1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/scatterlist.h> 26 #include <linux/of.h> 27 #include <linux/of_dma.h> 28 #include <linux/err.h> 29 #include <linux/pm_runtime.h> 30 31 #include "dmaengine.h" 32 #define PL330_MAX_CHAN 8 33 #define PL330_MAX_IRQS 32 34 #define PL330_MAX_PERI 32 35 #define PL330_MAX_BURST 16 36 37 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 38 39 enum pl330_cachectrl { 40 CCTRL0, /* Noncacheable and nonbufferable */ 41 CCTRL1, /* Bufferable only */ 42 CCTRL2, /* Cacheable, but do not allocate */ 43 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 44 INVALID1, /* AWCACHE = 0x1000 */ 45 INVALID2, 46 CCTRL6, /* Cacheable write-through, allocate on writes only */ 47 CCTRL7, /* Cacheable write-back, allocate on writes only */ 48 }; 49 50 enum pl330_byteswap { 51 SWAP_NO, 52 SWAP_2, 53 SWAP_4, 54 SWAP_8, 55 SWAP_16, 56 }; 57 58 /* Register and Bit field Definitions */ 59 #define DS 0x0 60 #define DS_ST_STOP 0x0 61 #define DS_ST_EXEC 0x1 62 #define DS_ST_CMISS 0x2 63 #define DS_ST_UPDTPC 0x3 64 #define DS_ST_WFE 0x4 65 #define DS_ST_ATBRR 0x5 66 #define DS_ST_QBUSY 0x6 67 #define DS_ST_WFP 0x7 68 #define DS_ST_KILL 0x8 69 #define DS_ST_CMPLT 0x9 70 #define DS_ST_FLTCMP 0xe 71 #define DS_ST_FAULT 0xf 72 73 #define DPC 0x4 74 #define INTEN 0x20 75 #define ES 0x24 76 #define INTSTATUS 0x28 77 #define INTCLR 0x2c 78 #define FSM 0x30 79 #define FSC 0x34 80 #define FTM 0x38 81 82 #define _FTC 0x40 83 #define FTC(n) (_FTC + (n)*0x4) 84 85 #define _CS 0x100 86 #define CS(n) (_CS + (n)*0x8) 87 #define CS_CNS (1 << 21) 88 89 #define _CPC 0x104 90 #define CPC(n) (_CPC + (n)*0x8) 91 92 #define _SA 0x400 93 #define SA(n) (_SA + (n)*0x20) 94 95 #define _DA 0x404 96 #define DA(n) (_DA + (n)*0x20) 97 98 #define _CC 0x408 99 #define CC(n) (_CC + (n)*0x20) 100 101 #define CC_SRCINC (1 << 0) 102 #define CC_DSTINC (1 << 14) 103 #define CC_SRCPRI (1 << 8) 104 #define CC_DSTPRI (1 << 22) 105 #define CC_SRCNS (1 << 9) 106 #define CC_DSTNS (1 << 23) 107 #define CC_SRCIA (1 << 10) 108 #define CC_DSTIA (1 << 24) 109 #define CC_SRCBRSTLEN_SHFT 4 110 #define CC_DSTBRSTLEN_SHFT 18 111 #define CC_SRCBRSTSIZE_SHFT 1 112 #define CC_DSTBRSTSIZE_SHFT 15 113 #define CC_SRCCCTRL_SHFT 11 114 #define CC_SRCCCTRL_MASK 0x7 115 #define CC_DSTCCTRL_SHFT 25 116 #define CC_DRCCCTRL_MASK 0x7 117 #define CC_SWAP_SHFT 28 118 119 #define _LC0 0x40c 120 #define LC0(n) (_LC0 + (n)*0x20) 121 122 #define _LC1 0x410 123 #define LC1(n) (_LC1 + (n)*0x20) 124 125 #define DBGSTATUS 0xd00 126 #define DBG_BUSY (1 << 0) 127 128 #define DBGCMD 0xd04 129 #define DBGINST0 0xd08 130 #define DBGINST1 0xd0c 131 132 #define CR0 0xe00 133 #define CR1 0xe04 134 #define CR2 0xe08 135 #define CR3 0xe0c 136 #define CR4 0xe10 137 #define CRD 0xe14 138 139 #define PERIPH_ID 0xfe0 140 #define PERIPH_REV_SHIFT 20 141 #define PERIPH_REV_MASK 0xf 142 #define PERIPH_REV_R0P0 0 143 #define PERIPH_REV_R1P0 1 144 #define PERIPH_REV_R1P1 2 145 146 #define CR0_PERIPH_REQ_SET (1 << 0) 147 #define CR0_BOOT_EN_SET (1 << 1) 148 #define CR0_BOOT_MAN_NS (1 << 2) 149 #define CR0_NUM_CHANS_SHIFT 4 150 #define CR0_NUM_CHANS_MASK 0x7 151 #define CR0_NUM_PERIPH_SHIFT 12 152 #define CR0_NUM_PERIPH_MASK 0x1f 153 #define CR0_NUM_EVENTS_SHIFT 17 154 #define CR0_NUM_EVENTS_MASK 0x1f 155 156 #define CR1_ICACHE_LEN_SHIFT 0 157 #define CR1_ICACHE_LEN_MASK 0x7 158 #define CR1_NUM_ICACHELINES_SHIFT 4 159 #define CR1_NUM_ICACHELINES_MASK 0xf 160 161 #define CRD_DATA_WIDTH_SHIFT 0 162 #define CRD_DATA_WIDTH_MASK 0x7 163 #define CRD_WR_CAP_SHIFT 4 164 #define CRD_WR_CAP_MASK 0x7 165 #define CRD_WR_Q_DEP_SHIFT 8 166 #define CRD_WR_Q_DEP_MASK 0xf 167 #define CRD_RD_CAP_SHIFT 12 168 #define CRD_RD_CAP_MASK 0x7 169 #define CRD_RD_Q_DEP_SHIFT 16 170 #define CRD_RD_Q_DEP_MASK 0xf 171 #define CRD_DATA_BUFF_SHIFT 20 172 #define CRD_DATA_BUFF_MASK 0x3ff 173 174 #define PART 0x330 175 #define DESIGNER 0x41 176 #define REVISION 0x0 177 #define INTEG_CFG 0x0 178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 179 180 #define PL330_STATE_STOPPED (1 << 0) 181 #define PL330_STATE_EXECUTING (1 << 1) 182 #define PL330_STATE_WFE (1 << 2) 183 #define PL330_STATE_FAULTING (1 << 3) 184 #define PL330_STATE_COMPLETING (1 << 4) 185 #define PL330_STATE_WFP (1 << 5) 186 #define PL330_STATE_KILLING (1 << 6) 187 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 188 #define PL330_STATE_CACHEMISS (1 << 8) 189 #define PL330_STATE_UPDTPC (1 << 9) 190 #define PL330_STATE_ATBARRIER (1 << 10) 191 #define PL330_STATE_QUEUEBUSY (1 << 11) 192 #define PL330_STATE_INVALID (1 << 15) 193 194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 195 | PL330_STATE_WFE | PL330_STATE_FAULTING) 196 197 #define CMD_DMAADDH 0x54 198 #define CMD_DMAEND 0x00 199 #define CMD_DMAFLUSHP 0x35 200 #define CMD_DMAGO 0xa0 201 #define CMD_DMALD 0x04 202 #define CMD_DMALDP 0x25 203 #define CMD_DMALP 0x20 204 #define CMD_DMALPEND 0x28 205 #define CMD_DMAKILL 0x01 206 #define CMD_DMAMOV 0xbc 207 #define CMD_DMANOP 0x18 208 #define CMD_DMARMB 0x12 209 #define CMD_DMASEV 0x34 210 #define CMD_DMAST 0x08 211 #define CMD_DMASTP 0x29 212 #define CMD_DMASTZ 0x0c 213 #define CMD_DMAWFE 0x36 214 #define CMD_DMAWFP 0x30 215 #define CMD_DMAWMB 0x13 216 217 #define SZ_DMAADDH 3 218 #define SZ_DMAEND 1 219 #define SZ_DMAFLUSHP 2 220 #define SZ_DMALD 1 221 #define SZ_DMALDP 2 222 #define SZ_DMALP 2 223 #define SZ_DMALPEND 2 224 #define SZ_DMAKILL 1 225 #define SZ_DMAMOV 6 226 #define SZ_DMANOP 1 227 #define SZ_DMARMB 1 228 #define SZ_DMASEV 2 229 #define SZ_DMAST 1 230 #define SZ_DMASTP 2 231 #define SZ_DMASTZ 1 232 #define SZ_DMAWFE 2 233 #define SZ_DMAWFP 2 234 #define SZ_DMAWMB 1 235 #define SZ_DMAGO 6 236 237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 239 240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 242 243 /* 244 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 245 * at 1byte/burst for P<->M and M<->M respectively. 246 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 247 * should be enough for P<->M and M<->M respectively. 248 */ 249 #define MCODE_BUFF_PER_REQ 256 250 251 /* Use this _only_ to wait on transient states */ 252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 253 254 #ifdef PL330_DEBUG_MCGEN 255 static unsigned cmd_line; 256 #define PL330_DBGCMD_DUMP(off, x...) do { \ 257 printk("%x:", cmd_line); \ 258 printk(x); \ 259 cmd_line += off; \ 260 } while (0) 261 #define PL330_DBGMC_START(addr) (cmd_line = addr) 262 #else 263 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 264 #define PL330_DBGMC_START(addr) do {} while (0) 265 #endif 266 267 /* The number of default descriptors */ 268 269 #define NR_DEFAULT_DESC 16 270 271 /* Delay for runtime PM autosuspend, ms */ 272 #define PL330_AUTOSUSPEND_DELAY 20 273 274 /* Populated by the PL330 core driver for DMA API driver's info */ 275 struct pl330_config { 276 u32 periph_id; 277 #define DMAC_MODE_NS (1 << 0) 278 unsigned int mode; 279 unsigned int data_bus_width:10; /* In number of bits */ 280 unsigned int data_buf_dep:11; 281 unsigned int num_chan:4; 282 unsigned int num_peri:6; 283 u32 peri_ns; 284 unsigned int num_events:6; 285 u32 irq_ns; 286 }; 287 288 /** 289 * Request Configuration. 290 * The PL330 core does not modify this and uses the last 291 * working configuration if the request doesn't provide any. 292 * 293 * The Client may want to provide this info only for the 294 * first request and a request with new settings. 295 */ 296 struct pl330_reqcfg { 297 /* Address Incrementing */ 298 unsigned dst_inc:1; 299 unsigned src_inc:1; 300 301 /* 302 * For now, the SRC & DST protection levels 303 * and burst size/length are assumed same. 304 */ 305 bool nonsecure; 306 bool privileged; 307 bool insnaccess; 308 unsigned brst_len:5; 309 unsigned brst_size:3; /* in power of 2 */ 310 311 enum pl330_cachectrl dcctl; 312 enum pl330_cachectrl scctl; 313 enum pl330_byteswap swap; 314 struct pl330_config *pcfg; 315 }; 316 317 /* 318 * One cycle of DMAC operation. 319 * There may be more than one xfer in a request. 320 */ 321 struct pl330_xfer { 322 u32 src_addr; 323 u32 dst_addr; 324 /* Size to xfer */ 325 u32 bytes; 326 }; 327 328 /* The xfer callbacks are made with one of these arguments. */ 329 enum pl330_op_err { 330 /* The all xfers in the request were success. */ 331 PL330_ERR_NONE, 332 /* If req aborted due to global error. */ 333 PL330_ERR_ABORT, 334 /* If req failed due to problem with Channel. */ 335 PL330_ERR_FAIL, 336 }; 337 338 enum dmamov_dst { 339 SAR = 0, 340 CCR, 341 DAR, 342 }; 343 344 enum pl330_dst { 345 SRC = 0, 346 DST, 347 }; 348 349 enum pl330_cond { 350 SINGLE, 351 BURST, 352 ALWAYS, 353 }; 354 355 struct dma_pl330_desc; 356 357 struct _pl330_req { 358 u32 mc_bus; 359 void *mc_cpu; 360 struct dma_pl330_desc *desc; 361 }; 362 363 /* ToBeDone for tasklet */ 364 struct _pl330_tbd { 365 bool reset_dmac; 366 bool reset_mngr; 367 u8 reset_chan; 368 }; 369 370 /* A DMAC Thread */ 371 struct pl330_thread { 372 u8 id; 373 int ev; 374 /* If the channel is not yet acquired by any client */ 375 bool free; 376 /* Parent DMAC */ 377 struct pl330_dmac *dmac; 378 /* Only two at a time */ 379 struct _pl330_req req[2]; 380 /* Index of the last enqueued request */ 381 unsigned lstenq; 382 /* Index of the last submitted request or -1 if the DMA is stopped */ 383 int req_running; 384 }; 385 386 enum pl330_dmac_state { 387 UNINIT, 388 INIT, 389 DYING, 390 }; 391 392 enum desc_status { 393 /* In the DMAC pool */ 394 FREE, 395 /* 396 * Allocated to some channel during prep_xxx 397 * Also may be sitting on the work_list. 398 */ 399 PREP, 400 /* 401 * Sitting on the work_list and already submitted 402 * to the PL330 core. Not more than two descriptors 403 * of a channel can be BUSY at any time. 404 */ 405 BUSY, 406 /* 407 * Sitting on the channel work_list but xfer done 408 * by PL330 core 409 */ 410 DONE, 411 }; 412 413 struct dma_pl330_chan { 414 /* Schedule desc completion */ 415 struct tasklet_struct task; 416 417 /* DMA-Engine Channel */ 418 struct dma_chan chan; 419 420 /* List of submitted descriptors */ 421 struct list_head submitted_list; 422 /* List of issued descriptors */ 423 struct list_head work_list; 424 /* List of completed descriptors */ 425 struct list_head completed_list; 426 427 /* Pointer to the DMAC that manages this channel, 428 * NULL if the channel is available to be acquired. 