xref: /openbmc/linux/drivers/dma/pl330.c (revision 53809828)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/scatterlist.h>
26 #include <linux/of.h>
27 #include <linux/of_dma.h>
28 #include <linux/err.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/bug.h>
31 
32 #include "dmaengine.h"
33 #define PL330_MAX_CHAN		8
34 #define PL330_MAX_IRQS		32
35 #define PL330_MAX_PERI		32
36 #define PL330_MAX_BURST         16
37 
38 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
39 
40 enum pl330_cachectrl {
41 	CCTRL0,		/* Noncacheable and nonbufferable */
42 	CCTRL1,		/* Bufferable only */
43 	CCTRL2,		/* Cacheable, but do not allocate */
44 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
45 	INVALID1,	/* AWCACHE = 0x1000 */
46 	INVALID2,
47 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
48 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
49 };
50 
51 enum pl330_byteswap {
52 	SWAP_NO,
53 	SWAP_2,
54 	SWAP_4,
55 	SWAP_8,
56 	SWAP_16,
57 };
58 
59 /* Register and Bit field Definitions */
60 #define DS			0x0
61 #define DS_ST_STOP		0x0
62 #define DS_ST_EXEC		0x1
63 #define DS_ST_CMISS		0x2
64 #define DS_ST_UPDTPC		0x3
65 #define DS_ST_WFE		0x4
66 #define DS_ST_ATBRR		0x5
67 #define DS_ST_QBUSY		0x6
68 #define DS_ST_WFP		0x7
69 #define DS_ST_KILL		0x8
70 #define DS_ST_CMPLT		0x9
71 #define DS_ST_FLTCMP		0xe
72 #define DS_ST_FAULT		0xf
73 
74 #define DPC			0x4
75 #define INTEN			0x20
76 #define ES			0x24
77 #define INTSTATUS		0x28
78 #define INTCLR			0x2c
79 #define FSM			0x30
80 #define FSC			0x34
81 #define FTM			0x38
82 
83 #define _FTC			0x40
84 #define FTC(n)			(_FTC + (n)*0x4)
85 
86 #define _CS			0x100
87 #define CS(n)			(_CS + (n)*0x8)
88 #define CS_CNS			(1 << 21)
89 
90 #define _CPC			0x104
91 #define CPC(n)			(_CPC + (n)*0x8)
92 
93 #define _SA			0x400
94 #define SA(n)			(_SA + (n)*0x20)
95 
96 #define _DA			0x404
97 #define DA(n)			(_DA + (n)*0x20)
98 
99 #define _CC			0x408
100 #define CC(n)			(_CC + (n)*0x20)
101 
102 #define CC_SRCINC		(1 << 0)
103 #define CC_DSTINC		(1 << 14)
104 #define CC_SRCPRI		(1 << 8)
105 #define CC_DSTPRI		(1 << 22)
106 #define CC_SRCNS		(1 << 9)
107 #define CC_DSTNS		(1 << 23)
108 #define CC_SRCIA		(1 << 10)
109 #define CC_DSTIA		(1 << 24)
110 #define CC_SRCBRSTLEN_SHFT	4
111 #define CC_DSTBRSTLEN_SHFT	18
112 #define CC_SRCBRSTSIZE_SHFT	1
113 #define CC_DSTBRSTSIZE_SHFT	15
114 #define CC_SRCCCTRL_SHFT	11
115 #define CC_SRCCCTRL_MASK	0x7
116 #define CC_DSTCCTRL_SHFT	25
117 #define CC_DRCCCTRL_MASK	0x7
118 #define CC_SWAP_SHFT		28
119 
120 #define _LC0			0x40c
121 #define LC0(n)			(_LC0 + (n)*0x20)
122 
123 #define _LC1			0x410
124 #define LC1(n)			(_LC1 + (n)*0x20)
125 
126 #define DBGSTATUS		0xd00
127 #define DBG_BUSY		(1 << 0)
128 
129 #define DBGCMD			0xd04
130 #define DBGINST0		0xd08
131 #define DBGINST1		0xd0c
132 
133 #define CR0			0xe00
134 #define CR1			0xe04
135 #define CR2			0xe08
136 #define CR3			0xe0c
137 #define CR4			0xe10
138 #define CRD			0xe14
139 
140 #define PERIPH_ID		0xfe0
141 #define PERIPH_REV_SHIFT	20
142 #define PERIPH_REV_MASK		0xf
143 #define PERIPH_REV_R0P0		0
144 #define PERIPH_REV_R1P0		1
145 #define PERIPH_REV_R1P1		2
146 
147 #define CR0_PERIPH_REQ_SET	(1 << 0)
148 #define CR0_BOOT_EN_SET		(1 << 1)
149 #define CR0_BOOT_MAN_NS		(1 << 2)
150 #define CR0_NUM_CHANS_SHIFT	4
151 #define CR0_NUM_CHANS_MASK	0x7
152 #define CR0_NUM_PERIPH_SHIFT	12
153 #define CR0_NUM_PERIPH_MASK	0x1f
154 #define CR0_NUM_EVENTS_SHIFT	17
155 #define CR0_NUM_EVENTS_MASK	0x1f
156 
157 #define CR1_ICACHE_LEN_SHIFT	0
158 #define CR1_ICACHE_LEN_MASK	0x7
159 #define CR1_NUM_ICACHELINES_SHIFT	4
160 #define CR1_NUM_ICACHELINES_MASK	0xf
161 
162 #define CRD_DATA_WIDTH_SHIFT	0
163 #define CRD_DATA_WIDTH_MASK	0x7
164 #define CRD_WR_CAP_SHIFT	4
165 #define CRD_WR_CAP_MASK		0x7
166 #define CRD_WR_Q_DEP_SHIFT	8
167 #define CRD_WR_Q_DEP_MASK	0xf
168 #define CRD_RD_CAP_SHIFT	12
169 #define CRD_RD_CAP_MASK		0x7
170 #define CRD_RD_Q_DEP_SHIFT	16
171 #define CRD_RD_Q_DEP_MASK	0xf
172 #define CRD_DATA_BUFF_SHIFT	20
173 #define CRD_DATA_BUFF_MASK	0x3ff
174 
175 #define PART			0x330
176 #define DESIGNER		0x41
177 #define REVISION		0x0
178 #define INTEG_CFG		0x0
179 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
180 
181 #define PL330_STATE_STOPPED		(1 << 0)
182 #define PL330_STATE_EXECUTING		(1 << 1)
183 #define PL330_STATE_WFE			(1 << 2)
184 #define PL330_STATE_FAULTING		(1 << 3)
185 #define PL330_STATE_COMPLETING		(1 << 4)
186 #define PL330_STATE_WFP			(1 << 5)
187 #define PL330_STATE_KILLING		(1 << 6)
188 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
189 #define PL330_STATE_CACHEMISS		(1 << 8)
190 #define PL330_STATE_UPDTPC		(1 << 9)
191 #define PL330_STATE_ATBARRIER		(1 << 10)
192 #define PL330_STATE_QUEUEBUSY		(1 << 11)
193 #define PL330_STATE_INVALID		(1 << 15)
194 
195 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
196 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
197 
198 #define CMD_DMAADDH		0x54
199 #define CMD_DMAEND		0x00
200 #define CMD_DMAFLUSHP		0x35
201 #define CMD_DMAGO		0xa0
202 #define CMD_DMALD		0x04
203 #define CMD_DMALDP		0x25
204 #define CMD_DMALP		0x20
205 #define CMD_DMALPEND		0x28
206 #define CMD_DMAKILL		0x01
207 #define CMD_DMAMOV		0xbc
208 #define CMD_DMANOP		0x18
209 #define CMD_DMARMB		0x12
210 #define CMD_DMASEV		0x34
211 #define CMD_DMAST		0x08
212 #define CMD_DMASTP		0x29
213 #define CMD_DMASTZ		0x0c
214 #define CMD_DMAWFE		0x36
215 #define CMD_DMAWFP		0x30
216 #define CMD_DMAWMB		0x13
217 
218 #define SZ_DMAADDH		3
219 #define SZ_DMAEND		1
220 #define SZ_DMAFLUSHP		2
221 #define SZ_DMALD		1
222 #define SZ_DMALDP		2
223 #define SZ_DMALP		2
224 #define SZ_DMALPEND		2
225 #define SZ_DMAKILL		1
226 #define SZ_DMAMOV		6
227 #define SZ_DMANOP		1
228 #define SZ_DMARMB		1
229 #define SZ_DMASEV		2
230 #define SZ_DMAST		1
231 #define SZ_DMASTP		2
232 #define SZ_DMASTZ		1
233 #define SZ_DMAWFE		2
234 #define SZ_DMAWFP		2
235 #define SZ_DMAWMB		1
236 #define SZ_DMAGO		6
237 
238 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
239 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
240 
241 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
242 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
243 
244 /*
245  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
246  * at 1byte/burst for P<->M and M<->M respectively.
247  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
248  * should be enough for P<->M and M<->M respectively.
249  */
250 #define MCODE_BUFF_PER_REQ	256
251 
252 /* Use this _only_ to wait on transient states */
253 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
254 
255 #ifdef PL330_DEBUG_MCGEN
256 static unsigned cmd_line;
257 #define PL330_DBGCMD_DUMP(off, x...)	do { \
258 						printk("%x:", cmd_line); \
259 						printk(x); \
260 						cmd_line += off; \
261 					} while (0)
262 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
263 #else
264 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
265 #define PL330_DBGMC_START(addr)		do {} while (0)
266 #endif
267 
268 /* The number of default descriptors */
269 
270 #define NR_DEFAULT_DESC	16
271 
272 /* Delay for runtime PM autosuspend, ms */
273 #define PL330_AUTOSUSPEND_DELAY 20
274 
275 /* Populated by the PL330 core driver for DMA API driver's info */
276 struct pl330_config {
277 	u32	periph_id;
278 #define DMAC_MODE_NS	(1 << 0)
279 	unsigned int	mode;
280 	unsigned int	data_bus_width:10; /* In number of bits */
281 	unsigned int	data_buf_dep:11;
282 	unsigned int	num_chan:4;
283 	unsigned int	num_peri:6;
284 	u32		peri_ns;
285 	unsigned int	num_events:6;
286 	u32		irq_ns;
287 };
288 
289 /**
290  * Request Configuration.
291  * The PL330 core does not modify this and uses the last
292  * working configuration if the request doesn't provide any.
293  *
294  * The Client may want to provide this info only for the
295  * first request and a request with new settings.
296  */
297 struct pl330_reqcfg {
298 	/* Address Incrementing */
299 	unsigned dst_inc:1;
300 	unsigned src_inc:1;
301 
302 	/*
303 	 * For now, the SRC & DST protection levels
304 	 * and burst size/length are assumed same.
305 	 */
306 	bool nonsecure;
307 	bool privileged;
308 	bool insnaccess;
309 	unsigned brst_len:5;
310 	unsigned brst_size:3; /* in power of 2 */
311 
312 	enum pl330_cachectrl dcctl;
313 	enum pl330_cachectrl scctl;
314 	enum pl330_byteswap swap;
315 	struct pl330_config *pcfg;
316 };
317 
318 /*
319  * One cycle of DMAC operation.
320  * There may be more than one xfer in a request.
