 1773 int i; 1774 1775 /* Allocate 1 Manager and 'chans' Channel threads */ 1776 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 1777 GFP_KERNEL); 1778 if (!pl330->channels) 1779 return -ENOMEM; 1780 1781 /* Init Channel threads */ 1782 for (i = 0; i < chans; i++) { 1783 thrd = &pl330->channels[i]; 1784 thrd->id = i; 1785 thrd->dmac = pl330; 1786 _reset_thread(thrd); 1787 thrd->free = true; 1788 } 1789 1790 /* MANAGER is indexed at the end */ 1791 thrd = &pl330->channels[chans]; 1792 thrd->id = chans; 1793 thrd->dmac = pl330; 1794 thrd->free = false; 1795 pl330->manager = thrd; 1796 1797 return 0; 1798 } 1799 1800 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1801 { 1802 int chans = pl330->pcfg.num_chan; 1803 int ret; 1804 1805 /* 1806 * Alloc MicroCode buffer for 'chans' Channel threads. 1807 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1808 */ 1809 pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev, 1810 chans * pl330->mcbufsz, 1811 &pl330->mcode_bus, GFP_KERNEL); 1812 if (!pl330->mcode_cpu) { 1813 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1814 __func__, __LINE__); 1815 return -ENOMEM; 1816 } 1817 1818 ret = dmac_alloc_threads(pl330); 1819 if (ret) { 1820 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1821 __func__, __LINE__); 1822 dma_free_coherent(pl330->ddma.dev, 1823 chans * pl330->mcbufsz, 1824 pl330->mcode_cpu, pl330->mcode_bus); 1825 return ret; 1826 } 1827 1828 return 0; 1829 } 1830 1831 static int pl330_add(struct pl330_dmac *pl330) 1832 { 1833 void __iomem *regs; 1834 int i, ret; 1835 1836 regs = pl330->base; 1837 1838 /* Check if we can handle this DMAC */ 1839 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1840 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1841 pl330->pcfg.periph_id); 1842 return -EINVAL; 1843 } 1844 1845 /* Read the configuration of the DMAC */ 1846 read_dmac_config(pl330); 1847 1848 if (pl330->pcfg.num_events == 0) { 1849 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1850 __func__, __LINE__); 1851 return -EINVAL; 1852 } 1853 1854 spin_lock_init(&pl330->lock); 1855 1856 INIT_LIST_HEAD(&pl330->req_done); 1857 1858 /* Use default MC buffer size if not provided */ 1859 if (!pl330->mcbufsz) 1860 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1861 1862 /* Mark all events as free */ 1863 for (i = 0; i < pl330->pcfg.num_events; i++) 1864 pl330->events[i] = -1; 1865 1866 /* Allocate resources needed by the DMAC */ 1867 ret = dmac_alloc_resources(pl330); 1868 if (ret) { 1869 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1870 return ret; 1871 } 1872 1873 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1874 1875 pl330->state = INIT; 1876 1877 return 0; 1878 } 1879 1880 static int dmac_free_threads(struct pl330_dmac *pl330) 1881 { 1882 struct pl330_thread *thrd; 1883 int i; 1884 1885 /* Release Channel threads */ 1886 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1887 thrd = &pl330->channels[i]; 1888 pl330_release_channel(thrd); 1889 } 1890 1891 /* Free memory */ 1892 kfree(pl330->channels); 1893 1894 return 0; 1895 } 1896 1897 static void pl330_del(struct pl330_dmac *pl330) 1898 { 1899 pl330->state = UNINIT; 1900 1901 tasklet_kill(&pl330->tasks); 1902 1903 /* Free DMAC resources */ 1904 dmac_free_threads(pl330); 1905 1906 dma_free_coherent(pl330->ddma.dev, 1907 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 1908 pl330->mcode_bus); 1909 } 1910 1911 /* forward declaration */ 1912 static struct amba_driver