1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/err.h> 30 31 #include "dmaengine.h" 32 #define PL330_MAX_CHAN 8 33 #define PL330_MAX_IRQS 32 34 #define PL330_MAX_PERI 32 35 36 enum pl330_srccachectrl { 37 SCCTRL0, /* Noncacheable and nonbufferable */ 38 SCCTRL1, /* Bufferable only */ 39 SCCTRL2, /* Cacheable, but do not allocate */ 40 SCCTRL3, /* Cacheable and bufferable, but do not allocate */ 41 SINVALID1, 42 SINVALID2, 43 SCCTRL6, /* Cacheable write-through, allocate on reads only */ 44 SCCTRL7, /* Cacheable write-back, allocate on reads only */ 45 }; 46 47 enum pl330_dstcachectrl { 48 DCCTRL0, /* Noncacheable and nonbufferable */ 49 DCCTRL1, /* Bufferable only */ 50 DCCTRL2, /* Cacheable, but do not allocate */ 51 DCCTRL3, /* Cacheable and bufferable, but do not allocate */ 52 DINVALID1, /* AWCACHE = 0x1000 */ 53 DINVALID2, 54 DCCTRL6, /* Cacheable write-through, allocate on writes only */ 55 DCCTRL7, /* Cacheable write-back, allocate on writes only */ 56 }; 57 58 enum pl330_byteswap { 59 SWAP_NO, 60 SWAP_2, 61 SWAP_4, 62 SWAP_8, 63 SWAP_16, 64 }; 65 66 enum pl330_reqtype { 67 MEMTOMEM, 68 MEMTODEV, 69 DEVTOMEM, 70 DEVTODEV, 71 }; 72 73 /* Register and Bit field Definitions */ 74 #define DS 0x0 75 #define DS_ST_STOP 0x0 76 #define DS_ST_EXEC 0x1 77 #define DS_ST_CMISS 0x2 78 #define DS_ST_UPDTPC 0x3 79 #define DS_ST_WFE 0x4 80 #define DS_ST_ATBRR 0x5 81 #define DS_ST_QBUSY 0x6 82 #define DS_ST_WFP 0x7 83 #define DS_ST_KILL 0x8 84 #define DS_ST_CMPLT 0x9 85 #define DS_ST_FLTCMP 0xe 86 #define DS_ST_FAULT 0xf 87 88 #define DPC 0x4 89 #define INTEN 0x20 90 #define ES 0x24 91 #define INTSTATUS 0x28 92 #define INTCLR 0x2c 93 #define FSM 0x30 94 #define FSC 0x34 95 #define FTM 0x38 96 97 #define _FTC 0x40 98 #define FTC(n) (_FTC + (n)*0x4) 99 100 #define _CS 0x100 101 #define CS(n) (_CS + (n)*0x8) 102 #define CS_CNS (1 << 21) 103 104 #define _CPC 0x104 105 #define CPC(n) (_CPC + (n)*0x8) 106 107 #define _SA 0x400 108 #define SA(n) (_SA + (n)*0x20) 109 110 #define _DA 0x404 111 #define DA(n) (_DA + (n)*0x20) 112 113 #define _CC 0x408 114 #define CC(n) (_CC + (n)*0x20) 115 116 #define CC_SRCINC (1 << 0) 117 #define CC_DSTINC (1 << 14) 118 #define CC_SRCPRI (1 << 8) 119 #define CC_DSTPRI (1 << 22) 120 #define CC_SRCNS (1 << 9) 121 #define CC_DSTNS (1 << 23) 122 #define CC_SRCIA (1 << 10) 123 #define CC_DSTIA (1 << 24) 124 #define CC_SRCBRSTLEN_SHFT 4 125 #define CC_DSTBRSTLEN_SHFT 18 126 #define CC_SRCBRSTSIZE_SHFT 1 127 #define CC_DSTBRSTSIZE_SHFT 15 128 #define CC_SRCCCTRL_SHFT 11 129 #define CC_SRCCCTRL_MASK 0x7 130 #define CC_DSTCCTRL_SHFT 25 131 #define CC_DRCCCTRL_MASK 0x7 132 #define CC_SWAP_SHFT 28 133 134 #define _LC0 0x40c 135 #define LC0(n) (_LC0 + (n)*0x20) 136 137 #define _LC1 0x410 138 #define LC1(n) (_LC1 + (n)*0x20) 139 140 #define DBGSTATUS 0xd00 141 #define DBG_BUSY (1 << 0) 142 143 #define DBGCMD 0xd04 144 #define DBGINST0 0xd08 145 #define DBGINST1 0xd0c 146 147 #define CR0 0xe00 148 #define CR1 0xe04 149 #define CR2 0xe08 150 #define CR3 0xe0c 151 #define CR4 0xe10 152 #define CRD 0xe14 153 154 #define PERIPH_ID 0xfe0 155 #define PERIPH_REV_SHIFT 20 156 #define PERIPH_REV_MASK 0xf 157 #define PERIPH_REV_R0P0 0 158 #define PERIPH_REV_R1P0 1 159 #define PERIPH_REV_R1P1 2 160 #define PCELL_ID 0xff0 161 162 #define CR0_PERIPH_REQ_SET (1 << 0) 163 #define CR0_BOOT_EN_SET (1 << 1) 164 #define CR0_BOOT_MAN_NS (1 << 2) 165 #define CR0_NUM_CHANS_SHIFT 4 166 #define CR0_NUM_CHANS_MASK 0x7 167 #define CR0_NUM_PERIPH_SHIFT 12 168 #define CR0_NUM_PERIPH_MASK 0x1f 169 #define CR0_NUM_EVENTS_SHIFT 17 170 #define CR0_NUM_EVENTS_MASK 0x1f 171 172 #define CR1_ICACHE_LEN_SHIFT 0 173 #define CR1_ICACHE_LEN_MASK 0x7 174 #define CR1_NUM_ICACHELINES_SHIFT 4 175 #define CR1_NUM_ICACHELINES_MASK 0xf 176 177 #define CRD_DATA_WIDTH_SHIFT 0 178 #define CRD_DATA_WIDTH_MASK 0x7 179 #define CRD_WR_CAP_SHIFT 4 180 #define CRD_WR_CAP_MASK 0x7 181 #define CRD_WR_Q_DEP_SHIFT 8 182 #define CRD_WR_Q_DEP_MASK 0xf 183 #define CRD_RD_CAP_SHIFT 12 184 #define CRD_RD_CAP_MASK 0x7 185 #define CRD_RD_Q_DEP_SHIFT 16 186 #define CRD_RD_Q_DEP_MASK 0xf 187 #define CRD_DATA_BUFF_SHIFT 20 188 #define CRD_DATA_BUFF_MASK 0x3ff 189 190 #define PART 0x330 191 #define DESIGNER 0x41 192 #define REVISION 0x0 193 #define INTEG_CFG 0x0 194 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 195 196 #define PCELL_ID_VAL 0xb105f00d 197 198 #define PL330_STATE_STOPPED (1 << 0) 199 #define PL330_STATE_EXECUTING (1 << 1) 200 #define PL330_STATE_WFE (1 << 2) 201 #define PL330_STATE_FAULTING (1 << 3) 202 #define PL330_STATE_COMPLETING (1 << 4) 203 #define PL330_STATE_WFP (1 << 5) 204 #define PL330_STATE_KILLING (1 << 6) 205 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 206 #define PL330_STATE_CACHEMISS (1 << 8) 207 #define PL330_STATE_UPDTPC (1 << 9) 208 #define PL330_STATE_ATBARRIER (1 << 10) 209 #define PL330_STATE_QUEUEBUSY (1 << 11) 210 #define PL330_STATE_INVALID (1 << 15) 211 212 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 213 | PL330_STATE_WFE | PL330_STATE_FAULTING) 214 215 #define CMD_DMAADDH 0x54 216 #define CMD_DMAEND 0x00 217 #define CMD_DMAFLUSHP 0x35 218 #define CMD_DMAGO 0xa0 219 #define CMD_DMALD 0x04 220 #define CMD_DMALDP 0x25 221 #define CMD_DMALP 0x20 222 #define CMD_DMALPEND 0x28 223 #define CMD_DMAKILL 0x01 224 #define CMD_DMAMOV 0xbc 225 #define CMD_DMANOP 0x18 226 #define CMD_DMARMB 0x12 227 #define CMD_DMASEV 0x34 228 #define CMD_DMAST 0x08 229 #define CMD_DMASTP 0x29 230 #define CMD_DMASTZ 0x0c 231 #define CMD_DMAWFE 0x36 232 #define CMD_DMAWFP 0x30 233 #define CMD_DMAWMB 0x13 234 235 #define SZ_DMAADDH 3 236 #define SZ_DMAEND 1 237 #define SZ_DMAFLUSHP 2 238 #define SZ_DMALD 1 239 #define SZ_DMALDP 2 240 #define SZ_DMALP 2 241 #define SZ_DMALPEND 2 242 #define SZ_DMAKILL 1 243 #define SZ_DMAMOV 6 244 #define SZ_DMANOP 1 245 #define SZ_DMARMB 1 246 #define SZ_DMASEV 2 247 #define SZ_DMAST 1 248 #define SZ_DMASTP 2 249 #define SZ_DMASTZ 1 250 #define SZ_DMAWFE 2 251 #define SZ_DMAWFP 2 252 #define SZ_DMAWMB 1 253 #define SZ_DMAGO 6 254 255 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 256 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 257 258 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 259 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 260 261 /* 262 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 263 * at 1byte/burst for P<->M and M<->M respectively. 264 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 265 * should be enough for P<->M and M<->M respectively. 266 */ 267 #define MCODE_BUFF_PER_REQ 256 268 269 /* If the _pl330_req is available to the client */ 270 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND) 271 272 /* Use this _only_ to wait on transient states */ 273 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 274 275 #ifdef PL330_DEBUG_MCGEN 276 static unsigned cmd_line; 277 #define PL330_DBGCMD_DUMP(off, x...) do { \ 278 printk("%x:", cmd_line); \ 279 printk(x); \ 280 cmd_line += off; \ 281 } while (0) 282 #define PL330_DBGMC_START(addr) (cmd_line = addr) 283 #else 284 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 285 #define PL330_DBGMC_START(addr) do {} while (0) 286 #endif 287 288 /* The number of default descriptors */ 289 290 #define NR_DEFAULT_DESC 16 291 292 /* Populated by the PL330 core driver for DMA API driver's info */ 293 struct pl330_config { 294 u32 periph_id; 295 u32 pcell_id; 296 #define DMAC_MODE_NS (1 << 0) 297 unsigned int mode; 298 unsigned int data_bus_width:10; /* In number of bits */ 299 unsigned int data_buf_dep:10; 300 unsigned int num_chan:4; 301 unsigned int num_peri:6; 302 u32 peri_ns; 303 unsigned int num_events:6; 304 u32 irq_ns; 305 }; 306 307 /* Handle to the DMAC provided to the PL330 core */ 308 struct pl330_info { 309 /* Owning device */ 310 struct device *dev; 311 /* Size of MicroCode buffers for each channel. */ 312 unsigned mcbufsz; 313 /* ioremap'ed address of PL330 registers. */ 314 void __iomem *base; 315 /* Client can freely use it. */ 316 void *client_data; 317 /* PL330 core data, Client must not touch it. */ 318 void *pl330_data; 319 /* Populated by the PL330 core driver during pl330_add */ 320 struct pl330_config pcfg; 321 /* 322 * If the DMAC has some reset mechanism, then the 323 * client may want to provide pointer to the method. 324 */ 325 void (*dmac_reset)(struct pl330_info *pi); 326 }; 327 328 /** 329 * Request Configuration. 330 * The PL330 core does not modify this and uses the last 331 * working configuration if the request doesn't provide any. 332 * 333 * The Client may want to provide this info only for the 334 * first request and a request with new settings. 335 */ 336 struct pl330_reqcfg { 337 /* Address Incrementing */ 338 unsigned dst_inc:1; 339 unsigned src_inc:1; 340 341 /* 342 * For now, the SRC & DST protection levels 343 * and burst size/length are assumed same. 344 */ 345 bool nonsecure; 346 bool privileged; 347 bool insnaccess; 348 unsigned brst_len:5; 349 unsigned brst_size:3; /* in power of 2 */ 350 351 enum pl330_dstcachectrl dcctl; 352 enum pl330_srccachectrl scctl; 353 enum pl330_byteswap swap; 354 struct pl330_config *pcfg; 355 }; 356 357 /* 358 * One cycle of DMAC operation. 359 * There may be more than one xfer in a request. 