1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 7 * Jaswinder Singh <jassi.brar@samsung.com> 8 */ 9 10 #include <linux/debugfs.h> 11 #include <linux/kernel.h> 12 #include <linux/io.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/string.h> 17 #include <linux/delay.h> 18 #include <linux/interrupt.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dmaengine.h> 21 #include <linux/amba/bus.h> 22 #include <linux/scatterlist.h> 23 #include <linux/of.h> 24 #include <linux/of_dma.h> 25 #include <linux/err.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/bug.h> 28 #include <linux/reset.h> 29 30 #include "dmaengine.h" 31 #define PL330_MAX_CHAN 8 32 #define PL330_MAX_IRQS 32 33 #define PL330_MAX_PERI 32 34 #define PL330_MAX_BURST 16 35 36 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 37 #define PL330_QUIRK_PERIPH_BURST BIT(1) 38 39 enum pl330_cachectrl { 40 CCTRL0, /* Noncacheable and nonbufferable */ 41 CCTRL1, /* Bufferable only */ 42 CCTRL2, /* Cacheable, but do not allocate */ 43 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 44 INVALID1, /* AWCACHE = 0x1000 */ 45 INVALID2, 46 CCTRL6, /* Cacheable write-through, allocate on writes only */ 47 CCTRL7, /* Cacheable write-back, allocate on writes only */ 48 }; 49 50 enum pl330_byteswap { 51 SWAP_NO, 52 SWAP_2, 53 SWAP_4, 54 SWAP_8, 55 SWAP_16, 56 }; 57 58 /* Register and Bit field Definitions */ 59 #define DS 0x0 60 #define DS_ST_STOP 0x0 61 #define DS_ST_EXEC 0x1 62 #define DS_ST_CMISS 0x2 63 #define DS_ST_UPDTPC 0x3 64 #define DS_ST_WFE 0x4 65 #define DS_ST_ATBRR 0x5 66 #define DS_ST_QBUSY 0x6 67 #define DS_ST_WFP 0x7 68 #define DS_ST_KILL 0x8 69 #define DS_ST_CMPLT 0x9 70 #define DS_ST_FLTCMP 0xe 71 #define DS_ST_FAULT 0xf 72 73 #define DPC 0x4 74 #define INTEN 0x20 75 #define ES 0x24 76 #define INTSTATUS 0x28 77 #define INTCLR 0x2c 78 #define FSM 0x30 79 #define FSC 0x34 80 #define FTM 0x38 81 82 #define _FTC 0x40 83 #define FTC(n) (_FTC + (n)*0x4) 84 85 #define _CS 0x100 86 #define CS(n) (_CS + (n)*0x8) 87 #define CS_CNS (1 << 21) 88 89 #define _CPC 0x104 90 #define CPC(n) (_CPC + (n)*0x8) 91 92 #define _SA 0x400 93 #define SA(n) (_SA + (n)*0x20) 94 95 #define _DA 0x404 96 #define DA(n) (_DA + (n)*0x20) 97 98 #define _CC 0x408 99 #define CC(n) (_CC + (n)*0x20) 100 101 #define CC_SRCINC (1 << 0) 102 #define CC_DSTINC (1 << 14) 103 #define CC_SRCPRI (1 << 8) 104 #define CC_DSTPRI (1 << 22) 105 #define CC_SRCNS (1 << 9) 106 #define CC_DSTNS (1 << 23) 107 #define CC_SRCIA (1 << 10) 108 #define CC_DSTIA (1 << 24) 109 #define CC_SRCBRSTLEN_SHFT 4 110 #define CC_DSTBRSTLEN_SHFT 18 111 #define CC_SRCBRSTSIZE_SHFT 1 112 #define CC_DSTBRSTSIZE_SHFT 15 113 #define CC_SRCCCTRL_SHFT 11 114 #define CC_SRCCCTRL_MASK 0x7 115 #define CC_DSTCCTRL_SHFT 25 116 #define CC_DRCCCTRL_MASK 0x7 117 #define CC_SWAP_SHFT 28 118 119 #define _LC0 0x40c 120 #define LC0(n) (_LC0 + (n)*0x20) 121 122 #define _LC1 0x410 123 #define LC1(n) (_LC1 + (n)*0x20) 124 125 #define DBGSTATUS 0xd00 126 #define DBG_BUSY (1 << 0) 127 128 #define DBGCMD 0xd04 129 #define DBGINST0 0xd08 130 #define DBGINST1 0xd0c 131 132 #define CR0 0xe00 133 #define CR1 0xe04 134 #define CR2 0xe08 135 #define CR3 0xe0c 136 #define CR4 0xe10 137 #define CRD 0xe14 138 139 #define PERIPH_ID 0xfe0 140 #define PERIPH_REV_SHIFT 20 141 #define PERIPH_REV_MASK 0xf 142 #define PERIPH_REV_R0P0 0 143 #define PERIPH_REV_R1P0 1 144 #define PERIPH_REV_R1P1 2 145 146 #define CR0_PERIPH_REQ_SET (1 << 0) 147 #define CR0_BOOT_EN_SET (1 << 1) 148 #define CR0_BOOT_MAN_NS (1 << 2) 149 #define CR0_NUM_CHANS_SHIFT 4 150 #define CR0_NUM_CHANS_MASK 0x7 151 #define CR0_NUM_PERIPH_SHIFT 12 152 #define CR0_NUM_PERIPH_MASK 0x1f 153 #define CR0_NUM_EVENTS_SHIFT 17 154 #define CR0_NUM_EVENTS_MASK 0x1f 155 156 #define CR1_ICACHE_LEN_SHIFT 0 157 #define CR1_ICACHE_LEN_MASK 0x7 158 #define CR1_NUM_ICACHELINES_SHIFT 4 159 #define CR1_NUM_ICACHELINES_MASK 0xf 160 161 #define CRD_DATA_WIDTH_SHIFT 0 162 #define CRD_DATA_WIDTH_MASK 0x7 163 #define CRD_WR_CAP_SHIFT 4 164 #define CRD_WR_CAP_MASK 0x7 165 #define CRD_WR_Q_DEP_SHIFT 8 166 #define CRD_WR_Q_DEP_MASK 0xf 167 #define CRD_RD_CAP_SHIFT 12 168 #define CRD_RD_CAP_MASK 0x7 169 #define CRD_RD_Q_DEP_SHIFT 16 170 #define CRD_RD_Q_DEP_MASK 0xf 171 #define CRD_DATA_BUFF_SHIFT 20 172 #define CRD_DATA_BUFF_MASK 0x3ff 173 174 #define PART 0x330 175 #define DESIGNER 0x41 176 #define REVISION 0x0 177 #define INTEG_CFG 0x0 178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 179 180 #define PL330_STATE_STOPPED (1 << 0) 181 #define PL330_STATE_EXECUTING (1 << 1) 182 #define PL330_STATE_WFE (1 << 2) 183 #define PL330_STATE_FAULTING (1 << 3) 184 #define PL330_STATE_COMPLETING (1 << 4) 185 #define PL330_STATE_WFP (1 << 5) 186 #define PL330_STATE_KILLING (1 << 6) 187 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 188 #define PL330_STATE_CACHEMISS (1 << 8) 189 #define PL330_STATE_UPDTPC (1 << 9) 190 #define PL330_STATE_ATBARRIER (1 << 10) 191 #define PL330_STATE_QUEUEBUSY (1 << 11) 192 #define PL330_STATE_INVALID (1 << 15) 193 194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 195 | PL330_STATE_WFE | PL330_STATE_FAULTING) 196 197 #define CMD_DMAADDH 0x54 198 #define CMD_DMAEND 0x00 199 #define CMD_DMAFLUSHP 0x35 200 #define CMD_DMAGO 0xa0 201 #define CMD_DMALD 0x04 202 #define CMD_DMALDP 0x25 203 #define CMD_DMALP 0x20 204 #define CMD_DMALPEND 0x28 205 #define CMD_DMAKILL 0x01 206 #define CMD_DMAMOV 0xbc 207 #define CMD_DMANOP 0x18 208 #define CMD_DMARMB 0x12 209 #define CMD_DMASEV 0x34 210 #define CMD_DMAST 0x08 211 #define CMD_DMASTP 0x29 212 #define CMD_DMASTZ 0x0c 213 #define CMD_DMAWFE 0x36 214 #define CMD_DMAWFP 0x30 215 #define CMD_DMAWMB 0x13 216 217 #define SZ_DMAADDH 3 218 #define SZ_DMAEND 1 219 #define SZ_DMAFLUSHP 2 220 #define SZ_DMALD 1 221 #define SZ_DMALDP 2 222 #define SZ_DMALP 2 223 #define SZ_DMALPEND 2 224 #define SZ_DMAKILL 1 225 #define SZ_DMAMOV 6 226 #define SZ_DMANOP 1 227 #define SZ_DMARMB 1 228 #define SZ_DMASEV 2 229 #define SZ_DMAST 1 230 #define SZ_DMASTP 2 231 #define SZ_DMASTZ 1 232 #define SZ_DMAWFE 2 233 #define SZ_DMAWFP 2 234 #define SZ_DMAWMB 1 235 #define SZ_DMAGO 6 236 237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 239 240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 242 243 /* 244 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 245 * at 1byte/burst for P<->M and M<->M respectively. 246 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 247 * should be enough for P<->M and M<->M respectively. 248 */ 249 #define MCODE_BUFF_PER_REQ 256 250 251 /* Use this _only_ to wait on transient states */ 252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 253 254 #ifdef PL330_DEBUG_MCGEN 255 static unsigned cmd_line; 256 #define PL330_DBGCMD_DUMP(off, x...) do { \ 257 printk("%x:", cmd_line); \ 258 printk(x); \ 259 cmd_line += off; \ 260 } while (0) 261 #define PL330_DBGMC_START(addr) (cmd_line = addr) 262 #else 263 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 264 #define PL330_DBGMC_START(addr) do {} while (0) 265 #endif 266 267 /* The number of default descriptors */ 268 269 #define NR_DEFAULT_DESC 16 270 271 /* Delay for runtime PM autosuspend, ms */ 272 #define PL330_AUTOSUSPEND_DELAY 20 273 274 /* Populated by the PL330 core driver for DMA API driver's info */ 275 struct pl330_config { 276 u32 periph_id; 277 #define DMAC_MODE_NS (1 << 0) 278 unsigned int mode; 279 unsigned int data_bus_width:10; /* In number of bits */ 280 unsigned int data_buf_dep:11; 281 unsigned int num_chan:4; 282 unsigned int num_peri:6; 283 u32 peri_ns; 284 unsigned int num_events:6; 285 u32 irq_ns; 286 }; 287 288 /* 289 * Request Configuration. 290 * The PL330 core does not modify this and uses the last 291 * working configuration if the request doesn't provide any. 292 * 293 * The Client may want to provide this info only for the 294 * first request and a request with new settings. 295 */ 296 struct pl330_reqcfg { 297 /* Address Incrementing */ 298 unsigned dst_inc:1; 299 unsigned src_inc:1; 300 301 /* 302 * For now, the SRC & DST protection levels 303 * and burst size/length are assumed same. 304 */ 305 bool nonsecure; 306 bool privileged; 307 bool insnaccess; 308 unsigned brst_len:5; 309 unsigned brst_size:3; /* in power of 2 */ 310 311 enum pl330_cachectrl dcctl; 312 enum pl330_cachectrl scctl; 313 enum pl330_byteswap swap; 314 struct pl330_config *pcfg; 315 }; 316 317 /* 318 * One cycle of DMAC operation. 319 * There may be more than one xfer in a request. 320 */ 321 struct pl330_xfer { 322 u32 src_addr; 323 u32 dst_addr; 324 /* Size to xfer */ 325 u32 bytes; 326 }; 327 328 /* The xfer callbacks are made with one of these arguments. */ 329 enum pl330_op_err { 330 /* The all xfers in the request were success. */ 331 PL330_ERR_NONE, 332 /* If req aborted due to global error. */ 333 PL330_ERR_ABORT, 334 /* If req failed due to problem with Channel. */ 335 PL330_ERR_FAIL, 336 }; 337 338 enum dmamov_dst { 339 SAR = 0, 340 CCR, 341 DAR, 342 }; 343 344 enum pl330_dst { 345 SRC = 0, 346 DST, 347 }; 348 349 enum pl330_cond { 350 SINGLE, 351 BURST, 352 ALWAYS, 353 }; 354 355 struct dma_pl330_desc; 356 357 struct _pl330_req { 358 u32 mc_bus; 359 void *mc_cpu; 360 struct dma_pl330_desc *desc; 361 }; 362 363 /* ToBeDone for tasklet */ 364 struct _pl330_tbd { 365 bool reset_dmac; 366 bool reset_mngr; 367 u8 reset_chan; 368 }; 369 370 /* A DMAC Thread */ 371 struct pl330_thread { 372 u8 id; 373 int ev; 374 /* If the channel is not yet acquired by any client */ 375 bool free; 376 /* Parent DMAC */ 377 struct pl330_dmac *dmac; 378 /* Only two at a time */ 379 struct _pl330_req req[2]; 380 /* Index of the last enqueued request */ 381 unsigned lstenq; 382 /* Index of the last submitted request or -1 if the DMA is stopped */ 383 int req_running; 384 }; 385 386 enum pl330_dmac_state { 387 UNINIT, 388 INIT, 389 DYING, 390 }; 391 392 enum desc_status { 393 /* In the DMAC pool */ 394 FREE, 395 /* 396 * Allocated to some channel during prep_xxx 397 * Also may be sitting on the work_list. 398 */ 399 PREP, 400 /* 401 * Sitting on the work_list and already submitted 402 * to the PL330 core. Not more than two descriptors 403 * of a channel can be BUSY at any time. 404 */ 405 BUSY, 406 /* 407 * Sitting on the channel work_list but xfer done 408 * by PL330 core 409 */ 410 DONE, 411 }; 412 413 struct dma_pl330_chan { 414 /* Schedule desc completion */ 415 struct tasklet_struct task; 416 417 /* DMA-Engine Channel */ 418 struct dma_chan chan; 419 420 /* List of submitted descriptors */ 421 struct list_head submitted_list; 422 /* List of issued descriptors */ 423 struct list_head work_list; 424 /* List of completed descriptors */ 425 struct list_head completed_list; 426 427 /* Pointer to the DMAC that manages this channel, 428 * NULL if the channel is available to be acquired. 