321  */
322 struct pl330_xfer {
323 	u32 src_addr;
324 	u32 dst_addr;
325 	/* Size to xfer */
326 	u32 bytes;
327 };
328 
329 /* The xfer callbacks are made with one of these arguments. */
330 enum pl330_op_err {
331 	/* The all xfers in the request were success. */
332 	PL330_ERR_NONE,
333 	/* If req aborted due to global error. */
334 	PL330_ERR_ABORT,
335 	/* If req failed due to problem with Channel. */
336 	PL330_ERR_FAIL,
337 };
338 
339 enum dmamov_dst {
340 	SAR = 0,
341 	CCR,
342 	DAR,
343 };
344 
345 enum pl330_dst {
346 	SRC = 0,
347 	DST,
348 };
349 
350 enum pl330_cond {
351 	SINGLE,
352 	BURST,
353 	ALWAYS,
354 };
355 
356 struct dma_pl330_desc;
357 
358 struct _pl330_req {
359 	u32 mc_bus;
360 	void *mc_cpu;
361 	struct dma_pl330_desc *desc;
362 };
363 
364 /* ToBeDone for tasklet */
365 struct _pl330_tbd {
366 	bool reset_dmac;
367 	bool reset_mngr;
368 	u8 reset_chan;
369 };
370 
371 /* A DMAC Thread */
372 struct pl330_thread {
373 	u8 id;
374 	int ev;
375 	/* If the channel is not yet acquired by any client */
376 	bool free;
377 	/* Parent DMAC */
378 	struct pl330_dmac *dmac;
379 	/* Only two at a time */
380 	struct _pl330_req req[2];
381 	/* Index of the last enqueued request */
382 	unsigned lstenq;
383 	/* Index of the last submitted request or -1 if the DMA is stopped */
384 	int req_running;
385 };
386 
387 enum pl330_dmac_state {
388 	UNINIT,
389 	INIT,
390 	DYING,
391 };
392 
393 enum desc_status {
394 	/* In the DMAC pool */
395 	FREE,
396 	/*
397 	 * Allocated to some channel during prep_xxx
398 	 * Also may be sitting on the work_list.
399 	 */
400 	PREP,
401 	/*
402 	 * Sitting on the work_list and already submitted
403 	 * to the PL330 core. Not more than two descriptors
404 	 * of a channel can be BUSY at any time.
405 	 */
406 	BUSY,
407 	/*
408 	 * Sitting on the channel work_list but xfer done
409 	 * by PL330 core
410 	 */
411 	DONE,
412 };
413 
414 struct dma_pl330_chan {
415 	/* Schedule desc completion */
416 	struct tasklet_struct task;
417 
418 	/* DMA-Engine Channel */
419 	struct dma_chan chan;
420 
421 	/* List of submitted descriptors */
422 	struct list_head submitted_list;
423 	/* List of issued descriptors */
424 	struct list_head work_list;
425 	/* List of completed descriptors */
426 	struct list_head completed_list;
427 
428 	/* Pointer to the DMAC that manages this channel,
429 	 * NULL if the channel is available to be acquired.
430 	 * As the parent, this DMAC also provides descriptors
431 	 * to the channel.
432 	 */
433 	struct pl330_dmac *dmac;
434 
435 	/* To protect channel manipulation */
436 	spinlock_t lock;
437 
438 	/*
439 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
440 	 * available.
441 	 */
442 	struct pl330_thread *thread;
443 
444 	/* For D-to-M and M-to-D channels */
445 	int burst_sz; /* the peripheral fifo width */
446 	int burst_len; /* the number of burst */
447 	phys_addr_t fifo_addr;
448 	/* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
449 	dma_addr_t fifo_dma;
450 	enum dma_data_direction dir;
451 
452 	/* for cyclic capability */
453 	bool cyclic;
454 
455 	/* for runtime pm tracking */
456 	bool active;
457 };
458 
459 struct pl330_dmac {
460 	/* DMA-Engine Device */
461 	struct dma_device ddma;
462 
463 	/* Holds info about sg limitations */
464 	struct device_dma_parameters dma_parms;
465 
466 	/* Pool of descriptors available for the DMAC's channels */
467 	struct list_head desc_pool;
468 	/* To protect desc_pool manipulation */
469 	spinlock_t pool_lock;
470 
471 	/* Size of MicroCode buffers for each channel. */
472 	unsigned mcbufsz;
473 	/* ioremap'ed address of PL330 registers. */
474 	void __iomem	*base;
475 	/* Populated by the PL330 core driver during pl330_add */
476 	struct pl330_config	pcfg;
477 
478 	spinlock_t		lock;
479 	/* Maximum possible events/irqs */
480 	int			events[32];
481 	/* BUS address of MicroCode buffer */
482 	dma_addr_t		mcode_bus;
483 	/* CPU address of MicroCode buffer */
484 	void			*mcode_cpu;
485 	/* List of all Channel threads */
486 	struct pl330_thread	*channels;
487 	/* Pointer to the MANAGER thread */
488 	struct pl330_thread	*manager;
489 	/* To handle bad news in interrupt */
490 	struct tasklet_struct	tasks;
491 	struct _pl330_tbd	dmac_tbd;
492 	/* State of DMAC operation */
493 	enum pl330_dmac_state	state;
494 	/* Holds list of reqs with due callbacks */
495 	struct list_head        req_done;
496 
497 	/* Peripheral channels connected to this DMAC */
498 	unsigned int num_peripherals;
499 	struct dma_pl330_chan *peripherals; /* keep at end */
500 	int quirks;
501 };
502 
503 static struct pl330_of_quirks {
504 	char *quirk;
505 	int id;
506 } of_quirks[] = {
507 	{
508 		.quirk = "arm,pl330-broken-no-flushp",
509 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
510 	}
511 };
512 
513 struct dma_pl330_desc {
514 	/* To attach to a queue as child */
515 	struct list_head node;
516 
517 	/* Descriptor for the DMA Engine API */
518 	struct dma_async_tx_descriptor txd;
519 
520 	/* Xfer for PL330 core */
521 	struct pl330_xfer px;
522 
523 	struct pl330_reqcfg rqcfg;
524 
525 	enum desc_status status;
526 
527 	int bytes_requested;
528 	bool last;
529 
530 	/* The channel which currently holds this desc */
531 	struct dma_pl330_chan *pchan;
532 
533 	enum dma_transfer_direction rqtype;
534 	/* Index of peripheral for the xfer. */
535 	unsigned peri:5;
536 	/* Hook to attach to DMAC's list of reqs with due callback */
537 	struct list_head rqd;
538 };
539 
540 struct _xfer_spec {
541 	u32 ccr;
542 	struct dma_pl330_desc *desc;
543 };
544 
545 static inline bool _queue_full(struct pl330_thread *thrd)
546 {
547 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
548 }
549 
550 static inline bool is_manager(struct pl330_thread *thrd)
551 {
552 	return thrd->dmac->manager == thrd;
553 }
554 
555 /* If manager of the thread is in Non-Secure mode */
556 static inline bool _manager_ns(struct pl330_thread *thrd)
557 {
558 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
559 }
560 
561 static inline u32 get_revision(u32 periph_id)
562 {
563 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
564 }
565 
566 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
567 {
568 	if (dry_run)
569 		return SZ_DMAEND;
570 
571 	buf[0] = CMD_DMAEND;
572 
573 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
574 
575 	return SZ_DMAEND;
576 }
577 
578 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
579 {
580 	if (dry_run)
581 		return SZ_DMAFLUSHP;
582 
583 	buf[0] = CMD_DMAFLUSHP;
584 
585 	peri &= 0x1f;
586 	peri <<= 3;
587 	buf[1] = peri;
588 
589 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
590 
591 	return SZ_DMAFLUSHP;
592 }
593 
594 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
595 {
596 	if (dry_run)
597 		return SZ_DMALD;
598 
599 	buf[0] = CMD_DMALD;
600 
601 	if (cond == SINGLE)
602 		buf[0] |= (0 << 1) | (1 << 0);
603 	else if (cond == BURST)
604 		buf[0] |= (1 << 1) | (1 << 0);
605 
606 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
607 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
608 
609 	return SZ_DMALD;
610 }
611 
612 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
613 		enum pl330_cond cond, u8 peri)
614 {
615 	if (dry_run)
616 		return SZ_DMALDP;
617 
618 	buf[0] = CMD_DMALDP;
619 
620 	if (cond == BURST)
621 		buf[0] |= (1 << 1);
622 
623 	peri &= 0x1f;
624 	peri <<= 3;
625 	buf[1] = peri;
626 
627 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
628 		cond == SINGLE ? 'S' : 'B', peri >> 3);
629 
630 	return SZ_DMALDP;
631 }
632 
633 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
634 		unsigned loop, u8 cnt)
635 {
636 	if (dry_run)
637 		return SZ_DMALP;
638 
639 	buf[0] = CMD_DMALP;
640 
641 	if (loop)
642 		buf[0] |= (1 << 1);
643 
644 	cnt--; /* DMAC increments by 1 internally */
645 	buf[1] = cnt;
646 
647 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
648 
649 	return SZ_DMALP;
650 }
651 
652 struct _arg_LPEND {
653 	enum pl330_cond cond;
654 	bool forever;
655 	unsigned loop;
656 	u8 bjump;
657 };
658 
659 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
660 		const struct _arg_LPEND *arg)
661 {
662 	enum pl330_cond cond = arg->cond;
663 	bool forever = arg->forever;
664 	unsigned loop = arg->loop;
665 	u8 bjump = arg->bjump;
666 
667 	if (dry_run)
668 		return SZ_DMALPEND;
669 
670 	buf[0] = CMD_DMALPEND;
671 
672 	if (loop)
673 		buf[0] |= (1 << 2);
674 
675 	if (!forever)
676 		buf[0] |= (1 << 4);
677 
678 	if (cond == SINGLE)
679 		buf[0] |= (0 << 1) | (1 << 0);
680 	else if (cond == BURST)
681 		buf[0] |= (1 << 1) | (1 << 0);
682 
683 	buf[1] = bjump;
684 
685 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
686 			forever ? "FE" : "END",
687 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
688 			loop ? '1' : '0',
689 			bjump);
690 
691 	return SZ_DMALPEND;
692 }
693 
694 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
695 {
696 	if (dry_run)
697 		return SZ_DMAKILL;
698 
699 	buf[0] = CMD_DMAKILL;
700 
701 	return SZ_DMAKILL;
702 }
703 
704 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
705 		enum dmamov_dst dst, u32 val)
706 {
707 	if (dry_run)
708 		return SZ_DMAMOV;
709 
710 	buf[0] = CMD_DMAMOV;
711 	buf[1] = dst;
712 	buf[2] = val;
713 	buf[3] = val >> 8;
714 	buf[4] = val >> 16;
715 	buf[5] = val >> 24;
716 
717 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
718 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
719 
720 	return SZ_DMAMOV;
721 }
722 
723 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
724 {
725 	if (dry_run)
726 		return SZ_DMARMB;
727 
728 	buf[0] = CMD_DMARMB;
729 
730 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
731 
732 	return SZ_DMARMB;
733 }
734 
735 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
736 {
737 	if (dry_run)
738 		return SZ_DMASEV;
739 
740 	buf[0] = CMD_DMASEV;
741 
742 	ev &= 0x1f;
743 	ev <<= 3;
744 	buf[1] = ev;
745 
746 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
747 
748 	return SZ_DMASEV;
749 }
750 
751 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
752 {
753 	if (dry_run)
754 		return SZ_DMAST;
755 
756 	buf[0] = CMD_DMAST;
757 
758 	if (cond == SINGLE)
759 		buf[0] |= (0 << 1) | (1 << 0);
760 	else if (cond == BURST)
761 		buf[0] |= (1 << 1) | (1 << 0);
762 
763 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
764 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
765 
766 	return SZ_DMAST;
767 }
768 
769 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
770 		enum pl330_cond cond, u8 peri)
771 {
772 	if (dry_run)
773 		return SZ_DMASTP;
774 
775 	buf[0] = CMD_DMASTP;
776 
777 	if (cond == BURST)
778 		buf[0] |= (1 << 1);
779 
780 	peri &= 0x1f;
781 	peri <<= 3;
782 	buf[1] = peri;
783 
784 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
785 		cond == SINGLE ? 'S' : 'B', peri >> 3);
786 
787 	return SZ_DMASTP;
788 }
789 
790 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
791 		enum pl330_cond cond, u8 peri)