429 * As the parent, this DMAC also provides descriptors 430 * to the channel. 431 */ 432 struct pl330_dmac *dmac; 433 434 /* To protect channel manipulation */ 435 spinlock_t lock; 436 437 /* 438 * Hardware channel thread of PL330 DMAC. NULL if the channel is 439 * available. 440 */ 441 struct pl330_thread *thread; 442 443 /* For D-to-M and M-to-D channels */ 444 int burst_sz; /* the peripheral fifo width */ 445 int burst_len; /* the number of burst */ 446 phys_addr_t fifo_addr; 447 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ 448 dma_addr_t fifo_dma; 449 enum dma_data_direction dir; 450 451 /* for cyclic capability */ 452 bool cyclic; 453 454 /* for runtime pm tracking */ 455 bool active; 456 }; 457 458 struct pl330_dmac { 459 /* DMA-Engine Device */ 460 struct dma_device ddma; 461 462 /* Holds info about sg limitations */ 463 struct device_dma_parameters dma_parms; 464 465 /* Pool of descriptors available for the DMAC's channels */ 466 struct list_head desc_pool; 467 /* To protect desc_pool manipulation */ 468 spinlock_t pool_lock; 469 470 /* Size of MicroCode buffers for each channel. */ 471 unsigned mcbufsz; 472 /* ioremap'ed address of PL330 registers. */ 473 void __iomem *base; 474 /* Populated by the PL330 core driver during pl330_add */ 475 struct pl330_config pcfg; 476 477 spinlock_t lock; 478 /* Maximum possible events/irqs */ 479 int events[32]; 480 /* BUS address of MicroCode buffer */ 481 dma_addr_t mcode_bus; 482 /* CPU address of MicroCode buffer */ 483 void *mcode_cpu; 484 /* List of all Channel threads */ 485 struct pl330_thread *channels; 486 /* Pointer to the MANAGER thread */ 487 struct pl330_thread *manager; 488 /* To handle bad news in interrupt */ 489 struct tasklet_struct tasks; 490 struct _pl330_tbd dmac_tbd; 491 /* State of DMAC operation */ 492 enum pl330_dmac_state state; 493 /* Holds list of reqs with due callbacks */ 494 struct list_head req_done; 495 496 /* Peripheral channels connected to this DMAC */ 497 unsigned int num_peripherals; 498 struct dma_pl330_chan *peripherals; /* keep at end */ 499 int quirks; 500 }; 501 502 static struct pl330_of_quirks { 503 char *quirk; 504 int id; 505 } of_quirks[] = { 506 { 507 .quirk = "arm,pl330-broken-no-flushp", 508 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 509 } 510 }; 511 512 struct dma_pl330_desc { 513 /* To attach to a queue as child */ 514 struct list_head node; 515 516 /* Descriptor for the DMA Engine API */ 517 struct dma_async_tx_descriptor txd; 518 519 /* Xfer for PL330 core */ 520 struct pl330_xfer px; 521 522 struct pl330_reqcfg rqcfg; 523 524 enum desc_status status; 525 526 int bytes_requested; 527 bool last; 528 529 /* The channel which currently holds this desc */ 530 struct dma_pl330_chan *pchan; 531 532 enum dma_transfer_direction rqtype; 533 /* Index of peripheral for the xfer. */ 534 unsigned peri:5; 535 /* Hook to attach to DMAC's list of reqs with due callback */ 536 struct list_head rqd; 537 }; 538 539 struct _xfer_spec { 540 u32 ccr; 541 struct dma_pl330_desc *desc; 542 }; 543 544 static inline bool _queue_full(struct pl330_thread *thrd) 545 { 546 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 547 } 548 549 static inline bool is_manager(struct pl330_thread *thrd) 550 { 551 return thrd->dmac->manager == thrd; 552 } 553 554 /* If manager of the thread is in Non-Secure mode */ 555 static inline bool _manager_ns(struct pl330_thread *thrd) 556 { 557 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 558 } 559 560 static inline u32 get_revision(u32 periph_id) 561 { 562 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 563 } 564 565 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 566 { 567 if (dry_run) 568 return SZ_DMAEND; 569 570 buf[0] = CMD_DMAEND; 571 572 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 573 574 return SZ_DMAEND; 575 } 576 577 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 578 { 579 if (dry_run) 580 return SZ_DMAFLUSHP; 581 582 buf[0] = CMD_DMAFLUSHP; 583 584 peri &= 0x1f; 585 peri <<= 3; 586 buf[1] = peri; 587 588 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 589 590 return SZ_DMAFLUSHP; 591 } 592 593 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 594 { 595 if (dry_run) 596 return SZ_DMALD; 597 598 buf[0] = CMD_DMALD; 599 600 if (cond == SINGLE) 601 buf[0] |= (0 << 1) | (1 << 0); 602 else if (cond == BURST) 603 buf[0] |= (1 << 1) | (1 << 0); 604 605 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 606 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 607 608 return SZ_DMALD; 609 } 610 611 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 612 enum pl330_cond cond, u8 peri) 613 { 614 if (dry_run) 615 return SZ_DMALDP; 616 617 buf[0] = CMD_DMALDP; 618 619 if (cond == BURST) 620 buf[0] |= (1 << 1); 621 622 peri &= 0x1f; 623 peri <<= 3; 624 buf[1] = peri; 625 626 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 627 cond == SINGLE ? 'S' : 'B', peri >> 3); 628 629 return SZ_DMALDP; 630 } 631 632 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 633 unsigned loop, u8 cnt) 634 { 635 if (dry_run) 636 return SZ_DMALP; 637 638 buf[0] = CMD_DMALP; 639 640 if (loop) 641 buf[0] |= (1 << 1); 642 643 cnt--; /* DMAC increments by 1 internally */ 644 buf[1] = cnt; 645 646 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 647 648 return SZ_DMALP; 649 } 650 651 struct _arg_LPEND { 652 enum pl330_cond cond; 653 bool forever; 654 unsigned loop; 655 u8 bjump; 656 }; 657 658 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 659 const struct _arg_LPEND *arg) 660 { 661 enum pl330_cond cond = arg->cond; 662 bool forever = arg->forever; 663 unsigned loop = arg->loop; 664 u8 bjump = arg->bjump; 665 666 if (dry_run) 667 return SZ_DMALPEND; 668 669 buf[0] = CMD_DMALPEND; 670 671 if (loop) 672 buf[0] |= (1 << 2); 673 674 if (!forever) 675 buf[0] |= (1 << 4); 676 677 if (cond == SINGLE) 678 buf[0] |= (0 << 1) | (1 << 0); 679 else if (cond == BURST) 680 buf[0] |= (1 << 1) | (1 << 0); 681 682 buf[1] = bjump; 683 684 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 685 forever ? "FE" : "END", 686 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 687 loop ? '1' : '0', 688 bjump); 689 690 return SZ_DMALPEND; 691 } 692 693 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 694 { 695 if (dry_run) 696 return SZ_DMAKILL; 697 698 buf[0] = CMD_DMAKILL; 699 700 return SZ_DMAKILL; 701 } 702 703 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 704 enum dmamov_dst dst, u32 val) 705 { 706 if (dry_run) 707 return SZ_DMAMOV; 708 709 buf[0] = CMD_DMAMOV; 710 buf[1] = dst; 711 buf[2] = val; 712 buf[3] = val >> 8; 713 buf[4] = val >> 16; 714 buf[5] = val >> 24; 715 716 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 717 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 718 719 return SZ_DMAMOV; 720 } 721 722 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 723 { 724 if (dry_run) 725 return SZ_DMARMB; 726 727 buf[0] = CMD_DMARMB; 728 729 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 730 731 return SZ_DMARMB; 732 } 733 734 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 735 { 736 if (dry_run) 737 return SZ_DMASEV; 738 739 buf[0] = CMD_DMASEV; 740 741 ev &= 0x1f; 742 ev <<= 3; 743 buf[1] = ev; 744 745 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 746 747 return SZ_DMASEV; 748 } 749 750 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 751 { 752 if (dry_run) 753 return SZ_DMAST; 754 755 buf[0] = CMD_DMAST; 756 757 if (cond == SINGLE) 758 buf[0] |= (0 << 1) | (1 << 0); 759 else if (cond == BURST) 760 buf[0] |= (1 << 1) | (1 << 0); 761 762 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 763 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 764 765 return SZ_DMAST; 766 } 767 768 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 769 enum pl330_cond cond, u8 peri) 770 { 771 if (dry_run) 772 return SZ_DMASTP; 773 774 buf[0] = CMD_DMASTP; 775 776 if (cond == BURST) 777 buf[0] |= (1 << 1); 778 779 peri &= 0x1f; 780 peri <<= 3; 781 buf[1] = peri; 782 783 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 784 cond == SINGLE ? 