1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/err.h> 30 31 #include "dmaengine.h" 32 #define PL330_MAX_CHAN 8 33 #define PL330_MAX_IRQS 32 34 #define PL330_MAX_PERI 32 35 36 enum pl330_srccachectrl { 37 SCCTRL0, /* Noncacheable and nonbufferable */ 38 SCCTRL1, /* Bufferable only */ 39 SCCTRL2, /* Cacheable, but do not allocate */ 40 SCCTRL3, /* Cacheable and bufferable, but do not allocate */ 41 SINVALID1, 42 SINVALID2, 43 SCCTRL6, /* Cacheable write-through, allocate on reads only */ 44 SCCTRL7, /* Cacheable write-back, allocate on reads only */ 45 }; 46 47 enum pl330_dstcachectrl { 48 DCCTRL0, /* Noncacheable and nonbufferable */ 49 DCCTRL1, /* Bufferable only */ 50 DCCTRL2, /* Cacheable, but do not allocate */ 51 DCCTRL3, /* Cacheable and bufferable, but do not allocate */ 52 DINVALID1, /* AWCACHE = 0x1000 */ 53 DINVALID2, 54 DCCTRL6, /* Cacheable write-through, allocate on writes only */ 55 DCCTRL7, /* Cacheable write-back, allocate on writes only */ 56 }; 57 58 enum pl330_byteswap { 59 SWAP_NO, 60 SWAP_2, 61 SWAP_4, 62 SWAP_8, 63 SWAP_16, 64 }; 65 66 enum pl330_reqtype { 67 MEMTOMEM, 68 MEMTODEV, 69 DEVTOMEM, 70 DEVTODEV, 71 }; 72 73 /* Register and Bit field Definitions */ 74 #define DS 0x0 75 #define DS_ST_STOP 0x0 76 #define DS_ST_EXEC 0x1 77 #define DS_ST_CMISS 0x2 78 #define DS_ST_UPDTPC 0x3 79 #define DS_ST_WFE 0x4 80 #define DS_ST_ATBRR 0x5 81 #define DS_ST_QBUSY 0x6 82 #define DS_ST_WFP 0x7 83 #define DS_ST_KILL 0x8 84 #define DS_ST_CMPLT 0x9 85 #define DS_ST_FLTCMP 0xe 86 #define DS_ST_FAULT 0xf 87 88 #define DPC 0x4 89 #define INTEN 0x20 90 #define ES 0x24 91 #define INTSTATUS 0x28 92 #define INTCLR 0x2c 93 #define FSM 0x30 94 #define FSC 0x34 95 #define FTM 0x38 96 97 #define _FTC 0x40 98 #define FTC(n) (_FTC + (n)*0x4) 99 100 #define _CS 0x100 101 #define CS(n) (_CS + (n)*0x8) 102 #define CS_CNS (1 << 21) 103 104 #define _CPC 0x104 105 #define CPC(n) (_CPC + (n)*0x8) 106 107 #define _SA 0x400 108 #define SA(n) (_SA + (n)*0x20) 109 110 #define _DA 0x404 111 #define DA(n) (_DA + (n)*0x20) 112 113 #define _CC 0x408 114 #define CC(n) (_CC + (n)*0x20) 115 116 #define CC_SRCINC (1 << 0) 117 #define CC_DSTINC (1 << 14) 118 #define CC_SRCPRI (1 << 8) 119 #define CC_DSTPRI (1 << 22) 120 #define CC_SRCNS (1 << 9) 121 #define CC_DSTNS (1 << 23) 122 #define CC_SRCIA (1 << 10) 123 #define CC_DSTIA (1 << 24) 124 #define CC_SRCBRSTLEN_SHFT 4 125 #define CC_DSTBRSTLEN_SHFT 18 126 #define CC_SRCBRSTSIZE_SHFT 1 127 #define CC_DSTBRSTSIZE_SHFT 15 128 #define CC_SRCCCTRL_SHFT 11 129 #define CC_SRCCCTRL_MASK 0x7 130 #define CC_DSTCCTRL_SHFT 25 131 #define CC_DRCCCTRL_MASK 0x7 132 #define CC_SWAP_SHFT 28 133 134 #define _LC0 0x40c 135 #define LC0(n) (_LC0 + (n)*0x20) 136 137 #define _LC1 0x410 138 #define LC1(n) (_LC1 + (n)*0x20) 139 140 #define DBGSTATUS 0xd00 141 #define DBG_BUSY (1 << 0) 142 143 #define DBGCMD 0xd04 144 #define DBGINST0 0xd08 145 #define DBGINST1 0xd0c 146 147 #define CR0 0xe00 148 #define CR1 0xe04 149 #define CR2 0xe08 150 #define CR3 0xe0c 151 #define CR4 0xe10 152 #define CRD 0xe14 153 154 #define PERIPH_ID 0xfe0 155 #define PERIPH_REV_SHIFT 20 156 #define PERIPH_REV_MASK 0xf 157 #define PERIPH_REV_R0P0 0 158 #define PERIPH_REV_R1P0 1 159 #define PERIPH_REV_R1P1 2 160 161 #define CR0_PERIPH_REQ_SET (1 << 0) 162 #define CR0_BOOT_EN_SET (1 << 1) 163 #define CR0_BOOT_MAN_NS (1 << 2) 164 #define CR0_NUM_CHANS_SHIFT 4 165 #define CR0_NUM_CHANS_MASK 0x7 166 #define CR0_NUM_PERIPH_SHIFT 12 167 #define CR0_NUM_PERIPH_MASK 0x1f 168 #define CR0_NUM_EVENTS_SHIFT 17 169 #define CR0_NUM_EVENTS_MASK 0x1f 170 171 #define CR1_ICACHE_LEN_SHIFT 0 172 #define CR1_ICACHE_LEN_MASK 0x7 173 #define CR1_NUM_ICACHELINES_SHIFT 4 174 #define CR1_NUM_ICACHELINES_MASK 0xf 175 176 #define CRD_DATA_WIDTH_SHIFT 0 177 #define CRD_DATA_WIDTH_MASK 0x7 178 #define CRD_WR_CAP_SHIFT 4 179 #define CRD_WR_CAP_MASK 0x7 180 #define CRD_WR_Q_DEP_SHIFT 8 181 #define CRD_WR_Q_DEP_MASK 0xf 182 #define CRD_RD_CAP_SHIFT 12 183 #define CRD_RD_CAP_MASK 0x7 184 #define CRD_RD_Q_DEP_SHIFT 16 185 #define CRD_RD_Q_DEP_MASK 0xf 186 #define CRD_DATA_BUFF_SHIFT 20 187 #define CRD_DATA_BUFF_MASK 0x3ff 188 189 #define PART 0x330 190 #define DESIGNER 0x41 191 #define REVISION 0x0 192 #define INTEG_CFG 0x0 193 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 194 195 #define PL330_STATE_STOPPED (1 << 0) 196 #define PL330_STATE_EXECUTING (1 << 1) 197 #define PL330_STATE_WFE (1 << 2) 198 #define PL330_STATE_FAULTING (1 << 3) 199 #define PL330_STATE_COMPLETING (1 << 4) 200 #define PL330_STATE_WFP (1 << 5) 201 #define PL330_STATE_KILLING (1 << 6) 202 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 203 #define PL330_STATE_CACHEMISS (1 << 8) 204 #define PL330_STATE_UPDTPC (1 << 9) 205 #define PL330_STATE_ATBARRIER (1 << 10) 206 #define PL330_STATE_QUEUEBUSY (1 << 11) 207 #define PL330_STATE_INVALID (1 << 15) 208 209 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 210 | PL330_STATE_WFE | PL330_STATE_FAULTING) 211 212 #define CMD_DMAADDH 0x54 213 #define CMD_DMAEND 0x00 214 #define CMD_DMAFLUSHP 0x35 215 #define CMD_DMAGO 0xa0 216 #define CMD_DMALD 0x04 217 #define CMD_DMALDP 0x25 218 #define CMD_DMALP 0x20 219 #define CMD_DMALPEND 0x28 220 #define CMD_DMAKILL 0x01 221 #define CMD_DMAMOV 0xbc 222 #define CMD_DMANOP 0x18 223 #define CMD_DMARMB 0x12 224 #define CMD_DMASEV 0x34 225 #define CMD_DMAST 0x08 226 #define CMD_DMASTP 0x29 227 #define CMD_DMASTZ 0x0c 228 #define CMD_DMAWFE 0x36 229 #define CMD_DMAWFP 0x30 230 #define CMD_DMAWMB 0x13 231 232 #define SZ_DMAADDH 3 233 #define SZ_DMAEND 1 234 #define SZ_DMAFLUSHP 2 235 #define SZ_DMALD 1 236 #define SZ_DMALDP 2 237 #define SZ_DMALP 2 238 #define SZ_DMALPEND 2 239 #define SZ_DMAKILL 1 240 #define SZ_DMAMOV 6 241 #define SZ_DMANOP 1 242 #define SZ_DMARMB 1 243 #define SZ_DMASEV 2 244 #define SZ_DMAST 1 245 #define SZ_DMASTP 2 246 #define SZ_DMASTZ 1 247 #define SZ_DMAWFE 2 248 #define SZ_DMAWFP 2 249 #define SZ_DMAWMB 1 250 #define SZ_DMAGO 6 251 252 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 253 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 254 255 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 256 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 257 258 /* 259 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 260 * at 1byte/burst for P<->M and M<->M respectively. 261 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 262 * should be enough for P<->M and M<->M respectively. 263 */ 264 #define MCODE_BUFF_PER_REQ 256 265 266 /* If the _pl330_req is available to the client */ 267 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND) 268 269 /* Use this _only_ to wait on transient states */ 270 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 271 272 #ifdef PL330_DEBUG_MCGEN 273 static unsigned cmd_line; 274 #define PL330_DBGCMD_DUMP(off, x...) do { \ 275 printk("%x:", cmd_line); \ 276 printk(x); \ 277 cmd_line += off; \ 278 } while (0) 279 #define PL330_DBGMC_START(addr) (cmd_line = addr) 280 #else 281 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 282 #define PL330_DBGMC_START(addr) do {} while (0) 283 #endif 284 285 /* The number of default descriptors */ 286 287 #define NR_DEFAULT_DESC 16 288 289 /* Populated by the PL330 core driver for DMA API driver's info */ 290 struct pl330_config { 291 u32 periph_id; 292 #define DMAC_MODE_NS (1 << 0) 293 unsigned int mode; 294 unsigned int data_bus_width:10; /* In number of bits */ 295 unsigned int data_buf_dep:10; 296 unsigned int num_chan:4; 297 unsigned int num_peri:6; 298 u32 peri_ns; 299 unsigned int num_events:6; 300 u32 irq_ns; 301 }; 302 303 /* Handle to the DMAC provided to the PL330 core */ 304 struct pl330_info { 305 /* Owning device */ 306 struct device *dev; 307 /* Size of MicroCode buffers for each channel. */ 308 unsigned mcbufsz; 309 /* ioremap'ed address of PL330 registers. */ 310 void __iomem *base; 311 /* Client can freely use it. */ 312 void *client_data; 313 /* PL330 core data, Client must not touch it. */ 314 void *pl330_data; 315 /* Populated by the PL330 core driver during pl330_add */ 316 struct pl330_config pcfg; 317 /* 318 * If the DMAC has some reset mechanism, then the 319 * client may want to provide pointer to the method. 320 */ 321 void (*dmac_reset)(struct pl330_info *pi); 322 }; 323 324 /** 325 * Request Configuration. 326 * The PL330 core does not modify this and uses the last 327 * working configuration if the request doesn't provide any. 328 * 329 * The Client may want to provide this info only for the 330 * first request and a request with new settings. 331 */ 332 struct pl330_reqcfg { 333 /* Address Incrementing */ 334 unsigned dst_inc:1; 335 unsigned src_inc:1; 336 337 /* 338 * For now, the SRC & DST protection levels 339 * and burst size/length are assumed same. 340 */ 341 bool nonsecure; 342 bool privileged; 343 bool insnaccess; 344 unsigned brst_len:5; 345 unsigned brst_size:3; /* in power of 2 */ 346 347 enum pl330_dstcachectrl dcctl; 348 enum pl330_srccachectrl scctl; 349 enum pl330_byteswap swap; 350 struct pl330_config *pcfg; 351 }; 352 353 /* 354 * One cycle of DMAC operation. 355 * There may be more than one xfer in a request. 356 */ 357 struct pl330_xfer { 358 u32 src_addr; 359 u32 dst_addr; 360 /* Size to xfer */ 361 u32 bytes; 362 /* 363 * Pointer to next xfer in the list. 364 * The last xfer in the req must point to NULL. 365 */ 366 struct pl330_xfer *next; 367 }; 368 369 /* The xfer callbacks are made with one of these arguments. */ 370 enum pl330_op_err { 371 /* The all xfers in the request were success. */ 372 PL330_ERR_NONE, 373 /* If req aborted due to global error. */ 374 PL330_ERR_ABORT, 375 /* If req failed due to problem with Channel. */ 376 PL330_ERR_FAIL, 377 }; 378 379 /* A request defining Scatter-Gather List ending with NULL xfer. */ 380 struct pl330_req { 381 enum pl330_reqtype rqtype; 382 /* Index of peripheral for the xfer. */ 383 unsigned peri:5; 384 /* Unique token for this xfer, set by the client. */ 385 void *token; 386 /* Callback to be called after xfer. */ 387 void (*xfer_cb)(void *token, enum pl330_op_err err); 388 /* If NULL, req will be done at last set parameters. */ 389 struct pl330_reqcfg *cfg; 390 /* Pointer to first xfer in the request. */ 391 struct pl330_xfer *x; 392 /* Hook to attach to DMAC's list of reqs with due callback */ 393 struct list_head rqd; 394 }; 395 396 /* 397 * To know the status of the channel and DMAC, the client 398 * provides a pointer to this structure. The PL330 core 399 * fills it with current information. 