429 * As the parent, this DMAC also provides descriptors 430 * to the channel. 431 */ 432 struct pl330_dmac *dmac; 433 434 /* To protect channel manipulation */ 435 spinlock_t lock; 436 437 /* 438 * Hardware channel thread of PL330 DMAC. NULL if the channel is 439 * available. 440 */ 441 struct pl330_thread *thread; 442 443 /* For D-to-M and M-to-D channels */ 444 int burst_sz; /* the peripheral fifo width */ 445 int burst_len; /* the number of burst */ 446 phys_addr_t fifo_addr; 447 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ 448 dma_addr_t fifo_dma; 449 enum dma_data_direction dir; 450 struct dma_slave_config slave_config; 451 452 /* for cyclic capability */ 453 bool cyclic; 454 455 /* for runtime pm tracking */ 456 bool active; 457 }; 458 459 struct pl330_dmac { 460 /* DMA-Engine Device */ 461 struct dma_device ddma; 462 463 /* Holds info about sg limitations */ 464 struct device_dma_parameters dma_parms; 465 466 /* Pool of descriptors available for the DMAC's channels */ 467 struct list_head desc_pool; 468 /* To protect desc_pool manipulation */ 469 spinlock_t pool_lock; 470 471 /* Size of MicroCode buffers for each channel. */ 472 unsigned mcbufsz; 473 /* ioremap'ed address of PL330 registers. */ 474 void __iomem *base; 475 /* Populated by the PL330 core driver during pl330_add */ 476 struct pl330_config pcfg; 477 478 spinlock_t lock; 479 /* Maximum possible events/irqs */ 480 int events[32]; 481 /* BUS address of MicroCode buffer */ 482 dma_addr_t mcode_bus; 483 /* CPU address of MicroCode buffer */ 484 void *mcode_cpu; 485 /* List of all Channel threads */ 486 struct pl330_thread *channels; 487 /* Pointer to the MANAGER thread */ 488 struct pl330_thread *manager; 489 /* To handle bad news in interrupt */ 490 struct tasklet_struct tasks; 491 struct _pl330_tbd dmac_tbd; 492 /* State of DMAC operation */ 493 enum pl330_dmac_state state; 494 /* Holds list of reqs with due callbacks */ 495 struct list_head req_done; 496 497 /* Peripheral channels connected to this DMAC */ 498 unsigned int num_peripherals; 499 struct dma_pl330_chan *peripherals; /* keep at end */ 500 int quirks; 501 502 struct reset_control *rstc; 503 struct reset_control *rstc_ocp; 504 }; 505 506 static struct pl330_of_quirks { 507 char *quirk; 508 int id; 509 } of_quirks[] = { 510 { 511 .quirk = "arm,pl330-broken-no-flushp", 512 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 513 }, 514 { 515 .quirk = "arm,pl330-periph-burst", 516 .id = PL330_QUIRK_PERIPH_BURST, 517 } 518 }; 519 520 struct dma_pl330_desc { 521 /* To attach to a queue as child */ 522 struct list_head node; 523 524 /* Descriptor for the DMA Engine API */ 525 struct dma_async_tx_descriptor txd; 526 527 /* Xfer for PL330 core */ 528 struct pl330_xfer px; 529 530 struct pl330_reqcfg rqcfg; 531 532 enum desc_status status; 533 534 int bytes_requested; 535 bool last; 536 537 /* The channel which currently holds this desc */ 538 struct dma_pl330_chan *pchan; 539 540 enum dma_transfer_direction rqtype; 541 /* Index of peripheral for the xfer. */ 542 unsigned peri:5; 543 /* Hook to attach to DMAC's list of reqs with due callback */ 544 struct list_head rqd; 545 }; 546 547 struct _xfer_spec { 548 u32 ccr; 549 struct dma_pl330_desc *desc; 550 }; 551 552 static int pl330_config_write(struct dma_chan *chan, 553 struct dma_slave_config *slave_config, 554 enum dma_transfer_direction direction); 555 556 static inline bool _queue_full(struct pl330_thread *thrd) 557 { 558 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 559 } 560 561 static inline bool is_manager(struct pl330_thread *thrd) 562 { 563 return thrd->dmac->manager == thrd; 564 } 565 566 /* If manager of the thread is in Non-Secure mode */ 567 static inline bool _manager_ns(struct pl330_thread *thrd) 568 { 569 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 570 } 571 572 static inline u32 get_revision(u32 periph_id) 573 { 574 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 575 } 576 577 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 578 { 579 if (dry_run) 580 return SZ_DMAEND; 581 582 buf[0] = CMD_DMAEND; 583 584 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 585 586 return SZ_DMAEND; 587 } 588 589 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 590 { 591 if (dry_run) 592 return SZ_DMAFLUSHP; 593 594 buf[0] = CMD_DMAFLUSHP; 595 596 peri &= 0x1f; 597 peri <<= 3; 598 buf[1] = peri; 599 600 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 601 602 return SZ_DMAFLUSHP; 603 } 604 605 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 606 { 607 if (dry_run) 608 return SZ_DMALD; 609 610 buf[0] = CMD_DMALD; 611 612 if (cond == SINGLE) 613 buf[0] |= (0 << 1) | (1 << 0); 614 else if (cond == BURST) 615 buf[0] |= (1 << 1) | (1 << 0); 616 617 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 618 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 619 620 return SZ_DMALD; 621 } 622 623 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 624 enum pl330_cond cond, u8 peri) 625 { 626 if (dry_run) 627 return SZ_DMALDP; 628 629 buf[0] = CMD_DMALDP; 630 631 if (cond == BURST) 632 buf[0] |= (1 << 1); 633 634 peri &= 0x1f; 635 peri <<= 3; 636 buf[1] = peri; 637 638 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 639 cond == SINGLE ? 'S' : 'B', peri >> 3); 640 641 return SZ_DMALDP; 642 } 643 644 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 645 unsigned loop, u8 cnt) 646 { 647 if (dry_run) 648 return SZ_DMALP; 649 650 buf[0] = CMD_DMALP; 651 652 if (loop) 653 buf[0] |= (1 << 1); 654 655 cnt--; /* DMAC increments by 1 internally */ 656 buf[1] = cnt; 657 658 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 659 660 return SZ_DMALP; 661 } 662 663 struct _arg_LPEND { 664 enum pl330_cond cond; 665 bool forever; 666 unsigned loop; 667 u8 bjump; 668 }; 669 670 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 671 const struct _arg_LPEND *arg) 672 { 673 enum pl330_cond cond = arg->cond; 674 bool forever = arg->forever; 675 unsigned loop = arg->loop; 676 u8 bjump = arg->bjump; 677 678 if (dry_run) 679 return SZ_DMALPEND; 680 681 buf[0] = CMD_DMALPEND; 682 683 if (loop) 684 buf[0] |= (1 << 2); 685 686 if (!forever) 687 buf[0] |= (1 << 4); 688 689 if (cond == SINGLE) 690 buf[0] |= (0 << 1) | (1 << 0); 691 else if (cond == BURST) 692 buf[0] |= (1 << 1) | (1 << 0); 693 694 buf[1] = bjump; 695 696 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 697 forever ? "FE" : "END", 698 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 699 loop ? '1' : '0', 700 bjump); 701 702 return SZ_DMALPEND; 703 } 704 705 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 706 { 707 if (dry_run) 708 return SZ_DMAKILL; 709 710 buf[0] = CMD_DMAKILL; 711 712 return SZ_DMAKILL; 713 } 714 715 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 716 enum dmamov_dst dst, u32 val) 717 { 718 if (dry_run) 719 return SZ_DMAMOV; 720 721 buf[0] = CMD_DMAMOV; 722 buf[1] = dst; 723 buf[2] = val; 724 buf[3] = val >> 8; 725 buf[4] = val >> 16; 726 buf[5] = val >> 24; 727 728 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 729 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 730 731 return SZ_DMAMOV; 732 } 733 734 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 735 { 736 if (dry_run) 737 return SZ_DMARMB; 738 739 buf[0] = CMD_DMARMB; 740 741 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 742 743 return SZ_DMARMB; 744 } 745 746 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 747 { 748 if (dry_run) 749 return SZ_DMASEV; 750 751 buf[0] = CMD_DMASEV; 752 753 ev &= 0x1f; 754 ev <<= 3; 755 buf[1] = ev; 756 757 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 758 759 return SZ_DMASEV; 760 } 761 762 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 763 { 764 if (dry_run) 765 return SZ_DMAST; 766 767 buf[0] = CMD_DMAST; 768 769 if (cond == SINGLE) 770 buf[0] |= (0 << 1) | (1 << 0); 771 else if (cond == BURST) 772 buf[0] |= (1 << 1) | (1 << 0); 773 774 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 775 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 776 777 return SZ_DMAST; 778 } 779 780 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 781 enum pl330_cond cond, u8 peri) 782 { 783 if (dry_run) 784 return SZ_DMASTP; 785 786 buf[0] = CMD_DMASTP; 787 788 if (cond == BURST) 789 buf[0] |= (1 << 1); 790 791 peri &= 0x1f; 792 peri <<= 3; 793 buf[1] = peri; 794 795 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 796 cond == SINGLE ? 'S' : 'B', peri >> 3); 797 798 return SZ_DMASTP; 799 } 800 801 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 802 enum pl330_cond cond, u8 peri) 803 { 804 if (dry_run) 805 return SZ_DMAWFP; 806 807 buf[0] = CMD_DMAWFP; 808 809 if (cond == SINGLE) 810 buf[0] |= (0 << 1) | (0 << 0); 811 else if (cond == BURST) 812 buf[0] |= (1 << 1) | (0 << 0); 813 else 814 buf[0] |= (0 << 1) | (1 << 0); 815 816 peri &= 0x1f; 817 peri <<= 3; 818 buf[1] = peri; 819 820 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 821 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 822 823 return SZ_DMAWFP; 824 } 825 826 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 827 { 828 if (dry_run) 829 return SZ_DMAWMB; 830 831 buf[0] = CMD_DMAWMB; 832 833 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 834 835 return SZ_DMAWMB; 836 } 837 838 struct _arg_GO { 839 u8 chan; 840 u32 addr; 841 unsigned ns; 842 }; 843 844 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 845 const struct _arg_GO *arg) 846 { 847 u8 chan = arg->chan; 848 u32 addr = arg->addr; 849 unsigned ns = arg->ns; 850 851 if (dry_run) 852 return SZ_DMAGO; 853 854 buf[0] = CMD_DMAGO; 855 buf[0] |= (ns << 1); 856 buf[1] = chan & 0x7; 857 buf[2] = addr; 858 buf[3] = addr >> 8; 859 buf[4] = addr >> 16; 860 buf[5] = addr >> 24; 861 862 return SZ_DMAGO; 863 } 864 865 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 866 867 /* Returns Time-Out */ 868 static bool _until_dmac_idle(struct pl330_thread *thrd) 869 { 870 void __iomem *regs = thrd->dmac->base; 871 unsigned long loops = msecs_to_loops(5); 872 873 do { 874 /* Until Manager is Idle */ 875 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 876 break; 877 878 cpu_relax(); 879 } while (--loops); 880 881 if (!loops) 882 return true; 883 884 return false; 885 } 886 887 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 888 u8 insn[], bool as_manager) 889 { 890 void __iomem *regs = thrd->dmac->base; 891 u32 val; 892 893 /* If timed out due to halted state-machine */ 894 if (_until_dmac_idle(thrd)) { 895 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 896 return; 897 } 898 899 val = (insn[0] << 16) | (insn[1] << 24); 900 if (!as_manager) { 901 val |= (1 << 0); 902 val |= (thrd->id << 8); /* Channel Number */ 903 } 904 writel(val, regs + DBGINST0); 905 906 val = le32_to_cpu(*((__le32 *)&insn[2])); 907 writel(val, regs + DBGINST1); 908 909 /* Get going */ 910 writel(0, regs + DBGCMD); 911 } 912 913 static inline u32 _state(struct pl330_thread *thrd) 914 { 915 void __iomem *regs = thrd->dmac->base; 916 u32 val; 917 918 if (is_manager(thrd)) 919 val = readl(regs + DS) & 0xf; 920 else 921 val = readl(regs + CS(thrd->id)) & 0xf; 922 923 switch (val) { 924 case DS_ST_STOP: 925 return PL330_STATE_STOPPED; 926 case DS_ST_EXEC: 927 return PL330_STATE_EXECUTING; 928 case DS_ST_CMISS: 929 return PL330_STATE_CACHEMISS; 930 case DS_ST_UPDTPC: 931 return PL330_STATE_UPDTPC; 932 case DS_ST_WFE: 933 return PL330_STATE_WFE; 934 case DS_ST_FAULT: 935 return PL330_STATE_FAULTING; 936 case DS_ST_ATBRR: 937 if (is_manager(thrd)) 938 return PL330_STATE_INVALID; 939 else 940 return PL330_STATE_ATBARRIER; 941 case DS_ST_QBUSY: 942 if (is_manager(thrd)) 943 return PL330_STATE_INVALID; 944 else 945 return PL330_STATE_QUEUEBUSY; 946 case DS_ST_WFP: 947 if (is_manager(thrd)) 948 return PL330_STATE_INVALID; 949 else 950 return PL330_STATE_WFP; 951 case DS_ST_KILL: 952 if (is_manager(thrd)) 953 return PL330_STATE_INVALID; 954 else 955 return PL330_STATE_KILLING; 956 case DS_ST_CMPLT: 957 if (is_manager(thrd)) 958 return PL330_STATE_INVALID; 959 else 960 return PL330_STATE_COMPLETING; 961 case DS_ST_FLTCMP: 962 if (is_manager(thrd)) 963 return PL330_STATE_INVALID; 964 else 965 return PL330_STATE_FAULT_COMPLETING; 966 default: 967 return PL330_STATE_INVALID; 968 } 969 } 970 971 static void _stop(struct pl330_thread *thrd) 972 { 973 void __iomem *regs = thrd->dmac->base; 974 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 975 u32 inten = readl(regs + INTEN); 976 977 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 978 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 979 980 /* Return if nothing needs to be done */ 981 if (_state(thrd) == PL330_STATE_COMPLETING 982 || _state(thrd) == PL330_STATE_KILLING 983 || _state(thrd) == PL330_STATE_STOPPED) 984 return; 985 986 _emit_KILL(0, insn); 987 988 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 989 990 /* clear the event */ 991 if (inten & (1 << thrd->ev)) 992 writel(1 << thrd->ev, regs + INTCLR); 993 /* Stop generating interrupts for SEV */ 994 writel(inten & ~(1 << thrd->ev), regs + INTEN); 995 } 996 997 /* Start doing req 'idx' of thread 'thrd' */ 998 static bool _trigger(struct pl330_thread *thrd) 999 { 1000 void __iomem *regs = thrd->dmac->base; 1001 struct _pl330_req *req; 1002 struct dma_pl330_desc *desc; 1003 struct _arg_GO go; 1004 unsigned ns; 1005 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1006 int idx; 1007 1008 /* Return if already ACTIVE */ 1009 if (_state(thrd) != PL330_STATE_STOPPED) 1010 return true; 1011 1012 idx = 1 - thrd->lstenq; 1013 if (thrd->req[idx].desc != NULL) { 1014 req = &thrd->req[idx]; 1015 } else { 1016 idx = thrd->lstenq; 1017 if (thrd->req[idx].desc != NULL) 1018 req = &thrd->req[idx]; 1019 else 1020 req = NULL; 1021 } 1022 1023 /* Return if no request */ 1024 if (!req) 1025 return true; 1026 1027 /* Return if req is running */ 1028 if (idx == thrd->req_running) 1029 return true; 1030 1031 desc = req->desc; 1032 1033 ns = desc->rqcfg.nonsecure ? 1 : 0; 1034 1035 /* See 'Abort Sources' point-4 at Page 2-25 */ 1036 if (_manager_ns(thrd) && !ns) 1037 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1038 __func__, __LINE__); 1039 1040 go.chan = thrd->id; 1041 go.addr = req->mc_bus; 1042 go.ns = ns; 1043 _emit_GO(0, insn, &go); 1044 1045 /* Set to generate interrupts for SEV */ 1046 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1047 1048 /* Only manager can execute GO */ 1049 _execute_DBGINSN(thrd, insn, true); 1050 1051 thrd->req_running = idx; 1052 1053 return true; 1054 } 1055 1056 static bool _start(struct pl330_thread *thrd) 1057 { 1058 switch (_state(thrd)) { 1059 case PL330_STATE_FAULT_COMPLETING: 1060 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1061 1062 if (_state(thrd) == PL330_STATE_KILLING) 1063 UNTIL(thrd, PL330_STATE_STOPPED) 1064 /* fall through */ 1065 1066 case PL330_STATE_FAULTING: 1067 _stop(thrd); 1068 /* fall through */ 1069 1070 case PL330_STATE_KILLING: 1071 case PL330_STATE_COMPLETING: 1072 UNTIL(thrd, PL330_STATE_STOPPED) 1073 /* fall through */ 1074 1075 case PL330_STATE_STOPPED: 1076 return _trigger(thrd); 1077 1078 case PL330_STATE_WFP: 1079 case PL330_STATE_QUEUEBUSY: 1080 case PL330_STATE_ATBARRIER: 1081 case PL330_STATE_UPDTPC: 1082 case PL330_STATE_CACHEMISS: 1083 case PL330_STATE_EXECUTING: 1084 return true; 1085 1086 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1087 default: 1088 return false; 1089 } 1090 } 1091 1092 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1093 const struct _xfer_spec *pxs, int cyc) 1094 { 1095 int off = 0; 1096 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1097 1098 /* check lock-up free version */ 1099 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1100 while (cyc--) { 1101 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1102 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1103 } 1104 } else { 1105 while (cyc--) { 1106 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1107 off += _emit_RMB(dry_run, &buf[off]); 1108 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1109 off += _emit_WMB(dry_run, &buf[off]); 1110 } 1111 } 1112 1113 return off; 1114 } 1115 1116 static u32 _emit_load(unsigned int dry_run, u8 buf[], 1117 enum pl330_cond cond, enum dma_transfer_direction direction, 1118 u8 peri) 1119 { 1120 int off = 0; 1121 1122 switch (direction) { 1123 case DMA_MEM_TO_MEM: 1124 /* fall through */ 1125 case DMA_MEM_TO_DEV: 1126 off += _emit_LD(dry_run, &buf[off], cond); 1127 break; 1128 1129 case DMA_DEV_TO_MEM: 1130 if (cond == ALWAYS) { 1131 off += _emit_LDP(dry_run, &buf[off], SINGLE, 1132 peri); 1133 off += _emit_LDP(dry_run, &buf[off], BURST, 1134 peri); 1135 } else { 1136 off += _emit_LDP(dry_run, &buf[off], cond, 1137 peri); 1138 } 1139 break; 1140 1141 default: 1142 /* this code should be unreachable */ 1143 WARN_ON(1); 1144 break; 1145 } 1146 1147 return off; 1148 } 1149 1150 static inline u32 _emit_store(unsigned int dry_run, u8 buf[], 1151 enum pl330_cond cond, enum dma_transfer_direction direction, 1152 u8 peri) 1153 { 1154 int off = 0; 1155 1156 switch (direction) { 1157 case DMA_MEM_TO_MEM: 1158 /* fall through */ 1159 case DMA_DEV_TO_MEM: 1160 off += _emit_ST(dry_run, &buf[off], cond); 1161 break; 1162 1163 case DMA_MEM_TO_DEV: 1164 if (cond == ALWAYS) { 1165 off += _emit_STP(dry_run, &buf[off], SINGLE, 1166 peri); 1167 off += _emit_STP(dry_run, &buf[off], BURST, 1168 peri); 1169 } else { 1170 off += _emit_STP(dry_run, &buf[off], cond, 1171 peri); 1172 } 1173 break; 1174 1175 default: 1176 /* this code should be unreachable */ 1177 WARN_ON(1); 1178 break; 1179 } 1180 1181 return off; 1182 } 1183 1184 static inline int _ldst_peripheral(struct pl330_dmac *pl330, 1185 unsigned dry_run, u8 buf[], 1186 const struct _xfer_spec *pxs, int cyc, 1187 enum pl330_cond cond) 1188 { 1189 int off = 0; 1190 1191 /* 1192 * do FLUSHP at beginning to clear any stale dma requests before the 1193 * first WFP. 1194 */ 1195 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1196 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1197 while (cyc--) { 1198 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1199 off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype, 1200 pxs->desc->peri); 1201 off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype, 1202 pxs->desc->peri); 1203 } 1204 1205 return off; 1206 } 1207 1208 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1209 const struct _xfer_spec *pxs, int cyc) 1210 { 1211 int off = 0; 1212 enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE; 1213 1214 if (pl330->quirks & PL330_QUIRK_PERIPH_BURST) 1215 cond = BURST; 1216 1217 switch (pxs->desc->rqtype) { 1218 case DMA_MEM_TO_DEV: 1219 /* fall through */ 1220 case DMA_DEV_TO_MEM: 1221 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc, 1222 cond); 1223 break; 1224 1225 case DMA_MEM_TO_MEM: 1226 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1227 break; 1228 1229 default: 1230 /* this code should be unreachable */ 1231 WARN_ON(1); 1232 break; 1233 } 1234 1235 return off; 1236 } 1237 1238 /* 1239 * only the unaligned burst transfers have the dregs. 1240 * so, still transfer dregs with a reduced size burst 1241 * for mem-to-mem, mem-to-dev or dev-to-mem. 1242 */ 1243 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[], 1244 const struct _xfer_spec *pxs, int transfer_length) 1245 { 1246 int off = 0; 1247 int dregs_ccr; 1248 1249 if (transfer_length == 0) 1250 return off; 1251 1252 /* 1253 * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) / 1254 * BRST_SIZE(ccr) 1255 * the dregs len must be smaller than burst len, 1256 * so, for higher efficiency, we can modify CCR 1257 * to use a reduced size burst len for the dregs. 