xref: /openbmc/linux/drivers/dma/pl330.c (revision 11788d9b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
7  *	Jaswinder Singh <jassi.brar@samsung.com>
8  */
9 
10 #include <linux/debugfs.h>
11 #include <linux/kernel.h>
12 #include <linux/io.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dmaengine.h>
21 #include <linux/amba/bus.h>
22 #include <linux/scatterlist.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/err.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/bug.h>
28 #include <linux/reset.h>
29 
30 #include "dmaengine.h"
31 #define PL330_MAX_CHAN		8
32 #define PL330_MAX_IRQS		32
33 #define PL330_MAX_PERI		32
34 #define PL330_MAX_BURST         16
35 
36 #define PL330_QUIRK_BROKEN_NO_FLUSHP	BIT(0)
37 #define PL330_QUIRK_PERIPH_BURST	BIT(1)
38 
39 enum pl330_cachectrl {
40 	CCTRL0,		/* Noncacheable and nonbufferable */
41 	CCTRL1,		/* Bufferable only */
42 	CCTRL2,		/* Cacheable, but do not allocate */
43 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
44 	INVALID1,	/* AWCACHE = 0x1000 */
45 	INVALID2,
46 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
47 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
48 };
49 
50 enum pl330_byteswap {
51 	SWAP_NO,
52 	SWAP_2,
53 	SWAP_4,
54 	SWAP_8,
55 	SWAP_16,
56 };
57 
58 /* Register and Bit field Definitions */
59 #define DS			0x0
60 #define DS_ST_STOP		0x0
61 #define DS_ST_EXEC		0x1
62 #define DS_ST_CMISS		0x2
63 #define DS_ST_UPDTPC		0x3
64 #define DS_ST_WFE		0x4
65 #define DS_ST_ATBRR		0x5
66 #define DS_ST_QBUSY		0x6
67 #define DS_ST_WFP		0x7
68 #define DS_ST_KILL		0x8
69 #define DS_ST_CMPLT		0x9
70 #define DS_ST_FLTCMP		0xe
71 #define DS_ST_FAULT		0xf
72 
73 #define DPC			0x4
74 #define INTEN			0x20
75 #define ES			0x24
76 #define INTSTATUS		0x28
77 #define INTCLR			0x2c
78 #define FSM			0x30
79 #define FSC			0x34
80 #define FTM			0x38
81 
82 #define _FTC			0x40
83 #define FTC(n)			(_FTC + (n)*0x4)
84 
85 #define _CS			0x100
86 #define CS(n)			(_CS + (n)*0x8)
87 #define CS_CNS			(1 << 21)
88 
89 #define _CPC			0x104
90 #define CPC(n)			(_CPC + (n)*0x8)
91 
92 #define _SA			0x400
93 #define SA(n)			(_SA + (n)*0x20)
94 
95 #define _DA			0x404
96 #define DA(n)			(_DA + (n)*0x20)
97 
98 #define _CC			0x408
99 #define CC(n)			(_CC + (n)*0x20)
100 
101 #define CC_SRCINC		(1 << 0)
102 #define CC_DSTINC		(1 << 14)
103 #define CC_SRCPRI		(1 << 8)
104 #define CC_DSTPRI		(1 << 22)
105 #define CC_SRCNS		(1 << 9)
106 #define CC_DSTNS		(1 << 23)
107 #define CC_SRCIA		(1 << 10)
108 #define CC_DSTIA		(1 << 24)
109 #define CC_SRCBRSTLEN_SHFT	4
110 #define CC_DSTBRSTLEN_SHFT	18
111 #define CC_SRCBRSTSIZE_SHFT	1
112 #define CC_DSTBRSTSIZE_SHFT	15
113 #define CC_SRCCCTRL_SHFT	11
114 #define CC_SRCCCTRL_MASK	0x7
115 #define CC_DSTCCTRL_SHFT	25
116 #define CC_DRCCCTRL_MASK	0x7
117 #define CC_SWAP_SHFT		28
118 
119 #define _LC0			0x40c
120 #define LC0(n)			(_LC0 + (n)*0x20)
121 
122 #define _LC1			0x410
123 #define LC1(n)			(_LC1 + (n)*0x20)
124 
125 #define DBGSTATUS		0xd00
126 #define DBG_BUSY		(1 << 0)
127 
128 #define DBGCMD			0xd04
129 #define DBGINST0		0xd08
130 #define DBGINST1		0xd0c
131 
132 #define CR0			0xe00
133 #define CR1			0xe04
134 #define CR2			0xe08
135 #define CR3			0xe0c
136 #define CR4			0xe10
137 #define CRD			0xe14
138 
139 #define PERIPH_ID		0xfe0
140 #define PERIPH_REV_SHIFT	20
141 #define PERIPH_REV_MASK		0xf
142 #define PERIPH_REV_R0P0		0
143 #define PERIPH_REV_R1P0		1
144 #define PERIPH_REV_R1P1		2
145 
146 #define CR0_PERIPH_REQ_SET	(1 << 0)
147 #define CR0_BOOT_EN_SET		(1 << 1)
148 #define CR0_BOOT_MAN_NS		(1 << 2)
149 #define CR0_NUM_CHANS_SHIFT	4
150 #define CR0_NUM_CHANS_MASK	0x7
151 #define CR0_NUM_PERIPH_SHIFT	12
152 #define CR0_NUM_PERIPH_MASK	0x1f
153 #define CR0_NUM_EVENTS_SHIFT	17
154 #define CR0_NUM_EVENTS_MASK	0x1f
155 
156 #define CR1_ICACHE_LEN_SHIFT	0
157 #define CR1_ICACHE_LEN_MASK	0x7
158 #define CR1_NUM_ICACHELINES_SHIFT	4
159 #define CR1_NUM_ICACHELINES_MASK	0xf
160 
161 #define CRD_DATA_WIDTH_SHIFT	0
162 #define CRD_DATA_WIDTH_MASK	0x7
163 #define CRD_WR_CAP_SHIFT	4
164 #define CRD_WR_CAP_MASK		0x7
165 #define CRD_WR_Q_DEP_SHIFT	8
166 #define CRD_WR_Q_DEP_MASK	0xf
167 #define CRD_RD_CAP_SHIFT	12
168 #define CRD_RD_CAP_MASK		0x7
169 #define CRD_RD_Q_DEP_SHIFT	16
170 #define CRD_RD_Q_DEP_MASK	0xf
171 #define CRD_DATA_BUFF_SHIFT	20
172 #define CRD_DATA_BUFF_MASK	0x3ff
173 
174 #define PART			0x330
175 #define DESIGNER		0x41
176 #define REVISION		0x0
177 #define INTEG_CFG		0x0
178 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
179 
180 #define PL330_STATE_STOPPED		(1 << 0)
181 #define PL330_STATE_EXECUTING		(1 << 1)
182 #define PL330_STATE_WFE			(1 << 2)
183 #define PL330_STATE_FAULTING		(1 << 3)
184 #define PL330_STATE_COMPLETING		(1 << 4)
185 #define PL330_STATE_WFP			(1 << 5)
186 #define PL330_STATE_KILLING		(1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
188 #define PL330_STATE_CACHEMISS		(1 << 8)
189 #define PL330_STATE_UPDTPC		(1 << 9)
190 #define PL330_STATE_ATBARRIER		(1 << 10)
191 #define PL330_STATE_QUEUEBUSY		(1 << 11)
192 #define PL330_STATE_INVALID		(1 << 15)
193 
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
196 
197 #define CMD_DMAADDH		0x54
198 #define CMD_DMAEND		0x00
199 #define CMD_DMAFLUSHP		0x35
200 #define CMD_DMAGO		0xa0
201 #define CMD_DMALD		0x04
202 #define CMD_DMALDP		0x25
203 #define CMD_DMALP		0x20
204 #define CMD_DMALPEND		0x28
205 #define CMD_DMAKILL		0x01
206 #define CMD_DMAMOV		0xbc
207 #define CMD_DMANOP		0x18
208 #define CMD_DMARMB		0x12
209 #define CMD_DMASEV		0x34
210 #define CMD_DMAST		0x08
211 #define CMD_DMASTP		0x29
212 #define CMD_DMASTZ		0x0c
213 #define CMD_DMAWFE		0x36
214 #define CMD_DMAWFP		0x30
215 #define CMD_DMAWMB		0x13
216 
217 #define SZ_DMAADDH		3
218 #define SZ_DMAEND		1
219 #define SZ_DMAFLUSHP		2
220 #define SZ_DMALD		1
221 #define SZ_DMALDP		2
222 #define SZ_DMALP		2
223 #define SZ_DMALPEND		2
224 #define SZ_DMAKILL		1
225 #define SZ_DMAMOV		6
226 #define SZ_DMANOP		1
227 #define SZ_DMARMB		1
228 #define SZ_DMASEV		2
229 #define SZ_DMAST		1
230 #define SZ_DMASTP		2
231 #define SZ_DMASTZ		1
232 #define SZ_DMAWFE		2
233 #define SZ_DMAWFP		2
234 #define SZ_DMAWMB		1
235 #define SZ_DMAGO		6
236 
237 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239 
240 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242 
243 /*
244  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
245  * at 1byte/burst for P<->M and M<->M respectively.
246  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
247  * should be enough for P<->M and M<->M respectively.
248  */
249 #define MCODE_BUFF_PER_REQ	256
250 
251 /* Use this _only_ to wait on transient states */
252 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
253 
254 #ifdef PL330_DEBUG_MCGEN
255 static unsigned cmd_line;
256 #define PL330_DBGCMD_DUMP(off, x...)	do { \
257 						printk("%x:", cmd_line); \
258 						printk(x); \
259 						cmd_line += off; \
260 					} while (0)
261 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
262 #else
263 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
264 #define PL330_DBGMC_START(addr)		do {} while (0)
265 #endif
266 
267 /* The number of default descriptors */
268 
269 #define NR_DEFAULT_DESC	16
270 
271 /* Delay for runtime PM autosuspend, ms */
272 #define PL330_AUTOSUSPEND_DELAY 20
273 
274 /* Populated by the PL330 core driver for DMA API driver's info */
275 struct pl330_config {
276 	u32	periph_id;
277 #define DMAC_MODE_NS	(1 << 0)
278 	unsigned int	mode;
279 	unsigned int	data_bus_width:10; /* In number of bits */
280 	unsigned int	data_buf_dep:11;
281 	unsigned int	num_chan:4;
282 	unsigned int	num_peri:6;
283 	u32		peri_ns;
284 	unsigned int	num_events:6;
285 	u32		irq_ns;
286 };
287 
288 /*
289  * Request Configuration.
290  * The PL330 core does not modify this and uses the last
291  * working configuration if the request doesn't provide any.
292  *
293  * The Client may want to provide this info only for the
294  * first request and a request with new settings.
295  */
296 struct pl330_reqcfg {
297 	/* Address Incrementing */
298 	unsigned dst_inc:1;
299 	unsigned src_inc:1;
300 
301 	/*
302 	 * For now, the SRC & DST protection levels
303 	 * and burst size/length are assumed same.
304 	 */
305 	bool nonsecure;
306 	bool privileged;
307 	bool insnaccess;
308 	unsigned brst_len:5;
309 	unsigned brst_size:3; /* in power of 2 */
310 
311 	enum pl330_cachectrl dcctl;
312 	enum pl330_cachectrl scctl;
313 	enum pl330_byteswap swap;
314 	struct pl330_config *pcfg;
315 };
316 
317 /*
318  * One cycle of DMAC operation.
319  * There may be more than one xfer in a request.
320  */
321 struct pl330_xfer {
322 	u32 src_addr;
323 	u32 dst_addr;
324 	/* Size to xfer */
325 	u32 bytes;
326 };
327 
328 /* The xfer callbacks are made with one of these arguments. */
329 enum pl330_op_err {
330 	/* The all xfers in the request were success. */
331 	PL330_ERR_NONE,
332 	/* If req aborted due to global error. */
333 	PL330_ERR_ABORT,
334 	/* If req failed due to problem with Channel. */
335 	PL330_ERR_FAIL,
336 };
337 
338 enum dmamov_dst {
339 	SAR = 0,
340 	CCR,
341 	DAR,
342 };
343 
344 enum pl330_dst {
345 	SRC = 0,
346 	DST,
347 };
348 
349 enum pl330_cond {
350 	SINGLE,
351 	BURST,
352 	ALWAYS,
353 };
354 
355 struct dma_pl330_desc;
356 
357 struct _pl330_req {
358 	u32 mc_bus;
359 	void *mc_cpu;
360 	struct dma_pl330_desc *desc;
361 };
362 
363 /* ToBeDone for tasklet */
364 struct _pl330_tbd {
365 	bool reset_dmac;
366 	bool reset_mngr;
367 	u8 reset_chan;
368 };
369 
370 /* A DMAC Thread */
371 struct pl330_thread {
372 	u8 id;
373 	int ev;
374 	/* If the channel is not yet acquired by any client */
375 	bool free;
376 	/* Parent DMAC */
377 	struct pl330_dmac *dmac;
378 	/* Only two at a time */
379 	struct _pl330_req req[2];
380 	/* Index of the last enqueued request */
381 	unsigned lstenq;
382 	/* Index of the last submitted request or -1 if the DMA is stopped */
383 	int req_running;
384 };
385 
386 enum pl330_dmac_state {
387 	UNINIT,
388 	INIT,
389 	DYING,
390 };
391 
392 enum desc_status {
393 	/* In the DMAC pool */
394 	FREE,
395 	/*
396 	 * Allocated to some channel during prep_xxx
397 	 * Also may be sitting on the work_list.