360 */ 361 struct pl330_xfer { 362 u32 src_addr; 363 u32 dst_addr; 364 /* Size to xfer */ 365 u32 bytes; 366 /* 367 * Pointer to next xfer in the list. 368 * The last xfer in the req must point to NULL. 369 */ 370 struct pl330_xfer *next; 371 }; 372 373 /* The xfer callbacks are made with one of these arguments. */ 374 enum pl330_op_err { 375 /* The all xfers in the request were success. */ 376 PL330_ERR_NONE, 377 /* If req aborted due to global error. */ 378 PL330_ERR_ABORT, 379 /* If req failed due to problem with Channel. */ 380 PL330_ERR_FAIL, 381 }; 382 383 /* A request defining Scatter-Gather List ending with NULL xfer. */ 384 struct pl330_req { 385 enum pl330_reqtype rqtype; 386 /* Index of peripheral for the xfer. */ 387 unsigned peri:5; 388 /* Unique token for this xfer, set by the client. */ 389 void *token; 390 /* Callback to be called after xfer. */ 391 void (*xfer_cb)(void *token, enum pl330_op_err err); 392 /* If NULL, req will be done at last set parameters. */ 393 struct pl330_reqcfg *cfg; 394 /* Pointer to first xfer in the request. */ 395 struct pl330_xfer *x; 396 /* Hook to attach to DMAC's list of reqs with due callback */ 397 struct list_head rqd; 398 }; 399 400 /* 401 * To know the status of the channel and DMAC, the client 402 * provides a pointer to this structure. The PL330 core 403 * fills it with current information. 404 */ 405 struct pl330_chanstatus { 406 /* 407 * If the DMAC engine halted due to some error, 408 * the client should remove-add DMAC. 409 */ 410 bool dmac_halted; 411 /* 412 * If channel is halted due to some error, 413 * the client should ABORT/FLUSH and START the channel. 414 */ 415 bool faulting; 416 /* Location of last load */ 417 u32 src_addr; 418 /* Location of last store */ 419 u32 dst_addr; 420 /* 421 * Pointer to the currently active req, NULL if channel is 422 * inactive, even though the requests may be present. 423 */ 424 struct pl330_req *top_req; 425 /* Pointer to req waiting second in the queue if any. */ 426 struct pl330_req *wait_req; 427 }; 428 429 enum pl330_chan_op { 430 /* Start the channel */ 431 PL330_OP_START, 432 /* Abort the active xfer */ 433 PL330_OP_ABORT, 434 /* Stop xfer and flush queue */ 435 PL330_OP_FLUSH, 436 }; 437 438 struct _xfer_spec { 439 u32 ccr; 440 struct pl330_req *r; 441 struct pl330_xfer *x; 442 }; 443 444 enum dmamov_dst { 445 SAR = 0, 446 CCR, 447 DAR, 448 }; 449 450 enum pl330_dst { 451 SRC = 0, 452 DST, 453 }; 454 455 enum pl330_cond { 456 SINGLE, 457 BURST, 458 ALWAYS, 459 }; 460 461 struct _pl330_req { 462 u32 mc_bus; 463 void *mc_cpu; 464 /* Number of bytes taken to setup MC for the req */ 465 u32 mc_len; 466 struct pl330_req *r; 467 }; 468 469 /* ToBeDone for tasklet */ 470 struct _pl330_tbd { 471 bool reset_dmac; 472 bool reset_mngr; 473 u8 reset_chan; 474 }; 475 476 /* A DMAC Thread */ 477 struct pl330_thread { 478 u8 id; 479 int ev; 480 /* If the channel is not yet acquired by any client */ 481 bool free; 482 /* Parent DMAC */ 483 struct pl330_dmac *dmac; 484 /* Only two at a time */ 485 struct _pl330_req req[2]; 486 /* Index of the last enqueued request */ 487 unsigned lstenq; 488 /* Index of the last submitted request or -1 if the DMA is stopped */ 489 int req_running; 490 }; 491 492 enum pl330_dmac_state { 493 UNINIT, 494 INIT, 495 DYING, 496 }; 497 498 /* A DMAC */ 499 struct pl330_dmac { 500 spinlock_t lock; 501 /* Holds list of reqs with due callbacks */ 502 struct list_head req_done; 503 /* Pointer to platform specific stuff */ 504 struct pl330_info *pinfo; 505 /* Maximum possible events/irqs */ 506 int events[32]; 507 /* BUS address of MicroCode buffer */ 508 u32 mcode_bus; 509 /* CPU address of MicroCode buffer */ 510 void *mcode_cpu; 511 /* List of all Channel threads */ 512 struct pl330_thread *channels; 513 /* Pointer to the MANAGER thread */ 514 struct pl330_thread *manager; 515 /* To handle bad news in interrupt */ 516 struct tasklet_struct tasks; 517 struct _pl330_tbd dmac_tbd; 518 /* State of DMAC operation */ 519 enum pl330_dmac_state state; 520 }; 521 522 enum desc_status { 523 /* In the DMAC pool */ 524 FREE, 525 /* 526 * Allocated to some channel during prep_xxx 527 * Also may be sitting on the work_list. 528 */ 529 PREP, 530 /* 531 * Sitting on the work_list and already submitted 532 * to the PL330 core. Not more than two descriptors 533 * of a channel can be BUSY at any time. 534 */ 535 BUSY, 536 /* 537 * Sitting on the channel work_list but xfer done 538 * by PL330 core 539 */ 540 DONE, 541 }; 542 543 struct dma_pl330_chan { 544 /* Schedule desc completion */ 545 struct tasklet_struct task; 546 547 /* DMA-Engine Channel */ 548 struct dma_chan chan; 549 550 /* List of to be xfered descriptors */ 551 struct list_head work_list; 552 553 /* Pointer to the DMAC that manages this channel, 554 * NULL if the channel is available to be acquired. 555 * As the parent, this DMAC also provides descriptors 556 * to the channel. 557 */ 558 struct dma_pl330_dmac *dmac; 559 560 /* To protect channel manipulation */ 561 spinlock_t lock; 562 563 /* Token of a hardware channel thread of PL330 DMAC 564 * NULL if the channel is available to be acquired. 565 */ 566 void *pl330_chid; 567 568 /* For D-to-M and M-to-D channels */ 569 int burst_sz; /* the peripheral fifo width */ 570 int burst_len; /* the number of burst */ 571 dma_addr_t fifo_addr; 572 573 /* for cyclic capability */ 574 bool cyclic; 575 }; 576 577 struct dma_pl330_dmac { 578 struct pl330_info pif; 579 580 /* DMA-Engine Device */ 581 struct dma_device ddma; 582 583 /* Pool of descriptors available for the DMAC's channels */ 584 struct list_head desc_pool; 585 /* To protect desc_pool manipulation */ 586 spinlock_t pool_lock; 587 588 /* Peripheral channels connected to this DMAC */ 589 struct dma_pl330_chan *peripherals; /* keep at end */ 590 }; 591 592 struct dma_pl330_desc { 593 /* To attach to a queue as child */ 594 struct list_head node; 595 596 /* Descriptor for the DMA Engine API */ 597 struct dma_async_tx_descriptor txd; 598 599 /* Xfer for PL330 core */ 600 struct pl330_xfer px; 601 602 struct pl330_reqcfg rqcfg; 603 struct pl330_req req; 604 605 enum desc_status status; 606 607 /* The channel which currently holds this desc */ 608 struct dma_pl330_chan *pchan; 609 }; 610 611 struct dma_pl330_filter_args { 612 struct dma_pl330_dmac *pdmac; 613 unsigned int chan_id; 614 }; 615 616 static inline void _callback(struct pl330_req *r, enum pl330_op_err err) 617 { 618 if (r && r->xfer_cb) 619 r->xfer_cb(r->token, err); 620 } 621 622 static inline bool _queue_empty(struct pl330_thread *thrd) 623 { 624 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1])) 625 ? true : false; 626 } 627 628 static inline bool _queue_full(struct pl330_thread *thrd) 629 { 630 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1])) 631 ? false : true; 632 } 633 634 static inline bool is_manager(struct pl330_thread *thrd) 635 { 636 struct pl330_dmac *pl330 = thrd->dmac; 637 638 /* MANAGER is indexed at the end */ 639 if (thrd->id == pl330->pinfo->pcfg.num_chan) 640 return true; 641 else 642 return false; 643 } 644 645 /* If manager of the thread is in Non-Secure mode */ 646 static inline bool _manager_ns(struct pl330_thread *thrd) 647 { 648 struct pl330_dmac *pl330 = thrd->dmac; 649 650 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false; 651 } 652 653 static inline u32 get_id(struct pl330_info *pi, u32 off) 654 { 655 void __iomem *regs = pi->base; 656 u32 id = 0; 657 658 id |= (readb(regs + off + 0x0) << 0); 659 id |= (readb(regs + off + 0x4) << 8); 660 id |= (readb(regs + off + 0x8) << 16); 661 id |= (readb(regs + off + 0xc) << 24); 662 663 return id; 664 } 665 666 static inline u32 get_revision(u32 periph_id) 667 { 668 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 669 } 670 671 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 672 enum pl330_dst da, u16 val) 673 { 674 if (dry_run) 675 return SZ_DMAADDH; 676 677 buf[0] = CMD_DMAADDH; 678 buf[0] |= (da << 1); 679 *((u16 *)&buf[1]) = val; 680 681 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 682 da == 1 ? "DA" : "SA", val); 683 684 return SZ_DMAADDH; 685 } 686 687 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 688 { 689 if (dry_run) 690 return SZ_DMAEND; 691 692 buf[0] = CMD_DMAEND; 693 694 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 695 696 return SZ_DMAEND; 697 } 698 699 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 700 { 701 if (dry_run) 702 return SZ_DMAFLUSHP; 703 704 buf[0] = CMD_DMAFLUSHP; 705 706 peri &= 0x1f; 707 peri <<= 3; 708 buf[1] = peri; 709 710 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 711 712 return SZ_DMAFLUSHP; 713 } 714 715 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 716 { 717 if (dry_run) 718 return SZ_DMALD; 719 720 buf[0] = CMD_DMALD; 721 722 if (cond == SINGLE) 723 buf[0] |= (0 << 1) | (1 << 0); 724 else if (cond == BURST) 725 buf[0] |= (1 << 1) | (1 << 0); 726 727 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 728 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 729 730 return SZ_DMALD; 731 } 732 733 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 734 enum pl330_cond cond, u8 peri) 735 { 736 if (dry_run) 737 return SZ_DMALDP; 738 739 buf[0] = CMD_DMALDP; 740 741 if (cond == BURST) 742 buf[0] |= (1 << 1); 743 744 peri &= 0x1f; 745 peri <<= 3; 746 buf[1] = peri; 747 748 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 749 cond == SINGLE ? 