1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 7 * Jaswinder Singh <jassi.brar@samsung.com> 8 */ 9 10 #include <linux/debugfs.h> 11 #include <linux/kernel.h> 12 #include <linux/io.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/string.h> 17 #include <linux/delay.h> 18 #include <linux/interrupt.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dmaengine.h> 21 #include <linux/amba/bus.h> 22 #include <linux/scatterlist.h> 23 #include <linux/of.h> 24 #include <linux/of_dma.h> 25 #include <linux/err.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/bug.h> 28 #include <linux/reset.h> 29 30 #include "dmaengine.h" 31 #define PL330_MAX_CHAN 8 32 #define PL330_MAX_IRQS 32 33 #define PL330_MAX_PERI 32 34 #define PL330_MAX_BURST 16 35 36 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 37 38 enum pl330_cachectrl { 39 CCTRL0, /* Noncacheable and nonbufferable */ 40 CCTRL1, /* Bufferable only */ 41 CCTRL2, /* Cacheable, but do not allocate */ 42 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 43 INVALID1, /* AWCACHE = 0x1000 */ 44 INVALID2, 45 CCTRL6, /* Cacheable write-through, allocate on writes only */ 46 CCTRL7, /* Cacheable write-back, allocate on writes only */ 47 }; 48 49 enum pl330_byteswap { 50 SWAP_NO, 51 SWAP_2, 52 SWAP_4, 53 SWAP_8, 54 SWAP_16, 55 }; 56 57 /* Register and Bit field Definitions */ 58 #define DS 0x0 59 #define DS_ST_STOP 0x0 60 #define DS_ST_EXEC 0x1 61 #define DS_ST_CMISS 0x2 62 #define DS_ST_UPDTPC 0x3 63 #define DS_ST_WFE 0x4 64 #define DS_ST_ATBRR 0x5 65 #define DS_ST_QBUSY 0x6 66 #define DS_ST_WFP 0x7 67 #define DS_ST_KILL 0x8 68 #define DS_ST_CMPLT 0x9 69 #define DS_ST_FLTCMP 0xe 70 #define DS_ST_FAULT 0xf 71 72 #define DPC 0x4 73 #define INTEN 0x20 74 #define ES 0x24 75 #define INTSTATUS 0x28 76 #define INTCLR 0x2c 77 #define FSM 0x30 78 #define FSC 0x34 79 #define FTM 0x38 80 81 #define _FTC 0x40 82 #define FTC(n) (_FTC + (n)*0x4) 83 84 #define _CS 0x100 85 #define CS(n) (_CS + (n)*0x8) 86 #define CS_CNS (1 << 21) 87 88 #define _CPC 0x104 89 #define CPC(n) (_CPC + (n)*0x8) 90 91 #define _SA 0x400 92 #define SA(n) (_SA + (n)*0x20) 93 94 #define _DA 0x404 95 #define DA(n) (_DA + (n)*0x20) 96 97 #define _CC 0x408 98 #define CC(n) (_CC + (n)*0x20) 99 100 #define CC_SRCINC (1 << 0) 101 #define CC_DSTINC (1 << 14) 102 #define CC_SRCPRI (1 << 8) 103 #define CC_DSTPRI (1 << 22) 104 #define CC_SRCNS (1 << 9) 105 #define CC_DSTNS (1 << 23) 106 #define CC_SRCIA (1 << 10) 107 #define CC_DSTIA (1 << 24) 108 #define CC_SRCBRSTLEN_SHFT 4 109 #define CC_DSTBRSTLEN_SHFT 18 110 #define CC_SRCBRSTSIZE_SHFT 1 111 #define CC_DSTBRSTSIZE_SHFT 15 112 #define CC_SRCCCTRL_SHFT 11 113 #define CC_SRCCCTRL_MASK 0x7 114 #define CC_DSTCCTRL_SHFT 25 115 #define CC_DRCCCTRL_MASK 0x7 116 #define CC_SWAP_SHFT 28 117 118 #define _LC0 0x40c 119 #define LC0(n) (_LC0 + (n)*0x20) 120 121 #define _LC1 0x410 122 #define LC1(n) (_LC1 + (n)*0x20) 123 124 #define DBGSTATUS 0xd00 125 #define DBG_BUSY (1 << 0) 126 127 #define DBGCMD 0xd04 128 #define DBGINST0 0xd08 129 #define DBGINST1 0xd0c 130 131 #define CR0 0xe00 132 #define CR1 0xe04 133 #define CR2 0xe08 134 #define CR3 0xe0c 135 #define CR4 0xe10 136 #define CRD 0xe14 137 138 #define PERIPH_ID 0xfe0 139 #define PERIPH_REV_SHIFT 20 140 #define PERIPH_REV_MASK 0xf 141 #define PERIPH_REV_R0P0 0 142 #define PERIPH_REV_R1P0 1 143 #define PERIPH_REV_R1P1 2 144 145 #define CR0_PERIPH_REQ_SET (1 << 0) 146 #define CR0_BOOT_EN_SET (1 << 1) 147 #define CR0_BOOT_MAN_NS (1 << 2) 148 #define CR0_NUM_CHANS_SHIFT 4 149 #define CR0_NUM_CHANS_MASK 0x7 150 #define CR0_NUM_PERIPH_SHIFT 12 151 #define CR0_NUM_PERIPH_MASK 0x1f 152 #define CR0_NUM_EVENTS_SHIFT 17 153 #define CR0_NUM_EVENTS_MASK 0x1f 154 155 #define CR1_ICACHE_LEN_SHIFT 0 156 #define CR1_ICACHE_LEN_MASK 0x7 157 #define CR1_NUM_ICACHELINES_SHIFT 4 158 #define CR1_NUM_ICACHELINES_MASK 0xf 159 160 #define CRD_DATA_WIDTH_SHIFT 0 161 #define CRD_DATA_WIDTH_MASK 0x7 162 #define CRD_WR_CAP_SHIFT 4 163 #define CRD_WR_CAP_MASK 0x7 164 #define CRD_WR_Q_DEP_SHIFT 8 165 #define CRD_WR_Q_DEP_MASK 0xf 166 #define CRD_RD_CAP_SHIFT 12 167 #define CRD_RD_CAP_MASK 0x7 168 #define CRD_RD_Q_DEP_SHIFT 16 169 #define CRD_RD_Q_DEP_MASK 0xf 170 #define CRD_DATA_BUFF_SHIFT 20 171 #define CRD_DATA_BUFF_MASK 0x3ff 172 173 #define PART 0x330 174 #define DESIGNER 0x41 175 #define REVISION 0x0 176 #define INTEG_CFG 0x0 177 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 178 179 #define PL330_STATE_STOPPED (1 << 0) 180 #define PL330_STATE_EXECUTING (1 << 1) 181 #define PL330_STATE_WFE (1 << 2) 182 #define PL330_STATE_FAULTING (1 << 3) 183 #define PL330_STATE_COMPLETING (1 << 4) 184 #define PL330_STATE_WFP (1 << 5) 185 #define PL330_STATE_KILLING (1 << 6) 186 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 187 #define PL330_STATE_CACHEMISS (1 << 8) 188 #define PL330_STATE_UPDTPC (1 << 9) 189 #define PL330_STATE_ATBARRIER (1 << 10) 190 #define PL330_STATE_QUEUEBUSY (1 << 11) 191 #define PL330_STATE_INVALID (1 << 15) 192 193 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 194 | PL330_STATE_WFE | PL330_STATE_FAULTING) 195 196 #define CMD_DMAADDH 0x54 197 #define CMD_DMAEND 0x00 198 #define CMD_DMAFLUSHP 0x35 199 #define CMD_DMAGO 0xa0 200 #define CMD_DMALD 0x04 201 #define CMD_DMALDP 0x25 202 #define CMD_DMALP 0x20 203 #define CMD_DMALPEND 0x28 204 #define CMD_DMAKILL 0x01 205 #define CMD_DMAMOV 0xbc 206 #define CMD_DMANOP 0x18 207 #define CMD_DMARMB 0x12 208 #define CMD_DMASEV 0x34 209 #define CMD_DMAST 0x08 210 #define CMD_DMASTP 0x29 211 #define CMD_DMASTZ 0x0c 212 #define CMD_DMAWFE 0x36 213 #define CMD_DMAWFP 0x30 214 #define CMD_DMAWMB 0x13 215 216 #define SZ_DMAADDH 3 217 #define SZ_DMAEND 1 218 #define SZ_DMAFLUSHP 2 219 #define SZ_DMALD 1 220 #define SZ_DMALDP 2 221 #define SZ_DMALP 2 222 #define SZ_DMALPEND 2 223 #define SZ_DMAKILL 1 224 #define SZ_DMAMOV 6 225 #define SZ_DMANOP 1 226 #define SZ_DMARMB 1 227 #define SZ_DMASEV 2 228 #define SZ_DMAST 1 229 #define SZ_DMASTP 2 230 #define SZ_DMASTZ 1 231 #define SZ_DMAWFE 2 232 #define SZ_DMAWFP 2 233 #define SZ_DMAWMB 1 234 #define SZ_DMAGO 6 235 236 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 237 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 238 239 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 240 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 241 242 /* 243 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 244 * at 1byte/burst for P<->M and M<->M respectively. 245 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 246 * should be enough for P<->M and M<->M respectively. 247 */ 248 #define MCODE_BUFF_PER_REQ 256 249 250 /* Use this _only_ to wait on transient states */ 251 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 252 253 #ifdef PL330_DEBUG_MCGEN 254 static unsigned cmd_line; 255 #define PL330_DBGCMD_DUMP(off, x...) do { \ 256 printk("%x:", cmd_line); \ 257 printk(x); \ 258 cmd_line += off; \ 259 } while (0) 260 #define PL330_DBGMC_START(addr) (cmd_line = addr) 261 #else 262 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 263 #define PL330_DBGMC_START(addr) do {} while (0) 264 #endif 265 266 /* The number of default descriptors */ 267 268 #define NR_DEFAULT_DESC 16 269 270 /* Delay for runtime PM autosuspend, ms */ 271 #define PL330_AUTOSUSPEND_DELAY 20 272 273 /* Populated by the PL330 core driver for DMA API driver's info */ 274 struct pl330_config { 275 u32 periph_id; 276 #define DMAC_MODE_NS (1 << 0) 277 unsigned int mode; 278 unsigned int data_bus_width:10; /* In number of bits */ 279 unsigned int data_buf_dep:11; 280 unsigned int num_chan:4; 281 unsigned int num_peri:6; 282 u32 peri_ns; 283 unsigned int num_events:6; 284 u32 irq_ns; 285 }; 286 287 /** 288 * Request Configuration. 289 * The PL330 core does not modify this and uses the last 290 * working configuration if the request doesn't provide any. 291 * 292 * The Client may want to provide this info only for the 293 * first request and a request with new settings. 294 */ 295 struct pl330_reqcfg { 296 /* Address Incrementing */ 297 unsigned dst_inc:1; 298 unsigned src_inc:1; 299 300 /* 301 * For now, the SRC & DST protection levels 302 * and burst size/length are assumed same. 303 */ 304 bool nonsecure; 305 bool privileged; 306 bool insnaccess; 307 unsigned brst_len:5; 308 unsigned brst_size:3; /* in power of 2 */ 309 310 enum pl330_cachectrl dcctl; 311 enum pl330_cachectrl scctl; 312 enum pl330_byteswap swap; 313 struct pl330_config *pcfg; 314 }; 315 316 /* 317 * One cycle of DMAC operation. 318 * There may be more than one xfer in a request. 319 */ 320 struct pl330_xfer { 321 u32 src_addr; 322 u32 dst_addr; 323 /* Size to xfer */ 324 u32 bytes; 325 }; 326 327 /* The xfer callbacks are made with one of these arguments. */ 328 enum pl330_op_err { 329 /* The all xfers in the request were success. */ 330 PL330_ERR_NONE, 331 /* If req aborted due to global error. */ 332 PL330_ERR_ABORT, 333 /* If req failed due to problem with Channel. */ 334 PL330_ERR_FAIL, 335 }; 336 337 enum dmamov_dst { 338 SAR = 0, 339 CCR, 340 DAR, 341 }; 342 343 enum pl330_dst { 344 SRC = 0, 345 DST, 346 }; 347 348 enum pl330_cond { 349 SINGLE, 350 BURST, 351 ALWAYS, 352 }; 353 354 struct dma_pl330_desc; 355 356 struct _pl330_req { 357 u32 mc_bus; 358 void *mc_cpu; 359 struct dma_pl330_desc *desc; 360 }; 361 362 /* ToBeDone for tasklet */ 363 struct _pl330_tbd { 364 bool reset_dmac; 365 bool reset_mngr; 366 u8 reset_chan; 367 }; 368 369 /* A DMAC Thread */ 370 struct pl330_thread { 371 u8 id; 372 int ev; 373 /* If the channel is not yet acquired by any client */ 374 bool free; 375 /* Parent DMAC */ 376 struct pl330_dmac *dmac; 377 /* Only two at a time */ 378 struct _pl330_req req[2]; 379 /* Index of the last enqueued request */ 380 unsigned lstenq; 381 /* Index of the last submitted request or -1 if the DMA is stopped */ 382 int req_running; 383 }; 384 385 enum pl330_dmac_state { 386 UNINIT, 387 INIT, 388 DYING, 389 }; 390 391 enum desc_status { 392 /* In the DMAC pool */ 393 FREE, 394 /* 395 * Allocated to some channel during prep_xxx 396 * Also may be sitting on the work_list. 397 */ 398 PREP, 399 /* 400 * Sitting on the work_list and already submitted 401 * to the PL330 core. Not more than two descriptors 402 * of a channel can be BUSY at any time. 403 */ 404 BUSY, 405 /* 406 * Sitting on the channel work_list but xfer done 407 * by PL330 core 408 */ 409 DONE, 410 }; 411 412 struct dma_pl330_chan { 413 /* Schedule desc completion */ 414 struct tasklet_struct task; 415 416 /* DMA-Engine Channel */ 417 struct dma_chan chan; 418 419 /* List of submitted descriptors */ 420 struct list_head submitted_list; 421 /* List of issued descriptors */ 422 struct list_head work_list; 423 /* List of completed descriptors */ 424 struct list_head completed_list; 425 426 /* Pointer to the DMAC that manages this channel, 427 * NULL if the channel is available to be acquired. 