792 {
793 	if (dry_run)
794 		return SZ_DMAWFP;
795 
796 	buf[0] = CMD_DMAWFP;
797 
798 	if (cond == SINGLE)
799 		buf[0] |= (0 << 1) | (0 << 0);
800 	else if (cond == BURST)
801 		buf[0] |= (1 << 1) | (0 << 0);
802 	else
803 		buf[0] |= (0 << 1) | (1 << 0);
804 
805 	peri &= 0x1f;
806 	peri <<= 3;
807 	buf[1] = peri;
808 
809 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
810 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
811 
812 	return SZ_DMAWFP;
813 }
814 
815 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
816 {
817 	if (dry_run)
818 		return SZ_DMAWMB;
819 
820 	buf[0] = CMD_DMAWMB;
821 
822 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
823 
824 	return SZ_DMAWMB;
825 }
826 
827 struct _arg_GO {
828 	u8 chan;
829 	u32 addr;
830 	unsigned ns;
831 };
832 
833 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
834 		const struct _arg_GO *arg)
835 {
836 	u8 chan = arg->chan;
837 	u32 addr = arg->addr;
838 	unsigned ns = arg->ns;
839 
840 	if (dry_run)
841 		return SZ_DMAGO;
842 
843 	buf[0] = CMD_DMAGO;
844 	buf[0] |= (ns << 1);
845 	buf[1] = chan & 0x7;
846 	buf[2] = addr;
847 	buf[3] = addr >> 8;
848 	buf[4] = addr >> 16;
849 	buf[5] = addr >> 24;
850 
851 	return SZ_DMAGO;
852 }
853 
854 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
855 
856 /* Returns Time-Out */
857 static bool _until_dmac_idle(struct pl330_thread *thrd)
858 {
859 	void __iomem *regs = thrd->dmac->base;
860 	unsigned long loops = msecs_to_loops(5);
861 
862 	do {
863 		/* Until Manager is Idle */
864 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
865 			break;
866 
867 		cpu_relax();
868 	} while (--loops);
869 
870 	if (!loops)
871 		return true;
872 
873 	return false;
874 }
875 
876 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
877 		u8 insn[], bool as_manager)
878 {
879 	void __iomem *regs = thrd->dmac->base;
880 	u32 val;
881 
882 	val = (insn[0] << 16) | (insn[1] << 24);
883 	if (!as_manager) {
884 		val |= (1 << 0);
885 		val |= (thrd->id << 8); /* Channel Number */
886 	}
887 	writel(val, regs + DBGINST0);
888 
889 	val = le32_to_cpu(*((__le32 *)&insn[2]));
890 	writel(val, regs + DBGINST1);
891 
892 	/* If timed out due to halted state-machine */
893 	if (_until_dmac_idle(thrd)) {
894 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
895 		return;
896 	}
897 
898 	/* Get going */
899 	writel(0, regs + DBGCMD);
900 }
901 
902 static inline u32 _state(struct pl330_thread *thrd)
903 {
904 	void __iomem *regs = thrd->dmac->base;
905 	u32 val;
906 
907 	if (is_manager(thrd))
908 		val = readl(regs + DS) & 0xf;
909 	else
910 		val = readl(regs + CS(thrd->id)) & 0xf;
911 
912 	switch (val) {
913 	case DS_ST_STOP:
914 		return PL330_STATE_STOPPED;
915 	case DS_ST_EXEC:
916 		return PL330_STATE_EXECUTING;
917 	case DS_ST_CMISS:
918 		return PL330_STATE_CACHEMISS;
919 	case DS_ST_UPDTPC:
920 		return PL330_STATE_UPDTPC;
921 	case DS_ST_WFE:
922 		return PL330_STATE_WFE;
923 	case DS_ST_FAULT:
924 		return PL330_STATE_FAULTING;
925 	case DS_ST_ATBRR:
926 		if (is_manager(thrd))
927 			return PL330_STATE_INVALID;
928 		else
929 			return PL330_STATE_ATBARRIER;
930 	case DS_ST_QBUSY:
931 		if (is_manager(thrd))
932 			return PL330_STATE_INVALID;
933 		else
934 			return PL330_STATE_QUEUEBUSY;
935 	case DS_ST_WFP:
936 		if (is_manager(thrd))
937 			return PL330_STATE_INVALID;
938 		else
939 			return PL330_STATE_WFP;
940 	case DS_ST_KILL:
941 		if (is_manager(thrd))
942 			return PL330_STATE_INVALID;
943 		else
944 			return PL330_STATE_KILLING;
945 	case DS_ST_CMPLT:
946 		if (is_manager(thrd))
947 			return PL330_STATE_INVALID;
948 		else
949 			return PL330_STATE_COMPLETING;
950 	case DS_ST_FLTCMP:
951 		if (is_manager(thrd))
952 			return PL330_STATE_INVALID;
953 		else
954 			return PL330_STATE_FAULT_COMPLETING;
955 	default:
956 		return PL330_STATE_INVALID;
957 	}
958 }
959 
960 static void _stop(struct pl330_thread *thrd)
961 {
962 	void __iomem *regs = thrd->dmac->base;
963 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
964 
965 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
966 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
967 
968 	/* Return if nothing needs to be done */
969 	if (_state(thrd) == PL330_STATE_COMPLETING
970 		  || _state(thrd) == PL330_STATE_KILLING
971 		  || _state(thrd) == PL330_STATE_STOPPED)
972 		return;
973 
974 	_emit_KILL(0, insn);
975 
976 	/* Stop generating interrupts for SEV */
977 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
978 
979 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
980 }
981 
982 /* Start doing req 'idx' of thread 'thrd' */
983 static bool _trigger(struct pl330_thread *thrd)
984 {
985 	void __iomem *regs = thrd->dmac->base;
986 	struct _pl330_req *req;
987 	struct dma_pl330_desc *desc;
988 	struct _arg_GO go;
989 	unsigned ns;
990 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
991 	int idx;
992 
993 	/* Return if already ACTIVE */
994 	if (_state(thrd) != PL330_STATE_STOPPED)
995 		return true;
996 
997 	idx = 1 - thrd->lstenq;
998 	if (thrd->req[idx].desc != NULL) {
999 		req = &thrd->req[idx];
1000 	} else {
1001 		idx = thrd->lstenq;
1002 		if (thrd->req[idx].desc != NULL)
1003 			req = &thrd->req[idx];
1004 		else
1005 			req = NULL;
1006 	}
1007 
1008 	/* Return if no request */
1009 	if (!req)
1010 		return true;
1011 
1012 	/* Return if req is running */
1013 	if (idx == thrd->req_running)
1014 		return true;
1015 
1016 	desc = req->desc;
1017 
1018 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1019 
1020 	/* See 'Abort Sources' point-4 at Page 2-25 */
1021 	if (_manager_ns(thrd) && !ns)
1022 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1023 			__func__, __LINE__);
1024 
1025 	go.chan = thrd->id;
1026 	go.addr = req->mc_bus;
1027 	go.ns = ns;
1028 	_emit_GO(0, insn, &go);
1029 
1030 	/* Set to generate interrupts for SEV */
1031 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1032 
1033 	/* Only manager can execute GO */
1034 	_execute_DBGINSN(thrd, insn, true);
1035 
1036 	thrd->req_running = idx;
1037 
1038 	return true;
1039 }
1040 
1041 static bool _start(struct pl330_thread *thrd)
1042 {
1043 	switch (_state(thrd)) {
1044 	case PL330_STATE_FAULT_COMPLETING:
1045 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1046 
1047 		if (_state(thrd) == PL330_STATE_KILLING)
1048 			UNTIL(thrd, PL330_STATE_STOPPED)
1049 		/* fall through */
1050 
1051 	case PL330_STATE_FAULTING:
1052 		_stop(thrd);
1053 		/* fall through */
1054 
1055 	case PL330_STATE_KILLING:
1056 	case PL330_STATE_COMPLETING:
1057 		UNTIL(thrd, PL330_STATE_STOPPED)
1058 		/* fall through */
1059 
1060 	case PL330_STATE_STOPPED:
1061 		return _trigger(thrd);
1062 
1063 	case PL330_STATE_WFP:
1064 	case PL330_STATE_QUEUEBUSY:
1065 	case PL330_STATE_ATBARRIER:
1066 	case PL330_STATE_UPDTPC:
1067 	case PL330_STATE_CACHEMISS:
1068 	case PL330_STATE_EXECUTING:
1069 		return true;
1070 
1071 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1072 	default:
1073 		return false;
1074 	}
1075 }
1076 
1077 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1078 		const struct _xfer_spec *pxs, int cyc)
1079 {
1080 	int off = 0;
1081 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1082 
1083 	/* check lock-up free version */
1084 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1085 		while (cyc--) {
1086 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1087 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1088 		}
1089 	} else {
1090 		while (cyc--) {
1091 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1092 			off += _emit_RMB(dry_run, &buf[off]);
1093 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1094 			off += _emit_WMB(dry_run, &buf[off]);
1095 		}
1096 	}
1097 
1098 	return off;
1099 }
1100 
1101 static u32 _emit_load(unsigned int dry_run, u8 buf[],
1102 	enum pl330_cond cond, enum dma_transfer_direction direction,
1103 	u8 peri)
1104 {
1105 	int off = 0;
1106 
1107 	switch (direction) {
1108 	case DMA_MEM_TO_MEM:
1109 		/* fall through */
1110 	case DMA_MEM_TO_DEV:
1111 		off += _emit_LD(dry_run, &buf[off], cond);
1112 		break;
1113 
1114 	case DMA_DEV_TO_MEM:
1115 		if (cond == ALWAYS) {
1116 			off += _emit_LDP(dry_run, &buf[off], SINGLE,
1117 				peri);
1118 			off += _emit_LDP(dry_run, &buf[off], BURST,
1119 				peri);
1120 		} else {
1121 			off += _emit_LDP(dry_run, &buf[off], cond,
1122 				peri);
1123 		}
1124 		break;
1125 
1126 	default:
1127 		/* this code should be unreachable */
1128 		WARN_ON(1);
1129 		break;
1130 	}
1131 
1132 	return off;
1133 }
1134 
1135 static inline u32 _emit_store(unsigned int dry_run, u8 buf[],
1136 	enum pl330_cond cond, enum dma_transfer_direction direction,
1137 	u8 peri)
1138 {
1139 	int off = 0;
1140 
1141 	switch (direction) {
1142 	case DMA_MEM_TO_MEM:
1143 		/* fall through */
1144 	case DMA_DEV_TO_MEM:
1145 		off += _emit_ST(dry_run, &buf[off], cond);
1146 		break;
1147 
1148 	case DMA_MEM_TO_DEV:
1149 		if (cond == ALWAYS) {
1150 			off += _emit_STP(dry_run, &buf[off], SINGLE,
1151 				peri);
1152 			off += _emit_STP(dry_run, &buf[off], BURST,
1153 				peri);
1154 		} else {
1155 			off += _emit_STP(dry_run, &buf[off], cond,
1156 				peri);
1157 		}
1158 		break;
1159 
1160 	default:
1161 		/* this code should be unreachable */
1162 		WARN_ON(1);
1163 		break;
1164 	}
1165 
1166 	return off;
1167 }
1168 
1169 static inline int _ldst_peripheral(struct pl330_dmac *pl330,
1170 				 unsigned dry_run, u8 buf[],
1171 				 const struct _xfer_spec *pxs, int cyc,
1172 				 enum pl330_cond cond)
1173 {
1174 	int off = 0;
1175 
1176 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1177 		cond = BURST;
1178 
1179 	/*
1180 	 * do FLUSHP at beginning to clear any stale dma requests before the
1181 	 * first WFP.
1182 	 */
1183 	if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1184 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1185 	while (cyc--) {
1186 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1187 		off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype,
1188 			pxs->desc->peri);
1189 		off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype,
1190 			pxs->desc->peri);
1191 	}
1192 
1193 	return off;
1194 }
1195 
1196 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1197 		const struct _xfer_spec *pxs, int cyc)
1198 {
1199 	int off = 0;
1200 	enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE;
1201 
1202 	switch (pxs->desc->rqtype) {
1203 	case DMA_MEM_TO_DEV:
1204 		/* fall through */
1205 	case DMA_DEV_TO_MEM:
1206 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc,
1207 			cond);
1208 		break;
1209 
1210 	case DMA_MEM_TO_MEM:
1211 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1212 		break;
1213 
1214 	default:
1215 		/* this code should be unreachable */
1216 		WARN_ON(1);
1217 		break;
1218 	}
1219 
1220 	return off;
1221 }
1222 
1223 /*
1224  * transfer dregs with single transfers to peripheral, or a reduced size burst
1225  * for mem-to-mem.