398 	 */
399 	PREP,
400 	/*
401 	 * Sitting on the work_list and already submitted
402 	 * to the PL330 core. Not more than two descriptors
403 	 * of a channel can be BUSY at any time.
404 	 */
405 	BUSY,
406 	/*
407 	 * Sitting on the channel work_list but xfer done
408 	 * by PL330 core
409 	 */
410 	DONE,
411 };
412 
413 struct dma_pl330_chan {
414 	/* Schedule desc completion */
415 	struct tasklet_struct task;
416 
417 	/* DMA-Engine Channel */
418 	struct dma_chan chan;
419 
420 	/* List of submitted descriptors */
421 	struct list_head submitted_list;
422 	/* List of issued descriptors */
423 	struct list_head work_list;
424 	/* List of completed descriptors */
425 	struct list_head completed_list;
426 
427 	/* Pointer to the DMAC that manages this channel,
428 	 * NULL if the channel is available to be acquired.
429 	 * As the parent, this DMAC also provides descriptors
430 	 * to the channel.
431 	 */
432 	struct pl330_dmac *dmac;
433 
434 	/* To protect channel manipulation */
435 	spinlock_t lock;
436 
437 	/*
438 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
439 	 * available.
440 	 */
441 	struct pl330_thread *thread;
442 
443 	/* For D-to-M and M-to-D channels */
444 	int burst_sz; /* the peripheral fifo width */
445 	int burst_len; /* the number of burst */
446 	phys_addr_t fifo_addr;
447 	/* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
448 	dma_addr_t fifo_dma;
449 	enum dma_data_direction dir;
450 	struct dma_slave_config slave_config;
451 
452 	/* for cyclic capability */
453 	bool cyclic;
454 
455 	/* for runtime pm tracking */
456 	bool active;
457 };
458 
459 struct pl330_dmac {
460 	/* DMA-Engine Device */
461 	struct dma_device ddma;
462 
463 	/* Holds info about sg limitations */
464 	struct device_dma_parameters dma_parms;
465 
466 	/* Pool of descriptors available for the DMAC's channels */
467 	struct list_head desc_pool;
468 	/* To protect desc_pool manipulation */
469 	spinlock_t pool_lock;
470 
471 	/* Size of MicroCode buffers for each channel. */
472 	unsigned mcbufsz;
473 	/* ioremap'ed address of PL330 registers. */
474 	void __iomem	*base;
475 	/* Populated by the PL330 core driver during pl330_add */
476 	struct pl330_config	pcfg;
477 
478 	spinlock_t		lock;
479 	/* Maximum possible events/irqs */
480 	int			events[32];
481 	/* BUS address of MicroCode buffer */
482 	dma_addr_t		mcode_bus;
483 	/* CPU address of MicroCode buffer */
484 	void			*mcode_cpu;
485 	/* List of all Channel threads */
486 	struct pl330_thread	*channels;
487 	/* Pointer to the MANAGER thread */
488 	struct pl330_thread	*manager;
489 	/* To handle bad news in interrupt */
490 	struct tasklet_struct	tasks;
491 	struct _pl330_tbd	dmac_tbd;
492 	/* State of DMAC operation */
493 	enum pl330_dmac_state	state;
494 	/* Holds list of reqs with due callbacks */
495 	struct list_head        req_done;
496 
497 	/* Peripheral channels connected to this DMAC */
498 	unsigned int num_peripherals;
499 	struct dma_pl330_chan *peripherals; /* keep at end */
500 	int quirks;
501 
502 	struct reset_control	*rstc;
503 	struct reset_control	*rstc_ocp;
504 };
505 
506 static struct pl330_of_quirks {
507 	char *quirk;
508 	int id;
509 } of_quirks[] = {
510 	{
511 		.quirk = "arm,pl330-broken-no-flushp",
512 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
513 	},
514 	{
515 		.quirk = "arm,pl330-periph-burst",
516 		.id = PL330_QUIRK_PERIPH_BURST,
517 	}
518 };
519 
520 struct dma_pl330_desc {
521 	/* To attach to a queue as child */
522 	struct list_head node;
523 
524 	/* Descriptor for the DMA Engine API */
525 	struct dma_async_tx_descriptor txd;
526 
527 	/* Xfer for PL330 core */
528 	struct pl330_xfer px;
529 
530 	struct pl330_reqcfg rqcfg;
531 
532 	enum desc_status status;
533 
534 	int bytes_requested;
535 	bool last;
536 
537 	/* The channel which currently holds this desc */
538 	struct dma_pl330_chan *pchan;
539 
540 	enum dma_transfer_direction rqtype;
541 	/* Index of peripheral for the xfer. */
542 	unsigned peri:5;
543 	/* Hook to attach to DMAC's list of reqs with due callback */
544 	struct list_head rqd;
545 };
546 
547 struct _xfer_spec {
548 	u32 ccr;
549 	struct dma_pl330_desc *desc;
550 };
551 
552 static int pl330_config_write(struct dma_chan *chan,
553 			struct dma_slave_config *slave_config,
554 			enum dma_transfer_direction direction);
555 
556 static inline bool _queue_full(struct pl330_thread *thrd)
557 {
558 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
559 }
560 
561 static inline bool is_manager(struct pl330_thread *thrd)
562 {
563 	return thrd->dmac->manager == thrd;
564 }
565 
566 /* If manager of the thread is in Non-Secure mode */
567 static inline bool _manager_ns(struct pl330_thread *thrd)
568 {
569 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
570 }
571 
572 static inline u32 get_revision(u32 periph_id)
573 {
574 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
575 }
576 
577 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
578 {
579 	if (dry_run)
580 		return SZ_DMAEND;
581 
582 	buf[0] = CMD_DMAEND;
583 
584 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
585 
586 	return SZ_DMAEND;
587 }
588 
589 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
590 {
591 	if (dry_run)
592 		return SZ_DMAFLUSHP;
593 
594 	buf[0] = CMD_DMAFLUSHP;
595 
596 	peri &= 0x1f;
597 	peri <<= 3;
598 	buf[1] = peri;
599 
600 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
601 
602 	return SZ_DMAFLUSHP;
603 }
604 
605 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
606 {
607 	if (dry_run)
608 		return SZ_DMALD;
609 
610 	buf[0] = CMD_DMALD;
611 
612 	if (cond == SINGLE)
613 		buf[0] |= (0 << 1) | (1 << 0);
614 	else if (cond == BURST)
615 		buf[0] |= (1 << 1) | (1 << 0);
616 
617 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
618 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
619 
620 	return SZ_DMALD;
621 }
622 
623 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
624 		enum pl330_cond cond, u8 peri)
625 {
626 	if (dry_run)
627 		return SZ_DMALDP;
628 
629 	buf[0] = CMD_DMALDP;
630 
631 	if (cond == BURST)
632 		buf[0] |= (1 << 1);
633 
634 	peri &= 0x1f;
635 	peri <<= 3;
636 	buf[1] = peri;
637 
638 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
639 		cond == SINGLE ? 'S' : 'B', peri >> 3);
640 
641 	return SZ_DMALDP;
642 }
643 
644 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
645 		unsigned loop, u8 cnt)
646 {
647 	if (dry_run)
648 		return SZ_DMALP;
649 
650 	buf[0] = CMD_DMALP;
651 
652 	if (loop)
653 		buf[0] |= (1 << 1);
654 
655 	cnt--; /* DMAC increments by 1 internally */
656 	buf[1] = cnt;
657 
658 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
659 
660 	return SZ_DMALP;
661 }
662 
663 struct _arg_LPEND {
664 	enum pl330_cond cond;
665 	bool forever;
666 	unsigned loop;
667 	u8 bjump;
668 };
669 
670 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
671 		const struct _arg_LPEND *arg)
672 {
673 	enum pl330_cond cond = arg->cond;
674 	bool forever = arg->forever;
675 	unsigned loop = arg->loop;
676 	u8 bjump = arg->bjump;
677 
678 	if (dry_run)
679 		return SZ_DMALPEND;
680 
681 	buf[0] = CMD_DMALPEND;
682 
683 	if (loop)
684 		buf[0] |= (1 << 2);
685 
686 	if (!forever)
687 		buf[0] |= (1 << 4);
688 
689 	if (cond == SINGLE)
690 		buf[0] |= (0 << 1) | (1 << 0);
691 	else if (cond == BURST)
692 		buf[0] |= (1 << 1) | (1 << 0);
693 
694 	buf[1] = bjump;
695 
696 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
697 			forever ? "FE" : "END",
698 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
699 			loop ? '1' : '0',
700 			bjump);
701 
702 	return SZ_DMALPEND;
703 }
704 
705 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
706 {
707 	if (dry_run)
708 		return SZ_DMAKILL;
709 
710 	buf[0] = CMD_DMAKILL;
711 
712 	return SZ_DMAKILL;
713 }
714 
715 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
716 		enum dmamov_dst dst, u32 val)
717 {
718 	if (dry_run)
719 		return SZ_DMAMOV;
720 
721 	buf[0] = CMD_DMAMOV;
722 	buf[1] = dst;
723 	buf[2] = val;
724 	buf[3] = val >> 8;
725 	buf[4] = val >> 16;
726 	buf[5] = val >> 24;
727 
728 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
729 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
730 
731 	return SZ_DMAMOV;
732 }
733 
734 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
735 {
736 	if (dry_run)
737 		return SZ_DMARMB;
738 
739 	buf[0] = CMD_DMARMB;
740 
741 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
742 
743 	return SZ_DMARMB;
744 }
745 
746 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
747 {
748 	if (dry_run)
749 		return SZ_DMASEV;
750 
751 	buf[0] = CMD_DMASEV;
752 
753 	ev &= 0x1f;
754 	ev <<= 3;
755 	buf[1] = ev;
756 
757 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
758 
759 	return SZ_DMASEV;
760 }
761 
762 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
763 {
764 	if (dry_run)
765 		return SZ_DMAST;
766 
767 	buf[0] = CMD_DMAST;
768 
769 	if (cond == SINGLE)
770 		buf[0] |= (0 << 1) | (1 << 0);
771 	else if (cond == BURST)
772 		buf[0] |= (1 << 1) | (1 << 0);
773 
774 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
775 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
776 
777 	return SZ_DMAST;
778 }
779 
780 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
781 		enum pl330_cond cond, u8 peri)
782 {
783 	if (dry_run)
784 		return SZ_DMASTP;
785 
786 	buf[0] = CMD_DMASTP;
787 
788 	if (cond == BURST)
789 		buf[0] |= (1 << 1);
790 
791 	peri &= 0x1f;
792 	peri <<= 3;
793 	buf[1] = peri;
794 
795 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
796 		cond == SINGLE ? 'S' : 'B', peri >> 3);
797 
798 	return SZ_DMASTP;
799 }
800 
801 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
802 		enum pl330_cond cond, u8 peri)
803 {
804 	if (dry_run)
805 		return SZ_DMAWFP;
806 
807 	buf[0] = CMD_DMAWFP;
808 
809 	if (cond == SINGLE)
810 		buf[0] |= (0 << 1) | (0 << 0);
811 	else if (cond == BURST)
812 		buf[0] |= (1 << 1) | (0 << 0);
813 	else
814 		buf[0] |= (0 << 1) | (1 << 0);
815 
816 	peri &= 0x1f;
817 	peri <<= 3;
818 	buf[1] = peri;
819 
820 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
821 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
822 
823 	return SZ_DMAWFP;
824 }
825 
826 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
827 {
828 	if (dry_run)
829 		return SZ_DMAWMB;
830 
831 	buf[0] = CMD_DMAWMB;
832 
833 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
834 
835 	return SZ_DMAWMB;
836 }
837 
838 struct _arg_GO {
839 	u8 chan;
840 	u32 addr;
841 	unsigned ns;
842 };
843 
844 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
845 		const struct _arg_GO *arg)
846 {
847 	u8 chan = arg->chan;
848 	u32 addr = arg->addr;
849 	unsigned ns = arg->ns;