'S' : 'B', peri >> 3); 750 751 return SZ_DMALDP; 752 } 753 754 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 755 unsigned loop, u8 cnt) 756 { 757 if (dry_run) 758 return SZ_DMALP; 759 760 buf[0] = CMD_DMALP; 761 762 if (loop) 763 buf[0] |= (1 << 1); 764 765 cnt--; /* DMAC increments by 1 internally */ 766 buf[1] = cnt; 767 768 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 769 770 return SZ_DMALP; 771 } 772 773 struct _arg_LPEND { 774 enum pl330_cond cond; 775 bool forever; 776 unsigned loop; 777 u8 bjump; 778 }; 779 780 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 781 const struct _arg_LPEND *arg) 782 { 783 enum pl330_cond cond = arg->cond; 784 bool forever = arg->forever; 785 unsigned loop = arg->loop; 786 u8 bjump = arg->bjump; 787 788 if (dry_run) 789 return SZ_DMALPEND; 790 791 buf[0] = CMD_DMALPEND; 792 793 if (loop) 794 buf[0] |= (1 << 2); 795 796 if (!forever) 797 buf[0] |= (1 << 4); 798 799 if (cond == SINGLE) 800 buf[0] |= (0 << 1) | (1 << 0); 801 else if (cond == BURST) 802 buf[0] |= (1 << 1) | (1 << 0); 803 804 buf[1] = bjump; 805 806 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 807 forever ? "FE" : "END", 808 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 809 loop ? '1' : '0', 810 bjump); 811 812 return SZ_DMALPEND; 813 } 814 815 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 816 { 817 if (dry_run) 818 return SZ_DMAKILL; 819 820 buf[0] = CMD_DMAKILL; 821 822 return SZ_DMAKILL; 823 } 824 825 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 826 enum dmamov_dst dst, u32 val) 827 { 828 if (dry_run) 829 return SZ_DMAMOV; 830 831 buf[0] = CMD_DMAMOV; 832 buf[1] = dst; 833 *((u32 *)&buf[2]) = val; 834 835 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 836 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 837 838 return SZ_DMAMOV; 839 } 840 841 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 842 { 843 if (dry_run) 844 return SZ_DMANOP; 845 846 buf[0] = CMD_DMANOP; 847 848 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 849 850 return SZ_DMANOP; 851 } 852 853 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 854 { 855 if (dry_run) 856 return SZ_DMARMB; 857 858 buf[0] = CMD_DMARMB; 859 860 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 861 862 return SZ_DMARMB; 863 } 864 865 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 866 { 867 if (dry_run) 868 return SZ_DMASEV; 869 870 buf[0] = CMD_DMASEV; 871 872 ev &= 0x1f; 873 ev <<= 3; 874 buf[1] = ev; 875 876 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 877 878 return SZ_DMASEV; 879 } 880 881 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 882 { 883 if (dry_run) 884 return SZ_DMAST; 885 886 buf[0] = CMD_DMAST; 887 888 if (cond == SINGLE) 889 buf[0] |= (0 << 1) | (1 << 0); 890 else if (cond == BURST) 891 buf[0] |= (1 << 1) | (1 << 0); 892 893 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 894 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 895 896 return SZ_DMAST; 897 } 898 899 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 900 enum pl330_cond cond, u8 peri) 901 { 902 if (dry_run) 903 return SZ_DMASTP; 904 905 buf[0] = CMD_DMASTP; 906 907 if (cond == BURST) 908 buf[0] |= (1 << 1); 909 910 peri &= 0x1f; 911 peri <<= 3; 912 buf[1] = peri; 913 914 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 915 cond == SINGLE ? 'S' : 'B', peri >> 3); 916 917 return SZ_DMASTP; 918 } 919 920 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 921 { 922 if (dry_run) 923 return SZ_DMASTZ; 924 925 buf[0] = CMD_DMASTZ; 926 927 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 928 929 return SZ_DMASTZ; 930 } 931 932 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 933 unsigned invalidate) 934 { 935 if (dry_run) 936 return SZ_DMAWFE; 937 938 buf[0] = CMD_DMAWFE; 939 940 ev &= 0x1f; 941 ev <<= 3; 942 buf[1] = ev; 943 944 if (invalidate) 945 buf[1] |= (1 << 1); 946 947 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 948 ev >> 3, invalidate ? ", I" : ""); 949 950 return SZ_DMAWFE; 951 } 952 953 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 954 enum pl330_cond cond, u8 peri) 955 { 956 if (dry_run) 957 return SZ_DMAWFP; 958 959 buf[0] = CMD_DMAWFP; 960 961 if (cond == SINGLE) 962 buf[0] |= (0 << 1) | (0 << 0); 963 else if (cond == BURST) 964 buf[0] |= (1 << 1) | (0 << 0); 965 else 966 buf[0] |= (0 << 1) | (1 << 0); 967 968 peri &= 0x1f; 969 peri <<= 3; 970 buf[1] = peri; 971 972 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 973 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 974 975 return SZ_DMAWFP; 976 } 977 978 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 979 { 980 if (dry_run) 981 return SZ_DMAWMB; 982 983 buf[0] = CMD_DMAWMB; 984 985 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 986 987 return SZ_DMAWMB; 988 } 989 990 struct _arg_GO { 991 u8 chan; 992 u32 addr; 993 unsigned ns; 994 }; 995 996 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 997 const struct _arg_GO *arg) 998 { 999 u8 chan = arg->chan; 1000 u32 addr = arg->addr; 1001 unsigned ns = arg->ns; 1002 1003 if (dry_run) 1004 return SZ_DMAGO; 1005 1006 buf[0] = CMD_DMAGO; 1007 buf[0] |= (ns << 1); 1008 1009 buf[1] = chan & 0x7; 1010 1011 *((u32 *)&buf[2]) = addr; 1012 1013 return SZ_DMAGO; 1014 } 1015 1016 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 1017 1018 /* Returns Time-Out */ 1019 static bool _until_dmac_idle(struct pl330_thread *thrd) 1020 { 1021 void __iomem *regs = thrd->dmac->pinfo->base; 1022 unsigned long loops = msecs_to_loops(5); 1023 1024 do { 1025 /* Until Manager is Idle */ 1026 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 1027 break; 1028 1029 cpu_relax(); 1030 } while (--loops); 1031 1032 if (!loops) 1033 return true; 1034 1035 return false; 1036 } 1037 1038 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 1039 u8 insn[], bool as_manager) 1040 { 1041 void __iomem *regs = thrd->dmac->pinfo->base; 1042 u32 val; 1043 1044 val = (insn[0] << 16) | (insn[1] << 24); 1045 if (!as_manager) { 1046 val |= (1 << 0); 1047 val |= (thrd->id << 8); /* Channel Number */ 1048 } 1049 writel(val, regs + DBGINST0); 1050 1051 val = *((u32 *)&insn[2]); 1052 writel(val, regs + DBGINST1); 1053 1054 /* If timed out due to halted state-machine */ 1055 if (_until_dmac_idle(thrd)) { 1056 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n"); 1057 return; 1058 } 1059 1060 /* Get going */ 1061 writel(0, regs + DBGCMD); 1062 } 1063 1064 /* 1065 * Mark a _pl330_req as free. 1066 * We do it by writing DMAEND as the first instruction 1067 * because no valid request is going to have DMAEND as 1068 * its first instruction to execute. 1069 */ 1070 static void mark_free(struct pl330_thread *thrd, int idx) 1071 { 1072 struct _pl330_req *req = &thrd->req[idx]; 1073 1074 _emit_END(0, req->mc_cpu); 1075 req->mc_len = 0; 1076 1077 thrd->req_running = -1; 1078 } 1079 1080 static inline u32 _state(struct pl330_thread *thrd) 1081 { 1082 void __iomem *regs = thrd->dmac->pinfo->base; 1083 u32 val; 1084 1085 if (is_manager(thrd)) 1086 val = readl(regs + DS) & 0xf; 1087 else 1088 val = readl(regs + CS(thrd->id)) & 0xf; 1089 1090 switch (val) { 1091 case DS_ST_STOP: 1092 return PL330_STATE_STOPPED; 1093 case DS_ST_EXEC: 1094 return PL330_STATE_EXECUTING; 1095 case DS_ST_CMISS: 1096 return PL330_STATE_CACHEMISS; 1097 case DS_ST_UPDTPC: 1098 return PL330_STATE_UPDTPC; 1099 case DS_ST_WFE: 1100 return PL330_STATE_WFE; 1101 case DS_ST_FAULT: 1102 return PL330_STATE_FAULTING; 1103 case DS_ST_ATBRR: 1104 if (is_manager(thrd)) 1105 return PL330_STATE_INVALID; 1106 else 1107 return PL330_STATE_ATBARRIER; 1108 case DS_ST_QBUSY: 1109 if (is_manager(thrd)) 1110 return PL330_STATE_INVALID; 1111 else 1112 return PL330_STATE_QUEUEBUSY; 1113 case DS_ST_WFP: 1114 if (is_manager(thrd)) 1115 return PL330_STATE_INVALID; 1116 else 1117 return PL330_STATE_WFP; 1118 case DS_ST_KILL: 1119 if (is_manager(thrd)) 1120 return PL330_STATE_INVALID; 1121 else 1122 return PL330_STATE_KILLING; 1123 case DS_ST_CMPLT: 1124 if (is_manager(thrd)) 1125 return PL330_STATE_INVALID; 1126 else 1127 return PL330_STATE_COMPLETING; 1128 case DS_ST_FLTCMP: 1129 if (is_manager(thrd)) 1130 return PL330_STATE_INVALID; 1131 else 1132 return PL330_STATE_FAULT_COMPLETING; 1133 default: 1134 return PL330_STATE_INVALID; 1135 } 1136 } 1137 1138 static void _stop(struct pl330_thread *thrd) 1139 { 1140 void __iomem *regs = thrd->dmac->pinfo->base; 1141 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1142 1143 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1144 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1145 1146 /* Return if nothing needs to be done */ 1147 if (_state(thrd) == PL330_STATE_COMPLETING 1148 || _state(thrd) == PL330_STATE_KILLING 1149 || _state(thrd) == PL330_STATE_STOPPED) 1150 return; 1151 1152 _emit_KILL(0, insn); 1153 1154 /* Stop generating interrupts for SEV */ 1155 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1156 1157 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1158 } 1159 1160 /* Start doing req 'idx' of thread 'thrd' */ 1161 static bool _trigger(struct pl330_thread *thrd) 1162 { 1163 void __iomem *regs = thrd->dmac->pinfo->base; 1164 struct _pl330_req *req; 1165 struct pl330_req *r; 1166 struct _arg_GO go; 1167 unsigned ns; 1168 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1169 int idx; 1170 1171 /* Return if already ACTIVE */ 1172 if (_state(thrd) != PL330_STATE_STOPPED) 1173 return true; 1174 1175 idx = 1 - thrd->lstenq; 1176 if (!IS_FREE(&thrd->req[idx])) 1177 req = &thrd->req[idx]; 1178 else { 1179 idx = thrd->lstenq; 1180 if (!IS_FREE(&thrd->req[idx])) 1181 req = &thrd->req[idx]; 1182 else 1183 req = NULL; 1184 } 1185 1186 /* Return if no request */ 1187 if (!req || !req->r) 1188 return true; 1189 1190 r = req->r; 1191 1192 if (r->cfg) 1193 ns = r->cfg->nonsecure ? 