1226  */
1227 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1228 		const struct _xfer_spec *pxs, int transfer_length)
1229 {
1230 	int off = 0;
1231 	int dregs_ccr;
1232 
1233 	if (transfer_length == 0)
1234 		return off;
1235 
1236 	switch (pxs->desc->rqtype) {
1237 	case DMA_MEM_TO_DEV:
1238 		/* fall through */
1239 	case DMA_DEV_TO_MEM:
1240 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs,
1241 			transfer_length, SINGLE);
1242 		break;
1243 
1244 	case DMA_MEM_TO_MEM:
1245 		dregs_ccr = pxs->ccr;
1246 		dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1247 			(0xf << CC_DSTBRSTLEN_SHFT));
1248 		dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1249 			CC_SRCBRSTLEN_SHFT);
1250 		dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1251 			CC_DSTBRSTLEN_SHFT);
1252 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1253 		off += _ldst_memtomem(dry_run, &buf[off], pxs, 1);
1254 		break;
1255 
1256 	default:
1257 		/* this code should be unreachable */
1258 		WARN_ON(1);
1259 		break;
1260 	}
1261 
1262 	return off;
1263 }
1264 
1265 /* Returns bytes consumed and updates bursts */
1266 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1267 		unsigned long *bursts, const struct _xfer_spec *pxs)
1268 {
1269 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1270 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1271 	struct _arg_LPEND lpend;
1272 
1273 	if (*bursts == 1)
1274 		return _bursts(pl330, dry_run, buf, pxs, 1);
1275 
1276 	/* Max iterations possible in DMALP is 256 */
1277 	if (*bursts >= 256*256) {
1278 		lcnt1 = 256;
1279 		lcnt0 = 256;
1280 		cyc = *bursts / lcnt1 / lcnt0;
1281 	} else if (*bursts > 256) {
1282 		lcnt1 = 256;
1283 		lcnt0 = *bursts / lcnt1;
1284 		cyc = 1;
1285 	} else {
1286 		lcnt1 = *bursts;
1287 		lcnt0 = 0;
1288 		cyc = 1;
1289 	}
1290 
1291 	szlp = _emit_LP(1, buf, 0, 0);
1292 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1293 
1294 	lpend.cond = ALWAYS;
1295 	lpend.forever = false;
1296 	lpend.loop = 0;
1297 	lpend.bjump = 0;
1298 	szlpend = _emit_LPEND(1, buf, &lpend);
1299 
1300 	if (lcnt0) {
1301 		szlp *= 2;
1302 		szlpend *= 2;
1303 	}
1304 
1305 	/*
1306 	 * Max bursts that we can unroll due to limit on the
1307 	 * size of backward jump that can be encoded in DMALPEND
1308 	 * which is 8-bits and hence 255
1309 	 */
1310 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1311 
1312 	cyc = (cycmax < cyc) ? cycmax : cyc;
1313 
1314 	off = 0;
1315 
1316 	if (lcnt0) {
1317 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1318 		ljmp0 = off;
1319 	}
1320 
1321 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1322 	ljmp1 = off;
1323 
1324 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1325 
1326 	lpend.cond = ALWAYS;
1327 	lpend.forever = false;
1328 	lpend.loop = 1;
1329 	lpend.bjump = off - ljmp1;
1330 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1331 
1332 	if (lcnt0) {
1333 		lpend.cond = ALWAYS;
1334 		lpend.forever = false;
1335 		lpend.loop = 0;
1336 		lpend.bjump = off - ljmp0;
1337 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1338 	}
1339 
1340 	*bursts = lcnt1 * cyc;
1341 	if (lcnt0)
1342 		*bursts *= lcnt0;
1343 
1344 	return off;
1345 }
1346 
1347 static inline int _setup_loops(struct pl330_dmac *pl330,
1348 			       unsigned dry_run, u8 buf[],
1349 			       const struct _xfer_spec *pxs)
1350 {
1351 	struct pl330_xfer *x = &pxs->desc->px;
1352 	u32 ccr = pxs->ccr;
1353 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1354 	int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) /
1355 		BRST_SIZE(ccr);
1356 	int off = 0;
1357 
1358 	while (bursts) {
1359 		c = bursts;
1360 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1361 		bursts -= c;
1362 	}
1363 	off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1364 
1365 	return off;
1366 }
1367 
1368 static inline int _setup_xfer(struct pl330_dmac *pl330,
1369 			      unsigned dry_run, u8 buf[],
1370 			      const struct _xfer_spec *pxs)
1371 {
1372 	struct pl330_xfer *x = &pxs->desc->px;
1373 	int off = 0;
1374 
1375 	/* DMAMOV SAR, x->src_addr */
1376 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1377 	/* DMAMOV DAR, x->dst_addr */
1378 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1379 
1380 	/* Setup Loop(s) */
1381 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1382 
1383 	return off;
1384 }
1385 
1386 /*
1387  * A req is a sequence of one or more xfer units.
1388  * Returns the number of bytes taken to setup the MC for the req.
1389  */
1390 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1391 		      struct pl330_thread *thrd, unsigned index,
1392 		      struct _xfer_spec *pxs)
1393 {
1394 	struct _pl330_req *req = &thrd->req[index];
1395 	u8 *buf = req->mc_cpu;
1396 	int off = 0;
1397 
1398 	PL330_DBGMC_START(req->mc_bus);
1399 
1400 	/* DMAMOV CCR, ccr */
1401 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1402 
1403 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1404 
1405 	/* DMASEV peripheral/event */
1406 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1407 	/* DMAEND */
1408 	off += _emit_END(dry_run, &buf[off]);
1409 
1410 	return off;
1411 }
1412 
1413 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1414 {
1415 	u32 ccr = 0;
1416 
1417 	if (rqc->src_inc)
1418 		ccr |= CC_SRCINC;
1419 
1420 	if (rqc->dst_inc)
1421 		ccr |= CC_DSTINC;
1422 
1423 	/* We set same protection levels for Src and DST for now */
1424 	if (rqc->privileged)
1425 		ccr |= CC_SRCPRI | CC_DSTPRI;
1426 	if (rqc->nonsecure)
1427 		ccr |= CC_SRCNS | CC_DSTNS;
1428 	if (rqc->insnaccess)
1429 		ccr |= CC_SRCIA | CC_DSTIA;
1430 
1431 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1432 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1433 
1434 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1435 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1436 
1437 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1438 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1439 
1440 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1441 
1442 	return ccr;
1443 }
1444 
1445 /*
1446  * Submit a list of xfers after which the client wants notification.
1447  * Client is not notified after each xfer unit, just once after all
1448  * xfer units are done or some error occurs.
1449  */
1450 static int pl330_submit_req(struct pl330_thread *thrd,
1451 	struct dma_pl330_desc *desc)
1452 {
1453 	struct pl330_dmac *pl330 = thrd->dmac;
1454 	struct _xfer_spec xs;
1455 	unsigned long flags;
1456 	unsigned idx;
1457 	u32 ccr;
1458 	int ret = 0;
1459 
1460 	switch (desc->rqtype) {
1461 	case DMA_MEM_TO_DEV:
1462 		break;
1463 
1464 	case DMA_DEV_TO_MEM:
1465 		break;
1466 
1467 	case DMA_MEM_TO_MEM:
1468 		break;
1469 
1470 	default:
1471 		return -ENOTSUPP;
1472 	}
1473 
1474 	if (pl330->state == DYING
1475 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1476 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1477 			__func__, __LINE__);
1478 		return -EAGAIN;
1479 	}
1480 
1481 	/* If request for non-existing peripheral */
1482 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1483 	    desc->peri >= pl330->pcfg.num_peri) {
1484 		dev_info(thrd->dmac->ddma.dev,
1485 				"%s:%d Invalid peripheral(%u)!\n",
1486 				__func__, __LINE__, desc->peri);
1487 		return -EINVAL;
1488 	}
1489 
1490 	spin_lock_irqsave(&pl330->lock, flags);
1491 
1492 	if (_queue_full(thrd)) {
1493 		ret = -EAGAIN;
1494 		goto xfer_exit;
1495 	}
1496 
1497 	/* Prefer Secure Channel */
1498 	if (!_manager_ns(thrd))
1499 		desc->rqcfg.nonsecure = 0;
1500 	else
1501 		desc->rqcfg.nonsecure = 1;
1502 
1503 	ccr = _prepare_ccr(&desc->rqcfg);
1504 
1505 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1506 
1507 	xs.ccr = ccr;
1508 	xs.desc = desc;
1509 
1510 	/* First dry run to check if req is acceptable */
1511 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1512 	if (ret < 0)
1513 		goto xfer_exit;
1514 
1515 	if (ret > pl330->mcbufsz / 2) {
1516 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1517 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1518 		ret = -ENOMEM;
1519 		goto xfer_exit;
1520 	}
1521 
1522 	/* Hook the request */
1523 	thrd->lstenq = idx;
1524 	thrd->req[idx].desc = desc;
1525 	_setup_req(pl330, 0, thrd, idx, &xs);
1526 
1527 	ret = 0;
1528 
1529 xfer_exit:
1530 	spin_unlock_irqrestore(&pl330->lock, flags);
1531 
1532 	return ret;
1533 }
1534 
1535 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1536 {
1537 	struct dma_pl330_chan *pch;
1538 	unsigned long flags;
1539 
1540 	if (!desc)
1541 		return;
1542 
1543 	pch = desc->pchan;
1544 
1545 	/* If desc aborted */
1546 	if (!pch)
1547 		return;
1548 
1549 	spin_lock_irqsave(&pch->lock, flags);
1550 
1551 	desc->status = DONE;
1552 
1553 	spin_unlock_irqrestore(&pch->lock, flags);
1554 
1555 	tasklet_schedule(&pch->task);
1556 }
1557 
1558 static void pl330_dotask(unsigned long data)
1559 {
1560 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1561 	unsigned long flags;
1562 	int i;
1563 
1564 	spin_lock_irqsave(&pl330->lock, flags);
1565 
1566 	/* The DMAC itself gone nuts */
1567 	if (pl330->dmac_tbd.reset_dmac) {
1568 		pl330->state = DYING;
1569 		/* Reset the manager too */
1570 		pl330->dmac_tbd.reset_mngr = true;
1571 		/* Clear the reset flag */
1572 		pl330->dmac_tbd.reset_dmac = false;
1573 	}
1574 
1575 	if (pl330->dmac_tbd.reset_mngr) {
1576 		_stop(pl330->manager);
1577 		/* Reset all channels */
1578 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1579 		/* Clear the reset flag */
1580 		pl330->dmac_tbd.reset_mngr = false;
1581 	}
1582 
1583 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1584 
1585 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1586 			struct pl330_thread *thrd = &pl330->channels[i];
1587 			void __iomem *regs = pl330->base;
1588 			enum pl330_op_err err;
1589 
1590 			_stop(thrd);
1591 
1592 			if (readl(regs + FSC) & (1 << thrd->id))
1593 				err = PL330_ERR_FAIL;
1594 			else
1595 				err = PL330_ERR_ABORT;
1596 
1597 			spin_unlock_irqrestore(&pl330->lock, flags);
1598 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1599 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1600 			spin_lock_irqsave(&pl330->lock, flags);
1601 
1602 			thrd->req[0].desc = NULL;
1603 			thrd->req[1].desc = NULL;
1604 			thrd->req_running = -1;
1605 
1606 			/* Clear the reset flag */
1607 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1608 		}
1609 	}
1610 
1611 	spin_unlock_irqrestore(&pl330->lock, flags);
1612 
1613 	return;
1614 }
1615 
1616 /* Returns 1 if state was updated, 0 otherwise */
1617 static int pl330_update(struct pl330_dmac *pl330)
1618 {
1619 	struct dma_pl330_desc *descdone;
1620 	unsigned long flags;
1621 	void __iomem *regs;
1622 	u32 val;
1623 	int id, ev, ret = 0;
1624 
1625 	regs = pl330->base;
1626 
1627 	spin_lock_irqsave(&pl330->lock, flags);
1628 
1629 	val = readl(regs + FSM) & 0x1;
1630 	if (val)
1631 		pl330->dmac_tbd.reset_mngr = true;
1632 	else
1633 		pl330->dmac_tbd.reset_mngr = false;
1634 
1635 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1636 	pl330->dmac_tbd.reset_chan |= val;
1637 	if (val) {
1638 		int i = 0;
1639 		while (i < pl330->pcfg.num_chan) {
1640 			if (val & (1 << i)) {
1641 				dev_info(pl330->ddma.dev,
1642 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1643 						i, readl(regs + CS(i)),
1644 						readl(regs + FTC(i)));
1645 				_stop(&pl330->channels[i]);
1646 			}
1647 			i++;
1648 		}
1649 	}
1650 
1651 	/* Check which event happened i.e, thread notified */
1652 	val = readl(regs + ES);
1653 	if (pl330->pcfg.num_events < 32
1654 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1655 		pl330->dmac_tbd.reset_dmac = true;
1656 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1657 			__LINE__);
1658 		ret = 1;
1659 		goto updt_exit;
1660 	}
1661 
1662 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1663 		if (val & (1 << ev)) { /* Event occurred */
1664 			struct pl330_thread *thrd;
1665 			u32 inten = readl(regs + INTEN);
1666 			int active;
1667 
1668 			/* Clear the event */
1669 			if (inten & (1 << ev))
1670 				writel(1 << ev, regs + INTCLR);
1671 
1672 			ret = 1;
1673 
1674 			id = pl330->events[ev];
1675 
1676 			thrd = &pl330->channels[id];
1677 
1678 			active = thrd->req_running;
1679 			if (active == -1) /* Aborted */
1680 				continue;
1681 
1682 			/* Detach the req */
1683 			descdone = thrd->req[active].desc;
1684 			thrd->req[active].desc = NULL;
1685 
1686 			thrd->req_running = -1;
1687 
1688 			/* Get going again ASAP */
1689 			_start(thrd);
1690 
1691 			/* For now, just make a list of callbacks to be done */
1692 			list_add_tail(&descdone->rqd, &pl330->req_done);
1693 		}
1694 	}
1695 
1696 	/* Now that we are in no hurry, do the callbacks */
1697 	while (!list_empty(&pl330->req_done)) {
1698 		descdone = list_first_entry(&pl330->req_done,
1699 					    struct dma_pl330_desc, rqd);
1700 		list_del(&descdone->rqd);
1701 		spin_unlock_irqrestore(&pl330->lock, flags);
1702 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1703 		spin_lock_irqsave(&pl330->lock, flags);
1704 	}
1705 
1706 updt_exit:
1707 	spin_unlock_irqrestore(&pl330->lock, flags);
1708 
1709 	if (pl330->dmac_tbd.reset_dmac
1710 			|| pl330->dmac_tbd.reset_mngr
1711 			|| pl330->dmac_tbd.reset_chan) {
1712 		ret = 1;
1713 		tasklet_schedule(&pl330->tasks);
1714 	}
1715 
1716 	return ret;
1717 }
1718 
1719 /* Reserve an event */
1720 static inline int _alloc_event(struct pl330_thread *thrd)
1721 {
1722 	struct pl330_dmac *pl330 = thrd->dmac;
1723 	int ev;
1724 
1725 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1726 		if (pl330->events[ev] == -1) {
1727 			pl330->events[ev] = thrd->id;
1728 			return ev;
1729 		}
1730 
1731 	return -1;
1732 }
1733 
1734 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1735 {
1736 	return pl330->pcfg.irq_ns & (1 << i);
1737 }
1738 
1739 /* Upon success, returns IdentityToken for the
1740  * allocated channel, NULL otherwise.