850 
851 	if (dry_run)
852 		return SZ_DMAGO;
853 
854 	buf[0] = CMD_DMAGO;
855 	buf[0] |= (ns << 1);
856 	buf[1] = chan & 0x7;
857 	buf[2] = addr;
858 	buf[3] = addr >> 8;
859 	buf[4] = addr >> 16;
860 	buf[5] = addr >> 24;
861 
862 	return SZ_DMAGO;
863 }
864 
865 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
866 
867 /* Returns Time-Out */
868 static bool _until_dmac_idle(struct pl330_thread *thrd)
869 {
870 	void __iomem *regs = thrd->dmac->base;
871 	unsigned long loops = msecs_to_loops(5);
872 
873 	do {
874 		/* Until Manager is Idle */
875 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
876 			break;
877 
878 		cpu_relax();
879 	} while (--loops);
880 
881 	if (!loops)
882 		return true;
883 
884 	return false;
885 }
886 
887 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
888 		u8 insn[], bool as_manager)
889 {
890 	void __iomem *regs = thrd->dmac->base;
891 	u32 val;
892 
893 	/* If timed out due to halted state-machine */
894 	if (_until_dmac_idle(thrd)) {
895 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
896 		return;
897 	}
898 
899 	val = (insn[0] << 16) | (insn[1] << 24);
900 	if (!as_manager) {
901 		val |= (1 << 0);
902 		val |= (thrd->id << 8); /* Channel Number */
903 	}
904 	writel(val, regs + DBGINST0);
905 
906 	val = le32_to_cpu(*((__le32 *)&insn[2]));
907 	writel(val, regs + DBGINST1);
908 
909 	/* Get going */
910 	writel(0, regs + DBGCMD);
911 }
912 
913 static inline u32 _state(struct pl330_thread *thrd)
914 {
915 	void __iomem *regs = thrd->dmac->base;
916 	u32 val;
917 
918 	if (is_manager(thrd))
919 		val = readl(regs + DS) & 0xf;
920 	else
921 		val = readl(regs + CS(thrd->id)) & 0xf;
922 
923 	switch (val) {
924 	case DS_ST_STOP:
925 		return PL330_STATE_STOPPED;
926 	case DS_ST_EXEC:
927 		return PL330_STATE_EXECUTING;
928 	case DS_ST_CMISS:
929 		return PL330_STATE_CACHEMISS;
930 	case DS_ST_UPDTPC:
931 		return PL330_STATE_UPDTPC;
932 	case DS_ST_WFE:
933 		return PL330_STATE_WFE;
934 	case DS_ST_FAULT:
935 		return PL330_STATE_FAULTING;
936 	case DS_ST_ATBRR:
937 		if (is_manager(thrd))
938 			return PL330_STATE_INVALID;
939 		else
940 			return PL330_STATE_ATBARRIER;
941 	case DS_ST_QBUSY:
942 		if (is_manager(thrd))
943 			return PL330_STATE_INVALID;
944 		else
945 			return PL330_STATE_QUEUEBUSY;
946 	case DS_ST_WFP:
947 		if (is_manager(thrd))
948 			return PL330_STATE_INVALID;
949 		else
950 			return PL330_STATE_WFP;
951 	case DS_ST_KILL:
952 		if (is_manager(thrd))
953 			return PL330_STATE_INVALID;
954 		else
955 			return PL330_STATE_KILLING;
956 	case DS_ST_CMPLT:
957 		if (is_manager(thrd))
958 			return PL330_STATE_INVALID;
959 		else
960 			return PL330_STATE_COMPLETING;
961 	case DS_ST_FLTCMP:
962 		if (is_manager(thrd))
963 			return PL330_STATE_INVALID;
964 		else
965 			return PL330_STATE_FAULT_COMPLETING;
966 	default:
967 		return PL330_STATE_INVALID;
968 	}
969 }
970 
971 static void _stop(struct pl330_thread *thrd)
972 {
973 	void __iomem *regs = thrd->dmac->base;
974 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
975 	u32 inten = readl(regs + INTEN);
976 
977 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
978 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
979 
980 	/* Return if nothing needs to be done */
981 	if (_state(thrd) == PL330_STATE_COMPLETING
982 		  || _state(thrd) == PL330_STATE_KILLING
983 		  || _state(thrd) == PL330_STATE_STOPPED)
984 		return;
985 
986 	_emit_KILL(0, insn);
987 
988 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
989 
990 	/* clear the event */
991 	if (inten & (1 << thrd->ev))
992 		writel(1 << thrd->ev, regs + INTCLR);
993 	/* Stop generating interrupts for SEV */
994 	writel(inten & ~(1 << thrd->ev), regs + INTEN);
995 }
996 
997 /* Start doing req 'idx' of thread 'thrd' */
998 static bool _trigger(struct pl330_thread *thrd)
999 {
1000 	void __iomem *regs = thrd->dmac->base;
1001 	struct _pl330_req *req;
1002 	struct dma_pl330_desc *desc;
1003 	struct _arg_GO go;
1004 	unsigned ns;
1005 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1006 	int idx;
1007 
1008 	/* Return if already ACTIVE */
1009 	if (_state(thrd) != PL330_STATE_STOPPED)
1010 		return true;
1011 
1012 	idx = 1 - thrd->lstenq;
1013 	if (thrd->req[idx].desc != NULL) {
1014 		req = &thrd->req[idx];
1015 	} else {
1016 		idx = thrd->lstenq;
1017 		if (thrd->req[idx].desc != NULL)
1018 			req = &thrd->req[idx];
1019 		else
1020 			req = NULL;
1021 	}
1022 
1023 	/* Return if no request */
1024 	if (!req)
1025 		return true;
1026 
1027 	/* Return if req is running */
1028 	if (idx == thrd->req_running)
1029 		return true;
1030 
1031 	desc = req->desc;
1032 
1033 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1034 
1035 	/* See 'Abort Sources' point-4 at Page 2-25 */
1036 	if (_manager_ns(thrd) && !ns)
1037 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1038 			__func__, __LINE__);
1039 
1040 	go.chan = thrd->id;
1041 	go.addr = req->mc_bus;
1042 	go.ns = ns;
1043 	_emit_GO(0, insn, &go);
1044 
1045 	/* Set to generate interrupts for SEV */
1046 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1047 
1048 	/* Only manager can execute GO */
1049 	_execute_DBGINSN(thrd, insn, true);
1050 
1051 	thrd->req_running = idx;
1052 
1053 	return true;
1054 }
1055 
1056 static bool _start(struct pl330_thread *thrd)
1057 {
1058 	switch (_state(thrd)) {
1059 	case PL330_STATE_FAULT_COMPLETING:
1060 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1061 
1062 		if (_state(thrd) == PL330_STATE_KILLING)
1063 			UNTIL(thrd, PL330_STATE_STOPPED)
1064 		/* fall through */
1065 
1066 	case PL330_STATE_FAULTING:
1067 		_stop(thrd);
1068 		/* fall through */
1069 
1070 	case PL330_STATE_KILLING:
1071 	case PL330_STATE_COMPLETING:
1072 		UNTIL(thrd, PL330_STATE_STOPPED)
1073 		/* fall through */
1074 
1075 	case PL330_STATE_STOPPED:
1076 		return _trigger(thrd);
1077 
1078 	case PL330_STATE_WFP:
1079 	case PL330_STATE_QUEUEBUSY:
1080 	case PL330_STATE_ATBARRIER:
1081 	case PL330_STATE_UPDTPC:
1082 	case PL330_STATE_CACHEMISS:
1083 	case PL330_STATE_EXECUTING:
1084 		return true;
1085 
1086 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1087 	default:
1088 		return false;
1089 	}
1090 }
1091 
1092 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1093 		const struct _xfer_spec *pxs, int cyc)
1094 {
1095 	int off = 0;
1096 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1097 
1098 	/* check lock-up free version */
1099 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1100 		while (cyc--) {
1101 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1102 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1103 		}
1104 	} else {
1105 		while (cyc--) {
1106 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1107 			off += _emit_RMB(dry_run, &buf[off]);
1108 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1109 			off += _emit_WMB(dry_run, &buf[off]);
1110 		}
1111 	}
1112 
1113 	return off;
1114 }
1115 
1116 static u32 _emit_load(unsigned int dry_run, u8 buf[],
1117 	enum pl330_cond cond, enum dma_transfer_direction direction,
1118 	u8 peri)
1119 {
1120 	int off = 0;
1121 
1122 	switch (direction) {
1123 	case DMA_MEM_TO_MEM:
1124 		/* fall through */
1125 	case DMA_MEM_TO_DEV:
1126 		off += _emit_LD(dry_run, &buf[off], cond);
1127 		break;
1128 
1129 	case DMA_DEV_TO_MEM:
1130 		if (cond == ALWAYS) {
1131 			off += _emit_LDP(dry_run, &buf[off], SINGLE,
1132 				peri);
1133 			off += _emit_LDP(dry_run, &buf[off], BURST,
1134 				peri);
1135 		} else {
1136 			off += _emit_LDP(dry_run, &buf[off], cond,
1137 				peri);
1138 		}
1139 		break;
1140 
1141 	default:
1142 		/* this code should be unreachable */
1143 		WARN_ON(1);
1144 		break;
1145 	}
1146 
1147 	return off;
1148 }
1149 
1150 static inline u32 _emit_store(unsigned int dry_run, u8 buf[],
1151 	enum pl330_cond cond, enum dma_transfer_direction direction,
1152 	u8 peri)
1153 {
1154 	int off = 0;
1155 
1156 	switch (direction) {
1157 	case DMA_MEM_TO_MEM:
1158 		/* fall through */
1159 	case DMA_DEV_TO_MEM:
1160 		off += _emit_ST(dry_run, &buf[off], cond);
1161 		break;
1162 
1163 	case DMA_MEM_TO_DEV:
1164 		if (cond == ALWAYS) {
1165 			off += _emit_STP(dry_run, &buf[off], SINGLE,
1166 				peri);
1167 			off += _emit_STP(dry_run, &buf[off], BURST,
1168 				peri);
1169 		} else {
1170 			off += _emit_STP(dry_run, &buf[off], cond,
1171 				peri);
1172 		}
1173 		break;
1174 
1175 	default:
1176 		/* this code should be unreachable */
1177 		WARN_ON(1);
1178 		break;
1179 	}
1180 
1181 	return off;
1182 }
1183 
1184 static inline int _ldst_peripheral(struct pl330_dmac *pl330,
1185 				 unsigned dry_run, u8 buf[],
1186 				 const struct _xfer_spec *pxs, int cyc,
1187 				 enum pl330_cond cond)
1188 {
1189 	int off = 0;
1190 
1191 	/*
1192 	 * do FLUSHP at beginning to clear any stale dma requests before the
1193 	 * first WFP.
1194 	 */
1195 	if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1196 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1197 	while (cyc--) {
1198 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1199 		off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype,
1200 			pxs->desc->peri);
1201 		off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype,
1202 			pxs->desc->peri);
1203 	}
1204 
1205 	return off;
1206 }
1207 
1208 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1209 		const struct _xfer_spec *pxs, int cyc)
1210 {
1211 	int off = 0;
1212 	enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE;
1213 
1214 	if (pl330->quirks & PL330_QUIRK_PERIPH_BURST)
1215 		cond = BURST;
1216 
1217 	switch (pxs->desc->rqtype) {
1218 	case DMA_MEM_TO_DEV:
1219 		/* fall through */
1220 	case DMA_DEV_TO_MEM:
1221 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc,
1222 			cond);
1223 		break;
1224 
1225 	case DMA_MEM_TO_MEM:
1226 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1227 		break;
1228 
1229 	default:
1230 		/* this code should be unreachable */
1231 		WARN_ON(1);
1232 		break;
1233 	}
1234 
1235 	return off;
1236 }
1237 
1238 /*
1239  * only the unaligned burst transfers have the dregs.
1240  * so, still transfer dregs with a reduced size burst
1241  * for mem-to-mem, mem-to-dev or dev-to-mem.
1242  */
1243 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1244 		const struct _xfer_spec *pxs, int transfer_length)
1245 {
1246 	int off = 0;
1247 	int dregs_ccr;
1248 
1249 	if (transfer_length == 0)
1250 		return off;
1251 
1252 	/*
1253 	 * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) /
1254 	 *             BRST_SIZE(ccr)
1255 	 * the dregs len must be smaller than burst len,
1256 	 * so, for higher efficiency, we can modify CCR
1257 	 * to use a reduced size burst len for the dregs.