428 * As the parent, this DMAC also provides descriptors 429 * to the channel. 430 */ 431 struct pl330_dmac *dmac; 432 433 /* To protect channel manipulation */ 434 spinlock_t lock; 435 436 /* 437 * Hardware channel thread of PL330 DMAC. NULL if the channel is 438 * available. 439 */ 440 struct pl330_thread *thread; 441 442 /* For D-to-M and M-to-D channels */ 443 int burst_sz; /* the peripheral fifo width */ 444 int burst_len; /* the number of burst */ 445 phys_addr_t fifo_addr; 446 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ 447 dma_addr_t fifo_dma; 448 enum dma_data_direction dir; 449 struct dma_slave_config slave_config; 450 451 /* for cyclic capability */ 452 bool cyclic; 453 454 /* for runtime pm tracking */ 455 bool active; 456 }; 457 458 struct pl330_dmac { 459 /* DMA-Engine Device */ 460 struct dma_device ddma; 461 462 /* Holds info about sg limitations */ 463 struct device_dma_parameters dma_parms; 464 465 /* Pool of descriptors available for the DMAC's channels */ 466 struct list_head desc_pool; 467 /* To protect desc_pool manipulation */ 468 spinlock_t pool_lock; 469 470 /* Size of MicroCode buffers for each channel. */ 471 unsigned mcbufsz; 472 /* ioremap'ed address of PL330 registers. */ 473 void __iomem *base; 474 /* Populated by the PL330 core driver during pl330_add */ 475 struct pl330_config pcfg; 476 477 spinlock_t lock; 478 /* Maximum possible events/irqs */ 479 int events[32]; 480 /* BUS address of MicroCode buffer */ 481 dma_addr_t mcode_bus; 482 /* CPU address of MicroCode buffer */ 483 void *mcode_cpu; 484 /* List of all Channel threads */ 485 struct pl330_thread *channels; 486 /* Pointer to the MANAGER thread */ 487 struct pl330_thread *manager; 488 /* To handle bad news in interrupt */ 489 struct tasklet_struct tasks; 490 struct _pl330_tbd dmac_tbd; 491 /* State of DMAC operation */ 492 enum pl330_dmac_state state; 493 /* Holds list of reqs with due callbacks */ 494 struct list_head req_done; 495 496 /* Peripheral channels connected to this DMAC */ 497 unsigned int num_peripherals; 498 struct dma_pl330_chan *peripherals; /* keep at end */ 499 int quirks; 500 501 struct reset_control *rstc; 502 struct reset_control *rstc_ocp; 503 }; 504 505 static struct pl330_of_quirks { 506 char *quirk; 507 int id; 508 } of_quirks[] = { 509 { 510 .quirk = "arm,pl330-broken-no-flushp", 511 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 512 } 513 }; 514 515 struct dma_pl330_desc { 516 /* To attach to a queue as child */ 517 struct list_head node; 518 519 /* Descriptor for the DMA Engine API */ 520 struct dma_async_tx_descriptor txd; 521 522 /* Xfer for PL330 core */ 523 struct pl330_xfer px; 524 525 struct pl330_reqcfg rqcfg; 526 527 enum desc_status status; 528 529 int bytes_requested; 530 bool last; 531 532 /* The channel which currently holds this desc */ 533 struct dma_pl330_chan *pchan; 534 535 enum dma_transfer_direction rqtype; 536 /* Index of peripheral for the xfer. */ 537 unsigned peri:5; 538 /* Hook to attach to DMAC's list of reqs with due callback */ 539 struct list_head rqd; 540 }; 541 542 struct _xfer_spec { 543 u32 ccr; 544 struct dma_pl330_desc *desc; 545 }; 546 547 static int pl330_config_write(struct dma_chan *chan, 548 struct dma_slave_config *slave_config, 549 enum dma_transfer_direction direction); 550 551 static inline bool _queue_full(struct pl330_thread *thrd) 552 { 553 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 554 } 555 556 static inline bool is_manager(struct pl330_thread *thrd) 557 { 558 return thrd->dmac->manager == thrd; 559 } 560 561 /* If manager of the thread is in Non-Secure mode */ 562 static inline bool _manager_ns(struct pl330_thread *thrd) 563 { 564 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 565 } 566 567 static inline u32 get_revision(u32 periph_id) 568 { 569 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 570 } 571 572 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 573 { 574 if (dry_run) 575 return SZ_DMAEND; 576 577 buf[0] = CMD_DMAEND; 578 579 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 580 581 return SZ_DMAEND; 582 } 583 584 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 585 { 586 if (dry_run) 587 return SZ_DMAFLUSHP; 588 589 buf[0] = CMD_DMAFLUSHP; 590 591 peri &= 0x1f; 592 peri <<= 3; 593 buf[1] = peri; 594 595 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 596 597 return SZ_DMAFLUSHP; 598 } 599 600 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 601 { 602 if (dry_run) 603 return SZ_DMALD; 604 605 buf[0] = CMD_DMALD; 606 607 if (cond == SINGLE) 608 buf[0] |= (0 << 1) | (1 << 0); 609 else if (cond == BURST) 610 buf[0] |= (1 << 1) | (1 << 0); 611 612 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 613 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 614 615 return SZ_DMALD; 616 } 617 618 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 619 enum pl330_cond cond, u8 peri) 620 { 621 if (dry_run) 622 return SZ_DMALDP; 623 624 buf[0] = CMD_DMALDP; 625 626 if (cond == BURST) 627 buf[0] |= (1 << 1); 628 629 peri &= 0x1f; 630 peri <<= 3; 631 buf[1] = peri; 632 633 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 634 cond == SINGLE ? 'S' : 'B', peri >> 3); 635 636 return SZ_DMALDP; 637 } 638 639 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 640 unsigned loop, u8 cnt) 641 { 642 if (dry_run) 643 return SZ_DMALP; 644 645 buf[0] = CMD_DMALP; 646 647 if (loop) 648 buf[0] |= (1 << 1); 649 650 cnt--; /* DMAC increments by 1 internally */ 651 buf[1] = cnt; 652 653 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 654 655 return SZ_DMALP; 656 } 657 658 struct _arg_LPEND { 659 enum pl330_cond cond; 660 bool forever; 661 unsigned loop; 662 u8 bjump; 663 }; 664 665 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 666 const struct _arg_LPEND *arg) 667 { 668 enum pl330_cond cond = arg->cond; 669 bool forever = arg->forever; 670 unsigned loop = arg->loop; 671 u8 bjump = arg->bjump; 672 673 if (dry_run) 674 return SZ_DMALPEND; 675 676 buf[0] = CMD_DMALPEND; 677 678 if (loop) 679 buf[0] |= (1 << 2); 680 681 if (!forever) 682 buf[0] |= (1 << 4); 683 684 if (cond == SINGLE) 685 buf[0] |= (0 << 1) | (1 << 0); 686 else if (cond == BURST) 687 buf[0] |= (1 << 1) | (1 << 0); 688 689 buf[1] = bjump; 690 691 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 692 forever ? "FE" : "END", 693 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 694 loop ? '1' : '0', 695 bjump); 696 697 return SZ_DMALPEND; 698 } 699 700 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 701 { 702 if (dry_run) 703 return SZ_DMAKILL; 704 705 buf[0] = CMD_DMAKILL; 706 707 return SZ_DMAKILL; 708 } 709 710 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 711 enum dmamov_dst dst, u32 val) 712 { 713 if (dry_run) 714 return SZ_DMAMOV; 715 716 buf[0] = CMD_DMAMOV; 717 buf[1] = dst; 718 buf[2] = val; 719 buf[3] = val >> 8; 720 buf[4] = val >> 16; 721 buf[5] = val >> 24; 722 723 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 724 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 725 726 return SZ_DMAMOV; 727 } 728 729 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 730 { 731 if (dry_run) 732 return SZ_DMARMB; 733 734 buf[0] = CMD_DMARMB; 735 736 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 737 738 return SZ_DMARMB; 739 } 740 741 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 742 { 743 if (dry_run) 744 return SZ_DMASEV; 745 746 buf[0] = CMD_DMASEV; 747 748 ev &= 0x1f; 749 ev <<= 3; 750 buf[1] = ev; 751 752 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 753 754 return SZ_DMASEV; 755 } 756 757 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 758 { 759 if (dry_run) 760 return SZ_DMAST; 761 762 buf[0] = CMD_DMAST; 763 764 if (cond == SINGLE) 765 buf[0] |= (0 << 1) | (1 << 0); 766 else if (cond == BURST) 767 buf[0] |= (1 << 1) | (1 << 0); 768 769 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 770 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 771 772 return SZ_DMAST; 773 } 774 775 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 776 enum pl330_cond cond, u8 peri) 777 { 778 if (dry_run) 779 return SZ_DMASTP; 780 781 buf[0] = CMD_DMASTP; 782 783 if (cond == BURST) 784 buf[0] |= (1 << 1); 785 786 peri &= 0x1f; 787 peri <<= 3; 788 buf[1] = peri; 789 790 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 791 cond == SINGLE ? 'S' : 'B', peri >> 3); 792 793 return SZ_DMASTP; 794 } 795 796 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 797 enum pl330_cond cond, u8 peri) 798 { 799 if (dry_run) 800 return SZ_DMAWFP; 801 802 buf[0] = CMD_DMAWFP; 803 804 if (cond == SINGLE) 805 buf[0] |= (0 << 1) | (0 << 0); 806 else if (cond == BURST) 807 buf[0] |= (1 << 1) | (0 << 0); 808 else 809 buf[0] |= (0 << 1) | (1 << 0); 810 811 peri &= 0x1f; 812 peri <<= 3; 813 buf[1] = peri; 814 815 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 816 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 817 818 return SZ_DMAWFP; 819 } 820 821 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 822 { 823 if (dry_run) 824 return SZ_DMAWMB; 825 826 buf[0] = CMD_DMAWMB; 827 828 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 829 830 return SZ_DMAWMB; 831 } 832 833 struct _arg_GO { 834 u8 chan; 835 u32 addr; 836 unsigned ns; 837 }; 838 839 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 840 const struct _arg_GO *arg) 841 { 842 u8 chan = arg->chan; 843 u32 addr = arg->addr; 844 unsigned ns = arg->ns; 845 846 if (dry_run) 847 return SZ_DMAGO; 848 849 buf[0] = CMD_DMAGO; 850 buf[0] |= (ns << 1); 851 buf[1] = chan & 0x7; 852 buf[2] = addr; 853 buf[3] = addr >> 8; 854 buf[4] = addr >> 16; 855 buf[5] = addr >> 24; 856 857 return SZ_DMAGO; 858 } 859 860 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 861 862 /* Returns Time-Out */ 863 static bool _until_dmac_idle(struct pl330_thread *thrd) 864 { 865 void __iomem *regs = thrd->dmac->base; 866 unsigned long loops = msecs_to_loops(5); 867 868 do { 869 /* Until Manager is Idle */ 870 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 871 break; 872 873 cpu_relax(); 874 } while (--loops); 875 876 if (!loops) 877 return true; 878 879 return false; 880 } 881 882 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 883 u8 insn[], bool as_manager) 884 { 885 void __iomem *regs = thrd->dmac->base; 886 u32 val; 887 888 val = (insn[0] << 