400 */ 401 struct pl330_chanstatus { 402 /* 403 * If the DMAC engine halted due to some error, 404 * the client should remove-add DMAC. 405 */ 406 bool dmac_halted; 407 /* 408 * If channel is halted due to some error, 409 * the client should ABORT/FLUSH and START the channel. 410 */ 411 bool faulting; 412 /* Location of last load */ 413 u32 src_addr; 414 /* Location of last store */ 415 u32 dst_addr; 416 /* 417 * Pointer to the currently active req, NULL if channel is 418 * inactive, even though the requests may be present. 419 */ 420 struct pl330_req *top_req; 421 /* Pointer to req waiting second in the queue if any. */ 422 struct pl330_req *wait_req; 423 }; 424 425 enum pl330_chan_op { 426 /* Start the channel */ 427 PL330_OP_START, 428 /* Abort the active xfer */ 429 PL330_OP_ABORT, 430 /* Stop xfer and flush queue */ 431 PL330_OP_FLUSH, 432 }; 433 434 struct _xfer_spec { 435 u32 ccr; 436 struct pl330_req *r; 437 struct pl330_xfer *x; 438 }; 439 440 enum dmamov_dst { 441 SAR = 0, 442 CCR, 443 DAR, 444 }; 445 446 enum pl330_dst { 447 SRC = 0, 448 DST, 449 }; 450 451 enum pl330_cond { 452 SINGLE, 453 BURST, 454 ALWAYS, 455 }; 456 457 struct _pl330_req { 458 u32 mc_bus; 459 void *mc_cpu; 460 /* Number of bytes taken to setup MC for the req */ 461 u32 mc_len; 462 struct pl330_req *r; 463 }; 464 465 /* ToBeDone for tasklet */ 466 struct _pl330_tbd { 467 bool reset_dmac; 468 bool reset_mngr; 469 u8 reset_chan; 470 }; 471 472 /* A DMAC Thread */ 473 struct pl330_thread { 474 u8 id; 475 int ev; 476 /* If the channel is not yet acquired by any client */ 477 bool free; 478 /* Parent DMAC */ 479 struct pl330_dmac *dmac; 480 /* Only two at a time */ 481 struct _pl330_req req[2]; 482 /* Index of the last enqueued request */ 483 unsigned lstenq; 484 /* Index of the last submitted request or -1 if the DMA is stopped */ 485 int req_running; 486 }; 487 488 enum pl330_dmac_state { 489 UNINIT, 490 INIT, 491 DYING, 492 }; 493 494 /* A DMAC */ 495 struct pl330_dmac { 496 spinlock_t lock; 497 /* Holds list of reqs with due callbacks */ 498 struct list_head req_done; 499 /* Pointer to platform specific stuff */ 500 struct pl330_info *pinfo; 501 /* Maximum possible events/irqs */ 502 int events[32]; 503 /* BUS address of MicroCode buffer */ 504 dma_addr_t mcode_bus; 505 /* CPU address of MicroCode buffer */ 506 void *mcode_cpu; 507 /* List of all Channel threads */ 508 struct pl330_thread *channels; 509 /* Pointer to the MANAGER thread */ 510 struct pl330_thread *manager; 511 /* To handle bad news in interrupt */ 512 struct tasklet_struct tasks; 513 struct _pl330_tbd dmac_tbd; 514 /* State of DMAC operation */ 515 enum pl330_dmac_state state; 516 }; 517 518 enum desc_status { 519 /* In the DMAC pool */ 520 FREE, 521 /* 522 * Allocated to some channel during prep_xxx 523 * Also may be sitting on the work_list. 524 */ 525 PREP, 526 /* 527 * Sitting on the work_list and already submitted 528 * to the PL330 core. Not more than two descriptors 529 * of a channel can be BUSY at any time. 530 */ 531 BUSY, 532 /* 533 * Sitting on the channel work_list but xfer done 534 * by PL330 core 535 */ 536 DONE, 537 }; 538 539 struct dma_pl330_chan { 540 /* Schedule desc completion */ 541 struct tasklet_struct task; 542 543 /* DMA-Engine Channel */ 544 struct dma_chan chan; 545 546 /* List of to be xfered descriptors */ 547 struct list_head work_list; 548 /* List of completed descriptors */ 549 struct list_head completed_list; 550 551 /* Pointer to the DMAC that manages this channel, 552 * NULL if the channel is available to be acquired. 553 * As the parent, this DMAC also provides descriptors 554 * to the channel. 555 */ 556 struct dma_pl330_dmac *dmac; 557 558 /* To protect channel manipulation */ 559 spinlock_t lock; 560 561 /* Token of a hardware channel thread of PL330 DMAC 562 * NULL if the channel is available to be acquired. 563 */ 564 void *pl330_chid; 565 566 /* For D-to-M and M-to-D channels */ 567 int burst_sz; /* the peripheral fifo width */ 568 int burst_len; /* the number of burst */ 569 dma_addr_t fifo_addr; 570 571 /* for cyclic capability */ 572 bool cyclic; 573 }; 574 575 struct dma_pl330_dmac { 576 struct pl330_info pif; 577 578 /* DMA-Engine Device */ 579 struct dma_device ddma; 580 581 /* Pool of descriptors available for the DMAC's channels */ 582 struct list_head desc_pool; 583 /* To protect desc_pool manipulation */ 584 spinlock_t pool_lock; 585 586 /* Peripheral channels connected to this DMAC */ 587 struct dma_pl330_chan *peripherals; /* keep at end */ 588 }; 589 590 struct dma_pl330_desc { 591 /* To attach to a queue as child */ 592 struct list_head node; 593 594 /* Descriptor for the DMA Engine API */ 595 struct dma_async_tx_descriptor txd; 596 597 /* Xfer for PL330 core */ 598 struct pl330_xfer px; 599 600 struct pl330_reqcfg rqcfg; 601 struct pl330_req req; 602 603 enum desc_status status; 604 605 /* The channel which currently holds this desc */ 606 struct dma_pl330_chan *pchan; 607 }; 608 609 struct dma_pl330_filter_args { 610 struct dma_pl330_dmac *pdmac; 611 unsigned int chan_id; 612 }; 613 614 static inline void _callback(struct pl330_req *r, enum pl330_op_err err) 615 { 616 if (r && r->xfer_cb) 617 r->xfer_cb(r->token, err); 618 } 619 620 static inline bool _queue_empty(struct pl330_thread *thrd) 621 { 622 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1])) 623 ? true : false; 624 } 625 626 static inline bool _queue_full(struct pl330_thread *thrd) 627 { 628 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1])) 629 ? false : true; 630 } 631 632 static inline bool is_manager(struct pl330_thread *thrd) 633 { 634 struct pl330_dmac *pl330 = thrd->dmac; 635 636 /* MANAGER is indexed at the end */ 637 if (thrd->id == pl330->pinfo->pcfg.num_chan) 638 return true; 639 else 640 return false; 641 } 642 643 /* If manager of the thread is in Non-Secure mode */ 644 static inline bool _manager_ns(struct pl330_thread *thrd) 645 { 646 struct pl330_dmac *pl330 = thrd->dmac; 647 648 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false; 649 } 650 651 static inline u32 get_revision(u32 periph_id) 652 { 653 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 654 } 655 656 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 657 enum pl330_dst da, u16 val) 658 { 659 if (dry_run) 660 return SZ_DMAADDH; 661 662 buf[0] = CMD_DMAADDH; 663 buf[0] |= (da << 1); 664 *((u16 *)&buf[1]) = val; 665 666 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 667 da == 1 ? "DA" : "SA", val); 668 669 return SZ_DMAADDH; 670 } 671 672 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 673 { 674 if (dry_run) 675 return SZ_DMAEND; 676 677 buf[0] = CMD_DMAEND; 678 679 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 680 681 return SZ_DMAEND; 682 } 683 684 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 685 { 686 if (dry_run) 687 return SZ_DMAFLUSHP; 688 689 buf[0] = CMD_DMAFLUSHP; 690 691 peri &= 0x1f; 692 peri <<= 3; 693 buf[1] = peri; 694 695 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 696 697 return SZ_DMAFLUSHP; 698 } 699 700 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 701 { 702 if (dry_run) 703 return SZ_DMALD; 704 705 buf[0] = CMD_DMALD; 706 707 if (cond == SINGLE) 708 buf[0] |= (0 << 1) | (1 << 0); 709 else if (cond == BURST) 710 buf[0] |= (1 << 1) | (1 << 0); 711 712 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 713 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 714 715 return SZ_DMALD; 716 } 717 718 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 719 enum pl330_cond cond, u8 peri) 720 { 721 if (dry_run) 722 return SZ_DMALDP; 723 724 buf[0] = CMD_DMALDP; 725 726 if (cond == BURST) 727 buf[0] |= (1 << 1); 728 729 peri &= 0x1f; 730 peri <<= 3; 731 buf[1] = peri; 732 733 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 734 cond == SINGLE ? 