1258 	 */
1259 	dregs_ccr = pxs->ccr;
1260 	dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1261 		(0xf << CC_DSTBRSTLEN_SHFT));
1262 	dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1263 		CC_SRCBRSTLEN_SHFT);
1264 	dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1265 		CC_DSTBRSTLEN_SHFT);
1266 
1267 	switch (pxs->desc->rqtype) {
1268 	case DMA_MEM_TO_DEV:
1269 		/* fall through */
1270 	case DMA_DEV_TO_MEM:
1271 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1272 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1,
1273 					BURST);
1274 		break;
1275 
1276 	case DMA_MEM_TO_MEM:
1277 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1278 		off += _ldst_memtomem(dry_run, &buf[off], pxs, 1);
1279 		break;
1280 
1281 	default:
1282 		/* this code should be unreachable */
1283 		WARN_ON(1);
1284 		break;
1285 	}
1286 
1287 	return off;
1288 }
1289 
1290 /* Returns bytes consumed and updates bursts */
1291 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1292 		unsigned long *bursts, const struct _xfer_spec *pxs)
1293 {
1294 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1295 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1296 	struct _arg_LPEND lpend;
1297 
1298 	if (*bursts == 1)
1299 		return _bursts(pl330, dry_run, buf, pxs, 1);
1300 
1301 	/* Max iterations possible in DMALP is 256 */
1302 	if (*bursts >= 256*256) {
1303 		lcnt1 = 256;
1304 		lcnt0 = 256;
1305 		cyc = *bursts / lcnt1 / lcnt0;
1306 	} else if (*bursts > 256) {
1307 		lcnt1 = 256;
1308 		lcnt0 = *bursts / lcnt1;
1309 		cyc = 1;
1310 	} else {
1311 		lcnt1 = *bursts;
1312 		lcnt0 = 0;
1313 		cyc = 1;
1314 	}
1315 
1316 	szlp = _emit_LP(1, buf, 0, 0);
1317 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1318 
1319 	lpend.cond = ALWAYS;
1320 	lpend.forever = false;
1321 	lpend.loop = 0;
1322 	lpend.bjump = 0;
1323 	szlpend = _emit_LPEND(1, buf, &lpend);
1324 
1325 	if (lcnt0) {
1326 		szlp *= 2;
1327 		szlpend *= 2;
1328 	}
1329 
1330 	/*
1331 	 * Max bursts that we can unroll due to limit on the
1332 	 * size of backward jump that can be encoded in DMALPEND
1333 	 * which is 8-bits and hence 255
1334 	 */
1335 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1336 
1337 	cyc = (cycmax < cyc) ? cycmax : cyc;
1338 
1339 	off = 0;
1340 
1341 	if (lcnt0) {
1342 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1343 		ljmp0 = off;
1344 	}
1345 
1346 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1347 	ljmp1 = off;
1348 
1349 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1350 
1351 	lpend.cond = ALWAYS;
1352 	lpend.forever = false;
1353 	lpend.loop = 1;
1354 	lpend.bjump = off - ljmp1;
1355 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1356 
1357 	if (lcnt0) {
1358 		lpend.cond = ALWAYS;
1359 		lpend.forever = false;
1360 		lpend.loop = 0;
1361 		lpend.bjump = off - ljmp0;
1362 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1363 	}
1364 
1365 	*bursts = lcnt1 * cyc;
1366 	if (lcnt0)
1367 		*bursts *= lcnt0;
1368 
1369 	return off;
1370 }
1371 
1372 static inline int _setup_loops(struct pl330_dmac *pl330,
1373 			       unsigned dry_run, u8 buf[],
1374 			       const struct _xfer_spec *pxs)
1375 {
1376 	struct pl330_xfer *x = &pxs->desc->px;
1377 	u32 ccr = pxs->ccr;
1378 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1379 	int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) /
1380 		BRST_SIZE(ccr);
1381 	int off = 0;
1382 
1383 	while (bursts) {
1384 		c = bursts;
1385 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1386 		bursts -= c;
1387 	}
1388 	off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1389 
1390 	return off;
1391 }
1392 
1393 static inline int _setup_xfer(struct pl330_dmac *pl330,
1394 			      unsigned dry_run, u8 buf[],
1395 			      const struct _xfer_spec *pxs)
1396 {
1397 	struct pl330_xfer *x = &pxs->desc->px;
1398 	int off = 0;
1399 
1400 	/* DMAMOV SAR, x->src_addr */
1401 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1402 	/* DMAMOV DAR, x->dst_addr */
1403 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1404 
1405 	/* Setup Loop(s) */
1406 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1407 
1408 	return off;
1409 }
1410 
1411 /*
1412  * A req is a sequence of one or more xfer units.
1413  * Returns the number of bytes taken to setup the MC for the req.
1414  */
1415 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1416 		      struct pl330_thread *thrd, unsigned index,
1417 		      struct _xfer_spec *pxs)
1418 {
1419 	struct _pl330_req *req = &thrd->req[index];
1420 	u8 *buf = req->mc_cpu;
1421 	int off = 0;
1422 
1423 	PL330_DBGMC_START(req->mc_bus);
1424 
1425 	/* DMAMOV CCR, ccr */
1426 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1427 
1428 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1429 
1430 	/* DMASEV peripheral/event */
1431 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1432 	/* DMAEND */
1433 	off += _emit_END(dry_run, &buf[off]);
1434 
1435 	return off;
1436 }
1437 
1438 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1439 {
1440 	u32 ccr = 0;
1441 
1442 	if (rqc->src_inc)
1443 		ccr |= CC_SRCINC;
1444 
1445 	if (rqc->dst_inc)
1446 		ccr |= CC_DSTINC;
1447 
1448 	/* We set same protection levels for Src and DST for now */
1449 	if (rqc->privileged)
1450 		ccr |= CC_SRCPRI | CC_DSTPRI;
1451 	if (rqc->nonsecure)
1452 		ccr |= CC_SRCNS | CC_DSTNS;
1453 	if (rqc->insnaccess)
1454 		ccr |= CC_SRCIA | CC_DSTIA;
1455 
1456 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1457 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1458 
1459 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1460 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1461 
1462 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1463 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1464 
1465 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1466 
1467 	return ccr;
1468 }
1469 
1470 /*
1471  * Submit a list of xfers after which the client wants notification.
1472  * Client is not notified after each xfer unit, just once after all
1473  * xfer units are done or some error occurs.
1474  */
1475 static int pl330_submit_req(struct pl330_thread *thrd,
1476 	struct dma_pl330_desc *desc)
1477 {
1478 	struct pl330_dmac *pl330 = thrd->dmac;
1479 	struct _xfer_spec xs;
1480 	unsigned long flags;
1481 	unsigned idx;
1482 	u32 ccr;
1483 	int ret = 0;
1484 
1485 	switch (desc->rqtype) {
1486 	case DMA_MEM_TO_DEV:
1487 		break;
1488 
1489 	case DMA_DEV_TO_MEM:
1490 		break;
1491 
1492 	case DMA_MEM_TO_MEM:
1493 		break;
1494 
1495 	default:
1496 		return -ENOTSUPP;
1497 	}
1498 
1499 	if (pl330->state == DYING
1500 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1501 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1502 			__func__, __LINE__);
1503 		return -EAGAIN;
1504 	}
1505 
1506 	/* If request for non-existing peripheral */
1507 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1508 	    desc->peri >= pl330->pcfg.num_peri) {
1509 		dev_info(thrd->dmac->ddma.dev,
1510 				"%s:%d Invalid peripheral(%u)!\n",
1511 				__func__, __LINE__, desc->peri);
1512 		return -EINVAL;
1513 	}
1514 
1515 	spin_lock_irqsave(&pl330->lock, flags);
1516 
1517 	if (_queue_full(thrd)) {
1518 		ret = -EAGAIN;
1519 		goto xfer_exit;
1520 	}
1521 
1522 	/* Prefer Secure Channel */
1523 	if (!_manager_ns(thrd))
1524 		desc->rqcfg.nonsecure = 0;
1525 	else
1526 		desc->rqcfg.nonsecure = 1;
1527 
1528 	ccr = _prepare_ccr(&desc->rqcfg);
1529 
1530 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1531 
1532 	xs.ccr = ccr;
1533 	xs.desc = desc;
1534 
1535 	/* First dry run to check if req is acceptable */
1536 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1537 	if (ret < 0)
1538 		goto xfer_exit;
1539 
1540 	if (ret > pl330->mcbufsz / 2) {
1541 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1542 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1543 		ret = -ENOMEM;
1544 		goto xfer_exit;
1545 	}
1546 
1547 	/* Hook the request */
1548 	thrd->lstenq = idx;
1549 	thrd->req[idx].desc = desc;
1550 	_setup_req(pl330, 0, thrd, idx, &xs);
1551 
1552 	ret = 0;
1553 
1554 xfer_exit:
1555 	spin_unlock_irqrestore(&pl330->lock, flags);
1556 
1557 	return ret;
1558 }
1559 
1560 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1561 {
1562 	struct dma_pl330_chan *pch;
1563 	unsigned long flags;
1564 
1565 	if (!desc)
1566 		return;
1567 
1568 	pch = desc->pchan;
1569 
1570 	/* If desc aborted */
1571 	if (!pch)
1572 		return;
1573 
1574 	spin_lock_irqsave(&pch->lock, flags);
1575 
1576 	desc->status = DONE;
1577 
1578 	spin_unlock_irqrestore(&pch->lock, flags);
1579 
1580 	tasklet_schedule(&pch->task);
1581 }
1582 
1583 static void pl330_dotask(unsigned long data)
1584 {
1585 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1586 	unsigned long flags;
1587 	int i;
1588 
1589 	spin_lock_irqsave(&pl330->lock, flags);
1590 
1591 	/* The DMAC itself gone nuts */
1592 	if (pl330->dmac_tbd.reset_dmac) {
1593 		pl330->state = DYING;
1594 		/* Reset the manager too */
1595 		pl330->dmac_tbd.reset_mngr = true;
1596 		/* Clear the reset flag */
1597 		pl330->dmac_tbd.reset_dmac = false;
1598 	}
1599 
1600 	if (pl330->dmac_tbd.reset_mngr) {
1601 		_stop(pl330->manager);
1602 		/* Reset all channels */
1603 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1604 		/* Clear the reset flag */
1605 		pl330->dmac_tbd.reset_mngr = false;
1606 	}
1607 
1608 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1609 
1610 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1611 			struct pl330_thread *thrd = &pl330->channels[i];
1612 			void __iomem *regs = pl330->base;
1613 			enum pl330_op_err err;
1614 
1615 			_stop(thrd);
1616 
1617 			if (readl(regs + FSC) & (1 << thrd->id))
1618 				err = PL330_ERR_FAIL;
1619 			else
1620 				err = PL330_ERR_ABORT;
1621 
1622 			spin_unlock_irqrestore(&pl330->lock, flags);
1623 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1624 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1625 			spin_lock_irqsave(&pl330->lock, flags);
1626 
1627 			thrd->req[0].desc = NULL;
1628 			thrd->req[1].desc = NULL;
1629 			thrd->req_running = -1;
1630 
1631 			/* Clear the reset flag */
1632 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1633 		}
1634 	}
1635 
1636 	spin_unlock_irqrestore(&pl330->lock, flags);
1637 
1638 	return;
1639 }
1640 
1641 /* Returns 1 if state was updated, 0 otherwise */
1642 static int pl330_update(struct pl330_dmac *pl330)
1643 {
1644 	struct dma_pl330_desc *descdone;
1645 	unsigned long flags;
1646 	void __iomem *regs;
1647 	u32 val;
1648 	int id, ev, ret = 0;
1649 
1650 	regs = pl330->base;
1651 
1652 	spin_lock_irqsave(&pl330->lock, flags);
1653 
1654 	val = readl(regs + FSM) & 0x1;
1655 	if (val)
1656 		pl330->dmac_tbd.reset_mngr = true;
1657 	else
1658 		pl330->dmac_tbd.reset_mngr = false;
1659 
1660 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1661 	pl330->dmac_tbd.reset_chan |= val;
1662 	if (val) {
1663 		int i = 0;
1664 		while (i < pl330->pcfg.num_chan) {
1665 			if (val & (1 << i)) {
1666 				dev_info(pl330->ddma.dev,
1667 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1668 						i, readl(regs + CS(i)),
1669 						readl(regs + FTC(i)));
1670 				_stop(&pl330->channels[i]);
1671 			}
1672 			i++;
1673 		}
1674 	}
1675 
1676 	/* Check which event happened i.e, thread notified */
1677 	val = readl(regs + ES);
1678 	if (pl330->pcfg.num_events < 32
1679 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1680 		pl330->dmac_tbd.reset_dmac = true;
1681 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1682 			__LINE__);
1683 		ret = 1;
1684 		goto updt_exit;
1685 	}
1686 
1687 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1688 		if (val & (1 << ev)) { /* Event occurred */
1689 			struct pl330_thread *thrd;
1690 			u32 inten = readl(regs + INTEN);
1691 			int active;
1692 
1693 			/* Clear the event */
1694 			if (inten & (1 << ev))
1695 				writel(1 << ev, regs + INTCLR);
1696 
1697 			ret = 1;
1698 
1699 			id = pl330->events[ev];
1700 
1701 			thrd = &pl330->channels[id];
1702 
1703 			active = thrd->req_running;
1704 			if (active == -1) /* Aborted */
1705 				continue;
1706 
1707 			/* Detach the req */
1708 			descdone = thrd->req[active].desc;
1709 			thrd->req[active].desc = NULL;
1710 
1711 			thrd->req_running = -1;
1712 
1713 			/* Get going again ASAP */
1714 			_start(thrd);
1715 
1716 			/* For now, just make a list of callbacks to be done */
1717 			list_add_tail(&descdone->rqd, &pl330->req_done);
1718 		}
1719 	}
1720 
1721 	/* Now that we are in no hurry, do the callbacks */
1722 	while (!list_empty(&pl330->req_done)) {
1723 		descdone = list_first_entry(&pl330->req_done,
1724 					    struct dma_pl330_desc, rqd);
1725 		list_del(&descdone->rqd);
1726 		spin_unlock_irqrestore(&pl330->lock, flags);
1727 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1728 		spin_lock_irqsave(&pl330->lock, flags);
1729 	}
1730 
1731 updt_exit:
1732 	spin_unlock_irqrestore(&pl330->lock, flags);
1733 
1734 	if (pl330->dmac_tbd.reset_dmac
1735 			|| pl330->dmac_tbd.reset_mngr
1736 			|| pl330->dmac_tbd.reset_chan) {
1737 		ret = 1;
1738 		tasklet_schedule(&pl330->tasks);
1739 	}
1740 
1741 	return ret;
1742 }
1743 
1744 /* Reserve an event */
1745 static inline int _alloc_event(struct pl330_thread *thrd)
1746 {
1747 	struct pl330_dmac *pl330 = thrd->dmac;
1748 	int ev;
1749 
1750 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1751 		if (pl330->events[ev] == -1) {
1752 			pl330->events[ev] = thrd->id;
1753 			return ev;
1754 		}
1755 
1756 	return -1;
1757 }
1758 
1759 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1760 {
1761 	return pl330->pcfg.irq_ns & (1 << i);
1762 }
1763 
1764 /* Upon success, returns IdentityToken for the
1765  * allocated channel, NULL otherwise.