16) | (insn[1] << 24); 889 if (!as_manager) { 890 val |= (1 << 0); 891 val |= (thrd->id << 8); /* Channel Number */ 892 } 893 writel(val, regs + DBGINST0); 894 895 val = le32_to_cpu(*((__le32 *)&insn[2])); 896 writel(val, regs + DBGINST1); 897 898 /* If timed out due to halted state-machine */ 899 if (_until_dmac_idle(thrd)) { 900 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 901 return; 902 } 903 904 /* Get going */ 905 writel(0, regs + DBGCMD); 906 } 907 908 static inline u32 _state(struct pl330_thread *thrd) 909 { 910 void __iomem *regs = thrd->dmac->base; 911 u32 val; 912 913 if (is_manager(thrd)) 914 val = readl(regs + DS) & 0xf; 915 else 916 val = readl(regs + CS(thrd->id)) & 0xf; 917 918 switch (val) { 919 case DS_ST_STOP: 920 return PL330_STATE_STOPPED; 921 case DS_ST_EXEC: 922 return PL330_STATE_EXECUTING; 923 case DS_ST_CMISS: 924 return PL330_STATE_CACHEMISS; 925 case DS_ST_UPDTPC: 926 return PL330_STATE_UPDTPC; 927 case DS_ST_WFE: 928 return PL330_STATE_WFE; 929 case DS_ST_FAULT: 930 return PL330_STATE_FAULTING; 931 case DS_ST_ATBRR: 932 if (is_manager(thrd)) 933 return PL330_STATE_INVALID; 934 else 935 return PL330_STATE_ATBARRIER; 936 case DS_ST_QBUSY: 937 if (is_manager(thrd)) 938 return PL330_STATE_INVALID; 939 else 940 return PL330_STATE_QUEUEBUSY; 941 case DS_ST_WFP: 942 if (is_manager(thrd)) 943 return PL330_STATE_INVALID; 944 else 945 return PL330_STATE_WFP; 946 case DS_ST_KILL: 947 if (is_manager(thrd)) 948 return PL330_STATE_INVALID; 949 else 950 return PL330_STATE_KILLING; 951 case DS_ST_CMPLT: 952 if (is_manager(thrd)) 953 return PL330_STATE_INVALID; 954 else 955 return PL330_STATE_COMPLETING; 956 case DS_ST_FLTCMP: 957 if (is_manager(thrd)) 958 return PL330_STATE_INVALID; 959 else 960 return PL330_STATE_FAULT_COMPLETING; 961 default: 962 return PL330_STATE_INVALID; 963 } 964 } 965 966 static void _stop(struct pl330_thread *thrd) 967 { 968 void __iomem *regs = thrd->dmac->base; 969 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 970 u32 inten = readl(regs + INTEN); 971 972 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 973 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 974 975 /* Return if nothing needs to be done */ 976 if (_state(thrd) == PL330_STATE_COMPLETING 977 || _state(thrd) == PL330_STATE_KILLING 978 || _state(thrd) == PL330_STATE_STOPPED) 979 return; 980 981 _emit_KILL(0, insn); 982 983 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 984 985 /* clear the event */ 986 if (inten & (1 << thrd->ev)) 987 writel(1 << thrd->ev, regs + INTCLR); 988 /* Stop generating interrupts for SEV */ 989 writel(inten & ~(1 << thrd->ev), regs + INTEN); 990 } 991 992 /* Start doing req 'idx' of thread 'thrd' */ 993 static bool _trigger(struct pl330_thread *thrd) 994 { 995 void __iomem *regs = thrd->dmac->base; 996 struct _pl330_req *req; 997 struct dma_pl330_desc *desc; 998 struct _arg_GO go; 999 unsigned ns; 1000 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1001 int idx; 1002 1003 /* Return if already ACTIVE */ 1004 if (_state(thrd) != PL330_STATE_STOPPED) 1005 return true; 1006 1007 idx = 1 - thrd->lstenq; 1008 if (thrd->req[idx].desc != NULL) { 1009 req = &thrd->req[idx]; 1010 } else { 1011 idx = thrd->lstenq; 1012 if (thrd->req[idx].desc != NULL) 1013 req = &thrd->req[idx]; 1014 else 1015 req = NULL; 1016 } 1017 1018 /* Return if no request */ 1019 if (!req) 1020 return true; 1021 1022 /* Return if req is running */ 1023 if (idx == thrd->req_running) 1024 return true; 1025 1026 desc = req->desc; 1027 1028 ns = desc->rqcfg.nonsecure ? 1 : 0; 1029 1030 /* See 'Abort Sources' point-4 at Page 2-25 */ 1031 if (_manager_ns(thrd) && !ns) 1032 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1033 __func__, __LINE__); 1034 1035 go.chan = thrd->id; 1036 go.addr = req->mc_bus; 1037 go.ns = ns; 1038 _emit_GO(0, insn, &go); 1039 1040 /* Set to generate interrupts for SEV */ 1041 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1042 1043 /* Only manager can execute GO */ 1044 _execute_DBGINSN(thrd, insn, true); 1045 1046 thrd->req_running = idx; 1047 1048 return true; 1049 } 1050 1051 static bool _start(struct pl330_thread *thrd) 1052 { 1053 switch (_state(thrd)) { 1054 case PL330_STATE_FAULT_COMPLETING: 1055 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1056 1057 if (_state(thrd) == PL330_STATE_KILLING) 1058 UNTIL(thrd, PL330_STATE_STOPPED) 1059 /* fall through */ 1060 1061 case PL330_STATE_FAULTING: 1062 _stop(thrd); 1063 /* fall through */ 1064 1065 case PL330_STATE_KILLING: 1066 case PL330_STATE_COMPLETING: 1067 UNTIL(thrd, PL330_STATE_STOPPED) 1068 /* fall through */ 1069 1070 case PL330_STATE_STOPPED: 1071 return _trigger(thrd); 1072 1073 case PL330_STATE_WFP: 1074 case PL330_STATE_QUEUEBUSY: 1075 case PL330_STATE_ATBARRIER: 1076 case PL330_STATE_UPDTPC: 1077 case PL330_STATE_CACHEMISS: 1078 case PL330_STATE_EXECUTING: 1079 return true; 1080 1081 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1082 default: 1083 return false; 1084 } 1085 } 1086 1087 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1088 const struct _xfer_spec *pxs, int cyc) 1089 { 1090 int off = 0; 1091 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1092 1093 /* check lock-up free version */ 1094 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1095 while (cyc--) { 1096 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1097 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1098 } 1099 } else { 1100 while (cyc--) { 1101 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1102 off += _emit_RMB(dry_run, &buf[off]); 1103 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1104 off += _emit_WMB(dry_run, &buf[off]); 1105 } 1106 } 1107 1108 return off; 1109 } 1110 1111 static u32 _emit_load(unsigned int dry_run, u8 buf[], 1112 enum pl330_cond cond, enum dma_transfer_direction direction, 1113 u8 peri) 1114 { 1115 int off = 0; 1116 1117 switch (direction) { 1118 case DMA_MEM_TO_MEM: 1119 /* fall through */ 1120 case DMA_MEM_TO_DEV: 1121 off += _emit_LD(dry_run, &buf[off], cond); 1122 break; 1123 1124 case DMA_DEV_TO_MEM: 1125 if (cond == ALWAYS) { 1126 off += _emit_LDP(dry_run, &buf[off], SINGLE, 1127 peri); 1128 off += _emit_LDP(dry_run, &buf[off], BURST, 1129 peri); 1130 } else { 1131 off += _emit_LDP(dry_run, &buf[off], cond, 1132 peri); 1133 } 1134 break; 1135 1136 default: 1137 /* this code should be unreachable */ 1138 WARN_ON(1); 1139 break; 1140 } 1141 1142 return off; 1143 } 1144 1145 static inline u32 _emit_store(unsigned int dry_run, u8 buf[], 1146 enum pl330_cond cond, enum dma_transfer_direction direction, 1147 u8 peri) 1148 { 1149 int off = 0; 1150 1151 switch (direction) { 1152 case DMA_MEM_TO_MEM: 1153 /* fall through */ 1154 case DMA_DEV_TO_MEM: 1155 off += _emit_ST(dry_run, &buf[off], cond); 1156 break; 1157 1158 case DMA_MEM_TO_DEV: 1159 if (cond == ALWAYS) { 1160 off += _emit_STP(dry_run, &buf[off], SINGLE, 1161 peri); 1162 off += _emit_STP(dry_run, &buf[off], BURST, 1163 peri); 1164 } else { 1165 off += _emit_STP(dry_run, &buf[off], cond, 1166 peri); 1167 } 1168 break; 1169 1170 default: 1171 /* this code should be unreachable */ 1172 WARN_ON(1); 1173 break; 1174 } 1175 1176 return off; 1177 } 1178 1179 static inline int _ldst_peripheral(struct pl330_dmac *pl330, 1180 unsigned dry_run, u8 buf[], 1181 const struct _xfer_spec *pxs, int cyc, 1182 enum pl330_cond cond) 1183 { 1184 int off = 0; 1185 1186 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 1187 cond = BURST; 1188 1189 /* 1190 * do FLUSHP at beginning to clear any stale dma requests before the 1191 * first WFP. 1192 */ 1193 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1194 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1195 while (cyc--) { 1196 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1197 off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype, 1198 pxs->desc->peri); 1199 off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype, 1200 pxs->desc->peri); 1201 } 1202 1203 return off; 1204 } 1205 1206 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1207 const struct _xfer_spec *pxs, int cyc) 1208 { 1209 int off = 0; 1210 enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE; 1211 1212 switch (pxs->desc->rqtype) { 1213 case DMA_MEM_TO_DEV: 1214 /* fall through */ 1215 case DMA_DEV_TO_MEM: 1216 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc, 1217 cond); 1218 break; 1219 1220 case DMA_MEM_TO_MEM: 1221 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1222 break; 1223 1224 default: 1225 /* this code should be unreachable */ 1226 WARN_ON(1); 1227 break; 1228 } 1229 1230 return off; 1231 } 1232 1233 /* 1234 * transfer dregs with single transfers to peripheral, or a reduced size burst 1235 * for mem-to-mem. 1236 */ 1237 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[], 1238 const struct _xfer_spec *pxs, int transfer_length) 1239 { 1240 int off = 0; 1241 int dregs_ccr; 1242 1243 if (transfer_length == 0) 1244 return off; 1245 1246 switch (pxs->desc->rqtype) { 1247 case DMA_MEM_TO_DEV: 1248 /* fall through */ 1249 case DMA_DEV_TO_MEM: 1250 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1251 transfer_length, SINGLE); 1252 break; 1253 1254 case DMA_MEM_TO_MEM: 1255 dregs_ccr = pxs->ccr; 1256 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) | 1257 (0xf << CC_DSTBRSTLEN_SHFT)); 1258 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1259 CC_SRCBRSTLEN_SHFT); 1260 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1261 CC_DSTBRSTLEN_SHFT); 1262 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1263 off += _ldst_memtomem(dry_run, &buf[off], pxs, 1); 1264 break; 1265 1266 default: 1267 /* this code should be unreachable */ 1268 WARN_ON(1); 1269 break; 1270 } 1271 1272 return off; 1273 } 1274 1275 /* Returns bytes consumed and updates bursts */ 1276 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1277 unsigned long *bursts, const struct _xfer_spec *pxs) 1278 { 1279 int cyc, cycmax, szlp, szlpend, szbrst, off; 1280 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1281 struct _arg_LPEND lpend; 1282 1283 if (*bursts == 1) 1284 return _bursts(pl330, dry_run, buf, pxs, 1); 1285 1286 /* Max iterations possible in DMALP is 256 */ 1287 if (*bursts >= 256*256) { 1288 lcnt1 = 256; 1289 lcnt0 = 256; 1290 cyc = *bursts / lcnt1 / lcnt0; 1291 } else if (*bursts > 256) { 1292 lcnt1 = 256; 1293 lcnt0 = *bursts / lcnt1; 1294 cyc = 1; 1295 } else { 1296 lcnt1 = *bursts; 1297 lcnt0 = 0; 1298 cyc = 1; 1299 } 1300 1301 szlp = _emit_LP(1, buf, 0, 0); 1302 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1303 1304 lpend.cond = ALWAYS; 