pl330_driver; 1913 1914 static inline struct dma_pl330_chan * 1915 to_pchan(struct dma_chan *ch) 1916 { 1917 if (!ch) 1918 return NULL; 1919 1920 return container_of(ch, struct dma_pl330_chan, chan); 1921 } 1922 1923 static inline struct dma_pl330_desc * 1924 to_desc(struct dma_async_tx_descriptor *tx) 1925 { 1926 return container_of(tx, struct dma_pl330_desc, txd); 1927 } 1928 1929 static inline void fill_queue(struct dma_pl330_chan *pch) 1930 { 1931 struct dma_pl330_desc *desc; 1932 int ret; 1933 1934 list_for_each_entry(desc, &pch->work_list, node) { 1935 1936 /* If already submitted */ 1937 if (desc->status == BUSY) 1938 continue; 1939 1940 ret = pl330_submit_req(pch->thread, desc); 1941 if (!ret) { 1942 desc->status = BUSY; 1943 } else if (ret == -EAGAIN) { 1944 /* QFull or DMAC Dying */ 1945 break; 1946 } else { 1947 /* Unacceptable request */ 1948 desc->status = DONE; 1949 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 1950 __func__, __LINE__, desc->txd.cookie); 1951 tasklet_schedule(&pch->task); 1952 } 1953 } 1954 } 1955 1956 static void pl330_tasklet(unsigned long data) 1957 { 1958 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 1959 struct dma_pl330_desc *desc, *_dt; 1960 unsigned long flags; 1961 1962 spin_lock_irqsave(&pch->lock, flags); 1963 1964 /* Pick up ripe tomatoes */ 1965 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 1966 if (desc->status == DONE) { 1967 if (!pch->cyclic) 1968 dma_cookie_complete(&desc->txd); 1969 list_move_tail(&desc->node, &pch->completed_list); 1970 } 1971 1972 /* Try to submit a req imm. next to the last completed cookie */ 1973 fill_queue(pch); 1974 1975 /* Make sure the PL330 Channel thread is active */ 1976 spin_lock(&pch->thread->dmac->lock); 1977 _start(pch->thread); 1978 spin_unlock(&pch->thread->dmac->lock); 1979 1980 while (!list_empty(&pch->completed_list)) { 1981 dma_async_tx_callback callback; 1982 void *callback_param; 1983 1984 desc = list_first_entry(&pch->completed_list, 1985 struct dma_pl330_desc, node); 1986 1987 callback = desc->txd.callback; 1988 callback_param = desc->txd.callback_param; 1989 1990 if (pch->cyclic) { 1991 desc->status = PREP; 1992 list_move_tail(&desc->node, &pch->work_list); 1993 } else { 1994 desc->status = FREE; 1995 list_move_tail(&desc->node, &pch->dmac->desc_pool); 1996 } 1997 1998 dma_descriptor_unmap(&desc->txd); 1999 2000 if (callback) { 2001 spin_unlock_irqrestore(&pch->lock, flags); 2002 callback(callback_param); 2003 spin_lock_irqsave(&pch->lock, flags); 2004 } 2005 } 2006 spin_unlock_irqrestore(&pch->lock, flags); 2007 } 2008 2009 bool pl330_filter(struct dma_chan *chan, void *param) 2010 { 2011 u8 *peri_id; 2012 2013 if (chan->device->dev->driver != &pl330_driver.drv) 2014 return false; 2015 2016 peri_id = chan->private; 2017 return *peri_id == (unsigned long)param; 2018 } 2019 EXPORT_SYMBOL(pl330_filter); 2020 2021 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2022 struct of_dma *ofdma) 2023 { 2024 int count = dma_spec->args_count; 2025 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2026 unsigned int chan_id; 2027 2028 if (!pl330) 2029 return NULL; 2030 2031 if (count != 1) 2032 return NULL; 2033 2034 chan_id = dma_spec->args[0]; 2035 if (chan_id >= pl330->num_peripherals) 2036 return NULL; 2037 2038 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2039 } 2040 2041 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2042 { 2043 struct dma_pl330_chan *pch = to_pchan(chan); 2044 struct