1766  */
1767 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1768 {
1769 	struct pl330_thread *thrd = NULL;
1770 	int chans, i;
1771 
1772 	if (pl330->state == DYING)
1773 		return NULL;
1774 
1775 	chans = pl330->pcfg.num_chan;
1776 
1777 	for (i = 0; i < chans; i++) {
1778 		thrd = &pl330->channels[i];
1779 		if ((thrd->free) && (!_manager_ns(thrd) ||
1780 					_chan_ns(pl330, i))) {
1781 			thrd->ev = _alloc_event(thrd);
1782 			if (thrd->ev >= 0) {
1783 				thrd->free = false;
1784 				thrd->lstenq = 1;
1785 				thrd->req[0].desc = NULL;
1786 				thrd->req[1].desc = NULL;
1787 				thrd->req_running = -1;
1788 				break;
1789 			}
1790 		}
1791 		thrd = NULL;
1792 	}
1793 
1794 	return thrd;
1795 }
1796 
1797 /* Release an event */
1798 static inline void _free_event(struct pl330_thread *thrd, int ev)
1799 {
1800 	struct pl330_dmac *pl330 = thrd->dmac;
1801 
1802 	/* If the event is valid and was held by the thread */
1803 	if (ev >= 0 && ev < pl330->pcfg.num_events
1804 			&& pl330->events[ev] == thrd->id)
1805 		pl330->events[ev] = -1;
1806 }
1807 
1808 static void pl330_release_channel(struct pl330_thread *thrd)
1809 {
1810 	if (!thrd || thrd->free)
1811 		return;
1812 
1813 	_stop(thrd);
1814 
1815 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1816 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1817 
1818 	_free_event(thrd, thrd->ev);
1819 	thrd->free = true;
1820 }
1821 
1822 /* Initialize the structure for PL330 configuration, that can be used
1823  * by the client driver the make best use of the DMAC
1824  */
1825 static void read_dmac_config(struct pl330_dmac *pl330)
1826 {
1827 	void __iomem *regs = pl330->base;
1828 	u32 val;
1829 
1830 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1831 	val &= CRD_DATA_WIDTH_MASK;
1832 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1833 
1834 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1835 	val &= CRD_DATA_BUFF_MASK;
1836 	pl330->pcfg.data_buf_dep = val + 1;
1837 
1838 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1839 	val &= CR0_NUM_CHANS_MASK;
1840 	val += 1;
1841 	pl330->pcfg.num_chan = val;
1842 
1843 	val = readl(regs + CR0);
1844 	if (val & CR0_PERIPH_REQ_SET) {
1845 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1846 		val += 1;
1847 		pl330->pcfg.num_peri = val;
1848 		pl330->pcfg.peri_ns = readl(regs + CR4);
1849 	} else {
1850 		pl330->pcfg.num_peri = 0;
1851 	}
1852 
1853 	val = readl(regs + CR0);
1854 	if (val & CR0_BOOT_MAN_NS)
1855 		pl330->pcfg.mode |= DMAC_MODE_NS;
1856 	else
1857 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1858 
1859 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1860 	val &= CR0_NUM_EVENTS_MASK;
1861 	val += 1;
1862 	pl330->pcfg.num_events = val;
1863 
1864 	pl330->pcfg.irq_ns = readl(regs + CR3);
1865 }
1866 
1867 static inline void _reset_thread(struct pl330_thread *thrd)
1868 {
1869 	struct pl330_dmac *pl330 = thrd->dmac;
1870 
1871 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1872 				+ (thrd->id * pl330->mcbufsz);
1873 	thrd->req[0].mc_bus = pl330->mcode_bus
1874 				+ (thrd->id * pl330->mcbufsz);
1875 	thrd->req[0].desc = NULL;
1876 
1877 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1878 				+ pl330->mcbufsz / 2;
1879 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1880 				+ pl330->mcbufsz / 2;
1881 	thrd->req[1].desc = NULL;
1882 
1883 	thrd->req_running = -1;
1884 }
1885 
1886 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1887 {
1888 	int chans = pl330->pcfg.num_chan;
1889 	struct pl330_thread *thrd;
1890 	int i;
1891 
1892 	/* Allocate 1 Manager and 'chans' Channel threads */
1893 	pl330->channels = kcalloc(1 + chans, sizeof(*thrd),
1894 					GFP_KERNEL);
1895 	if (!pl330->channels)
1896 		return -ENOMEM;
1897 
1898 	/* Init Channel threads */
1899 	for (i = 0; i < chans; i++) {
1900 		thrd = &pl330->channels[i];
1901 		thrd->id = i;
1902 		thrd->dmac = pl330;
1903 		_reset_thread(thrd);
1904 		thrd->free = true;
1905 	}
1906 
1907 	/* MANAGER is indexed at the end */
1908 	thrd = &pl330->channels[chans];
1909 	thrd->id = chans;
1910 	thrd->dmac = pl330;
1911 	thrd->free = false;
1912 	pl330->manager = thrd;
1913 
1914 	return 0;
1915 }
1916 
1917 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1918 {
1919 	int chans = pl330->pcfg.num_chan;
1920 	int ret;
1921 
1922 	/*
1923 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1924 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1925 	 */
1926 	pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1927 				chans * pl330->mcbufsz,
1928 				&pl330->mcode_bus, GFP_KERNEL,
1929 				DMA_ATTR_PRIVILEGED);
1930 	if (!pl330->mcode_cpu) {
1931 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1932 			__func__, __LINE__);
1933 		return -ENOMEM;
1934 	}
1935 
1936 	ret = dmac_alloc_threads(pl330);
1937 	if (ret) {
1938 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1939 			__func__, __LINE__);
1940 		dma_free_attrs(pl330->ddma.dev,
1941 				chans * pl330->mcbufsz,
1942 				pl330->mcode_cpu, pl330->mcode_bus,
1943 				DMA_ATTR_PRIVILEGED);
1944 		return ret;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 static int pl330_add(struct pl330_dmac *pl330)
1951 {
1952 	int i, ret;
1953 
1954 	/* Check if we can handle this DMAC */
1955 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1956 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1957 			pl330->pcfg.periph_id);
1958 		return -EINVAL;
1959 	}
1960 
1961 	/* Read the configuration of the DMAC */
1962 	read_dmac_config(pl330);
1963 
1964 	if (pl330->pcfg.num_events == 0) {
1965 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1966 			__func__, __LINE__);
1967 		return -EINVAL;
1968 	}
1969 
1970 	spin_lock_init(&pl330->lock);
1971 
1972 	INIT_LIST_HEAD(&pl330->req_done);
1973 
1974 	/* Use default MC buffer size if not provided */
1975 	if (!pl330->mcbufsz)
1976 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1977 
1978 	/* Mark all events as free */
1979 	for (i = 0; i < pl330->pcfg.num_events; i++)
1980 		pl330->events[i] = -1;
1981 
1982 	/* Allocate resources needed by the DMAC */
1983 	ret = dmac_alloc_resources(pl330);
1984 	if (ret) {
1985 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1986 		return ret;
1987 	}
1988 
1989 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1990 
1991 	pl330->state = INIT;
1992 
1993 	return 0;
1994 }
1995 
1996 static int dmac_free_threads(struct pl330_dmac *pl330)
1997 {
1998 	struct pl330_thread *thrd;
1999 	int i;
2000 
2001 	/* Release Channel threads */
2002 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
2003 		thrd = &pl330->channels[i];
2004 		pl330_release_channel(thrd);
2005 	}
2006 
2007 	/* Free memory */
2008 	kfree(pl330->channels);
2009 
2010 	return 0;
2011 }
2012 
2013 static void pl330_del(struct pl330_dmac *pl330)
2014 {
2015 	pl330->state = UNINIT;
2016 
2017 	tasklet_kill(&pl330->tasks);
2018 
2019 	/* Free DMAC resources */
2020 	dmac_free_threads(pl330);
2021 
2022 	dma_free_attrs(pl330->ddma.dev,
2023 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
2024 		pl330->mcode_bus, DMA_ATTR_PRIVILEGED);
2025 }
2026 
2027 /* forward declaration */
2028 static struct amba_driver pl330_driver;
2029 
2030 static inline struct dma_pl330_chan *
2031 to_pchan(struct dma_chan *ch)
2032 {
2033 	if (!ch)
2034 		return NULL;
2035 
2036 	return container_of(ch, struct dma_pl330_chan, chan);
2037 }
2038 
2039 static inline struct dma_pl330_desc *
2040 to_desc(struct dma_async_tx_descriptor *tx)
2041 {
2042 	return container_of(tx, struct dma_pl330_desc, txd);
2043 }
2044 
2045 static inline void fill_queue(struct dma_pl330_chan *pch)
2046 {
2047 	struct dma_pl330_desc *desc;
2048 	int ret;
2049 
2050 	list_for_each_entry(desc, &pch->work_list, node) {
2051 
2052 		/* If already submitted */
2053 		if (desc->status == BUSY)
2054 			continue;
2055 
2056 		ret = pl330_submit_req(pch->thread, desc);
2057 		if (!ret) {
2058 			desc->status = BUSY;
2059 		} else if (ret == -EAGAIN) {
2060 			/* QFull or DMAC Dying */
2061 			break;
2062 		} else {
2063 			/* Unacceptable request */
2064 			desc->status = DONE;
2065 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2066 					__func__, __LINE__, desc->txd.cookie);
2067 			tasklet_schedule(&pch->task);
2068 		}
2069 	}
2070 }
2071 
2072 static void pl330_tasklet(unsigned long data)
2073 {
2074 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2075 	struct dma_pl330_desc *desc, *_dt;
2076 	unsigned long flags;
2077 	bool power_down = false;
2078 
2079 	spin_lock_irqsave(&pch->lock, flags);
2080 
2081 	/* Pick up ripe tomatoes */
2082 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2083 		if (desc->status == DONE) {
2084 			if (!pch->cyclic)
2085 				dma_cookie_complete(&desc->txd);
2086 			list_move_tail(&desc->node, &pch->completed_list);
2087 		}
2088 
2089 	/* Try to submit a req imm. next to the last completed cookie */
2090 	fill_queue(pch);
2091 
2092 	if (list_empty(&pch->work_list)) {
2093 		spin_lock(&pch->thread->dmac->lock);
2094 		_stop(pch->thread);
2095 		spin_unlock(&pch->thread->dmac->lock);
2096 		power_down = true;
2097 		pch->active = false;
2098 	} else {
2099 		/* Make sure the PL330 Channel thread is active */
2100 		spin_lock(&pch->thread->dmac->lock);
2101 		_start(pch->thread);
2102 		spin_unlock(&pch->thread->dmac->lock);
2103 	}
2104 
2105 	while (!list_empty(&pch->completed_list)) {
2106 		struct dmaengine_desc_callback cb;
2107 
2108 		desc = list_first_entry(&pch->completed_list,
2109 					struct dma_pl330_desc, node);
2110 
2111 		dmaengine_desc_get_callback(&desc->txd, &cb);
2112 
2113 		if (pch->cyclic) {
2114 			desc->status = PREP;
2115 			list_move_tail(&desc->node, &pch->work_list);
2116 			if (power_down) {
2117 				pch->active = true;
2118 				spin_lock(&pch->thread->dmac->lock);
2119 				_start(pch->thread);
2120 				spin_unlock(&pch->thread->dmac->lock);
2121 				power_down = false;
2122 			}
2123 		} else {
2124 			desc->status = FREE;
2125 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2126 		}
2127 
2128 		dma_descriptor_unmap(&desc->txd);
2129 
2130 		if (dmaengine_desc_callback_valid(&cb)) {
2131 			spin_unlock_irqrestore(&pch->lock, flags);
2132 			dmaengine_desc_callback_invoke(&cb, NULL);
2133 			spin_lock_irqsave(&pch->lock, flags);
2134 		}
2135 	}
2136 	spin_unlock_irqrestore(&pch->lock, flags);
2137 