1741  */
1742 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1743 {
1744 	struct pl330_thread *thrd = NULL;
1745 	int chans, i;
1746 
1747 	if (pl330->state == DYING)
1748 		return NULL;
1749 
1750 	chans = pl330->pcfg.num_chan;
1751 
1752 	for (i = 0; i < chans; i++) {
1753 		thrd = &pl330->channels[i];
1754 		if ((thrd->free) && (!_manager_ns(thrd) ||
1755 					_chan_ns(pl330, i))) {
1756 			thrd->ev = _alloc_event(thrd);
1757 			if (thrd->ev >= 0) {
1758 				thrd->free = false;
1759 				thrd->lstenq = 1;
1760 				thrd->req[0].desc = NULL;
1761 				thrd->req[1].desc = NULL;
1762 				thrd->req_running = -1;
1763 				break;
1764 			}
1765 		}
1766 		thrd = NULL;
1767 	}
1768 
1769 	return thrd;
1770 }
1771 
1772 /* Release an event */
1773 static inline void _free_event(struct pl330_thread *thrd, int ev)
1774 {
1775 	struct pl330_dmac *pl330 = thrd->dmac;
1776 
1777 	/* If the event is valid and was held by the thread */
1778 	if (ev >= 0 && ev < pl330->pcfg.num_events
1779 			&& pl330->events[ev] == thrd->id)
1780 		pl330->events[ev] = -1;
1781 }
1782 
1783 static void pl330_release_channel(struct pl330_thread *thrd)
1784 {
1785 	if (!thrd || thrd->free)
1786 		return;
1787 
1788 	_stop(thrd);
1789 
1790 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1791 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1792 
1793 	_free_event(thrd, thrd->ev);
1794 	thrd->free = true;
1795 }
1796 
1797 /* Initialize the structure for PL330 configuration, that can be used
1798  * by the client driver the make best use of the DMAC
1799  */
1800 static void read_dmac_config(struct pl330_dmac *pl330)
1801 {
1802 	void __iomem *regs = pl330->base;
1803 	u32 val;
1804 
1805 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1806 	val &= CRD_DATA_WIDTH_MASK;
1807 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1808 
1809 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1810 	val &= CRD_DATA_BUFF_MASK;
1811 	pl330->pcfg.data_buf_dep = val + 1;
1812 
1813 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1814 	val &= CR0_NUM_CHANS_MASK;
1815 	val += 1;
1816 	pl330->pcfg.num_chan = val;
1817 
1818 	val = readl(regs + CR0);
1819 	if (val & CR0_PERIPH_REQ_SET) {
1820 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1821 		val += 1;
1822 		pl330->pcfg.num_peri = val;
1823 		pl330->pcfg.peri_ns = readl(regs + CR4);
1824 	} else {
1825 		pl330->pcfg.num_peri = 0;
1826 	}
1827 
1828 	val = readl(regs + CR0);
1829 	if (val & CR0_BOOT_MAN_NS)
1830 		pl330->pcfg.mode |= DMAC_MODE_NS;
1831 	else
1832 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1833 
1834 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1835 	val &= CR0_NUM_EVENTS_MASK;
1836 	val += 1;
1837 	pl330->pcfg.num_events = val;
1838 
1839 	pl330->pcfg.irq_ns = readl(regs + CR3);
1840 }
1841 
1842 static inline void _reset_thread(struct pl330_thread *thrd)
1843 {
1844 	struct pl330_dmac *pl330 = thrd->dmac;
1845 
1846 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1847 				+ (thrd->id * pl330->mcbufsz);
1848 	thrd->req[0].mc_bus = pl330->mcode_bus
1849 				+ (thrd->id * pl330->mcbufsz);
1850 	thrd->req[0].desc = NULL;
1851 
1852 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1853 				+ pl330->mcbufsz / 2;
1854 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1855 				+ pl330->mcbufsz / 2;
1856 	thrd->req[1].desc = NULL;
1857 
1858 	thrd->req_running = -1;
1859 }
1860 
1861 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1862 {
1863 	int chans = pl330->pcfg.num_chan;
1864 	struct pl330_thread *thrd;
1865 	int i;
1866 
1867 	/* Allocate 1 Manager and 'chans' Channel threads */
1868 	pl330->channels = kcalloc(1 + chans, sizeof(*thrd),
1869 					GFP_KERNEL);
1870 	if (!pl330->channels)
1871 		return -ENOMEM;
1872 
1873 	/* Init Channel threads */
1874 	for (i = 0; i < chans; i++) {
1875 		thrd = &pl330->channels[i];
1876 		thrd->id = i;
1877 		thrd->dmac = pl330;
1878 		_reset_thread(thrd);
1879 		thrd->free = true;
1880 	}
1881 
1882 	/* MANAGER is indexed at the end */
1883 	thrd = &pl330->channels[chans];
1884 	thrd->id = chans;
1885 	thrd->dmac = pl330;
1886 	thrd->free = false;
1887 	pl330->manager = thrd;
1888 
1889 	return 0;
1890 }
1891 
1892 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1893 {
1894 	int chans = pl330->pcfg.num_chan;
1895 	int ret;
1896 
1897 	/*
1898 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1899 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1900 	 */
1901 	pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1902 				chans * pl330->mcbufsz,
1903 				&pl330->mcode_bus, GFP_KERNEL,
1904 				DMA_ATTR_PRIVILEGED);
1905 	if (!pl330->mcode_cpu) {
1906 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1907 			__func__, __LINE__);
1908 		return -ENOMEM;
1909 	}
1910 
1911 	ret = dmac_alloc_threads(pl330);
1912 	if (ret) {
1913 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1914 			__func__, __LINE__);
1915 		dma_free_coherent(pl330->ddma.dev,
1916 				chans * pl330->mcbufsz,
1917 				pl330->mcode_cpu, pl330->mcode_bus);
1918 		return ret;
1919 	}
1920 
1921 	return 0;
1922 }
1923 
1924 static int pl330_add(struct pl330_dmac *pl330)
1925 {
1926 	int i, ret;
1927 
1928 	/* Check if we can handle this DMAC */
1929 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1930 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1931 			pl330->pcfg.periph_id);
1932 		return -EINVAL;
1933 	}
1934 
1935 	/* Read the configuration of the DMAC */
1936 	read_dmac_config(pl330);
1937 
1938 	if (pl330->pcfg.num_events == 0) {
1939 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1940 			__func__, __LINE__);
1941 		return -EINVAL;
1942 	}
1943 
1944 	spin_lock_init(&pl330->lock);
1945 
1946 	INIT_LIST_HEAD(&pl330->req_done);
1947 
1948 	/* Use default MC buffer size if not provided */
1949 	if (!pl330->mcbufsz)
1950 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1951 
1952 	/* Mark all events as free */
1953 	for (i = 0; i < pl330->pcfg.num_events; i++)
1954 		pl330->events[i] = -1;
1955 
1956 	/* Allocate resources needed by the DMAC */
1957 	ret = dmac_alloc_resources(pl330);
1958 	if (ret) {
1959 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1960 		return ret;
1961 	}
1962 
1963 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1964 
1965 	pl330->state = INIT;
1966 
1967 	return 0;
1968 }
1969 
1970 static int dmac_free_threads(struct pl330_dmac *pl330)
1971 {
1972 	struct pl330_thread *thrd;
1973 	int i;
1974 
1975 	/* Release Channel threads */
1976 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1977 		thrd = &pl330->channels[i];
1978 		pl330_release_channel(thrd);
1979 	}
1980 
1981 	/* Free memory */
1982 	kfree(pl330->channels);
1983 
1984 	return 0;
1985 }
1986 
1987 static void pl330_del(struct pl330_dmac *pl330)
1988 {
1989 	pl330->state = UNINIT;
1990 
1991 	tasklet_kill(&pl330->tasks);
1992 
1993 	/* Free DMAC resources */
1994 	dmac_free_threads(pl330);
1995 
1996 	dma_free_coherent(pl330->ddma.dev,
1997 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1998 		pl330->mcode_bus);
1999 }
2000 
2001 /* forward declaration */
2002 static struct amba_driver pl330_driver;
2003 
2004 static inline struct dma_pl330_chan *
2005 to_pchan(struct dma_chan *ch)
2006 {
2007 	if (!ch)
2008 		return NULL;
2009 
2010 	return container_of(ch, struct dma_pl330_chan, chan);
2011 }
2012 
2013 static inline struct dma_pl330_desc *
2014 to_desc(struct dma_async_tx_descriptor *tx)
2015 {
2016 	return container_of(tx, struct dma_pl330_desc, txd);
2017 }
2018 
2019 static inline void fill_queue(struct dma_pl330_chan *pch)
2020 {
2021 	struct dma_pl330_desc *desc;
2022 	int ret;
2023 
2024 	list_for_each_entry(desc, &pch->work_list, node) {
2025 
2026 		/* If already submitted */
2027 		if (desc->status == BUSY)
2028 			continue;
2029 
2030 		ret = pl330_submit_req(pch->thread, desc);
2031 		if (!ret) {
2032 			desc->status = BUSY;
2033 		} else if (ret == -EAGAIN) {
2034 			/* QFull or DMAC Dying */
2035 			break;
2036 		} else {
2037 			/* Unacceptable request */
2038 			desc->status = DONE;
2039 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2040 					__func__, __LINE__, desc->txd.cookie);
2041 			tasklet_schedule(&pch->task);
2042 		}
2043 	}
2044 }
2045 
2046 static void pl330_tasklet(unsigned long data)
2047 {
2048 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2049 	struct dma_pl330_desc *desc, *_dt;
2050 	unsigned long flags;
2051 	bool power_down = false;
2052 
2053 	spin_lock_irqsave(&pch->lock, flags);
2054 
2055 	/* Pick up ripe tomatoes */
2056 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2057 		if (desc->status == DONE) {
2058 			if (!pch->cyclic)
2059 				dma_cookie_complete(&desc->txd);
2060 			list_move_tail(&desc->node, &pch->completed_list);
2061 		}
2062 
2063 	/* Try to submit a req imm. next to the last completed cookie */
2064 	fill_queue(pch);
2065 
2066 	if (list_empty(&pch->work_list)) {
2067 		spin_lock(&pch->thread->dmac->lock);
2068 		_stop(pch->thread);
2069 		spin_unlock(&pch->thread->dmac->lock);
2070 		power_down = true;
2071 		pch->active = false;
2072 	} else {
2073 		/* Make sure the PL330 Channel thread is active */
2074 		spin_lock(&pch->thread->dmac->lock);
2075 		_start(pch->thread);
2076 		spin_unlock(&pch->thread->dmac->lock);
2077 	}
2078 
2079 	while (!list_empty(&pch->completed_list)) {
2080 		struct dmaengine_desc_callback cb;
2081 
2082 		desc = list_first_entry(&pch->completed_list,
2083 					struct dma_pl330_desc, node);
2084 
2085 		dmaengine_desc_get_callback(&desc->txd, &cb);
2086 
2087 		if (pch->cyclic) {
2088 			desc->status = PREP;
2089 			list_move_tail(&desc->node, &pch->work_list);
2090 			if (power_down) {
2091 				pch->active = true;
2092 				spin_lock(&pch->thread->dmac->lock);
2093 				_start(pch->thread);
2094 				spin_unlock(&pch->thread->dmac->lock);
2095 				power_down = false;
2096 			}
2097 		} else {
2098 			desc->status = FREE;
2099 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2100 		}
2101 
2102 		dma_descriptor_unmap(&desc->txd);
2103 
2104 		if (dmaengine_desc_callback_valid(&cb)) {
2105 			spin_unlock_irqrestore(&pch->lock, flags);
2106 			dmaengine_desc_callback_invoke(&cb, NULL);
2107 			spin_lock_irqsave(&pch->lock, flags);
2108 		}