1305 lpend.forever = false; 1306 lpend.loop = 0; 1307 lpend.bjump = 0; 1308 szlpend = _emit_LPEND(1, buf, &lpend); 1309 1310 if (lcnt0) { 1311 szlp *= 2; 1312 szlpend *= 2; 1313 } 1314 1315 /* 1316 * Max bursts that we can unroll due to limit on the 1317 * size of backward jump that can be encoded in DMALPEND 1318 * which is 8-bits and hence 255 1319 */ 1320 cycmax = (255 - (szlp + szlpend)) / szbrst; 1321 1322 cyc = (cycmax < cyc) ? cycmax : cyc; 1323 1324 off = 0; 1325 1326 if (lcnt0) { 1327 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1328 ljmp0 = off; 1329 } 1330 1331 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1332 ljmp1 = off; 1333 1334 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1335 1336 lpend.cond = ALWAYS; 1337 lpend.forever = false; 1338 lpend.loop = 1; 1339 lpend.bjump = off - ljmp1; 1340 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1341 1342 if (lcnt0) { 1343 lpend.cond = ALWAYS; 1344 lpend.forever = false; 1345 lpend.loop = 0; 1346 lpend.bjump = off - ljmp0; 1347 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1348 } 1349 1350 *bursts = lcnt1 * cyc; 1351 if (lcnt0) 1352 *bursts *= lcnt0; 1353 1354 return off; 1355 } 1356 1357 static inline int _setup_loops(struct pl330_dmac *pl330, 1358 unsigned dry_run, u8 buf[], 1359 const struct _xfer_spec *pxs) 1360 { 1361 struct pl330_xfer *x = &pxs->desc->px; 1362 u32 ccr = pxs->ccr; 1363 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1364 int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) / 1365 BRST_SIZE(ccr); 1366 int off = 0; 1367 1368 while (bursts) { 1369 c = bursts; 1370 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1371 bursts -= c; 1372 } 1373 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs); 1374 1375 return off; 1376 } 1377 1378 static inline int _setup_xfer(struct pl330_dmac *pl330, 1379 unsigned dry_run, u8 buf[], 1380 const struct _xfer_spec *pxs) 1381 { 1382 struct pl330_xfer *x = &pxs->desc->px; 1383 int off = 0; 1384 1385 /* DMAMOV SAR, x->src_addr */ 1386 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1387 /* DMAMOV DAR, x->dst_addr */ 1388 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1389 1390 /* Setup Loop(s) */ 1391 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1392 1393 return off; 1394 } 1395 1396 /* 1397 * A req is a sequence of one or more xfer units. 1398 * Returns the number of bytes taken to setup the MC for the req. 1399 */ 1400 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1401 struct pl330_thread *thrd, unsigned index, 1402 struct _xfer_spec *pxs) 1403 { 1404 struct _pl330_req *req = &thrd->req[index]; 1405 u8 *buf = req->mc_cpu; 1406 int off = 0; 1407 1408 PL330_DBGMC_START(req->mc_bus); 1409 1410 /* DMAMOV CCR, ccr */ 1411 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1412 1413 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1414 1415 /* DMASEV peripheral/event */ 1416 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1417 /* DMAEND */ 1418 off += _emit_END(dry_run, &buf[off]); 1419 1420 return off; 1421 } 1422 1423 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1424 { 1425 u32 ccr = 0; 1426 1427 if (rqc->src_inc) 1428 ccr |= CC_SRCINC; 1429 1430 if (rqc->dst_inc) 1431 ccr |= CC_DSTINC; 1432 1433 /* We set same protection levels for Src and DST for now */ 1434 if (rqc->privileged) 1435 ccr |= CC_SRCPRI | CC_DSTPRI; 1436 if (rqc->nonsecure) 1437 ccr |= CC_SRCNS | CC_DSTNS; 1438 if (rqc->insnaccess) 1439 ccr |= CC_SRCIA | CC_DSTIA; 1440 1441 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1442 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1443 1444 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1445 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1446 1447 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1448 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1449 1450 ccr |= (rqc->swap << CC_SWAP_SHFT); 1451 1452 return ccr; 1453 } 1454 1455 /* 1456 * Submit a list of xfers after which the client wants notification. 1457 * Client is not notified after each xfer unit, just once after all 1458 * xfer units are done or some error occurs. 1459 */ 1460 static int pl330_submit_req(struct pl330_thread *thrd, 1461 struct dma_pl330_desc *desc) 1462 { 1463 struct pl330_dmac *pl330 = thrd->dmac; 1464 struct _xfer_spec xs; 1465 unsigned long flags; 1466 unsigned idx; 1467 u32 ccr; 1468 int ret = 0; 1469 1470 switch (desc->rqtype) { 1471 case DMA_MEM_TO_DEV: 1472 break; 1473 1474 case DMA_DEV_TO_MEM: 1475 break; 1476 1477 case DMA_MEM_TO_MEM: 1478 break; 1479 1480 default: 1481 return -ENOTSUPP; 1482 } 1483 1484 if (pl330->state == DYING 1485 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1486 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1487 __func__, __LINE__); 1488 return -EAGAIN; 1489 } 1490 1491 /* If request for non-existing peripheral */ 1492 if (desc->rqtype != DMA_MEM_TO_MEM && 1493 desc->peri >= pl330->pcfg.num_peri) { 1494 dev_info(thrd->dmac->ddma.dev, 1495 "%s:%d Invalid peripheral(%u)!\n", 1496 __func__, __LINE__, desc->peri); 1497 return -EINVAL; 1498 } 1499 1500 spin_lock_irqsave(&pl330->lock, flags); 1501 1502 if (_queue_full(thrd)) { 1503 ret = -EAGAIN; 1504 goto xfer_exit; 1505 } 1506 1507 /* Prefer Secure Channel */ 1508 if (!_manager_ns(thrd)) 1509 desc->rqcfg.nonsecure = 0; 1510 else 1511 desc->rqcfg.nonsecure = 1; 1512 1513 ccr = _prepare_ccr(&desc->rqcfg); 1514 1515 idx = thrd->req[0].desc == NULL ? 0 : 1; 1516 1517 xs.ccr = ccr; 1518 xs.desc = desc; 1519 1520 /* First dry run to check if req is acceptable */ 1521 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1522 if (ret < 0) 1523 goto xfer_exit; 1524 1525 if (ret > pl330->mcbufsz / 2) { 1526 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1527 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1528 ret = -ENOMEM; 1529 goto xfer_exit; 1530 } 1531 1532 /* Hook the request */ 1533 thrd->lstenq = idx; 1534 thrd->req[idx].desc = desc; 1535 _setup_req(pl330, 0, thrd, idx, &xs); 1536 1537 ret = 0; 1538 1539 xfer_exit: 1540 spin_unlock_irqrestore(&pl330->lock, flags); 1541 1542 return ret; 1543 } 1544 1545 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1546 { 1547 struct dma_pl330_chan *pch; 1548 unsigned long flags; 1549 1550 if (!desc) 1551 return; 1552 1553 pch = desc->pchan; 1554 1555 /* If desc aborted */ 1556 if (!pch) 1557 return; 1558 1559 spin_lock_irqsave(&pch->lock, flags); 1560 1561 desc->status = DONE; 1562 1563 spin_unlock_irqrestore(&pch->lock, flags); 1564 1565 tasklet_schedule(&pch->task); 1566 } 1567 1568 static void pl330_dotask(unsigned long data) 1569 { 1570 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1571 unsigned long flags; 1572 int i; 1573 1574 spin_lock_irqsave(&pl330->lock, flags); 1575 1576 /* The DMAC itself gone nuts */ 1577 if (pl330->dmac_tbd.reset_dmac) { 1578 pl330->state = DYING; 1579 /* Reset the manager too */ 1580 pl330->dmac_tbd.reset_mngr = true; 1581 /* Clear the reset flag */ 1582 pl330->dmac_tbd.reset_dmac = false; 1583 } 1584 1585 if (pl330->dmac_tbd.reset_mngr) { 1586 _stop(pl330->manager); 1587 /* Reset all channels */ 1588 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1589 /* Clear the reset flag */ 1590 pl330->dmac_tbd.reset_mngr = false; 1591 } 1592 1593 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1594 1595 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1596 struct pl330_thread *thrd = &pl330->channels[i]; 1597 void __iomem *regs = pl330->base; 1598 enum pl330_op_err err; 1599 1600 _stop(thrd); 1601 1602 if (readl(regs + FSC) & (1 << thrd->id)) 1603 err = PL330_ERR_FAIL; 1604 else 1605 err = PL330_ERR_ABORT; 1606 1607 spin_unlock_irqrestore(&pl330->lock, flags); 1608 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1609 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1610 spin_lock_irqsave(&pl330->lock, flags); 1611 1612 thrd->req[0].desc = NULL; 1613 thrd->req[1].desc = NULL; 1614 thrd->req_running = -1; 1615 1616 /* Clear the reset flag */ 1617 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1618 } 1619 } 1620 1621 spin_unlock_irqrestore(&pl330->lock, flags); 1622 1623 return; 1624 } 1625 1626 /* Returns 1 if state was updated, 0 otherwise */ 1627 static int pl330_update(struct pl330_dmac *pl330) 1628 { 1629 struct dma_pl330_desc *descdone; 1630 unsigned long flags; 1631 void __iomem *regs; 1632 u32 val; 1633 int id, ev, ret = 0; 1634 1635 regs = pl330->base; 1636 1637 spin_lock_irqsave(&pl330->lock, flags); 1638 1639 val = readl(regs + FSM) & 0x1; 1640 if (val) 1641 pl330->dmac_tbd.reset_mngr = true; 1642 else 1643 pl330->dmac_tbd.reset_mngr = false; 1644 1645 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1646 pl330->dmac_tbd.reset_chan |= val; 1647 if (val) { 1648 int i = 0; 1649 while (i < pl330->pcfg.num_chan) { 1650 if (val & (1 << i)) { 1651 dev_info(pl330->ddma.dev, 1652 "Reset Channel-%d\t CS-%x FTC-%x\n", 1653 i, readl(regs + CS(i)), 1654 readl(regs + FTC(i))); 1655 _stop(&pl330->channels[i]); 1656 } 1657 i++; 1658 } 1659 } 1660 1661 /* Check which event happened i.e, thread notified */ 1662 val = readl(regs + ES); 1663 if (pl330->pcfg.num_events < 32 1664 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1665 pl330->dmac_tbd.reset_dmac = true; 1666 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1667 __LINE__); 1668 ret = 1; 1669 goto updt_exit; 1670 } 1671 1672 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1673 if (val & (1 << ev)) { /* Event occurred */ 1674 struct pl330_thread *thrd; 1675 u32 inten = readl(regs + INTEN); 1676 int active; 1677 1678 /* Clear the event */ 1679 if (inten & (1 << ev)) 1680 writel(1 << ev, regs + INTCLR); 1681 1682 ret = 1; 1683 1684 id = pl330->events[ev]; 1685 1686 thrd = &pl330->channels[id]; 1687 1688 active = thrd->req_running; 1689 if (active == -1) /* Aborted */ 1690 continue; 1691 1692 /* Detach the req */ 1693 descdone = thrd->req[active].desc; 1694 thrd->req[active].desc = NULL; 1695 1696 thrd->req_running = -1; 1697 1698 /* Get going again ASAP */ 1699 _start(thrd); 1700 1701 /* For now, just make a list of callbacks to be done */ 1702 list_add_tail(&descdone->rqd, &pl330->req_done); 1703 } 1704 } 1705 1706 /* Now that we are in no hurry, do the callbacks */ 1707 while (!list_empty(&pl330->req_done)) { 1708 descdone = list_first_entry(&pl330->req_done, 1709 struct dma_pl330_desc, rqd); 1710 list_del(&descdone->rqd); 1711 spin_unlock_irqrestore(&pl330->lock, flags); 1712 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1713 spin_lock_irqsave(&pl330->lock, flags); 1714 } 1715 1716 updt_exit: 1717 spin_unlock_irqrestore(&pl330->lock, flags); 1718 1719 if (pl330->dmac_tbd.reset_dmac 1720 || pl330->dmac_tbd.reset_mngr 1721 || pl330->dmac_tbd.reset_chan) { 1722 ret = 1; 1723 tasklet_schedule(&pl330->tasks); 1724 } 1725 1726 return ret; 1727 } 1728 1729 /* Reserve an event */ 1730 static inline int _alloc_event(struct pl330_thread *thrd) 1731 { 1732 struct pl330_dmac *pl330 = thrd->dmac; 1733 int ev; 1734 1735 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1736 if (pl330->events[ev] == -1) { 1737 pl330->events[ev] = thrd->id; 1738 return ev; 1739 } 1740 1741 return -1; 1742 } 1743 1744 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1745 { 1746 return pl330->pcfg.irq_ns & (1 << i); 1747 } 1748 1749 /* Upon success, returns IdentityToken for the 1750 * allocated channel, NULL otherwise. 