pl330_dmac *pl330 = pch->dmac; 2045 unsigned long flags; 2046 2047 spin_lock_irqsave(&pch->lock, flags); 2048 2049 dma_cookie_init(chan); 2050 pch->cyclic = false; 2051 2052 pch->thread = pl330_request_channel(pl330); 2053 if (!pch->thread) { 2054 spin_unlock_irqrestore(&pch->lock, flags); 2055 return -ENOMEM; 2056 } 2057 2058 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2059 2060 spin_unlock_irqrestore(&pch->lock, flags); 2061 2062 return 1; 2063 } 2064 2065 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2066 { 2067 struct dma_pl330_chan *pch = to_pchan(chan); 2068 struct dma_pl330_desc *desc; 2069 unsigned long flags; 2070 struct pl330_dmac *pl330 = pch->dmac; 2071 struct dma_slave_config *slave_config; 2072 LIST_HEAD(list); 2073 2074 switch (cmd) { 2075 case DMA_TERMINATE_ALL: 2076 spin_lock_irqsave(&pch->lock, flags); 2077 2078 spin_lock(&pl330->lock); 2079 _stop(pch->thread); 2080 spin_unlock(&pl330->lock); 2081 2082 pch->thread->req[0].desc = NULL; 2083 pch->thread->req[1].desc = NULL; 2084 pch->thread->req_running = -1; 2085 2086 /* Mark all desc done */ 2087 list_for_each_entry(desc, &pch->submitted_list, node) { 2088 desc->status = FREE; 2089 dma_cookie_complete(&desc->txd); 2090 } 2091 2092 list_for_each_entry(desc, &pch->work_list , node) { 2093 desc->status = FREE; 2094 dma_cookie_complete(&desc->txd); 2095 } 2096 2097 list_for_each_entry(desc, &pch->completed_list , node) { 2098 desc->status = FREE; 2099 dma_cookie_complete(&desc->txd); 2100 } 2101 2102 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2103 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2104 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2105 spin_unlock_irqrestore(&pch->lock, flags); 2106 break; 2107 case DMA_SLAVE_CONFIG: 2108 slave_config = (struct dma_slave_config *)arg; 2109 2110 if (slave_config->direction == DMA_MEM_TO_DEV) { 2111 if (slave_config->dst_addr) 2112 pch->fifo_addr = slave_config->dst_addr; 2113 if (slave_config->dst_addr_width) 2114 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2115 if (slave_config->dst_maxburst) 2116 pch->burst_len = slave_config->dst_maxburst; 2117 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2118 if (slave_config->src_addr) 2119 pch->fifo_addr = slave_config->src_addr; 2120 if (slave_config->src_addr_width) 2121 pch->burst_sz = __ffs(slave_config->src_addr_width); 2122 if (slave_config->src_maxburst) 2123 pch->burst_len = slave_config->src_maxburst; 2124 } 2125 break; 2126 default: 2127 dev_err(pch->dmac->ddma.dev, "Not supported command.\n"); 2128 return -ENXIO; 2129 } 2130 2131 return 0; 2132 } 2133 2134 static void pl330_free_chan_resources(struct dma_chan *chan) 2135 { 2136 struct dma_pl330_chan *pch = to_pchan(chan); 2137 unsigned long flags; 2138 2139 tasklet_kill(&pch->task); 2140 2141 spin_lock_irqsave(&pch->lock, flags); 2142 2143 pl330_release_channel(pch->thread); 2144 pch->thread = NULL; 2145 2146 if (pch->cyclic) 2147 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2148 2149 spin_unlock_irqrestore(&pch->lock, flags); 2150 } 2151 2152 static enum dma_status 2153 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2154 struct dma_tx_state *txstate) 2155 { 2156 return dma_cookie_status(chan, cookie, txstate); 2157 } 2158 2159 static void pl330_issue_pending(struct dma_chan *chan) 2160 { 2161 struct dma_pl330_chan *pch = to_pchan(chan); 2162 unsigned long flags; 2163 2164 spin_lock_irqsave(&pch->lock, flags); 2165 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2166 