'S' : 'B', peri >> 3); 735 736 return SZ_DMALDP; 737 } 738 739 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 740 unsigned loop, u8 cnt) 741 { 742 if (dry_run) 743 return SZ_DMALP; 744 745 buf[0] = CMD_DMALP; 746 747 if (loop) 748 buf[0] |= (1 << 1); 749 750 cnt--; /* DMAC increments by 1 internally */ 751 buf[1] = cnt; 752 753 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 754 755 return SZ_DMALP; 756 } 757 758 struct _arg_LPEND { 759 enum pl330_cond cond; 760 bool forever; 761 unsigned loop; 762 u8 bjump; 763 }; 764 765 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 766 const struct _arg_LPEND *arg) 767 { 768 enum pl330_cond cond = arg->cond; 769 bool forever = arg->forever; 770 unsigned loop = arg->loop; 771 u8 bjump = arg->bjump; 772 773 if (dry_run) 774 return SZ_DMALPEND; 775 776 buf[0] = CMD_DMALPEND; 777 778 if (loop) 779 buf[0] |= (1 << 2); 780 781 if (!forever) 782 buf[0] |= (1 << 4); 783 784 if (cond == SINGLE) 785 buf[0] |= (0 << 1) | (1 << 0); 786 else if (cond == BURST) 787 buf[0] |= (1 << 1) | (1 << 0); 788 789 buf[1] = bjump; 790 791 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 792 forever ? "FE" : "END", 793 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 794 loop ? '1' : '0', 795 bjump); 796 797 return SZ_DMALPEND; 798 } 799 800 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 801 { 802 if (dry_run) 803 return SZ_DMAKILL; 804 805 buf[0] = CMD_DMAKILL; 806 807 return SZ_DMAKILL; 808 } 809 810 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 811 enum dmamov_dst dst, u32 val) 812 { 813 if (dry_run) 814 return SZ_DMAMOV; 815 816 buf[0] = CMD_DMAMOV; 817 buf[1] = dst; 818 *((u32 *)&buf[2]) = val; 819 820 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 821 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 822 823 return SZ_DMAMOV; 824 } 825 826 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 827 { 828 if (dry_run) 829 return SZ_DMANOP; 830 831 buf[0] = CMD_DMANOP; 832 833 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 834 835 return SZ_DMANOP; 836 } 837 838 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 839 { 840 if (dry_run) 841 return SZ_DMARMB; 842 843 buf[0] = CMD_DMARMB; 844 845 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 846 847 return SZ_DMARMB; 848 } 849 850 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 851 { 852 if (dry_run) 853 return SZ_DMASEV; 854 855 buf[0] = CMD_DMASEV; 856 857 ev &= 0x1f; 858 ev <<= 3; 859 buf[1] = ev; 860 861 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 862 863 return SZ_DMASEV; 864 } 865 866 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 867 { 868 if (dry_run) 869 return SZ_DMAST; 870 871 buf[0] = CMD_DMAST; 872 873 if (cond == SINGLE) 874 buf[0] |= (0 << 1) | (1 << 0); 875 else if (cond == BURST) 876 buf[0] |= (1 << 1) | (1 << 0); 877 878 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 879 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 880 881 return SZ_DMAST; 882 } 883 884 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 885 enum pl330_cond cond, u8 peri) 886 { 887 if (dry_run) 888 return SZ_DMASTP; 889 890 buf[0] = CMD_DMASTP; 891 892 if (cond == BURST) 893 buf[0] |= (1 << 1); 894 895 peri &= 0x1f; 896 peri <<= 3; 897 buf[1] = peri; 898 899 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 900 cond == SINGLE ? 'S' : 'B', peri >> 3); 901 902 return SZ_DMASTP; 903 } 904 905 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 906 { 907 if (dry_run) 908 return SZ_DMASTZ; 909 910 buf[0] = CMD_DMASTZ; 911 912 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 913 914 return SZ_DMASTZ; 915 } 916 917 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 918 unsigned invalidate) 919 { 920 if (dry_run) 921 return SZ_DMAWFE; 922 923 buf[0] = CMD_DMAWFE; 924 925 ev &= 0x1f; 926 ev <<= 3; 927 buf[1] = ev; 928 929 if (invalidate) 930 buf[1] |= (1 << 1); 931 932 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 933 ev >> 3, invalidate ? ", I" : ""); 934 935 return SZ_DMAWFE; 936 } 937 938 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 939 enum pl330_cond cond, u8 peri) 940 { 941 if (dry_run) 942 return SZ_DMAWFP; 943 944 buf[0] = CMD_DMAWFP; 945 946 if (cond == SINGLE) 947 buf[0] |= (0 << 1) | (0 << 0); 948 else if (cond == BURST) 949 buf[0] |= (1 << 1) | (0 << 0); 950 else 951 buf[0] |= (0 << 1) | (1 << 0); 952 953 peri &= 0x1f; 954 peri <<= 3; 955 buf[1] = peri; 956 957 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 958 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 959 960 return SZ_DMAWFP; 961 } 962 963 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 964 { 965 if (dry_run) 966 return SZ_DMAWMB; 967 968 buf[0] = CMD_DMAWMB; 969 970 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 971 972 return SZ_DMAWMB; 973 } 974 975 struct _arg_GO { 976 u8 chan; 977 u32 addr; 978 unsigned ns; 979 }; 980 981 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 982 const struct _arg_GO *arg) 983 { 984 u8 chan = arg->chan; 985 u32 addr = arg->addr; 986 unsigned ns = arg->ns; 987 988 if (dry_run) 989 return SZ_DMAGO; 990 991 buf[0] = CMD_DMAGO; 992 buf[0] |= (ns << 1); 993 994 buf[1] = chan & 0x7; 995 996 *((u32 *)&buf[2]) = addr; 997 998 return SZ_DMAGO; 999 } 1000 1001 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 1002 1003 /* Returns Time-Out */ 1004 static bool _until_dmac_idle(struct pl330_thread *thrd) 1005 { 1006 void __iomem *regs = thrd->dmac->pinfo->base; 1007 unsigned long loops = msecs_to_loops(5); 1008 1009 do { 1010 /* Until Manager is Idle */ 1011 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 1012 break; 1013 1014 cpu_relax(); 1015 } while (--loops); 1016 1017 if (!loops) 1018 return true; 1019 1020 return false; 1021 } 1022 1023 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 1024 u8 insn[], bool as_manager) 1025 { 1026 void __iomem *regs = thrd->dmac->pinfo->base; 1027 u32 val; 1028 1029 val = (insn[0] << 16) | (insn[1] << 24); 1030 if (!as_manager) { 1031 val |= (1 << 0); 1032 val |= (thrd->id << 8); /* Channel Number */ 1033 } 1034 writel(val, regs + DBGINST0); 1035 1036 val = *((u32 *)&insn[2]); 1037 writel(val, regs + DBGINST1); 1038 1039 /* If timed out due to halted state-machine */ 1040 if (_until_dmac_idle(thrd)) { 1041 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n"); 1042 return; 1043 } 1044 1045 /* Get going */ 1046 writel(0, regs + DBGCMD); 1047 } 1048 1049 /* 1050 * Mark a _pl330_req as free. 1051 * We do it by writing DMAEND as the first instruction 1052 * because no valid request is going to have DMAEND as 1053 * its first instruction to execute. 1054 */ 1055 static void mark_free(struct pl330_thread *thrd, int idx) 1056 { 1057 struct _pl330_req *req = &thrd->req[idx]; 1058 1059 _emit_END(0, req->mc_cpu); 1060 req->mc_len = 0; 1061 1062 thrd->req_running = -1; 1063 } 1064 1065 static inline u32 _state(struct pl330_thread *thrd) 1066 { 1067 void __iomem *regs = thrd->dmac->pinfo->base; 1068 u32 val; 1069 1070 if (is_manager(thrd)) 1071 val = readl(regs + DS) & 0xf; 1072 else 1073 val = readl(regs + CS(thrd->id)) & 0xf; 1074 1075 switch (val) { 1076 case DS_ST_STOP: 1077 return PL330_STATE_STOPPED; 1078 case DS_ST_EXEC: 1079 return PL330_STATE_EXECUTING; 1080 case DS_ST_CMISS: 1081 return PL330_STATE_CACHEMISS; 1082 case DS_ST_UPDTPC: 1083 return PL330_STATE_UPDTPC; 1084 case DS_ST_WFE: 1085 return PL330_STATE_WFE; 1086 case DS_ST_FAULT: 1087 return PL330_STATE_FAULTING; 1088 case DS_ST_ATBRR: 1089 if (is_manager(thrd)) 1090 return PL330_STATE_INVALID; 1091 else 1092 return PL330_STATE_ATBARRIER; 1093 case DS_ST_QBUSY: 1094 if (is_manager(thrd)) 1095 return PL330_STATE_INVALID; 1096 else 1097 return PL330_STATE_QUEUEBUSY; 1098 case DS_ST_WFP: 1099 if (is_manager(thrd)) 1100 return PL330_STATE_INVALID; 1101 else 1102 return PL330_STATE_WFP; 1103 case DS_ST_KILL: 1104 if (is_manager(thrd)) 1105 return PL330_STATE_INVALID; 1106 else 1107 return PL330_STATE_KILLING; 1108 case DS_ST_CMPLT: 1109 if (is_manager(thrd)) 1110 return PL330_STATE_INVALID; 1111 else 1112 return PL330_STATE_COMPLETING; 1113 case DS_ST_FLTCMP: 1114 if (is_manager(thrd)) 1115 return PL330_STATE_INVALID; 1116 else 1117 return PL330_STATE_FAULT_COMPLETING; 1118 default: 1119 return PL330_STATE_INVALID; 1120 } 1121 } 1122 1123 static void _stop(struct pl330_thread *thrd) 1124 { 1125 void __iomem *regs = thrd->dmac->pinfo->base; 1126 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1127 1128 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1129 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1130 1131 /* Return if nothing needs to be done */ 1132 if (_state(thrd) == PL330_STATE_COMPLETING 1133 || _state(thrd) == PL330_STATE_KILLING 1134 || _state(thrd) == PL330_STATE_STOPPED) 1135 return; 1136 1137 _emit_KILL(0, insn); 1138 1139 /* Stop generating interrupts for SEV */ 1140 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1141 1142 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1143 } 1144 1145 /* Start doing req 'idx' of thread 'thrd' */ 1146 static bool _trigger(struct pl330_thread *thrd) 1147 { 1148 void __iomem *regs = thrd->dmac->pinfo->base; 1149 struct _pl330_req *req; 1150 struct pl330_req *r; 1151 struct _arg_GO go; 1152 unsigned ns; 1153 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1154 int idx; 1155 1156 /* Return if already ACTIVE */ 1157 if (_state(thrd) != PL330_STATE_STOPPED) 1158 return true; 1159 1160 idx = 1 - thrd->lstenq; 1161 if (!IS_FREE(&thrd->req[idx])) 1162 req = &thrd->req[idx]; 1163 else { 1164 idx = thrd->lstenq; 1165 if (!IS_FREE(&thrd->req[idx])) 1166 req = &thrd->req[idx]; 1167 else 1168 req = NULL; 1169 } 1170 1171 /* Return if no request */ 1172 if (!req || !req->r) 1173 return true; 1174 1175 r = req->r; 1176 1177 if (r->cfg) 1178 ns = r->cfg->nonsecure ? 