'S' : 'B', peri >> 3); 785 786 return SZ_DMASTP; 787 } 788 789 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 790 enum pl330_cond cond, u8 peri) 791 { 792 if (dry_run) 793 return SZ_DMAWFP; 794 795 buf[0] = CMD_DMAWFP; 796 797 if (cond == SINGLE) 798 buf[0] |= (0 << 1) | (0 << 0); 799 else if (cond == BURST) 800 buf[0] |= (1 << 1) | (0 << 0); 801 else 802 buf[0] |= (0 << 1) | (1 << 0); 803 804 peri &= 0x1f; 805 peri <<= 3; 806 buf[1] = peri; 807 808 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 809 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 810 811 return SZ_DMAWFP; 812 } 813 814 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 815 { 816 if (dry_run) 817 return SZ_DMAWMB; 818 819 buf[0] = CMD_DMAWMB; 820 821 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 822 823 return SZ_DMAWMB; 824 } 825 826 struct _arg_GO { 827 u8 chan; 828 u32 addr; 829 unsigned ns; 830 }; 831 832 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 833 const struct _arg_GO *arg) 834 { 835 u8 chan = arg->chan; 836 u32 addr = arg->addr; 837 unsigned ns = arg->ns; 838 839 if (dry_run) 840 return SZ_DMAGO; 841 842 buf[0] = CMD_DMAGO; 843 buf[0] |= (ns << 1); 844 buf[1] = chan & 0x7; 845 buf[2] = addr; 846 buf[3] = addr >> 8; 847 buf[4] = addr >> 16; 848 buf[5] = addr >> 24; 849 850 return SZ_DMAGO; 851 } 852 853 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 854 855 /* Returns Time-Out */ 856 static bool _until_dmac_idle(struct pl330_thread *thrd) 857 { 858 void __iomem *regs = thrd->dmac->base; 859 unsigned long loops = msecs_to_loops(5); 860 861 do { 862 /* Until Manager is Idle */ 863 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 864 break; 865 866 cpu_relax(); 867 } while (--loops); 868 869 if (!loops) 870 return true; 871 872 return false; 873 } 874 875 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 876 u8 insn[], bool as_manager) 877 { 878 void __iomem *regs = thrd->dmac->base; 879 u32 val; 880 881 val = (insn[0] << 16) | (insn[1] << 24); 882 if (!as_manager) { 883 val |= (1 << 0); 884 val |= (thrd->id << 8); /* Channel Number */ 885 } 886 writel(val, regs + DBGINST0); 887 888 val = le32_to_cpu(*((__le32 *)&insn[2])); 889 writel(val, regs + DBGINST1); 890 891 /* If timed out due to halted state-machine */ 892 if (_until_dmac_idle(thrd)) { 893 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 894 return; 895 } 896 897 /* Get going */ 898 writel(0, regs + DBGCMD); 899 } 900 901 static inline u32 _state(struct pl330_thread *thrd) 902 { 903 void __iomem *regs = thrd->dmac->base; 904 u32 val; 905 906 if (is_manager(thrd)) 907 val = readl(regs + DS) & 0xf; 908 else 909 val = readl(regs + CS(thrd->id)) & 0xf; 910 911 switch (val) { 912 case DS_ST_STOP: 913 return PL330_STATE_STOPPED; 914 case DS_ST_EXEC: 915 return PL330_STATE_EXECUTING; 916 case DS_ST_CMISS: 917 return PL330_STATE_CACHEMISS; 918 case DS_ST_UPDTPC: 919 return PL330_STATE_UPDTPC; 920 case DS_ST_WFE: 921 return PL330_STATE_WFE; 922 case DS_ST_FAULT: 923 return PL330_STATE_FAULTING; 924 case DS_ST_ATBRR: 925 if (is_manager(thrd)) 926 return PL330_STATE_INVALID; 927 else 928 return PL330_STATE_ATBARRIER; 929 case DS_ST_QBUSY: 930 if (is_manager(thrd)) 931 return PL330_STATE_INVALID; 932 else 933 return PL330_STATE_QUEUEBUSY; 934 case DS_ST_WFP: 935 if (is_manager(thrd)) 936 return PL330_STATE_INVALID; 937 else 938 return PL330_STATE_WFP; 939 case DS_ST_KILL: 940 if (is_manager(thrd)) 941 return PL330_STATE_INVALID; 942 else 943 return PL330_STATE_KILLING; 944 case DS_ST_CMPLT: 945 if (is_manager(thrd)) 946 return PL330_STATE_INVALID; 947 else 948 return PL330_STATE_COMPLETING; 949 case DS_ST_FLTCMP: 950 if (is_manager(thrd)) 951 return PL330_STATE_INVALID; 952 else 953 return PL330_STATE_FAULT_COMPLETING; 954 default: 955 return PL330_STATE_INVALID; 956 } 957 } 958 959 static void _stop(struct pl330_thread *thrd) 960 { 961 void __iomem *regs = thrd->dmac->base; 962 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 963 964 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 965 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 966 967 /* Return if nothing needs to be done */ 968 if (_state(thrd) == PL330_STATE_COMPLETING 969 || _state(thrd) == PL330_STATE_KILLING 970 || _state(thrd) == PL330_STATE_STOPPED) 971 return; 972 973 _emit_KILL(0, insn); 974 975 /* Stop generating interrupts for SEV */ 976 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 977 978 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 979 } 980 981 /* Start doing req 'idx' of thread 'thrd' */ 982 static bool _trigger(struct pl330_thread *thrd) 983 { 984 void __iomem *regs = thrd->dmac->base; 985 struct _pl330_req *req; 986 struct dma_pl330_desc *desc; 987 struct _arg_GO go; 988 unsigned ns; 989 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 990 int idx; 991 992 /* Return if already ACTIVE */ 993 if (_state(thrd) != PL330_STATE_STOPPED) 994 return true; 995 996 idx = 1 - thrd->lstenq; 997 if (thrd->req[idx].desc != NULL) { 998 req = &thrd->req[idx]; 999 } else { 1000 idx = thrd->lstenq; 1001 if (thrd->req[idx].desc != NULL) 1002 req = &thrd->req[idx]; 1003 else 1004 req = NULL; 1005 } 1006 1007 /* Return if no request */ 1008 if (!req) 1009 return true; 1010 1011 /* Return if req is running */ 1012 if (idx == thrd->req_running) 1013 return true; 1014 1015 desc = req->desc; 1016 1017 ns = desc->rqcfg.nonsecure ? 1 : 0; 1018 1019 /* See 'Abort Sources' point-4 at Page 2-25 */ 1020 if (_manager_ns(thrd) && !ns) 1021 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1022 __func__, __LINE__); 1023 1024 go.chan = thrd->id; 1025 go.addr = req->mc_bus; 1026 go.ns = ns; 1027 _emit_GO(0, insn, &go); 1028 1029 /* Set to generate interrupts for SEV */ 1030 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1031 1032 /* Only manager can execute GO */ 1033 _execute_DBGINSN(thrd, insn, true); 1034 1035 thrd->req_running = idx; 1036 1037 return true; 1038 } 1039 1040 static bool _start(struct pl330_thread *thrd) 1041 { 1042 switch (_state(thrd)) { 1043 case PL330_STATE_FAULT_COMPLETING: 1044 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1045 1046 if (_state(thrd) == PL330_STATE_KILLING) 1047 UNTIL(thrd, PL330_STATE_STOPPED) 1048 1049 case PL330_STATE_FAULTING: 1050 _stop(thrd); 1051 1052 case PL330_STATE_KILLING: 1053 case PL330_STATE_COMPLETING: 1054 UNTIL(thrd, PL330_STATE_STOPPED) 1055 1056 case PL330_STATE_STOPPED: 1057 return _trigger(thrd); 1058 1059 case PL330_STATE_WFP: 1060 case PL330_STATE_QUEUEBUSY: 1061 case PL330_STATE_ATBARRIER: 1062 case PL330_STATE_UPDTPC: 1063 case PL330_STATE_CACHEMISS: 1064 case PL330_STATE_EXECUTING: 1065 return true; 1066 1067 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1068 default: 1069 return false; 1070 } 1071 } 1072 1073 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1074 const struct _xfer_spec *pxs, int cyc) 1075 { 1076 int off = 0; 1077 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1078 1079 /* check lock-up free version */ 1080 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1081 while (cyc--) { 1082 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1083 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1084 } 1085 } else { 1086 while (cyc--) { 1087 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1088 off += _emit_RMB(dry_run, &buf[off]); 1089 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1090 off += _emit_WMB(dry_run, &buf[off]); 1091 } 1092 } 1093 1094 return off; 1095 } 1096 1097 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run, 1098 u8 buf[], const struct _xfer_spec *pxs, 1099 int cyc) 1100 { 1101 int off = 0; 1102 enum pl330_cond cond; 1103 1104 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 1105 cond = BURST; 1106 else 1107 cond = SINGLE; 1108 1109 while (cyc--) { 1110 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1111 off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri); 1112 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1113 1114 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1115 off += _emit_FLUSHP(dry_run, &buf[off], 1116 pxs->desc->peri); 1117 } 1118 1119 return off; 1120 } 1121 1122 static inline int _ldst_memtodev(struct pl330_dmac *pl330, 1123 unsigned dry_run, u8 buf[], 1124 const struct _xfer_spec *pxs, int cyc) 1125 { 1126 int off = 0; 1127 enum pl330_cond cond; 1128 1129 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 1130 cond = BURST; 1131 else 1132 cond = SINGLE; 1133 1134 while (cyc--) { 1135 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1136 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1137 off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri); 1138 1139 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1140 off += _emit_FLUSHP(dry_run, &buf[off], 1141 pxs->desc->peri); 1142 } 1143 1144 return off; 1145 } 1146 1147 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1148 const struct _xfer_spec *pxs, int cyc) 1149 { 1150 int off = 0; 1151 1152 switch (pxs->desc->rqtype) { 1153 case DMA_MEM_TO_DEV: 1154 off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc); 1155 break; 1156 case DMA_DEV_TO_MEM: 1157 off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc); 1158 break; 1159 case DMA_MEM_TO_MEM: 1160 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1161 break; 1162 default: 1163 off += 0x40000000; /* Scare off the Client */ 1164 break; 1165 } 1166 1167 return off; 1168 } 1169 1170 /* Returns bytes consumed and updates bursts */ 1171 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1172 unsigned long *bursts, const struct _xfer_spec *pxs) 1173 { 1174 int cyc, cycmax, szlp, szlpend, szbrst, off; 1175 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1176 struct _arg_LPEND lpend; 1177 1178 if (*bursts == 1) 1179 return _bursts(pl330, dry_run, buf, pxs, 1); 1180 1181 /* Max iterations possible in DMALP is 256 */ 1182 if (*bursts >= 256*256) { 1183 lcnt1 = 256; 1184 lcnt0 = 256; 1185 cyc = *bursts / lcnt1 / lcnt0; 1186 } else if (*bursts > 256) { 1187 lcnt1 = 256; 1188 lcnt0 = *bursts / lcnt1; 1189 cyc = 1; 1190 } else { 1191 lcnt1 = *bursts; 1192 lcnt0 = 0; 1193 cyc = 1; 1194 } 1195 1196 szlp = _emit_LP(1, buf, 0, 0); 1197 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1198 1199 lpend.cond = ALWAYS; 1200 lpend.forever = false; 1201 lpend.loop = 0; 1202 lpend.bjump = 0; 1203 szlpend = _emit_LPEND(1, buf, &lpend); 1204 1205 if (lcnt0) { 1206 szlp *= 2; 1207 szlpend *= 2; 1208 } 1209 1210 /* 1211 * Max bursts that we can unroll due to limit on the 1212 * size of backward jump that can be encoded in DMALPEND 1213 * which is 8-bits and hence 255 1214 */ 1215 cycmax = (255 - (szlp + szlpend)) / szbrst; 1216 1217 cyc = (cycmax < cyc) ? cycmax : cyc; 1218 1219 off = 0; 1220 1221 if (lcnt0) { 1222 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1223 ljmp0 = off; 1224 } 1225 1226 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1227 ljmp1 = off; 1228 1229 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1230 1231 lpend.cond = ALWAYS; 1232 lpend.forever = false; 1233 lpend.loop = 1; 1234 lpend.bjump = off - ljmp1; 1235 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1236 1237 if (lcnt0) { 1238 lpend.cond = ALWAYS; 1239 lpend.forever = false; 1240 lpend.loop = 0; 1241 lpend.bjump = off - ljmp0; 1242 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1243 } 1244 1245 *bursts = lcnt1 * cyc; 1246 if (lcnt0) 1247 *bursts *= lcnt0; 1248 1249 return off; 1250 } 1251 1252 static inline int _setup_loops(struct pl330_dmac *pl330, 1253 unsigned dry_run, u8 buf[], 1254 const struct _xfer_spec *pxs) 1255 { 1256 struct pl330_xfer *x = &pxs->desc->px; 1257 u32 ccr = pxs->ccr; 1258 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1259 int off = 0; 1260 1261 while (bursts) { 1262 c = bursts; 1263 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1264 bursts -= c; 1265 } 1266 1267 return off; 1268 } 1269 1270 static inline int _setup_xfer(struct pl330_dmac *pl330, 1271 unsigned dry_run, u8 buf[], 1272 const struct _xfer_spec *pxs) 1273 { 1274 struct pl330_xfer *x = &pxs->desc->px; 1275 int off = 0; 1276 1277 /* DMAMOV SAR, x->src_addr */ 1278 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1279 /* DMAMOV DAR, x->dst_addr */ 1280 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1281 1282 /* Setup Loop(s) */ 1283 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1284 1285 return off; 1286 } 1287 1288 /* 1289 * A req is a sequence of one or more xfer units. 