1 : 0; 1194 else if (readl(regs + CS(thrd->id)) & CS_CNS) 1195 ns = 1; 1196 else 1197 ns = 0; 1198 1199 /* See 'Abort Sources' point-4 at Page 2-25 */ 1200 if (_manager_ns(thrd) && !ns) 1201 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n", 1202 __func__, __LINE__); 1203 1204 go.chan = thrd->id; 1205 go.addr = req->mc_bus; 1206 go.ns = ns; 1207 _emit_GO(0, insn, &go); 1208 1209 /* Set to generate interrupts for SEV */ 1210 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1211 1212 /* Only manager can execute GO */ 1213 _execute_DBGINSN(thrd, insn, true); 1214 1215 thrd->req_running = idx; 1216 1217 return true; 1218 } 1219 1220 static bool _start(struct pl330_thread *thrd) 1221 { 1222 switch (_state(thrd)) { 1223 case PL330_STATE_FAULT_COMPLETING: 1224 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1225 1226 if (_state(thrd) == PL330_STATE_KILLING) 1227 UNTIL(thrd, PL330_STATE_STOPPED) 1228 1229 case PL330_STATE_FAULTING: 1230 _stop(thrd); 1231 1232 case PL330_STATE_KILLING: 1233 case PL330_STATE_COMPLETING: 1234 UNTIL(thrd, PL330_STATE_STOPPED) 1235 1236 case PL330_STATE_STOPPED: 1237 return _trigger(thrd); 1238 1239 case PL330_STATE_WFP: 1240 case PL330_STATE_QUEUEBUSY: 1241 case PL330_STATE_ATBARRIER: 1242 case PL330_STATE_UPDTPC: 1243 case PL330_STATE_CACHEMISS: 1244 case PL330_STATE_EXECUTING: 1245 return true; 1246 1247 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1248 default: 1249 return false; 1250 } 1251 } 1252 1253 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1254 const struct _xfer_spec *pxs, int cyc) 1255 { 1256 int off = 0; 1257 struct pl330_config *pcfg = pxs->r->cfg->pcfg; 1258 1259 /* check lock-up free version */ 1260 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1261 while (cyc--) { 1262 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1263 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1264 } 1265 } else { 1266 while (cyc--) { 1267 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1268 off += _emit_RMB(dry_run, &buf[off]); 1269 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1270 off += _emit_WMB(dry_run, &buf[off]); 1271 } 1272 } 1273 1274 return off; 1275 } 1276 1277 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1278 const struct _xfer_spec *pxs, int cyc) 1279 { 1280 int off = 0; 1281 1282 while (cyc--) { 1283 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1284 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1285 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1286 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1287 } 1288 1289 return off; 1290 } 1291 1292 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1293 const struct _xfer_spec *pxs, int cyc) 1294 { 1295 int off = 0; 1296 1297 while (cyc--) { 1298 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1299 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1300 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1301 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1302 } 1303 1304 return off; 1305 } 1306 1307 static int _bursts(unsigned dry_run, u8 buf[], 1308 const struct _xfer_spec *pxs, int cyc) 1309 { 1310 int off = 0; 1311 1312 switch (pxs->r->rqtype) { 1313 case MEMTODEV: 1314 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1315 break; 1316 case DEVTOMEM: 1317 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1318 break; 1319 case MEMTOMEM: 1320 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1321 break; 1322 default: 1323 off += 0x40000000; /* Scare off the Client */ 1324 break; 1325 } 1326 1327 return off; 1328 } 1329 1330 /* Returns bytes consumed and updates bursts */ 1331 static inline int _loop(unsigned dry_run, u8 buf[], 1332 unsigned long *bursts, const struct _xfer_spec *pxs) 1333 { 1334 int cyc, cycmax, szlp, szlpend, szbrst, off; 1335 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1336 struct _arg_LPEND lpend; 1337 1338 /* Max iterations possible in DMALP is 256 */ 1339 if (*bursts >= 256*256) { 1340 lcnt1 = 256; 1341 lcnt0 = 256; 1342 cyc = *bursts / lcnt1 / lcnt0; 1343 } else if (*bursts > 256) { 1344 lcnt1 = 256; 1345 lcnt0 = *bursts / lcnt1; 1346 cyc = 1; 1347 } else { 1348 lcnt1 = *bursts; 1349 lcnt0 = 0; 1350 cyc = 1; 1351 } 1352 1353 szlp = _emit_LP(1, buf, 0, 0); 1354 szbrst = _bursts(1, buf, pxs, 1); 1355 1356 lpend.cond = ALWAYS; 1357 lpend.forever = false; 1358 lpend.loop = 0; 1359 lpend.bjump = 0; 1360 szlpend = _emit_LPEND(1, buf, &lpend); 1361 1362 if (lcnt0) { 1363 szlp *= 2; 1364 szlpend *= 2; 1365 } 1366 1367 /* 1368 * Max bursts that we can unroll due to limit on the 1369 * size of backward jump that can be encoded in DMALPEND 1370 * which is 8-bits and hence 255 1371 */ 1372 cycmax = (255 - (szlp + szlpend)) / szbrst; 1373 1374 cyc = (cycmax < cyc) ? cycmax : cyc; 1375 1376 off = 0; 1377 1378 if (lcnt0) { 1379 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1380 ljmp0 = off; 1381 } 1382 1383 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1384 ljmp1 = off; 1385 1386 off += _bursts(dry_run, &buf[off], pxs, cyc); 1387 1388 lpend.cond = ALWAYS; 1389 lpend.forever = false; 1390 lpend.loop = 1; 1391 lpend.bjump = off - ljmp1; 1392 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1393 1394 if (lcnt0) { 1395 lpend.cond = ALWAYS; 1396 lpend.forever = false; 1397 lpend.loop = 0; 1398 lpend.bjump = off - ljmp0; 1399 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1400 } 1401 1402 *bursts = lcnt1 * cyc; 1403 if (lcnt0) 1404 *bursts *= lcnt0; 1405 1406 return off; 1407 } 1408 1409 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1410 const struct _xfer_spec *pxs) 1411 { 1412 struct pl330_xfer *x = pxs->x; 1413 u32 ccr = pxs->ccr; 1414 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1415 int off = 0; 1416 1417 while (bursts) { 1418 c = bursts; 1419 off += _loop(dry_run, &buf[off], &c, pxs); 1420 bursts -= c; 1421 } 1422 1423 return off; 1424 } 1425 1426 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1427 const struct _xfer_spec *pxs) 1428 { 1429 struct pl330_xfer *x = pxs->x; 1430 int off = 0; 1431 1432 /* DMAMOV SAR, x->src_addr */ 1433 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1434 /* DMAMOV DAR, x->dst_addr */ 1435 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1436 1437 /* Setup Loop(s) */ 1438 off += _setup_loops(dry_run, &buf[off], pxs); 1439 1440 return off; 1441 } 1442 1443 /* 1444 * A req is a sequence of one or more xfer units. 1445 * Returns the number of bytes taken to setup the MC for the req. 1446 */ 1447 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1448 unsigned index, struct _xfer_spec *pxs) 1449 { 1450 struct _pl330_req *req = &thrd->req[index]; 1451 struct pl330_xfer *x; 1452 u8 *buf = req->mc_cpu; 1453 int off = 0; 1454 1455 PL330_DBGMC_START(req->mc_bus); 1456 1457 /* DMAMOV CCR, ccr */ 1458 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1459 1460 x = pxs->r->x; 1461 do { 1462 /* Error if xfer length is not aligned at burst size */ 1463 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1464 return -EINVAL; 1465 1466 pxs->x = x; 1467 off += _setup_xfer(dry_run, &buf[off], pxs); 1468 1469 x = x->next; 1470 } while (x); 1471 1472 /* DMASEV peripheral/event */ 1473 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1474 /* DMAEND */ 1475 off += _emit_END(dry_run, &buf[off]); 1476 1477 return off; 1478 } 1479 1480 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1481 { 1482 u32 ccr = 0; 1483 1484 if (rqc->src_inc) 1485 ccr |= CC_SRCINC; 1486 1487 if (rqc->dst_inc) 1488 ccr |= CC_DSTINC; 1489 1490 /* We set same protection levels for Src and DST for now */ 1491 if (rqc->privileged) 1492 ccr |= CC_SRCPRI | CC_DSTPRI; 1493 if (rqc->nonsecure) 1494 ccr |= CC_SRCNS | CC_DSTNS; 1495 if (rqc->insnaccess) 1496 ccr |= CC_SRCIA | CC_DSTIA; 1497 1498 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1499 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1500 1501 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1502 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1503 1504 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1505 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1506 1507 ccr |= (rqc->swap << CC_SWAP_SHFT); 1508 1509 return ccr; 1510 } 1511 1512 static inline bool _is_valid(u32 ccr) 1513 { 1514 enum pl330_dstcachectrl dcctl; 1515 enum pl330_srccachectrl scctl; 1516 1517 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK; 1518 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK; 1519 1520 if (dcctl == DINVALID1 || dcctl == DINVALID2 1521 || scctl == SINVALID1 || scctl == SINVALID2) 1522 return false; 1523 else 1524 return true; 1525 } 1526 1527 /* 1528 * Submit a list of xfers after which the client wants notification. 1529 * Client is not notified after each xfer unit, just once after all 1530 * xfer units are done or some error occurs. 1531 */ 1532 static int pl330_submit_req(void *ch_id, struct pl330_req *r) 1533 { 1534 struct pl330_thread *thrd = ch_id; 1535 struct pl330_dmac *pl330; 1536 struct pl330_info *pi; 1537 struct _xfer_spec xs; 1538 unsigned long flags; 1539 void __iomem *regs; 1540 unsigned idx; 1541 u32 ccr; 1542 int ret = 0; 1543 1544 /* No Req or Unacquired Channel or DMAC */ 1545 if (!r || !thrd || thrd->free) 1546 return -EINVAL; 1547 1548 pl330 = thrd->dmac; 1549 pi = pl330->pinfo; 1550 regs = pi->base; 1551 1552 if (pl330->state == DYING 1553 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1554 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n", 1555 __func__, __LINE__); 1556 return -EAGAIN; 1557 } 1558 1559 /* If request for non-existing peripheral */ 1560 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) { 1561 dev_info(thrd->dmac->pinfo->dev, 1562 "%s:%d Invalid peripheral(%u)!\n", 1563 __func__, __LINE__, r->peri); 1564 return -EINVAL; 1565 } 1566 1567 spin_lock_irqsave(&pl330->lock, flags); 1568 1569 if (_queue_full(thrd)) { 1570 ret = -EAGAIN; 1571 goto xfer_exit; 1572 } 1573 1574 1575 /* Use last settings, if not provided */ 1576 if (r->cfg) { 1577 /* Prefer Secure Channel */ 1578 if (!_manager_ns(thrd)) 1579 r->cfg->nonsecure = 0; 1580 else 1581 r->cfg->nonsecure = 1; 1582 1583 ccr = _prepare_ccr(r->cfg); 1584 } else { 1585 ccr = readl(regs + CC(thrd->id)); 1586 } 1587 1588 /* If this req doesn't have valid xfer settings */ 1589 if (!_is_valid(ccr)) { 1590 ret = -EINVAL; 1591 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n", 1592 __func__, __LINE__, ccr); 1593 goto xfer_exit; 1594 } 1595 1596 idx = IS_FREE(&thrd->req[0]) ? 