1 : 0; 1179 else if (readl(regs + CS(thrd->id)) & CS_CNS) 1180 ns = 1; 1181 else 1182 ns = 0; 1183 1184 /* See 'Abort Sources' point-4 at Page 2-25 */ 1185 if (_manager_ns(thrd) && !ns) 1186 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n", 1187 __func__, __LINE__); 1188 1189 go.chan = thrd->id; 1190 go.addr = req->mc_bus; 1191 go.ns = ns; 1192 _emit_GO(0, insn, &go); 1193 1194 /* Set to generate interrupts for SEV */ 1195 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1196 1197 /* Only manager can execute GO */ 1198 _execute_DBGINSN(thrd, insn, true); 1199 1200 thrd->req_running = idx; 1201 1202 return true; 1203 } 1204 1205 static bool _start(struct pl330_thread *thrd) 1206 { 1207 switch (_state(thrd)) { 1208 case PL330_STATE_FAULT_COMPLETING: 1209 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1210 1211 if (_state(thrd) == PL330_STATE_KILLING) 1212 UNTIL(thrd, PL330_STATE_STOPPED) 1213 1214 case PL330_STATE_FAULTING: 1215 _stop(thrd); 1216 1217 case PL330_STATE_KILLING: 1218 case PL330_STATE_COMPLETING: 1219 UNTIL(thrd, PL330_STATE_STOPPED) 1220 1221 case PL330_STATE_STOPPED: 1222 return _trigger(thrd); 1223 1224 case PL330_STATE_WFP: 1225 case PL330_STATE_QUEUEBUSY: 1226 case PL330_STATE_ATBARRIER: 1227 case PL330_STATE_UPDTPC: 1228 case PL330_STATE_CACHEMISS: 1229 case PL330_STATE_EXECUTING: 1230 return true; 1231 1232 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1233 default: 1234 return false; 1235 } 1236 } 1237 1238 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1239 const struct _xfer_spec *pxs, int cyc) 1240 { 1241 int off = 0; 1242 struct pl330_config *pcfg = pxs->r->cfg->pcfg; 1243 1244 /* check lock-up free version */ 1245 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1246 while (cyc--) { 1247 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1248 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1249 } 1250 } else { 1251 while (cyc--) { 1252 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1253 off += _emit_RMB(dry_run, &buf[off]); 1254 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1255 off += _emit_WMB(dry_run, &buf[off]); 1256 } 1257 } 1258 1259 return off; 1260 } 1261 1262 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1263 const struct _xfer_spec *pxs, int cyc) 1264 { 1265 int off = 0; 1266 1267 while (cyc--) { 1268 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1269 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1270 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1271 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1272 } 1273 1274 return off; 1275 } 1276 1277 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1278 const struct _xfer_spec *pxs, int cyc) 1279 { 1280 int off = 0; 1281 1282 while (cyc--) { 1283 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1284 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1285 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1286 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1287 } 1288 1289 return off; 1290 } 1291 1292 static int _bursts(unsigned dry_run, u8 buf[], 1293 const struct _xfer_spec *pxs, int cyc) 1294 { 1295 int off = 0; 1296 1297 switch (pxs->r->rqtype) { 1298 case MEMTODEV: 1299 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1300 break; 1301 case DEVTOMEM: 1302 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1303 break; 1304 case MEMTOMEM: 1305 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1306 break; 1307 default: 1308 off += 0x40000000; /* Scare off the Client */ 1309 break; 1310 } 1311 1312 return off; 1313 } 1314 1315 /* Returns bytes consumed and updates bursts */ 1316 static inline int _loop(unsigned dry_run, u8 buf[], 1317 unsigned long *bursts, const struct _xfer_spec *pxs) 1318 { 1319 int cyc, cycmax, szlp, szlpend, szbrst, off; 1320 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1321 struct _arg_LPEND lpend; 1322 1323 /* Max iterations possible in DMALP is 256 */ 1324 if (*bursts >= 256*256) { 1325 lcnt1 = 256; 1326 lcnt0 = 256; 1327 cyc = *bursts / lcnt1 / lcnt0; 1328 } else if (*bursts > 256) { 1329 lcnt1 = 256; 1330 lcnt0 = *bursts / lcnt1; 1331 cyc = 1; 1332 } else { 1333 lcnt1 = *bursts; 1334 lcnt0 = 0; 1335 cyc = 1; 1336 } 1337 1338 szlp = _emit_LP(1, buf, 0, 0); 1339 szbrst = _bursts(1, buf, pxs, 1); 1340 1341 lpend.cond = ALWAYS; 1342 lpend.forever = false; 1343 lpend.loop = 0; 1344 lpend.bjump = 0; 1345 szlpend = _emit_LPEND(1, buf, &lpend); 1346 1347 if (lcnt0) { 1348 szlp *= 2; 1349 szlpend *= 2; 1350 } 1351 1352 /* 1353 * Max bursts that we can unroll due to limit on the 1354 * size of backward jump that can be encoded in DMALPEND 1355 * which is 8-bits and hence 255 1356 */ 1357 cycmax = (255 - (szlp + szlpend)) / szbrst; 1358 1359 cyc = (cycmax < cyc) ? cycmax : cyc; 1360 1361 off = 0; 1362 1363 if (lcnt0) { 1364 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1365 ljmp0 = off; 1366 } 1367 1368 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1369 ljmp1 = off; 1370 1371 off += _bursts(dry_run, &buf[off], pxs, cyc); 1372 1373 lpend.cond = ALWAYS; 1374 lpend.forever = false; 1375 lpend.loop = 1; 1376 lpend.bjump = off - ljmp1; 1377 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1378 1379 if (lcnt0) { 1380 lpend.cond = ALWAYS; 1381 lpend.forever = false; 1382 lpend.loop = 0; 1383 lpend.bjump = off - ljmp0; 1384 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1385 } 1386 1387 *bursts = lcnt1 * cyc; 1388 if (lcnt0) 1389 *bursts *= lcnt0; 1390 1391 return off; 1392 } 1393 1394 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1395 const struct _xfer_spec *pxs) 1396 { 1397 struct pl330_xfer *x = pxs->x; 1398 u32 ccr = pxs->ccr; 1399 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1400 int off = 0; 1401 1402 while (bursts) { 1403 c = bursts; 1404 off += _loop(dry_run, &buf[off], &c, pxs); 1405 bursts -= c; 1406 } 1407 1408 return off; 1409 } 1410 1411 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1412 const struct _xfer_spec *pxs) 1413 { 1414 struct pl330_xfer *x = pxs->x; 1415 int off = 0; 1416 1417 /* DMAMOV SAR, x->src_addr */ 1418 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1419 /* DMAMOV DAR, x->dst_addr */ 1420 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1421 1422 /* Setup Loop(s) */ 1423 off += _setup_loops(dry_run, &buf[off], pxs); 1424 1425 return off; 1426 } 1427 1428 /* 1429 * A req is a sequence of one or more xfer units. 1430 * Returns the number of bytes taken to setup the MC for the req. 1431 */ 1432 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1433 unsigned index, struct _xfer_spec *pxs) 1434 { 1435 struct _pl330_req *req = &thrd->req[index]; 1436 struct pl330_xfer *x; 1437 u8 *buf = req->mc_cpu; 1438 int off = 0; 1439 1440 PL330_DBGMC_START(req->mc_bus); 1441 1442 /* DMAMOV CCR, ccr */ 1443 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1444 1445 x = pxs->r->x; 1446 do { 1447 /* Error if xfer length is not aligned at burst size */ 1448 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1449 return -EINVAL; 1450 1451 pxs->x = x; 1452 off += _setup_xfer(dry_run, &buf[off], pxs); 1453 1454 x = x->next; 1455 } while (x); 1456 1457 /* DMASEV peripheral/event */ 1458 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1459 /* DMAEND */ 1460 off += _emit_END(dry_run, &buf[off]); 1461 1462 return off; 1463 } 1464 1465 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1466 { 1467 u32 ccr = 0; 1468 1469 if (rqc->src_inc) 1470 ccr |= CC_SRCINC; 1471 1472 if (rqc->dst_inc) 1473 ccr |= CC_DSTINC; 1474 1475 /* We set same protection levels for Src and DST for now */ 1476 if (rqc->privileged) 1477 ccr |= CC_SRCPRI | CC_DSTPRI; 1478 if (rqc->nonsecure) 1479 ccr |= CC_SRCNS | CC_DSTNS; 1480 if (rqc->insnaccess) 1481 ccr |= CC_SRCIA | CC_DSTIA; 1482 1483 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1484 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1485 1486 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1487 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1488 1489 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1490 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1491 1492 ccr |= (rqc->swap << CC_SWAP_SHFT); 1493 1494 return ccr; 1495 } 1496 1497 static inline bool _is_valid(u32 ccr) 1498 { 1499 enum pl330_dstcachectrl dcctl; 1500 enum pl330_srccachectrl scctl; 1501 1502 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK; 1503 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK; 1504 1505 if (dcctl == DINVALID1 || dcctl == DINVALID2 1506 || scctl == SINVALID1 || scctl == SINVALID2) 1507 return false; 1508 else 1509 return true; 1510 } 1511 1512 /* 1513 * Submit a list of xfers after which the client wants notification. 1514 * Client is not notified after each xfer unit, just once after all 1515 * xfer units are done or some error occurs. 1516 */ 1517 static int pl330_submit_req(void *ch_id, struct pl330_req *r) 1518 { 1519 struct pl330_thread *thrd = ch_id; 1520 struct pl330_dmac *pl330; 1521 struct pl330_info *pi; 1522 struct _xfer_spec xs; 1523 unsigned long flags; 1524 void __iomem *regs; 1525 unsigned idx; 1526 u32 ccr; 1527 int ret = 0; 1528 1529 /* No Req or Unacquired Channel or DMAC */ 1530 if (!r || !thrd || thrd->free) 1531 return -EINVAL; 1532 1533 pl330 = thrd->dmac; 1534 pi = pl330->pinfo; 1535 regs = pi->base; 1536 1537 if (pl330->state == DYING 1538 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1539 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n", 1540 __func__, __LINE__); 1541 return -EAGAIN; 1542 } 1543 1544 /* If request for non-existing peripheral */ 1545 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) { 1546 dev_info(thrd->dmac->pinfo->dev, 1547 "%s:%d Invalid peripheral(%u)!\n", 1548 __func__, __LINE__, r->peri); 1549 return -EINVAL; 1550 } 1551 1552 spin_lock_irqsave(&pl330->lock, flags); 1553 1554 if (_queue_full(thrd)) { 1555 ret = -EAGAIN; 1556 goto xfer_exit; 1557 } 1558 1559 1560 /* Use last settings, if not provided */ 1561 if (r->cfg) { 1562 /* Prefer Secure Channel */ 1563 if (!_manager_ns(thrd)) 1564 r->cfg->nonsecure = 0; 1565 else 1566 r->cfg->nonsecure = 1; 1567 1568 ccr = _prepare_ccr(r->cfg); 1569 } else { 1570 ccr = readl(regs + CC(thrd->id)); 1571 } 1572 1573 /* If this req doesn't have valid xfer settings */ 1574 if (!_is_valid(ccr)) { 1575 ret = -EINVAL; 1576 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n", 1577 __func__, __LINE__, ccr); 1578 goto xfer_exit; 1579 } 1580 1581 idx = IS_FREE(&thrd->req[0]) ? 