1258 */ 1259 dregs_ccr = pxs->ccr; 1260 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) | 1261 (0xf << CC_DSTBRSTLEN_SHFT)); 1262 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1263 CC_SRCBRSTLEN_SHFT); 1264 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1265 CC_DSTBRSTLEN_SHFT); 1266 1267 switch (pxs->desc->rqtype) { 1268 case DMA_MEM_TO_DEV: 1269 /* fall through */ 1270 case DMA_DEV_TO_MEM: 1271 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1272 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1, 1273 BURST); 1274 break; 1275 1276 case DMA_MEM_TO_MEM: 1277 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1278 off += _ldst_memtomem(dry_run, &buf[off], pxs, 1); 1279 break; 1280 1281 default: 1282 /* this code should be unreachable */ 1283 WARN_ON(1); 1284 break; 1285 } 1286 1287 return off; 1288 } 1289 1290 /* Returns bytes consumed and updates bursts */ 1291 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1292 unsigned long *bursts, const struct _xfer_spec *pxs) 1293 { 1294 int cyc, cycmax, szlp, szlpend, szbrst, off; 1295 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1296 struct _arg_LPEND lpend; 1297 1298 if (*bursts == 1) 1299 return _bursts(pl330, dry_run, buf, pxs, 1); 1300 1301 /* Max iterations possible in DMALP is 256 */ 1302 if (*bursts >= 256*256) { 1303 lcnt1 = 256; 1304 lcnt0 = 256; 1305 cyc = *bursts / lcnt1 / lcnt0; 1306 } else if (*bursts > 256) { 1307 lcnt1 = 256; 1308 lcnt0 = *bursts / lcnt1; 1309 cyc = 1; 1310 } else { 1311 lcnt1 = *bursts; 1312 lcnt0 = 0; 1313 cyc = 1; 1314 } 1315 1316 szlp = _emit_LP(1, buf, 0, 0); 1317 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1318 1319 lpend.cond = ALWAYS; 1320 lpend.forever = false; 1321 lpend.loop = 0; 1322 lpend.bjump = 0; 1323 szlpend = _emit_LPEND(1, buf, &lpend); 1324 1325 if (lcnt0) { 1326 szlp *= 2; 1327 szlpend *= 2; 1328 } 1329 1330 /* 1331 * Max bursts that we can unroll due to limit on the 1332 * size of backward jump that can be encoded in DMALPEND 1333 * which is 8-bits and hence 255 1334 */ 1335 cycmax = (255 - (szlp + szlpend)) / szbrst; 1336 1337 cyc = (cycmax < cyc) ? cycmax : cyc; 1338 1339 off = 0; 1340 1341 if (lcnt0) { 1342 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1343 ljmp0 = off; 1344 } 1345 1346 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1347 ljmp1 = off; 1348 1349 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1350 1351 lpend.cond = ALWAYS; 1352 lpend.forever = false; 1353 lpend.loop = 1; 1354 lpend.bjump = off - ljmp1; 1355 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1356 1357 if (lcnt0) { 1358 lpend.cond = ALWAYS; 1359 lpend.forever = false; 1360 lpend.loop = 0; 1361 lpend.bjump = off - ljmp0; 1362 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1363 } 1364 1365 *bursts = lcnt1 * cyc; 1366 if (lcnt0) 1367 *bursts *= lcnt0; 1368 1369 return off; 1370 } 1371 1372 static inline int _setup_loops(struct pl330_dmac *pl330, 1373 unsigned dry_run, u8 buf[], 1374 const struct _xfer_spec *pxs) 1375 { 1376 struct pl330_xfer *x = &pxs->desc->px; 1377 u32 ccr = pxs->ccr; 1378 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1379 int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) / 1380 BRST_SIZE(ccr); 1381 int off = 0; 1382 1383 while (bursts) { 1384 c = bursts; 1385 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1386 bursts -= c; 1387 } 1388 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs); 1389 1390 return off; 1391 } 1392 1393 static inline int _setup_xfer(struct pl330_dmac *pl330, 1394 unsigned dry_run, u8 buf[], 1395 const struct _xfer_spec *pxs) 1396 { 1397 struct pl330_xfer *x = &pxs->desc->px; 1398 int off = 0; 1399 1400 /* DMAMOV SAR, x->src_addr */ 1401 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1402 /* DMAMOV DAR, x->dst_addr */ 1403 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1404 1405 /* Setup Loop(s) */ 1406 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1407 1408 return off; 1409 } 1410 1411 /* 1412 * A req is a sequence of one or more xfer units. 1413 * Returns the number of bytes taken to setup the MC for the req. 1414 */ 1415 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1416 struct pl330_thread *thrd, unsigned index, 1417 struct _xfer_spec *pxs) 1418 { 1419 struct _pl330_req *req = &thrd->req[index]; 1420 u8 *buf = req->mc_cpu; 1421 int off = 0; 1422 1423 PL330_DBGMC_START(req->mc_bus); 1424 1425 /* DMAMOV CCR, ccr */ 1426 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1427 1428 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1429 1430 /* DMASEV peripheral/event */ 1431 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1432 /* DMAEND */ 1433 off += _emit_END(dry_run, &buf[off]); 1434 1435 return off; 1436 } 1437 1438 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1439 { 1440 u32 ccr = 0; 1441 1442 if (rqc->src_inc) 1443 ccr |= CC_SRCINC; 1444 1445 if (rqc->dst_inc) 1446 ccr |= CC_DSTINC; 1447 1448 /* We set same protection levels for Src and DST for now */ 1449 if (rqc->privileged) 1450 ccr |= CC_SRCPRI | CC_DSTPRI; 1451 if (rqc->nonsecure) 1452 ccr |= CC_SRCNS | CC_DSTNS; 1453 if (rqc->insnaccess) 1454 ccr |= CC_SRCIA | CC_DSTIA; 1455 1456 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1457 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1458 1459 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1460 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1461 1462 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1463 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1464 1465 ccr |= (rqc->swap << CC_SWAP_SHFT); 1466 1467 return ccr; 1468 } 1469 1470 /* 1471 * Submit a list of xfers after which the client wants notification. 1472 * Client is not notified after each xfer unit, just once after all 1473 * xfer units are done or some error occurs. 1474 */ 1475 static int pl330_submit_req(struct pl330_thread *thrd, 1476 struct dma_pl330_desc *desc) 1477 { 1478 struct pl330_dmac *pl330 = thrd->dmac; 1479 struct _xfer_spec xs; 1480 unsigned long flags; 1481 unsigned idx; 1482 u32 ccr; 1483 int ret = 0; 1484 1485 switch (desc->rqtype) { 1486 case DMA_MEM_TO_DEV: 1487 break; 1488 1489 case DMA_DEV_TO_MEM: 1490 break; 1491 1492 case DMA_MEM_TO_MEM: 1493 break; 1494 1495 default: 1496 return -ENOTSUPP; 1497 } 1498 1499 if (pl330->state == DYING 1500 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1501 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1502 __func__, __LINE__); 1503 return -EAGAIN; 1504 } 1505 1506 /* If request for non-existing peripheral */ 1507 if (desc->rqtype != DMA_MEM_TO_MEM && 1508 desc->peri >= pl330->pcfg.num_peri) { 1509 dev_info(thrd->dmac->ddma.dev, 1510 "%s:%d Invalid peripheral(%u)!\n", 1511 __func__, __LINE__, desc->peri); 1512 return -EINVAL; 1513 } 1514 1515 spin_lock_irqsave(&pl330->lock, flags); 1516 1517 if (_queue_full(thrd)) { 1518 ret = -EAGAIN; 1519 goto xfer_exit; 1520 } 1521 1522 /* Prefer Secure Channel */ 1523 if (!_manager_ns(thrd)) 1524 desc->rqcfg.nonsecure = 0; 1525 else 1526 desc->rqcfg.nonsecure = 1; 1527 1528 ccr = _prepare_ccr(&desc->rqcfg); 1529 1530 idx = thrd->req[0].desc == NULL ? 0 : 1; 1531 1532 xs.ccr = ccr; 1533 xs.desc = desc; 1534 1535 /* First dry run to check if req is acceptable */ 1536 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1537 if (ret < 0) 1538 goto xfer_exit; 1539 1540 if (ret > pl330->mcbufsz / 2) { 1541 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1542 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1543 ret = -ENOMEM; 1544 goto xfer_exit; 1545 } 1546 1547 /* Hook the request */ 1548 thrd->lstenq = idx; 1549 thrd->req[idx].desc = desc; 1550 _setup_req(pl330, 0, thrd, idx, &xs); 1551 1552 ret = 0; 1553 1554 xfer_exit: 1555 spin_unlock_irqrestore(&pl330->lock, flags); 1556 1557 return ret; 1558 } 1559 1560 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1561 { 1562 struct dma_pl330_chan *pch; 1563 unsigned long flags; 1564 1565 if (!desc) 1566 return; 1567 1568 pch = desc->pchan; 1569 1570 /* If desc aborted */ 1571 if (!pch) 1572 return; 1573 1574 spin_lock_irqsave(&pch->lock, flags); 1575 1576 desc->status = DONE; 1577 1578 spin_unlock_irqrestore(&pch->lock, flags); 1579 1580 tasklet_schedule(&pch->task); 1581 } 1582 1583 static void pl330_dotask(unsigned long data) 1584 { 1585 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1586 unsigned long flags; 1587 int i; 1588 1589 spin_lock_irqsave(&pl330->lock, flags); 1590 1591 /* The DMAC itself gone nuts */ 1592 if (pl330->dmac_tbd.reset_dmac) { 1593 pl330->state = DYING; 1594 /* Reset the manager too */ 1595 pl330->dmac_tbd.reset_mngr = true; 1596 /* Clear the reset flag */ 1597 pl330->dmac_tbd.reset_dmac = false; 1598 } 1599 1600 if (pl330->dmac_tbd.reset_mngr) { 1601 _stop(pl330->manager); 1602 /* Reset all channels */ 1603 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1604 /* Clear the reset flag */ 1605 pl330->dmac_tbd.reset_mngr = false; 1606 } 1607 1608 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1609 1610 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1611 struct pl330_thread *thrd = &pl330->channels[i]; 1612 void __iomem *regs = pl330->base; 1613 enum pl330_op_err err; 1614 1615 _stop(thrd); 1616 1617 if (readl(regs + FSC) & (1 << thrd->id)) 1618 err = PL330_ERR_FAIL; 1619 else 1620 err = PL330_ERR_ABORT; 1621 1622 spin_unlock_irqrestore(&pl330->lock, flags); 1623 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1624 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1625 spin_lock_irqsave(&pl330->lock, flags); 1626 1627 thrd->req[0].desc = NULL; 1628 thrd->req[1].desc = NULL; 1629 thrd->req_running = -1; 1630 1631 /* Clear the reset flag */ 1632 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1633 } 1634 } 1635 1636 spin_unlock_irqrestore(&pl330->lock, flags); 1637 1638 return; 1639 } 1640 1641 /* Returns 1 if state was updated, 0 otherwise */ 1642 static int pl330_update(struct pl330_dmac *pl330) 1643 { 1644 struct dma_pl330_desc *descdone; 1645 unsigned long flags; 1646 void __iomem *regs; 1647 u32 val; 1648 int id, ev, ret = 0; 1649 1650 regs = pl330->base; 1651 1652 spin_lock_irqsave(&pl330->lock, flags); 1653 1654 val = readl(regs + FSM) & 0x1; 1655 if (val) 1656 pl330->dmac_tbd.reset_mngr = true; 1657 else 1658 pl330->dmac_tbd.reset_mngr = false; 1659 1660 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1661 pl330->dmac_tbd.reset_chan |= val; 1662 if (val) { 1663 int i = 0; 1664 while (i < pl330->pcfg.num_chan) { 1665 if (val & (1 << i)) { 1666 dev_info(pl330->ddma.dev, 1667 "Reset Channel-%d\t CS-%x FTC-%x\n", 1668 i, readl(regs + CS(i)), 1669 readl(regs + FTC(i))); 1670 _stop(&pl330->channels[i]); 1671 } 1672 i++; 1673 } 1674 } 1675 1676 /* Check which event happened i.e, thread notified */ 1677 val = readl(regs + ES); 1678 if (pl330->pcfg.num_events < 32 1679 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1680 pl330->dmac_tbd.reset_dmac = true; 1681 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1682 __LINE__); 1683 ret = 1; 1684 goto updt_exit; 1685 } 1686 1687 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1688 if (val & (1 << ev)) { /* Event occurred */ 1689 struct pl330_thread *thrd; 1690 u32 inten = readl(regs + INTEN); 1691 int active; 1692 1693 /* Clear the event */ 1694 if (inten & (1 << ev)) 1695 writel(1 << ev, regs + INTCLR); 1696 1697 ret = 1; 1698 1699 id = pl330->events[ev]; 1700 1701 thrd = &pl330->channels[id]; 1702 1703 active = thrd->req_running; 1704 if (active == -1) /* Aborted */ 1705 continue; 1706 1707 /* Detach the req */ 1708 descdone = thrd->req[active].desc; 1709 thrd->req[active].desc = NULL; 1710 1711 thrd->req_running = -1; 1712 1713 /* Get going again ASAP */ 1714 _start(thrd); 1715 1716 /* For now, just make a list of callbacks to be done */ 1717 list_add_tail(&descdone->rqd, &pl330->req_done); 1718 } 1719 } 1720 1721 /* Now that we are in no hurry, do the callbacks */ 1722 while (!list_empty(&pl330->req_done)) { 1723 descdone = list_first_entry(&pl330->req_done, 1724 struct dma_pl330_desc, rqd); 1725 list_del(&descdone->rqd); 1726 spin_unlock_irqrestore(&pl330->lock, flags); 1727 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1728 spin_lock_irqsave(&pl330->lock, flags); 1729 } 1730 1731 updt_exit: 1732 spin_unlock_irqrestore(&pl330->lock, flags); 1733 1734 if (pl330->dmac_tbd.reset_dmac 1735 || pl330->dmac_tbd.reset_mngr 1736 || pl330->dmac_tbd.reset_chan) { 1737 ret = 1; 1738 tasklet_schedule(&pl330->tasks); 1739 } 1740 1741 return ret; 1742 } 1743 1744 /* Reserve an event */ 1745 static inline int _alloc_event(struct pl330_thread *thrd) 1746 { 1747 struct pl330_dmac *pl330 = thrd->dmac; 1748 int ev; 1749 1750 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1751 if (pl330->events[ev] == -1) { 1752 pl330->events[ev] = thrd->id; 1753 return ev; 1754 } 1755 1756 return -1; 1757 } 1758 1759 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1760 { 1761 return pl330->pcfg.irq_ns & (1 << i); 1762 } 1763 1764 /* Upon success, returns IdentityToken for the 1765 * allocated channel, NULL otherwise. 