1290 * Returns the number of bytes taken to setup the MC for the req. 1291 */ 1292 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1293 struct pl330_thread *thrd, unsigned index, 1294 struct _xfer_spec *pxs) 1295 { 1296 struct _pl330_req *req = &thrd->req[index]; 1297 struct pl330_xfer *x; 1298 u8 *buf = req->mc_cpu; 1299 int off = 0; 1300 1301 PL330_DBGMC_START(req->mc_bus); 1302 1303 /* DMAMOV CCR, ccr */ 1304 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1305 1306 x = &pxs->desc->px; 1307 /* Error if xfer length is not aligned at burst size */ 1308 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1309 return -EINVAL; 1310 1311 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1312 1313 /* DMASEV peripheral/event */ 1314 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1315 /* DMAEND */ 1316 off += _emit_END(dry_run, &buf[off]); 1317 1318 return off; 1319 } 1320 1321 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1322 { 1323 u32 ccr = 0; 1324 1325 if (rqc->src_inc) 1326 ccr |= CC_SRCINC; 1327 1328 if (rqc->dst_inc) 1329 ccr |= CC_DSTINC; 1330 1331 /* We set same protection levels for Src and DST for now */ 1332 if (rqc->privileged) 1333 ccr |= CC_SRCPRI | CC_DSTPRI; 1334 if (rqc->nonsecure) 1335 ccr |= CC_SRCNS | CC_DSTNS; 1336 if (rqc->insnaccess) 1337 ccr |= CC_SRCIA | CC_DSTIA; 1338 1339 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1340 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1341 1342 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1343 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1344 1345 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1346 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1347 1348 ccr |= (rqc->swap << CC_SWAP_SHFT); 1349 1350 return ccr; 1351 } 1352 1353 /* 1354 * Submit a list of xfers after which the client wants notification. 1355 * Client is not notified after each xfer unit, just once after all 1356 * xfer units are done or some error occurs. 1357 */ 1358 static int pl330_submit_req(struct pl330_thread *thrd, 1359 struct dma_pl330_desc *desc) 1360 { 1361 struct pl330_dmac *pl330 = thrd->dmac; 1362 struct _xfer_spec xs; 1363 unsigned long flags; 1364 unsigned idx; 1365 u32 ccr; 1366 int ret = 0; 1367 1368 if (pl330->state == DYING 1369 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1370 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1371 __func__, __LINE__); 1372 return -EAGAIN; 1373 } 1374 1375 /* If request for non-existing peripheral */ 1376 if (desc->rqtype != DMA_MEM_TO_MEM && 1377 desc->peri >= pl330->pcfg.num_peri) { 1378 dev_info(thrd->dmac->ddma.dev, 1379 "%s:%d Invalid peripheral(%u)!\n", 1380 __func__, __LINE__, desc->peri); 1381 return -EINVAL; 1382 } 1383 1384 spin_lock_irqsave(&pl330->lock, flags); 1385 1386 if (_queue_full(thrd)) { 1387 ret = -EAGAIN; 1388 goto xfer_exit; 1389 } 1390 1391 /* Prefer Secure Channel */ 1392 if (!_manager_ns(thrd)) 1393 desc->rqcfg.nonsecure = 0; 1394 else 1395 desc->rqcfg.nonsecure = 1; 1396 1397 ccr = _prepare_ccr(&desc->rqcfg); 1398 1399 idx = thrd->req[0].desc == NULL ? 0 : 1; 1400 1401 xs.ccr = ccr; 1402 xs.desc = desc; 1403 1404 /* First dry run to check if req is acceptable */ 1405 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1406 if (ret < 0) 1407 goto xfer_exit; 1408 1409 if (ret > pl330->mcbufsz / 2) { 1410 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1411 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1412 ret = -ENOMEM; 1413 goto xfer_exit; 1414 } 1415 1416 /* Hook the request */ 1417 thrd->lstenq = idx; 1418 thrd->req[idx].desc = desc; 1419 _setup_req(pl330, 0, thrd, idx, &xs); 1420 1421 ret = 0; 1422 1423 xfer_exit: 1424 spin_unlock_irqrestore(&pl330->lock, flags); 1425 1426 return ret; 1427 } 1428 1429 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1430 { 1431 struct dma_pl330_chan *pch; 1432 unsigned long flags; 1433 1434 if (!desc) 1435 return; 1436 1437 pch = desc->pchan; 1438 1439 /* If desc aborted */ 1440 if (!pch) 1441 return; 1442 1443 spin_lock_irqsave(&pch->lock, flags); 1444 1445 desc->status = DONE; 1446 1447 spin_unlock_irqrestore(&pch->lock, flags); 1448 1449 tasklet_schedule(&pch->task); 1450 } 1451 1452 static void pl330_dotask(unsigned long data) 1453 { 1454 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1455 unsigned long flags; 1456 int i; 1457 1458 spin_lock_irqsave(&pl330->lock, flags); 1459 1460 /* The DMAC itself gone nuts */ 1461 if (pl330->dmac_tbd.reset_dmac) { 1462 pl330->state = DYING; 1463 /* Reset the manager too */ 1464 pl330->dmac_tbd.reset_mngr = true; 1465 /* Clear the reset flag */ 1466 pl330->dmac_tbd.reset_dmac = false; 1467 } 1468 1469 if (pl330->dmac_tbd.reset_mngr) { 1470 _stop(pl330->manager); 1471 /* Reset all channels */ 1472 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1473 /* Clear the reset flag */ 1474 pl330->dmac_tbd.reset_mngr = false; 1475 } 1476 1477 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1478 1479 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1480 struct pl330_thread *thrd = &pl330->channels[i]; 1481 void __iomem *regs = pl330->base; 1482 enum pl330_op_err err; 1483 1484 _stop(thrd); 1485 1486 if (readl(regs + FSC) & (1 << thrd->id)) 1487 err = PL330_ERR_FAIL; 1488 else 1489 err = PL330_ERR_ABORT; 1490 1491 spin_unlock_irqrestore(&pl330->lock, flags); 1492 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1493 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1494 spin_lock_irqsave(&pl330->lock, flags); 1495 1496 thrd->req[0].desc = NULL; 1497 thrd->req[1].desc = NULL; 1498 thrd->req_running = -1; 1499 1500 /* Clear the reset flag */ 1501 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1502 } 1503 } 1504 1505 spin_unlock_irqrestore(&pl330->lock, flags); 1506 1507 return; 1508 } 1509 1510 /* Returns 1 if state was updated, 0 otherwise */ 1511 static int pl330_update(struct pl330_dmac *pl330) 1512 { 1513 struct dma_pl330_desc *descdone; 1514 unsigned long flags; 1515 void __iomem *regs; 1516 u32 val; 1517 int id, ev, ret = 0; 1518 1519 regs = pl330->base; 1520 1521 spin_lock_irqsave(&pl330->lock, flags); 1522 1523 val = readl(regs + FSM) & 0x1; 1524 if (val) 1525 pl330->dmac_tbd.reset_mngr = true; 1526 else 1527 pl330->dmac_tbd.reset_mngr = false; 1528 1529 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1530 pl330->dmac_tbd.reset_chan |= val; 1531 if (val) { 1532 int i = 0; 1533 while (i < pl330->pcfg.num_chan) { 1534 if (val & (1 << i)) { 1535 dev_info(pl330->ddma.dev, 1536 "Reset Channel-%d\t CS-%x FTC-%x\n", 1537 i, readl(regs + CS(i)), 1538 readl(regs + FTC(i))); 1539 _stop(&pl330->channels[i]); 1540 } 1541 i++; 1542 } 1543 } 1544 1545 /* Check which event happened i.e, thread notified */ 1546 val = readl(regs + ES); 1547 if (pl330->pcfg.num_events < 32 1548 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1549 pl330->dmac_tbd.reset_dmac = true; 1550 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1551 __LINE__); 1552 ret = 1; 1553 goto updt_exit; 1554 } 1555 1556 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1557 if (val & (1 << ev)) { /* Event occurred */ 1558 struct pl330_thread *thrd; 1559 u32 inten = readl(regs + INTEN); 1560 int active; 1561 1562 /* Clear the event */ 1563 if (inten & (1 << ev)) 1564 writel(1 << ev, regs + INTCLR); 1565 1566 ret = 1; 1567 1568 id = pl330->events[ev]; 1569 1570 thrd = &pl330->channels[id]; 1571 1572 active = thrd->req_running; 1573 if (active == -1) /* Aborted */ 1574 continue; 1575 1576 /* Detach the req */ 1577 descdone = thrd->req[active].desc; 1578 thrd->req[active].desc = NULL; 1579 1580 thrd->req_running = -1; 1581 1582 /* Get going again ASAP */ 1583 _start(thrd); 1584 1585 /* For now, just make a list of callbacks to be done */ 1586 list_add_tail(&descdone->rqd, &pl330->req_done); 1587 } 1588 } 1589 1590 /* Now that we are in no hurry, do the callbacks */ 1591 while (!list_empty(&pl330->req_done)) { 1592 descdone = list_first_entry(&pl330->req_done, 1593 struct dma_pl330_desc, rqd); 1594 list_del(&descdone->rqd); 1595 spin_unlock_irqrestore(&pl330->lock, flags); 1596 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1597 spin_lock_irqsave(&pl330->lock, flags); 1598 } 1599 1600 updt_exit: 1601 spin_unlock_irqrestore(&pl330->lock, flags); 1602 1603 if (pl330->dmac_tbd.reset_dmac 1604 || pl330->dmac_tbd.reset_mngr 1605 || pl330->dmac_tbd.reset_chan) { 1606 ret = 1; 1607 tasklet_schedule(&pl330->tasks); 1608 } 1609 1610 return ret; 1611 } 1612 1613 /* Reserve an event */ 1614 static inline int _alloc_event(struct pl330_thread *thrd) 1615 { 1616 struct pl330_dmac *pl330 = thrd->dmac; 1617 int ev; 1618 1619 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1620 if (pl330->events[ev] == -1) { 1621 pl330->events[ev] = thrd->id; 1622 return ev; 1623 } 1624 1625 return -1; 1626 } 1627 1628 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1629 { 1630 return pl330->pcfg.irq_ns & (1 << i); 1631 } 1632 1633 /* Upon success, returns IdentityToken for the 1634 * allocated channel, NULL otherwise. 