0 : 1; 1582 1583 xs.ccr = ccr; 1584 xs.r = r; 1585 1586 /* First dry run to check if req is acceptable */ 1587 ret = _setup_req(1, thrd, idx, &xs); 1588 if (ret < 0) 1589 goto xfer_exit; 1590 1591 if (ret > pi->mcbufsz / 2) { 1592 dev_info(thrd->dmac->pinfo->dev, 1593 "%s:%d Trying increasing mcbufsz\n", 1594 __func__, __LINE__); 1595 ret = -ENOMEM; 1596 goto xfer_exit; 1597 } 1598 1599 /* Hook the request */ 1600 thrd->lstenq = idx; 1601 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs); 1602 thrd->req[idx].r = r; 1603 1604 ret = 0; 1605 1606 xfer_exit: 1607 spin_unlock_irqrestore(&pl330->lock, flags); 1608 1609 return ret; 1610 } 1611 1612 static void pl330_dotask(unsigned long data) 1613 { 1614 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1615 struct pl330_info *pi = pl330->pinfo; 1616 unsigned long flags; 1617 int i; 1618 1619 spin_lock_irqsave(&pl330->lock, flags); 1620 1621 /* The DMAC itself gone nuts */ 1622 if (pl330->dmac_tbd.reset_dmac) { 1623 pl330->state = DYING; 1624 /* Reset the manager too */ 1625 pl330->dmac_tbd.reset_mngr = true; 1626 /* Clear the reset flag */ 1627 pl330->dmac_tbd.reset_dmac = false; 1628 } 1629 1630 if (pl330->dmac_tbd.reset_mngr) { 1631 _stop(pl330->manager); 1632 /* Reset all channels */ 1633 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1; 1634 /* Clear the reset flag */ 1635 pl330->dmac_tbd.reset_mngr = false; 1636 } 1637 1638 for (i = 0; i < pi->pcfg.num_chan; i++) { 1639 1640 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1641 struct pl330_thread *thrd = &pl330->channels[i]; 1642 void __iomem *regs = pi->base; 1643 enum pl330_op_err err; 1644 1645 _stop(thrd); 1646 1647 if (readl(regs + FSC) & (1 << thrd->id)) 1648 err = PL330_ERR_FAIL; 1649 else 1650 err = PL330_ERR_ABORT; 1651 1652 spin_unlock_irqrestore(&pl330->lock, flags); 1653 1654 _callback(thrd->req[1 - thrd->lstenq].r, err); 1655 _callback(thrd->req[thrd->lstenq].r, err); 1656 1657 spin_lock_irqsave(&pl330->lock, flags); 1658 1659 thrd->req[0].r = NULL; 1660 thrd->req[1].r = NULL; 1661 mark_free(thrd, 0); 1662 mark_free(thrd, 1); 1663 1664 /* Clear the reset flag */ 1665 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1666 } 1667 } 1668 1669 spin_unlock_irqrestore(&pl330->lock, flags); 1670 1671 return; 1672 } 1673 1674 /* Returns 1 if state was updated, 0 otherwise */ 1675 static int pl330_update(const struct pl330_info *pi) 1676 { 1677 struct pl330_req *rqdone, *tmp; 1678 struct pl330_dmac *pl330; 1679 unsigned long flags; 1680 void __iomem *regs; 1681 u32 val; 1682 int id, ev, ret = 0; 1683 1684 if (!pi || !pi->pl330_data) 1685 return 0; 1686 1687 regs = pi->base; 1688 pl330 = pi->pl330_data; 1689 1690 spin_lock_irqsave(&pl330->lock, flags); 1691 1692 val = readl(regs + FSM) & 0x1; 1693 if (val) 1694 pl330->dmac_tbd.reset_mngr = true; 1695 else 1696 pl330->dmac_tbd.reset_mngr = false; 1697 1698 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1); 1699 pl330->dmac_tbd.reset_chan |= val; 1700 if (val) { 1701 int i = 0; 1702 while (i < pi->pcfg.num_chan) { 1703 if (val & (1 << i)) { 1704 dev_info(pi->dev, 1705 "Reset Channel-%d\t CS-%x FTC-%x\n", 1706 i, readl(regs + CS(i)), 1707 readl(regs + FTC(i))); 1708 _stop(&pl330->channels[i]); 1709 } 1710 i++; 1711 } 1712 } 1713 1714 /* Check which event happened i.e, thread notified */ 1715 val = readl(regs + ES); 1716 if (pi->pcfg.num_events < 32 1717 && val & ~((1 << pi->pcfg.num_events) - 1)) { 1718 pl330->dmac_tbd.reset_dmac = true; 1719 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__); 1720 ret = 1; 1721 goto updt_exit; 1722 } 1723 1724 for (ev = 0; ev < pi->pcfg.num_events; ev++) { 1725 if (val & (1 << ev)) { /* Event occurred */ 1726 struct pl330_thread *thrd; 1727 u32 inten = readl(regs + INTEN); 1728 int active; 1729 1730 /* Clear the event */ 1731 if (inten & (1 << ev)) 1732 writel(1 << ev, regs + INTCLR); 1733 1734 ret = 1; 1735 1736 id = pl330->events[ev]; 1737 1738 thrd = &pl330->channels[id]; 1739 1740 active = thrd->req_running; 1741 if (active == -1) /* Aborted */ 1742 continue; 1743 1744 /* Detach the req */ 1745 rqdone = thrd->req[active].r; 1746 thrd->req[active].r = NULL; 1747 1748 mark_free(thrd, active); 1749 1750 /* Get going again ASAP */ 1751 _start(thrd); 1752 1753 /* For now, just make a list of callbacks to be done */ 1754 list_add_tail(&rqdone->rqd, &pl330->req_done); 1755 } 1756 } 1757 1758 /* Now that we are in no hurry, do the callbacks */ 1759 list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) { 1760 list_del(&rqdone->rqd); 1761 1762 spin_unlock_irqrestore(&pl330->lock, flags); 1763 _callback(rqdone, PL330_ERR_NONE); 1764 spin_lock_irqsave(&pl330->lock, flags); 1765 } 1766 1767 updt_exit: 1768 spin_unlock_irqrestore(&pl330->lock, flags); 1769 1770 if (pl330->dmac_tbd.reset_dmac 1771 || pl330->dmac_tbd.reset_mngr 1772 || pl330->dmac_tbd.reset_chan) { 1773 ret = 1; 1774 tasklet_schedule(&pl330->tasks); 1775 } 1776 1777 return ret; 1778 } 1779 1780 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op) 1781 { 1782 struct pl330_thread *thrd = ch_id; 1783 struct pl330_dmac *pl330; 1784 unsigned long flags; 1785 int ret = 0, active; 1786 1787 if (!thrd || thrd->free || thrd->dmac->state == DYING) 1788 return -EINVAL; 1789 1790 pl330 = thrd->dmac; 1791 active = thrd->req_running; 1792 1793 spin_lock_irqsave(&pl330->lock, flags); 1794 1795 switch (op) { 1796 case PL330_OP_FLUSH: 1797 /* Make sure the channel is stopped */ 1798 _stop(thrd); 1799 1800 thrd->req[0].r = NULL; 1801 thrd->req[1].r = NULL; 1802 mark_free(thrd, 0); 1803 mark_free(thrd, 1); 1804 break; 1805 1806 case PL330_OP_ABORT: 1807 /* Make sure the channel is stopped */ 1808 _stop(thrd); 1809 1810 /* ABORT is only for the active req */ 1811 if (active == -1) 1812 break; 1813 1814 thrd->req[active].r = NULL; 1815 mark_free(thrd, active); 1816 1817 /* Start the next */ 1818 case PL330_OP_START: 1819 if ((active == -1) && !_start(thrd)) 1820 ret = -EIO; 1821 break; 1822 1823 default: 1824 ret = -EINVAL; 1825 } 1826 1827 spin_unlock_irqrestore(&pl330->lock, flags); 1828 return ret; 1829 } 1830 1831 /* Reserve an event */ 1832 static inline int _alloc_event(struct pl330_thread *thrd) 1833 { 1834 struct pl330_dmac *pl330 = thrd->dmac; 1835 struct pl330_info *pi = pl330->pinfo; 1836 int ev; 1837 1838 for (ev = 0; ev < pi->pcfg.num_events; ev++) 1839 if (pl330->events[ev] == -1) { 1840 pl330->events[ev] = thrd->id; 1841 return ev; 1842 } 1843 1844 return -1; 1845 } 1846 1847 static bool _chan_ns(const struct pl330_info *pi, int i) 1848 { 1849 return pi->pcfg.irq_ns & (1 << i); 1850 } 1851 1852 /* Upon success, returns IdentityToken for the 1853 * allocated channel, NULL otherwise. 1854 */ 1855 static void *pl330_request_channel(const struct pl330_info *pi) 1856 { 1857 struct pl330_thread *thrd = NULL; 1858 struct pl330_dmac *pl330; 1859 unsigned long flags; 1860 int chans, i; 1861 1862 if (!pi || !pi->pl330_data) 1863 return NULL; 1864 1865 pl330 = pi->pl330_data; 1866 1867 if (pl330->state == DYING) 1868 return NULL; 1869 1870 chans = pi->pcfg.num_chan; 1871 1872 spin_lock_irqsave(&pl330->lock, flags); 1873 1874 for (i = 0; i < chans; i++) { 1875 thrd = &pl330->channels[i]; 1876 if ((thrd->free) && (!_manager_ns(thrd) || 1877 _chan_ns(pi, i))) { 1878 thrd->ev = _alloc_event(thrd); 1879 if (thrd->ev >= 0) { 1880 thrd->free = false; 1881 thrd->lstenq = 1; 1882 thrd->req[0].r = NULL; 1883 mark_free(thrd, 0); 1884 thrd->req[1].r = NULL; 1885 mark_free(thrd, 1); 1886 break; 1887 } 1888 } 1889 thrd = NULL; 1890 } 1891 1892 spin_unlock_irqrestore(&pl330->lock, flags); 1893 1894 return thrd; 1895 } 1896 1897 /* Release an event */ 1898 static inline void _free_event(struct pl330_thread *thrd, int ev) 1899 { 1900 struct pl330_dmac *pl330 = thrd->dmac; 1901 struct pl330_info *pi = pl330->pinfo; 1902 1903 /* If the event is valid and was held by the thread */ 1904 if (ev >= 0 && ev < pi->pcfg.num_events 1905 && pl330->events[ev] == thrd->id) 1906 pl330->events[ev] = -1; 1907 } 1908 1909 static void pl330_release_channel(void *ch_id) 1910 { 1911 struct pl330_thread *thrd = ch_id; 1912 struct pl330_dmac *pl330; 1913 unsigned long flags; 1914 1915 if (!thrd || thrd->free) 1916 return; 1917 1918 _stop(thrd); 1919 1920 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT); 1921 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT); 1922 1923 pl330 = thrd->dmac; 1924 1925 spin_lock_irqsave(&pl330->lock, flags); 1926 _free_event(thrd, thrd->ev); 1927 thrd->free = true; 1928 spin_unlock_irqrestore(&pl330->lock, flags); 1929 } 1930 1931 /* Initialize the structure for PL330 configuration, that can be used 1932 * by the client driver the make best use of the DMAC 1933 */ 1934 static void read_dmac_config(struct pl330_info *pi) 1935 { 1936 void __iomem *regs = pi->base; 1937 u32 val; 1938 1939 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1940 val &= CRD_DATA_WIDTH_MASK; 1941 pi->pcfg.data_bus_width = 8 * (1 << val); 1942 1943 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1944 val &= CRD_DATA_BUFF_MASK; 1945 pi->pcfg.data_buf_dep = val + 1; 1946 1947 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1948 val &= CR0_NUM_CHANS_MASK; 1949 val += 1; 1950 pi->pcfg.num_chan = val; 1951 1952 val = readl(regs + CR0); 1953 if (val & CR0_PERIPH_REQ_SET) { 1954 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1955 val += 1; 1956 pi->pcfg.num_peri = val; 1957 pi->pcfg.peri_ns = readl(regs + CR4); 1958 } else { 1959 pi->pcfg.num_peri = 0; 1960 } 1961 1962 val = readl(regs + CR0); 1963 if (val & CR0_BOOT_MAN_NS) 1964 pi->pcfg.mode |= DMAC_MODE_NS; 1965 else 1966 pi->pcfg.mode &= ~DMAC_MODE_NS; 1967 1968 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1969 val &= CR0_NUM_EVENTS_MASK; 1970 val += 1; 1971 pi->pcfg.num_events = val; 1972 1973 pi->pcfg.irq_ns = readl(regs + CR3); 1974 } 1975 1976 static inline void _reset_thread(struct pl330_thread *thrd) 1977 { 1978 struct pl330_dmac *pl330 = thrd->dmac; 1979 struct pl330_info *pi = pl330->pinfo; 1980 1981 thrd->req[0].mc_cpu = pl330->mcode_cpu 1982 + (thrd->id * pi->mcbufsz); 1983 thrd->req[0].mc_bus = pl330->mcode_bus 1984 + (thrd->id * pi->mcbufsz); 1985 thrd->req[0].r = NULL; 1986 mark_free(thrd, 0); 1987 1988 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1989 + pi->mcbufsz / 2; 1990 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1991 + pi->mcbufsz / 2; 1992 thrd->req[1].r = NULL; 1993 mark_free(thrd, 1); 1994 } 1995 1996 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1997 { 1998 struct pl330_info *pi = pl330->pinfo; 1999 int chans = pi->pcfg.num_chan; 2000 struct pl330_thread *thrd; 2001 int i; 2002 2003 /* Allocate 1 Manager and 'chans' Channel threads */ 2004 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 2005 GFP_KERNEL); 2006 if (!pl330->channels) 2007 return -ENOMEM; 2008 2009 /* Init Channel threads */ 2010 for (i = 0; i < chans; i++) { 2011 thrd = &pl330->channels[i]; 2012 thrd->id = i; 2013 thrd->dmac = pl330; 2014 _reset_thread(thrd); 2015 thrd->free = true; 2016 } 2017 2018 /* MANAGER is indexed at the end */ 2019 thrd = &pl330->channels[chans]; 2020 thrd->id = chans; 2021 thrd->dmac = pl330; 2022 thrd->free = false; 2023 pl330->manager = thrd; 2024 2025 return 0; 2026 } 2027 2028 static int dmac_alloc_resources(struct pl330_dmac *pl330) 2029 { 2030 struct pl330_info *pi = pl330->pinfo; 2031 int chans = pi->pcfg.num_chan; 2032 int ret; 2033 2034 /* 2035 * Alloc MicroCode buffer for 'chans' Channel threads. 