spin_unlock_irqrestore(&pch->lock, flags); 2167 2168 pl330_tasklet((unsigned long)pch); 2169 } 2170 2171 /* 2172 * We returned the last one of the circular list of descriptor(s) 2173 * from prep_xxx, so the argument to submit corresponds to the last 2174 * descriptor of the list. 2175 */ 2176 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2177 { 2178 struct dma_pl330_desc *desc, *last = to_desc(tx); 2179 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2180 dma_cookie_t cookie; 2181 unsigned long flags; 2182 2183 spin_lock_irqsave(&pch->lock, flags); 2184 2185 /* Assign cookies to all nodes */ 2186 while (!list_empty(&last->node)) { 2187 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2188 if (pch->cyclic) { 2189 desc->txd.callback = last->txd.callback; 2190 desc->txd.callback_param = last->txd.callback_param; 2191 } 2192 2193 dma_cookie_assign(&desc->txd); 2194 2195 list_move_tail(&desc->node, &pch->submitted_list); 2196 } 2197 2198 cookie = dma_cookie_assign(&last->txd); 2199 list_add_tail(&last->node, &pch->submitted_list); 2200 spin_unlock_irqrestore(&pch->lock, flags); 2201 2202 return cookie; 2203 } 2204 2205 static inline void _init_desc(struct dma_pl330_desc *desc) 2206 { 2207 desc->rqcfg.swap = SWAP_NO; 2208 desc->rqcfg.scctl = CCTRL0; 2209 desc->rqcfg.dcctl = CCTRL0; 2210 desc->txd.tx_submit = pl330_tx_submit; 2211 2212 INIT_LIST_HEAD(&desc->node); 2213 } 2214 2215 /* Returns the number of descriptors added to the DMAC pool */ 2216 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count) 2217 { 2218 struct dma_pl330_desc *desc; 2219 unsigned long flags; 2220 int i; 2221 2222 desc = kcalloc(count, sizeof(*desc), flg); 2223 if (!desc) 2224 return 0; 2225 2226 spin_lock_irqsave(&pl330->pool_lock, flags); 2227 2228 for (i = 0; i < count; i++) { 2229 _init_desc(&desc[i]); 2230 list_add_tail(&desc[i].node, &pl330->desc_pool); 2231 } 2232 2233 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2234 2235 return count; 2236 } 2237 2238 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330) 2239 { 2240 struct dma_pl330_desc *desc = NULL; 2241 unsigned long flags; 2242 2243 spin_lock_irqsave(&pl330->pool_lock, flags); 2244 2245 if (!list_empty(&pl330->desc_pool)) { 2246 desc = list_entry(pl330->desc_pool.next, 2247 struct dma_pl330_desc, node); 2248 2249 list_del_init(&desc->node); 2250 2251 desc->status = PREP; 2252 desc->txd.callback = NULL; 2253 } 2254 2255 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2256 2257 return desc; 2258 } 2259 2260 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2261 { 2262 struct pl330_dmac *pl330 = pch->dmac; 2263 u8 *peri_id = pch->chan.private; 2264 struct dma_pl330_desc *desc; 2265 2266 /* Pluck one desc from the pool of DMAC */ 2267 desc = pluck_desc(pl330); 2268 2269 /* If the DMAC pool is empty, alloc new */ 2270 if (!desc) { 2271 if (!add_desc(pl330, GFP_ATOMIC, 1)) 2272 return NULL; 2273 2274 /* Try again */ 2275 desc = pluck_desc(pl330); 2276 if (!desc) { 2277 dev_err(pch->dmac->ddma.dev, 2278 "%s:%d ALERT!