0 : 1; 1597 1598 xs.ccr = ccr; 1599 xs.r = r; 1600 1601 /* First dry run to check if req is acceptable */ 1602 ret = _setup_req(1, thrd, idx, &xs); 1603 if (ret < 0) 1604 goto xfer_exit; 1605 1606 if (ret > pi->mcbufsz / 2) { 1607 dev_info(thrd->dmac->pinfo->dev, 1608 "%s:%d Trying increasing mcbufsz\n", 1609 __func__, __LINE__); 1610 ret = -ENOMEM; 1611 goto xfer_exit; 1612 } 1613 1614 /* Hook the request */ 1615 thrd->lstenq = idx; 1616 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs); 1617 thrd->req[idx].r = r; 1618 1619 ret = 0; 1620 1621 xfer_exit: 1622 spin_unlock_irqrestore(&pl330->lock, flags); 1623 1624 return ret; 1625 } 1626 1627 static void pl330_dotask(unsigned long data) 1628 { 1629 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1630 struct pl330_info *pi = pl330->pinfo; 1631 unsigned long flags; 1632 int i; 1633 1634 spin_lock_irqsave(&pl330->lock, flags); 1635 1636 /* The DMAC itself gone nuts */ 1637 if (pl330->dmac_tbd.reset_dmac) { 1638 pl330->state = DYING; 1639 /* Reset the manager too */ 1640 pl330->dmac_tbd.reset_mngr = true; 1641 /* Clear the reset flag */ 1642 pl330->dmac_tbd.reset_dmac = false; 1643 } 1644 1645 if (pl330->dmac_tbd.reset_mngr) { 1646 _stop(pl330->manager); 1647 /* Reset all channels */ 1648 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1; 1649 /* Clear the reset flag */ 1650 pl330->dmac_tbd.reset_mngr = false; 1651 } 1652 1653 for (i = 0; i < pi->pcfg.num_chan; i++) { 1654 1655 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1656 struct pl330_thread *thrd = &pl330->channels[i]; 1657 void __iomem *regs = pi->base; 1658 enum pl330_op_err err; 1659 1660 _stop(thrd); 1661 1662 if (readl(regs + FSC) & (1 << thrd->id)) 1663 err = PL330_ERR_FAIL; 1664 else 1665 err = PL330_ERR_ABORT; 1666 1667 spin_unlock_irqrestore(&pl330->lock, flags); 1668 1669 _callback(thrd->req[1 - thrd->lstenq].r, err); 1670 _callback(thrd->req[thrd->lstenq].r, err); 1671 1672 spin_lock_irqsave(&pl330->lock, flags); 1673 1674 thrd->req[0].r = NULL; 1675 thrd->req[1].r = NULL; 1676 mark_free(thrd, 0); 1677 mark_free(thrd, 1); 1678 1679 /* Clear the reset flag */ 1680 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1681 } 1682 } 1683 1684 spin_unlock_irqrestore(&pl330->lock, flags); 1685 1686 return; 1687 } 1688 1689 /* Returns 1 if state was updated, 0 otherwise */ 1690 static int pl330_update(const struct pl330_info *pi) 1691 { 1692 struct pl330_req *rqdone, *tmp; 1693 struct pl330_dmac *pl330; 1694 unsigned long flags; 1695 void __iomem *regs; 1696 u32 val; 1697 int id, ev, ret = 0; 1698 1699 if (!pi || !pi->pl330_data) 1700 return 0; 1701 1702 regs = pi->base; 1703 pl330 = pi->pl330_data; 1704 1705 spin_lock_irqsave(&pl330->lock, flags); 1706 1707 val = readl(regs + FSM) & 0x1; 1708 if (val) 1709 pl330->dmac_tbd.reset_mngr = true; 1710 else 1711 pl330->dmac_tbd.reset_mngr = false; 1712 1713 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1); 1714 pl330->dmac_tbd.reset_chan |= val; 1715 if (val) { 1716 int i = 0; 1717 while (i < pi->pcfg.num_chan) { 1718 if (val & (1 << i)) { 1719 dev_info(pi->dev, 1720 "Reset Channel-%d\t CS-%x FTC-%x\n", 1721 i, readl(regs + CS(i)), 1722 readl(regs + FTC(i))); 1723 _stop(&pl330->channels[i]); 1724 } 1725 i++; 1726 } 1727 } 1728 1729 /* Check which event happened i.e, thread notified */ 1730 val = readl(regs + ES); 1731 if (pi->pcfg.num_events < 32 1732 && val & ~((1 << pi->pcfg.num_events) - 1)) { 1733 pl330->dmac_tbd.reset_dmac = true; 1734 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__); 1735 ret = 1; 1736 goto updt_exit; 1737 } 1738 1739 for (ev = 0; ev < pi->pcfg.num_events; ev++) { 1740 if (val & (1 << ev)) { /* Event occurred */ 1741 struct pl330_thread *thrd; 1742 u32 inten = readl(regs + INTEN); 1743 int active; 1744 1745 /* Clear the event */ 1746 if (inten & (1 << ev)) 1747 writel(1 << ev, regs + INTCLR); 1748 1749 ret = 1; 1750 1751 id = pl330->events[ev]; 1752 1753 thrd = &pl330->channels[id]; 1754 1755 active = thrd->req_running; 1756 if (active == -1) /* Aborted */ 1757 continue; 1758 1759 /* Detach the req */ 1760 rqdone = thrd->req[active].r; 1761 thrd->req[active].r = NULL; 1762 1763 mark_free(thrd, active); 1764 1765 /* Get going again ASAP */ 1766 _start(thrd); 1767 1768 /* For now, just make a list of callbacks to be done */ 1769 list_add_tail(&rqdone->rqd, &pl330->req_done); 1770 } 1771 } 1772 1773 /* Now that we are in no hurry, do the callbacks */ 1774 list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) { 1775 list_del(&rqdone->rqd); 1776 1777 spin_unlock_irqrestore(&pl330->lock, flags); 1778 _callback(rqdone, PL330_ERR_NONE); 1779 spin_lock_irqsave(&pl330->lock, flags); 1780 } 1781 1782 updt_exit: 1783 spin_unlock_irqrestore(&pl330->lock, flags); 1784 1785 if (pl330->dmac_tbd.reset_dmac 1786 || pl330->dmac_tbd.reset_mngr 1787 || pl330->dmac_tbd.reset_chan) { 1788 ret = 1; 1789 tasklet_schedule(&pl330->tasks); 1790 } 1791 1792 return ret; 1793 } 1794 1795 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op) 1796 { 1797 struct pl330_thread *thrd = ch_id; 1798 struct pl330_dmac *pl330; 1799 unsigned long flags; 1800 int ret = 0, active; 1801 1802 if (!thrd || thrd->free || thrd->dmac->state == DYING) 1803 return -EINVAL; 1804 1805 pl330 = thrd->dmac; 1806 active = thrd->req_running; 1807 1808 spin_lock_irqsave(&pl330->lock, flags); 1809 1810 switch (op) { 1811 case PL330_OP_FLUSH: 1812 /* Make sure the channel is stopped */ 1813 _stop(thrd); 1814 1815 thrd->req[0].r = NULL; 1816 thrd->req[1].r = NULL; 1817 mark_free(thrd, 0); 1818 mark_free(thrd, 1); 1819 break; 1820 1821 case PL330_OP_ABORT: 1822 /* Make sure the channel is stopped */ 1823 _stop(thrd); 1824 1825 /* ABORT is only for the active req */ 1826 if (active == -1) 1827 break; 1828 1829 thrd->req[active].r = NULL; 1830 mark_free(thrd, active); 1831 1832 /* Start the next */ 1833 case PL330_OP_START: 1834 if ((active == -1) && !_start(thrd)) 1835 ret = -EIO; 1836 break; 1837 1838 default: 1839 ret = -EINVAL; 1840 } 1841 1842 spin_unlock_irqrestore(&pl330->lock, flags); 1843 return ret; 1844 } 1845 1846 /* Reserve an event */ 1847 static inline int _alloc_event(struct pl330_thread *thrd) 1848 { 1849 struct pl330_dmac *pl330 = thrd->dmac; 1850 struct pl330_info *pi = pl330->pinfo; 1851 int ev; 1852 1853 for (ev = 0; ev < pi->pcfg.num_events; ev++) 1854 if (pl330->events[ev] == -1) { 1855 pl330->events[ev] = thrd->id; 1856 return ev; 1857 } 1858 1859 return -1; 1860 } 1861 1862 static bool _chan_ns(const struct pl330_info *pi, int i) 1863 { 1864 return pi->pcfg.irq_ns & (1 << i); 1865 } 1866 1867 /* Upon success, returns IdentityToken for the 1868 * allocated channel, NULL otherwise. 1869 */ 1870 static void *pl330_request_channel(const struct pl330_info *pi) 1871 { 1872 struct pl330_thread *thrd = NULL; 1873 struct pl330_dmac *pl330; 1874 unsigned long flags; 1875 int chans, i; 1876 1877 if (!pi || !pi->pl330_data) 1878 return NULL; 1879 1880 pl330 = pi->pl330_data; 1881 1882 if (pl330->state == DYING) 1883 return NULL; 1884 1885 chans = pi->pcfg.num_chan; 1886 1887 spin_lock_irqsave(&pl330->lock, flags); 1888 1889 for (i = 0; i < chans; i++) { 1890 thrd = &pl330->channels[i]; 1891 if ((thrd->free) && (!_manager_ns(thrd) || 1892 _chan_ns(pi, i))) { 1893 thrd->ev = _alloc_event(thrd); 1894 if (thrd->ev >= 0) { 1895 thrd->free = false; 1896 thrd->lstenq = 1; 1897 thrd->req[0].r = NULL; 1898 mark_free(thrd, 0); 1899 thrd->req[1].r = NULL; 1900 mark_free(thrd, 1); 1901 break; 1902 } 1903 } 1904 thrd = NULL; 1905 } 1906 1907 spin_unlock_irqrestore(&pl330->lock, flags); 1908 1909 return thrd; 1910 } 1911 1912 /* Release an event */ 1913 static inline void _free_event(struct pl330_thread *thrd, int ev) 1914 { 1915 struct pl330_dmac *pl330 = thrd->dmac; 1916 struct pl330_info *pi = pl330->pinfo; 1917 1918 /* If the event is valid and was held by the thread */ 1919 if (ev >= 0 && ev < pi->pcfg.num_events 1920 && pl330->events[ev] == thrd->id) 1921 pl330->events[ev] = -1; 1922 } 1923 1924 static void pl330_release_channel(void *ch_id) 1925 { 1926 struct pl330_thread *thrd = ch_id; 1927 struct pl330_dmac *pl330; 1928 unsigned long flags; 1929 1930 if (!thrd || thrd->free) 1931 return; 1932 1933 _stop(thrd); 1934 1935 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT); 1936 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT); 1937 1938 pl330 = thrd->dmac; 1939 1940 spin_lock_irqsave(&pl330->lock, flags); 1941 _free_event(thrd, thrd->ev); 1942 thrd->free = true; 1943 spin_unlock_irqrestore(&pl330->lock, flags); 1944 } 1945 1946 /* Initialize the structure for PL330 configuration, that can be used 1947 * by the client driver the make best use of the DMAC 1948 */ 1949 static void read_dmac_config(struct pl330_info *pi) 1950 { 1951 void __iomem *regs = pi->base; 1952 u32 val; 1953 1954 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1955 val &= CRD_DATA_WIDTH_MASK; 1956 pi->pcfg.data_bus_width = 8 * (1 << val); 1957 1958 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1959 val &= CRD_DATA_BUFF_MASK; 1960 pi->pcfg.data_buf_dep = val + 1; 1961 1962 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1963 val &= CR0_NUM_CHANS_MASK; 1964 val += 1; 1965 pi->pcfg.num_chan = val; 1966 1967 val = readl(regs + CR0); 1968 if (val & CR0_PERIPH_REQ_SET) { 1969 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1970 val += 1; 1971 pi->pcfg.num_peri = val; 1972 pi->pcfg.peri_ns = readl(regs + CR4); 1973 } else { 1974 pi->pcfg.num_peri = 0; 1975 } 1976 1977 val = readl(regs + CR0); 1978 if (val & CR0_BOOT_MAN_NS) 1979 pi->pcfg.mode |= DMAC_MODE_NS; 1980 else 1981 pi->pcfg.mode &= ~DMAC_MODE_NS; 1982 1983 