2138 	/* If work list empty, power down */
2139 	if (power_down) {
2140 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2141 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2142 	}
2143 }
2144 
2145 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2146 						struct of_dma *ofdma)
2147 {
2148 	int count = dma_spec->args_count;
2149 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2150 	unsigned int chan_id;
2151 
2152 	if (!pl330)
2153 		return NULL;
2154 
2155 	if (count != 1)
2156 		return NULL;
2157 
2158 	chan_id = dma_spec->args[0];
2159 	if (chan_id >= pl330->num_peripherals)
2160 		return NULL;
2161 
2162 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2163 }
2164 
2165 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2166 {
2167 	struct dma_pl330_chan *pch = to_pchan(chan);
2168 	struct pl330_dmac *pl330 = pch->dmac;
2169 	unsigned long flags;
2170 
2171 	spin_lock_irqsave(&pl330->lock, flags);
2172 
2173 	dma_cookie_init(chan);
2174 	pch->cyclic = false;
2175 
2176 	pch->thread = pl330_request_channel(pl330);
2177 	if (!pch->thread) {
2178 		spin_unlock_irqrestore(&pl330->lock, flags);
2179 		return -ENOMEM;
2180 	}
2181 
2182 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2183 
2184 	spin_unlock_irqrestore(&pl330->lock, flags);
2185 
2186 	return 1;
2187 }
2188 
2189 /*
2190  * We need the data direction between the DMAC (the dma-mapping "device") and
2191  * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2192  */
2193 static enum dma_data_direction
2194 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2195 {
2196 	switch (dir) {
2197 	case DMA_MEM_TO_DEV:
2198 		return DMA_FROM_DEVICE;
2199 	case DMA_DEV_TO_MEM:
2200 		return DMA_TO_DEVICE;
2201 	case DMA_DEV_TO_DEV:
2202 		return DMA_BIDIRECTIONAL;
2203 	default:
2204 		return DMA_NONE;
2205 	}
2206 }
2207 
2208 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2209 {
2210 	if (pch->dir != DMA_NONE)
2211 		dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2212 				   1 << pch->burst_sz, pch->dir, 0);
2213 	pch->dir = DMA_NONE;
2214 }
2215 
2216 
2217 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2218 				  enum dma_transfer_direction dir)
2219 {
2220 	struct device *dev = pch->chan.device->dev;
2221 	enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2222 
2223 	/* Already mapped for this config? */
2224 	if (pch->dir == dma_dir)
2225 		return true;
2226 
2227 	pl330_unprep_slave_fifo(pch);
2228 	pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2229 					 1 << pch->burst_sz, dma_dir, 0);
2230 	if (dma_mapping_error(dev, pch->fifo_dma))
2231 		return false;
2232 
2233 	pch->dir = dma_dir;
2234 	return true;
2235 }
2236 
2237 static int fixup_burst_len(int max_burst_len, int quirks)
2238 {
2239 	if (max_burst_len > PL330_MAX_BURST)
2240 		return PL330_MAX_BURST;
2241 	else if (max_burst_len < 1)
2242 		return 1;
2243 	else
2244 		return max_burst_len;
2245 }
2246 
2247 static int pl330_config_write(struct dma_chan *chan,
2248 			struct dma_slave_config *slave_config,
2249 			enum dma_transfer_direction direction)
2250 {
2251 	struct dma_pl330_chan *pch = to_pchan(chan);
2252 
2253 	pl330_unprep_slave_fifo(pch);
2254 	if (direction == DMA_MEM_TO_DEV) {
2255 		if (slave_config->dst_addr)
2256 			pch->fifo_addr = slave_config->dst_addr;
2257 		if (slave_config->dst_addr_width)
2258 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2259 		pch->burst_len = fixup_burst_len(slave_config->dst_maxburst,
2260 			pch->dmac->quirks);
2261 	} else if (direction == DMA_DEV_TO_MEM) {
2262 		if (slave_config->src_addr)
2263 			pch->fifo_addr = slave_config->src_addr;
2264 		if (slave_config->src_addr_width)
2265 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2266 		pch->burst_len = fixup_burst_len(slave_config->src_maxburst,
2267 			pch->dmac->quirks);
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 static int pl330_config(struct dma_chan *chan,
2274 			struct dma_slave_config *slave_config)
2275 {
2276 	struct dma_pl330_chan *pch = to_pchan(chan);
2277 
2278 	memcpy(&pch->slave_config, slave_config, sizeof(*slave_config));
2279 
2280 	return 0;
2281 }
2282 
2283 static int pl330_terminate_all(struct dma_chan *chan)
2284 {
2285 	struct dma_pl330_chan *pch = to_pchan(chan);
2286 	struct dma_pl330_desc *desc;
2287 	unsigned long flags;
2288 	struct pl330_dmac *pl330 = pch->dmac;
2289 	bool power_down = false;
2290 
2291 	pm_runtime_get_sync(pl330->ddma.dev);
2292 	spin_lock_irqsave(&pch->lock, flags);
2293 
2294 	spin_lock(&pl330->lock);
2295 	_stop(pch->thread);
2296 	pch->thread->req[0].desc = NULL;
2297 	pch->thread->req[1].desc = NULL;
2298 	pch->thread->req_running = -1;
2299 	spin_unlock(&pl330->lock);
2300 
2301 	power_down = pch->active;
2302 	pch->active = false;
2303 
2304 	/* Mark all desc done */
2305 	list_for_each_entry(desc, &pch->submitted_list, node) {
2306 		desc->status = FREE;
2307 		dma_cookie_complete(&desc->txd);
2308 	}
2309 
2310 	list_for_each_entry(desc, &pch->work_list , node) {
2311 		desc->status = FREE;
2312 		dma_cookie_complete(&desc->txd);
2313 	}
2314 
2315 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2316 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2317 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2318 	spin_unlock_irqrestore(&pch->lock, flags);
2319 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2320 	if (power_down)
2321 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2322 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2323 
2324 	return 0;
2325 }
2326 
2327 /*
2328  * We don't support DMA_RESUME command because of hardware
2329  * limitations, so after pausing the channel we cannot restore
2330  * it to active state. We have to terminate channel and setup
2331  * DMA transfer again. This pause feature was implemented to
2332  * allow safely read residue before channel termination.
2333  */
2334 static int pl330_pause(struct dma_chan *chan)
2335 {
2336 	struct dma_pl330_chan *pch = to_pchan(chan);
2337 	struct pl330_dmac *pl330 = pch->dmac;
2338 	unsigned long flags;
2339 
2340 	pm_runtime_get_sync(pl330->ddma.dev);
2341 	spin_lock_irqsave(&pch->lock, flags);
2342 
2343 	spin_lock(&pl330->lock);
2344 	_stop(pch->thread);
2345 	spin_unlock(&pl330->lock);
2346 
2347 	spin_unlock_irqrestore(&pch->lock, flags);
2348 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2349 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2350 
2351 	return 0;
2352 }
2353 
2354 static void pl330_free_chan_resources(struct dma_chan *chan)
2355 {
2356 	struct dma_pl330_chan *pch = to_pchan(chan);
2357 	struct pl330_dmac *pl330 = pch->dmac;
2358 	unsigned long flags;
2359 
2360 	tasklet_kill(&pch->task);
2361 
2362 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2363 	spin_lock_irqsave(&pl330->lock, flags);
2364 
2365 	pl330_release_channel(pch->thread);
2366 	pch->thread = NULL;
2367 
2368 	if (pch->cyclic)
2369 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2370 
2371 	spin_unlock_irqrestore(&pl330->lock, flags);
2372 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2373 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2374 	pl330_unprep_slave_fifo(pch);
2375 }
2376 
2377 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2378 					   struct dma_pl330_desc *desc)
2379 {
2380 	struct pl330_thread *thrd = pch->thread;
2381 	struct pl330_dmac *pl330 = pch->dmac;
2382 	void __iomem *regs = thrd->dmac->base;
2383 	u32 val, addr;
2384 
2385 	pm_runtime_get_sync(pl330->ddma.dev);
2386 	val = addr = 0;
2387 	if (desc->rqcfg.src_inc) {
2388 		val = readl(regs + SA(thrd->id));
2389 		addr = desc->px.src_addr;
2390 	} else {
2391 		val = readl(regs + DA(thrd->id));
2392 		addr = desc->px.dst_addr;
2393 	}
2394 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2395 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2396 
2397 	/* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2398 	if (!val)
2399 		return 0;
2400 
2401 	return val - addr;
2402 }
2403 
2404 static enum dma_status
2405 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2406 		 struct dma_tx_state *txstate)
2407 {
2408 	enum dma_status ret;
2409 	unsigned long flags;
2410 	struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2411 	struct dma_pl330_chan *pch = to_pchan(chan);
2412 	unsigned int transferred, residual = 0;
2413 
2414 	ret = dma_cookie_status(chan, cookie, txstate);
2415 
2416 	if (!txstate)
2417 		return ret;
2418 
2419 	if (ret == DMA_COMPLETE)
2420 		goto out;
2421 
2422 	spin_lock_irqsave(&pch->lock, flags);
2423 	spin_lock(&pch->thread->dmac->lock);
2424 
2425 	if (pch->thread->req_running != -1)
2426 		running = pch->thread->req[pch->thread->req_running].desc;
2427 
2428 	last_enq = pch->thread->req[pch->thread->lstenq].desc;
2429 
2430 	/* Check in pending list */
2431 	list_for_each_entry(desc, &pch->work_list, node) {
2432 		if (desc->status == DONE)
2433 			transferred = desc->bytes_requested;
2434 		else if (running && desc == running)
2435 			transferred =
2436 				pl330_get_current_xferred_count(pch, desc);
2437 		else if (desc->status == BUSY)
2438 			/*
2439 			 * Busy but not running means either just enqueued,
2440 			 * or finished and not yet marked done
2441 			 */
2442 			if (desc == last_enq)
2443 				transferred = 0;
2444 			else
2445 				transferred = desc->bytes_requested;
2446 		else
2447 			transferred = 0;
2448 		residual += desc->bytes_requested - transferred;
2449 		if (desc->txd.cookie == cookie) {
2450 			switch (desc->status) {
2451 			case DONE:
2452 				ret = DMA_COMPLETE;
2453 				break;
2454 			case PREP:
2455 			case BUSY:
2456 				ret = DMA_IN_PROGRESS;
2457 				break;
2458 			default:
2459 				WARN_ON(1);
2460 			}
2461 			break;
2462 		}
2463 		if (desc->last)
2464 			residual = 0;
2465 	}
2466 	spin_unlock(&pch->thread->dmac->lock);
2467 	spin_unlock_irqrestore(&pch->lock, flags);
2468 
2469 out:
2470 	dma_set_residue(txstate, residual);
2471 
2472 	return ret;
2473 }
2474 
2475 static void pl330_issue_pending(struct dma_chan *chan)
2476 {
2477 	struct dma_pl330_chan *pch = to_pchan(chan);
2478 	unsigned long flags;
2479 
2480 	spin_lock_irqsave(&pch->lock, flags);
2481 	if (list_empty(&pch->work_list)) {
2482 		/*
2483 		 * Warn on nothing pending. Empty submitted_list may
2484 		 * break our pm_runtime usage counter as it is
2485 		 * updated on work_list emptiness status.