\n", __func__, __LINE__); 2279 return NULL; 2280 } 2281 } 2282 2283 /* Initialize the descriptor */ 2284 desc->pchan = pch; 2285 desc->txd.cookie = 0; 2286 async_tx_ack(&desc->txd); 2287 2288 desc->peri = peri_id ? pch->chan.chan_id : 0; 2289 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2290 2291 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2292 2293 return desc; 2294 } 2295 2296 static inline void fill_px(struct pl330_xfer *px, 2297 dma_addr_t dst, dma_addr_t src, size_t len) 2298 { 2299 px->bytes = len; 2300 px->dst_addr = dst; 2301 px->src_addr = src; 2302 } 2303 2304 static struct dma_pl330_desc * 2305 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2306 dma_addr_t src, size_t len) 2307 { 2308 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2309 2310 if (!desc) { 2311 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2312 __func__, __LINE__); 2313 return NULL; 2314 } 2315 2316 /* 2317 * Ideally we should lookout for reqs bigger than 2318 * those that can be programmed with 256 bytes of 2319 * MC buffer, but considering a req size is seldom 2320 * going to be word-unaligned and more than 200MB, 2321 * we take it easy. 2322 * Also, should the limit is reached we'd rather 2323 * have the platform increase MC buffer size than 2324 * complicating this API driver. 2325 */ 2326 fill_px(&desc->px, dst, src, len); 2327 2328 return desc; 2329 } 2330 2331 /* Call after fixing burst size */ 2332 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2333 { 2334 struct dma_pl330_chan *pch = desc->pchan; 2335 struct pl330_dmac *pl330 = pch->dmac; 2336 int burst_len; 2337 2338 burst_len = pl330->pcfg.data_bus_width / 8; 2339 burst_len *= pl330->pcfg.data_buf_dep; 2340 burst_len >>= desc->rqcfg.brst_size; 2341 2342 /* src/dst_burst_len can't be more than 16 */ 2343 if (burst_len > 16) 2344 burst_len = 16; 2345 2346 while (burst_len > 1) { 2347 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2348 break; 2349 burst_len--; 2350 } 2351 2352 return burst_len; 2353 } 2354 2355 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2356 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2357 size_t period_len, enum dma_transfer_direction direction, 2358 unsigned long flags) 2359 { 2360 struct dma_pl330_desc *desc = NULL, *first = NULL; 2361 struct dma_pl330_chan *pch = to_pchan(chan); 2362 struct pl330_dmac *pl330 = pch->dmac; 2363 unsigned int i; 2364 dma_addr_t dst; 2365 dma_addr_t src; 2366 2367 if (len % period_len != 0) 2368 return NULL; 2369 2370 if (!is_slave_direction(direction)) { 2371 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2372 __func__, __LINE__); 2373 return NULL; 2374 } 2375 2376 for (i = 0; i < len / period_len; i++) { 2377 desc = pl330_get_desc(pch); 2378 if (!desc) { 2379 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2380 __func__, __LINE__); 2381 2382 if (!first) 2383 return NULL; 2384 2385 spin_lock_irqsave(&pl330->pool_lock, flags); 2386 2387 while (!list_empty(&first->node)) { 2388 desc = list_entry(first->node.next, 2389 struct dma_pl330_desc, node); 2390 list_move_tail(&desc->node, &pl330->desc_pool); 2391 } 2392 2393 list_move_tail(&first->node, &pl330->desc_pool); 2394 2395 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2396 2397 return NULL; 2398 } 2399 2400 switch (direction) { 2401 case DMA_MEM_TO_DEV: 2402 desc->rqcfg.src_inc = 1; 2403 desc->rqcfg.dst_inc = 0; 2404 src = dma_addr; 2405 dst = pch->fifo_addr; 2406 break; 2407 case DMA_DEV_TO_MEM: 2408 desc->rqcfg.src_inc = 0; 2409 desc->rqcfg.dst_inc = 1; 2410 src = pch->fifo_addr; 2411 dst = dma_addr; 2412 break; 2413 default: 2414 break; 2415 } 2416 2417 desc->rqtype = direction; 2418 desc->rqcfg.brst_size = pch->burst_sz; 2419 desc->rqcfg.brst_len = 1; 2420 fill_px(&desc->px, dst, src, period_len); 2421 2422 if (!first) 2423 first = desc; 2424 else 2425 list_add_tail(&desc->node, &first->node); 2426 2427 dma_addr += period_len; 2428 } 2429 2430 if (!desc) 2431 return NULL; 2432 2433 pch->cyclic = true; 2434 desc->txd.flags = flags; 2435 2436 return &desc->txd; 2437 } 2438 2439 static struct dma_async_tx_descriptor * 2440 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2441 dma_addr_t src, size_t len, unsigned long flags) 2442 { 2443 struct dma_pl330_desc *desc; 2444 struct dma_pl330_chan *pch = to_pchan(chan); 2445 struct pl330_dmac *pl330 = pch->dmac; 2446 int burst; 2447 2448 if (unlikely(!pch || !len)) 2449 return NULL; 2450 2451 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2452 if (!desc) 2453 return NULL; 2454 2455 desc->rqcfg.src_inc = 1; 2456 desc->rqcfg.dst_inc = 1; 2457 desc->rqtype = DMA_MEM_TO_MEM; 2458 2459 /* Select max possible burst size */ 2460 burst = pl330->pcfg.data_bus_width / 8; 2461 2462 while (burst > 1) { 2463 if (!(len % burst)) 2464 break; 2465 burst /= 2; 2466 } 2467 2468 desc->rqcfg.brst_size = 0; 2469 while (burst != (1 << desc->rqcfg.brst_size)) 2470 desc->rqcfg.brst_size++; 2471 2472 desc->rqcfg.brst_len = get_burst_len(desc, len); 2473 2474 desc->txd.flags = flags; 2475 2476 return &desc->txd; 2477 } 2478 2479 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2480 struct dma_pl330_desc *first) 2481 { 2482 unsigned long flags; 2483 struct dma_pl330_desc *desc; 2484 2485 if (!first) 2486 return; 2487 2488 spin_lock_irqsave(&pl330->pool_lock, flags); 2489 2490 while (!list_empty(&first->node)) { 2491 desc = list_entry(first->node.next, 2492 struct dma_pl330_desc, node); 2493 list_move_tail(&desc->node, &pl330->desc_pool); 2494 } 2495 2496 list_move_tail(&first->node, &pl330->desc_pool); 2497 2498 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2499 } 2500 2501 static struct dma_async_tx_descriptor * 2502 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2503 unsigned int sg_len, enum dma_transfer_direction direction, 2504 unsigned long flg, void *context) 2505 { 2506 struct dma_pl330_desc *first, *desc = NULL; 2507 struct dma_pl330_chan *pch = to_pchan(chan); 2508 struct scatterlist *sg; 2509 int i; 2510 dma_addr_t addr; 2511 2512 if (unlikely(!pch || !sgl || !sg_len)) 2513 return NULL; 2514 2515 addr = pch->fifo_addr; 2516 2517 first = NULL; 2518 2519 for_each_sg(sgl, sg, sg_len, i) { 2520 2521 desc = pl330_get_desc(pch); 2522 if (!desc) { 2523 struct pl330_dmac *pl330 = pch->dmac; 2524 2525 dev_err(pch->dmac->ddma.dev, 2526 "%s:%d Unable to fetch desc\n", 2527 __func__, __LINE__); 2528 __pl330_giveback_desc(pl330, first); 2529 2530 return NULL; 2531 } 2532 2533 if (!first) 2534 first = desc; 2535 else 2536 list_add_tail(&desc->node, &first->node); 2537 2538 if (direction == DMA_MEM_TO_DEV) { 2539 desc->rqcfg.src_inc = 1; 2540 desc->rqcfg.dst_inc = 0; 2541 fill_px(&desc->px, 2542 addr, sg_dma_address(sg), sg_dma_len(sg)); 2543 } else { 2544 desc->rqcfg.src_inc = 0; 2545 desc->rqcfg.dst_inc = 1; 2546 fill_px(&desc->px, 2547 sg_dma_address(sg), addr, sg_dma_len(sg)); 2548 } 2549 2550 desc->rqcfg.brst_size = pch->burst_sz; 2551 desc->rqcfg.brst_len = 1; 2552 desc->rqtype = direction; 2553 } 2554 2555 /* Return the last desc in the chain */ 2556 desc->txd.flags = flg; 2557 return &desc->txd; 2558 } 2559 2560 static irqreturn_t pl330_irq_handler(int irq, void *data) 2561 { 2562 if (pl330_update(data)) 2563 return IRQ_HANDLED; 2564 else 2565 return IRQ_NONE; 2566 } 2567 2568 #define PL330_DMA_BUSWIDTHS \ 2569 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2570 