1766 */ 1767 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1768 { 1769 struct pl330_thread *thrd = NULL; 1770 int chans, i; 1771 1772 if (pl330->state == DYING) 1773 return NULL; 1774 1775 chans = pl330->pcfg.num_chan; 1776 1777 for (i = 0; i < chans; i++) { 1778 thrd = &pl330->channels[i]; 1779 if ((thrd->free) && (!_manager_ns(thrd) || 1780 _chan_ns(pl330, i))) { 1781 thrd->ev = _alloc_event(thrd); 1782 if (thrd->ev >= 0) { 1783 thrd->free = false; 1784 thrd->lstenq = 1; 1785 thrd->req[0].desc = NULL; 1786 thrd->req[1].desc = NULL; 1787 thrd->req_running = -1; 1788 break; 1789 } 1790 } 1791 thrd = NULL; 1792 } 1793 1794 return thrd; 1795 } 1796 1797 /* Release an event */ 1798 static inline void _free_event(struct pl330_thread *thrd, int ev) 1799 { 1800 struct pl330_dmac *pl330 = thrd->dmac; 1801 1802 /* If the event is valid and was held by the thread */ 1803 if (ev >= 0 && ev < pl330->pcfg.num_events 1804 && pl330->events[ev] == thrd->id) 1805 pl330->events[ev] = -1; 1806 } 1807 1808 static void pl330_release_channel(struct pl330_thread *thrd) 1809 { 1810 if (!thrd || thrd->free) 1811 return; 1812 1813 _stop(thrd); 1814 1815 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1816 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1817 1818 _free_event(thrd, thrd->ev); 1819 thrd->free = true; 1820 } 1821 1822 /* Initialize the structure for PL330 configuration, that can be used 1823 * by the client driver the make best use of the DMAC 1824 */ 1825 static void read_dmac_config(struct pl330_dmac *pl330) 1826 { 1827 void __iomem *regs = pl330->base; 1828 u32 val; 1829 1830 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1831 val &= CRD_DATA_WIDTH_MASK; 1832 pl330->pcfg.data_bus_width = 8 * (1 << val); 1833 1834 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1835 val &= CRD_DATA_BUFF_MASK; 1836 pl330->pcfg.data_buf_dep = val + 1; 1837 1838 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1839 val &= CR0_NUM_CHANS_MASK; 1840 val += 1; 1841 pl330->pcfg.num_chan = val; 1842 1843 val = readl(regs + CR0); 1844 if (val & CR0_PERIPH_REQ_SET) { 1845 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1846 val += 1; 1847 pl330->pcfg.num_peri = val; 1848 pl330->pcfg.peri_ns = readl(regs + CR4); 1849 } else { 1850 pl330->pcfg.num_peri = 0; 1851 } 1852 1853 val = readl(regs + CR0); 1854 if (val & CR0_BOOT_MAN_NS) 1855 pl330->pcfg.mode |= DMAC_MODE_NS; 1856 else 1857 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1858 1859 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1860 val &= CR0_NUM_EVENTS_MASK; 1861 val += 1; 1862 pl330->pcfg.num_events = val; 1863 1864 pl330->pcfg.irq_ns = readl(regs + CR3); 1865 } 1866 1867 static inline void _reset_thread(struct pl330_thread *thrd) 1868 { 1869 struct pl330_dmac *pl330 = thrd->dmac; 1870 1871 thrd->req[0].mc_cpu = pl330->mcode_cpu 1872 + (thrd->id * pl330->mcbufsz); 1873 thrd->req[0].mc_bus = pl330->mcode_bus 1874 + (thrd->id * pl330->mcbufsz); 1875 thrd->req[0].desc = NULL; 1876 1877 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1878 + pl330->mcbufsz / 2; 1879 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1880 + pl330->mcbufsz / 2; 1881 thrd->req[1].desc = NULL; 1882 1883 thrd->req_running = -1; 1884 } 1885 1886 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1887 { 1888 int chans = pl330->pcfg.num_chan; 1889 struct pl330_thread *thrd; 1890 int i; 1891 1892 /* Allocate 1 Manager and 'chans' Channel threads */ 1893 pl330->channels = kcalloc(1 + chans, sizeof(*thrd), 1894 GFP_KERNEL); 1895 if (!pl330->channels) 1896 return -ENOMEM; 1897 1898 /* Init Channel threads */ 1899 for (i = 0; i < chans; i++) { 1900 thrd = &pl330->channels[i]; 1901 thrd->id = i; 1902 thrd->dmac = pl330; 1903 _reset_thread(thrd); 1904 thrd->free = true; 1905 } 1906 1907 /* MANAGER is indexed at the end */ 1908 thrd = &pl330->channels[chans]; 1909 thrd->id = chans; 1910 thrd->dmac = pl330; 1911 thrd->free = false; 1912 pl330->manager = thrd; 1913 1914 return 0; 1915 } 1916 1917 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1918 { 1919 int chans = pl330->pcfg.num_chan; 1920 int ret; 1921 1922 /* 1923 * Alloc MicroCode buffer for 'chans' Channel threads. 1924 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1925 */ 1926 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, 1927 chans * pl330->mcbufsz, 1928 &pl330->mcode_bus, GFP_KERNEL, 1929 DMA_ATTR_PRIVILEGED); 1930 if (!pl330->mcode_cpu) { 1931 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1932 __func__, __LINE__); 1933 return -ENOMEM; 1934 } 1935 1936 ret = dmac_alloc_threads(pl330); 1937 if (ret) { 1938 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1939 __func__, __LINE__); 1940 dma_free_attrs(pl330->ddma.dev, 1941 chans * pl330->mcbufsz, 1942 pl330->mcode_cpu, pl330->mcode_bus, 1943 DMA_ATTR_PRIVILEGED); 1944 return ret; 1945 } 1946 1947 return 0; 1948 } 1949 1950 static int pl330_add(struct pl330_dmac *pl330) 1951 { 1952 int i, ret; 1953 1954 /* Check if we can handle this DMAC */ 1955 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1956 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1957 pl330->pcfg.periph_id); 1958 return -EINVAL; 1959 } 1960 1961 /* Read the configuration of the DMAC */ 1962 read_dmac_config(pl330); 1963 1964 if (pl330->pcfg.num_events == 0) { 1965 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1966 __func__, __LINE__); 1967 return -EINVAL; 1968 } 1969 1970 spin_lock_init(&pl330->lock); 1971 1972 INIT_LIST_HEAD(&pl330->req_done); 1973 1974 /* Use default MC buffer size if not provided */ 1975 if (!pl330->mcbufsz) 1976 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1977 1978 /* Mark all events as free */ 1979 for (i = 0; i < pl330->pcfg.num_events; i++) 1980 pl330->events[i] = -1; 1981 1982 /* Allocate resources needed by the DMAC */ 1983 ret = dmac_alloc_resources(pl330); 1984 if (ret) { 1985 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1986 return ret; 1987 } 1988 1989 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1990 1991 pl330->state = INIT; 1992 1993 return 0; 1994 } 1995 1996 static int dmac_free_threads(struct pl330_dmac *pl330) 1997 { 1998 struct pl330_thread *thrd; 1999 int i; 2000 2001 /* Release Channel threads */ 2002 for (i = 0; i < pl330->pcfg.num_chan; i++) { 2003 thrd = &pl330->channels[i]; 2004 pl330_release_channel(thrd); 2005 } 2006 2007 /* Free memory */ 2008 kfree(pl330->channels); 2009 2010 return 0; 2011 } 2012 2013 static void pl330_del(struct pl330_dmac *pl330) 2014 { 2015 pl330->state = UNINIT; 2016 2017 tasklet_kill(&pl330->tasks); 2018 2019 /* Free DMAC resources */ 2020 dmac_free_threads(pl330); 2021 2022 dma_free_attrs(pl330->ddma.dev, 2023 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 2024 pl330->mcode_bus, DMA_ATTR_PRIVILEGED); 2025 } 2026 2027 /* forward declaration */ 2028 static struct amba_driver pl330_driver; 2029 2030 static inline struct dma_pl330_chan * 2031 to_pchan(struct dma_chan *ch) 2032 { 2033 if (!ch) 2034 return NULL; 2035 2036 return container_of(ch, struct dma_pl330_chan, chan); 2037 } 2038 2039 static inline struct dma_pl330_desc * 2040 to_desc(struct dma_async_tx_descriptor *tx) 2041 { 2042 return container_of(tx, struct dma_pl330_desc, txd); 2043 } 2044 2045 static inline void fill_queue(struct dma_pl330_chan *pch) 2046 { 2047 struct dma_pl330_desc *desc; 2048 int ret; 2049 2050 list_for_each_entry(desc, &pch->work_list, node) { 2051 2052 /* If already submitted */ 2053 if (desc->status == BUSY) 2054 continue; 2055 2056 ret = pl330_submit_req(pch->thread, desc); 2057 if (!ret) { 2058 desc->status = BUSY; 2059 } else if (ret == -EAGAIN) { 2060 /* QFull or DMAC Dying */ 2061 break; 2062 } else { 2063 /* Unacceptable request */ 2064 desc->status = DONE; 2065 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 2066 __func__, __LINE__, desc->txd.cookie); 2067 tasklet_schedule(&pch->task); 2068 } 2069 } 2070 } 2071 2072 static void pl330_tasklet(unsigned long data) 2073 { 2074 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2075 struct dma_pl330_desc *desc, *_dt; 2076 unsigned long flags; 2077 bool power_down = false; 2078 2079 spin_lock_irqsave(&pch->lock, flags); 2080 2081 /* Pick up ripe tomatoes */ 2082 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2083 if (desc->status == DONE) { 2084 if (!pch->cyclic) 2085 dma_cookie_complete(&desc->txd); 2086 list_move_tail(&desc->node, &pch->completed_list); 2087 } 2088 2089 /* Try to submit a req imm. next to the last completed cookie */ 2090 fill_queue(pch); 2091 2092 if (list_empty(&pch->work_list)) { 2093 spin_lock(&pch->thread->dmac->lock); 2094 _stop(pch->thread); 2095 spin_unlock(&pch->thread->dmac->lock); 2096 power_down = true; 2097 pch->active = false; 2098 } else { 2099 /* Make sure the PL330 Channel thread is active */ 2100 spin_lock(&pch->thread->dmac->lock); 2101 _start(pch->thread); 2102 spin_unlock(&pch->thread->dmac->lock); 2103 } 2104 2105 while (!list_empty(&pch->completed_list)) { 2106 struct dmaengine_desc_callback cb; 2107 2108 desc = list_first_entry(&pch->completed_list, 2109 struct dma_pl330_desc, node); 2110 2111 dmaengine_desc_get_callback(&desc->txd, &cb); 2112 2113 if (pch->cyclic) { 2114 desc->status = PREP; 2115 list_move_tail(&desc->node, &pch->work_list); 2116 if (power_down) { 2117 pch->active = true; 2118 spin_lock(&pch->thread->dmac->lock); 2119 _start(pch->thread); 2120 spin_unlock(&pch->thread->dmac->lock); 2121 power_down = false; 2122 } 2123 } else { 2124 desc->status = FREE; 2125 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2126 } 2127 2128 dma_descriptor_unmap(&desc->txd); 2129 2130 if (dmaengine_desc_callback_valid(&cb)) { 2131 spin_unlock_irqrestore(&pch->lock, flags); 2132 dmaengine_desc_callback_invoke(&cb, NULL); 2133 spin_lock_irqsave(&pch->lock, flags); 2134 } 2135 } 2136 spin_unlock_irqrestore(&pch->lock, flags); 2137 2138 /* If work list empty, power down */ 2139 if (power_down) { 2140 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2141 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2142 } 2143 } 2144 2145 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2146 struct of_dma *ofdma) 2147 { 2148 int count = dma_spec->args_count; 2149 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2150 unsigned int chan_id; 2151 2152 if (!pl330) 2153 return NULL; 2154 2155 if (count != 1) 2156 return NULL; 2157 2158 chan_id = dma_spec->args[0]; 2159 if (chan_id >= pl330->num_peripherals) 2160 return NULL; 2161 2162 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2163 } 2164 2165 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2166 { 2167 struct dma_pl330_chan *pch = to_pchan(chan); 2168 struct pl330_dmac *pl330 = pch->dmac; 2169 unsigned long flags; 2170 2171 spin_lock_irqsave(&pl330->lock, flags); 2172 2173 dma_cookie_init(chan); 2174 pch->cyclic = false; 2175 2176 pch->thread = pl330_request_channel(pl330); 2177 if (!pch->thread) { 2178 spin_unlock_irqrestore(&pl330->lock, flags); 2179 return -ENOMEM; 2180 } 2181 2182 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2183 2184 spin_unlock_irqrestore(&pl330->lock, flags); 2185 2186 return 1; 2187 } 2188 2189 /* 2190 * We need the data direction between the DMAC (the dma-mapping "device") and 2191 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! 2192 */ 2193 static enum dma_data_direction 2194 pl330_dma_slave_map_dir(enum dma_transfer_direction dir) 2195 { 2196 switch (dir) { 2197 case DMA_MEM_TO_DEV: 2198 return DMA_FROM_DEVICE; 2199 case DMA_DEV_TO_MEM: 2200 return DMA_TO_DEVICE; 2201 case DMA_DEV_TO_DEV: 2202 return DMA_BIDIRECTIONAL; 2203 default: 2204 return DMA_NONE; 2205 } 2206 } 2207 2208 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) 2209 { 2210 if (pch->dir != DMA_NONE) 2211 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 2212 1 << pch->burst_sz, pch->dir, 0); 2213 pch->dir = DMA_NONE; 2214 } 2215 2216 2217 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, 2218 enum dma_transfer_direction dir) 2219 { 2220 struct device *dev = pch->chan.device->dev; 2221 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); 2222 2223 /* Already mapped for this config? */ 2224 if (pch->dir == dma_dir) 2225 return true; 2226 2227 pl330_unprep_slave_fifo(pch); 2228 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 2229 1 << pch->burst_sz, dma_dir, 0); 2230 if (dma_mapping_error(dev, pch->fifo_dma)) 2231 return false; 2232 2233 pch->dir = dma_dir; 2234 return true; 2235 } 2236 2237 static int fixup_burst_len(int max_burst_len, int quirks) 2238 { 2239 if (max_burst_len > PL330_MAX_BURST) 2240 return PL330_MAX_BURST; 2241 else if (max_burst_len < 1) 2242 return 1; 2243 else 2244 return max_burst_len; 2245 } 2246 2247 static int pl330_config_write(struct dma_chan *chan, 2248 struct dma_slave_config *slave_config, 2249 enum dma_transfer_direction direction) 2250 { 2251 struct dma_pl330_chan *pch = to_pchan(chan); 2252 2253 pl330_unprep_slave_fifo(pch); 2254 if (direction == DMA_MEM_TO_DEV) { 2255 if (slave_config->dst_addr) 2256 pch->fifo_addr = slave_config->dst_addr; 2257 if (slave_config->dst_addr_width) 2258 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2259 pch->burst_len = fixup_burst_len(slave_config->dst_maxburst, 2260 pch->dmac->quirks); 2261 } else if (direction == DMA_DEV_TO_MEM) { 2262 if (slave_config->src_addr) 2263 pch->fifo_addr = slave_config->src_addr; 2264 if (slave_config->src_addr_width) 2265 pch->burst_sz = __ffs(slave_config->src_addr_width); 2266 pch->burst_len = fixup_burst_len(slave_config->src_maxburst, 2267 pch->dmac->quirks); 2268 } 2269 2270 return 0; 2271 } 2272 2273 static int pl330_config(struct dma_chan *chan, 2274 struct dma_slave_config *slave_config) 2275 { 2276 struct dma_pl330_chan *pch = to_pchan(chan); 2277 2278 memcpy(&pch->slave_config, slave_config, sizeof(*slave_config)); 2279 2280 return 0; 2281 } 2282 2283 static int pl330_terminate_all(struct dma_chan *chan) 2284 { 2285 struct dma_pl330_chan *pch = to_pchan(chan); 2286 struct dma_pl330_desc *desc; 2287 unsigned long flags; 2288 struct pl330_dmac *pl330 = pch->dmac; 2289 bool power_down = false; 2290 2291 pm_runtime_get_sync(pl330->ddma.dev); 2292 spin_lock_irqsave(&pch->lock, flags); 2293 2294 spin_lock(&pl330->lock); 2295 _stop(pch->thread); 2296 pch->thread->req[0].desc = NULL; 2297 pch->thread->req[1].desc = NULL; 2298 pch->thread->req_running = -1; 2299 spin_unlock(&pl330->lock); 2300 2301 power_down = pch->active; 2302 pch->active = false; 2303 2304 /* Mark all desc done */ 2305 list_for_each_entry(desc, &pch->submitted_list, node) { 2306 desc->status = FREE; 2307 dma_cookie_complete(&desc->txd); 2308 } 2309 2310 list_for_each_entry(desc, &pch->work_list , node) { 2311 desc->status = FREE; 2312 dma_cookie_complete(&desc->txd); 2313 } 2314 2315 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2316 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2317 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2318 spin_unlock_irqrestore(&pch->lock, flags); 2319 pm_runtime_mark_last_busy(pl330->ddma.dev); 2320 if (power_down) 2321 pm_runtime_put_autosuspend(pl330->ddma.dev); 2322 pm_runtime_put_autosuspend(pl330->ddma.dev); 2323 2324 return 0; 2325 } 2326 2327 /* 2328 * We don't support DMA_RESUME command because of hardware 2329 * limitations, so after pausing the channel we cannot restore 2330 * it to active state. We have to terminate channel and setup 2331 * DMA transfer again. This pause feature was implemented to 2332 * allow safely read residue before channel termination. 2333 */ 2334 static int pl330_pause(struct dma_chan *chan) 2335 { 2336 struct dma_pl330_chan *pch = to_pchan(chan); 2337 struct pl330_dmac *pl330 = pch->dmac; 2338 unsigned long flags; 2339 2340 pm_runtime_get_sync(pl330->ddma.dev); 2341 spin_lock_irqsave(&pch->lock, flags); 2342 2343 spin_lock(&pl330->lock); 2344 _stop(pch->thread); 2345 spin_unlock(&pl330->lock); 2346 2347 spin_unlock_irqrestore(&pch->lock, flags); 2348 pm_runtime_mark_last_busy(pl330->ddma.dev); 2349 pm_runtime_put_autosuspend(pl330->ddma.dev); 2350 2351 return 0; 2352 } 2353 2354 static void pl330_free_chan_resources(struct dma_chan *chan) 2355 { 2356 struct dma_pl330_chan *pch = to_pchan(chan); 2357 struct pl330_dmac *pl330 = pch->dmac; 2358 unsigned long flags; 2359 2360 tasklet_kill(&pch->task); 2361 2362 pm_runtime_get_sync(pch->dmac->ddma.dev); 2363 spin_lock_irqsave(&pl330->lock, flags); 2364 2365 pl330_release_channel(pch->thread); 2366 pch->thread = NULL; 2367 2368 if (pch->cyclic) 2369 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2370 2371 spin_unlock_irqrestore(&pl330->lock, flags); 2372 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2373 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2374 pl330_unprep_slave_fifo(pch); 2375 } 2376 2377 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2378 struct dma_pl330_desc *desc) 2379 { 2380 struct pl330_thread *thrd = pch->thread; 2381 struct pl330_dmac *pl330 = pch->dmac; 2382 void __iomem *regs = thrd->dmac->base; 2383 u32 val, addr; 2384 2385 pm_runtime_get_sync(pl330->ddma.dev); 2386 val = addr = 0; 2387 if (desc->rqcfg.src_inc) { 2388 val = readl(regs + SA(thrd->id)); 2389 addr = desc->px.src_addr; 2390 } else { 2391 val = readl(regs + DA(thrd->id)); 2392 addr = desc->px.dst_addr; 2393 } 2394 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2395 pm_runtime_put_autosuspend(pl330->ddma.dev); 2396 2397 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ 2398 if (!val) 2399 return 0; 2400 2401 return val - addr; 2402 } 2403 2404 static enum dma_status 2405 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2406 struct dma_tx_state *txstate) 2407 { 2408 enum dma_status ret; 2409 unsigned long flags; 2410 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; 2411 struct dma_pl330_chan *pch = to_pchan(chan); 2412 unsigned int transferred, residual = 0; 2413 2414 ret = dma_cookie_status(chan, cookie, txstate); 2415 2416 if (!txstate) 2417 return ret; 2418 2419 if (ret == DMA_COMPLETE) 2420 goto out; 2421 2422 spin_lock_irqsave(&pch->lock, flags); 2423 spin_lock(&pch->thread->dmac->lock); 2424 2425 if (pch->thread->req_running != -1) 2426 running = pch->thread->req[pch->thread->req_running].desc; 2427 2428 last_enq = pch->thread->req[pch->thread->lstenq].desc; 2429 2430 /* Check in pending list */ 2431 list_for_each_entry(desc, &pch->work_list, node) { 2432 if (desc->status == DONE) 2433 transferred = desc->bytes_requested; 2434 else if (running && desc == running) 2435 transferred = 2436 pl330_get_current_xferred_count(pch, desc); 2437 else if (desc->status == BUSY) 2438 /* 2439 * Busy but not running means either just enqueued, 2440 * or finished and not yet marked done 2441 */ 2442 if (desc == last_enq) 2443 transferred = 0; 2444 else 2445 transferred = desc->bytes_requested; 2446 else 2447 transferred = 0; 2448 residual += desc->bytes_requested - transferred; 2449 if (desc->txd.cookie == cookie) { 2450 switch (desc->status) { 2451 case DONE: 2452 ret = DMA_COMPLETE; 2453 break; 2454 case PREP: 2455 case BUSY: 2456 ret = DMA_IN_PROGRESS; 2457 break; 2458 default: 2459 WARN_ON(1); 2460 } 2461 break; 2462 } 2463 if (desc->last) 2464 residual = 0; 2465 } 2466 spin_unlock(&pch->thread->dmac->lock); 2467 spin_unlock_irqrestore(&pch->lock, flags); 2468 2469 out: 2470 dma_set_residue(txstate, residual); 2471 2472 return ret; 2473 } 2474 2475 static void pl330_issue_pending(struct dma_chan *chan) 2476 { 2477 struct dma_pl330_chan *pch = to_pchan(chan); 2478 unsigned long flags; 2479 2480 spin_lock_irqsave(&pch->lock, flags); 2481 if (list_empty(&pch->work_list)) { 2482 /* 2483 * Warn on nothing pending. Empty submitted_list may 2484 * break our pm_runtime usage counter as it is 2485 * updated on work_list emptiness status. 