2486 		 */
2487 		WARN_ON(list_empty(&pch->submitted_list));
2488 		pch->active = true;
2489 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2490 	}
2491 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2492 	spin_unlock_irqrestore(&pch->lock, flags);
2493 
2494 	pl330_tasklet((unsigned long)pch);
2495 }
2496 
2497 /*
2498  * We returned the last one of the circular list of descriptor(s)
2499  * from prep_xxx, so the argument to submit corresponds to the last
2500  * descriptor of the list.
2501  */
2502 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2503 {
2504 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2505 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2506 	dma_cookie_t cookie;
2507 	unsigned long flags;
2508 
2509 	spin_lock_irqsave(&pch->lock, flags);
2510 
2511 	/* Assign cookies to all nodes */
2512 	while (!list_empty(&last->node)) {
2513 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2514 		if (pch->cyclic) {
2515 			desc->txd.callback = last->txd.callback;
2516 			desc->txd.callback_param = last->txd.callback_param;
2517 		}
2518 		desc->last = false;
2519 
2520 		dma_cookie_assign(&desc->txd);
2521 
2522 		list_move_tail(&desc->node, &pch->submitted_list);
2523 	}
2524 
2525 	last->last = true;
2526 	cookie = dma_cookie_assign(&last->txd);
2527 	list_add_tail(&last->node, &pch->submitted_list);
2528 	spin_unlock_irqrestore(&pch->lock, flags);
2529 
2530 	return cookie;
2531 }
2532 
2533 static inline void _init_desc(struct dma_pl330_desc *desc)
2534 {
2535 	desc->rqcfg.swap = SWAP_NO;
2536 	desc->rqcfg.scctl = CCTRL0;
2537 	desc->rqcfg.dcctl = CCTRL0;
2538 	desc->txd.tx_submit = pl330_tx_submit;
2539 
2540 	INIT_LIST_HEAD(&desc->node);
2541 }
2542 
2543 /* Returns the number of descriptors added to the DMAC pool */
2544 static int add_desc(struct list_head *pool, spinlock_t *lock,
2545 		    gfp_t flg, int count)
2546 {
2547 	struct dma_pl330_desc *desc;
2548 	unsigned long flags;
2549 	int i;
2550 
2551 	desc = kcalloc(count, sizeof(*desc), flg);
2552 	if (!desc)
2553 		return 0;
2554 
2555 	spin_lock_irqsave(lock, flags);
2556 
2557 	for (i = 0; i < count; i++) {
2558 		_init_desc(&desc[i]);
2559 		list_add_tail(&desc[i].node, pool);
2560 	}
2561 
2562 	spin_unlock_irqrestore(lock, flags);
2563 
2564 	return count;
2565 }
2566 
2567 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2568 					 spinlock_t *lock)
2569 {
2570 	struct dma_pl330_desc *desc = NULL;
2571 	unsigned long flags;
2572 
2573 	spin_lock_irqsave(lock, flags);
2574 
2575 	if (!list_empty(pool)) {
2576 		desc = list_entry(pool->next,
2577 				struct dma_pl330_desc, node);
2578 
2579 		list_del_init(&desc->node);
2580 
2581 		desc->status = PREP;
2582 		desc->txd.callback = NULL;
2583 	}
2584 
2585 	spin_unlock_irqrestore(lock, flags);
2586 
2587 	return desc;
2588 }
2589 
2590 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2591 {
2592 	struct pl330_dmac *pl330 = pch->dmac;
2593 	u8 *peri_id = pch->chan.private;
2594 	struct dma_pl330_desc *desc;
2595 
2596 	/* Pluck one desc from the pool of DMAC */
2597 	desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2598 
2599 	/* If the DMAC pool is empty, alloc new */
2600 	if (!desc) {
2601 		DEFINE_SPINLOCK(lock);
2602 		LIST_HEAD(pool);
2603 
2604 		if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2605 			return NULL;
2606 
2607 		desc = pluck_desc(&pool, &lock);
2608 		WARN_ON(!desc || !list_empty(&pool));
2609 	}
2610 
2611 	/* Initialize the descriptor */
2612 	desc->pchan = pch;
2613 	desc->txd.cookie = 0;
2614 	async_tx_ack(&desc->txd);
2615 
2616 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2617 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2618 
2619 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2620 
2621 	return desc;
2622 }
2623 
2624 static inline void fill_px(struct pl330_xfer *px,
2625 		dma_addr_t dst, dma_addr_t src, size_t len)
2626 {
2627 	px->bytes = len;
2628 	px->dst_addr = dst;
2629 	px->src_addr = src;
2630 }
2631 
2632 static struct dma_pl330_desc *
2633 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2634 		dma_addr_t src, size_t len)
2635 {
2636 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2637 
2638 	if (!desc) {
2639 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2640 			__func__, __LINE__);
2641 		return NULL;
2642 	}
2643 
2644 	/*
2645 	 * Ideally we should lookout for reqs bigger than
2646 	 * those that can be programmed with 256 bytes of
2647 	 * MC buffer, but considering a req size is seldom
2648 	 * going to be word-unaligned and more than 200MB,
2649 	 * we take it easy.
2650 	 * Also, should the limit is reached we'd rather
2651 	 * have the platform increase MC buffer size than
2652 	 * complicating this API driver.
2653 	 */
2654 	fill_px(&desc->px, dst, src, len);
2655 
2656 	return desc;
2657 }
2658 
2659 /* Call after fixing burst size */
2660 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2661 {
2662 	struct dma_pl330_chan *pch = desc->pchan;
2663 	struct pl330_dmac *pl330 = pch->dmac;
2664 	int burst_len;
2665 
2666 	burst_len = pl330->pcfg.data_bus_width / 8;
2667 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2668 	burst_len >>= desc->rqcfg.brst_size;
2669 
2670 	/* src/dst_burst_len can't be more than 16 */
2671 	if (burst_len > PL330_MAX_BURST)
2672 		burst_len = PL330_MAX_BURST;
2673 
2674 	return burst_len;
2675 }
2676 
2677 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2678 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2679 		size_t period_len, enum dma_transfer_direction direction,
2680 		unsigned long flags)
2681 {
2682 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2683 	struct dma_pl330_chan *pch = to_pchan(chan);
2684 	struct pl330_dmac *pl330 = pch->dmac;
2685 	unsigned int i;
2686 	dma_addr_t dst;
2687 	dma_addr_t src;
2688 
2689 	if (len % period_len != 0)
2690 		return NULL;
2691 
2692 	if (!is_slave_direction(direction)) {
2693 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2694 		__func__, __LINE__);
2695 		return NULL;
2696 	}
2697 
2698 	pl330_config_write(chan, &pch->slave_config, direction);
2699 
2700 	if (!pl330_prep_slave_fifo(pch, direction))
2701 		return NULL;
2702 
2703 	for (i = 0; i < len / period_len; i++) {
2704 		desc = pl330_get_desc(pch);
2705 		if (!desc) {
2706 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2707 				__func__, __LINE__);
2708 
2709 			if (!first)
2710 				return NULL;
2711 
2712 			spin_lock_irqsave(&pl330->pool_lock, flags);
2713 
2714 			while (!list_empty(&first->node)) {
2715 				desc = list_entry(first->node.next,
2716 						struct dma_pl330_desc, node);
2717 				list_move_tail(&desc->node, &pl330->desc_pool);
2718 			}
2719 
2720 			list_move_tail(&first->node, &pl330->desc_pool);
2721 
2722 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2723 
2724 			return NULL;
2725 		}
2726 
2727 		switch (direction) {
2728 		case DMA_MEM_TO_DEV:
2729 			desc->rqcfg.src_inc = 1;
2730 			desc->rqcfg.dst_inc = 0;
2731 			src = dma_addr;
2732 			dst = pch->fifo_dma;
2733 			break;
2734 		case DMA_DEV_TO_MEM:
2735 			desc->rqcfg.src_inc = 0;
2736 			desc->rqcfg.dst_inc = 1;
2737 			src = pch->fifo_dma;
2738 			dst = dma_addr;
2739 			break;
2740 		default:
2741 			break;
2742 		}
2743 
2744 		desc->rqtype = direction;
2745 		desc->rqcfg.brst_size = pch->burst_sz;
2746 		desc->rqcfg.brst_len = pch->burst_len;
2747 		desc->bytes_requested = period_len;
2748 		fill_px(&desc->px, dst, src, period_len);
2749 
2750 		if (!first)
2751 			first = desc;
2752 		else
2753 			list_add_tail(&desc->node, &first->node);
2754 
2755 		dma_addr += period_len;
2756 	}
2757 
2758 	if (!desc)
2759 		return NULL;
2760 
2761 	pch->cyclic = true;
2762 	desc->txd.flags = flags;
2763 
2764 	return &desc->txd;
2765 }
2766 
2767 static struct dma_async_tx_descriptor *
2768 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2769 		dma_addr_t src, size_t len, unsigned long flags)
2770 {
2771 	struct dma_pl330_desc *desc;
2772 	struct dma_pl330_chan *pch = to_pchan(chan);
2773 	struct pl330_dmac *pl330;
2774 	int burst;
2775 
2776 	if (unlikely(!pch || !len))
2777 		return NULL;
2778 
2779 	pl330 = pch->dmac;
2780 
2781 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2782 	if (!desc)
2783 		return NULL;
2784 
2785 	desc->rqcfg.src_inc = 1;
2786 	desc->rqcfg.dst_inc = 1;
2787 	desc->rqtype = DMA_MEM_TO_MEM;
2788 
2789 	/* Select max possible burst size */
2790 	burst = pl330->pcfg.data_bus_width / 8;
2791 
2792 	/*
2793 	 * Make sure we use a burst size that aligns with all the memcpy
2794 	 * parameters because our DMA programming algorithm doesn't cope with
2795 	 * transfers which straddle an entry in the DMA device's MFIFO.
2796 	 */
2797 	while ((src | dst | len) & (burst - 1))
2798 		burst /= 2;
2799 
2800 	desc->rqcfg.brst_size = 0;
2801 	while (burst != (1 << desc->rqcfg.brst_size))
2802 		desc->rqcfg.brst_size++;
2803 
2804 	/*
2805 	 * If burst size is smaller than bus width then make sure we only
2806 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2807 	 */
2808 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2809 		desc->rqcfg.brst_len = 1;
2810 
2811 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2812 	desc->bytes_requested = len;
2813 
2814 	desc->txd.flags = flags;
2815 
2816 	return &desc->txd;
2817 }
2818 
2819 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2820 				  struct dma_pl330_desc *first)
2821 {
2822 	unsigned long flags;
2823 	struct dma_pl330_desc *desc;
2824 
2825 	if (!first)
2826 		return;
2827 
2828 	spin_lock_irqsave(&pl330->pool_lock, flags);
2829 
2830 	while (!list_empty(&first->node)) {
2831 		desc = list_entry(first->node.next,
2832 				struct dma_pl330_desc, node);
2833 		list_move_tail(&desc->node, &pl330->desc_pool);
2834 	}
2835 
2836 	list_move_tail(&first->node, &pl330->desc_pool);
2837 
2838 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2839 }
2840 
2841 static struct dma_async_tx_descriptor *
2842 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2843 		unsigned int sg_len, enum dma_transfer_direction direction,
2844 		unsigned long flg, void *context)
2845 {
2846 	struct dma_pl330_desc *first, *desc = NULL;
2847 	struct dma_pl330_chan *pch = to_pchan(chan);
2848 	struct scatterlist *sg;
2849 	int i;
2850 
2851 	if (unlikely(!pch || !sgl || !sg_len))
2852 		return NULL;
2853 
2854 	pl330_config_write(chan, &pch->slave_config, direction);
2855 
2856 	if (!pl330_prep_slave_fifo(pch, direction))
2857 		return NULL;
2858 
2859 	first = NULL;
2860 
2861 	for_each_sg(sgl, sg, sg_len, i) {
2862 
2863 		desc = pl330_get_desc(pch);
2864 		if (!desc) {
2865 			struct pl330_dmac *pl330 = pch->dmac;
2866 
2867 			dev_err(pch->dmac->ddma.dev,
2868 				"%s:%d Unable to fetch desc\n",
2869 				__func__, __LINE__);
2870 			__pl330_giveback_desc(pl330, first);
2871 
2872 			return NULL;
2873 		}
2874 
2875 		if (!first)
2876 			first = desc;
2877 		else
2878 			list_add_tail(&desc->node, &first->node);
2879 
2880 		if (direction == DMA_MEM_TO_DEV) {
2881 			desc->rqcfg.src_inc = 1;
2882 			desc->rqcfg.dst_inc = 0;
2883 			fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2884 				sg_dma_len(sg));
2885 		} else {
2886 			desc->rqcfg.src_inc = 0;
2887 			desc->rqcfg.dst_inc = 1;
2888 			fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2889 				sg_dma_len(sg));
2890 		}
2891 
2892 		desc->rqcfg.brst_size = pch->burst_sz;
2893 		desc->rqcfg.brst_len = pch->burst_len;
2894 		desc->rqtype = direction;
2895 		desc->bytes_requested = sg_dma_len(sg);
2896 	}
2897 
2898 	/* Return the last desc in the chain */
2899 	desc->txd.flags = flg;
2900 	return &desc->txd;
2901 }
2902 
2903 static irqreturn_t pl330_irq_handler(int irq, void *data)
2904 {
2905 	if (pl330_update(data))
2906 		return IRQ_HANDLED;
2907 	else
2908 		return IRQ_NONE;
2909 }
2910 
2911 #define PL330_DMA_BUSWIDTHS \
2912 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2913 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2914 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2915 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2916 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2917 
2918 #ifdef CONFIG_DEBUG_FS
2919 static int pl330_debugfs_show(struct seq_file *s, void *data)
2920 {
2921 	struct pl330_dmac *pl330 = s->private;
2922 	int chans, pchs, ch, pr;
2923 
2924 	chans = pl330->pcfg.num_chan;
2925 	pchs = pl330->num_peripherals;
2926 
2927 	seq_puts(s, "PL330 physical channels:\n");
2928 	seq_puts(s, "THREAD:\t\tCHANNEL:\n");
2929 	seq_puts(s, "--------\t-----\n");
2930 	for (ch = 0; ch < chans; ch++) {
2931 		struct pl330_thread *thrd = &pl330->channels[ch];
2932 		int found = -1;
2933 
2934 		for (pr = 0; pr < pchs; pr++) {
2935 			struct dma_pl330_chan *pch = &pl330->peripherals[pr];
2936 
2937 			if (!pch->thread || thrd->id != pch->thread->id)
2938 				continue;
2939 
2940 			found = pr;
2941 		}
2942 
2943 		seq_printf(s, "%d\t\t", thrd->id);
2944 		if (found == -1)
2945 			seq_puts(s, "--\n");
2946 		else
2947 			seq_printf(s, "%d\n", found);
2948 	}
2949 
2950 	return 0;
2951 }
2952 
2953 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs);
2954 
2955 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2956 {
2957 	debugfs_create_file(dev_name(pl330->ddma.dev),
2958 			    S_IFREG | 0444, NULL, pl330,
2959 			    &pl330_debugfs_fops);
2960 }
2961 #else
2962 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2963 {
2964 }
2965 #endif
2966 
2967 /*
2968  * Runtime PM callbacks are provided by amba/bus.c driver.