1635 */ 1636 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1637 { 1638 struct pl330_thread *thrd = NULL; 1639 int chans, i; 1640 1641 if (pl330->state == DYING) 1642 return NULL; 1643 1644 chans = pl330->pcfg.num_chan; 1645 1646 for (i = 0; i < chans; i++) { 1647 thrd = &pl330->channels[i]; 1648 if ((thrd->free) && (!_manager_ns(thrd) || 1649 _chan_ns(pl330, i))) { 1650 thrd->ev = _alloc_event(thrd); 1651 if (thrd->ev >= 0) { 1652 thrd->free = false; 1653 thrd->lstenq = 1; 1654 thrd->req[0].desc = NULL; 1655 thrd->req[1].desc = NULL; 1656 thrd->req_running = -1; 1657 break; 1658 } 1659 } 1660 thrd = NULL; 1661 } 1662 1663 return thrd; 1664 } 1665 1666 /* Release an event */ 1667 static inline void _free_event(struct pl330_thread *thrd, int ev) 1668 { 1669 struct pl330_dmac *pl330 = thrd->dmac; 1670 1671 /* If the event is valid and was held by the thread */ 1672 if (ev >= 0 && ev < pl330->pcfg.num_events 1673 && pl330->events[ev] == thrd->id) 1674 pl330->events[ev] = -1; 1675 } 1676 1677 static void pl330_release_channel(struct pl330_thread *thrd) 1678 { 1679 struct pl330_dmac *pl330; 1680 1681 if (!thrd || thrd->free) 1682 return; 1683 1684 _stop(thrd); 1685 1686 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1687 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1688 1689 pl330 = thrd->dmac; 1690 1691 _free_event(thrd, thrd->ev); 1692 thrd->free = true; 1693 } 1694 1695 /* Initialize the structure for PL330 configuration, that can be used 1696 * by the client driver the make best use of the DMAC 1697 */ 1698 static void read_dmac_config(struct pl330_dmac *pl330) 1699 { 1700 void __iomem *regs = pl330->base; 1701 u32 val; 1702 1703 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1704 val &= CRD_DATA_WIDTH_MASK; 1705 pl330->pcfg.data_bus_width = 8 * (1 << val); 1706 1707 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1708 val &= CRD_DATA_BUFF_MASK; 1709 pl330->pcfg.data_buf_dep = val + 1; 1710 1711 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1712 val &= CR0_NUM_CHANS_MASK; 1713 val += 1; 1714 pl330->pcfg.num_chan = val; 1715 1716 val = readl(regs + CR0); 1717 if (val & CR0_PERIPH_REQ_SET) { 1718 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1719 val += 1; 1720 pl330->pcfg.num_peri = val; 1721 pl330->pcfg.peri_ns = readl(regs + CR4); 1722 } else { 1723 pl330->pcfg.num_peri = 0; 1724 } 1725 1726 val = readl(regs + CR0); 1727 if (val & CR0_BOOT_MAN_NS) 1728 pl330->pcfg.mode |= DMAC_MODE_NS; 1729 else 1730 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1731 1732 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1733 val &= CR0_NUM_EVENTS_MASK; 1734 val += 1; 1735 pl330->pcfg.num_events = val; 1736 1737 pl330->pcfg.irq_ns = readl(regs + CR3); 1738 } 1739 1740 static inline void _reset_thread(struct pl330_thread *thrd) 1741 { 1742 struct pl330_dmac *pl330 = thrd->dmac; 1743 1744 thrd->req[0].mc_cpu = pl330->mcode_cpu 1745 + (thrd->id * pl330->mcbufsz); 1746 thrd->req[0].mc_bus = pl330->mcode_bus 1747 + (thrd->id * pl330->mcbufsz); 1748 thrd->req[0].desc = NULL; 1749 1750 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1751 + pl330->mcbufsz / 2; 1752 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1753 + pl330->mcbufsz / 2; 1754 thrd->req[1].desc = NULL; 1755 1756 thrd->req_running = -1; 1757 } 1758 1759 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1760 { 1761 int chans = pl330->pcfg.num_chan; 1762 struct pl330_thread *thrd; 1763 int i; 1764 1765 /* Allocate 1 Manager and 'chans' Channel threads */ 1766 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 1767 GFP_KERNEL); 1768 if (!pl330->channels) 1769 return -ENOMEM; 1770 1771 /* Init Channel threads */ 1772 for (i = 0; i < chans; i++) { 1773 thrd = &pl330->channels[i]; 1774 thrd->id = i; 1775 thrd->dmac = pl330; 1776 _reset_thread(thrd); 1777 thrd->free = true; 1778 } 1779 1780 /* MANAGER is indexed at the end */ 1781 thrd = &pl330->channels[chans]; 1782 thrd->id = chans; 1783 thrd->dmac = pl330; 1784 thrd->free = false; 1785 pl330->manager = thrd; 1786 1787 return 0; 1788 } 1789 1790 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1791 { 1792 int chans = pl330->pcfg.num_chan; 1793 int ret; 1794 1795 /* 1796 * Alloc MicroCode buffer for 'chans' Channel threads. 1797 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1798 */ 1799 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, 1800 chans * pl330->mcbufsz, 1801 &pl330->mcode_bus, GFP_KERNEL, 1802 DMA_ATTR_PRIVILEGED); 1803 if (!pl330->mcode_cpu) { 1804 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1805 __func__, __LINE__); 1806 return -ENOMEM; 1807 } 1808 1809 ret = dmac_alloc_threads(pl330); 1810 if (ret) { 1811 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1812 __func__, __LINE__); 1813 dma_free_coherent(pl330->ddma.dev, 1814 chans * pl330->mcbufsz, 1815 pl330->mcode_cpu, pl330->mcode_bus); 1816 return ret; 1817 } 1818 1819 return 0; 1820 } 1821 1822 static int pl330_add(struct pl330_dmac *pl330) 1823 { 1824 int i, ret; 1825 1826 /* Check if we can handle this DMAC */ 1827 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1828 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1829 pl330->pcfg.periph_id); 1830 return -EINVAL; 1831 } 1832 1833 /* Read the configuration of the DMAC */ 1834 read_dmac_config(pl330); 1835 1836 if (pl330->pcfg.num_events == 0) { 1837 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1838 __func__, __LINE__); 1839 return -EINVAL; 1840 } 1841 1842 spin_lock_init(&pl330->lock); 1843 1844 INIT_LIST_HEAD(&pl330->req_done); 1845 1846 /* Use default MC buffer size if not provided */ 1847 if (!pl330->mcbufsz) 1848 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1849 1850 /* Mark all events as free */ 1851 for (i = 0; i < pl330->pcfg.num_events; i++) 1852 pl330->events[i] = -1; 1853 1854 /* Allocate resources needed by the DMAC */ 1855 ret = dmac_alloc_resources(pl330); 1856 if (ret) { 1857 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1858 return ret; 1859 } 1860 1861 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1862 1863 pl330->state = INIT; 1864 1865 return 0; 1866 } 1867 1868 static int dmac_free_threads(struct pl330_dmac *pl330) 1869 { 1870 struct pl330_thread *thrd; 1871 int i; 1872 1873 /* Release Channel threads */ 1874 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1875 thrd = &pl330->channels[i]; 1876 pl330_release_channel(thrd); 1877 } 1878 1879 /* Free memory */ 1880 kfree(pl330->channels); 1881 1882 return 0; 1883 } 1884 1885 static void pl330_del(struct pl330_dmac *pl330) 1886 { 1887 pl330->state = UNINIT; 1888 1889 tasklet_kill(&pl330->tasks); 1890 1891 /* Free DMAC resources */ 1892 dmac_free_threads(pl330); 1893 1894 dma_free_coherent(pl330->ddma.dev, 1895 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 1896 pl330->mcode_bus); 1897 } 1898 1899 /* forward declaration */ 1900 static struct amba_driver pl330_driver; 1901 1902 static inline struct dma_pl330_chan * 1903 to_pchan(struct dma_chan *ch) 1904 { 1905 if (!ch) 1906 return NULL; 1907 1908 return container_of(ch, struct dma_pl330_chan, chan); 1909 } 1910 1911 static inline struct dma_pl330_desc * 1912 to_desc(struct dma_async_tx_descriptor *tx) 1913 { 1914 return container_of(tx, struct dma_pl330_desc, txd); 1915 } 1916 1917 static inline void fill_queue(struct dma_pl330_chan *pch) 1918 { 1919 struct dma_pl330_desc *desc; 1920 int ret; 1921 1922 list_for_each_entry(desc, &pch->work_list, node) { 1923 1924 /* If already submitted */ 1925 if (desc->status == BUSY) 1926 continue; 1927 1928 ret = pl330_submit_req(pch->thread, desc); 1929 if (!ret) { 1930 desc->status = BUSY; 1931 } else if (ret == -EAGAIN) { 1932 /* QFull or DMAC Dying */ 1933 break; 1934 } else { 1935 /* Unacceptable request */ 1936 desc->status = DONE; 1937 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 1938 __func__, __LINE__, desc->txd.cookie); 1939 tasklet_schedule(&pch->task); 1940 } 1941 } 1942 } 1943 1944 static void pl330_tasklet(unsigned long data) 1945 { 1946 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 1947 struct dma_pl330_desc *desc, *_dt; 1948 unsigned long flags; 1949 bool power_down = false; 1950 1951 spin_lock_irqsave(&pch->lock, flags); 1952 1953 /* Pick up ripe tomatoes */ 1954 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 1955 if (desc->status == DONE) { 1956 if (!pch->cyclic) 1957 dma_cookie_complete(&desc->txd); 1958 list_move_tail(&desc->node, &pch->completed_list); 1959 } 1960 1961 /* Try to submit a req imm. next to the last completed cookie */ 1962 fill_queue(pch); 1963 1964 if (list_empty(&pch->work_list)) { 1965 spin_lock(&pch->thread->dmac->lock); 1966 _stop(pch->thread); 1967 spin_unlock(&pch->thread->dmac->lock); 1968 power_down = true; 1969 pch->active = false; 1970 } else { 1971 /* Make sure the PL330 Channel thread is active */ 1972 spin_lock(&pch->thread->dmac->lock); 1973 _start(pch->thread); 1974 spin_unlock(&pch->thread->dmac->lock); 1975 } 1976 1977 while (!list_empty(&pch->completed_list)) { 1978 struct dmaengine_desc_callback cb; 1979 1980 desc = list_first_entry(&pch->completed_list, 1981 struct dma_pl330_desc, node); 1982 1983 dmaengine_desc_get_callback(&desc->txd, &cb); 1984 1985 if (pch->cyclic) { 