1751 */ 1752 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1753 { 1754 struct pl330_thread *thrd = NULL; 1755 int chans, i; 1756 1757 if (pl330->state == DYING) 1758 return NULL; 1759 1760 chans = pl330->pcfg.num_chan; 1761 1762 for (i = 0; i < chans; i++) { 1763 thrd = &pl330->channels[i]; 1764 if ((thrd->free) && (!_manager_ns(thrd) || 1765 _chan_ns(pl330, i))) { 1766 thrd->ev = _alloc_event(thrd); 1767 if (thrd->ev >= 0) { 1768 thrd->free = false; 1769 thrd->lstenq = 1; 1770 thrd->req[0].desc = NULL; 1771 thrd->req[1].desc = NULL; 1772 thrd->req_running = -1; 1773 break; 1774 } 1775 } 1776 thrd = NULL; 1777 } 1778 1779 return thrd; 1780 } 1781 1782 /* Release an event */ 1783 static inline void _free_event(struct pl330_thread *thrd, int ev) 1784 { 1785 struct pl330_dmac *pl330 = thrd->dmac; 1786 1787 /* If the event is valid and was held by the thread */ 1788 if (ev >= 0 && ev < pl330->pcfg.num_events 1789 && pl330->events[ev] == thrd->id) 1790 pl330->events[ev] = -1; 1791 } 1792 1793 static void pl330_release_channel(struct pl330_thread *thrd) 1794 { 1795 if (!thrd || thrd->free) 1796 return; 1797 1798 _stop(thrd); 1799 1800 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1801 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1802 1803 _free_event(thrd, thrd->ev); 1804 thrd->free = true; 1805 } 1806 1807 /* Initialize the structure for PL330 configuration, that can be used 1808 * by the client driver the make best use of the DMAC 1809 */ 1810 static void read_dmac_config(struct pl330_dmac *pl330) 1811 { 1812 void __iomem *regs = pl330->base; 1813 u32 val; 1814 1815 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1816 val &= CRD_DATA_WIDTH_MASK; 1817 pl330->pcfg.data_bus_width = 8 * (1 << val); 1818 1819 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1820 val &= CRD_DATA_BUFF_MASK; 1821 pl330->pcfg.data_buf_dep = val + 1; 1822 1823 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1824 val &= CR0_NUM_CHANS_MASK; 1825 val += 1; 1826 pl330->pcfg.num_chan = val; 1827 1828 val = readl(regs + CR0); 1829 if (val & CR0_PERIPH_REQ_SET) { 1830 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1831 val += 1; 1832 pl330->pcfg.num_peri = val; 1833 pl330->pcfg.peri_ns = readl(regs + CR4); 1834 } else { 1835 pl330->pcfg.num_peri = 0; 1836 } 1837 1838 val = readl(regs + CR0); 1839 if (val & CR0_BOOT_MAN_NS) 1840 pl330->pcfg.mode |= DMAC_MODE_NS; 1841 else 1842 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1843 1844 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1845 val &= CR0_NUM_EVENTS_MASK; 1846 val += 1; 1847 pl330->pcfg.num_events = val; 1848 1849 pl330->pcfg.irq_ns = readl(regs + CR3); 1850 } 1851 1852 static inline void _reset_thread(struct pl330_thread *thrd) 1853 { 1854 struct pl330_dmac *pl330 = thrd->dmac; 1855 1856 thrd->req[0].mc_cpu = pl330->mcode_cpu 1857 + (thrd->id * pl330->mcbufsz); 1858 thrd->req[0].mc_bus = pl330->mcode_bus 1859 + (thrd->id * pl330->mcbufsz); 1860 thrd->req[0].desc = NULL; 1861 1862 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1863 + pl330->mcbufsz / 2; 1864 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1865 + pl330->mcbufsz / 2; 1866 thrd->req[1].desc = NULL; 1867 1868 thrd->req_running = -1; 1869 } 1870 1871 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1872 { 1873 int chans = pl330->pcfg.num_chan; 1874 struct pl330_thread *thrd; 1875 int i; 1876 1877 /* Allocate 1 Manager and 'chans' Channel threads */ 1878 pl330->channels = kcalloc(1 + chans, sizeof(*thrd), 1879 GFP_KERNEL); 1880 if (!pl330->channels) 1881 return -ENOMEM; 1882 1883 /* Init Channel threads */ 1884 for (i = 0; i < chans; i++) { 1885 thrd = &pl330->channels[i]; 1886 thrd->id = i; 1887 thrd->dmac = pl330; 1888 _reset_thread(thrd); 1889 thrd->free = true; 1890 } 1891 1892 /* MANAGER is indexed at the end */ 1893 thrd = &pl330->channels[chans]; 1894 thrd->id = chans; 1895 thrd->dmac = pl330; 1896 thrd->free = false; 1897 pl330->manager = thrd; 1898 1899 return 0; 1900 } 1901 1902 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1903 { 1904 int chans = pl330->pcfg.num_chan; 1905 int ret; 1906 1907 /* 1908 * Alloc MicroCode buffer for 'chans' Channel threads. 1909 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1910 */ 1911 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, 1912 chans * pl330->mcbufsz, 1913 &pl330->mcode_bus, GFP_KERNEL, 1914 DMA_ATTR_PRIVILEGED); 1915 if (!pl330->mcode_cpu) { 1916 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1917 __func__, __LINE__); 1918 return -ENOMEM; 1919 } 1920 1921 ret = dmac_alloc_threads(pl330); 1922 if (ret) { 1923 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1924 __func__, __LINE__); 1925 dma_free_coherent(pl330->ddma.dev, 1926 chans * pl330->mcbufsz, 1927 pl330->mcode_cpu, pl330->mcode_bus); 1928 return ret; 1929 } 1930 1931 return 0; 1932 } 1933 1934 static int pl330_add(struct pl330_dmac *pl330) 1935 { 1936 int i, ret; 1937 1938 /* Check if we can handle this DMAC */ 1939 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1940 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1941 pl330->pcfg.periph_id); 1942 return -EINVAL; 1943 } 1944 1945 /* Read the configuration of the DMAC */ 1946 read_dmac_config(pl330); 1947 1948 if (pl330->pcfg.num_events == 0) { 1949 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1950 __func__, __LINE__); 1951 return -EINVAL; 1952 } 1953 1954 spin_lock_init(&pl330->lock); 1955 1956 INIT_LIST_HEAD(&pl330->req_done); 1957 1958 /* Use default MC buffer size if not provided */ 1959 if (!pl330->mcbufsz) 1960 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1961 1962 /* Mark all events as free */ 1963 for (i = 0; i < pl330->pcfg.num_events; i++) 1964 pl330->events[i] = -1; 1965 1966 /* Allocate resources needed by the DMAC */ 1967 ret = dmac_alloc_resources(pl330); 1968 if (ret) { 1969 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1970 return ret; 1971 } 1972 1973 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1974 1975 pl330->state = INIT; 1976 1977 return 0; 1978 } 1979 1980 static int dmac_free_threads(struct pl330_dmac *pl330) 1981 { 1982 struct pl330_thread *thrd; 1983 int i; 1984 1985 /* Release Channel threads */ 1986 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1987 thrd = &pl330->channels[i]; 1988 pl330_release_channel(thrd); 1989 } 1990 1991 /* Free memory */ 1992 kfree(pl330->channels); 1993 1994 return 0; 1995 } 1996 1997 static void pl330_del(struct pl330_dmac *pl330) 1998 { 1999 pl330->state = UNINIT; 2000 2001 tasklet_kill(&pl330->tasks); 2002 2003 /* Free DMAC resources */ 2004 dmac_free_threads(pl330); 2005 2006 dma_free_coherent(pl330->ddma.dev, 2007 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 2008 pl330->mcode_bus); 2009 } 2010 2011 /* forward declaration */ 2012 static struct amba_driver pl330_driver; 2013 2014 static inline struct dma_pl330_chan * 2015 to_pchan(struct dma_chan *ch) 2016 { 2017 if (!ch) 2018 return NULL; 2019 2020 return container_of(ch, struct dma_pl330_chan, chan); 2021 } 2022 2023 static inline struct dma_pl330_desc * 2024 to_desc(struct dma_async_tx_descriptor *tx) 2025 { 2026 return container_of(tx, struct dma_pl330_desc, txd); 2027 } 2028 2029 static inline void fill_queue(struct dma_pl330_chan *pch) 2030 { 2031 struct dma_pl330_desc *desc; 2032 int ret; 2033 2034 list_for_each_entry(desc, &pch->work_list, node) { 2035 2036 /* If already submitted */ 2037 if (desc->status == BUSY) 2038 continue; 2039 2040 ret = pl330_submit_req(pch->thread, desc); 2041 if (!ret) { 2042 desc->status = BUSY; 2043 } else if (ret == -EAGAIN) { 2044 /* QFull or DMAC Dying */ 2045 break; 2046 } else { 2047 /* Unacceptable request */ 2048 desc->status = DONE; 2049 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 2050 __func__, __LINE__, desc->txd.cookie); 2051 tasklet_schedule(&pch->task); 2052 } 2053 } 2054 } 2055 2056 static void pl330_tasklet(unsigned long data) 2057 { 2058 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2059 struct dma_pl330_desc *desc, *_dt; 2060 unsigned long flags; 2061 bool power_down = false; 2062 2063 spin_lock_irqsave(&pch->lock, flags); 2064 2065 /* Pick up ripe tomatoes */ 2066 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2067 if (desc->status == DONE) { 2068 if (!pch->cyclic) 2069 dma_cookie_complete(&desc->txd); 2070 list_move_tail(&desc->node, &pch->completed_list); 2071 } 2072 2073 /* Try to submit a req imm. next to the last completed cookie */ 2074 fill_queue(pch); 2075 2076 if (list_empty(&pch->work_list)) { 2077 spin_lock(&pch->thread->dmac->lock); 2078 _stop(pch->thread); 2079 spin_unlock(&pch->thread->dmac->lock); 2080 power_down = true; 2081 pch->active = false; 2082 } else { 2083 /* Make sure the PL330 Channel thread is active */ 2084 spin_lock(&pch->thread->dmac->lock); 2085 _start(pch->thread); 2086 spin_unlock(&pch->thread->dmac->lock); 2087 } 2088 2089 while (!list_empty(&pch->completed_list)) { 2090 struct dmaengine_desc_callback cb; 2091 2092 desc = list_first_entry(&pch->completed_list, 2093 struct dma_pl330_desc, node); 2094 2095 dmaengine_desc_get_callback(&desc->txd, &cb); 2096 2097 if (pch->cyclic) { 2098 desc->status = PREP; 2099 list_move_tail(&desc->node, &pch->work_list); 2100 if (power_down) { 2101 pch->active = true; 2102 spin_lock(&pch->thread->dmac->lock); 2103 _start(pch->thread); 2104 spin_unlock(&pch->thread->dmac->lock); 2105 power_down = false; 2106 } 2107 } else { 2108 desc->status = FREE; 2109 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2110 } 2111 2112 dma_descriptor_unmap(&desc->txd); 2113 2114 if (dmaengine_desc_callback_valid(&cb)) { 2115 spin_unlock_irqrestore(&pch->lock, flags); 2116 dmaengine_desc_callback_invoke(&cb, NULL); 2117 spin_lock_irqsave(&pch->lock, flags); 2118 } 2119 } 2120 spin_unlock_irqrestore(&pch->lock, flags); 2121 2122 /* If work list empty, power down */ 2123 if (power_down) { 2124 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2125 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2126 } 2127 } 2128 2129 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2130 struct of_dma *ofdma) 2131 { 2132 int count = dma_spec->args_count; 2133 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2134 unsigned int chan_id; 2135 2136 if (!pl330) 2137 return NULL; 2138 2139 if (count != 1) 2140 return NULL; 2141 2142 chan_id = dma_spec->args[0]; 2143 if (chan_id >= pl330->num_peripherals) 2144 return NULL; 2145 2146 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2147 } 2148 2149 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2150 { 2151 struct dma_pl330_chan *pch = to_pchan(chan); 2152 struct pl330_dmac *pl330 = pch->dmac; 2153 unsigned long flags; 2154 2155 spin_lock_irqsave(&pl330->lock, flags); 2156 2157 dma_cookie_init(chan); 2158 pch->cyclic = false; 2159 2160 pch->thread = pl330_request_channel(pl330); 2161 if (!pch->thread) { 2162 spin_unlock_irqrestore(&pl330->lock, flags); 2163 return -ENOMEM; 2164 } 2165 2166 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2167 2168 spin_unlock_irqrestore(&pl330->lock, flags); 2169 2170 return 1; 2171 } 2172 2173 /* 2174 * We need the data direction between the DMAC (the dma-mapping "device") and 2175 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! 