2486 */ 2487 WARN_ON(list_empty(&pch->submitted_list)); 2488 pch->active = true; 2489 pm_runtime_get_sync(pch->dmac->ddma.dev); 2490 } 2491 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2492 spin_unlock_irqrestore(&pch->lock, flags); 2493 2494 pl330_tasklet((unsigned long)pch); 2495 } 2496 2497 /* 2498 * We returned the last one of the circular list of descriptor(s) 2499 * from prep_xxx, so the argument to submit corresponds to the last 2500 * descriptor of the list. 2501 */ 2502 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2503 { 2504 struct dma_pl330_desc *desc, *last = to_desc(tx); 2505 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2506 dma_cookie_t cookie; 2507 unsigned long flags; 2508 2509 spin_lock_irqsave(&pch->lock, flags); 2510 2511 /* Assign cookies to all nodes */ 2512 while (!list_empty(&last->node)) { 2513 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2514 if (pch->cyclic) { 2515 desc->txd.callback = last->txd.callback; 2516 desc->txd.callback_param = last->txd.callback_param; 2517 } 2518 desc->last = false; 2519 2520 dma_cookie_assign(&desc->txd); 2521 2522 list_move_tail(&desc->node, &pch->submitted_list); 2523 } 2524 2525 last->last = true; 2526 cookie = dma_cookie_assign(&last->txd); 2527 list_add_tail(&last->node, &pch->submitted_list); 2528 spin_unlock_irqrestore(&pch->lock, flags); 2529 2530 return cookie; 2531 } 2532 2533 static inline void _init_desc(struct dma_pl330_desc *desc) 2534 { 2535 desc->rqcfg.swap = SWAP_NO; 2536 desc->rqcfg.scctl = CCTRL0; 2537 desc->rqcfg.dcctl = CCTRL0; 2538 desc->txd.tx_submit = pl330_tx_submit; 2539 2540 INIT_LIST_HEAD(&desc->node); 2541 } 2542 2543 /* Returns the number of descriptors added to the DMAC pool */ 2544 static int add_desc(struct list_head *pool, spinlock_t *lock, 2545 gfp_t flg, int count) 2546 { 2547 struct dma_pl330_desc *desc; 2548 unsigned long flags; 2549 int i; 2550 2551 desc = kcalloc(count, sizeof(*desc), flg); 2552 if (!desc) 2553 return 0; 2554 2555 spin_lock_irqsave(lock, flags); 2556 2557 for (i = 0; i < count; i++) { 2558 _init_desc(&desc[i]); 2559 list_add_tail(&desc[i].node, pool); 2560 } 2561 2562 spin_unlock_irqrestore(lock, flags); 2563 2564 return count; 2565 } 2566 2567 static struct dma_pl330_desc *pluck_desc(struct list_head *pool, 2568 spinlock_t *lock) 2569 { 2570 struct dma_pl330_desc *desc = NULL; 2571 unsigned long flags; 2572 2573 spin_lock_irqsave(lock, flags); 2574 2575 if (!list_empty(pool)) { 2576 desc = list_entry(pool->next, 2577 struct dma_pl330_desc, node); 2578 2579 list_del_init(&desc->node); 2580 2581 desc->status = PREP; 2582 desc->txd.callback = NULL; 2583 } 2584 2585 spin_unlock_irqrestore(lock, flags); 2586 2587 return desc; 2588 } 2589 2590 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2591 { 2592 struct pl330_dmac *pl330 = pch->dmac; 2593 u8 *peri_id = pch->chan.private; 2594 struct dma_pl330_desc *desc; 2595 2596 /* Pluck one desc from the pool of DMAC */ 2597 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock); 2598 2599 /* If the DMAC pool is empty, alloc new */ 2600 if (!desc) { 2601 DEFINE_SPINLOCK(lock); 2602 LIST_HEAD(pool); 2603 2604 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1)) 2605 return NULL; 2606 2607 desc = pluck_desc(&pool, &lock); 2608 WARN_ON(!desc || !list_empty(&pool)); 2609 } 2610 2611 /* Initialize the descriptor */ 2612 desc->pchan = pch; 2613 desc->txd.cookie = 0; 2614 async_tx_ack(&desc->txd); 2615 2616 desc->peri = peri_id ? pch->chan.chan_id : 0; 2617 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2618 2619 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2620 2621 return desc; 2622 } 2623 2624 static inline void fill_px(struct pl330_xfer *px, 2625 dma_addr_t dst, dma_addr_t src, size_t len) 2626 { 2627 px->bytes = len; 2628 px->dst_addr = dst; 2629 px->src_addr = src; 2630 } 2631 2632 static struct dma_pl330_desc * 2633 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2634 dma_addr_t src, size_t len) 2635 { 2636 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2637 2638 if (!desc) { 2639 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2640 __func__, __LINE__); 2641 return NULL; 2642 } 2643 2644 /* 2645 * Ideally we should lookout for reqs bigger than 2646 * those that can be programmed with 256 bytes of 2647 * MC buffer, but considering a req size is seldom 2648 * going to be word-unaligned and more than 200MB, 2649 * we take it easy. 2650 * Also, should the limit is reached we'd rather 2651 * have the platform increase MC buffer size than 2652 * complicating this API driver. 2653 */ 2654 fill_px(&desc->px, dst, src, len); 2655 2656 return desc; 2657 } 2658 2659 /* Call after fixing burst size */ 2660 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2661 { 2662 struct dma_pl330_chan *pch = desc->pchan; 2663 struct pl330_dmac *pl330 = pch->dmac; 2664 int burst_len; 2665 2666 burst_len = pl330->pcfg.data_bus_width / 8; 2667 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2668 burst_len >>= desc->rqcfg.brst_size; 2669 2670 /* src/dst_burst_len can't be more than 16 */ 2671 if (burst_len > PL330_MAX_BURST) 2672 burst_len = PL330_MAX_BURST; 2673 2674 return burst_len; 2675 } 2676 2677 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2678 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2679 size_t period_len, enum dma_transfer_direction direction, 2680 unsigned long flags) 2681 { 2682 struct dma_pl330_desc *desc = NULL, *first = NULL; 2683 struct dma_pl330_chan *pch = to_pchan(chan); 2684 struct pl330_dmac *pl330 = pch->dmac; 2685 unsigned int i; 2686 dma_addr_t dst; 2687 dma_addr_t src; 2688 2689 if (len % period_len != 0) 2690 return NULL; 2691 2692 if (!is_slave_direction(direction)) { 2693 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2694 __func__, __LINE__); 2695 return NULL; 2696 } 2697 2698 pl330_config_write(chan, &pch->slave_config, direction); 2699 2700 if (!pl330_prep_slave_fifo(pch, direction)) 2701 return NULL; 2702 2703 for (i = 0; i < len / period_len; i++) { 2704 desc = pl330_get_desc(pch); 2705 if (!desc) { 2706 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2707 __func__, __LINE__); 2708 2709 if (!first) 2710 return NULL; 2711 2712 spin_lock_irqsave(&pl330->pool_lock, flags); 2713 2714 while (!list_empty(&first->node)) { 2715 desc = list_entry(first->node.next, 2716 struct dma_pl330_desc, node); 2717 list_move_tail(&desc->node, &pl330->desc_pool); 2718 } 2719 2720 list_move_tail(&first->node, &pl330->desc_pool); 2721 2722 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2723 2724 return NULL; 2725 } 2726 2727 switch (direction) { 2728 case DMA_MEM_TO_DEV: 2729 desc->rqcfg.src_inc = 1; 2730 desc->rqcfg.dst_inc = 0; 2731 src = dma_addr; 2732 dst = pch->fifo_dma; 2733 break; 2734 case DMA_DEV_TO_MEM: 2735 desc->rqcfg.src_inc = 0; 2736 desc->rqcfg.dst_inc = 1; 2737 src = pch->fifo_dma; 2738 dst = dma_addr; 2739 break; 2740 default: 2741 break; 2742 } 2743 2744 desc->rqtype = direction; 2745 desc->rqcfg.brst_size = pch->burst_sz; 2746 desc->rqcfg.brst_len = pch->burst_len; 2747 desc->bytes_requested = period_len; 2748 fill_px(&desc->px, dst, src, period_len); 2749 2750 if (!first) 2751 first = desc; 2752 else 2753 list_add_tail(&desc->node, &first->node); 2754 2755 dma_addr += period_len; 2756 } 2757 2758 if (!desc) 2759 return NULL; 2760 2761 pch->cyclic = true; 2762 desc->txd.flags = flags; 2763 2764 return &desc->txd; 2765 } 2766 2767 static struct dma_async_tx_descriptor * 2768 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2769 dma_addr_t src, size_t len, unsigned long flags) 2770 { 2771 struct dma_pl330_desc *desc; 2772 struct dma_pl330_chan *pch = to_pchan(chan); 2773 struct pl330_dmac *pl330; 2774 int burst; 2775 2776 if (unlikely(!pch || !len)) 2777 return NULL; 2778 2779 pl330 = pch->dmac; 2780 2781 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2782 if (!desc) 2783 return NULL; 2784 2785 desc->rqcfg.src_inc = 1; 2786 desc->rqcfg.dst_inc = 1; 2787 desc->rqtype = DMA_MEM_TO_MEM; 2788 2789 /* Select max possible burst size */ 2790 burst = pl330->pcfg.data_bus_width / 8; 2791 2792 /* 2793 * Make sure we use a burst size that aligns with all the memcpy 2794 * parameters because our DMA programming algorithm doesn't cope with 2795 * transfers which straddle an entry in the DMA device's MFIFO. 2796 */ 2797 while ((src | dst | len) & (burst - 1)) 2798 burst /= 2; 2799 2800 desc->rqcfg.brst_size = 0; 2801 while (burst != (1 << desc->rqcfg.brst_size)) 2802 desc->rqcfg.brst_size++; 2803 2804 /* 2805 * If burst size is smaller than bus width then make sure we only 2806 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2807 */ 2808 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2809 desc->rqcfg.brst_len = 1; 2810 2811 desc->rqcfg.brst_len = get_burst_len(desc, len); 2812 desc->bytes_requested = len; 2813 2814 desc->txd.flags = flags; 2815 2816 return &desc->txd; 2817 } 2818 2819 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2820 struct dma_pl330_desc *first) 2821 { 2822 unsigned long flags; 2823 struct dma_pl330_desc *desc; 2824 2825 if (!first) 2826 return; 2827 2828 spin_lock_irqsave(&pl330->pool_lock, flags); 2829 2830 while (!list_empty(&first->node)) { 2831 desc = list_entry(first->node.next, 2832 struct dma_pl330_desc, node); 2833 list_move_tail(&desc->node, &pl330->desc_pool); 2834 } 2835 2836 list_move_tail(&first->node, &pl330->desc_pool); 2837 2838 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2839 } 2840 2841 static struct dma_async_tx_descriptor * 2842 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2843 unsigned int sg_len, enum dma_transfer_direction direction, 2844 unsigned long flg, void *context) 2845 { 2846 struct dma_pl330_desc *first, *desc = NULL; 2847 struct dma_pl330_chan *pch = to_pchan(chan); 2848 struct scatterlist *sg; 2849 int i; 2850 2851 if (unlikely(!pch || !sgl || !sg_len)) 2852 return NULL; 2853 2854 pl330_config_write(chan, &pch->slave_config, direction); 2855 2856 if (!pl330_prep_slave_fifo(pch, direction)) 2857 return NULL; 2858 2859 first = NULL; 2860 2861 for_each_sg(sgl, sg, sg_len, i) { 2862 2863 desc = pl330_get_desc(pch); 2864 if (!desc) { 2865 struct pl330_dmac *pl330 = pch->dmac; 2866 2867 dev_err(pch->dmac->ddma.dev, 2868 "%s:%d Unable to fetch desc\n", 2869 __func__, __LINE__); 2870 __pl330_giveback_desc(pl330, first); 2871 2872 return NULL; 2873 } 2874 2875 if (!first) 2876 first = desc; 2877 else 2878 list_add_tail(&desc->node, &first->node); 2879 2880 if (direction == DMA_MEM_TO_DEV) { 2881 desc->rqcfg.src_inc = 1; 2882 desc->rqcfg.dst_inc = 0; 2883 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), 2884 sg_dma_len(sg)); 2885 } else { 2886 desc->rqcfg.src_inc = 0; 2887 desc->rqcfg.dst_inc = 1; 2888 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, 2889 sg_dma_len(sg)); 2890 } 2891 2892 desc->rqcfg.brst_size = pch->burst_sz; 2893 desc->rqcfg.brst_len = pch->burst_len; 2894 desc->rqtype = direction; 2895 desc->bytes_requested = sg_dma_len(sg); 2896 } 2897 2898 /* Return the last desc in the chain */ 