2036 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 2037 */ 2038 pl330->mcode_cpu = dma_alloc_coherent(pi->dev, 2039 chans * pi->mcbufsz, 2040 &pl330->mcode_bus, GFP_KERNEL); 2041 if (!pl330->mcode_cpu) { 2042 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2043 __func__, __LINE__); 2044 return -ENOMEM; 2045 } 2046 2047 ret = dmac_alloc_threads(pl330); 2048 if (ret) { 2049 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n", 2050 __func__, __LINE__); 2051 dma_free_coherent(pi->dev, 2052 chans * pi->mcbufsz, 2053 pl330->mcode_cpu, pl330->mcode_bus); 2054 return ret; 2055 } 2056 2057 return 0; 2058 } 2059 2060 static int pl330_add(struct pl330_info *pi) 2061 { 2062 struct pl330_dmac *pl330; 2063 void __iomem *regs; 2064 int i, ret; 2065 2066 if (!pi || !pi->dev) 2067 return -EINVAL; 2068 2069 /* If already added */ 2070 if (pi->pl330_data) 2071 return -EINVAL; 2072 2073 /* 2074 * If the SoC can perform reset on the DMAC, then do it 2075 * before reading its configuration. 2076 */ 2077 if (pi->dmac_reset) 2078 pi->dmac_reset(pi); 2079 2080 regs = pi->base; 2081 2082 /* Check if we can handle this DMAC */ 2083 if ((pi->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 2084 dev_err(pi->dev, "PERIPH_ID 0x%x !\n", pi->pcfg.periph_id); 2085 return -EINVAL; 2086 } 2087 2088 /* Read the configuration of the DMAC */ 2089 read_dmac_config(pi); 2090 2091 if (pi->pcfg.num_events == 0) { 2092 dev_err(pi->dev, "%s:%d Can't work without events!\n", 2093 __func__, __LINE__); 2094 return -EINVAL; 2095 } 2096 2097 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL); 2098 if (!pl330) { 2099 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2100 __func__, __LINE__); 2101 return -ENOMEM; 2102 } 2103 2104 /* Assign the info structure and private data */ 2105 pl330->pinfo = pi; 2106 pi->pl330_data = pl330; 2107 2108 spin_lock_init(&pl330->lock); 2109 2110 INIT_LIST_HEAD(&pl330->req_done); 2111 2112 /* Use default MC buffer size if not provided */ 2113 if (!pi->mcbufsz) 2114 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2; 2115 2116 /* Mark all events as free */ 2117 for (i = 0; i < pi->pcfg.num_events; i++) 2118 pl330->events[i] = -1; 2119 2120 /* Allocate resources needed by the DMAC */ 2121 ret = dmac_alloc_resources(pl330); 2122 if (ret) { 2123 dev_err(pi->dev, "Unable to create channels for DMAC\n"); 2124 kfree(pl330); 2125 return ret; 2126 } 2127 2128 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 2129 2130 pl330->state = INIT; 2131 2132 return 0; 2133 } 2134 2135 static int dmac_free_threads(struct pl330_dmac *pl330) 2136 { 2137 struct pl330_info *pi = pl330->pinfo; 2138 int chans = pi->pcfg.num_chan; 2139 struct pl330_thread *thrd; 2140 int i; 2141 2142 /* Release Channel threads */ 2143 for (i = 0; i < chans; i++) { 2144 thrd = &pl330->channels[i]; 2145 pl330_release_channel((void *)thrd); 2146 } 2147 2148 /* Free memory */ 2149 kfree(pl330->channels); 2150 2151 return 0; 2152 } 2153 2154 static void dmac_free_resources(struct pl330_dmac *pl330) 2155 { 2156 struct pl330_info *pi = pl330->pinfo; 2157 int chans = pi->pcfg.num_chan; 2158 2159 dmac_free_threads(pl330); 2160 2161 dma_free_coherent(pi->dev, chans * pi->mcbufsz, 2162 pl330->mcode_cpu, pl330->mcode_bus); 2163 } 2164 2165 static void pl330_del(struct pl330_info *pi) 2166 { 2167 struct pl330_dmac *pl330; 2168 2169 if (!pi || !pi->pl330_data) 2170 return; 2171 2172 pl330 = pi->pl330_data; 2173 2174 pl330->state = UNINIT; 2175 2176 tasklet_kill(&pl330->tasks); 2177 2178 /* Free DMAC resources */ 2179 dmac_free_resources(pl330); 2180 2181 kfree(pl330); 2182 pi->pl330_data = NULL; 2183 } 2184 2185 /* forward declaration */ 2186 static struct amba_driver pl330_driver; 2187 2188 static inline struct dma_pl330_chan * 2189 to_pchan(struct dma_chan *ch) 2190 { 2191 if (!ch) 2192 return NULL; 2193 2194 return container_of(ch, struct dma_pl330_chan, chan); 2195 } 2196 2197 static inline struct dma_pl330_desc * 2198 to_desc(struct dma_async_tx_descriptor *tx) 2199 { 2200 return container_of(tx, struct dma_pl330_desc, txd); 2201 } 2202 2203 static inline void fill_queue(struct dma_pl330_chan *pch) 2204 { 2205 struct dma_pl330_desc *desc; 2206 int ret; 2207 2208 list_for_each_entry(desc, &pch->work_list, node) { 2209 2210 /* If already submitted */ 2211 if (desc->status == BUSY) 2212 continue; 2213 2214 ret = pl330_submit_req(pch->pl330_chid, 2215 &desc->req); 2216 if (!ret) { 2217 desc->status = BUSY; 2218 } else if (ret == -EAGAIN) { 2219 /* QFull or DMAC Dying */ 2220 break; 2221 } else { 2222 /* Unacceptable request */ 2223 desc->status = DONE; 2224 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n", 2225 __func__, __LINE__, desc->txd.cookie); 2226 tasklet_schedule(&pch->task); 2227 } 2228 } 2229 } 2230 2231 static void pl330_tasklet(unsigned long data) 2232 { 2233 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2234 struct dma_pl330_desc *desc, *_dt; 2235 unsigned long flags; 2236 2237 spin_lock_irqsave(&pch->lock, flags); 2238 2239 /* Pick up ripe tomatoes */ 2240 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2241 if (desc->status == DONE) { 2242 if (!pch->cyclic) 2243 dma_cookie_complete(&desc->txd); 2244 list_move_tail(&desc->node, &pch->completed_list); 2245 } 2246 2247 /* Try to submit a req imm. next to the last completed cookie */ 2248 fill_queue(pch); 2249 2250 /* Make sure the PL330 Channel thread is active */ 2251 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START); 2252 2253 while (!list_empty(&pch->completed_list)) { 2254 dma_async_tx_callback callback; 2255 void *callback_param; 2256 2257 desc = list_first_entry(&pch->completed_list, 2258 struct dma_pl330_desc, node); 2259 2260 callback = desc->txd.callback; 2261 callback_param = desc->txd.callback_param; 2262 2263 if (pch->cyclic) { 2264 desc->status = PREP; 2265 list_move_tail(&desc->node, &pch->work_list); 2266 } else { 2267 desc->status = FREE; 2268 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2269 } 2270 2271 if (callback) { 2272 spin_unlock_irqrestore(&pch->lock, flags); 2273 callback(callback_param); 2274 spin_lock_irqsave(&pch->lock, flags); 2275 } 2276 } 2277 spin_unlock_irqrestore(&pch->lock, flags); 2278 } 2279 2280 static void dma_pl330_rqcb(void *token, enum pl330_op_err err) 2281 { 2282 struct dma_pl330_desc *desc = token; 2283 struct dma_pl330_chan *pch = desc->pchan; 2284 unsigned long flags; 2285 2286 /* If desc aborted */ 2287 if (!pch) 2288 return; 2289 2290 spin_lock_irqsave(&pch->lock, flags); 2291 2292 desc->status = DONE; 2293 2294 spin_unlock_irqrestore(&pch->lock, flags); 2295 2296 tasklet_schedule(&pch->task); 2297 } 2298 2299 static bool pl330_dt_filter(struct dma_chan *chan, void *param) 2300 { 2301 struct dma_pl330_filter_args *fargs = param; 2302 2303 if (chan->device != &fargs->pdmac->ddma) 2304 return false; 2305 2306 return (chan->chan_id == fargs->chan_id); 2307 } 2308 2309 bool pl330_filter(struct dma_chan *chan, void *param) 2310 { 2311 u8 *peri_id; 2312 2313 if (chan->device->dev->driver != &pl330_driver.drv) 2314 return false; 2315 2316 peri_id = chan->private; 2317 return *peri_id == (unsigned)param; 2318 } 2319 EXPORT_SYMBOL(pl330_filter); 2320 2321 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2322 struct of_dma *ofdma) 2323 { 2324 int count = dma_spec->args_count; 2325 struct dma_pl330_dmac *pdmac = ofdma->of_dma_data; 2326 struct dma_pl330_filter_args fargs; 2327 dma_cap_mask_t cap; 2328 2329 if (!pdmac) 2330 return NULL; 2331 2332 if (count != 1) 2333 return NULL; 2334 2335 fargs.pdmac = pdmac; 2336 fargs.chan_id = dma_spec->args[0]; 2337 2338 dma_cap_zero(cap); 2339 dma_cap_set(DMA_SLAVE, cap); 2340 dma_cap_set(DMA_CYCLIC, cap); 2341 2342 return dma_request_channel(cap, pl330_dt_filter, &fargs); 2343 } 2344 2345 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2346 { 2347 struct dma_pl330_chan *pch = to_pchan(chan); 2348 struct dma_pl330_dmac *pdmac = pch->dmac; 2349 unsigned long flags; 2350 2351 spin_lock_irqsave(&pch->lock, flags); 2352 2353 dma_cookie_init(chan); 2354 pch->cyclic = false; 2355 2356 pch->pl330_chid = pl330_request_channel(&pdmac->pif); 2357 if (!pch->pl330_chid) { 2358 spin_unlock_irqrestore(&pch->lock, flags); 2359 return -ENOMEM; 2360 } 2361 2362 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2363 2364 spin_unlock_irqrestore(&pch->lock, flags); 2365 2366 return 1; 2367 } 2368 2369 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2370 { 2371 struct dma_pl330_chan *pch = to_pchan(chan); 2372 struct dma_pl330_desc *desc; 2373 unsigned long flags; 2374 struct dma_pl330_dmac *pdmac = pch->dmac; 2375 struct dma_slave_config *slave_config; 2376 LIST_HEAD(list); 2377 2378 switch (cmd) { 2379 case DMA_TERMINATE_ALL: 2380 spin_lock_irqsave(&pch->lock, flags); 2381 2382 /* FLUSH the PL330 Channel thread */ 2383 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH); 2384 2385 /* Mark all desc done */ 2386 list_for_each_entry(desc, &pch->work_list , node) { 2387 desc->status = FREE; 2388 dma_cookie_complete(&desc->txd); 2389 } 2390 2391 list_for_each_entry(desc, &pch->completed_list , node) { 2392 desc->status = FREE; 2393 dma_cookie_complete(&desc->txd); 2394 } 2395 2396 list_splice_tail_init(&pch->work_list, &pdmac->desc_pool); 2397 list_splice_tail_init(&pch->completed_list, &pdmac->desc_pool); 2398 spin_unlock_irqrestore(&pch->lock, flags); 2399 break; 2400 case DMA_SLAVE_CONFIG: 2401 slave_config = (struct dma_slave_config *)arg; 2402 2403 if (slave_config->direction == DMA_MEM_TO_DEV) { 2404 if (slave_config->dst_addr) 2405 pch->fifo_addr = slave_config->dst_addr; 2406 if (slave_config->dst_addr_width) 2407 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2408 if (slave_config->dst_maxburst) 2409 pch->burst_len = slave_config->dst_maxburst; 2410 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2411 if (slave_config->src_addr) 2412 pch->fifo_addr = slave_config->src_addr; 2413 if (slave_config->src_addr_width) 2414 pch->burst_sz = __ffs(slave_config->src_addr_width); 2415 if (slave_config->src_maxburst) 2416 pch->burst_len = slave_config->src_maxburst; 2417 } 2418 break; 2419 default: 2420 dev_err(pch->dmac->pif.dev, "Not supported command.