2109 	}
2110 	spin_unlock_irqrestore(&pch->lock, flags);
2111 
2112 	/* If work list empty, power down */
2113 	if (power_down) {
2114 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2115 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2116 	}
2117 }
2118 
2119 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2120 						struct of_dma *ofdma)
2121 {
2122 	int count = dma_spec->args_count;
2123 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2124 	unsigned int chan_id;
2125 
2126 	if (!pl330)
2127 		return NULL;
2128 
2129 	if (count != 1)
2130 		return NULL;
2131 
2132 	chan_id = dma_spec->args[0];
2133 	if (chan_id >= pl330->num_peripherals)
2134 		return NULL;
2135 
2136 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2137 }
2138 
2139 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2140 {
2141 	struct dma_pl330_chan *pch = to_pchan(chan);
2142 	struct pl330_dmac *pl330 = pch->dmac;
2143 	unsigned long flags;
2144 
2145 	spin_lock_irqsave(&pl330->lock, flags);
2146 
2147 	dma_cookie_init(chan);
2148 	pch->cyclic = false;
2149 
2150 	pch->thread = pl330_request_channel(pl330);
2151 	if (!pch->thread) {
2152 		spin_unlock_irqrestore(&pl330->lock, flags);
2153 		return -ENOMEM;
2154 	}
2155 
2156 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2157 
2158 	spin_unlock_irqrestore(&pl330->lock, flags);
2159 
2160 	return 1;
2161 }
2162 
2163 /*
2164  * We need the data direction between the DMAC (the dma-mapping "device") and
2165  * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2166  */
2167 static enum dma_data_direction
2168 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2169 {
2170 	switch (dir) {
2171 	case DMA_MEM_TO_DEV:
2172 		return DMA_FROM_DEVICE;
2173 	case DMA_DEV_TO_MEM:
2174 		return DMA_TO_DEVICE;
2175 	case DMA_DEV_TO_DEV:
2176 		return DMA_BIDIRECTIONAL;
2177 	default:
2178 		return DMA_NONE;
2179 	}
2180 }
2181 
2182 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2183 {
2184 	if (pch->dir != DMA_NONE)
2185 		dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2186 				   1 << pch->burst_sz, pch->dir, 0);
2187 	pch->dir = DMA_NONE;
2188 }
2189 
2190 
2191 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2192 				  enum dma_transfer_direction dir)
2193 {
2194 	struct device *dev = pch->chan.device->dev;
2195 	enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2196 
2197 	/* Already mapped for this config? */
2198 	if (pch->dir == dma_dir)
2199 		return true;
2200 
2201 	pl330_unprep_slave_fifo(pch);
2202 	pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2203 					 1 << pch->burst_sz, dma_dir, 0);
2204 	if (dma_mapping_error(dev, pch->fifo_dma))
2205 		return false;
2206 
2207 	pch->dir = dma_dir;
2208 	return true;
2209 }
2210 
2211 static int fixup_burst_len(int max_burst_len, int quirks)
2212 {
2213 	if (quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
2214 		return 1;
2215 	else if (max_burst_len > PL330_MAX_BURST)
2216 		return PL330_MAX_BURST;
2217 	else if (max_burst_len < 1)
2218 		return 1;
2219 	else
2220 		return max_burst_len;
2221 }
2222 
2223 static int pl330_config(struct dma_chan *chan,
2224 			struct dma_slave_config *slave_config)
2225 {
2226 	struct dma_pl330_chan *pch = to_pchan(chan);
2227 
2228 	pl330_unprep_slave_fifo(pch);
2229 	if (slave_config->direction == DMA_MEM_TO_DEV) {
2230 		if (slave_config->dst_addr)
2231 			pch->fifo_addr = slave_config->dst_addr;
2232 		if (slave_config->dst_addr_width)
2233 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2234 		pch->burst_len = fixup_burst_len(slave_config->dst_maxburst,
2235 			pch->dmac->quirks);
2236 	} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2237 		if (slave_config->src_addr)
2238 			pch->fifo_addr = slave_config->src_addr;
2239 		if (slave_config->src_addr_width)
2240 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2241 		pch->burst_len = fixup_burst_len(slave_config->src_maxburst,
2242 			pch->dmac->quirks);
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static int pl330_terminate_all(struct dma_chan *chan)
2249 {
2250 	struct dma_pl330_chan *pch = to_pchan(chan);
2251 	struct dma_pl330_desc *desc;
2252 	unsigned long flags;
2253 	struct pl330_dmac *pl330 = pch->dmac;
2254 	LIST_HEAD(list);
2255 	bool power_down = false;
2256 
2257 	pm_runtime_get_sync(pl330->ddma.dev);
2258 	spin_lock_irqsave(&pch->lock, flags);
2259 
2260 	spin_lock(&pl330->lock);
2261 	_stop(pch->thread);
2262 	pch->thread->req[0].desc = NULL;
2263 	pch->thread->req[1].desc = NULL;
2264 	pch->thread->req_running = -1;
2265 	spin_unlock(&pl330->lock);
2266 
2267 	power_down = pch->active;
2268 	pch->active = false;
2269 
2270 	/* Mark all desc done */
2271 	list_for_each_entry(desc, &pch->submitted_list, node) {
2272 		desc->status = FREE;
2273 		dma_cookie_complete(&desc->txd);
2274 	}
2275 
2276 	list_for_each_entry(desc, &pch->work_list , node) {
2277 		desc->status = FREE;
2278 		dma_cookie_complete(&desc->txd);
2279 	}
2280 
2281 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2282 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2283 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2284 	spin_unlock_irqrestore(&pch->lock, flags);
2285 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2286 	if (power_down)
2287 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2288 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2289 
2290 	return 0;
2291 }
2292 
2293 /*
2294  * We don't support DMA_RESUME command because of hardware
2295  * limitations, so after pausing the channel we cannot restore
2296  * it to active state. We have to terminate channel and setup
2297  * DMA transfer again. This pause feature was implemented to
2298  * allow safely read residue before channel termination.
2299  */
2300 static int pl330_pause(struct dma_chan *chan)
2301 {
2302 	struct dma_pl330_chan *pch = to_pchan(chan);
2303 	struct pl330_dmac *pl330 = pch->dmac;
2304 	unsigned long flags;
2305 
2306 	pm_runtime_get_sync(pl330->ddma.dev);
2307 	spin_lock_irqsave(&pch->lock, flags);
2308 
2309 	spin_lock(&pl330->lock);
2310 	_stop(pch->thread);
2311 	spin_unlock(&pl330->lock);
2312 
2313 	spin_unlock_irqrestore(&pch->lock, flags);
2314 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2315 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2316 
2317 	return 0;
2318 }
2319 
2320 static void pl330_free_chan_resources(struct dma_chan *chan)
2321 {
2322 	struct dma_pl330_chan *pch = to_pchan(chan);
2323 	struct pl330_dmac *pl330 = pch->dmac;
2324 	unsigned long flags;
2325 
2326 	tasklet_kill(&pch->task);
2327 
2328 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2329 	spin_lock_irqsave(&pl330->lock, flags);
2330 
2331 	pl330_release_channel(pch->thread);
2332 	pch->thread = NULL;
2333 
2334 	if (pch->cyclic)
2335 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2336 
2337 	spin_unlock_irqrestore(&pl330->lock, flags);
2338 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2339 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2340 	pl330_unprep_slave_fifo(pch);
2341 }
2342 
2343 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2344 					   struct dma_pl330_desc *desc)
2345 {
2346 	struct pl330_thread *thrd = pch->thread;
2347 	struct pl330_dmac *pl330 = pch->dmac;
2348 	void __iomem *regs = thrd->dmac->base;
2349 	u32 val, addr;
2350 
2351 	pm_runtime_get_sync(pl330->ddma.dev);
2352 	val = addr = 0;
2353 	if (desc->rqcfg.src_inc) {
2354 		val = readl(regs + SA(thrd->id));
2355 		addr = desc->px.src_addr;
2356 	} else {
2357 		val = readl(regs + DA(thrd->id));
2358 		addr = desc->px.dst_addr;
2359 	}
2360 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2361 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2362 
2363 	/* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2364 	if (!val)
2365 		return 0;
2366 
2367 	return val - addr;
2368 }
2369 
2370 static enum dma_status
2371 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2372 		 struct dma_tx_state *txstate)
2373 {
2374 	enum dma_status ret;
2375 	unsigned long flags;
2376 	struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2377 	struct dma_pl330_chan *pch = to_pchan(chan);
2378 	unsigned int transferred, residual = 0;
2379 
2380 	ret = dma_cookie_status(chan, cookie, txstate);
2381 
2382 	if (!txstate)
2383 		return ret;
2384 
2385 	if (ret == DMA_COMPLETE)
2386 		goto out;
2387 
2388 	spin_lock_irqsave(&pch->lock, flags);
2389 	spin_lock(&pch->thread->dmac->lock);
2390 
2391 	if (pch->thread->req_running != -1)
2392 		running = pch->thread->req[pch->thread->req_running].desc;
2393 
2394 	last_enq = pch->thread->req[pch->thread->lstenq].desc;
2395 
2396 	/* Check in pending list */
2397 	list_for_each_entry(desc, &pch->work_list, node) {
2398 		if (desc->status == DONE)
2399 			transferred = desc->bytes_requested;
2400 		else if (running && desc == running)
2401 			transferred =
2402 				pl330_get_current_xferred_count(pch, desc);
2403 		else if (desc->status == BUSY)
2404 			/*
2405 			 * Busy but not running means either just enqueued,
2406 			 * or finished and not yet marked done
2407 			 */
2408 			if (desc == last_enq)
2409 				transferred = 0;
2410 			else
2411 				transferred = desc->bytes_requested;
2412 		else
2413 			transferred = 0;
2414 		residual += desc->bytes_requested - transferred;
2415 		if (desc->txd.cookie == cookie) {
2416 			switch (desc->status) {
2417 			case DONE:
2418 				ret = DMA_COMPLETE;
2419 				break;
2420 			case PREP:
2421 			case BUSY:
2422 				ret = DMA_IN_PROGRESS;
2423 				break;
2424 			default:
2425 				WARN_ON(1);
2426 			}
2427 			break;
2428 		}
2429 		if (desc->last)
2430 			residual = 0;
2431 	}
2432 	spin_unlock(&pch->thread->dmac->lock);
2433 	spin_unlock_irqrestore(&pch->lock, flags);
2434 
2435 out:
2436 	dma_set_residue(txstate, residual);
2437 
2438 	return ret;
2439 }
2440 
2441 static void pl330_issue_pending(struct dma_chan *chan)
2442 {
2443 	struct dma_pl330_chan *pch = to_pchan(chan);
2444 	unsigned long flags;
2445 
2446 	spin_lock_irqsave(&pch->lock, flags);
2447 	if (list_empty(&pch->work_list)) {
2448 		/*
2449 		 * Warn on nothing pending. Empty submitted_list may
2450 		 * break our pm_runtime usage counter as it is
2451 		 * updated on work_list emptiness status.