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1984 val &= CR0_NUM_EVENTS_MASK; 1985 val += 1; 1986 pi->pcfg.num_events = val; 1987 1988 pi->pcfg.irq_ns = readl(regs + CR3); 1989 1990 pi->pcfg.periph_id = get_id(pi, PERIPH_ID); 1991 pi->pcfg.pcell_id = get_id(pi, PCELL_ID); 1992 } 1993 1994 static inline void _reset_thread(struct pl330_thread *thrd) 1995 { 1996 struct pl330_dmac *pl330 = thrd->dmac; 1997 struct pl330_info *pi = pl330->pinfo; 1998 1999 thrd->req[0].mc_cpu = pl330->mcode_cpu 2000 + (thrd->id * pi->mcbufsz); 2001 thrd->req[0].mc_bus = pl330->mcode_bus 2002 + (thrd->id * pi->mcbufsz); 2003 thrd->req[0].r = NULL; 2004 mark_free(thrd, 0); 2005 2006 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 2007 + pi->mcbufsz / 2; 2008 thrd->req[1].mc_bus = thrd->req[0].mc_bus 2009 + pi->mcbufsz / 2; 2010 thrd->req[1].r = NULL; 2011 mark_free(thrd, 1); 2012 } 2013 2014 static int dmac_alloc_threads(struct pl330_dmac *pl330) 2015 { 2016 struct pl330_info *pi = pl330->pinfo; 2017 int chans = pi->pcfg.num_chan; 2018 struct pl330_thread *thrd; 2019 int i; 2020 2021 /* Allocate 1 Manager and 'chans' Channel threads */ 2022 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 2023 GFP_KERNEL); 2024 if (!pl330->channels) 2025 return -ENOMEM; 2026 2027 /* Init Channel threads */ 2028 for (i = 0; i < chans; i++) { 2029 thrd = &pl330->channels[i]; 2030 thrd->id = i; 2031 thrd->dmac = pl330; 2032 _reset_thread(thrd); 2033 thrd->free = true; 2034 } 2035 2036 /* MANAGER is indexed at the end */ 2037 thrd = &pl330->channels[chans]; 2038 thrd->id = chans; 2039 thrd->dmac = pl330; 2040 thrd->free = false; 2041 pl330->manager = thrd; 2042 2043 return 0; 2044 } 2045 2046 static int dmac_alloc_resources(struct pl330_dmac *pl330) 2047 { 2048 struct pl330_info *pi = pl330->pinfo; 2049 int chans = pi->pcfg.num_chan; 2050 int ret; 2051 2052 /* 2053 * Alloc MicroCode buffer for 'chans' Channel threads. 2054 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 2055 */ 2056 pl330->mcode_cpu = dma_alloc_coherent(pi->dev, 2057 chans * pi->mcbufsz, 2058 &pl330->mcode_bus, GFP_KERNEL); 2059 if (!pl330->mcode_cpu) { 2060 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2061 __func__, __LINE__); 2062 return -ENOMEM; 2063 } 2064 2065 ret = dmac_alloc_threads(pl330); 2066 if (ret) { 2067 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n", 2068 __func__, __LINE__); 2069 dma_free_coherent(pi->dev, 2070 chans * pi->mcbufsz, 2071 pl330->mcode_cpu, pl330->mcode_bus); 2072 return ret; 2073 } 2074 2075 return 0; 2076 } 2077 2078 static int pl330_add(struct pl330_info *pi) 2079 { 2080 struct pl330_dmac *pl330; 2081 void __iomem *regs; 2082 int i, ret; 2083 2084 if (!pi || !pi->dev) 2085 return -EINVAL; 2086 2087 /* If already added */ 2088 if (pi->pl330_data) 2089 return -EINVAL; 2090 2091 /* 2092 * If the SoC can perform reset on the DMAC, then do it 2093 * before reading its configuration. 2094 */ 2095 if (pi->dmac_reset) 2096 pi->dmac_reset(pi); 2097 2098 regs = pi->base; 2099 2100 /* Check if we can handle this DMAC */ 2101 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL 2102 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) { 2103 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n", 2104 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID)); 2105 return -EINVAL; 2106 } 2107 2108 /* Read the configuration of the DMAC */ 2109 read_dmac_config(pi); 2110 2111 if (pi->pcfg.num_events == 0) { 2112 dev_err(pi->dev, "%s:%d Can't work without events!\n", 2113 __func__, __LINE__); 2114 return -EINVAL; 2115 } 2116 2117 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL); 2118 if (!pl330) { 2119 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2120 __func__, __LINE__); 2121 return -ENOMEM; 2122 } 2123 2124 /* Assign the info structure and private data */ 2125 pl330->pinfo = pi; 2126 pi->pl330_data = pl330; 2127 2128 spin_lock_init(&pl330->lock); 2129 2130 INIT_LIST_HEAD(&pl330->req_done); 2131 2132 /* Use default MC buffer size if not provided */ 2133 if (!pi->mcbufsz) 2134 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2; 2135 2136 /* Mark all events as free */ 2137 for (i = 0; i < pi->pcfg.num_events; i++) 2138 pl330->events[i] = -1; 2139 2140 /* Allocate resources needed by the DMAC */ 2141 ret = dmac_alloc_resources(pl330); 2142 if (ret) { 2143 dev_err(pi->dev, "Unable to create channels for DMAC\n"); 2144 kfree(pl330); 2145 return ret; 2146 } 2147 2148 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 2149 2150 pl330->state = INIT; 2151 2152 return 0; 2153 } 2154 2155 static int dmac_free_threads(struct pl330_dmac *pl330) 2156 { 2157 struct pl330_info *pi = pl330->pinfo; 2158 int chans = pi->pcfg.num_chan; 2159 struct pl330_thread *thrd; 2160 int i; 2161 2162 /* Release Channel threads */ 2163 for (i = 0; i < chans; i++) { 2164 thrd = &pl330->channels[i]; 2165 pl330_release_channel((void *)thrd); 2166 } 2167 2168 /* Free memory */ 2169 kfree(pl330->channels); 2170 2171 return 0; 2172 } 2173 2174 static void dmac_free_resources(struct pl330_dmac *pl330) 2175 { 2176 struct pl330_info *pi = pl330->pinfo; 2177 int chans = pi->pcfg.num_chan; 2178 2179 dmac_free_threads(pl330); 2180 2181 dma_free_coherent(pi->dev, chans * pi->mcbufsz, 2182 pl330->mcode_cpu, pl330->mcode_bus); 2183 } 2184 2185 static void pl330_del(struct pl330_info *pi) 2186 { 2187 struct pl330_dmac *pl330; 2188 2189 if (!pi || !pi->pl330_data) 2190 return; 2191 2192 pl330 = pi->pl330_data; 2193 2194 pl330->state = UNINIT; 2195 2196 tasklet_kill(&pl330->tasks); 2197 2198 /* Free DMAC resources */ 2199 dmac_free_resources(pl330); 2200 2201 kfree(pl330); 2202 pi->pl330_data = NULL; 2203 } 2204 2205 /* forward declaration */ 2206 static struct amba_driver pl330_driver; 2207 2208 static inline struct dma_pl330_chan * 2209 to_pchan(struct dma_chan *ch) 2210 { 2211 if (!ch) 2212 return NULL; 2213 2214 return container_of(ch, struct dma_pl330_chan, chan); 2215 } 2216 2217 static inline struct dma_pl330_desc * 2218 to_desc(struct dma_async_tx_descriptor *tx) 2219 { 2220 return container_of(tx, struct dma_pl330_desc, txd); 2221 } 2222 2223 static inline void free_desc_list(struct list_head *list) 2224 { 2225 struct dma_pl330_dmac *pdmac; 2226 struct dma_pl330_desc *desc; 2227 struct dma_pl330_chan *pch = NULL; 2228 unsigned long flags; 2229 2230 /* Finish off the work list */ 2231 list_for_each_entry(desc, list, node) { 2232 dma_async_tx_callback callback; 2233 void *param; 2234 2235 /* All desc in a list belong to same channel */ 2236 pch = desc->pchan; 2237 callback = desc->txd.callback; 2238 param = desc->txd.callback_param; 2239 2240 if (callback) 2241 callback(param); 2242 2243 desc->pchan = NULL; 2244 } 2245 2246 /* pch will be unset if list was empty */ 2247 if (!pch) 2248 return; 2249 2250 pdmac = pch->dmac; 2251 2252 spin_lock_irqsave(&pdmac->pool_lock, flags); 2253 list_splice_tail_init(list, &pdmac->desc_pool); 2254 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2255 } 2256 2257 static inline void handle_cyclic_desc_list(struct list_head *list) 2258 { 2259 struct dma_pl330_desc *desc; 2260 struct dma_pl330_chan *pch = NULL; 2261 unsigned long flags; 2262 2263 list_for_each_entry(desc, list, node) { 2264 dma_async_tx_callback callback; 2265 2266 /* Change status to reload it */ 2267 desc->status = PREP; 2268 pch = desc->pchan; 2269 callback = desc->txd.callback; 2270 if (callback) 2271 callback(desc->txd.callback_param); 2272 } 2273 2274 /* pch will be unset if list was empty */ 2275 if (!pch) 2276 return; 2277 2278 spin_lock_irqsave(&pch->lock, flags); 2279 list_splice_tail_init(list, &pch->work_list); 2280 spin_unlock_irqrestore(&pch->lock, flags); 2281 } 2282 2283 static inline void fill_queue(struct dma_pl330_chan *pch) 2284 { 2285 struct dma_pl330_desc *desc; 2286 int ret; 2287 2288 list_for_each_entry(desc, &pch->work_list, node) { 2289 2290 /* If already submitted */ 2291 if (desc->status == BUSY) 2292 continue; 2293 2294 ret = pl330_submit_req(pch->pl330_chid, 2295 &desc->req); 2296 if (!ret) { 2297 desc->status = BUSY; 2298 } else if (ret == -EAGAIN) { 2299 /* QFull or DMAC Dying */ 2300 break; 2301 } else { 2302 /* Unacceptable request */ 2303 desc->status = DONE; 2304 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n", 2305 __func__, __LINE__, desc->txd.cookie); 2306 tasklet_schedule(&pch->task); 2307 } 2308 } 2309 } 2310 2311 static void pl330_tasklet(unsigned long data) 2312 { 2313 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2314 struct dma_pl330_desc *desc, *_dt; 2315 unsigned long flags; 2316 LIST_HEAD(list); 2317 2318 spin_lock_irqsave(&pch->lock, flags); 2319 2320 /* Pick up ripe tomatoes */ 2321 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2322 if (desc->status == DONE) { 2323 if (!pch->cyclic) 2324 dma_cookie_complete(&desc->txd); 2325 list_move_tail(&desc->node, &list); 2326 } 2327 2328 /* Try to submit a req imm. next to the last completed cookie */ 2329 fill_queue(pch); 2330 2331 /* Make sure the PL330 Channel thread is active */ 2332 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START); 2333 2334 spin_unlock_irqrestore(&pch->lock, flags); 2335 2336 if (pch->cyclic) 2337 handle_cyclic_desc_list(&list); 2338 else 2339 free_desc_list(&list); 2340 } 2341 2342 static void dma_pl330_rqcb(void *token, enum pl330_op_err err) 2343 { 2344 struct dma_pl330_desc *desc = token; 2345 struct dma_pl330_chan *pch = desc->pchan; 2346 unsigned long flags; 2347 2348 /* If desc aborted */ 2349 if (!pch) 2350 return; 2351 2352 spin_lock_irqsave(&pch->lock, flags); 2353 2354 desc->status = DONE; 2355 2356 spin_unlock_irqrestore(&pch->lock, flags); 2357 2358 tasklet_schedule(&pch->task); 2359 } 2360 2361 static bool pl330_dt_filter(struct