2176 */ 2177 static enum dma_data_direction 2178 pl330_dma_slave_map_dir(enum dma_transfer_direction dir) 2179 { 2180 switch (dir) { 2181 case DMA_MEM_TO_DEV: 2182 return DMA_FROM_DEVICE; 2183 case DMA_DEV_TO_MEM: 2184 return DMA_TO_DEVICE; 2185 case DMA_DEV_TO_DEV: 2186 return DMA_BIDIRECTIONAL; 2187 default: 2188 return DMA_NONE; 2189 } 2190 } 2191 2192 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) 2193 { 2194 if (pch->dir != DMA_NONE) 2195 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 2196 1 << pch->burst_sz, pch->dir, 0); 2197 pch->dir = DMA_NONE; 2198 } 2199 2200 2201 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, 2202 enum dma_transfer_direction dir) 2203 { 2204 struct device *dev = pch->chan.device->dev; 2205 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); 2206 2207 /* Already mapped for this config? */ 2208 if (pch->dir == dma_dir) 2209 return true; 2210 2211 pl330_unprep_slave_fifo(pch); 2212 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 2213 1 << pch->burst_sz, dma_dir, 0); 2214 if (dma_mapping_error(dev, pch->fifo_dma)) 2215 return false; 2216 2217 pch->dir = dma_dir; 2218 return true; 2219 } 2220 2221 static int fixup_burst_len(int max_burst_len, int quirks) 2222 { 2223 if (quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 2224 return 1; 2225 else if (max_burst_len > PL330_MAX_BURST) 2226 return PL330_MAX_BURST; 2227 else if (max_burst_len < 1) 2228 return 1; 2229 else 2230 return max_burst_len; 2231 } 2232 2233 static int pl330_config_write(struct dma_chan *chan, 2234 struct dma_slave_config *slave_config, 2235 enum dma_transfer_direction direction) 2236 { 2237 struct dma_pl330_chan *pch = to_pchan(chan); 2238 2239 pl330_unprep_slave_fifo(pch); 2240 if (direction == DMA_MEM_TO_DEV) { 2241 if (slave_config->dst_addr) 2242 pch->fifo_addr = slave_config->dst_addr; 2243 if (slave_config->dst_addr_width) 2244 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2245 pch->burst_len = fixup_burst_len(slave_config->dst_maxburst, 2246 pch->dmac->quirks); 2247 } else if (direction == DMA_DEV_TO_MEM) { 2248 if (slave_config->src_addr) 2249 pch->fifo_addr = slave_config->src_addr; 2250 if (slave_config->src_addr_width) 2251 pch->burst_sz = __ffs(slave_config->src_addr_width); 2252 pch->burst_len = fixup_burst_len(slave_config->src_maxburst, 2253 pch->dmac->quirks); 2254 } 2255 2256 return 0; 2257 } 2258 2259 static int pl330_config(struct dma_chan *chan, 2260 struct dma_slave_config *slave_config) 2261 { 2262 struct dma_pl330_chan *pch = to_pchan(chan); 2263 2264 memcpy(&pch->slave_config, slave_config, sizeof(*slave_config)); 2265 2266 return 0; 2267 } 2268 2269 static int pl330_terminate_all(struct dma_chan *chan) 2270 { 2271 struct dma_pl330_chan *pch = to_pchan(chan); 2272 struct dma_pl330_desc *desc; 2273 unsigned long flags; 2274 struct pl330_dmac *pl330 = pch->dmac; 2275 bool power_down = false; 2276 2277 pm_runtime_get_sync(pl330->ddma.dev); 2278 spin_lock_irqsave(&pch->lock, flags); 2279 2280 spin_lock(&pl330->lock); 2281 _stop(pch->thread); 2282 pch->thread->req[0].desc = NULL; 2283 pch->thread->req[1].desc = NULL; 2284 pch->thread->req_running = -1; 2285 spin_unlock(&pl330->lock); 2286 2287 power_down = pch->active; 2288 pch->active = false; 2289 2290 /* Mark all desc done */ 2291 list_for_each_entry(desc, &pch->submitted_list, node) { 2292 desc->status = FREE; 2293 dma_cookie_complete(&desc->txd); 2294 } 2295 2296 list_for_each_entry(desc, &pch->work_list , node) { 2297 desc->status = FREE; 2298 dma_cookie_complete(&desc->txd); 2299 } 2300 2301 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2302 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2303 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2304 spin_unlock_irqrestore(&pch->lock, flags); 2305 pm_runtime_mark_last_busy(pl330->ddma.dev); 2306 if (power_down) 2307 pm_runtime_put_autosuspend(pl330->ddma.dev); 2308 pm_runtime_put_autosuspend(pl330->ddma.dev); 2309 2310 return 0; 2311 } 2312 2313 /* 2314 * We don't support DMA_RESUME command because of hardware 2315 * limitations, so after pausing the channel we cannot restore 2316 * it to active state. We have to terminate channel and setup 2317 * DMA transfer again. This pause feature was implemented to 2318 * allow safely read residue before channel termination. 2319 */ 2320 static int pl330_pause(struct dma_chan *chan) 2321 { 2322 struct dma_pl330_chan *pch = to_pchan(chan); 2323 struct pl330_dmac *pl330 = pch->dmac; 2324 unsigned long flags; 2325 2326 pm_runtime_get_sync(pl330->ddma.dev); 2327 spin_lock_irqsave(&pch->lock, flags); 2328 2329 spin_lock(&pl330->lock); 2330 _stop(pch->thread); 2331 spin_unlock(&pl330->lock); 2332 2333 spin_unlock_irqrestore(&pch->lock, flags); 2334 pm_runtime_mark_last_busy(pl330->ddma.dev); 2335 pm_runtime_put_autosuspend(pl330->ddma.dev); 2336 2337 return 0; 2338 } 2339 2340 static void pl330_free_chan_resources(struct dma_chan *chan) 2341 { 2342 struct dma_pl330_chan *pch = to_pchan(chan); 2343 struct pl330_dmac *pl330 = pch->dmac; 2344 unsigned long flags; 2345 2346 tasklet_kill(&pch->task); 2347 2348 pm_runtime_get_sync(pch->dmac->ddma.dev); 2349 spin_lock_irqsave(&pl330->lock, flags); 2350 2351 pl330_release_channel(pch->thread); 2352 pch->thread = NULL; 2353 2354 if (pch->cyclic) 2355 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2356 2357 spin_unlock_irqrestore(&pl330->lock, flags); 2358 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2359 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2360 pl330_unprep_slave_fifo(pch); 2361 } 2362 2363 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2364 struct dma_pl330_desc *desc) 2365 { 2366 struct pl330_thread *thrd = pch->thread; 2367 struct pl330_dmac *pl330 = pch->dmac; 2368 void __iomem *regs = thrd->dmac->base; 2369 u32 val, addr; 2370 2371 pm_runtime_get_sync(pl330->ddma.dev); 2372 val = addr = 0; 2373 if (desc->rqcfg.src_inc) { 2374 val = readl(regs + SA(thrd->id)); 2375 addr = desc->px.src_addr; 2376 } else { 2377 val = readl(regs + DA(thrd->id)); 2378 addr = desc->px.dst_addr; 2379 } 2380 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2381 pm_runtime_put_autosuspend(pl330->ddma.dev); 2382 2383 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ 2384 if (!val) 2385 return 0; 2386 2387 return val - addr; 2388 } 2389 2390 static enum dma_status 2391 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2392 struct dma_tx_state *txstate) 2393 { 2394 enum dma_status ret; 2395 unsigned long flags; 2396 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; 2397 struct dma_pl330_chan *pch = to_pchan(chan); 2398 unsigned int transferred, residual = 0; 2399 2400 ret = dma_cookie_status(chan, cookie, txstate); 2401 2402 if (!txstate) 2403 return ret; 2404 2405 if (ret == DMA_COMPLETE) 2406 goto out; 2407 2408 spin_lock_irqsave(&pch->lock, flags); 2409 spin_lock(&pch->thread->dmac->lock); 2410 2411 if (pch->thread->req_running != -1) 2412 running = pch->thread->req[pch->thread->req_running].desc; 2413 2414 last_enq = pch->thread->req[pch->thread->lstenq].desc; 2415 2416 /* Check in pending list */ 2417 list_for_each_entry(desc, &pch->work_list, node) { 2418 if (desc->status == DONE) 2419 transferred = desc->bytes_requested; 2420 else if (running && desc == running) 2421 transferred = 2422 pl330_get_current_xferred_count(pch, desc); 2423 else if (desc->status == BUSY) 2424 /* 2425 * Busy but not running means either just enqueued, 2426 * or finished and not yet marked done 2427 */ 2428 if (desc == last_enq) 2429 transferred = 0; 2430 else 2431 transferred = desc->bytes_requested; 2432 else 2433 transferred = 0; 2434 residual += desc->bytes_requested - transferred; 2435 if (desc->txd.cookie == cookie) { 2436 switch (desc->status) { 2437 case DONE: 2438 ret = DMA_COMPLETE; 2439 break; 2440 case PREP: 2441 case BUSY: 2442 ret = DMA_IN_PROGRESS; 2443 break; 2444 default: 2445 WARN_ON(1); 2446 } 2447 break; 2448 } 2449 if (desc->last) 2450 residual = 0; 2451 } 2452 spin_unlock(&pch->thread->dmac->lock); 2453 spin_unlock_irqrestore(&pch->lock, flags); 2454 2455 out: 2456 dma_set_residue(txstate, residual); 2457 2458 return ret; 2459 } 2460 2461 static void pl330_issue_pending(struct dma_chan *chan) 2462 { 2463 struct dma_pl330_chan *pch = to_pchan(chan); 2464 unsigned long flags; 2465 2466 spin_lock_irqsave(&pch->lock, flags); 2467 if (list_empty(&pch->work_list)) { 2468 /* 2469 * Warn on nothing pending. Empty submitted_list may 2470 * break our pm_runtime usage counter as it is 2471 * updated on work_list emptiness status. 