2969  *
2970  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2971  * bus driver will only disable/enable the clock in runtime PM callbacks.
2972  */
2973 static int __maybe_unused pl330_suspend(struct device *dev)
2974 {
2975 	struct amba_device *pcdev = to_amba_device(dev);
2976 
2977 	pm_runtime_force_suspend(dev);
2978 	amba_pclk_unprepare(pcdev);
2979 
2980 	return 0;
2981 }
2982 
2983 static int __maybe_unused pl330_resume(struct device *dev)
2984 {
2985 	struct amba_device *pcdev = to_amba_device(dev);
2986 	int ret;
2987 
2988 	ret = amba_pclk_prepare(pcdev);
2989 	if (ret)
2990 		return ret;
2991 
2992 	pm_runtime_force_resume(dev);
2993 
2994 	return ret;
2995 }
2996 
2997 static const struct dev_pm_ops pl330_pm = {
2998 	SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume)
2999 };
3000 
3001 static int
3002 pl330_probe(struct amba_device *adev, const struct amba_id *id)
3003 {
3004 	struct pl330_config *pcfg;
3005 	struct pl330_dmac *pl330;
3006 	struct dma_pl330_chan *pch, *_p;
3007 	struct dma_device *pd;
3008 	struct resource *res;
3009 	int i, ret, irq;
3010 	int num_chan;
3011 	struct device_node *np = adev->dev.of_node;
3012 
3013 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
3014 	if (ret)
3015 		return ret;
3016 
3017 	/* Allocate a new DMAC and its Channels */
3018 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
3019 	if (!pl330)
3020 		return -ENOMEM;
3021 
3022 	pd = &pl330->ddma;
3023 	pd->dev = &adev->dev;
3024 
3025 	pl330->mcbufsz = 0;
3026 
3027 	/* get quirk */
3028 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
3029 		if (of_property_read_bool(np, of_quirks[i].quirk))
3030 			pl330->quirks |= of_quirks[i].id;
3031 
3032 	res = &adev->res;
3033 	pl330->base = devm_ioremap_resource(&adev->dev, res);
3034 	if (IS_ERR(pl330->base))
3035 		return PTR_ERR(pl330->base);
3036 
3037 	amba_set_drvdata(adev, pl330);
3038 
3039 	pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma");
3040 	if (IS_ERR(pl330->rstc)) {
3041 		if (PTR_ERR(pl330->rstc) != -EPROBE_DEFER)
3042 			dev_err(&adev->dev, "Failed to get reset!\n");
3043 		return PTR_ERR(pl330->rstc);
3044 	} else {
3045 		ret = reset_control_deassert(pl330->rstc);
3046 		if (ret) {
3047 			dev_err(&adev->dev, "Couldn't deassert the device from reset!\n");
3048 			return ret;
3049 		}
3050 	}
3051 
3052 	pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp");
3053 	if (IS_ERR(pl330->rstc_ocp)) {
3054 		if (PTR_ERR(pl330->rstc_ocp) != -EPROBE_DEFER)
3055 			dev_err(&adev->dev, "Failed to get OCP reset!\n");
3056 		return PTR_ERR(pl330->rstc_ocp);
3057 	} else {
3058 		ret = reset_control_deassert(pl330->rstc_ocp);
3059 		if (ret) {
3060 			dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n");
3061 			return ret;
3062 		}
3063 	}
3064 
3065 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3066 		irq = adev->irq[i];
3067 		if (irq) {
3068 			ret = devm_request_irq(&adev->dev, irq,
3069 					       pl330_irq_handler, 0,
3070 					       dev_name(&adev->dev), pl330);
3071 			if (ret)
3072 				return ret;
3073 		} else {
3074 			break;
3075 		}
3076 	}
3077 
3078 	pcfg = &pl330->pcfg;
3079 
3080 	pcfg->periph_id = adev->periphid;
3081 	ret = pl330_add(pl330);
3082 	if (ret)
3083 		return ret;
3084 
3085 	INIT_LIST_HEAD(&pl330->desc_pool);
3086 	spin_lock_init(&pl330->pool_lock);
3087 
3088 	/* Create a descriptor pool of default size */
3089 	if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
3090 		      GFP_KERNEL, NR_DEFAULT_DESC))
3091 		dev_warn(&adev->dev, "unable to allocate desc\n");
3092 
3093 	INIT_LIST_HEAD(&pd->channels);
3094 
3095 	/* Initialize channel parameters */
3096 	num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
3097 
3098 	pl330->num_peripherals = num_chan;
3099 
3100 	pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL);
3101 	if (!pl330->peripherals) {
3102 		ret = -ENOMEM;
3103 		goto probe_err2;
3104 	}
3105 
3106 	for (i = 0; i < num_chan; i++) {
3107 		pch = &pl330->peripherals[i];
3108 
3109 		pch->chan.private = adev->dev.of_node;
3110 		INIT_LIST_HEAD(&pch->submitted_list);
3111 		INIT_LIST_HEAD(&pch->work_list);
3112 		INIT_LIST_HEAD(&pch->completed_list);
3113 		spin_lock_init(&pch->lock);
3114 		pch->thread = NULL;
3115 		pch->chan.device = pd;
3116 		pch->dmac = pl330;
3117 		pch->dir = DMA_NONE;
3118 
3119 		/* Add the channel to the DMAC list */
3120 		list_add_tail(&pch->chan.device_node, &pd->channels);
3121 	}
3122 
3123 	dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3124 	if (pcfg->num_peri) {
3125 		dma_cap_set(DMA_SLAVE, pd->cap_mask);
3126 		dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3127 		dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3128 	}
3129 
3130 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3131 	pd->device_free_chan_resources = pl330_free_chan_resources;
3132 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3133 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3134 	pd->device_tx_status = pl330_tx_status;
3135 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
3136 	pd->device_config = pl330_config;
3137 	pd->device_pause = pl330_pause;
3138 	pd->device_terminate_all = pl330_terminate_all;
3139 	pd->device_issue_pending = pl330_issue_pending;
3140 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
3141 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
3142 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3143 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3144 	pd->max_burst = PL330_MAX_BURST;
3145 
3146 	ret = dma_async_device_register(pd);
3147 	if (ret) {
3148 		dev_err(&adev->dev, "unable to register DMAC\n");
3149 		goto probe_err3;
3150 	}
3151 
3152 	if (adev->dev.of_node) {
3153 		ret = of_dma_controller_register(adev->dev.of_node,
3154 					 of_dma_pl330_xlate, pl330);
3155 		if (ret) {
3156 			dev_err(&adev->dev,
3157 			"unable to register DMA to the generic DT DMA helpers\n");
3158 		}
3159 	}
3160 
3161 	adev->dev.dma_parms = &pl330->dma_parms;
3162 
3163 	/*
3164 	 * This is the limit for transfers with a buswidth of 1, larger
3165 	 * buswidths will have larger limits.
3166 	 */
3167 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
3168 	if (ret)
3169 		dev_err(&adev->dev, "unable to set the seg size\n");
3170 
3171 
3172 	init_pl330_debugfs(pl330);
3173 	dev_info(&adev->dev,
3174 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
3175 	dev_info(&adev->dev,
3176 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3177 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
3178 		pcfg->num_peri, pcfg->num_events);
3179 
3180 	pm_runtime_irq_safe(&adev->dev);
3181 	pm_runtime_use_autosuspend(&adev->dev);
3182 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
3183 	pm_runtime_mark_last_busy(&adev->dev);
3184 	pm_runtime_put_autosuspend(&adev->dev);
3185 
3186 	return 0;
3187 probe_err3:
3188 	/* Idle the DMAC */
3189 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3190 			chan.device_node) {
3191 
3192 		/* Remove the channel */
3193 		list_del(&pch->chan.device_node);
3194 
3195 		/* Flush the channel */
3196 		if (pch->thread) {
3197 			pl330_terminate_all(&pch->chan);
3198 			pl330_free_chan_resources(&pch->chan);
3199 		}
3200 	}
3201 probe_err2:
3202 	pl330_del(pl330);
3203 
3204 	if (pl330->rstc_ocp)
3205 		reset_control_assert(pl330->rstc_ocp);
3206 
3207 	if (pl330->rstc)
3208 		reset_control_assert(pl330->rstc);
3209 	return ret;
3210 }
3211 
3212 static int pl330_remove(struct amba_device *adev)
3213 {
3214 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3215 	struct dma_pl330_chan *pch, *_p;
3216 	int i, irq;
3217 
3218 	pm_runtime_get_noresume(pl330->ddma.dev);
3219 
3220 	if (adev->dev.of_node)
3221 		of_dma_controller_free(adev->dev.of_node);
3222 
3223 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3224 		irq = adev->irq[i];
3225 		if (irq)
3226 			devm_free_irq(&adev->dev, irq, pl330);
3227 	}
3228 
3229 	dma_async_device_unregister(&pl330->ddma);
3230 
3231 	/* Idle the DMAC */
3232 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3233 			chan.device_node) {
3234 
3235 		/* Remove the channel */
3236 		list_del(&pch->chan.device_node);
3237 
3238 		/* Flush the channel */
3239 		if (pch->thread) {
3240 			pl330_terminate_all(&pch->chan);
3241 			pl330_free_chan_resources(&pch->chan);
3242 		}
3243 	}
3244 
3245 	pl330_del(pl330);
3246 
3247 	if (pl330->rstc_ocp)
3248 		reset_control_assert(pl330->rstc_ocp);
3249 
3250 	if (pl330->rstc)
3251 		reset_control_assert(pl330->rstc);
3252 	return 0;
3253 }
3254 
3255 static const struct amba_id pl330_ids[] = {
3256 	{
3257 		.id	= 0x00041330,
3258 		.mask	= 0x000fffff,
3259 	},
3260 	{ 0, 0 },
3261 };
3262 
3263 MODULE_DEVICE_TABLE(amba, pl330_ids);
3264 
3265 static struct amba_driver pl330_driver = {
3266 	.drv = {
3267 		.owner = THIS_MODULE,
3268 		.name = "dma-pl330",
3269 		.pm = &pl330_pm,
3270 	},
3271 	.id_table = pl330_ids,
3272 	.probe = pl330_probe,
3273 	.remove = pl330_remove,
3274 };
3275 
3276 module_amba_driver(pl330_driver);
3277 
3278 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3279 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3280 MODULE_LICENSE("GPL");
3281