1986 desc->status = PREP; 1987 list_move_tail(&desc->node, &pch->work_list); 1988 if (power_down) { 1989 pch->active = true; 1990 spin_lock(&pch->thread->dmac->lock); 1991 _start(pch->thread); 1992 spin_unlock(&pch->thread->dmac->lock); 1993 power_down = false; 1994 } 1995 } else { 1996 desc->status = FREE; 1997 list_move_tail(&desc->node, &pch->dmac->desc_pool); 1998 } 1999 2000 dma_descriptor_unmap(&desc->txd); 2001 2002 if (dmaengine_desc_callback_valid(&cb)) { 2003 spin_unlock_irqrestore(&pch->lock, flags); 2004 dmaengine_desc_callback_invoke(&cb, NULL); 2005 spin_lock_irqsave(&pch->lock, flags); 2006 } 2007 } 2008 spin_unlock_irqrestore(&pch->lock, flags); 2009 2010 /* If work list empty, power down */ 2011 if (power_down) { 2012 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2013 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2014 } 2015 } 2016 2017 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2018 struct of_dma *ofdma) 2019 { 2020 int count = dma_spec->args_count; 2021 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2022 unsigned int chan_id; 2023 2024 if (!pl330) 2025 return NULL; 2026 2027 if (count != 1) 2028 return NULL; 2029 2030 chan_id = dma_spec->args[0]; 2031 if (chan_id >= pl330->num_peripherals) 2032 return NULL; 2033 2034 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2035 } 2036 2037 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2038 { 2039 struct dma_pl330_chan *pch = to_pchan(chan); 2040 struct pl330_dmac *pl330 = pch->dmac; 2041 unsigned long flags; 2042 2043 spin_lock_irqsave(&pl330->lock, flags); 2044 2045 dma_cookie_init(chan); 2046 pch->cyclic = false; 2047 2048 pch->thread = pl330_request_channel(pl330); 2049 if (!pch->thread) { 2050 spin_unlock_irqrestore(&pl330->lock, flags); 2051 return -ENOMEM; 2052 } 2053 2054 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2055 2056 spin_unlock_irqrestore(&pl330->lock, flags); 2057 2058 return 1; 2059 } 2060 2061 /* 2062 * We need the data direction between the DMAC (the dma-mapping "device") and 2063 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! 2064 */ 2065 static enum dma_data_direction 2066 pl330_dma_slave_map_dir(enum dma_transfer_direction dir) 2067 { 2068 switch (dir) { 2069 case DMA_MEM_TO_DEV: 2070 return DMA_FROM_DEVICE; 2071 case DMA_DEV_TO_MEM: 2072 return DMA_TO_DEVICE; 2073 case DMA_DEV_TO_DEV: 2074 return DMA_BIDIRECTIONAL; 2075 default: 2076 return DMA_NONE; 2077 } 2078 } 2079 2080 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) 2081 { 2082 if (pch->dir != DMA_NONE) 2083 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 2084 1 << pch->burst_sz, pch->dir, 0); 2085 pch->dir = DMA_NONE; 2086 } 2087 2088 2089 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, 2090 enum dma_transfer_direction dir) 2091 { 2092 struct device *dev = pch->chan.device->dev; 2093 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); 2094 2095 /* Already mapped for this config? */ 2096 if (pch->dir == dma_dir) 2097 return true; 2098 2099 pl330_unprep_slave_fifo(pch); 2100 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 2101 1 << pch->burst_sz, dma_dir, 0); 2102 if (dma_mapping_error(dev, pch->fifo_dma)) 2103 return false; 2104 2105 pch->dir = dma_dir; 2106 return true; 2107 } 2108 2109 static int pl330_config(struct dma_chan *chan, 2110 struct dma_slave_config *slave_config) 2111 { 2112 struct dma_pl330_chan *pch = to_pchan(chan); 2113 2114 pl330_unprep_slave_fifo(pch); 2115 if (slave_config->direction == DMA_MEM_TO_DEV) { 2116 if (slave_config->dst_addr) 2117 pch->fifo_addr = slave_config->dst_addr; 2118 if (slave_config->dst_addr_width) 2119 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2120 if (slave_config->dst_maxburst) 2121 pch->burst_len = slave_config->dst_maxburst; 2122 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2123 if (slave_config->src_addr) 2124 pch->fifo_addr = slave_config->src_addr; 2125 if (slave_config->src_addr_width) 2126 pch->burst_sz = __ffs(slave_config->src_addr_width); 2127 if (slave_config->src_maxburst) 2128 pch->burst_len = slave_config->src_maxburst; 2129 } 2130 2131 return 0; 2132 } 2133 2134 static int pl330_terminate_all(struct dma_chan *chan) 2135 { 2136 struct dma_pl330_chan *pch = to_pchan(chan); 2137 struct dma_pl330_desc *desc; 2138 unsigned long flags; 2139 struct pl330_dmac *pl330 = pch->dmac; 2140 LIST_HEAD(list); 2141 bool power_down = false; 2142 2143 pm_runtime_get_sync(pl330->ddma.dev); 2144 spin_lock_irqsave(&pch->lock, flags); 2145 spin_lock(&pl330->lock); 2146 _stop(pch->thread); 2147 spin_unlock(&pl330->lock); 2148 2149 pch->thread->req[0].desc = NULL; 2150 pch->thread->req[1].desc = NULL; 2151 pch->thread->req_running = -1; 2152 power_down = pch->active; 2153 pch->active = false; 2154 2155 /* Mark all desc done */ 2156 list_for_each_entry(desc, &pch->submitted_list, node) { 2157 desc->status = FREE; 2158 dma_cookie_complete(&desc->txd); 2159 } 2160 2161 list_for_each_entry(desc, &pch->work_list , node) { 2162 desc->status = FREE; 2163 dma_cookie_complete(&desc->txd); 2164 } 2165 2166 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2167 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2168 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2169 spin_unlock_irqrestore(&pch->lock, flags); 2170 pm_runtime_mark_last_busy(pl330->ddma.dev); 2171 if (power_down) 2172 pm_runtime_put_autosuspend(pl330->ddma.dev); 2173 pm_runtime_put_autosuspend(pl330->ddma.dev); 2174 2175 return 0; 2176 } 2177 2178 /* 2179 * We don't support DMA_RESUME command because of hardware 2180 * limitations, so after pausing the channel we cannot restore 2181 * it to active state. We have to terminate channel and setup 2182 * DMA transfer again. This pause feature was implemented to 2183 * allow safely read residue before channel termination. 2184 */ 2185 static int pl330_pause(struct dma_chan *chan) 2186 { 2187 struct dma_pl330_chan *pch = to_pchan(chan); 2188 struct pl330_dmac *pl330 = pch->dmac; 2189 unsigned long flags; 2190 2191 pm_runtime_get_sync(pl330->ddma.dev); 2192 spin_lock_irqsave(&pch->lock, flags); 2193 2194 spin_lock(&pl330->lock); 2195 _stop(pch->thread); 2196 spin_unlock(&pl330->lock); 2197 2198 spin_unlock_irqrestore(&pch->lock, flags); 2199 pm_runtime_mark_last_busy(pl330->ddma.dev); 2200 pm_runtime_put_autosuspend(pl330->ddma.dev); 2201 2202 return 0; 2203 } 2204 2205 static void pl330_free_chan_resources(struct dma_chan *chan) 2206 { 2207 struct dma_pl330_chan *pch = to_pchan(chan); 2208 struct pl330_dmac *pl330 = pch->dmac; 2209 unsigned long flags; 2210 2211 tasklet_kill(&pch->task); 2212 2213 pm_runtime_get_sync(pch->dmac->ddma.dev); 2214 spin_lock_irqsave(&pl330->lock, flags); 2215 2216 pl330_release_channel(pch->thread); 2217 pch->thread = NULL; 2218 2219 if (pch->cyclic) 2220 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2221 2222 spin_unlock_irqrestore(&pl330->lock, flags); 2223 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2224 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2225 pl330_unprep_slave_fifo(pch); 2226 } 2227 2228 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2229 struct dma_pl330_desc *desc) 2230 { 2231 struct pl330_thread *thrd = pch->thread; 2232 struct pl330_dmac *pl330 = pch->dmac; 2233 void __iomem *regs = thrd->dmac->base; 2234 u32 val, addr; 2235 2236 pm_runtime_get_sync(pl330->ddma.dev); 2237 val = addr = 0; 2238 if (desc->rqcfg.src_inc) { 2239 val = readl(regs + SA(thrd->id)); 2240 addr = desc->px.src_addr; 2241 } else { 2242 val = readl(regs + DA(thrd->id)); 2243 addr = desc->px.dst_addr; 2244 } 2245 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2246 pm_runtime_put_autosuspend(pl330->ddma.dev); 2247 2248 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ 2249 if (!val) 2250 return 0; 2251 2252 return val - addr; 2253 } 2254 2255 static enum dma_status 2256 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2257 struct dma_tx_state *txstate) 2258 { 2259 enum dma_status ret; 2260 unsigned long flags; 2261 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; 2262 struct dma_pl330_chan *pch = to_pchan(chan); 2263 unsigned int transferred, residual = 0; 2264 2265 ret = dma_cookie_status(chan, cookie, txstate); 2266 2267 if (!txstate) 2268 return ret; 2269 2270 if (ret == DMA_COMPLETE) 2271 goto out; 2272 2273 spin_lock_irqsave(&pch->lock, flags); 2274 spin_lock(&pch->thread->dmac->lock); 2275 2276 if (pch->thread->req_running != -1) 2277 running = pch->thread->req[pch->thread->req_running].desc; 2278 2279 last_enq = pch->thread->req[pch->thread->lstenq].desc; 2280 2281 /* Check in pending list */ 2282 list_for_each_entry(desc, &pch->work_list, node) { 2283 if (desc->status == DONE) 2284 transferred = desc->bytes_requested; 2285 else if (running && desc == running) 2286 transferred = 2287 pl330_get_current_xferred_count(pch, desc); 2288 else if (desc->status == BUSY) 2289 /* 2290 * Busy but not running means either just enqueued, 2291 * or finished and not yet marked done 2292 */ 2293 if (desc == last_enq) 2294 transferred = 0; 2295 else 2296 transferred = desc->bytes_requested; 2297 else 2298 transferred = 0; 2299 residual += desc->bytes_requested - transferred; 2300 if (desc->txd.cookie == cookie) { 2301 switch (desc->status) { 2302 case DONE: 2303 ret = DMA_COMPLETE; 2304 break; 2305 case PREP: 2306 case BUSY: 2307 ret = DMA_IN_PROGRESS; 2308 break; 2309 default: 2310 WARN_ON(1); 2311 } 2312 break; 2313 } 2314 if (desc->last) 2315 residual = 0; 2316 } 2317 spin_unlock(&pch->thread->dmac->lock); 2318 spin_unlock_irqrestore(&pch->lock, flags); 2319 2320 out: 2321 dma_set_residue(txstate, residual); 2322 2323 return ret; 2324 } 2325 2326 static void pl330_issue_pending(struct dma_chan *chan) 2327 { 2328 struct dma_pl330_chan *pch = to_pchan(chan); 2329 unsigned long flags; 2330 2331 spin_lock_irqsave(&pch->lock, flags); 2332 if (list_empty(&pch->work_list)) { 2333 /* 2334 * Warn on nothing pending. Empty submitted_list may 2335 * break our pm_runtime usage counter as it is 2336 * updated on work_list emptiness status. 