2899 desc->txd.flags = flg; 2900 return &desc->txd; 2901 } 2902 2903 static irqreturn_t pl330_irq_handler(int irq, void *data) 2904 { 2905 if (pl330_update(data)) 2906 return IRQ_HANDLED; 2907 else 2908 return IRQ_NONE; 2909 } 2910 2911 #define PL330_DMA_BUSWIDTHS \ 2912 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2913 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2914 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2915 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2916 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2917 2918 #ifdef CONFIG_DEBUG_FS 2919 static int pl330_debugfs_show(struct seq_file *s, void *data) 2920 { 2921 struct pl330_dmac *pl330 = s->private; 2922 int chans, pchs, ch, pr; 2923 2924 chans = pl330->pcfg.num_chan; 2925 pchs = pl330->num_peripherals; 2926 2927 seq_puts(s, "PL330 physical channels:\n"); 2928 seq_puts(s, "THREAD:\t\tCHANNEL:\n"); 2929 seq_puts(s, "--------\t-----\n"); 2930 for (ch = 0; ch < chans; ch++) { 2931 struct pl330_thread *thrd = &pl330->channels[ch]; 2932 int found = -1; 2933 2934 for (pr = 0; pr < pchs; pr++) { 2935 struct dma_pl330_chan *pch = &pl330->peripherals[pr]; 2936 2937 if (!pch->thread || thrd->id != pch->thread->id) 2938 continue; 2939 2940 found = pr; 2941 } 2942 2943 seq_printf(s, "%d\t\t", thrd->id); 2944 if (found == -1) 2945 seq_puts(s, "--\n"); 2946 else 2947 seq_printf(s, "%d\n", found); 2948 } 2949 2950 return 0; 2951 } 2952 2953 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs); 2954 2955 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2956 { 2957 debugfs_create_file(dev_name(pl330->ddma.dev), 2958 S_IFREG | 0444, NULL, pl330, 2959 &pl330_debugfs_fops); 2960 } 2961 #else 2962 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2963 { 2964 } 2965 #endif 2966 2967 /* 2968 * Runtime PM callbacks are provided by amba/bus.c driver. 2969 * 2970 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2971 * bus driver will only disable/enable the clock in runtime PM callbacks. 2972 */ 2973 static int __maybe_unused pl330_suspend(struct device *dev) 2974 { 2975 struct amba_device *pcdev = to_amba_device(dev); 2976 2977 pm_runtime_force_suspend(dev); 2978 amba_pclk_unprepare(pcdev); 2979 2980 return 0; 2981 } 2982 2983 static int __maybe_unused pl330_resume(struct device *dev) 2984 { 2985 struct amba_device *pcdev = to_amba_device(dev); 2986 int ret; 2987 2988 ret = amba_pclk_prepare(pcdev); 2989 if (ret) 2990 return ret; 2991 2992 pm_runtime_force_resume(dev); 2993 2994 return ret; 2995 } 2996 2997 static const struct dev_pm_ops pl330_pm = { 2998 SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume) 2999 }; 3000 3001 static int 3002 pl330_probe(struct amba_device *adev, const struct amba_id *id) 3003 { 3004 struct pl330_config *pcfg; 3005 struct pl330_dmac *pl330; 3006 struct dma_pl330_chan *pch, *_p; 3007 struct dma_device *pd; 3008 struct resource *res; 3009 int i, ret, irq; 3010 int num_chan; 3011 struct device_node *np = adev->dev.of_node; 3012 3013 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 3014 if (ret) 3015 return ret; 3016 3017 /* Allocate a new DMAC and its Channels */ 3018 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 3019 if (!pl330) 3020 return -ENOMEM; 3021 3022 pd = &pl330->ddma; 3023 pd->dev = &adev->dev; 3024 3025 pl330->mcbufsz = 0; 3026 3027 /* get quirk */ 3028 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 3029 if (of_property_read_bool(np, of_quirks[i].quirk)) 3030 pl330->quirks |= of_quirks[i].id; 3031 3032 res = &adev->res; 3033 pl330->base = devm_ioremap_resource(&adev->dev, res); 3034 if (IS_ERR(pl330->base)) 3035 return PTR_ERR(pl330->base); 3036 3037 amba_set_drvdata(adev, pl330); 3038 3039 pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma"); 3040 if (IS_ERR(pl330->rstc)) { 3041 if (PTR_ERR(pl330->rstc) != -EPROBE_DEFER) 3042 dev_err(&adev->dev, "Failed to get reset!\n"); 3043 return PTR_ERR(pl330->rstc); 3044 } else { 3045 ret = reset_control_deassert(pl330->rstc); 3046 if (ret) { 3047 dev_err(&adev->dev, "Couldn't deassert the device from reset!\n"); 3048 return ret; 3049 } 3050 } 3051 3052 pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp"); 3053 if (IS_ERR(pl330->rstc_ocp)) { 3054 if (PTR_ERR(pl330->rstc_ocp) != -EPROBE_DEFER) 3055 dev_err(&adev->dev, "Failed to get OCP reset!\n"); 3056 return PTR_ERR(pl330->rstc_ocp); 3057 } else { 3058 ret = reset_control_deassert(pl330->rstc_ocp); 3059 if (ret) { 3060 dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n"); 3061 return ret; 3062 } 3063 } 3064 3065 for (i = 0; i < AMBA_NR_IRQS; i++) { 3066 irq = adev->irq[i]; 3067 if (irq) { 3068 ret = devm_request_irq(&adev->dev, irq, 3069 pl330_irq_handler, 0, 3070 dev_name(&adev->dev), pl330); 3071 if (ret) 3072 return ret; 3073 } else { 3074 break; 3075 } 3076 } 3077 3078 pcfg = &pl330->pcfg; 3079 3080 pcfg->periph_id = adev->periphid; 3081 ret = pl330_add(pl330); 3082 if (ret) 3083 return ret; 3084 3085 INIT_LIST_HEAD(&pl330->desc_pool); 3086 spin_lock_init(&pl330->pool_lock); 3087 3088 /* Create a descriptor pool of default size */ 3089 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock, 3090 GFP_KERNEL, NR_DEFAULT_DESC)) 3091 dev_warn(&adev->dev, "unable to allocate desc\n"); 3092 3093 INIT_LIST_HEAD(&pd->channels); 3094 3095 /* Initialize channel parameters */ 3096 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 3097 3098 pl330->num_peripherals = num_chan; 3099 3100 pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL); 3101 if (!pl330->peripherals) { 3102 ret = -ENOMEM; 3103 goto probe_err2; 3104 } 3105 3106 for (i = 0; i < num_chan; i++) { 3107 pch = &pl330->peripherals[i]; 3108 3109 pch->chan.private = adev->dev.of_node; 3110 INIT_LIST_HEAD(&pch->submitted_list); 3111 INIT_LIST_HEAD(&pch->work_list); 3112 INIT_LIST_HEAD(&pch->completed_list); 3113 spin_lock_init(&pch->lock); 3114 pch->thread = NULL; 3115 pch->chan.device = pd; 3116 pch->dmac = pl330; 3117 pch->dir = DMA_NONE; 3118 3119 /* Add the channel to the DMAC list */ 3120 list_add_tail(&pch->chan.device_node, &pd->channels); 3121 } 3122 3123 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 3124 if (pcfg->num_peri) { 3125 dma_cap_set(DMA_SLAVE, pd->cap_mask); 3126 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 3127 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 3128 } 3129 3130 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 3131 pd->device_free_chan_resources = pl330_free_chan_resources; 3132 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 3133 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 3134 pd->device_tx_status = pl330_tx_status; 3135 pd->device_prep_slave_sg = pl330_prep_slave_sg; 3136 pd->device_config = pl330_config; 3137 pd->device_pause = pl330_pause; 3138 pd->device_terminate_all = pl330_terminate_all; 3139 pd->device_issue_pending = pl330_issue_pending; 3140 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 3141 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 3142 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 3143 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 3144 pd->max_burst = PL330_MAX_BURST; 3145 3146 ret = dma_async_device_register(pd); 3147 if (ret) { 3148 dev_err(&adev->dev, "unable to register DMAC\n"); 3149 goto probe_err3; 3150 } 3151 3152 if (adev->dev.of_node) { 3153 ret = of_dma_controller_register(adev->dev.of_node, 3154 of_dma_pl330_xlate, pl330); 3155 if (ret) { 3156 dev_err(&adev->dev, 3157 "unable to register DMA to the generic DT DMA helpers\n"); 3158 } 3159 } 3160 3161 adev->dev.dma_parms = &pl330->dma_parms; 3162 3163 /* 3164 * This is the limit for transfers with a buswidth of 1, larger 3165 * buswidths will have larger limits. 3166 */ 3167 ret = dma_set_max_seg_size(&adev->dev, 1900800); 3168 if (ret) 3169 dev_err(&adev->dev, "unable to set the seg size\n"); 3170 3171 3172 init_pl330_debugfs(pl330); 3173 dev_info(&adev->dev, 3174 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 3175 dev_info(&adev->dev, 3176 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3177 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 3178 pcfg->num_peri, pcfg->num_events); 3179 3180 pm_runtime_irq_safe(&adev->dev); 3181 pm_runtime_use_autosuspend(&adev->dev); 3182 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 3183 pm_runtime_mark_last_busy(&adev->dev); 3184 pm_runtime_put_autosuspend(&adev->dev); 3185 3186 return 0; 3187 probe_err3: 3188 /* Idle the DMAC */ 3189 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3190 chan.device_node) { 3191 3192 /* Remove the channel */ 3193 list_del(&pch->chan.device_node); 3194 3195 /* Flush the channel */ 3196 if (pch->thread) { 3197 pl330_terminate_all(&pch->chan); 3198 pl330_free_chan_resources(&pch->chan); 3199 } 3200 } 3201 probe_err2: 3202 pl330_del(pl330); 3203 3204 if (pl330->rstc_ocp) 3205 reset_control_assert(pl330->rstc_ocp); 3206 3207 if (pl330->rstc) 3208 reset_control_assert(pl330->rstc); 3209 return ret; 3210 } 3211 3212 static int pl330_remove(struct amba_device *adev) 3213 { 3214 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 3215 struct dma_pl330_chan *pch, *_p; 3216 int i, irq; 3217 3218 pm_runtime_get_noresume(pl330->ddma.dev); 3219 3220 if (adev->dev.of_node) 3221 of_dma_controller_free(adev->dev.of_node); 3222 3223 for (i = 0; i < AMBA_NR_IRQS; i++) { 3224 irq = adev->irq[i]; 3225 if (irq) 3226 devm_free_irq(&adev->dev, irq, pl330); 3227 } 3228 3229 dma_async_device_unregister(&pl330->ddma); 3230 3231 /* Idle the DMAC */ 3232 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3233 chan.device_node) { 3234 3235 /* Remove the channel */ 3236 list_del(&pch->chan.device_node); 3237 3238 /* Flush the channel */ 3239 if (pch->thread) { 3240 pl330_terminate_all(&pch->chan); 3241 pl330_free_chan_resources(&pch->chan); 3242 } 3243 } 3244 3245 pl330_del(pl330); 3246 3247 if (pl330->rstc_ocp) 3248 reset_control_assert(pl330->rstc_ocp); 3249 3250 if (pl330->rstc) 3251 reset_control_assert(pl330->rstc); 3252 return 0; 3253 } 3254 3255 static const struct amba_id pl330_ids[] = { 3256 { 3257 .id = 0x00041330, 3258 .mask = 0x000fffff, 3259 }, 3260 { 0, 0 }, 3261 }; 3262 3263 MODULE_DEVICE_TABLE(amba, pl330_ids); 3264 3265 static struct amba_driver pl330_driver = { 3266 .drv = { 3267 .owner = THIS_MODULE, 3268 .name = "dma-pl330", 3269 .pm = &pl330_pm, 3270 }, 3271 .id_table = pl330_ids, 3272 .probe = pl330_probe, 3273 .remove = pl330_remove, 3274 }; 3275 3276 module_amba_driver(pl330_driver); 3277 3278 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3279 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3280 MODULE_LICENSE("GPL"); 3281