\n"); 2421 return -ENXIO; 2422 } 2423 2424 return 0; 2425 } 2426 2427 static void pl330_free_chan_resources(struct dma_chan *chan) 2428 { 2429 struct dma_pl330_chan *pch = to_pchan(chan); 2430 unsigned long flags; 2431 2432 tasklet_kill(&pch->task); 2433 2434 spin_lock_irqsave(&pch->lock, flags); 2435 2436 pl330_release_channel(pch->pl330_chid); 2437 pch->pl330_chid = NULL; 2438 2439 if (pch->cyclic) 2440 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2441 2442 spin_unlock_irqrestore(&pch->lock, flags); 2443 } 2444 2445 static enum dma_status 2446 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2447 struct dma_tx_state *txstate) 2448 { 2449 return dma_cookie_status(chan, cookie, txstate); 2450 } 2451 2452 static void pl330_issue_pending(struct dma_chan *chan) 2453 { 2454 pl330_tasklet((unsigned long) to_pchan(chan)); 2455 } 2456 2457 /* 2458 * We returned the last one of the circular list of descriptor(s) 2459 * from prep_xxx, so the argument to submit corresponds to the last 2460 * descriptor of the list. 2461 */ 2462 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2463 { 2464 struct dma_pl330_desc *desc, *last = to_desc(tx); 2465 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2466 dma_cookie_t cookie; 2467 unsigned long flags; 2468 2469 spin_lock_irqsave(&pch->lock, flags); 2470 2471 /* Assign cookies to all nodes */ 2472 while (!list_empty(&last->node)) { 2473 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2474 if (pch->cyclic) { 2475 desc->txd.callback = last->txd.callback; 2476 desc->txd.callback_param = last->txd.callback_param; 2477 } 2478 2479 dma_cookie_assign(&desc->txd); 2480 2481 list_move_tail(&desc->node, &pch->work_list); 2482 } 2483 2484 cookie = dma_cookie_assign(&last->txd); 2485 list_add_tail(&last->node, &pch->work_list); 2486 spin_unlock_irqrestore(&pch->lock, flags); 2487 2488 return cookie; 2489 } 2490 2491 static inline void _init_desc(struct dma_pl330_desc *desc) 2492 { 2493 desc->pchan = NULL; 2494 desc->req.x = &desc->px; 2495 desc->req.token = desc; 2496 desc->rqcfg.swap = SWAP_NO; 2497 desc->rqcfg.privileged = 0; 2498 desc->rqcfg.insnaccess = 0; 2499 desc->rqcfg.scctl = SCCTRL0; 2500 desc->rqcfg.dcctl = DCCTRL0; 2501 desc->req.cfg = &desc->rqcfg; 2502 desc->req.xfer_cb = dma_pl330_rqcb; 2503 desc->txd.tx_submit = pl330_tx_submit; 2504 2505 INIT_LIST_HEAD(&desc->node); 2506 } 2507 2508 /* Returns the number of descriptors added to the DMAC pool */ 2509 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count) 2510 { 2511 struct dma_pl330_desc *desc; 2512 unsigned long flags; 2513 int i; 2514 2515 if (!pdmac) 2516 return 0; 2517 2518 desc = kmalloc(count * sizeof(*desc), flg); 2519 if (!desc) 2520 return 0; 2521 2522 spin_lock_irqsave(&pdmac->pool_lock, flags); 2523 2524 for (i = 0; i < count; i++) { 2525 _init_desc(&desc[i]); 2526 list_add_tail(&desc[i].node, &pdmac->desc_pool); 2527 } 2528 2529 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2530 2531 return count; 2532 } 2533 2534 static struct dma_pl330_desc * 2535 pluck_desc(struct dma_pl330_dmac *pdmac) 2536 { 2537 struct dma_pl330_desc *desc = NULL; 2538 unsigned long flags; 2539 2540 if (!pdmac) 2541 return NULL; 2542 2543 spin_lock_irqsave(&pdmac->pool_lock, flags); 2544 2545 if (!list_empty(&pdmac->desc_pool)) { 2546 desc = list_entry(pdmac->desc_pool.next, 2547 struct dma_pl330_desc, node); 2548 2549 list_del_init(&desc->node); 2550 2551 desc->status = PREP; 2552 desc->txd.callback = NULL; 2553 } 2554 2555 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2556 2557 return desc; 2558 } 2559 2560 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2561 { 2562 struct dma_pl330_dmac *pdmac = pch->dmac; 2563 u8 *peri_id = pch->chan.private; 2564 struct dma_pl330_desc *desc; 2565 2566 /* Pluck one desc from the pool of DMAC */ 2567 desc = pluck_desc(pdmac); 2568 2569 /* If the DMAC pool is empty, alloc new */ 2570 if (!desc) { 2571 if (!add_desc(pdmac, GFP_ATOMIC, 1)) 2572 return NULL; 2573 2574 /* Try again */ 2575 desc = pluck_desc(pdmac); 2576 if (!desc) { 2577 dev_err(pch->dmac->pif.dev, 2578 "%s:%d ALERT!\n", __func__, __LINE__); 2579 return NULL; 2580 } 2581 } 2582 2583 /* Initialize the descriptor */ 2584 desc->pchan = pch; 2585 desc->txd.cookie = 0; 2586 async_tx_ack(&desc->txd); 2587 2588 desc->req.peri = peri_id ? pch->chan.chan_id : 0; 2589 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg; 2590 2591 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2592 2593 return desc; 2594 } 2595 2596 static inline void fill_px(struct pl330_xfer *px, 2597 dma_addr_t dst, dma_addr_t src, size_t len) 2598 { 2599 px->next = NULL; 2600 px->bytes = len; 2601 px->dst_addr = dst; 2602 px->src_addr = src; 2603 } 2604 2605 static struct dma_pl330_desc * 2606 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2607 dma_addr_t src, size_t len) 2608 { 2609 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2610 2611 if (!desc) { 2612 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2613 __func__, __LINE__); 2614 return NULL; 2615 } 2616 2617 /* 2618 * Ideally we should lookout for reqs bigger than 2619 * those that can be programmed with 256 bytes of 2620 * MC buffer, but considering a req size is seldom 2621 * going to be word-unaligned and more than 200MB, 2622 * we take it easy. 2623 * Also, should the limit is reached we'd rather 2624 * have the platform increase MC buffer size than 2625 * complicating this API driver. 2626 */ 2627 fill_px(&desc->px, dst, src, len); 2628 2629 return desc; 2630 } 2631 2632 /* Call after fixing burst size */ 2633 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2634 { 2635 struct dma_pl330_chan *pch = desc->pchan; 2636 struct pl330_info *pi = &pch->dmac->pif; 2637 int burst_len; 2638 2639 burst_len = pi->pcfg.data_bus_width / 8; 2640 burst_len *= pi->pcfg.data_buf_dep; 2641 burst_len >>= desc->rqcfg.brst_size; 2642 2643 /* src/dst_burst_len can't be more than 16 */ 2644 if (burst_len > 16) 2645 burst_len = 16; 2646 2647 while (burst_len > 1) { 2648 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2649 break; 2650 burst_len--; 2651 } 2652 2653 return burst_len; 2654 } 2655 2656 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2657 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2658 size_t period_len, enum dma_transfer_direction direction, 2659 unsigned long flags, void *context) 2660 { 2661 struct dma_pl330_desc *desc = NULL, *first = NULL; 2662 struct dma_pl330_chan *pch = to_pchan(chan); 2663 struct dma_pl330_dmac *pdmac = pch->dmac; 2664 unsigned int i; 2665 dma_addr_t dst; 2666 dma_addr_t src; 2667 2668 if (len % period_len != 0) 2669 return NULL; 2670 2671 if (!is_slave_direction(direction)) { 2672 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n", 2673 __func__, __LINE__); 2674 return NULL; 2675 } 2676 2677 for (i = 0; i < len / period_len; i++) { 2678 desc = pl330_get_desc(pch); 2679 if (!desc) { 2680 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2681 __func__, __LINE__); 2682 2683 if (!first) 2684 return NULL; 2685 2686 spin_lock_irqsave(&pdmac->pool_lock, flags); 2687 2688 while (!list_empty(&first->node)) { 2689 desc = list_entry(first->node.next, 2690 struct dma_pl330_desc, node); 2691 list_move_tail(&desc->node, &pdmac->desc_pool); 2692 } 2693 2694 list_move_tail(&first->node, &pdmac->desc_pool); 2695 2696 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2697 2698 return NULL; 2699 } 2700 2701 switch (direction) { 2702 case DMA_MEM_TO_DEV: 2703 desc->rqcfg.src_inc = 1; 2704 desc->rqcfg.dst_inc = 0; 2705 desc->req.rqtype = MEMTODEV; 2706 src = dma_addr; 2707 dst = pch->fifo_addr; 2708 break; 2709 case DMA_DEV_TO_MEM: 2710 desc->rqcfg.src_inc = 0; 2711 desc->rqcfg.dst_inc = 1; 2712 desc->req.rqtype = DEVTOMEM; 2713 src = pch->fifo_addr; 2714 dst = dma_addr; 2715 break; 2716 default: 2717 break; 2718 } 2719 2720 desc->rqcfg.brst_size = pch->burst_sz; 2721 desc->rqcfg.brst_len = 1; 2722 fill_px(&desc->px, dst, src, period_len); 2723 2724 if (!first) 2725 first = desc; 2726 else 2727 list_add_tail(&desc->node, &first->node); 2728 2729 dma_addr += period_len; 2730 } 2731 2732 if (!desc) 2733 return NULL; 2734 2735 pch->cyclic = true; 2736 desc->txd.flags = flags; 2737 2738 return &desc->txd; 2739 } 2740 2741 static struct dma_async_tx_descriptor * 2742 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2743 dma_addr_t src, size_t len, unsigned long flags) 2744 { 2745 struct dma_pl330_desc *desc; 2746 struct dma_pl330_chan *pch = to_pchan(chan); 2747 struct pl330_info *pi; 2748 int burst; 2749 2750 if (unlikely(!pch || !len)) 2751 return NULL; 2752 2753 pi = &pch->dmac->pif; 2754 2755 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2756 if (!desc) 2757 return NULL; 2758 2759 desc->rqcfg.src_inc = 1; 2760 desc->rqcfg.dst_inc = 1; 2761 desc->req.rqtype = MEMTOMEM; 2762 2763 /* Select max possible burst size */ 2764 burst = pi->pcfg.data_bus_width / 8; 2765 2766 while (burst > 1) { 2767 if (!