2452 		 */
2453 		WARN_ON(list_empty(&pch->submitted_list));
2454 		pch->active = true;
2455 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2456 	}
2457 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2458 	spin_unlock_irqrestore(&pch->lock, flags);
2459 
2460 	pl330_tasklet((unsigned long)pch);
2461 }
2462 
2463 /*
2464  * We returned the last one of the circular list of descriptor(s)
2465  * from prep_xxx, so the argument to submit corresponds to the last
2466  * descriptor of the list.
2467  */
2468 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2469 {
2470 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2471 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2472 	dma_cookie_t cookie;
2473 	unsigned long flags;
2474 
2475 	spin_lock_irqsave(&pch->lock, flags);
2476 
2477 	/* Assign cookies to all nodes */
2478 	while (!list_empty(&last->node)) {
2479 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2480 		if (pch->cyclic) {
2481 			desc->txd.callback = last->txd.callback;
2482 			desc->txd.callback_param = last->txd.callback_param;
2483 		}
2484 		desc->last = false;
2485 
2486 		dma_cookie_assign(&desc->txd);
2487 
2488 		list_move_tail(&desc->node, &pch->submitted_list);
2489 	}
2490 
2491 	last->last = true;
2492 	cookie = dma_cookie_assign(&last->txd);
2493 	list_add_tail(&last->node, &pch->submitted_list);
2494 	spin_unlock_irqrestore(&pch->lock, flags);
2495 
2496 	return cookie;
2497 }
2498 
2499 static inline void _init_desc(struct dma_pl330_desc *desc)
2500 {
2501 	desc->rqcfg.swap = SWAP_NO;
2502 	desc->rqcfg.scctl = CCTRL0;
2503 	desc->rqcfg.dcctl = CCTRL0;
2504 	desc->txd.tx_submit = pl330_tx_submit;
2505 
2506 	INIT_LIST_HEAD(&desc->node);
2507 }
2508 
2509 /* Returns the number of descriptors added to the DMAC pool */
2510 static int add_desc(struct list_head *pool, spinlock_t *lock,
2511 		    gfp_t flg, int count)
2512 {
2513 	struct dma_pl330_desc *desc;
2514 	unsigned long flags;
2515 	int i;
2516 
2517 	desc = kcalloc(count, sizeof(*desc), flg);
2518 	if (!desc)
2519 		return 0;
2520 
2521 	spin_lock_irqsave(lock, flags);
2522 
2523 	for (i = 0; i < count; i++) {
2524 		_init_desc(&desc[i]);
2525 		list_add_tail(&desc[i].node, pool);
2526 	}
2527 
2528 	spin_unlock_irqrestore(lock, flags);
2529 
2530 	return count;
2531 }
2532 
2533 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2534 					 spinlock_t *lock)
2535 {
2536 	struct dma_pl330_desc *desc = NULL;
2537 	unsigned long flags;
2538 
2539 	spin_lock_irqsave(lock, flags);
2540 
2541 	if (!list_empty(pool)) {
2542 		desc = list_entry(pool->next,
2543 				struct dma_pl330_desc, node);
2544 
2545 		list_del_init(&desc->node);
2546 
2547 		desc->status = PREP;
2548 		desc->txd.callback = NULL;
2549 	}
2550 
2551 	spin_unlock_irqrestore(lock, flags);
2552 
2553 	return desc;
2554 }
2555 
2556 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2557 {
2558 	struct pl330_dmac *pl330 = pch->dmac;
2559 	u8 *peri_id = pch->chan.private;
2560 	struct dma_pl330_desc *desc;
2561 
2562 	/* Pluck one desc from the pool of DMAC */
2563 	desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2564 
2565 	/* If the DMAC pool is empty, alloc new */
2566 	if (!desc) {
2567 		DEFINE_SPINLOCK(lock);
2568 		LIST_HEAD(pool);
2569 
2570 		if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2571 			return NULL;
2572 
2573 		desc = pluck_desc(&pool, &lock);
2574 		WARN_ON(!desc || !list_empty(&pool));
2575 	}
2576 
2577 	/* Initialize the descriptor */
2578 	desc->pchan = pch;
2579 	desc->txd.cookie = 0;
2580 	async_tx_ack(&desc->txd);
2581 
2582 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2583 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2584 
2585 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2586 
2587 	return desc;
2588 }
2589 
2590 static inline void fill_px(struct pl330_xfer *px,
2591 		dma_addr_t dst, dma_addr_t src, size_t len)
2592 {
2593 	px->bytes = len;
2594 	px->dst_addr = dst;
2595 	px->src_addr = src;
2596 }
2597 
2598 static struct dma_pl330_desc *
2599 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2600 		dma_addr_t src, size_t len)
2601 {
2602 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2603 
2604 	if (!desc) {
2605 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2606 			__func__, __LINE__);
2607 		return NULL;
2608 	}
2609 
2610 	/*
2611 	 * Ideally we should lookout for reqs bigger than
2612 	 * those that can be programmed with 256 bytes of
2613 	 * MC buffer, but considering a req size is seldom
2614 	 * going to be word-unaligned and more than 200MB,
2615 	 * we take it easy.
2616 	 * Also, should the limit is reached we'd rather
2617 	 * have the platform increase MC buffer size than
2618 	 * complicating this API driver.
2619 	 */
2620 	fill_px(&desc->px, dst, src, len);
2621 
2622 	return desc;
2623 }
2624 
2625 /* Call after fixing burst size */
2626 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2627 {
2628 	struct dma_pl330_chan *pch = desc->pchan;
2629 	struct pl330_dmac *pl330 = pch->dmac;
2630 	int burst_len;
2631 
2632 	burst_len = pl330->pcfg.data_bus_width / 8;
2633 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2634 	burst_len >>= desc->rqcfg.brst_size;
2635 
2636 	/* src/dst_burst_len can't be more than 16 */
2637 	if (burst_len > PL330_MAX_BURST)
2638 		burst_len = PL330_MAX_BURST;
2639 
2640 	return burst_len;
2641 }
2642 
2643 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2644 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2645 		size_t period_len, enum dma_transfer_direction direction,
2646 		unsigned long flags)
2647 {
2648 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2649 	struct dma_pl330_chan *pch = to_pchan(chan);
2650 	struct pl330_dmac *pl330 = pch->dmac;
2651 	unsigned int i;
2652 	dma_addr_t dst;
2653 	dma_addr_t src;
2654 
2655 	if (len % period_len != 0)
2656 		return NULL;
2657 
2658 	if (!is_slave_direction(direction)) {
2659 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2660 		__func__, __LINE__);
2661 		return NULL;
2662 	}
2663 
2664 	if (!pl330_prep_slave_fifo(pch, direction))
2665 		return NULL;
2666 
2667 	for (i = 0; i < len / period_len; i++) {
2668 		desc = pl330_get_desc(pch);
2669 		if (!desc) {
2670 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2671 				__func__, __LINE__);
2672 
2673 			if (!first)
2674 				return NULL;
2675 
2676 			spin_lock_irqsave(&pl330->pool_lock, flags);
2677 
2678 			while (!list_empty(&first->node)) {
2679 				desc = list_entry(first->node.next,
2680 						struct dma_pl330_desc, node);
2681 				list_move_tail(&desc->node, &pl330->desc_pool);
2682 			}
2683 
2684 			list_move_tail(&first->node, &pl330->desc_pool);
2685 
2686 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2687 
2688 			return NULL;
2689 		}
2690 
2691 		switch (direction) {
2692 		case DMA_MEM_TO_DEV:
2693 			desc->rqcfg.src_inc = 1;
2694 			desc->rqcfg.dst_inc = 0;
2695 			src = dma_addr;
2696 			dst = pch->fifo_dma;
2697 			break;
2698 		case DMA_DEV_TO_MEM:
2699 			desc->rqcfg.src_inc = 0;
2700 			desc->rqcfg.dst_inc = 1;
2701 			src = pch->fifo_dma;
2702 			dst = dma_addr;
2703 			break;
2704 		default:
2705 			break;
2706 		}
2707 
2708 		desc->rqtype = direction;
2709 		desc->rqcfg.brst_size = pch->burst_sz;
2710 		desc->rqcfg.brst_len = pch->burst_len;
2711 		desc->bytes_requested = period_len;
2712 		fill_px(&desc->px, dst, src, period_len);
2713 
2714 		if (!first)
2715 			first = desc;
2716 		else
2717 			list_add_tail(&desc->node, &first->node);
2718 
2719 		dma_addr += period_len;
2720 	}
2721 
2722 	if (!desc)
2723 		return NULL;
2724 
2725 	pch->cyclic = true;
2726 	desc->txd.flags = flags;
2727 
2728 	return &desc->txd;
2729 }
2730 
2731 static struct dma_async_tx_descriptor *
2732 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2733 		dma_addr_t src, size_t len, unsigned long flags)
2734 {
2735 	struct dma_pl330_desc *desc;
2736 	struct dma_pl330_chan *pch = to_pchan(chan);
2737 	struct pl330_dmac *pl330;
2738 	int burst;
2739 
2740 	if (unlikely(!pch || !len))
2741 		return NULL;
2742 
2743 	pl330 = pch->dmac;
2744 
2745 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2746 	if (!desc)
2747 		return NULL;
2748 
2749 	desc->rqcfg.src_inc = 1;
2750 	desc->rqcfg.dst_inc = 1;
2751 	desc->rqtype = DMA_MEM_TO_MEM;
2752 
2753 	/* Select max possible burst size */
2754 	burst = pl330->pcfg.data_bus_width / 8;
2755 
2756 	/*
2757 	 * Make sure we use a burst size that aligns with all the memcpy
2758 	 * parameters because our DMA programming algorithm doesn't cope with
2759 	 * transfers which straddle an entry in the DMA device's MFIFO.