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2571 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2572 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2573 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2574 2575 static int pl330_dma_device_slave_caps(struct dma_chan *dchan, 2576 struct dma_slave_caps *caps) 2577 { 2578 caps->src_addr_widths = PL330_DMA_BUSWIDTHS; 2579 caps->dstn_addr_widths = PL330_DMA_BUSWIDTHS; 2580 caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2581 caps->cmd_pause = false; 2582 caps->cmd_terminate = true; 2583 caps->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 2584 2585 return 0; 2586 } 2587 2588 static int 2589 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2590 { 2591 struct dma_pl330_platdata *pdat; 2592 struct pl330_config *pcfg; 2593 struct pl330_dmac *pl330; 2594 struct dma_pl330_chan *pch, *_p; 2595 struct dma_device *pd; 2596 struct resource *res; 2597 int i, ret, irq; 2598 int num_chan; 2599 2600 pdat = dev_get_platdata(&adev->dev); 2601 2602 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 2603 if (ret) 2604 return ret; 2605 2606 /* Allocate a new DMAC and its Channels */ 2607 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 2608 if (!pl330) { 2609 dev_err(&adev->dev, "unable to allocate mem\n"); 2610 return -ENOMEM; 2611 } 2612 2613 pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2614 2615 res = &adev->res; 2616 pl330->base = devm_ioremap_resource(&adev->dev, res); 2617 if (IS_ERR(pl330->base)) 2618 return PTR_ERR(pl330->base); 2619 2620 amba_set_drvdata(adev, pl330); 2621 2622 for (i = 0; i < AMBA_NR_IRQS; i++) { 2623 irq = adev->irq[i]; 2624 if (irq) { 2625 ret = devm_request_irq(&adev->dev, irq, 2626 pl330_irq_handler, 0, 2627 dev_name(&adev->dev), pl330); 2628 if (ret) 2629 return ret; 2630 } else { 2631 break; 2632 } 2633 } 2634 2635 pcfg = &pl330->pcfg; 2636 2637 pcfg->periph_id = adev->periphid; 2638 ret = pl330_add(pl330); 2639 if (ret) 2640 return ret; 2641 2642 INIT_LIST_HEAD(&pl330->desc_pool); 2643 spin_lock_init(&pl330->pool_lock); 2644 2645 /* Create a descriptor pool of default size */ 2646 if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC)) 2647 dev_warn(&adev->dev, "unable to allocate desc\n"); 2648 2649 pd = &pl330->ddma; 2650 INIT_LIST_HEAD(&pd->channels); 2651 2652 /* Initialize channel parameters */ 2653 if (pdat) 2654 num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan); 2655 else 2656 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 2657 2658 pl330->num_peripherals = num_chan; 2659 2660 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2661 if (!pl330->peripherals) { 2662 ret = -ENOMEM; 2663 dev_err(&adev->dev, "unable to allocate pl330->peripherals\n"); 2664 goto probe_err2; 2665 } 2666 2667 for (i = 0; i < num_chan; i++) { 2668 pch = &pl330->peripherals[i]; 2669 if (!adev->dev.of_node) 2670 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2671 else 2672 pch->chan.private = adev->dev.of_node; 2673 2674 INIT_LIST_HEAD(&pch->submitted_list); 2675 INIT_LIST_HEAD(&pch->work_list); 2676 INIT_LIST_HEAD(&pch->completed_list); 2677 spin_lock_init(&pch->lock); 2678 pch->thread = NULL; 2679 pch->chan.device = pd; 2680 pch->dmac = pl330; 2681 2682 /* Add the channel to the DMAC list */ 2683 list_add_tail(&pch->chan.device_node, &pd->channels); 2684 } 2685 2686 pd->dev = &adev->dev; 2687 if (pdat) { 2688 pd->cap_mask = pdat->cap_mask; 2689 } else { 2690 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2691 