dma_chan *chan, void *param) 2362 { 2363 struct dma_pl330_filter_args *fargs = param; 2364 2365 if (chan->device != &fargs->pdmac->ddma) 2366 return false; 2367 2368 return (chan->chan_id == fargs->chan_id); 2369 } 2370 2371 bool pl330_filter(struct dma_chan *chan, void *param) 2372 { 2373 u8 *peri_id; 2374 2375 if (chan->device->dev->driver != &pl330_driver.drv) 2376 return false; 2377 2378 peri_id = chan->private; 2379 return *peri_id == (unsigned)param; 2380 } 2381 EXPORT_SYMBOL(pl330_filter); 2382 2383 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2384 struct of_dma *ofdma) 2385 { 2386 int count = dma_spec->args_count; 2387 struct dma_pl330_dmac *pdmac = ofdma->of_dma_data; 2388 struct dma_pl330_filter_args fargs; 2389 dma_cap_mask_t cap; 2390 2391 if (!pdmac) 2392 return NULL; 2393 2394 if (count != 1) 2395 return NULL; 2396 2397 fargs.pdmac = pdmac; 2398 fargs.chan_id = dma_spec->args[0]; 2399 2400 dma_cap_zero(cap); 2401 dma_cap_set(DMA_SLAVE, cap); 2402 dma_cap_set(DMA_CYCLIC, cap); 2403 2404 return dma_request_channel(cap, pl330_dt_filter, &fargs); 2405 } 2406 2407 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2408 { 2409 struct dma_pl330_chan *pch = to_pchan(chan); 2410 struct dma_pl330_dmac *pdmac = pch->dmac; 2411 unsigned long flags; 2412 2413 spin_lock_irqsave(&pch->lock, flags); 2414 2415 dma_cookie_init(chan); 2416 pch->cyclic = false; 2417 2418 pch->pl330_chid = pl330_request_channel(&pdmac->pif); 2419 if (!pch->pl330_chid) { 2420 spin_unlock_irqrestore(&pch->lock, flags); 2421 return -ENOMEM; 2422 } 2423 2424 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2425 2426 spin_unlock_irqrestore(&pch->lock, flags); 2427 2428 return 1; 2429 } 2430 2431 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2432 { 2433 struct dma_pl330_chan *pch = to_pchan(chan); 2434 struct dma_pl330_desc *desc, *_dt; 2435 unsigned long flags; 2436 struct dma_pl330_dmac *pdmac = pch->dmac; 2437 struct dma_slave_config *slave_config; 2438 LIST_HEAD(list); 2439 2440 switch (cmd) { 2441 case DMA_TERMINATE_ALL: 2442 spin_lock_irqsave(&pch->lock, flags); 2443 2444 /* FLUSH the PL330 Channel thread */ 2445 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH); 2446 2447 /* Mark all desc done */ 2448 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) { 2449 desc->status = DONE; 2450 list_move_tail(&desc->node, &list); 2451 } 2452 2453 list_splice_tail_init(&list, &pdmac->desc_pool); 2454 spin_unlock_irqrestore(&pch->lock, flags); 2455 break; 2456 case DMA_SLAVE_CONFIG: 2457 slave_config = (struct dma_slave_config *)arg; 2458 2459 if (slave_config->direction == DMA_MEM_TO_DEV) { 2460 if (slave_config->dst_addr) 2461 pch->fifo_addr = slave_config->dst_addr; 2462 if (slave_config->dst_addr_width) 2463 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2464 if (slave_config->dst_maxburst) 2465 pch->burst_len = slave_config->dst_maxburst; 2466 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2467 if (slave_config->src_addr) 2468 pch->fifo_addr = slave_config->src_addr; 2469 if (slave_config->src_addr_width) 2470 pch->burst_sz = __ffs(slave_config->src_addr_width); 2471 if (slave_config->src_maxburst) 2472 pch->burst_len = slave_config->src_maxburst; 2473 } 2474 break; 2475 default: 2476 dev_err(pch->dmac->pif.dev, "Not supported command.\n"); 2477 return -ENXIO; 2478 } 2479 2480 return 0; 2481 } 2482 2483 static void pl330_free_chan_resources(struct dma_chan *chan) 2484 { 2485 struct dma_pl330_chan *pch = to_pchan(chan); 2486 unsigned long flags; 2487 2488 spin_lock_irqsave(&pch->lock, flags); 2489 2490 tasklet_kill(&pch->task); 2491 2492 pl330_release_channel(pch->pl330_chid); 2493 pch->pl330_chid = NULL; 2494 2495 if (pch->cyclic) 2496 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2497 2498 spin_unlock_irqrestore(&pch->lock, flags); 2499 } 2500 2501 static enum dma_status 2502 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2503 struct dma_tx_state *txstate) 2504 { 2505 return dma_cookie_status(chan, cookie, txstate); 2506 } 2507 2508 static void pl330_issue_pending(struct dma_chan *chan) 2509 { 2510 pl330_tasklet((unsigned long) to_pchan(chan)); 2511 } 2512 2513 /* 2514 * We returned the last one of the circular list of descriptor(s) 2515 * from prep_xxx, so the argument to submit corresponds to the last 2516 * descriptor of the list. 2517 */ 2518 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2519 { 2520 struct dma_pl330_desc *desc, *last = to_desc(tx); 2521 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2522 dma_cookie_t cookie; 2523 unsigned long flags; 2524 2525 spin_lock_irqsave(&pch->lock, flags); 2526 2527 /* Assign cookies to all nodes */ 2528 while (!list_empty(&last->node)) { 2529 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2530 2531 dma_cookie_assign(&desc->txd); 2532 2533 list_move_tail(&desc->node, &pch->work_list); 2534 } 2535 2536 cookie = dma_cookie_assign(&last->txd); 2537 list_add_tail(&last->node, &pch->work_list); 2538 spin_unlock_irqrestore(&pch->lock, flags); 2539 2540 return cookie; 2541 } 2542 2543 static inline void _init_desc(struct dma_pl330_desc *desc) 2544 { 2545 desc->pchan = NULL; 2546 desc->req.x = &desc->px; 2547 desc->req.token = desc; 2548 desc->rqcfg.swap = SWAP_NO; 2549 desc->rqcfg.privileged = 0; 2550 desc->rqcfg.insnaccess = 0; 2551 desc->rqcfg.scctl = SCCTRL0; 2552 desc->rqcfg.dcctl = DCCTRL0; 2553 desc->req.cfg = &desc->rqcfg; 2554 desc->req.xfer_cb = dma_pl330_rqcb; 2555 desc->txd.tx_submit = pl330_tx_submit; 2556 2557 INIT_LIST_HEAD(&desc->node); 2558 } 2559 2560 /* Returns the number of descriptors added to the DMAC pool */ 2561 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count) 2562 { 2563 struct dma_pl330_desc *desc; 2564 unsigned long flags; 2565 int i; 2566 2567 if (!pdmac) 2568 return 0; 2569 2570 desc = kmalloc(count * sizeof(*desc), flg); 2571 if (!desc) 2572 return 0; 2573 2574 spin_lock_irqsave(&pdmac->pool_lock, flags); 2575 2576 for (i = 0; i < count; i++) { 2577 _init_desc(&desc[i]); 2578 list_add_tail(&desc[i].node, &pdmac->desc_pool); 2579 } 2580 2581 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2582 2583 return count; 2584 } 2585 2586 static struct dma_pl330_desc * 2587 pluck_desc(struct dma_pl330_dmac *pdmac) 2588 { 2589 struct dma_pl330_desc *desc = NULL; 2590 unsigned long flags; 2591 2592 if (!pdmac) 2593 return NULL; 2594 2595 spin_lock_irqsave(&pdmac->pool_lock, flags); 2596 2597 if (!list_empty(&pdmac->desc_pool)) { 2598 desc = list_entry(pdmac->desc_pool.next, 2599 struct dma_pl330_desc, node); 2600 2601 list_del_init(&desc->node); 2602 2603 desc->status = PREP; 2604 desc->txd.callback = NULL; 2605 } 2606 2607 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2608 2609 return desc; 2610 } 2611 2612 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2613 { 2614 struct dma_pl330_dmac *pdmac = pch->dmac; 2615 u8 *peri_id = pch->chan.private; 2616 struct dma_pl330_desc *desc; 2617 2618 /* Pluck one desc from the pool of DMAC */ 2619 desc = pluck_desc(pdmac); 2620 2621 /* If the DMAC pool is empty, alloc new */ 2622 if (!desc) { 2623 if (!add_desc(pdmac, GFP_ATOMIC, 1)) 2624 return NULL; 2625 2626 /* Try again */ 2627 desc = pluck_desc(pdmac); 2628 if (!desc) { 2629 dev_err(pch->dmac->pif.dev, 2630 "%s:%d ALERT!\n", __func__, __LINE__); 2631 return NULL; 2632 } 2633 } 2634 2635 /* Initialize the descriptor */ 2636 desc->pchan = pch; 2637 desc->txd.cookie = 0; 2638 async_tx_ack(&desc->txd); 2639 2640 desc->req.peri = peri_id ? pch->chan.chan_id : 0; 2641 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg; 2642 2643 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2644 2645 return desc; 2646 } 2647 2648 static inline void fill_px(struct pl330_xfer *px, 2649 dma_addr_t dst, dma_addr_t src, size_t len) 2650 { 2651 px->next = NULL; 2652 px->bytes = len; 2653 px->dst_addr = dst; 2654 px->src_addr = src; 2655 } 2656 2657 static struct dma_pl330_desc * 2658 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2659 dma_addr_t src, size_t len) 2660 { 2661 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2662 2663 if (!desc) { 2664 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2665 __func__, __LINE__); 2666 return NULL; 2667 } 2668 2669 /* 2670 * Ideally we should lookout for reqs bigger than 2671 * those that can be programmed with 256 bytes of 2672 * MC buffer, but considering a req size is seldom 2673 * going to be word-unaligned and more than 200MB, 2674 * we take it easy. 2675 * Also, should the limit is reached we'd rather 2676 * have the platform increase MC buffer size than 2677 * complicating this API driver. 