2472 */ 2473 WARN_ON(list_empty(&pch->submitted_list)); 2474 pch->active = true; 2475 pm_runtime_get_sync(pch->dmac->ddma.dev); 2476 } 2477 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2478 spin_unlock_irqrestore(&pch->lock, flags); 2479 2480 pl330_tasklet((unsigned long)pch); 2481 } 2482 2483 /* 2484 * We returned the last one of the circular list of descriptor(s) 2485 * from prep_xxx, so the argument to submit corresponds to the last 2486 * descriptor of the list. 2487 */ 2488 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2489 { 2490 struct dma_pl330_desc *desc, *last = to_desc(tx); 2491 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2492 dma_cookie_t cookie; 2493 unsigned long flags; 2494 2495 spin_lock_irqsave(&pch->lock, flags); 2496 2497 /* Assign cookies to all nodes */ 2498 while (!list_empty(&last->node)) { 2499 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2500 if (pch->cyclic) { 2501 desc->txd.callback = last->txd.callback; 2502 desc->txd.callback_param = last->txd.callback_param; 2503 } 2504 desc->last = false; 2505 2506 dma_cookie_assign(&desc->txd); 2507 2508 list_move_tail(&desc->node, &pch->submitted_list); 2509 } 2510 2511 last->last = true; 2512 cookie = dma_cookie_assign(&last->txd); 2513 list_add_tail(&last->node, &pch->submitted_list); 2514 spin_unlock_irqrestore(&pch->lock, flags); 2515 2516 return cookie; 2517 } 2518 2519 static inline void _init_desc(struct dma_pl330_desc *desc) 2520 { 2521 desc->rqcfg.swap = SWAP_NO; 2522 desc->rqcfg.scctl = CCTRL0; 2523 desc->rqcfg.dcctl = CCTRL0; 2524 desc->txd.tx_submit = pl330_tx_submit; 2525 2526 INIT_LIST_HEAD(&desc->node); 2527 } 2528 2529 /* Returns the number of descriptors added to the DMAC pool */ 2530 static int add_desc(struct list_head *pool, spinlock_t *lock, 2531 gfp_t flg, int count) 2532 { 2533 struct dma_pl330_desc *desc; 2534 unsigned long flags; 2535 int i; 2536 2537 desc = kcalloc(count, sizeof(*desc), flg); 2538 if (!desc) 2539 return 0; 2540 2541 spin_lock_irqsave(lock, flags); 2542 2543 for (i = 0; i < count; i++) { 2544 _init_desc(&desc[i]); 2545 list_add_tail(&desc[i].node, pool); 2546 } 2547 2548 spin_unlock_irqrestore(lock, flags); 2549 2550 return count; 2551 } 2552 2553 static struct dma_pl330_desc *pluck_desc(struct list_head *pool, 2554 spinlock_t *lock) 2555 { 2556 struct dma_pl330_desc *desc = NULL; 2557 unsigned long flags; 2558 2559 spin_lock_irqsave(lock, flags); 2560 2561 if (!list_empty(pool)) { 2562 desc = list_entry(pool->next, 2563 struct dma_pl330_desc, node); 2564 2565 list_del_init(&desc->node); 2566 2567 desc->status = PREP; 2568 desc->txd.callback = NULL; 2569 } 2570 2571 spin_unlock_irqrestore(lock, flags); 2572 2573 return desc; 2574 } 2575 2576 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2577 { 2578 struct pl330_dmac *pl330 = pch->dmac; 2579 u8 *peri_id = pch->chan.private; 2580 struct dma_pl330_desc *desc; 2581 2582 /* Pluck one desc from the pool of DMAC */ 2583 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock); 2584 2585 /* If the DMAC pool is empty, alloc new */ 2586 if (!desc) { 2587 DEFINE_SPINLOCK(lock); 2588 LIST_HEAD(pool); 2589 2590 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1)) 2591 return NULL; 2592 2593 desc = pluck_desc(&pool, &lock); 2594 WARN_ON(!desc || !list_empty(&pool)); 2595 } 2596 2597 /* Initialize the descriptor */ 2598 desc->pchan = pch; 2599 desc->txd.cookie = 0; 2600 async_tx_ack(&desc->txd); 2601 2602 desc->peri = peri_id ? pch->chan.chan_id : 0; 2603 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2604 2605 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2606 2607 return desc; 2608 } 2609 2610 static inline void fill_px(struct pl330_xfer *px, 2611 dma_addr_t dst, dma_addr_t src, size_t len) 2612 { 2613 px->bytes = len; 2614 px->dst_addr = dst; 2615 px->src_addr = src; 2616 } 2617 2618 static struct dma_pl330_desc * 2619 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2620 dma_addr_t src, size_t len) 2621 { 2622 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2623 2624 if (!desc) { 2625 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2626 __func__, __LINE__); 2627 return NULL; 2628 } 2629 2630 /* 2631 * Ideally we should lookout for reqs bigger than 2632 * those that can be programmed with 256 bytes of 2633 * MC buffer, but considering a req size is seldom 2634 * going to be word-unaligned and more than 200MB, 2635 * we take it easy. 2636 * Also, should the limit is reached we'd rather 2637 * have the platform increase MC buffer size than 2638 * complicating this API driver. 2639 */ 2640 fill_px(&desc->px, dst, src, len); 2641 2642 return desc; 2643 } 2644 2645 /* Call after fixing burst size */ 2646 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2647 { 2648 struct dma_pl330_chan *pch = desc->pchan; 2649 struct pl330_dmac *pl330 = pch->dmac; 2650 int burst_len; 2651 2652 burst_len = pl330->pcfg.data_bus_width / 8; 2653 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2654 burst_len >>= desc->rqcfg.brst_size; 2655 2656 /* src/dst_burst_len can't be more than 16 */ 2657 if (burst_len > PL330_MAX_BURST) 2658 burst_len = PL330_MAX_BURST; 2659 2660 return burst_len; 2661 } 2662 2663 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2664 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2665 size_t period_len, enum dma_transfer_direction direction, 2666 unsigned long flags) 2667 { 2668 struct dma_pl330_desc *desc = NULL, *first = NULL; 2669 struct dma_pl330_chan *pch = to_pchan(chan); 2670 struct pl330_dmac *pl330 = pch->dmac; 2671 unsigned int i; 2672 dma_addr_t dst; 2673 dma_addr_t src; 2674 2675 if (len % period_len != 0) 2676 return NULL; 2677 2678 if (!is_slave_direction(direction)) { 2679 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2680 __func__, __LINE__); 2681 return NULL; 2682 } 2683 2684 pl330_config_write(chan, &pch->slave_config, direction); 2685 2686 if (!pl330_prep_slave_fifo(pch, direction)) 2687 return NULL; 2688 2689 for (i = 0; i < len / period_len; i++) { 2690 desc = pl330_get_desc(pch); 2691 if (!desc) { 2692 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2693 __func__, __LINE__); 2694 2695 if (!first) 2696 return NULL; 2697 2698 spin_lock_irqsave(&pl330->pool_lock, flags); 2699 2700 while (!list_empty(&first->node)) { 2701 desc = list_entry(first->node.next, 2702 struct dma_pl330_desc, node); 2703 list_move_tail(&desc->node, &pl330->desc_pool); 2704 } 2705 2706 list_move_tail(&first->node, &pl330->desc_pool); 2707 2708 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2709 2710 return NULL; 2711 } 2712 2713 switch (direction) { 2714 case DMA_MEM_TO_DEV: 2715 desc->rqcfg.src_inc = 1; 2716 desc->rqcfg.dst_inc = 0; 2717 src = dma_addr; 2718 dst = pch->fifo_dma; 2719 break; 2720 case DMA_DEV_TO_MEM: 2721 desc->rqcfg.src_inc = 0; 2722 desc->rqcfg.dst_inc = 1; 2723 src = pch->fifo_dma; 2724 dst = dma_addr; 2725 break; 2726 default: 2727 break; 2728 } 2729 2730 desc->rqtype = direction; 2731 desc->rqcfg.brst_size = pch->burst_sz; 2732 desc->rqcfg.brst_len = pch->burst_len; 2733 desc->bytes_requested = period_len; 2734 fill_px(&desc->px, dst, src, period_len); 2735 2736 if (!first) 2737 first = desc; 2738 else 2739 list_add_tail(&desc->node, &first->node); 2740 2741 dma_addr += period_len; 2742 } 2743 2744 if (!desc) 2745 return NULL; 2746 2747 pch->cyclic = true; 2748 desc->txd.flags = flags; 2749 2750 return &desc->txd; 2751 } 2752 2753 static struct dma_async_tx_descriptor * 2754 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2755 dma_addr_t src, size_t len, unsigned long flags) 2756 { 2757 struct dma_pl330_desc *desc; 2758 struct dma_pl330_chan *pch = to_pchan(chan); 2759 struct pl330_dmac *pl330; 2760 int burst; 2761 2762 if (unlikely(!pch || !len)) 2763 return NULL; 2764 2765 pl330 = pch->dmac; 2766 2767 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2768 if (!desc) 2769 return NULL; 2770 2771 desc->rqcfg.src_inc = 1; 2772 desc->rqcfg.dst_inc = 1; 2773 desc->rqtype = DMA_MEM_TO_MEM; 2774 2775 /* Select max possible burst size */ 2776 burst = pl330->pcfg.data_bus_width / 8; 2777 2778 /* 2779 * Make sure we use a burst size that aligns with all the memcpy 2780 * parameters because our DMA programming algorithm doesn't cope with 2781 * transfers which straddle an entry in the DMA device's MFIFO. 2782 */ 2783 while ((src | dst | len) & (burst - 1)) 2784 burst /= 2; 2785 2786 desc->rqcfg.brst_size = 0; 2787 while (burst != (1 << desc->rqcfg.brst_size)) 2788 desc->rqcfg.brst_size++; 2789 2790 /* 2791 * If burst size is smaller than bus width then make sure we only 2792 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2793 */ 2794 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2795 desc->rqcfg.brst_len = 1; 2796 2797 desc->rqcfg.brst_len = get_burst_len(desc, len); 2798 desc->bytes_requested = len; 2799 2800 desc->txd.flags = flags; 2801 2802 return &desc->txd; 2803 } 2804 2805 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2806 struct dma_pl330_desc *first) 2807 { 2808 unsigned long flags; 2809 struct dma_pl330_desc *desc; 2810 2811 if (!first) 2812 return; 2813 2814 spin_lock_irqsave(&pl330->pool_lock, flags); 2815 2816 while (!list_empty(&first->node)) { 2817 desc = list_entry(first->node.next, 2818 struct dma_pl330_desc, node); 2819 list_move_tail(&desc->node, &pl330->desc_pool); 2820 } 2821 2822 list_move_tail(&first->node, &pl330->desc_pool); 2823 2824 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2825 } 2826 2827 static struct dma_async_tx_descriptor * 2828 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2829 unsigned int sg_len, enum dma_transfer_direction direction, 2830 unsigned long flg, void *context) 2831 { 2832 struct dma_pl330_desc *first, *desc = NULL; 2833 struct dma_pl330_chan *pch = to_pchan(chan); 2834 struct scatterlist *sg; 2835 int i; 2836 2837 if (unlikely(!pch || !sgl || !sg_len)) 2838 return NULL; 2839 2840 pl330_config_write(chan, &pch->slave_config, direction); 2841 2842 if (!pl330_prep_slave_fifo(pch, direction)) 2843 return NULL; 2844 2845 first = NULL; 2846 2847 for_each_sg(sgl, sg, sg_len, i) { 2848 2849 desc = pl330_get_desc(pch); 2850 if (!desc) { 2851 struct pl330_dmac *pl330 = pch->dmac; 2852 2853 dev_err(pch->dmac->ddma.dev, 2854 "%s:%d Unable to fetch desc\n", 2855 __func__, __LINE__); 2856 __pl330_giveback_desc(pl330, first); 2857 2858 return NULL; 2859 } 2860 2861 if (!first) 2862 first = desc; 2863 else 2864 list_add_tail(&desc->node, &first->node); 2865 2866 if (direction == DMA_MEM_TO_DEV) { 2867 desc->rqcfg.src_inc = 1; 2868 desc->rqcfg.dst_inc = 0; 2869 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), 2870 sg_dma_len(sg)); 2871 } else { 2872 desc->rqcfg.src_inc = 0; 2873 desc->rqcfg.dst_inc = 1; 2874 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, 2875 sg_dma_len(sg)); 2876 } 2877 2878 desc->rqcfg.brst_size = pch->burst_sz; 2879 desc->rqcfg.brst_len = pch->burst_len; 2880 desc->rqtype = direction; 2881 desc->bytes_requested = sg_dma_len(sg); 2882 } 2883 2884 /* Return the last desc in the chain */ 2885 desc->txd.flags = flg; 2886 return &desc->txd; 2887 } 2888 2889 static irqreturn_t pl330_irq_handler(int irq, void *data) 2890 { 2891 if (pl330_update(data)) 2892 return IRQ_HANDLED; 2893 else 2894 