2337 */ 2338 WARN_ON(list_empty(&pch->submitted_list)); 2339 pch->active = true; 2340 pm_runtime_get_sync(pch->dmac->ddma.dev); 2341 } 2342 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2343 spin_unlock_irqrestore(&pch->lock, flags); 2344 2345 pl330_tasklet((unsigned long)pch); 2346 } 2347 2348 /* 2349 * We returned the last one of the circular list of descriptor(s) 2350 * from prep_xxx, so the argument to submit corresponds to the last 2351 * descriptor of the list. 2352 */ 2353 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2354 { 2355 struct dma_pl330_desc *desc, *last = to_desc(tx); 2356 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2357 dma_cookie_t cookie; 2358 unsigned long flags; 2359 2360 spin_lock_irqsave(&pch->lock, flags); 2361 2362 /* Assign cookies to all nodes */ 2363 while (!list_empty(&last->node)) { 2364 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2365 if (pch->cyclic) { 2366 desc->txd.callback = last->txd.callback; 2367 desc->txd.callback_param = last->txd.callback_param; 2368 } 2369 desc->last = false; 2370 2371 dma_cookie_assign(&desc->txd); 2372 2373 list_move_tail(&desc->node, &pch->submitted_list); 2374 } 2375 2376 last->last = true; 2377 cookie = dma_cookie_assign(&last->txd); 2378 list_add_tail(&last->node, &pch->submitted_list); 2379 spin_unlock_irqrestore(&pch->lock, flags); 2380 2381 return cookie; 2382 } 2383 2384 static inline void _init_desc(struct dma_pl330_desc *desc) 2385 { 2386 desc->rqcfg.swap = SWAP_NO; 2387 desc->rqcfg.scctl = CCTRL0; 2388 desc->rqcfg.dcctl = CCTRL0; 2389 desc->txd.tx_submit = pl330_tx_submit; 2390 2391 INIT_LIST_HEAD(&desc->node); 2392 } 2393 2394 /* Returns the number of descriptors added to the DMAC pool */ 2395 static int add_desc(struct list_head *pool, spinlock_t *lock, 2396 gfp_t flg, int count) 2397 { 2398 struct dma_pl330_desc *desc; 2399 unsigned long flags; 2400 int i; 2401 2402 desc = kcalloc(count, sizeof(*desc), flg); 2403 if (!desc) 2404 return 0; 2405 2406 spin_lock_irqsave(lock, flags); 2407 2408 for (i = 0; i < count; i++) { 2409 _init_desc(&desc[i]); 2410 list_add_tail(&desc[i].node, pool); 2411 } 2412 2413 spin_unlock_irqrestore(lock, flags); 2414 2415 return count; 2416 } 2417 2418 static struct dma_pl330_desc *pluck_desc(struct list_head *pool, 2419 spinlock_t *lock) 2420 { 2421 struct dma_pl330_desc *desc = NULL; 2422 unsigned long flags; 2423 2424 spin_lock_irqsave(lock, flags); 2425 2426 if (!list_empty(pool)) { 2427 desc = list_entry(pool->next, 2428 struct dma_pl330_desc, node); 2429 2430 list_del_init(&desc->node); 2431 2432 desc->status = PREP; 2433 desc->txd.callback = NULL; 2434 } 2435 2436 spin_unlock_irqrestore(lock, flags); 2437 2438 return desc; 2439 } 2440 2441 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2442 { 2443 struct pl330_dmac *pl330 = pch->dmac; 2444 u8 *peri_id = pch->chan.private; 2445 struct dma_pl330_desc *desc; 2446 2447 /* Pluck one desc from the pool of DMAC */ 2448 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock); 2449 2450 /* If the DMAC pool is empty, alloc new */ 2451 if (!desc) { 2452 DEFINE_SPINLOCK(lock); 2453 LIST_HEAD(pool); 2454 2455 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1)) 2456 return NULL; 2457 2458 desc = pluck_desc(&pool, &lock); 2459 WARN_ON(!desc || !list_empty(&pool)); 2460 } 2461 2462 /* Initialize the descriptor */ 2463 desc->pchan = pch; 2464 desc->txd.cookie = 0; 2465 async_tx_ack(&desc->txd); 2466 2467 desc->peri = peri_id ? pch->chan.chan_id : 0; 2468 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2469 2470 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2471 2472 return desc; 2473 } 2474 2475 static inline void fill_px(struct pl330_xfer *px, 2476 dma_addr_t dst, dma_addr_t src, size_t len) 2477 { 2478 px->bytes = len; 2479 px->dst_addr = dst; 2480 px->src_addr = src; 2481 } 2482 2483 static struct dma_pl330_desc * 2484 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2485 dma_addr_t src, size_t len) 2486 { 2487 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2488 2489 if (!desc) { 2490 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2491 __func__, __LINE__); 2492 return NULL; 2493 } 2494 2495 /* 2496 * Ideally we should lookout for reqs bigger than 2497 * those that can be programmed with 256 bytes of 2498 * MC buffer, but considering a req size is seldom 2499 * going to be word-unaligned and more than 200MB, 2500 * we take it easy. 2501 * Also, should the limit is reached we'd rather 2502 * have the platform increase MC buffer size than 2503 * complicating this API driver. 2504 */ 2505 fill_px(&desc->px, dst, src, len); 2506 2507 return desc; 2508 } 2509 2510 /* Call after fixing burst size */ 2511 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2512 { 2513 struct dma_pl330_chan *pch = desc->pchan; 2514 struct pl330_dmac *pl330 = pch->dmac; 2515 int burst_len; 2516 2517 burst_len = pl330->pcfg.data_bus_width / 8; 2518 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2519 burst_len >>= desc->rqcfg.brst_size; 2520 2521 /* src/dst_burst_len can't be more than 16 */ 2522 if (burst_len > 16) 2523 burst_len = 16; 2524 2525 while (burst_len > 1) { 2526 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2527 break; 2528 burst_len--; 2529 } 2530 2531 return burst_len; 2532 } 2533 2534 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2535 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2536 size_t period_len, enum dma_transfer_direction direction, 2537 unsigned long flags) 2538 { 2539 struct dma_pl330_desc *desc = NULL, *first = NULL; 2540 struct dma_pl330_chan *pch = to_pchan(chan); 2541 struct pl330_dmac *pl330 = pch->dmac; 2542 unsigned int i; 2543 dma_addr_t dst; 2544 dma_addr_t src; 2545 2546 if (len % period_len != 0) 2547 return NULL; 2548 2549 if (!is_slave_direction(direction)) { 2550 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2551 __func__, __LINE__); 2552 return NULL; 2553 } 2554 2555 if (!pl330_prep_slave_fifo(pch, direction)) 2556 return NULL; 2557 2558 for (i = 0; i < len / period_len; i++) { 2559 desc = pl330_get_desc(pch); 2560 if (!desc) { 2561 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2562 __func__, __LINE__); 2563 2564 if (!first) 2565 return NULL; 2566 2567 spin_lock_irqsave(&pl330->pool_lock, flags); 2568 2569 while (!list_empty(&first->node)) { 2570 desc = list_entry(first->node.next, 2571 struct dma_pl330_desc, node); 2572 list_move_tail(&desc->node, &pl330->desc_pool); 2573 } 2574 2575 list_move_tail(&first->node, &pl330->desc_pool); 2576 2577 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2578 2579 return NULL; 2580 } 2581 2582 switch (direction) { 2583 case DMA_MEM_TO_DEV: 2584 desc->rqcfg.src_inc = 1; 2585 desc->rqcfg.dst_inc = 0; 2586 src = dma_addr; 2587 dst = pch->fifo_dma; 2588 break; 2589 case DMA_DEV_TO_MEM: 2590 desc->rqcfg.src_inc = 0; 2591 desc->rqcfg.dst_inc = 1; 2592 src = pch->fifo_dma; 2593 dst = dma_addr; 2594 break; 2595 default: 2596 break; 2597 } 2598 2599 desc->rqtype = direction; 2600 desc->rqcfg.brst_size = pch->burst_sz; 2601 desc->rqcfg.brst_len = 1; 2602 desc->bytes_requested = period_len; 2603 fill_px(&desc->px, dst, src, period_len); 2604 2605 if (!first) 2606 first = desc; 2607 else 2608 list_add_tail(&desc->node, &first->node); 2609 2610 dma_addr += period_len; 2611 } 2612 2613 if (!desc) 2614 return NULL; 2615 2616 pch->cyclic = true; 2617 desc->txd.flags = flags; 2618 2619 return &desc->txd; 2620 } 2621 2622 static struct dma_async_tx_descriptor * 2623 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2624 dma_addr_t src, size_t len, unsigned long flags) 2625 { 2626 struct dma_pl330_desc *desc; 2627 struct dma_pl330_chan *pch = to_pchan(chan); 2628 struct pl330_dmac *pl330; 2629 int burst; 2630 2631 if (unlikely(!pch || !len)) 2632 return NULL; 2633 2634 pl330 = pch->dmac; 2635 2636 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2637 if (!desc) 2638 return NULL; 2639 2640 desc->rqcfg.src_inc = 1; 2641 desc->rqcfg.dst_inc = 1; 2642 desc->rqtype = DMA_MEM_TO_MEM; 2643 2644 /* Select max possible burst size */ 2645 burst = pl330->pcfg.data_bus_width / 8; 2646 2647 /* 2648 * Make sure we use a burst size that aligns with all the memcpy 2649 * parameters because our DMA programming algorithm doesn't cope with 2650 * transfers which straddle an entry in the DMA device's MFIFO. 