2760 	 */
2761 	while ((src | dst | len) & (burst - 1))
2762 		burst /= 2;
2763 
2764 	desc->rqcfg.brst_size = 0;
2765 	while (burst != (1 << desc->rqcfg.brst_size))
2766 		desc->rqcfg.brst_size++;
2767 
2768 	/*
2769 	 * If burst size is smaller than bus width then make sure we only
2770 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2771 	 */
2772 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2773 		desc->rqcfg.brst_len = 1;
2774 
2775 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2776 	desc->bytes_requested = len;
2777 
2778 	desc->txd.flags = flags;
2779 
2780 	return &desc->txd;
2781 }
2782 
2783 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2784 				  struct dma_pl330_desc *first)
2785 {
2786 	unsigned long flags;
2787 	struct dma_pl330_desc *desc;
2788 
2789 	if (!first)
2790 		return;
2791 
2792 	spin_lock_irqsave(&pl330->pool_lock, flags);
2793 
2794 	while (!list_empty(&first->node)) {
2795 		desc = list_entry(first->node.next,
2796 				struct dma_pl330_desc, node);
2797 		list_move_tail(&desc->node, &pl330->desc_pool);
2798 	}
2799 
2800 	list_move_tail(&first->node, &pl330->desc_pool);
2801 
2802 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2803 }
2804 
2805 static struct dma_async_tx_descriptor *
2806 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2807 		unsigned int sg_len, enum dma_transfer_direction direction,
2808 		unsigned long flg, void *context)
2809 {
2810 	struct dma_pl330_desc *first, *desc = NULL;
2811 	struct dma_pl330_chan *pch = to_pchan(chan);
2812 	struct scatterlist *sg;
2813 	int i;
2814 
2815 	if (unlikely(!pch || !sgl || !sg_len))
2816 		return NULL;
2817 
2818 	if (!pl330_prep_slave_fifo(pch, direction))
2819 		return NULL;
2820 
2821 	first = NULL;
2822 
2823 	for_each_sg(sgl, sg, sg_len, i) {
2824 
2825 		desc = pl330_get_desc(pch);
2826 		if (!desc) {
2827 			struct pl330_dmac *pl330 = pch->dmac;
2828 
2829 			dev_err(pch->dmac->ddma.dev,
2830 				"%s:%d Unable to fetch desc\n",
2831 				__func__, __LINE__);
2832 			__pl330_giveback_desc(pl330, first);
2833 
2834 			return NULL;
2835 		}
2836 
2837 		if (!first)
2838 			first = desc;
2839 		else
2840 			list_add_tail(&desc->node, &first->node);
2841 
2842 		if (direction == DMA_MEM_TO_DEV) {
2843 			desc->rqcfg.src_inc = 1;
2844 			desc->rqcfg.dst_inc = 0;
2845 			fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2846 				sg_dma_len(sg));
2847 		} else {
2848 			desc->rqcfg.src_inc = 0;
2849 			desc->rqcfg.dst_inc = 1;
2850 			fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2851 				sg_dma_len(sg));
2852 		}
2853 
2854 		desc->rqcfg.brst_size = pch->burst_sz;
2855 		desc->rqcfg.brst_len = pch->burst_len;
2856 		desc->rqtype = direction;
2857 		desc->bytes_requested = sg_dma_len(sg);
2858 	}
2859 
2860 	/* Return the last desc in the chain */
2861 	desc->txd.flags = flg;
2862 	return &desc->txd;
2863 }
2864 
2865 static irqreturn_t pl330_irq_handler(int irq, void *data)
2866 {
2867 	if (pl330_update(data))
2868 		return IRQ_HANDLED;
2869 	else
2870 		return IRQ_NONE;
2871 }
2872 
2873 #define PL330_DMA_BUSWIDTHS \
2874 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2875 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2876 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2877 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2878 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2879 
2880 /*
2881  * Runtime PM callbacks are provided by amba/bus.c driver.
2882  *
2883  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2884  * bus driver will only disable/enable the clock in runtime PM callbacks.
2885  */
2886 static int __maybe_unused pl330_suspend(struct device *dev)
2887 {
2888 	struct amba_device *pcdev = to_amba_device(dev);
2889 
2890 	pm_runtime_disable(dev);
2891 
2892 	if (!pm_runtime_status_suspended(dev)) {
2893 		/* amba did not disable the clock */
2894 		amba_pclk_disable(pcdev);
2895 	}
2896 	amba_pclk_unprepare(pcdev);
2897 
2898 	return 0;
2899 }
2900 
2901 static int __maybe_unused pl330_resume(struct device *dev)
2902 {
2903 	struct amba_device *pcdev = to_amba_device(dev);
2904 	int ret;
2905 
2906 	ret = amba_pclk_prepare(pcdev);
2907 	if (ret)
2908 		return ret;
2909 
2910 	if (!pm_runtime_status_suspended(dev))
2911 		ret = amba_pclk_enable(pcdev);
2912 
2913 	pm_runtime_enable(dev);
2914 
2915 	return ret;
2916 }
2917 
2918 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2919 
2920 static int
2921 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2922 {
2923 	struct pl330_config *pcfg;
2924 	struct pl330_dmac *pl330;
2925 	struct dma_pl330_chan *pch, *_p;
2926 	struct dma_device *pd;
2927 	struct resource *res;
2928 	int i, ret, irq;
2929 	int num_chan;
2930 	struct device_node *np = adev->dev.of_node;
2931 
2932 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2933 	if (ret)
2934 		return ret;
2935 
2936 	/* Allocate a new DMAC and its Channels */
2937 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2938 	if (!pl330)
2939 		return -ENOMEM;
2940 
2941 	pd = &pl330->ddma;
2942 	pd->dev = &adev->dev;
2943 
2944 	pl330->mcbufsz = 0;
2945 
2946 	/* get quirk */
2947 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2948 		if (of_property_read_bool(np, of_quirks[i].quirk))
2949 			pl330->quirks |= of_quirks[i].id;
2950 
2951 	res = &adev->res;
2952 	pl330->base = devm_ioremap_resource(&adev->dev, res);
2953 	if (IS_ERR(pl330->base))
2954 		return PTR_ERR(pl330->base);
2955 
2956 	amba_set_drvdata(adev, pl330);
2957 
2958 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2959 		irq = adev->irq[i];
2960 		if (irq) {
2961 			ret = devm_request_irq(&adev->dev, irq,
2962 					       pl330_irq_handler, 0,
2963 					       dev_name(&adev->dev), pl330);
2964 			if (ret)
2965 				return ret;
2966 		} else {
2967 			break;
2968 		}
2969 	}
2970 
2971 	pcfg = &pl330->pcfg;
2972 
2973 	pcfg->periph_id = adev->periphid;
2974 	ret = pl330_add(pl330);
2975 	if (ret)
2976 		return ret;
2977 
2978 	INIT_LIST_HEAD(&pl330->desc_pool);
2979 	spin_lock_init(&pl330->pool_lock);
2980 
2981 	/* Create a descriptor pool of default size */
2982 	if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
2983 		      GFP_KERNEL, NR_DEFAULT_DESC))
2984 		dev_warn(&adev->dev, "unable to allocate desc\n");
2985 
2986 	INIT_LIST_HEAD(&pd->channels);
2987 
2988 	/* Initialize channel parameters */
2989 	num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2990 
2991 	pl330->num_peripherals = num_chan;
2992 
2993 	pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL);
2994 	if (!pl330->peripherals) {
2995 		ret = -ENOMEM;
2996 		goto probe_err2;
2997 	}
2998 
2999 	for (i = 0; i < num_chan; i++) {
3000 		pch = &pl330->peripherals[i];
3001 
3002 		pch->chan.private = adev->dev.of_node;
3003 		INIT_LIST_HEAD(&pch->submitted_list);
3004 		INIT_LIST_HEAD(&pch->work_list);
3005 		INIT_LIST_HEAD(&pch->completed_list);
3006 		spin_lock_init(&pch->lock);
3007 		pch->thread = NULL;
3008 		pch->chan.device = pd;
3009 		pch->dmac = pl330;
3010 		pch->dir = DMA_NONE;
3011 
3012 		/* Add the channel to the DMAC list */
3013 		list_add_tail(&pch->chan.device_node, &pd->channels);
3014 	}
3015 
3016 	dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3017 	if (pcfg->num_peri) {
3018 		dma_cap_set(DMA_SLAVE, pd->cap_mask);
3019 		dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3020 		dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3021 	}
3022 
3023 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3024 	pd->device_free_chan_resources = pl330_free_chan_resources;
3025 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3026 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3027 	pd->device_tx_status = pl330_tx_status;
3028 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
3029 	pd->device_config = pl330_config;
3030 	pd->device_pause = pl330_pause;
3031 	pd->device_terminate_all = pl330_terminate_all;
3032 	pd->device_issue_pending = pl330_issue_pending;
3033 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
3034 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
3035 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3036 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3037 	pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
3038 			 1 : PL330_MAX_BURST);
3039 
3040 	ret = dma_async_device_register(pd);
3041 	if (ret) {
3042 		dev_err(&adev->dev, "unable to register DMAC\n");
3043 		goto probe_err3;
3044 	}
3045 
3046 	if (adev->dev.of_node) {
3047 		ret = of_dma_controller_register(adev->dev.of_node,
3048 					 of_dma_pl330_xlate, pl330);
3049 		if (ret) {
3050 			dev_err(&adev->dev,
3051 			"unable to register DMA to the generic DT DMA helpers\n");
3052 		}
3053 	}
3054 
3055 	adev->dev.dma_parms = &pl330->dma_parms;
3056 
3057 	/*
3058 	 * This is the limit for transfers with a buswidth of 1, larger
3059 	 * buswidths will have larger limits.
3060 	 */
3061 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
3062 	if (ret)
3063 		dev_err(&adev->dev, "unable to set the seg size\n");
3064 
3065 
3066 	dev_info(&adev->dev,
3067 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
3068 	dev_info(&adev->dev,
3069 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3070 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
3071 		pcfg->num_peri, pcfg->num_events);
3072 
3073 	pm_runtime_irq_safe(&adev->dev);
3074 	pm_runtime_use_autosuspend(&adev->dev);
3075 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
3076 	pm_runtime_mark_last_busy(&adev->dev);
3077 	pm_runtime_put_autosuspend(&adev->dev);
3078 
3079 	return 0;
3080 probe_err3:
3081 	/* Idle the DMAC */
3082 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3083 			chan.device_node) {
3084 
3085 		/* Remove the channel */
3086 		list_del(&pch->chan.device_node);
3087 
3088 		/* Flush the channel */
3089 		if (pch->thread) {
3090 			pl330_terminate_all(&pch->chan);
3091 			pl330_free_chan_resources(&pch->chan);
3092 		}
3093 	}
3094 probe_err2:
3095 	pl330_del(pl330);
3096 
3097 	return ret;
3098 }
3099 
3100 static int pl330_remove(struct amba_device *adev)
3101 {
3102 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3103 	struct dma_pl330_chan *pch, *_p;
3104 	int i, irq;
3105 
3106 	pm_runtime_get_noresume(pl330->ddma.dev);
3107 
3108 	if (adev->dev.of_node)
3109 		of_dma_controller_free(adev->dev.of_node);
3110 
3111 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3112 		irq = adev->irq[i];
3113 		if (irq)
3114 			devm_free_irq(&adev->dev, irq, pl330);
3115 	}
3116 
3117 	dma_async_device_unregister(&pl330->ddma);
3118 
3119 	/* Idle the DMAC */
3120 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3121 			chan.device_node) {
3122 
3123 		/* Remove the channel */
3124 		list_del(&pch->chan.device_node);
3125 
3126 		/* Flush the channel */
3127 		if (pch->thread) {
3128 			pl330_terminate_all(&pch->chan);
3129 			pl330_free_chan_resources(&pch->chan);
3130 		}
3131 	}
3132 
3133 	pl330_del(pl330);
3134 
3135 	return 0;
3136 }
3137 
3138 static const struct amba_id pl330_ids[] = {
3139 	{
3140 		.id	= 0x00041330,
3141 		.mask	= 0x000fffff,
3142 	},
3143 	{ 0, 0 },
3144 };
3145 
3146 MODULE_DEVICE_TABLE(amba, pl330_ids);
3147 
3148 static struct amba_driver pl330_driver = {
3149 	.drv = {
3150 		.owner = THIS_MODULE,
3151 		.name = "dma-pl330",
3152 		.pm = &pl330_pm,
3153 	},
3154 	.id_table = pl330_ids,
3155 	.probe = pl330_probe,
3156 	.remove = pl330_remove,
3157 };
3158 
3159 module_amba_driver(pl330_driver);
3160 
3161 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3162 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3163 MODULE_LICENSE("GPL");
3164