return IRQ_NONE; 2895 } 2896 2897 #define PL330_DMA_BUSWIDTHS \ 2898 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2899 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2900 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2901 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2902 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2903 2904 #ifdef CONFIG_DEBUG_FS 2905 static int pl330_debugfs_show(struct seq_file *s, void *data) 2906 { 2907 struct pl330_dmac *pl330 = s->private; 2908 int chans, pchs, ch, pr; 2909 2910 chans = pl330->pcfg.num_chan; 2911 pchs = pl330->num_peripherals; 2912 2913 seq_puts(s, "PL330 physical channels:\n"); 2914 seq_puts(s, "THREAD:\t\tCHANNEL:\n"); 2915 seq_puts(s, "--------\t-----\n"); 2916 for (ch = 0; ch < chans; ch++) { 2917 struct pl330_thread *thrd = &pl330->channels[ch]; 2918 int found = -1; 2919 2920 for (pr = 0; pr < pchs; pr++) { 2921 struct dma_pl330_chan *pch = &pl330->peripherals[pr]; 2922 2923 if (!pch->thread || thrd->id != pch->thread->id) 2924 continue; 2925 2926 found = pr; 2927 } 2928 2929 seq_printf(s, "%d\t\t", thrd->id); 2930 if (found == -1) 2931 seq_puts(s, "--\n"); 2932 else 2933 seq_printf(s, "%d\n", found); 2934 } 2935 2936 return 0; 2937 } 2938 2939 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs); 2940 2941 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2942 { 2943 debugfs_create_file(dev_name(pl330->ddma.dev), 2944 S_IFREG | 0444, NULL, pl330, 2945 &pl330_debugfs_fops); 2946 } 2947 #else 2948 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2949 { 2950 } 2951 #endif 2952 2953 /* 2954 * Runtime PM callbacks are provided by amba/bus.c driver. 2955 * 2956 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2957 * bus driver will only disable/enable the clock in runtime PM callbacks. 2958 */ 2959 static int __maybe_unused pl330_suspend(struct device *dev) 2960 { 2961 struct amba_device *pcdev = to_amba_device(dev); 2962 2963 pm_runtime_disable(dev); 2964 2965 if (!pm_runtime_status_suspended(dev)) { 2966 /* amba did not disable the clock */ 2967 amba_pclk_disable(pcdev); 2968 } 2969 amba_pclk_unprepare(pcdev); 2970 2971 return 0; 2972 } 2973 2974 static int __maybe_unused pl330_resume(struct device *dev) 2975 { 2976 struct amba_device *pcdev = to_amba_device(dev); 2977 int ret; 2978 2979 ret = amba_pclk_prepare(pcdev); 2980 if (ret) 2981 return ret; 2982 2983 if (!pm_runtime_status_suspended(dev)) 2984 ret = amba_pclk_enable(pcdev); 2985 2986 pm_runtime_enable(dev); 2987 2988 return ret; 2989 } 2990 2991 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume); 2992 2993 static int 2994 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2995 { 2996 struct pl330_config *pcfg; 2997 struct pl330_dmac *pl330; 2998 struct dma_pl330_chan *pch, *_p; 2999 struct dma_device *pd; 3000 struct resource *res; 3001 int i, ret, irq; 3002 int num_chan; 3003 struct device_node *np = adev->dev.of_node; 3004 3005 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 3006 if (ret) 3007 return ret; 3008 3009 /* Allocate a new DMAC and its Channels */ 3010 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 3011 if (!pl330) 3012 return -ENOMEM; 3013 3014 pd = &pl330->ddma; 3015 pd->dev = &adev->dev; 3016 3017 pl330->mcbufsz = 0; 3018 3019 /* get quirk */ 3020 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 3021 if (of_property_read_bool(np, of_quirks[i].quirk)) 3022 pl330->quirks |= of_quirks[i].id; 3023 3024 res = &adev->res; 3025 pl330->base = devm_ioremap_resource(&adev->dev, res); 3026 if (IS_ERR(pl330->base)) 3027 return PTR_ERR(pl330->base); 3028 3029 amba_set_drvdata(adev, pl330); 3030 3031 pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma"); 3032 if (IS_ERR(pl330->rstc)) { 3033 if (PTR_ERR(pl330->rstc) != -EPROBE_DEFER) 3034 dev_err(&adev->dev, "Failed to get reset!\n"); 3035 return PTR_ERR(pl330->rstc); 3036 } else { 3037 ret = reset_control_deassert(pl330->rstc); 3038 if (ret) { 3039 dev_err(&adev->dev, "Couldn't deassert the device from reset!\n"); 3040 return ret; 3041 } 3042 } 3043 3044 pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp"); 3045 if (IS_ERR(pl330->rstc_ocp)) { 3046 if (PTR_ERR(pl330->rstc_ocp) != -EPROBE_DEFER) 3047 dev_err(&adev->dev, "Failed to get OCP reset!\n"); 3048 return PTR_ERR(pl330->rstc_ocp); 3049 } else { 3050 ret = reset_control_deassert(pl330->rstc_ocp); 3051 if (ret) { 3052 dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n"); 3053 return ret; 3054 } 3055 } 3056 3057 for (i = 0; i < AMBA_NR_IRQS; i++) { 3058 irq = adev->irq[i]; 3059 if (irq) { 3060 ret = devm_request_irq(&adev->dev, irq, 3061 pl330_irq_handler, 0, 3062 dev_name(&adev->dev), pl330); 3063 if (ret) 3064 return ret; 3065 } else { 3066 break; 3067 } 3068 } 3069 3070 pcfg = &pl330->pcfg; 3071 3072 pcfg->periph_id = adev->periphid; 3073 ret = pl330_add(pl330); 3074 if (ret) 3075 return ret; 3076 3077 INIT_LIST_HEAD(&pl330->desc_pool); 3078 spin_lock_init(&pl330->pool_lock); 3079 3080 /* Create a descriptor pool of default size */ 3081 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock, 3082 GFP_KERNEL, NR_DEFAULT_DESC)) 3083 dev_warn(&adev->dev, "unable to allocate desc\n"); 3084 3085 INIT_LIST_HEAD(&pd->channels); 3086 3087 /* Initialize channel parameters */ 3088 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 3089 3090 pl330->num_peripherals = num_chan; 3091 3092 pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL); 3093 if (!pl330->peripherals) { 3094 ret = -ENOMEM; 3095 goto probe_err2; 3096 } 3097 3098 for (i = 0; i < num_chan; i++) { 3099 pch = &pl330->peripherals[i]; 3100 3101 pch->chan.private = adev->dev.of_node; 3102 INIT_LIST_HEAD(&pch->submitted_list); 3103 INIT_LIST_HEAD(&pch->work_list); 3104 INIT_LIST_HEAD(&pch->completed_list); 3105 spin_lock_init(&pch->lock); 3106 pch->thread = NULL; 3107 pch->chan.device = pd; 3108 pch->dmac = pl330; 3109 pch->dir = DMA_NONE; 3110 3111 /* Add the channel to the DMAC list */ 3112 list_add_tail(&pch->chan.device_node, &pd->channels); 3113 } 3114 3115 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 3116 if (pcfg->num_peri) { 3117 dma_cap_set(DMA_SLAVE, pd->cap_mask); 3118 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 3119 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 3120 } 3121 3122 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 3123 pd->device_free_chan_resources = pl330_free_chan_resources; 3124 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 3125 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 3126 pd->device_tx_status = pl330_tx_status; 3127 pd->device_prep_slave_sg = pl330_prep_slave_sg; 3128 pd->device_config = pl330_config; 3129 pd->device_pause = pl330_pause; 3130 pd->device_terminate_all = pl330_terminate_all; 3131 pd->device_issue_pending = pl330_issue_pending; 3132 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 3133 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 3134 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 3135 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 3136 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ? 3137 1 : PL330_MAX_BURST); 3138 3139 ret = dma_async_device_register(pd); 3140 if (ret) { 3141 dev_err(&adev->dev, "unable to register DMAC\n"); 3142 goto probe_err3; 3143 } 3144 3145 if (adev->dev.of_node) { 3146 ret = of_dma_controller_register(adev->dev.of_node, 3147 of_dma_pl330_xlate, pl330); 3148 if (ret) { 3149 dev_err(&adev->dev, 3150 "unable to register DMA to the generic DT DMA helpers\n"); 3151 } 3152 } 3153 3154 adev->dev.dma_parms = &pl330->dma_parms; 3155 3156 /* 3157 * This is the limit for transfers with a buswidth of 1, larger 3158 * buswidths will have larger limits. 3159 */ 3160 ret = dma_set_max_seg_size(&adev->dev, 1900800); 3161 if (ret) 3162 dev_err(&adev->dev, "unable to set the seg size\n"); 3163 3164 3165 init_pl330_debugfs(pl330); 3166 dev_info(&adev->dev, 3167 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 3168 dev_info(&adev->dev, 3169 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3170 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 3171 pcfg->num_peri, pcfg->num_events); 3172 3173 pm_runtime_irq_safe(&adev->dev); 3174 pm_runtime_use_autosuspend(&adev->dev); 3175 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 3176 pm_runtime_mark_last_busy(&adev->dev); 3177 pm_runtime_put_autosuspend(&adev->dev); 3178 3179 return 0; 3180 probe_err3: 3181 /* Idle the DMAC */ 3182 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3183 chan.device_node) { 3184 3185 /* Remove the channel */ 3186 list_del(&pch->chan.device_node); 3187 3188 /* Flush the channel */ 3189 if (pch->thread) { 3190 pl330_terminate_all(&pch->chan); 3191 pl330_free_chan_resources(&pch->chan); 3192 } 3193 } 3194 probe_err2: 3195 pl330_del(pl330); 3196 3197 if (pl330->rstc_ocp) 3198 reset_control_assert(pl330->rstc_ocp); 3199 3200 if (pl330->rstc) 3201 reset_control_assert(pl330->rstc); 3202 return ret; 3203 } 3204 3205 static int pl330_remove(struct amba_device *adev) 3206 { 3207 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 3208 struct dma_pl330_chan *pch, *_p; 3209 int i, irq; 3210 3211 pm_runtime_get_noresume(pl330->ddma.dev); 3212 3213 if (adev->dev.of_node) 3214 of_dma_controller_free(adev->dev.of_node); 3215 3216 for (i = 0; i < AMBA_NR_IRQS; i++) { 3217 irq = adev->irq[i]; 3218 if (irq) 3219 devm_free_irq(&adev->dev, irq, pl330); 3220 } 3221 3222 dma_async_device_unregister(&pl330->ddma); 3223 3224 /* Idle the DMAC */ 3225 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3226 chan.device_node) { 3227 3228 /* Remove the channel */ 3229 list_del(&pch->chan.device_node); 3230 3231 /* Flush the channel */ 3232 if (pch->thread) { 3233 pl330_terminate_all(&pch->chan); 3234 pl330_free_chan_resources(&pch->chan); 3235 } 3236 } 3237 3238 pl330_del(pl330); 3239 3240 if (pl330->rstc_ocp) 3241 reset_control_assert(pl330->rstc_ocp); 3242 3243 if (pl330->rstc) 3244 reset_control_assert(pl330->rstc); 3245 return 0; 3246 } 3247 3248 static const struct amba_id pl330_ids[] = { 3249 { 3250 .id = 0x00041330, 3251 .mask = 0x000fffff, 3252 }, 3253 { 0, 0 }, 3254 }; 3255 3256 MODULE_DEVICE_TABLE(amba, pl330_ids); 3257 3258 static struct amba_driver pl330_driver = { 3259 .drv = { 3260 .owner = THIS_MODULE, 3261 .name = "dma-pl330", 3262 .pm = &pl330_pm, 3263 }, 3264 .id_table = pl330_ids, 3265 .probe = pl330_probe, 3266 .remove = pl330_remove, 3267 }; 3268 3269 module_amba_driver(pl330_driver); 3270 3271 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3272 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3273 MODULE_LICENSE("GPL"); 3274