2651 */ 2652 while ((src | dst | len) & (burst - 1)) 2653 burst /= 2; 2654 2655 desc->rqcfg.brst_size = 0; 2656 while (burst != (1 << desc->rqcfg.brst_size)) 2657 desc->rqcfg.brst_size++; 2658 2659 /* 2660 * If burst size is smaller than bus width then make sure we only 2661 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2662 */ 2663 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2664 desc->rqcfg.brst_len = 1; 2665 2666 desc->rqcfg.brst_len = get_burst_len(desc, len); 2667 desc->bytes_requested = len; 2668 2669 desc->txd.flags = flags; 2670 2671 return &desc->txd; 2672 } 2673 2674 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2675 struct dma_pl330_desc *first) 2676 { 2677 unsigned long flags; 2678 struct dma_pl330_desc *desc; 2679 2680 if (!first) 2681 return; 2682 2683 spin_lock_irqsave(&pl330->pool_lock, flags); 2684 2685 while (!list_empty(&first->node)) { 2686 desc = list_entry(first->node.next, 2687 struct dma_pl330_desc, node); 2688 list_move_tail(&desc->node, &pl330->desc_pool); 2689 } 2690 2691 list_move_tail(&first->node, &pl330->desc_pool); 2692 2693 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2694 } 2695 2696 static struct dma_async_tx_descriptor * 2697 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2698 unsigned int sg_len, enum dma_transfer_direction direction, 2699 unsigned long flg, void *context) 2700 { 2701 struct dma_pl330_desc *first, *desc = NULL; 2702 struct dma_pl330_chan *pch = to_pchan(chan); 2703 struct scatterlist *sg; 2704 int i; 2705 2706 if (unlikely(!pch || !sgl || !sg_len)) 2707 return NULL; 2708 2709 if (!pl330_prep_slave_fifo(pch, direction)) 2710 return NULL; 2711 2712 first = NULL; 2713 2714 for_each_sg(sgl, sg, sg_len, i) { 2715 2716 desc = pl330_get_desc(pch); 2717 if (!desc) { 2718 struct pl330_dmac *pl330 = pch->dmac; 2719 2720 dev_err(pch->dmac->ddma.dev, 2721 "%s:%d Unable to fetch desc\n", 2722 __func__, __LINE__); 2723 __pl330_giveback_desc(pl330, first); 2724 2725 return NULL; 2726 } 2727 2728 if (!first) 2729 first = desc; 2730 else 2731 list_add_tail(&desc->node, &first->node); 2732 2733 if (direction == DMA_MEM_TO_DEV) { 2734 desc->rqcfg.src_inc = 1; 2735 desc->rqcfg.dst_inc = 0; 2736 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), 2737 sg_dma_len(sg)); 2738 } else { 2739 desc->rqcfg.src_inc = 0; 2740 desc->rqcfg.dst_inc = 1; 2741 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, 2742 sg_dma_len(sg)); 2743 } 2744 2745 desc->rqcfg.brst_size = pch->burst_sz; 2746 desc->rqcfg.brst_len = 1; 2747 desc->rqtype = direction; 2748 desc->bytes_requested = sg_dma_len(sg); 2749 } 2750 2751 /* Return the last desc in the chain */ 2752 desc->txd.flags = flg; 2753 return &desc->txd; 2754 } 2755 2756 static irqreturn_t pl330_irq_handler(int irq, void *data) 2757 { 2758 if (pl330_update(data)) 2759 return IRQ_HANDLED; 2760 else 2761 return IRQ_NONE; 2762 } 2763 2764 #define PL330_DMA_BUSWIDTHS \ 2765 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2766 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2767 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2768 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2769 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2770 2771 /* 2772 * Runtime PM callbacks are provided by amba/bus.c driver. 2773 * 2774 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2775 * bus driver will only disable/enable the clock in runtime PM callbacks. 2776 */ 2777 static int __maybe_unused pl330_suspend(struct device *dev) 2778 { 2779 struct amba_device *pcdev = to_amba_device(dev); 2780 2781 pm_runtime_disable(dev); 2782 2783 if (!pm_runtime_status_suspended(dev)) { 2784 /* amba did not disable the clock */ 2785 amba_pclk_disable(pcdev); 2786 } 2787 amba_pclk_unprepare(pcdev); 2788 2789 return 0; 2790 } 2791 2792 static int __maybe_unused pl330_resume(struct device *dev) 2793 { 2794 struct amba_device *pcdev = to_amba_device(dev); 2795 int ret; 2796 2797 ret = amba_pclk_prepare(pcdev); 2798 if (ret) 2799 return ret; 2800 2801 if (!pm_runtime_status_suspended(dev)) 2802 ret = amba_pclk_enable(pcdev); 2803 2804 pm_runtime_enable(dev); 2805 2806 return ret; 2807 } 2808 2809 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume); 2810 2811 static int 2812 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2813 { 2814 struct pl330_config *pcfg; 2815 struct pl330_dmac *pl330; 2816 struct dma_pl330_chan *pch, *_p; 2817 struct dma_device *pd; 2818 struct resource *res; 2819 int i, ret, irq; 2820 int num_chan; 2821 struct device_node *np = adev->dev.of_node; 2822 2823 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 2824 if (ret) 2825 return ret; 2826 2827 /* Allocate a new DMAC and its Channels */ 2828 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 2829 if (!pl330) 2830 return -ENOMEM; 2831 2832 pd = &pl330->ddma; 2833 pd->dev = &adev->dev; 2834 2835 pl330->mcbufsz = 0; 2836 2837 /* get quirk */ 2838 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 2839 if (of_property_read_bool(np, of_quirks[i].quirk)) 2840 pl330->quirks |= of_quirks[i].id; 2841 2842 res = &adev->res; 2843 pl330->base = devm_ioremap_resource(&adev->dev, res); 2844 if (IS_ERR(pl330->base)) 2845 return PTR_ERR(pl330->base); 2846 2847 amba_set_drvdata(adev, pl330); 2848 2849 for (i = 0; i < AMBA_NR_IRQS; i++) { 2850 irq = adev->irq[i]; 2851 if (irq) { 2852 ret = devm_request_irq(&adev->dev, irq, 2853 pl330_irq_handler, 0, 2854 dev_name(&adev->dev), pl330); 2855 if (ret) 2856 return ret; 2857 } else { 2858 break; 2859 } 2860 } 2861 2862 pcfg = &pl330->pcfg; 2863 2864 pcfg->periph_id = adev->periphid; 2865 ret = pl330_add(pl330); 2866 if (ret) 2867 return ret; 2868 2869 INIT_LIST_HEAD(&pl330->desc_pool); 2870 spin_lock_init(&pl330->pool_lock); 2871 2872 /* Create a descriptor pool of default size */ 2873 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock, 2874 GFP_KERNEL, NR_DEFAULT_DESC)) 2875 dev_warn(&adev->dev, "unable to allocate desc\n"); 2876 2877 INIT_LIST_HEAD(&pd->channels); 2878 2879 /* Initialize channel parameters */ 2880 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 2881 2882 pl330->num_peripherals = num_chan; 2883 2884 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2885 if (!pl330->peripherals) { 2886 ret = -ENOMEM; 2887 goto probe_err2; 2888 } 2889 2890 for (i = 0; i < num_chan; i++) { 2891 pch = &pl330->peripherals[i]; 2892 2893 pch->chan.private = adev->dev.of_node; 2894 INIT_LIST_HEAD(&pch->submitted_list); 2895 INIT_LIST_HEAD(&pch->work_list); 2896 INIT_LIST_HEAD(&pch->completed_list); 2897 spin_lock_init(&pch->lock); 2898 pch->thread = NULL; 2899 pch->chan.device = pd; 2900 pch->dmac = pl330; 2901 pch->dir = DMA_NONE; 2902 2903 /* Add the channel to the DMAC list */ 2904 list_add_tail(&pch->chan.device_node, &pd->channels); 2905 } 2906 2907 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2908 if (pcfg->num_peri) { 2909 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2910 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2911 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2912 } 2913 2914 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2915 pd->device_free_chan_resources = pl330_free_chan_resources; 2916 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2917 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2918 pd->device_tx_status = pl330_tx_status; 2919 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2920 pd->device_config = pl330_config; 2921 pd->device_pause = pl330_pause; 2922 pd->device_terminate_all = pl330_terminate_all; 2923 pd->device_issue_pending = pl330_issue_pending; 2924 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 2925 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 2926 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2927 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2928 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ? 2929 1 : PL330_MAX_BURST); 2930 2931 ret = dma_async_device_register(pd); 2932 if (ret) { 2933 dev_err(&adev->dev, "unable to register DMAC\n"); 2934 goto probe_err3; 2935 } 2936 2937 if (adev->dev.of_node) { 2938 ret = of_dma_controller_register(adev->dev.of_node, 2939 of_dma_pl330_xlate, pl330); 2940 if (ret) { 2941 dev_err(&adev->dev, 2942 "unable to register DMA to the generic DT DMA helpers\n"); 2943 } 2944 } 2945 2946 adev->dev.dma_parms = &pl330->dma_parms; 2947 2948 /* 2949 * This is the limit for transfers with a buswidth of 1, larger 2950 * buswidths will have larger limits. 2951 */ 2952 ret = dma_set_max_seg_size(&adev->dev, 1900800); 2953 if (ret) 2954 dev_err(&adev->dev, "unable to set the seg size\n"); 2955 2956 2957 dev_info(&adev->dev, 2958 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 2959 dev_info(&adev->dev, 2960 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2961 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 2962 pcfg->num_peri, pcfg->num_events); 2963 2964 pm_runtime_irq_safe(&adev->dev); 2965 pm_runtime_use_autosuspend(&adev->dev); 2966 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 2967 pm_runtime_mark_last_busy(&adev->dev); 2968 pm_runtime_put_autosuspend(&adev->dev); 2969 2970 return 0; 2971 probe_err3: 2972 /* Idle the DMAC */ 2973 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 2974 chan.device_node) { 2975 2976 /* Remove the channel */ 2977 list_del(&pch->chan.device_node); 2978 2979 /* Flush the channel */ 2980 if (pch->thread) { 2981 pl330_terminate_all(&pch->chan); 2982 pl330_free_chan_resources(&pch->chan); 2983 } 2984 } 2985 probe_err2: 2986 pl330_del(pl330); 2987 2988 return ret; 2989 } 2990 2991 static int pl330_remove(struct amba_device *adev) 2992 { 2993 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 2994 struct dma_pl330_chan *pch, *_p; 2995 int i, irq; 2996 2997 pm_runtime_get_noresume(pl330->ddma.dev); 2998 2999 if (adev->dev.of_node) 3000 of_dma_controller_free(adev->dev.of_node); 3001 3002 for (i = 0; i < AMBA_NR_IRQS; i++) { 3003 irq = adev->irq[i]; 3004 if (irq) 3005 devm_free_irq(&adev->dev, irq, pl330); 3006 } 3007 3008 dma_async_device_unregister(&pl330->ddma); 3009 3010 /* Idle the DMAC */ 3011 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3012 chan.device_node) { 3013 3014 /* Remove the channel */ 3015 list_del(&pch->chan.device_node); 3016 3017 /* Flush the channel */ 3018 if (pch->thread) { 3019 pl330_terminate_all(&pch->chan); 3020 pl330_free_chan_resources(&pch->chan); 3021 } 3022 } 3023 3024 pl330_del(pl330); 3025 3026 return 0; 3027 } 3028 3029 static const struct amba_id pl330_ids[] = { 3030 { 3031 .id = 0x00041330, 3032 .mask = 0x000fffff, 3033 }, 3034 { 0, 0 }, 3035 }; 3036 3037 MODULE_DEVICE_TABLE(amba, pl330_ids); 3038 3039 static struct amba_driver pl330_driver = { 3040 .drv = { 3041 .owner = THIS_MODULE, 3042 .name = "dma-pl330", 3043 .pm = &pl330_pm, 3044 }, 3045 .id_table = pl330_ids, 3046 .probe = pl330_probe, 3047 .remove = pl330_remove, 3048 }; 3049 3050 module_amba_driver(pl330_driver); 3051 3052 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3053 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3054 MODULE_LICENSE("GPL"); 3055