(len % burst)) 2768 break; 2769 burst /= 2; 2770 } 2771 2772 desc->rqcfg.brst_size = 0; 2773 while (burst != (1 << desc->rqcfg.brst_size)) 2774 desc->rqcfg.brst_size++; 2775 2776 desc->rqcfg.brst_len = get_burst_len(desc, len); 2777 2778 desc->txd.flags = flags; 2779 2780 return &desc->txd; 2781 } 2782 2783 static void __pl330_giveback_desc(struct dma_pl330_dmac *pdmac, 2784 struct dma_pl330_desc *first) 2785 { 2786 unsigned long flags; 2787 struct dma_pl330_desc *desc; 2788 2789 if (!first) 2790 return; 2791 2792 spin_lock_irqsave(&pdmac->pool_lock, flags); 2793 2794 while (!list_empty(&first->node)) { 2795 desc = list_entry(first->node.next, 2796 struct dma_pl330_desc, node); 2797 list_move_tail(&desc->node, &pdmac->desc_pool); 2798 } 2799 2800 list_move_tail(&first->node, &pdmac->desc_pool); 2801 2802 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2803 } 2804 2805 static struct dma_async_tx_descriptor * 2806 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2807 unsigned int sg_len, enum dma_transfer_direction direction, 2808 unsigned long flg, void *context) 2809 { 2810 struct dma_pl330_desc *first, *desc = NULL; 2811 struct dma_pl330_chan *pch = to_pchan(chan); 2812 struct scatterlist *sg; 2813 int i; 2814 dma_addr_t addr; 2815 2816 if (unlikely(!pch || !sgl || !sg_len)) 2817 return NULL; 2818 2819 addr = pch->fifo_addr; 2820 2821 first = NULL; 2822 2823 for_each_sg(sgl, sg, sg_len, i) { 2824 2825 desc = pl330_get_desc(pch); 2826 if (!desc) { 2827 struct dma_pl330_dmac *pdmac = pch->dmac; 2828 2829 dev_err(pch->dmac->pif.dev, 2830 "%s:%d Unable to fetch desc\n", 2831 __func__, __LINE__); 2832 __pl330_giveback_desc(pdmac, first); 2833 2834 return NULL; 2835 } 2836 2837 if (!first) 2838 first = desc; 2839 else 2840 list_add_tail(&desc->node, &first->node); 2841 2842 if (direction == DMA_MEM_TO_DEV) { 2843 desc->rqcfg.src_inc = 1; 2844 desc->rqcfg.dst_inc = 0; 2845 desc->req.rqtype = MEMTODEV; 2846 fill_px(&desc->px, 2847 addr, sg_dma_address(sg), sg_dma_len(sg)); 2848 } else { 2849 desc->rqcfg.src_inc = 0; 2850 desc->rqcfg.dst_inc = 1; 2851 desc->req.rqtype = DEVTOMEM; 2852 fill_px(&desc->px, 2853 sg_dma_address(sg), addr, sg_dma_len(sg)); 2854 } 2855 2856 desc->rqcfg.brst_size = pch->burst_sz; 2857 desc->rqcfg.brst_len = 1; 2858 } 2859 2860 /* Return the last desc in the chain */ 2861 desc->txd.flags = flg; 2862 return &desc->txd; 2863 } 2864 2865 static irqreturn_t pl330_irq_handler(int irq, void *data) 2866 { 2867 if (pl330_update(data)) 2868 return IRQ_HANDLED; 2869 else 2870 return IRQ_NONE; 2871 } 2872 2873 #define PL330_DMA_BUSWIDTHS \ 2874 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2875 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2876 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2877 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2878 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2879 2880 static int pl330_dma_device_slave_caps(struct dma_chan *dchan, 2881 struct dma_slave_caps *caps) 2882 { 2883 caps->src_addr_widths = PL330_DMA_BUSWIDTHS; 2884 caps->dstn_addr_widths = PL330_DMA_BUSWIDTHS; 2885 caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2886 caps->cmd_pause = false; 2887 caps->cmd_terminate = true; 2888 2889 return 0; 2890 } 2891 2892 static int 2893 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2894 { 2895 struct dma_pl330_platdata *pdat; 2896 struct dma_pl330_dmac *pdmac; 2897 struct dma_pl330_chan *pch, *_p; 2898 struct pl330_info *pi; 2899 struct dma_device *pd; 2900 struct resource *res; 2901 int i, ret, irq; 2902 int num_chan; 2903 2904 pdat = dev_get_platdata(&adev->dev); 2905 2906 /* Allocate a new DMAC and its Channels */ 2907 pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL); 2908 if (!pdmac) { 2909 dev_err(&adev->dev, "unable to allocate mem\n"); 2910 return -ENOMEM; 2911 } 2912 2913 pi = &pdmac->pif; 2914 pi->dev = &adev->dev; 2915 pi->pl330_data = NULL; 2916 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2917 2918 res = &adev->res; 2919 pi->base = devm_ioremap_resource(&adev->dev, res); 2920 if (IS_ERR(pi->base)) 2921 return PTR_ERR(pi->base); 2922 2923 amba_set_drvdata(adev, pdmac); 2924 2925 irq = adev->irq[0]; 2926 ret = request_irq(irq, pl330_irq_handler, 0, 2927 dev_name(&adev->dev), pi); 2928 if (ret) 2929 return ret; 2930 2931 pi->pcfg.periph_id = adev->periphid; 2932 ret = pl330_add(pi); 2933 if (ret) 2934 goto probe_err1; 2935 2936 INIT_LIST_HEAD(&pdmac->desc_pool); 2937 spin_lock_init(&pdmac->pool_lock); 2938 2939 /* Create a descriptor pool of default size */ 2940 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC)) 2941 dev_warn(&adev->dev, "unable to allocate desc\n"); 2942 2943 pd = &pdmac->ddma; 2944 INIT_LIST_HEAD(&pd->channels); 2945 2946 /* Initialize channel parameters */ 2947 if (pdat) 2948 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan); 2949 else 2950 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan); 2951 2952 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2953 if (!pdmac->peripherals) { 2954 ret = -ENOMEM; 2955 dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n"); 2956 goto probe_err2; 2957 } 2958 2959 for (i = 0; i < num_chan; i++) { 2960 pch = &pdmac->peripherals[i]; 2961 if (!adev->dev.of_node) 2962 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2963 else 2964 pch->chan.private = adev->dev.of_node; 2965 2966 INIT_LIST_HEAD(&pch->work_list); 2967 INIT_LIST_HEAD(&pch->completed_list); 2968 spin_lock_init(&pch->lock); 2969 pch->pl330_chid = NULL; 2970 pch->chan.device = pd; 2971 pch->dmac = pdmac; 2972 2973 /* Add the channel to the DMAC list */ 2974 list_add_tail(&pch->chan.device_node, &pd->channels); 2975 } 2976 2977 pd->dev = &adev->dev; 2978 if (pdat) { 2979 pd->cap_mask = pdat->cap_mask; 2980 } else { 2981 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2982 if (pi->pcfg.num_peri) { 2983 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2984 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2985 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2986 } 2987 } 2988 2989 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2990 pd->device_free_chan_resources = pl330_free_chan_resources; 2991 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2992 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2993 pd->device_tx_status = pl330_tx_status; 2994 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2995 pd->device_control = pl330_control; 2996 pd->device_issue_pending = pl330_issue_pending; 2997 pd->device_slave_caps = pl330_dma_device_slave_caps; 2998 2999 ret = dma_async_device_register(pd); 3000 if (ret) { 3001 dev_err(&adev->dev, "unable to register DMAC\n"); 3002 goto probe_err3; 3003 } 3004 3005 if (adev->dev.of_node) { 3006 ret = of_dma_controller_register(adev->dev.of_node, 3007 of_dma_pl330_xlate, pdmac); 3008 if (ret) { 3009 dev_err(&adev->dev, 3010 "unable to register DMA to the generic DT DMA helpers\n"); 3011 } 3012 } 3013 /* 3014 * This is the limit for transfers with a buswidth of 1, larger 3015 * buswidths will have larger limits. 3016 */ 3017 ret = dma_set_max_seg_size(&adev->dev, 1900800); 3018 if (ret) 3019 dev_err(&adev->dev, "unable to set the seg size\n"); 3020 3021 3022 dev_info(&adev->dev, 3023 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 3024 dev_info(&adev->dev, 3025 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3026 pi->pcfg.data_buf_dep, 3027 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan, 3028 pi->pcfg.num_peri, pi->pcfg.num_events); 3029 3030 return 0; 3031 probe_err3: 3032 amba_set_drvdata(adev, NULL); 3033 3034 /* Idle the DMAC */ 3035 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3036 chan.device_node) { 3037 3038 /* Remove the channel */ 3039 list_del(&pch->chan.device_node); 3040 3041 /* Flush the channel */ 3042 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3043 pl330_free_chan_resources(&pch->chan); 3044 } 3045 probe_err2: 3046 pl330_del(pi); 3047 probe_err1: 3048 free_irq(irq, pi); 3049 3050 return ret; 3051 } 3052 3053 static int pl330_remove(struct amba_device *adev) 3054 { 3055 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev); 3056 struct dma_pl330_chan *pch, *_p; 3057 struct pl330_info *pi; 3058 int irq; 3059 3060 if (!pdmac) 3061 return 0; 3062 3063 if (adev->dev.of_node) 3064 of_dma_controller_free(adev->dev.of_node); 3065 3066 dma_async_device_unregister(&pdmac->ddma); 3067 amba_set_drvdata(adev, NULL); 3068 3069 /* Idle the DMAC */ 3070 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3071 chan.device_node) { 3072 3073 /* Remove the channel */ 3074 list_del(&pch->chan.device_node); 3075 3076 /* Flush the channel */ 3077 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3078 pl330_free_chan_resources(&pch->chan); 3079 } 3080 3081 pi = &pdmac->pif; 3082 3083 pl330_del(pi); 3084 3085 irq = adev->irq[0]; 3086 free_irq(irq, pi); 3087 3088 return 0; 3089 } 3090 3091 static struct amba_id pl330_ids[] = { 3092 { 3093 .id = 0x00041330, 3094 .mask = 0x000fffff, 3095 }, 3096 { 0, 0 }, 3097 }; 3098 3099 MODULE_DEVICE_TABLE(amba, pl330_ids); 3100 3101 static struct amba_driver pl330_driver = { 3102 .drv = { 3103 .owner = THIS_MODULE, 3104 .name = "dma-pl330", 3105 }, 3106 .id_table = pl330_ids, 3107 .probe = pl330_probe, 3108 .remove = pl330_remove, 3109 }; 3110 3111 module_amba_driver(pl330_driver); 3112 3113 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 3114 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3115 MODULE_LICENSE("GPL"); 3116