2678 */ 2679 fill_px(&desc->px, dst, src, len); 2680 2681 return desc; 2682 } 2683 2684 /* Call after fixing burst size */ 2685 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2686 { 2687 struct dma_pl330_chan *pch = desc->pchan; 2688 struct pl330_info *pi = &pch->dmac->pif; 2689 int burst_len; 2690 2691 burst_len = pi->pcfg.data_bus_width / 8; 2692 burst_len *= pi->pcfg.data_buf_dep; 2693 burst_len >>= desc->rqcfg.brst_size; 2694 2695 /* src/dst_burst_len can't be more than 16 */ 2696 if (burst_len > 16) 2697 burst_len = 16; 2698 2699 while (burst_len > 1) { 2700 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2701 break; 2702 burst_len--; 2703 } 2704 2705 return burst_len; 2706 } 2707 2708 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2709 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2710 size_t period_len, enum dma_transfer_direction direction, 2711 unsigned long flags, void *context) 2712 { 2713 struct dma_pl330_desc *desc; 2714 struct dma_pl330_chan *pch = to_pchan(chan); 2715 dma_addr_t dst; 2716 dma_addr_t src; 2717 2718 desc = pl330_get_desc(pch); 2719 if (!desc) { 2720 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2721 __func__, __LINE__); 2722 return NULL; 2723 } 2724 2725 switch (direction) { 2726 case DMA_MEM_TO_DEV: 2727 desc->rqcfg.src_inc = 1; 2728 desc->rqcfg.dst_inc = 0; 2729 desc->req.rqtype = MEMTODEV; 2730 src = dma_addr; 2731 dst = pch->fifo_addr; 2732 break; 2733 case DMA_DEV_TO_MEM: 2734 desc->rqcfg.src_inc = 0; 2735 desc->rqcfg.dst_inc = 1; 2736 desc->req.rqtype = DEVTOMEM; 2737 src = pch->fifo_addr; 2738 dst = dma_addr; 2739 break; 2740 default: 2741 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n", 2742 __func__, __LINE__); 2743 return NULL; 2744 } 2745 2746 desc->rqcfg.brst_size = pch->burst_sz; 2747 desc->rqcfg.brst_len = 1; 2748 2749 pch->cyclic = true; 2750 2751 fill_px(&desc->px, dst, src, period_len); 2752 2753 return &desc->txd; 2754 } 2755 2756 static struct dma_async_tx_descriptor * 2757 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2758 dma_addr_t src, size_t len, unsigned long flags) 2759 { 2760 struct dma_pl330_desc *desc; 2761 struct dma_pl330_chan *pch = to_pchan(chan); 2762 struct pl330_info *pi; 2763 int burst; 2764 2765 if (unlikely(!pch || !len)) 2766 return NULL; 2767 2768 pi = &pch->dmac->pif; 2769 2770 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2771 if (!desc) 2772 return NULL; 2773 2774 desc->rqcfg.src_inc = 1; 2775 desc->rqcfg.dst_inc = 1; 2776 desc->req.rqtype = MEMTOMEM; 2777 2778 /* Select max possible burst size */ 2779 burst = pi->pcfg.data_bus_width / 8; 2780 2781 while (burst > 1) { 2782 if (!(len % burst)) 2783 break; 2784 burst /= 2; 2785 } 2786 2787 desc->rqcfg.brst_size = 0; 2788 while (burst != (1 << desc->rqcfg.brst_size)) 2789 desc->rqcfg.brst_size++; 2790 2791 desc->rqcfg.brst_len = get_burst_len(desc, len); 2792 2793 desc->txd.flags = flags; 2794 2795 return &desc->txd; 2796 } 2797 2798 static struct dma_async_tx_descriptor * 2799 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2800 unsigned int sg_len, enum dma_transfer_direction direction, 2801 unsigned long flg, void *context) 2802 { 2803 struct dma_pl330_desc *first, *desc = NULL; 2804 struct dma_pl330_chan *pch = to_pchan(chan); 2805 struct scatterlist *sg; 2806 unsigned long flags; 2807 int i; 2808 dma_addr_t addr; 2809 2810 if (unlikely(!pch || !sgl || !sg_len)) 2811 return NULL; 2812 2813 addr = pch->fifo_addr; 2814 2815 first = NULL; 2816 2817 for_each_sg(sgl, sg, sg_len, i) { 2818 2819 desc = pl330_get_desc(pch); 2820 if (!desc) { 2821 struct dma_pl330_dmac *pdmac = pch->dmac; 2822 2823 dev_err(pch->dmac->pif.dev, 2824 "%s:%d Unable to fetch desc\n", 2825 __func__, __LINE__); 2826 if (!first) 2827 return NULL; 2828 2829 spin_lock_irqsave(&pdmac->pool_lock, flags); 2830 2831 while (!list_empty(&first->node)) { 2832 desc = list_entry(first->node.next, 2833 struct dma_pl330_desc, node); 2834 list_move_tail(&desc->node, &pdmac->desc_pool); 2835 } 2836 2837 list_move_tail(&first->node, &pdmac->desc_pool); 2838 2839 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2840 2841 return NULL; 2842 } 2843 2844 if (!first) 2845 first = desc; 2846 else 2847 list_add_tail(&desc->node, &first->node); 2848 2849 if (direction == DMA_MEM_TO_DEV) { 2850 desc->rqcfg.src_inc = 1; 2851 desc->rqcfg.dst_inc = 0; 2852 desc->req.rqtype = MEMTODEV; 2853 fill_px(&desc->px, 2854 addr, sg_dma_address(sg), sg_dma_len(sg)); 2855 } else { 2856 desc->rqcfg.src_inc = 0; 2857 desc->rqcfg.dst_inc = 1; 2858 desc->req.rqtype = DEVTOMEM; 2859 fill_px(&desc->px, 2860 sg_dma_address(sg), addr, sg_dma_len(sg)); 2861 } 2862 2863 desc->rqcfg.brst_size = pch->burst_sz; 2864 desc->rqcfg.brst_len = 1; 2865 } 2866 2867 /* Return the last desc in the chain */ 2868 desc->txd.flags = flg; 2869 return &desc->txd; 2870 } 2871 2872 static irqreturn_t pl330_irq_handler(int irq, void *data) 2873 { 2874 if (pl330_update(data)) 2875 return IRQ_HANDLED; 2876 else 2877 return IRQ_NONE; 2878 } 2879 2880 static int 2881 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2882 { 2883 struct dma_pl330_platdata *pdat; 2884 struct dma_pl330_dmac *pdmac; 2885 struct dma_pl330_chan *pch, *_p; 2886 struct pl330_info *pi; 2887 struct dma_device *pd; 2888 struct resource *res; 2889 int i, ret, irq; 2890 int num_chan; 2891 2892 pdat = adev->dev.platform_data; 2893 2894 /* Allocate a new DMAC and its Channels */ 2895 pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL); 2896 if (!pdmac) { 2897 dev_err(&adev->dev, "unable to allocate mem\n"); 2898 return -ENOMEM; 2899 } 2900 2901 pi = &pdmac->pif; 2902 pi->dev = &adev->dev; 2903 pi->pl330_data = NULL; 2904 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2905 2906 res = &adev->res; 2907 pi->base = devm_ioremap_resource(&adev->dev, res); 2908 if (IS_ERR(pi->base)) 2909 return PTR_ERR(pi->base); 2910 2911 amba_set_drvdata(adev, pdmac); 2912 2913 irq = adev->irq[0]; 2914 ret = request_irq(irq, pl330_irq_handler, 0, 2915 dev_name(&adev->dev), pi); 2916 if (ret) 2917 return ret; 2918 2919 ret = pl330_add(pi); 2920 if (ret) 2921 goto probe_err1; 2922 2923 INIT_LIST_HEAD(&pdmac->desc_pool); 2924 spin_lock_init(&pdmac->pool_lock); 2925 2926 /* Create a descriptor pool of default size */ 2927 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC)) 2928 dev_warn(&adev->dev, "unable to allocate desc\n"); 2929 2930 pd = &pdmac->ddma; 2931 INIT_LIST_HEAD(&pd->channels); 2932 2933 /* Initialize channel parameters */ 2934 if (pdat) 2935 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan); 2936 else 2937 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan); 2938 2939 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2940 if (!pdmac->peripherals) { 2941 ret = -ENOMEM; 2942 dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n"); 2943 goto probe_err2; 2944 } 2945 2946 for (i = 0; i < num_chan; i++) { 2947 pch = &pdmac->peripherals[i]; 2948 if (!adev->dev.of_node) 2949 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2950 else 2951 pch->chan.private = adev->dev.of_node; 2952 2953 INIT_LIST_HEAD(&pch->work_list); 2954 spin_lock_init(&pch->lock); 2955 pch->pl330_chid = NULL; 2956 pch->chan.device = pd; 2957 pch->dmac = pdmac; 2958 2959 /* Add the channel to the DMAC list */ 2960 list_add_tail(&pch->chan.device_node, &pd->channels); 2961 } 2962 2963 pd->dev = &adev->dev; 2964 if (pdat) { 2965 pd->cap_mask = pdat->cap_mask; 2966 } else { 2967 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2968 if (pi->pcfg.num_peri) { 2969 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2970 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2971 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2972 } 2973 } 2974 2975 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2976 pd->device_free_chan_resources = pl330_free_chan_resources; 2977 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2978 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2979 pd->device_tx_status = pl330_tx_status; 2980 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2981 pd->device_control = pl330_control; 2982 pd->device_issue_pending = pl330_issue_pending; 2983 2984 ret = dma_async_device_register(pd); 2985 if (ret) { 2986 dev_err(&adev->dev, "unable to register DMAC\n"); 2987 goto probe_err3; 2988 } 2989 2990 if (adev->dev.of_node) { 2991 ret = of_dma_controller_register(adev->dev.of_node, 2992 of_dma_pl330_xlate, pdmac); 2993 if (ret) { 2994 dev_err(&adev->dev, 2995 "unable to register DMA to the generic DT DMA helpers\n"); 2996 } 2997 } 2998 2999 dev_info(&adev->dev, 3000 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 3001 dev_info(&adev->dev, 3002 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3003 pi->pcfg.data_buf_dep, 3004 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan, 3005 pi->pcfg.num_peri, pi->pcfg.num_events); 3006 3007 return 0; 3008 probe_err3: 3009 amba_set_drvdata(adev, NULL); 3010 3011 /* Idle the DMAC */ 3012 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3013 chan.device_node) { 3014 3015 /* Remove the channel */ 3016 list_del(&pch->chan.device_node); 3017 3018 /* Flush the channel */ 3019 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3020 pl330_free_chan_resources(&pch->chan); 3021 } 3022 probe_err2: 3023 pl330_del(pi); 3024 probe_err1: 3025 free_irq(irq, pi); 3026 3027 return ret; 3028 } 3029 3030 static int pl330_remove(struct amba_device *adev) 3031 { 3032 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev); 3033 struct dma_pl330_chan *pch, *_p; 3034 struct pl330_info *pi; 3035 int irq; 3036 3037 if (!pdmac) 3038 return 0; 3039 3040 if (adev->dev.of_node) 3041 of_dma_controller_free(adev->dev.of_node); 3042 3043 dma_async_device_unregister(&pdmac->ddma); 3044 amba_set_drvdata(adev, NULL); 3045 3046 /* Idle the DMAC */ 3047 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3048 chan.device_node) { 3049 3050 /* Remove the channel */ 3051 list_del(&pch->chan.device_node); 3052 3053 /* Flush the channel */ 3054 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3055 pl330_free_chan_resources(&pch->chan); 3056 } 3057 3058 pi = &pdmac->pif; 3059 3060 pl330_del(pi); 3061 3062 irq = adev->irq[0]; 3063 free_irq(irq, pi); 3064 3065 return 0; 3066 } 3067 3068 static struct amba_id pl330_ids[] = { 3069 { 3070 .id = 0x00041330, 3071 .mask = 0x000fffff, 3072 }, 3073 { 0, 0 }, 3074 }; 3075 3076 MODULE_DEVICE_TABLE(amba, pl330_ids); 3077 3078 static struct amba_driver pl330_driver = { 3079 .drv = { 3080 .owner = THIS_MODULE, 3081 .name = "dma-pl330", 3082 }, 3083 .id_table = pl330_ids, 3084 .probe = pl330_probe, 3085 .remove = pl330_remove, 3086 }; 3087 3088 module_amba_driver(pl330_driver); 3089 3090 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 3091 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3092 MODULE_LICENSE("GPL"); 3093