if (pcfg->num_peri) { 2692 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2693 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2694 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2695 } 2696 } 2697 2698 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2699 pd->device_free_chan_resources = pl330_free_chan_resources; 2700 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2701 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2702 pd->device_tx_status = pl330_tx_status; 2703 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2704 pd->device_control = pl330_control; 2705 pd->device_issue_pending = pl330_issue_pending; 2706 pd->device_slave_caps = pl330_dma_device_slave_caps; 2707 2708 ret = dma_async_device_register(pd); 2709 if (ret) { 2710 dev_err(&adev->dev, "unable to register DMAC\n"); 2711 goto probe_err3; 2712 } 2713 2714 if (adev->dev.of_node) { 2715 ret = of_dma_controller_register(adev->dev.of_node, 2716 of_dma_pl330_xlate, pl330); 2717 if (ret) { 2718 dev_err(&adev->dev, 2719 "unable to register DMA to the generic DT DMA helpers\n"); 2720 } 2721 } 2722 2723 adev->dev.dma_parms = &pl330->dma_parms; 2724 2725 /* 2726 * This is the limit for transfers with a buswidth of 1, larger 2727 * buswidths will have larger limits. 2728 */ 2729 ret = dma_set_max_seg_size(&adev->dev, 1900800); 2730 if (ret) 2731 dev_err(&adev->dev, "unable to set the seg size\n"); 2732 2733 2734 dev_info(&adev->dev, 2735 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 2736 dev_info(&adev->dev, 2737 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2738 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 2739 pcfg->num_peri, pcfg->num_events); 2740 2741 return 0; 2742 probe_err3: 2743 /* Idle the DMAC */ 2744 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 2745 chan.device_node) { 2746 2747 /* Remove the channel */ 2748 list_del(&pch->chan.device_node); 2749 2750 /* Flush the channel */ 2751 if (pch->thread) { 2752 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 2753 pl330_free_chan_resources(&pch->chan); 2754 } 2755 } 2756 probe_err2: 2757 pl330_del(pl330); 2758 2759 return ret; 2760 } 2761 2762 static int pl330_remove(struct amba_device *adev) 2763 { 2764 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 2765 struct dma_pl330_chan *pch, *_p; 2766 2767 if (adev->dev.of_node) 2768 of_dma_controller_free(adev->dev.of_node); 2769 2770 dma_async_device_unregister(&pl330->ddma); 2771 2772 /* Idle the DMAC */ 2773 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 2774 chan.device_node) { 2775 2776 /* Remove the channel */ 2777 list_del(&pch->chan.device_node); 2778 2779 /* Flush the channel */ 2780 if (pch->thread) { 2781 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 2782 pl330_free_chan_resources(&pch->chan); 2783 } 2784 } 2785 2786 pl330_del(pl330); 2787 2788 return 0; 2789 } 2790 2791 static struct amba_id pl330_ids[] = { 2792 { 2793 .id = 0x00041330, 2794 .mask = 0x000fffff, 2795 }, 2796 { 0, 0 }, 2797 }; 2798 2799 MODULE_DEVICE_TABLE(amba, pl330_ids); 2800 2801 static struct amba_driver pl330_driver = { 2802 .drv = { 2803 .owner = THIS_MODULE, 2804 .name = "dma-pl330", 2805 }, 2806 .id_table = pl330_ids, 2807 .probe = pl330_probe, 2808 .remove = pl330_remove, 2809 }; 2810 2811 module_amba_driver(pl330_driver); 2812 2813 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 2814 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 2815 MODULE_LICENSE("GPL"); 2816